xref: /openbmc/linux/net/socket.c (revision a79af59e)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/divert.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 
88 #ifdef CONFIG_NET_RADIO
89 #include <linux/wireless.h>		/* Note : will define WIRELESS_EXT */
90 #endif	/* CONFIG_NET_RADIO */
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
102 			 size_t size, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
104 			  size_t size, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
106 
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 			      struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file,
111 		      unsigned int cmd, unsigned long arg);
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
114 			  unsigned long count, loff_t *ppos);
115 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
116 			  unsigned long count, loff_t *ppos);
117 static ssize_t sock_sendpage(struct file *file, struct page *page,
118 			     int offset, size_t size, loff_t *ppos, int more);
119 
120 
121 /*
122  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123  *	in the operation structures but are done directly via the socketcall() multiplexor.
124  */
125 
126 static struct file_operations socket_file_ops = {
127 	.owner =	THIS_MODULE,
128 	.llseek =	no_llseek,
129 	.aio_read =	sock_aio_read,
130 	.aio_write =	sock_aio_write,
131 	.poll =		sock_poll,
132 	.unlocked_ioctl = sock_ioctl,
133 	.mmap =		sock_mmap,
134 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
135 	.release =	sock_close,
136 	.fasync =	sock_fasync,
137 	.readv =	sock_readv,
138 	.writev =	sock_writev,
139 	.sendpage =	sock_sendpage
140 };
141 
142 /*
143  *	The protocol list. Each protocol is registered in here.
144  */
145 
146 static struct net_proto_family *net_families[NPROTO];
147 
148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
149 static atomic_t net_family_lockct = ATOMIC_INIT(0);
150 static DEFINE_SPINLOCK(net_family_lock);
151 
152 /* The strategy is: modifications net_family vector are short, do not
153    sleep and veeery rare, but read access should be free of any exclusive
154    locks.
155  */
156 
157 static void net_family_write_lock(void)
158 {
159 	spin_lock(&net_family_lock);
160 	while (atomic_read(&net_family_lockct) != 0) {
161 		spin_unlock(&net_family_lock);
162 
163 		yield();
164 
165 		spin_lock(&net_family_lock);
166 	}
167 }
168 
169 static __inline__ void net_family_write_unlock(void)
170 {
171 	spin_unlock(&net_family_lock);
172 }
173 
174 static __inline__ void net_family_read_lock(void)
175 {
176 	atomic_inc(&net_family_lockct);
177 	spin_unlock_wait(&net_family_lock);
178 }
179 
180 static __inline__ void net_family_read_unlock(void)
181 {
182 	atomic_dec(&net_family_lockct);
183 }
184 
185 #else
186 #define net_family_write_lock() do { } while(0)
187 #define net_family_write_unlock() do { } while(0)
188 #define net_family_read_lock() do { } while(0)
189 #define net_family_read_unlock() do { } while(0)
190 #endif
191 
192 
193 /*
194  *	Statistics counters of the socket lists
195  */
196 
197 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
198 
199 /*
200  *	Support routines. Move socket addresses back and forth across the kernel/user
201  *	divide and look after the messy bits.
202  */
203 
204 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
205 					   16 for IP, 16 for IPX,
206 					   24 for IPv6,
207 					   about 80 for AX.25
208 					   must be at least one bigger than
209 					   the AF_UNIX size (see net/unix/af_unix.c
210 					   :unix_mkname()).
211 					 */
212 
213 /**
214  *	move_addr_to_kernel	-	copy a socket address into kernel space
215  *	@uaddr: Address in user space
216  *	@kaddr: Address in kernel space
217  *	@ulen: Length in user space
218  *
219  *	The address is copied into kernel space. If the provided address is
220  *	too long an error code of -EINVAL is returned. If the copy gives
221  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
222  */
223 
224 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
225 {
226 	if(ulen<0||ulen>MAX_SOCK_ADDR)
227 		return -EINVAL;
228 	if(ulen==0)
229 		return 0;
230 	if(copy_from_user(kaddr,uaddr,ulen))
231 		return -EFAULT;
232 	return audit_sockaddr(ulen, kaddr);
233 }
234 
235 /**
236  *	move_addr_to_user	-	copy an address to user space
237  *	@kaddr: kernel space address
238  *	@klen: length of address in kernel
239  *	@uaddr: user space address
240  *	@ulen: pointer to user length field
241  *
242  *	The value pointed to by ulen on entry is the buffer length available.
243  *	This is overwritten with the buffer space used. -EINVAL is returned
244  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
245  *	is returned if either the buffer or the length field are not
246  *	accessible.
247  *	After copying the data up to the limit the user specifies, the true
248  *	length of the data is written over the length limit the user
249  *	specified. Zero is returned for a success.
250  */
251 
252 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
253 {
254 	int err;
255 	int len;
256 
257 	if((err=get_user(len, ulen)))
258 		return err;
259 	if(len>klen)
260 		len=klen;
261 	if(len<0 || len> MAX_SOCK_ADDR)
262 		return -EINVAL;
263 	if(len)
264 	{
265 		if(copy_to_user(uaddr,kaddr,len))
266 			return -EFAULT;
267 	}
268 	/*
269 	 *	"fromlen shall refer to the value before truncation.."
270 	 *			1003.1g
271 	 */
272 	return __put_user(klen, ulen);
273 }
274 
275 #define SOCKFS_MAGIC 0x534F434B
276 
277 static kmem_cache_t * sock_inode_cachep __read_mostly;
278 
279 static struct inode *sock_alloc_inode(struct super_block *sb)
280 {
281 	struct socket_alloc *ei;
282 	ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
283 	if (!ei)
284 		return NULL;
285 	init_waitqueue_head(&ei->socket.wait);
286 
287 	ei->socket.fasync_list = NULL;
288 	ei->socket.state = SS_UNCONNECTED;
289 	ei->socket.flags = 0;
290 	ei->socket.ops = NULL;
291 	ei->socket.sk = NULL;
292 	ei->socket.file = NULL;
293 	ei->socket.flags = 0;
294 
295 	return &ei->vfs_inode;
296 }
297 
298 static void sock_destroy_inode(struct inode *inode)
299 {
300 	kmem_cache_free(sock_inode_cachep,
301 			container_of(inode, struct socket_alloc, vfs_inode));
302 }
303 
304 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
305 {
306 	struct socket_alloc *ei = (struct socket_alloc *) foo;
307 
308 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
309 	    SLAB_CTOR_CONSTRUCTOR)
310 		inode_init_once(&ei->vfs_inode);
311 }
312 
313 static int init_inodecache(void)
314 {
315 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
316 				sizeof(struct socket_alloc),
317 				0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
318 				init_once, NULL);
319 	if (sock_inode_cachep == NULL)
320 		return -ENOMEM;
321 	return 0;
322 }
323 
324 static struct super_operations sockfs_ops = {
325 	.alloc_inode =	sock_alloc_inode,
326 	.destroy_inode =sock_destroy_inode,
327 	.statfs =	simple_statfs,
328 };
329 
330 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
331 	int flags, const char *dev_name, void *data)
332 {
333 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
334 }
335 
336 static struct vfsmount *sock_mnt __read_mostly;
337 
338 static struct file_system_type sock_fs_type = {
339 	.name =		"sockfs",
340 	.get_sb =	sockfs_get_sb,
341 	.kill_sb =	kill_anon_super,
342 };
343 static int sockfs_delete_dentry(struct dentry *dentry)
344 {
345 	return 1;
346 }
347 static struct dentry_operations sockfs_dentry_operations = {
348 	.d_delete =	sockfs_delete_dentry,
349 };
350 
351 /*
352  *	Obtains the first available file descriptor and sets it up for use.
