xref: /openbmc/linux/net/socket.c (revision a671de08)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 
109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
111 			 unsigned long nr_segs, loff_t pos);
112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
113 			  unsigned long nr_segs, loff_t pos);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 
116 static int sock_close(struct inode *inode, struct file *file);
117 static unsigned int sock_poll(struct file *file,
118 			      struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 			      unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 			     int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 				struct pipe_inode_info *pipe, size_t len,
129 				unsigned int flags);
130 
131 /*
132  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133  *	in the operation structures but are done directly via the socketcall() multiplexor.
134  */
135 
136 static const struct file_operations socket_file_ops = {
137 	.owner =	THIS_MODULE,
138 	.llseek =	no_llseek,
139 	.aio_read =	sock_aio_read,
140 	.aio_write =	sock_aio_write,
141 	.poll =		sock_poll,
142 	.unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 	.compat_ioctl = compat_sock_ioctl,
145 #endif
146 	.mmap =		sock_mmap,
147 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
148 	.release =	sock_close,
149 	.fasync =	sock_fasync,
150 	.sendpage =	sock_sendpage,
151 	.splice_write = generic_splice_sendpage,
152 	.splice_read =	sock_splice_read,
153 };
154 
155 /*
156  *	The protocol list. Each protocol is registered in here.
157  */
158 
159 static DEFINE_SPINLOCK(net_family_lock);
160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
161 
162 /*
163  *	Statistics counters of the socket lists
164  */
165 
166 static DEFINE_PER_CPU(int, sockets_in_use);
167 
168 /*
169  * Support routines.
170  * Move socket addresses back and forth across the kernel/user
171  * divide and look after the messy bits.
172  */
173 
174 /**
175  *	move_addr_to_kernel	-	copy a socket address into kernel space
176  *	@uaddr: Address in user space
177  *	@kaddr: Address in kernel space
178  *	@ulen: Length in user space
179  *
180  *	The address is copied into kernel space. If the provided address is
181  *	too long an error code of -EINVAL is returned. If the copy gives
182  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184 
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 		return -EINVAL;
189 	if (ulen == 0)
190 		return 0;
191 	if (copy_from_user(kaddr, uaddr, ulen))
192 		return -EFAULT;
193 	return audit_sockaddr(ulen, kaddr);
194 }
195 
196 /**
197  *	move_addr_to_user	-	copy an address to user space
198  *	@kaddr: kernel space address
199  *	@klen: length of address in kernel
200  *	@uaddr: user space address
201  *	@ulen: pointer to user length field
202  *
203  *	The value pointed to by ulen on entry is the buffer length available.
204  *	This is overwritten with the buffer space used. -EINVAL is returned
205  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *	is returned if either the buffer or the length field are not
207  *	accessible.
208  *	After copying the data up to the limit the user specifies, the true
209  *	length of the data is written over the length limit the user
210  *	specified. Zero is returned for a success.
211  */
212 
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 			     void __user *uaddr, int __user *ulen)
215 {
216 	int err;
217 	int len;
218 
219 	err = get_user(len, ulen);
220 	if (err)
221 		return err;
222 	if (len > klen)
223 		len = klen;
224 	if (len < 0 || len > sizeof(struct sockaddr_storage))
225 		return -EINVAL;
226 	if (len) {
227 		if (audit_sockaddr(klen, kaddr))
228 			return -ENOMEM;
229 		if (copy_to_user(uaddr, kaddr, len))
230 			return -EFAULT;
231 	}
232 	/*
233 	 *      "fromlen shall refer to the value before truncation.."