353  *
354  *	This function creates file structure and maps it to fd space
355  *	of current process. On success it returns file descriptor
356  *	and file struct implicitly stored in sock->file.
357  *	Note that another thread may close file descriptor before we return
358  *	from this function. We use the fact that now we do not refer
359  *	to socket after mapping. If one day we will need it, this
360  *	function will increment ref. count on file by 1.
361  *
362  *	In any case returned fd MAY BE not valid!
363  *	This race condition is unavoidable
364  *	with shared fd spaces, we cannot solve it inside kernel,
365  *	but we take care of internal coherence yet.
366  */
367 
368 int sock_map_fd(struct socket *sock)
369 {
370 	int fd;
371 	struct qstr this;
372 	char name[32];
373 
374 	/*
375 	 *	Find a file descriptor suitable for return to the user.
376 	 */
377 
378 	fd = get_unused_fd();
379 	if (fd >= 0) {
380 		struct file *file = get_empty_filp();
381 
382 		if (!file) {
383 			put_unused_fd(fd);
384 			fd = -ENFILE;
385 			goto out;
386 		}
387 
388 		this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
389 		this.name = name;
390 		this.hash = SOCK_INODE(sock)->i_ino;
391 
392 		file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
393 		if (!file->f_dentry) {
394 			put_filp(file);
395 			put_unused_fd(fd);
396 			fd = -ENOMEM;
397 			goto out;
398 		}
399 		file->f_dentry->d_op = &sockfs_dentry_operations;
400 		d_add(file->f_dentry, SOCK_INODE(sock));
401 		file->f_vfsmnt = mntget(sock_mnt);
402 		file->f_mapping = file->f_dentry->d_inode->i_mapping;
403 
404 		sock->file = file;
405 		file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
406 		file->f_mode = FMODE_READ | FMODE_WRITE;
407 		file->f_flags = O_RDWR;
408 		file->f_pos = 0;
409 		file->private_data = sock;
410 		fd_install(fd, file);
411 	}
412 
413 out:
414 	return fd;
415 }
416 
417 /**
418  *	sockfd_lookup	- 	Go from a file number to its socket slot
419  *	@fd: file handle
420  *	@err: pointer to an error code return
421  *
422  *	The file handle passed in is locked and the socket it is bound
423  *	too is returned. If an error occurs the err pointer is overwritten
424  *	with a negative errno code and NULL is returned. The function checks
425  *	for both invalid handles and passing a handle which is not a socket.
426  *
427  *	On a success the socket object pointer is returned.
428  */
429 
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 	struct file *file;
433 	struct inode *inode;
434 	struct socket *sock;
435 
436 	if (!(file = fget(fd)))
437 	{
438 		*err = -EBADF;
439 		return NULL;
440 	}
441 
442 	if (file->f_op == &socket_file_ops)
443 		return file->private_data;	/* set in sock_map_fd */
444 
445 	inode = file->f_dentry->d_inode;
446 	if (!S_ISSOCK(inode->i_mode)) {
447 		*err = -ENOTSOCK;
448 		fput(file);
449 		return NULL;
450 	}
451 
452 	sock = SOCKET_I(inode);
453 	if (sock->file != file) {
454 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
455 		sock->file = file;
456 	}
457 	return sock;
458 }
459 
460 /**
461  *	sock_alloc	-	allocate a socket
462  *
463  *	Allocate a new inode and socket object. The two are bound together
464  *	and initialised. The socket is then returned. If we are out of inodes
465  *	NULL is returned.
466  */
467 
468 static struct socket *sock_alloc(void)
469 {
470 	struct inode * inode;
471 	struct socket * sock;
472 
473 	inode = new_inode(sock_mnt->mnt_sb);
474 	if (!inode)
475 		return NULL;
476 
477 	sock = SOCKET_I(inode);
478 
479 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
480 	inode->i_uid = current->fsuid;
481 	inode->i_gid = current->fsgid;
482 
483 	get_cpu_var(sockets_in_use)++;
484 	put_cpu_var(sockets_in_use);
485 	return sock;
486 }
487 
488 /*
489  *	In theory you can't get an open on this inode, but /proc provides
490  *	a back door. Remember to keep it shut otherwise you'll let the
491  *	creepy crawlies in.
492  */
493 
494 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
495 {
496 	return -ENXIO;
497 }
498 
499 struct file_operations bad_sock_fops = {
500 	.owner = THIS_MODULE,
501 	.open = sock_no_open,
502 };
503 
504 /**
505  *	sock_release	-	close a socket
506  *	@sock: socket to close
507  *
508  *	The socket is released from the protocol stack if it has a release
509  *	callback, and the inode is then released if the socket is bound to
510  *	an inode not a file.
511  */
512 
513 void sock_release(struct socket *sock)
514 {
515 	if (sock->ops) {
516 		struct module *owner = sock->ops->owner;
517 
518 		sock->ops->release(sock);
519 		sock->ops = NULL;
520 		module_put(owner);
521 	}
522 
523 	if (sock->fasync_list)
524 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
525 
526 	get_cpu_var(sockets_in_use)--;
527 	put_cpu_var(sockets_in_use);
528 	if (!sock->file) {
529 		iput(SOCK_INODE(sock));
530 		return;
531 	}
532 	sock->file=NULL;
533 }
534 
535 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
536 				 struct msghdr *msg, size_t size)
537 {
538 	struct sock_iocb *si = kiocb_to_siocb(iocb);
539 	int err;
540 
541 	si->sock = sock;
542 	si->scm = NULL;
543 	si->msg = msg;
544 	si->size = size;
545 
546 	err = security_socket_sendmsg(sock, msg, size);
547 	if (err)
548 		return err;
549 
550 	return sock->ops->sendmsg(iocb, sock, msg, size);
551 }
552 
553 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
554 {
555 	struct kiocb iocb;
556 	struct sock_iocb siocb;
557 	int ret;
558 
559 	init_sync_kiocb(&iocb, NULL);
560 	iocb.private = &siocb;
561 	ret = __sock_sendmsg(&iocb, sock, msg, size);
562 	if (-EIOCBQUEUED == ret)
563 		ret = wait_on_sync_kiocb(&iocb);
564 	return ret;
565 }
566 
567 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
568 		   struct kvec *vec, size_t num, size_t size)
569 {
570 	mm_segment_t oldfs = get_fs();
571 	int result;
572 
573 	set_fs(KERNEL_DS);
574 	/*
575 	 * the following is safe, since for compiler definitions of kvec and
576 	 * iovec are identical, yielding the same in-core layout and alignment
577 	 */
578 	msg->msg_iov = (struct iovec *)vec,
579 	msg->msg_iovlen = num;
580 	result = sock_sendmsg(sock, msg, size);
581 	set_fs(oldfs);
582 	return result;
583 }
584 
585 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
586 				 struct msghdr *msg, size_t size, int flags)
587 {
588 	int err;
589 	struct sock_iocb *si = kiocb_to_siocb(iocb);
590 
591 	si->sock = sock;
592 	si->scm = NULL;
593 	si->msg = msg;
594 	si->size = size;
595 	si->flags = flags;
596 
597 	err = security_socket_recvmsg(sock, msg, size, flags);
598 	if (err)
599 		return err;
600 
601 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
602 }
603 
604 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
605 		 size_t size, int flags)
606 {
607 	struct kiocb iocb;
608 	struct sock_iocb siocb;
609 	int ret;
610 
611         init_sync_kiocb(&iocb, NULL);
612 	iocb.private = &siocb;
613 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
614 	if (-EIOCBQUEUED == ret)
615 		ret = wait_on_sync_kiocb(&iocb);
616 	return ret;
617 }
618 
619 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
620 		   struct kvec *vec, size_t num,
621 		   size_t size, int flags)
622 {
623 	mm_segment_t oldfs = get_fs();
624 	int result;
625 
626 	set_fs(KERNEL_DS);
627 	/*
628 	 * the following is safe, since for compiler definitions of kvec and
629 	 * iovec are identical, yielding the same in-core layout and alignment
630 	 */
631 	msg->msg_iov = (struct iovec *)vec,
632 	msg->msg_iovlen = num;
633 	result = sock_recvmsg(sock, msg, size, flags);
634 	set_fs(oldfs);
635 	return result;
636 }
637 
638 static void sock_aio_dtor(struct kiocb *iocb)
639 {
640 	kfree(iocb->private);
641 }
642 
643 /*
644  *	Read data from a socket. ubuf is a user mode pointer. We make sure the user
645  *	area ubuf...ubuf+size-1 is writable before asking the protocol.
646  */
647 
648 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
649 			 size_t size, loff_t pos)
650 {
651 	struct sock_iocb *x, siocb;
652 	struct socket *sock;
653 	int flags;
654 
655 	if (pos != 0)
656 		return -ESPIPE;
657 	if (size==0)		/* Match SYS5 behaviour */
658 		return 0;
659 
660 	if (is_sync_kiocb(iocb))
661 		x = &siocb;
662 	else {
663 		x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
664 		if (!x)
665 			return -ENOMEM;
666 		iocb->ki_dtor = sock_aio_dtor;
667 	}
668 	iocb->private = x;
669 	x->kiocb = iocb;
670 	sock = iocb->ki_filp->private_data;
671 
672 	x->async_msg.msg_name = NULL;
673 	x->async_msg.msg_namelen = 0;
674 	x->async_msg.msg_iov = &x->async_iov;
675 	x->async_msg.msg_iovlen = 1;
676 	x->async_msg.msg_control = NULL;
677 	x->async_msg.msg_controllen = 0;
678 	x->async_iov.iov_base = ubuf;
679 	x->async_iov.iov_len = size;
680 	flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
681 
682 	return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags);
683 }
684 
685 
686 /*
687  *	Write data to a socket. We verify that the user area ubuf..ubuf+size-1
688  *	is readable by the user process.
689  */
690 
691 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
692 			  size_t size, loff_t pos)
693 {
694 	struct sock_iocb *x, siocb;
695 	struct socket *sock;
696 
697 	if (pos != 0)
698 		return -ESPIPE;
699 	if(size==0)		/* Match SYS5 behaviour */
700 		return 0;
701 
702 	if (is_sync_kiocb(iocb))
703 		x = &siocb;
704 	else {
705 		x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
706 		if (!x)
707 			return -ENOMEM;
708 		iocb->ki_dtor = sock_aio_dtor;
709 	}
710 	iocb->private = x;
711 	x->kiocb = iocb;
712 	sock = iocb->ki_filp->private_data;
713 
714 	x->async_msg.msg_name = NULL;
715 	x->async_msg.msg_namelen = 0;
716 	x->async_msg.msg_iov = &x->async_iov;
717 	x->async_msg.msg_iovlen = 1;
718 	x->async_msg.msg_control = NULL;
719 	x->async_msg.msg_controllen = 0;
720 	x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
721 	if (sock->type == SOCK_SEQPACKET)
722 		x->async_msg.msg_flags |= MSG_EOR;
723 	x->async_iov.iov_base = (void __user *)ubuf;
724 	x->async_iov.iov_len = size;
725 
726 	return __sock_sendmsg(iocb, sock, &x->async_msg, size);
727 }
728 
729 static ssize_t sock_sendpage(struct file *file, struct page *page,
730 			     int offset, size_t size, loff_t *ppos, int more)
731 {
732 	struct socket *sock;
733 	int flags;
734 
735 	sock = file->private_data;
736 
737 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
738 	if (more)
739 		flags |= MSG_MORE;
740 
741 	return sock->ops->sendpage(sock, page, offset, size, flags);
742 }
743 
744 static int sock_readv_writev(int type,
745 			     struct file * file, const struct iovec * iov,
746 			     long count, size_t size)
747 {
748 	struct msghdr msg;
749 	struct socket *sock;
750 
751 	sock = file->private_data;
752 
753 	msg.msg_name = NULL;
754 	msg.msg_namelen = 0;
755 	msg.msg_control = NULL;
756 	msg.msg_controllen = 0;
757 	msg.msg_iov = (struct iovec *) iov;
758 	msg.msg_iovlen = count;
759 	msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
760 
761 	/* read() does a VERIFY_WRITE */
762 	if (type == VERIFY_WRITE)
763 		return sock_recvmsg(sock, &msg, size, msg.msg_flags);
764 
765 	if (sock->type == SOCK_SEQPACKET)
766 		msg.msg_flags |= MSG_EOR;
767 
768 	return sock_sendmsg(sock, &msg, size);
769 }
770 
771 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
772 			  unsigned long count, loff_t *ppos)
773 {
774 	size_t tot_len = 0;
775 	int i;
776         for (i = 0 ; i < count ; i++)
777                 tot_len += vector[i].iov_len;
778 	return sock_readv_writev(VERIFY_WRITE,
779 				 file, vector, count, tot_len);
780 }
781 
782 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
783 			   unsigned long count, loff_t *ppos)
784 {
785 	size_t tot_len = 0;
786 	int i;
787         for (i = 0 ; i < count ; i++)
788                 tot_len += vector[i].iov_len;
789 	return sock_readv_writev(VERIFY_READ,
790 				 file, vector, count, tot_len);
791 }
792 
793 
794 /*
795  * Atomic setting of ioctl hooks to avoid race
796  * with module unload.
797  */
798 
799 static DECLARE_MUTEX(br_ioctl_mutex);
800 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
801 
802 void brioctl_set(int (*hook)(unsigned int, void __user *))
803 {
804 	down(&br_ioctl_mutex);
805 	br_ioctl_hook = hook;
806 	up(&br_ioctl_mutex);
807 }
808 EXPORT_SYMBOL(brioctl_set);
809 
810 static DECLARE_MUTEX(vlan_ioctl_mutex);
811 static int (*vlan_ioctl_hook)(void __user *arg);
812 
813 void vlan_ioctl_set(int (*hook)(void __user *))
814 {
815 	down(&vlan_ioctl_mutex);
816 	vlan_ioctl_hook = hook;
817 	up(&vlan_ioctl_mutex);
818 }
819 EXPORT_SYMBOL(vlan_ioctl_set);
820 
821 static DECLARE_MUTEX(dlci_ioctl_mutex);
822 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
823 
824 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
825 {
826 	down(&dlci_ioctl_mutex);
827 	dlci_ioctl_hook = hook;
828 	up(&dlci_ioctl_mutex);
829 }
830 EXPORT_SYMBOL(dlci_ioctl_set);
831 
832 /*
833  *	With an ioctl, arg may well be a user mode pointer, but we don't know
834  *	what to do with it - that's up to the protocol still.