234 	 *                      1003.1g
235 	 */
236 	return __put_user(klen, ulen);
237 }
238 
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 	struct socket_alloc *ei;
244 	struct socket_wq *wq;
245 
246 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 	if (!ei)
248 		return NULL;
249 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 	if (!wq) {
251 		kmem_cache_free(sock_inode_cachep, ei);
252 		return NULL;
253 	}
254 	init_waitqueue_head(&wq->wait);
255 	wq->fasync_list = NULL;
256 	RCU_INIT_POINTER(ei->socket.wq, wq);
257 
258 	ei->socket.state = SS_UNCONNECTED;
259 	ei->socket.flags = 0;
260 	ei->socket.ops = NULL;
261 	ei->socket.sk = NULL;
262 	ei->socket.file = NULL;
263 
264 	return &ei->vfs_inode;
265 }
266 
267 static void sock_destroy_inode(struct inode *inode)
268 {
269 	struct socket_alloc *ei;
270 	struct socket_wq *wq;
271 
272 	ei = container_of(inode, struct socket_alloc, vfs_inode);
273 	wq = rcu_dereference_protected(ei->socket.wq, 1);
274 	kfree_rcu(wq, rcu);
275 	kmem_cache_free(sock_inode_cachep, ei);
276 }
277 
278 static void init_once(void *foo)
279 {
280 	struct socket_alloc *ei = (struct socket_alloc *)foo;
281 
282 	inode_init_once(&ei->vfs_inode);
283 }
284 
285 static int init_inodecache(void)
286 {
287 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 					      sizeof(struct socket_alloc),
289 					      0,
290 					      (SLAB_HWCACHE_ALIGN |
291 					       SLAB_RECLAIM_ACCOUNT |
292 					       SLAB_MEM_SPREAD),
293 					      init_once);
294 	if (sock_inode_cachep == NULL)
295 		return -ENOMEM;
296 	return 0;
297 }
298 
299 static const struct super_operations sockfs_ops = {
300 	.alloc_inode	= sock_alloc_inode,
301 	.destroy_inode	= sock_destroy_inode,
302 	.statfs		= simple_statfs,
303 };
304 
305 /*
306  * sockfs_dname() is called from d_path().
307  */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 				dentry->d_inode->i_ino);
312 }
313 
314 static const struct dentry_operations sockfs_dentry_operations = {
315 	.d_dname  = sockfs_dname,
316 };
317 
318 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 			 int flags, const char *dev_name, void *data)
320 {
321 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 		&sockfs_dentry_operations, SOCKFS_MAGIC);
323 }
324 
325 static struct vfsmount *sock_mnt __read_mostly;
326 
327 static struct file_system_type sock_fs_type = {
328 	.name =		"sockfs",
329 	.mount =	sockfs_mount,
330 	.kill_sb =	kill_anon_super,
331 };
332 
333 /*
334  *	Obtains the first available file descriptor and sets it up for use.
335  *
336  *	These functions create file structures and maps them to fd space
337  *	of the current process. On success it returns file descriptor
338  *	and file struct implicitly stored in sock->file.
339  *	Note that another thread may close file descriptor before we return
340  *	from this function. We use the fact that now we do not refer
341  *	to socket after mapping. If one day we will need it, this
342  *	function will increment ref. count on file by 1.
343  *
344  *	In any case returned fd MAY BE not valid!
345  *	This race condition is unavoidable
346  *	with shared fd spaces, we cannot solve it inside kernel,
347  *	but we take care of internal coherence yet.
348  */
349 
350 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
351 {
352 	struct qstr name = { .name = "" };
353 	struct path path;
354 	struct file *file;
355 
356 	if (dname) {
357 		name.name = dname;
358 		name.len = strlen(name.name);
359 	} else if (sock->sk) {
360 		name.name = sock->sk->sk_prot_creator->name;
361 		name.len = strlen(name.name);
362 	}
363 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
364 	if (unlikely(!path.dentry))
365 		return ERR_PTR(-ENOMEM);
366 	path.mnt = mntget(sock_mnt);
367 
368 	d_instantiate(path.dentry, SOCK_INODE(sock));
369 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
370 
371 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
372 		  &socket_file_ops);
373 	if (unlikely(!file)) {
374 		/* drop dentry, keep inode */
375 		ihold(path.dentry->d_inode);
376 		path_put(&path);
377 		return ERR_PTR(-ENFILE);
378 	}
379 
380 	sock->file = file;
381 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 	file->f_pos = 0;
383 	file->private_data = sock;
384 	return file;
385 }
386 EXPORT_SYMBOL(sock_alloc_file);
387 
388 static int sock_map_fd(struct socket *sock, int flags)
389 {
390 	struct file *newfile;
391 	int fd = get_unused_fd_flags(flags);
392 	if (unlikely(fd < 0))
393 		return fd;
394 
395 	newfile = sock_alloc_file(sock, flags, NULL);
396 	if (likely(!IS_ERR(newfile))) {
397 		fd_install(fd, newfile);
398 		return fd;
399 	}
400 
401 	put_unused_fd(fd);
402 	return PTR_ERR(newfile);
403 }
404 
405 struct socket *sock_from_file(struct file *file, int *err)
406 {
407 	if (file->f_op == &socket_file_ops)
408 		return file->private_data;	/* set in sock_map_fd */
409 
410 	*err = -ENOTSOCK;
411 	return NULL;
412 }
413 EXPORT_SYMBOL(sock_from_file);
414 
415 /**
416  *	sockfd_lookup - Go from a file number to its socket slot
417  *	@fd: file handle
418  *	@err: pointer to an error code return
419  *
420  *	The file handle passed in is locked and the socket it is bound
421  *	too is returned. If an error occurs the err pointer is overwritten
422  *	with a negative errno code and NULL is returned. The function checks
423  *	for both invalid handles and passing a handle which is not a socket.
424  *
425  *	On a success the socket object pointer is returned.
426  */
427 
428 struct socket *sockfd_lookup(int fd, int *err)
429 {
430 	struct file *file;
431 	struct socket *sock;
432 
433 	file = fget(fd);
434 	if (!file) {
435 		*err = -EBADF;
436 		return NULL;
437 	}
438 
439 	sock = sock_from_file(file, err);
440 	if (!sock)
441 		fput(file);
442 	return sock;
443 }
444 EXPORT_SYMBOL(sockfd_lookup);
445 
446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
447 {
448 	struct file *file;
449 	struct socket *sock;
450 
451 	*err = -EBADF;
452 	file = fget_light(fd, fput_needed);
453 	if (file) {
454 		sock = sock_from_file(file, err);
455 		if (sock)
456 			return sock;
457 		fput_light(file, *fput_needed);
458 	}
459 	return NULL;
460 }
461 
462 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
463 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
464 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
465 static ssize_t sockfs_getxattr(struct dentry *dentry,
466 			       const char *name, void *value, size_t size)
467 {
468 	const char *proto_name;
469 	size_t proto_size;
470 	int error;
471 
472 	error = -ENODATA;
473 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
474 		proto_name = dentry->d_name.name;
475 		proto_size = strlen(proto_name);
476 
477 		if (value) {
478 			error = -ERANGE;
479 			if (proto_size + 1 > size)
480 				goto out;
481 
482 			strncpy(value, proto_name, proto_size + 1);
483 		}
484 		error = proto_size + 1;
485 	}
486 
487 out:
488 	return error;
489 }
490 
491 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
492 				size_t size)
493 {
494 	ssize_t len;
495 	ssize_t used = 0;
496 
497 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
498 	if (len < 0)
499 		return len;
500 	used += len;
501 	if (buffer) {
502 		if (size < used)
503 			return -ERANGE;
504 		buffer += len;
505 	}
506 
507 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
508 	used += len;
509 	if (buffer) {
510 		if (size < used)
511 			return -ERANGE;
512 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
513 		buffer += len;
514 	}
515 
516 	return used;
517 }
518 
519 static const struct inode_operations sockfs_inode_ops = {
520 	.getxattr = sockfs_getxattr,
521 	.listxattr = sockfs_listxattr,
522 };
523 
524 /**
525  *	sock_alloc	-	allocate a socket
526  *
527  *	Allocate a new inode and socket object. The two are bound together
528  *	and initialised. The socket is then returned. If we are out of inodes
529  *	NULL is returned.
530  */
531 
532 static struct socket *sock_alloc(void)
533 {
534 	struct inode *inode;
535 	struct socket *sock;
536 
537 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
538 	if (!inode)
539 		return NULL;
540 
541 	sock = SOCKET_I(inode);
542 
543 	kmemcheck_annotate_bitfield(sock, type);
544 	inode->i_ino = get_next_ino();
545 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
546 	inode->i_uid = current_fsuid();
547 	inode->i_gid = current_fsgid();
548 	inode->i_op = &sockfs_inode_ops;
549 
550 	this_cpu_add(sockets_in_use, 1);
551 	return sock;
552 }
553 
554 /*
555  *	In theory you can't get an open on this inode, but /proc provides
556  *	a back door. Remember to keep it shut otherwise you'll let the
557  *	creepy crawlies in.