835  */
836 
837 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
838 {
839 	struct socket *sock;
840 	void __user *argp = (void __user *)arg;
841 	int pid, err;
842 
843 	sock = file->private_data;
844 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
845 		err = dev_ioctl(cmd, argp);
846 	} else
847 #ifdef WIRELESS_EXT
848 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
849 		err = dev_ioctl(cmd, argp);
850 	} else
851 #endif	/* WIRELESS_EXT */
852 	switch (cmd) {
853 		case FIOSETOWN:
854 		case SIOCSPGRP:
855 			err = -EFAULT;
856 			if (get_user(pid, (int __user *)argp))
857 				break;
858 			err = f_setown(sock->file, pid, 1);
859 			break;
860 		case FIOGETOWN:
861 		case SIOCGPGRP:
862 			err = put_user(sock->file->f_owner.pid, (int __user *)argp);
863 			break;
864 		case SIOCGIFBR:
865 		case SIOCSIFBR:
866 		case SIOCBRADDBR:
867 		case SIOCBRDELBR:
868 			err = -ENOPKG;
869 			if (!br_ioctl_hook)
870 				request_module("bridge");
871 
872 			down(&br_ioctl_mutex);
873 			if (br_ioctl_hook)
874 				err = br_ioctl_hook(cmd, argp);
875 			up(&br_ioctl_mutex);
876 			break;
877 		case SIOCGIFVLAN:
878 		case SIOCSIFVLAN:
879 			err = -ENOPKG;
880 			if (!vlan_ioctl_hook)
881 				request_module("8021q");
882 
883 			down(&vlan_ioctl_mutex);
884 			if (vlan_ioctl_hook)
885 				err = vlan_ioctl_hook(argp);
886 			up(&vlan_ioctl_mutex);
887 			break;
888 		case SIOCGIFDIVERT:
889 		case SIOCSIFDIVERT:
890 		/* Convert this to call through a hook */
891 			err = divert_ioctl(cmd, argp);
892 			break;
893 		case SIOCADDDLCI:
894 		case SIOCDELDLCI:
895 			err = -ENOPKG;
896 			if (!dlci_ioctl_hook)
897 				request_module("dlci");
898 
899 			if (dlci_ioctl_hook) {
900 				down(&dlci_ioctl_mutex);
901 				err = dlci_ioctl_hook(cmd, argp);
902 				up(&dlci_ioctl_mutex);
903 			}
904 			break;
905 		default:
906 			err = sock->ops->ioctl(sock, cmd, arg);
907 			break;
908 	}
909 	return err;
910 }
911 
912 int sock_create_lite(int family, int type, int protocol, struct socket **res)
913 {
914 	int err;
915 	struct socket *sock = NULL;
916 
917 	err = security_socket_create(family, type, protocol, 1);
918 	if (err)
919 		goto out;
920 
921 	sock = sock_alloc();
922 	if (!sock) {
923 		err = -ENOMEM;
924 		goto out;
925 	}
926 
927 	security_socket_post_create(sock, family, type, protocol, 1);
928 	sock->type = type;
929 out:
930 	*res = sock;
931 	return err;
932 }
933 
934 /* No kernel lock held - perfect */
935 static unsigned int sock_poll(struct file *file, poll_table * wait)
936 {
937 	struct socket *sock;
938 
939 	/*
940 	 *	We can't return errors to poll, so it's either yes or no.
941 	 */
942 	sock = file->private_data;
943 	return sock->ops->poll(file, sock, wait);
944 }
945 
946 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
947 {
948 	struct socket *sock = file->private_data;
949 
950 	return sock->ops->mmap(file, sock, vma);
951 }
952 
953 static int sock_close(struct inode *inode, struct file *filp)
954 {
955 	/*
956 	 *	It was possible the inode is NULL we were
957 	 *	closing an unfinished socket.
958 	 */
959 
960 	if (!inode)
961 	{
962 		printk(KERN_DEBUG "sock_close: NULL inode\n");
963 		return 0;
964 	}
965 	sock_fasync(-1, filp, 0);
966 	sock_release(SOCKET_I(inode));
967 	return 0;
968 }
969 
970 /*
971  *	Update the socket async list
972  *
973  *	Fasync_list locking strategy.
974  *
975  *	1. fasync_list is modified only under process context socket lock
976  *	   i.e. under semaphore.
977  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
978  *	   or under socket lock.
979  *	3. fasync_list can be used from softirq context, so that
980  *	   modification under socket lock have to be enhanced with
981  *	   write_lock_bh(&sk->sk_callback_lock).
982  *							--ANK (990710)
983  */
984 
985 static int sock_fasync(int fd, struct file *filp, int on)
986 {
987 	struct fasync_struct *fa, *fna=NULL, **prev;
988 	struct socket *sock;
989 	struct sock *sk;
990 
991 	if (on)
992 	{
993 		fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
994 		if(fna==NULL)
995 			return -ENOMEM;
996 	}
997 
998 	sock = filp->private_data;
999 
1000 	if ((sk=sock->sk) == NULL) {
1001 		kfree(fna);
1002 		return -EINVAL;
1003 	}
1004 
1005 	lock_sock(sk);
1006 
1007 	prev=&(sock->fasync_list);
1008 
1009 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1010 		if (fa->fa_file==filp)
1011 			break;
1012 
1013 	if(on)
1014 	{
1015 		if(fa!=NULL)
1016 		{
1017 			write_lock_bh(&sk->sk_callback_lock);
1018 			fa->fa_fd=fd;
1019 			write_unlock_bh(&sk->sk_callback_lock);
1020 
1021 			kfree(fna);
1022 			goto out;
1023 		}
1024 		fna->fa_file=filp;
1025 		fna->fa_fd=fd;
1026 		fna->magic=FASYNC_MAGIC;
1027 		fna->fa_next=sock->fasync_list;
1028 		write_lock_bh(&sk->sk_callback_lock);
1029 		sock->fasync_list=fna;
1030 		write_unlock_bh(&sk->sk_callback_lock);
1031 	}
1032 	else
1033 	{
1034 		if (fa!=NULL)
1035 		{
1036 			write_lock_bh(&sk->sk_callback_lock);
1037 			*prev=fa->fa_next;
1038 			write_unlock_bh(&sk->sk_callback_lock);
1039 			kfree(fa);
1040 		}
1041 	}
1042 
1043 out:
1044 	release_sock(sock->sk);
1045 	return 0;
1046 }
1047 
1048 /* This function may be called only under socket lock or callback_lock */
1049 
1050 int sock_wake_async(struct socket *sock, int how, int band)
1051 {
1052 	if (!sock || !sock->fasync_list)
1053 		return -1;
1054 	switch (how)
1055 	{
1056 	case 1:
1057 
1058 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1059 			break;
1060 		goto call_kill;
1061 	case 2:
1062 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1063 			break;
1064 		/* fall through */
1065 	case 0:
1066 	call_kill:
1067 		__kill_fasync(sock->fasync_list, SIGIO, band);
1068 		break;
1069 	case 3:
1070 		__kill_fasync(sock->fasync_list, SIGURG, band);
1071 	}
1072 	return 0;
1073 }
1074 
1075 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1076 {
1077 	int err;
1078 	struct socket *sock;
1079 
1080 	/*
1081 	 *	Check protocol is in range
1082 	 */
1083 	if (family < 0 || family >= NPROTO)
1084 		return -EAFNOSUPPORT;
1085 	if (type < 0 || type >= SOCK_MAX)
1086 		return -EINVAL;
1087 
1088 	/* Compatibility.
1089 
1090 	   This uglymoron is moved from INET layer to here to avoid
1091 	   deadlock in module load.
1092 	 */
1093 	if (family == PF_INET && type == SOCK_PACKET) {
1094 		static int warned;
1095 		if (!warned) {
1096 			warned = 1;
1097 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1098 		}
1099 		family = PF_PACKET;
1100 	}
1101 
1102 	err = security_socket_create(family, type, protocol, kern);
1103 	if (err)
1104 		return err;
1105 
1106 #if defined(CONFIG_KMOD)
1107 	/* Attempt to load a protocol module if the find failed.
1108 	 *
1109 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1110 	 * requested real, full-featured networking support upon configuration.
1111 	 * Otherwise module support will break!
1112 	 */
1113 	if (net_families[family]==NULL)
1114 	{
1115 		request_module("net-pf-%d",family);
1116 	}
1117 #endif
1118 
1119 	net_family_read_lock();
1120 	if (net_families[family] == NULL) {
1121 		err = -EAFNOSUPPORT;
1122 		goto out;
1123 	}
1124 
1125 /*
1126  *	Allocate the socket and allow the family to set things up. if
1127  *	the protocol is 0, the family is instructed to select an appropriate
1128  *	default.
1129  */
1130 
1131 	if (!(sock = sock_alloc())) {
1132 		printk(KERN_WARNING "socket: no more sockets\n");
1133 		err = -ENFILE;		/* Not exactly a match, but its the
1134 					   closest posix thing */
1135 		goto out;
1136 	}
1137 
1138 	sock->type  = type;
1139 
1140 	/*
1141 	 * We will call the ->create function, that possibly is in a loadable
1142 	 * module, so we have to bump that loadable module refcnt first.
1143 	 */
1144 	err = -EAFNOSUPPORT;
1145 	if (!try_module_get(net_families[family]->owner))
1146 		goto out_release;
1147 
1148 	if ((err = net_families[family]->create(sock, protocol)) < 0) {
1149 		sock->ops = NULL;
1150 		goto out_module_put;
1151 	}
1152 
1153 	/*
1154 	 * Now to bump the refcnt of the [loadable] module that owns this
1155 	 * socket at sock_release time we decrement its refcnt.
1156 	 */
1157 	if (!try_module_get(sock->ops->owner)) {
1158 		sock->ops = NULL;
1159 		goto out_module_put;
1160 	}
1161 	/*
1162 	 * Now that we're done with the ->create function, the [loadable]
1163 	 * module can have its refcnt decremented
1164 	 */
1165 	module_put(net_families[family]->owner);
1166 	*res = sock;
1167 	security_socket_post_create(sock, family, type, protocol, kern);
1168 
1169 out:
1170 	net_family_read_unlock();
1171 	return err;
1172 out_module_put:
1173 	module_put(net_families[family]->owner);
1174 out_release:
1175 	sock_release(sock);
1176 	goto out;
1177 }
1178 
1179 int sock_create(int family, int type, int protocol, struct socket **res)
1180 {
1181 	return __sock_create(family, type, protocol, res, 0);
1182 }
1183 
1184 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1185 {
1186 	return __sock_create(family, type, protocol, res, 1);
1187 }
1188 
1189 asmlinkage long sys_socket(int family, int type, int protocol)
1190 {
1191 	int retval;
1192 	struct socket *sock;
1193 
1194 	retval = sock_create(family, type, protocol, &sock);
1195 	if (retval < 0)
1196 		goto out;
1197 
1198 	retval = sock_map_fd(sock);
1199 	if (retval < 0)
1200 		goto out_release;
1201 
1202 out:
1203 	/* It may be already another descriptor 8) Not kernel problem. */
1204 	return retval;
1205 
1206 out_release:
1207 	sock_release(sock);
1208 	return retval;
1209 }
1210 
1211 /*
1212  *	Create a pair of connected sockets.
1213  */
1214 
1215 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1216 {
1217 	struct socket *sock1, *sock2;
1218 	int fd1, fd2, err;
1219 
1220 	/*
1221 	 * Obtain the first socket and check if the underlying protocol
1222 	 * supports the socketpair call.
1223 	 */
1224 
1225 	err = sock_create(family, type, protocol, &sock1);
1226 	if (err < 0)
1227 		goto out;
1228 
1229 	err = sock_create(family, type, protocol, &sock2);
1230 	if (err < 0)
1231 		goto out_release_1;
1232 
1233 	err = sock1->ops->socketpair(sock1, sock2);
1234 	if (err < 0)
1235 		goto out_release_both;
1236 
1237 	fd1 = fd2 = -1;
1238 
1239 	err = sock_map_fd(sock1);
1240 	if (err < 0)
1241 		goto out_release_both;
1242 	fd1 = err;
1243 
1244 	err = sock_map_fd(sock2);
1245 	if (err < 0)
1246 		goto out_close_1;
1247 	fd2 = err;
1248 
1249 	/* fd1 and fd2 may be already another descriptors.
1250 	 * Not kernel problem.
1251 	 */
1252 
1253 	err = put_user(fd1, &usockvec[0]);
1254 	if (!err)
1255 		err = put_user(fd2, &usockvec[1]);
1256 	if (!err)
1257 		return 0;
1258 
1259 	sys_close(fd2);
1260 	sys_close(fd1);
1261 	return err;
1262 
1263 out_close_1:
1264         sock_release(sock2);
1265 	sys_close(fd1);
1266 	return err;
1267 
1268 out_release_both:
1269         sock_release(sock2);
1270 out_release_1:
1271         sock_release(sock1);
1272 out:
1273 	return err;
1274 }
1275 
1276 
1277 /*
1278  *	Bind a name to a socket. Nothing much to do here since it's
1279  *	the protocol's responsibility to handle the local address.
1280  *
1281  *	We move the socket address to kernel space before we call
1282  *	the protocol layer (having also checked the address is ok).
1283  */
1284 
1285 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1286 {
1287 	struct socket *sock;
1288 	char address[MAX_SOCK_ADDR];
1289 	int err;
1290 
1291 	if((sock = sockfd_lookup(fd,&err))!=NULL)
1292 	{
1293 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1294 			err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1295 			if (err) {
1296 				sockfd_put(sock);
1297 				return err;
1298 			}
1299 			err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1300 		}
1301 		sockfd_put(sock);
1302 	}
1303 	return err;
1304 }
1305 
1306 
1307 /*
1308  *	Perform a listen. Basically, we allow the protocol to do anything
1309  *	necessary for a listen, and if that works, we mark the socket as
1310  *	ready for listening.
1311  */
1312 
1313 int sysctl_somaxconn = SOMAXCONN;
1314 
1315 asmlinkage long sys_listen(int fd, int backlog)
1316 {
1317 	struct socket *sock;
1318 	int err;
1319 
1320 	if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1321 		if ((unsigned) backlog > sysctl_somaxconn)
1322 			backlog = sysctl_somaxconn;
1323 
1324 		err = security_socket_listen(sock, backlog);
1325 		if (err) {
1326 			sockfd_put(sock);
1327 			return err;
1328 		}
1329 
1330 		err=sock->ops->listen(sock, backlog);
1331 		sockfd_put(sock);
1332 	}
1333 	return err;
1334 }
1335 
1336 
1337 /*
1338  *	For accept, we attempt to create a new socket, set up the link
1339  *	with the client, wake up the client, then return the new
1340  *	connected fd. We collect the address of the connector in kernel
1341  *	space and move it to user at the very end. This is unclean because
1342  *	we open the socket then return an error.
1343  *
1344  *	1003.1g adds the ability to recvmsg() to query connection pending
1345  *	status to recvmsg. We need to add that support in a way thats
1346  *	clean when we restucture accept also.
1347  */
1348 
1349 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1350 {
1351 	struct socket *sock, *newsock;
1352 	int err, len;
1353 	char address[MAX_SOCK_ADDR];
1354 
1355 	sock = sockfd_lookup(fd, &err);
1356 	if (!sock)
1357 		goto out;
1358 
1359 	err = -ENFILE;
1360 	if (!(newsock = sock_alloc()))
1361 		goto out_put;
1362 
1363 	newsock->type = sock->type;
1364 	newsock->ops = sock->ops;
1365 
1366 	/*
1367 	 * We don't need try_module_get here, as the listening socket (sock)
1368 	 * has the protocol module (sock->ops->owner) held.
1369 	 */
1370 	__module_get(newsock->ops->owner);
1371 
1372 	err = security_socket_accept(sock, newsock);
1373 	if (err)
1374 		goto out_release;
1375 
1376 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1377 	if (err < 0)
1378 		goto out_release;
1379 
1380 	if (upeer_sockaddr) {
1381 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1382 			err = -ECONNABORTED;
1383 			goto out_release;
1384 		}
1385 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1386 		if (err < 0)
1387 			goto out_release;
1388 	}
1389 
1390 	/* File flags are not inherited via accept() unlike another OSes. */
1391 
1392 	if ((err = sock_map_fd(newsock)) < 0)
1393 		goto out_release;
1394 
1395 	security_socket_post_accept(sock, newsock);
1396 
1397 out_put:
1398 	sockfd_put(sock);
1399 out:
1400 	return err;
1401 out_release:
1402 	sock_release(newsock);
1403 	goto out_put;
1404 }
1405 
1406 
1407 /*
1408  *	Attempt to connect to a socket with the server address.  The address
1409  *	is in user space so we verify it is OK and move it to kernel space.
1410  *
1411  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1412  *	break bindings
1413  *
1414  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1415  *	other SEQPACKET protocols that take time to connect() as it doesn't
1416  *	include the -EINPROGRESS status for such sockets.
1417  */
1418 
1419 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1420 {
1421 	struct socket *sock;
1422 	char address[MAX_SOCK_ADDR];
1423 	int err;
1424 
1425 	sock = sockfd_lookup(fd, &err);
1426 	if (!sock)
1427 		goto out;
1428 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1429 	if (err < 0)
1430 		goto out_put;
1431 
1432 	err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1433 	if (err)
1434 		goto out_put;
1435 
1436 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1437 				 sock->file->f_flags);
1438 out_put:
1439 	sockfd_put(sock);
1440 out:
1441 	return err;
1442 }
1443 
1444 /*
1445  *	Get the local address ('name') of a socket object. Move the obtained
1446  *	name to user space.
1447  */
1448 
1449 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1450 {
1451 	struct socket *sock;
1452 	char address[MAX_SOCK_ADDR];
1453 	int len, err;
1454 
1455 	sock = sockfd_lookup(fd, &err);
1456 	if (!sock)
1457 		goto out;
1458 
1459 	err = security_socket_getsockname(sock);
1460 	if (err)
1461 		goto out_put;
1462 
1463 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1464 	if (err)
1465 		goto out_put;
1466 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1467 
1468 out_put:
1469 	sockfd_put(sock);
1470 out:
1471 	return err;
1472 }
1473 
1474 /*
1475  *	Get the remote address ('name') of a socket object. Move the obtained
1476  *	name to user space.
1477  */
1478 
1479 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1480 {
1481 	struct socket *sock;
1482 	char address[MAX_SOCK_ADDR];
1483 	int len, err;
1484 
1485 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1486 	{
1487 		err = security_socket_getpeername(sock);
1488 		if (err) {
1489 			sockfd_put(sock);
1490 			return err;
1491 		}
1492 
1493 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1494 		if (!err)
1495 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1496 		sockfd_put(sock);
1497 	}
1498 	return err;
1499 }
1500 
1501 /*
1502  *	Send a datagram to a given address. We move the address into kernel
1503  *	space and check the user space data area is readable before invoking
1504  *	the protocol.
1505  */
1506 
1507 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1508 			   struct sockaddr __user *addr, int addr_len)
1509 {
1510 	struct socket *sock;
1511 	char address[MAX_SOCK_ADDR];
1512 	int err;
1513 	struct msghdr msg;
1514 	struct iovec iov;
1515 
1516 	sock = sockfd_lookup(fd, &err);
1517 	if (!sock)
1518 		goto out;
1519 	iov.iov_base=buff;
1520 	iov.iov_len=len;
1521 	msg.msg_name=NULL;
1522 	msg.msg_iov=&iov;
1523 	msg.msg_iovlen=1;
1524 	msg.msg_control=NULL;
1525 	msg.msg_controllen=0;
1526 	msg.msg_namelen=0;
1527 	if(addr)
1528 	{
1529 		err = move_addr_to_kernel(addr, addr_len, address);
1530 		if (err < 0)
1531 			goto out_put;
1532 		msg.msg_name=address;
1533 		msg.msg_namelen=addr_len;
1534 	}
1535 	if (sock->file->f_flags & O_NONBLOCK)
1536 		flags |= MSG_DONTWAIT;
1537 	msg.msg_flags = flags;
1538 	err = sock_sendmsg(sock, &msg, len);
1539 
1540 out_put:
1541 	sockfd_put(sock);
1542 out:
1543 	return err;
1544 }
1545 
1546 /*
1547  *	Send a datagram down a socket.
1548  */
1549 
1550 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1551 {
1552 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1553 }
1554 
1555 /*
1556  *	Receive a frame from the socket and optionally record the address of the
1557  *	sender. We verify the buffers are writable and if needed move the
1558  *	sender address from kernel to user space.
1559  */
1560 
1561 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1562 			     struct sockaddr __user *addr, int __user *addr_len)
1563 {
1564 	struct socket *sock;
1565 	struct iovec iov;
1566 	struct msghdr msg;
1567 	char address[MAX_SOCK_ADDR];
1568 	int err,err2;
1569 
1570 	sock = sockfd_lookup(fd, &err);
1571 	if (!sock)
1572 		goto out;
1573 
1574 	msg.msg_control=NULL;
1575 	msg.msg_controllen=0;
1576 	msg.msg_iovlen=1;
1577 	msg.msg_iov=&iov;
1578 	iov.iov_len=size;
1579 	iov.iov_base=ubuf;
1580 	msg.msg_name=address;
1581 	msg.msg_namelen=MAX_SOCK_ADDR;
1582 	if (sock->file->f_flags & O_NONBLOCK)
1583 		flags |= MSG_DONTWAIT;
1584 	err=sock_recvmsg(sock, &msg, size, flags);
1585 
1586 	if(err >= 0 && addr != NULL)
1587 	{
1588 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1589 		if(err2<0)
1590 			err=err2;
1591 	}
1592 	sockfd_put(sock);
1593 out:
1594 	return err;
1595 }
1596 
1597 /*
1598  *	Receive a datagram from a socket.
1599  */
1600 
1601 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1602 {
1603 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1604 }
1605 
1606 /*
1607  *	Set a socket option. Because we don't know the option lengths we have
1608  *	to pass the user mode parameter for the protocols to sort out.
1609  */
1610 
1611 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1612 {
1613 	int err;
1614 	struct socket *sock;
1615 
1616 	if (optlen < 0)
1617 		return -EINVAL;
1618 
1619 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1620 	{
1621 		err = security_socket_setsockopt(sock,level,optname);
1622 		if (err) {
1623 			sockfd_put(sock);
1624 			return err;
1625 		}
1626 
1627 		if (level == SOL_SOCKET)
1628 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1629 		else
1630 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1631 		sockfd_put(sock);
1632 	}
1633 	return err;
1634 }
1635 
1636 /*
1637  *	Get a socket option. Because we don't know the option lengths we have
1638  *	to pass a user mode parameter for the protocols to sort out.
1639  */
1640 
1641 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1642 {
1643 	int err;
1644 	struct socket *sock;
1645 
1646 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1647 	{
1648 		err = security_socket_getsockopt(sock, level,
1649 							   optname);
1650 		if (err) {
1651 			sockfd_put(sock);
1652 			return err;
1653 		}
1654 
1655 		if (level == SOL_SOCKET)
1656 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1657 		else
1658 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1659 		sockfd_put(sock);
1660 	}
1661 	return err;
1662 }
1663 
1664 
1665 /*
1666  *	Shutdown a socket.
1667  */
1668 
1669 asmlinkage long sys_shutdown(int fd, int how)
1670 {
1671 	int err;
1672 	struct socket *sock;
1673 
1674 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1675 	{
1676 		err = security_socket_shutdown(sock, how);
1677 		if (err) {
1678 			sockfd_put(sock);
1679 			return err;
1680 		}
1681 
1682 		err=sock->ops->shutdown(sock, how);
1683 		sockfd_put(sock);
1684 	}
1685 	return err;
1686 }
1687 
1688 /* A couple of helpful macros for getting the address of the 32/64 bit
1689  * fields which are the same type (int / unsigned) on our platforms.
1690  */
1691 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1692 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1693 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1694 
1695 
1696 /*
1697  *	BSD sendmsg interface
1698  */
1699 
1700 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1701 {
1702 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1703 	struct socket *sock;
1704 	char address[MAX_SOCK_ADDR];
1705 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1706 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1707 			__attribute__ ((aligned (sizeof(__kernel_size_t))));
1708 			/* 20 is size of ipv6_pktinfo */
1709 	unsigned char *ctl_buf = ctl;
1710 	struct msghdr msg_sys;
1711 	int err, ctl_len, iov_size, total_len;
1712 
1713 	err = -EFAULT;
1714 	if (MSG_CMSG_COMPAT & flags) {
1715 		if (get_compat_msghdr(&msg_sys, msg_compat))
1716 			return -EFAULT;
1717 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1718 		return -EFAULT;
1719 
1720 	sock = sockfd_lookup(fd, &err);
1721 	if (!sock)
1722 		goto out;
1723 
1724 	/* do not move before msg_sys is valid */
1725 	err = -EMSGSIZE;
1726 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1727 		goto out_put;
1728 
1729 	/* Check whether to allocate the iovec area*/
1730 	err = -ENOMEM;
1731 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1732 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1733 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1734 		if (!iov)
1735 			goto out_put;
1736 	}
1737 
1738 	/* This will also move the address data into kernel space */
1739 	if (MSG_CMSG_COMPAT & flags) {
1740 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1741 	} else
1742 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1743 	if (err < 0)
1744 		goto out_freeiov;
1745 	total_len = err;
1746 
1747 	err = -ENOBUFS;
1748 
1749 	if (msg_sys.msg_controllen > INT_MAX)
1750 		goto out_freeiov;
1751 	ctl_len = msg_sys.msg_controllen;
1752 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1753 		err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1754 		if (err)
1755 			goto out_freeiov;
1756 		ctl_buf = msg_sys.msg_control;
1757 		ctl_len = msg_sys.msg_controllen;
1758 	} else if (ctl_len) {
1759 		if (ctl_len > sizeof(ctl))
1760 		{
1761 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1762 			if (ctl_buf == NULL)
1763 				goto out_freeiov;
1764 		}
1765 		err = -EFAULT;
1766 		/*
1767 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1768 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1769 		 * checking falls down on this.
1770 		 */
1771 		if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1772 			goto out_freectl;
1773 		msg_sys.msg_control = ctl_buf;
1774 	}
1775 	msg_sys.msg_flags = flags;
1776 
1777 	if (sock->file->f_flags & O_NONBLOCK)
1778 		msg_sys.msg_flags |= MSG_DONTWAIT;
1779 	err = sock_sendmsg(sock, &msg_sys, total_len);
1780 
1781 out_freectl:
1782 	if (ctl_buf != ctl)
1783 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1784 out_freeiov:
1785 	if (iov != iovstack)
1786 		sock_kfree_s(sock->sk, iov, iov_size);
1787 out_put:
1788 	sockfd_put(sock);
1789 out:
1790 	return err;
1791 }
1792 
1793 /*
1794  *	BSD recvmsg interface
1795  */
1796 
1797 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1798 {
1799 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1800 	struct socket *sock;
1801 	struct iovec iovstack[UIO_FASTIOV];
1802 	struct iovec *iov=iovstack;
1803 	struct msghdr msg_sys;
1804 	unsigned long cmsg_ptr;
1805 	int err, iov_size, total_len, len;
1806 
1807 	/* kernel mode address */
1808 	char addr[MAX_SOCK_ADDR];
1809 
1810 	/* user mode address pointers */
1811 	struct sockaddr __user *uaddr;
1812 	int __user *uaddr_len;
1813 
1814 	if (MSG_CMSG_COMPAT & flags) {
1815 		if (get_compat_msghdr(&msg_sys, msg_compat))
1816 			return -EFAULT;
1817 	} else
1818 		if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1819 			return -EFAULT;
1820 
1821 	sock = sockfd_lookup(fd, &err);
1822 	if (!sock)
1823 		goto out;
1824 
1825 	err = -EMSGSIZE;
1826 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1827 		goto out_put;
1828 
1829 	/* Check whether to allocate the iovec area*/
1830 	err = -ENOMEM;
1831 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1832 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1833 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1834 		if (!iov)
1835 			goto out_put;
1836 	}
1837 
1838 	/*
1839 	 *	Save the user-mode address (verify_iovec will change the
1840 	 *	kernel msghdr to use the kernel address space)
1841 	 */
1842 
1843 	uaddr = (void __user *) msg_sys.msg_name;
1844 	uaddr_len = COMPAT_NAMELEN(msg);
1845 	if (MSG_CMSG_COMPAT & flags) {
1846 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1847 	} else
1848 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1849 	if (err < 0)
1850 		goto out_freeiov;
1851 	total_len=err;
1852 
1853 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1854 	msg_sys.msg_flags = 0;
1855 	if (MSG_CMSG_COMPAT & flags)
1856 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1857 
1858 	if (sock->file->f_flags & O_NONBLOCK)
1859 		flags |= MSG_DONTWAIT;
1860 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1861 	if (err < 0)
1862 		goto out_freeiov;
1863 	len = err;
1864 
1865 	if (uaddr != NULL) {
1866 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1867 		if (err < 0)
1868 			goto out_freeiov;
1869 	}
1870 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1871 			 COMPAT_FLAGS(msg));
1872 	if (err)
1873 		goto out_freeiov;
1874 	if (MSG_CMSG_COMPAT & flags)
1875 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1876 				 &msg_compat->msg_controllen);
1877 	else
1878 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1879 				 &msg->msg_controllen);
1880 	if (err)
1881 		goto out_freeiov;
1882 	err = len;
1883 
1884 out_freeiov:
1885 	if (iov != iovstack)
1886 		sock_kfree_s(sock->sk, iov, iov_size);
1887 out_put:
1888 	sockfd_put(sock);
1889 out:
1890 	return err;
1891 }
1892 
1893 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1894 
1895 /* Argument list sizes for sys_socketcall */
1896 #define AL(x) ((x) * sizeof(unsigned long))
1897 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1898 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1899 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1900 #undef AL
1901 
1902 /*
1903  *	System call vectors.
1904  *
1905  *	Argument checking cleaned up. Saved 20% in size.
1906  *  This function doesn't need to set the kernel lock because
1907  *  it is set by the callees.
1908  */
1909 
1910 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1911 {
1912 	unsigned long a[6];
1913 	unsigned long a0,a1;
1914 	int err;
1915 
1916 	if(call<1||call>SYS_RECVMSG)
1917 		return -EINVAL;
1918 
1919 	/* copy_from_user should be SMP safe. */
1920 	if (copy_from_user(a, args, nargs[call]))
1921 		return -EFAULT;
1922 
1923 	err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1924 	if (err)
1925 		return err;
1926 
1927 	a0=a[0];
1928 	a1=a[1];
1929 
1930 	switch(call)
1931 	{
1932 		case SYS_SOCKET:
1933 			err = sys_socket(a0,a1,a[2]);
1934 			break;
1935 		case SYS_BIND:
1936 			err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1937 			break;
1938 		case SYS_CONNECT:
1939 			err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1940 			break;
1941 		case SYS_LISTEN:
1942 			err = sys_listen(a0,a1);
1943 			break;
1944 		case SYS_ACCEPT:
1945 			err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1946 			break;
1947 		case SYS_GETSOCKNAME:
1948 			err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1949 			break;
1950 		case SYS_GETPEERNAME:
1951 			err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1952 			break;
1953 		case SYS_SOCKETPAIR:
1954 			err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1955 			break;
1956 		case SYS_SEND:
1957 			err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1958 			break;
1959 		case SYS_SENDTO:
1960 			err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1961 					 (struct sockaddr __user *)a[4], a[5]);
1962 			break;
1963 		case SYS_RECV:
1964 			err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1965 			break;
1966 		case SYS_RECVFROM:
1967 			err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1968 					   (struct sockaddr __user *)a[4], (int __user *)a[5]);
1969 			break;
1970 		case SYS_SHUTDOWN:
1971 			err = sys_shutdown(a0,a1);
1972 			break;
1973 		case SYS_SETSOCKOPT:
1974 			err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
1975 			break;
1976 		case SYS_GETSOCKOPT:
1977 			err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
1978 			break;
1979 		case SYS_SENDMSG:
1980 			err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
1981 			break;
1982 		case SYS_RECVMSG:
1983 			err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
1984 			break;
1985 		default:
1986 			err = -EINVAL;
1987 			break;
1988 	}
1989 	return err;
1990 }
1991 
1992 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
1993 
1994 /*
1995  *	This function is called by a protocol handler that wants to
1996  *	advertise its address family, and have it linked into the
1997  *	SOCKET module.
1998  */
1999 
2000 int sock_register(struct net_proto_family *ops)
2001 {
2002 	int err;
2003 
2004 	if (ops->family >= NPROTO) {
2005 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2006 		return -ENOBUFS;
2007 	}
2008 	net_family_write_lock();
2009 	err = -EEXIST;
2010 	if (net_families[ops->family] == NULL) {
2011 		net_families[ops->family]=ops;
2012 		err = 0;
2013 	}
2014 	net_family_write_unlock();
2015 	printk(KERN_INFO "NET: Registered protocol family %d\n",
2016 	       ops->family);
2017 	return err;
2018 }
2019 
2020 /*
2021  *	This function is called by a protocol handler that wants to
2022  *	remove its address family, and have it unlinked from the
2023  *	SOCKET module.
2024  */
2025 
2026 int sock_unregister(int family)
2027 {
2028 	if (family < 0 || family >= NPROTO)
2029 		return -1;
2030 
2031 	net_family_write_lock();
2032 	net_families[family]=NULL;
2033 	net_family_write_unlock();
2034 	printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2035 	       family);
2036 	return 0;
2037 }
2038 
2039 void __init sock_init(void)
2040 {
2041 	/*
2042 	 *	Initialize sock SLAB cache.
2043 	 */
2044 
2045 	sk_init();
2046 
2047 #ifdef SLAB_SKB
2048 	/*
2049 	 *	Initialize skbuff SLAB cache
2050 	 */
2051 	skb_init();
2052 #endif
2053 
2054 	/*
2055 	 *	Initialize the protocols module.
2056 	 */
2057 
2058 	init_inodecache();
2059 	register_filesystem(&sock_fs_type);
2060 	sock_mnt = kern_mount(&sock_fs_type);
2061 	/* The real protocol initialization is performed when
2062 	 *  do_initcalls is run.
2063 	 */
2064 
2065 #ifdef CONFIG_NETFILTER
2066 	netfilter_init();
2067 #endif
2068 }
2069 
2070 #ifdef CONFIG_PROC_FS
2071 void socket_seq_show(struct seq_file *seq)
2072 {
2073 	int cpu;
2074 	int counter = 0;
2075 
2076 	for (cpu = 0; cpu < NR_CPUS; cpu++)
2077 		counter += per_cpu(sockets_in_use, cpu);
2078 
2079 	/* It can be negative, by the way. 8) */
2080 	if (counter < 0)
2081 		counter = 0;
2082 
2083 	seq_printf(seq, "sockets: used %d\n", counter);
2084 }
2085 #endif /* CONFIG_PROC_FS */
2086 
2087 /* ABI emulation layers need these two */
2088 EXPORT_SYMBOL(move_addr_to_kernel);
2089 EXPORT_SYMBOL(move_addr_to_user);
2090 EXPORT_SYMBOL(sock_create);
2091 EXPORT_SYMBOL(sock_create_kern);
2092 EXPORT_SYMBOL(sock_create_lite);
2093 EXPORT_SYMBOL(sock_map_fd);
2094 EXPORT_SYMBOL(sock_recvmsg);
2095 EXPORT_SYMBOL(sock_register);
2096 EXPORT_SYMBOL(sock_release);
2097 EXPORT_SYMBOL(sock_sendmsg);
2098 EXPORT_SYMBOL(sock_unregister);
2099 EXPORT_SYMBOL(sock_wake_async);
2100 EXPORT_SYMBOL(sockfd_lookup);
2101 EXPORT_SYMBOL(kernel_sendmsg);
2102 EXPORT_SYMBOL(kernel_recvmsg);
2103