558  */
559 
560 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
561 {
562 	return -ENXIO;
563 }
564 
565 const struct file_operations bad_sock_fops = {
566 	.owner = THIS_MODULE,
567 	.open = sock_no_open,
568 	.llseek = noop_llseek,
569 };
570 
571 /**
572  *	sock_release	-	close a socket
573  *	@sock: socket to close
574  *
575  *	The socket is released from the protocol stack if it has a release
576  *	callback, and the inode is then released if the socket is bound to
577  *	an inode not a file.
578  */
579 
580 void sock_release(struct socket *sock)
581 {
582 	if (sock->ops) {
583 		struct module *owner = sock->ops->owner;
584 
585 		sock->ops->release(sock);
586 		sock->ops = NULL;
587 		module_put(owner);
588 	}
589 
590 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
591 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
592 
593 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
594 		return;
595 
596 	this_cpu_sub(sockets_in_use, 1);
597 	if (!sock->file) {
598 		iput(SOCK_INODE(sock));
599 		return;
600 	}
601 	sock->file = NULL;
602 }
603 EXPORT_SYMBOL(sock_release);
604 
605 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
606 {
607 	*tx_flags = 0;
608 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
609 		*tx_flags |= SKBTX_HW_TSTAMP;
610 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
611 		*tx_flags |= SKBTX_SW_TSTAMP;
612 	if (sock_flag(sk, SOCK_WIFI_STATUS))
613 		*tx_flags |= SKBTX_WIFI_STATUS;
614 	return 0;
615 }
616 EXPORT_SYMBOL(sock_tx_timestamp);
617 
618 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
619 				       struct msghdr *msg, size_t size)
620 {
621 	struct sock_iocb *si = kiocb_to_siocb(iocb);
622 
623 	si->sock = sock;
624 	si->scm = NULL;
625 	si->msg = msg;
626 	si->size = size;
627 
628 	return sock->ops->sendmsg(iocb, sock, msg, size);
629 }
630 
631 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
632 				 struct msghdr *msg, size_t size)
633 {
634 	int err = security_socket_sendmsg(sock, msg, size);
635 
636 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
637 }
638 
639 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
640 {
641 	struct kiocb iocb;
642 	struct sock_iocb siocb;
643 	int ret;
644 
645 	init_sync_kiocb(&iocb, NULL);
646 	iocb.private = &siocb;
647 	ret = __sock_sendmsg(&iocb, sock, msg, size);
648 	if (-EIOCBQUEUED == ret)
649 		ret = wait_on_sync_kiocb(&iocb);
650 	return ret;
651 }
652 EXPORT_SYMBOL(sock_sendmsg);
653 
654 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
655 {
656 	struct kiocb iocb;
657 	struct sock_iocb siocb;
658 	int ret;
659 
660 	init_sync_kiocb(&iocb, NULL);
661 	iocb.private = &siocb;
662 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
663 	if (-EIOCBQUEUED == ret)
664 		ret = wait_on_sync_kiocb(&iocb);
665 	return ret;
666 }
667 
668 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
669 		   struct kvec *vec, size_t num, size_t size)
670 {
671 	mm_segment_t oldfs = get_fs();
672 	int result;
673 
674 	set_fs(KERNEL_DS);
675 	/*
676 	 * the following is safe, since for compiler definitions of kvec and
677 	 * iovec are identical, yielding the same in-core layout and alignment
678 	 */
679 	msg->msg_iov = (struct iovec *)vec;
680 	msg->msg_iovlen = num;
681 	result = sock_sendmsg(sock, msg, size);
682 	set_fs(oldfs);
683 	return result;
684 }
685 EXPORT_SYMBOL(kernel_sendmsg);
686 
687 static int ktime2ts(ktime_t kt, struct timespec *ts)
688 {
689 	if (kt.tv64) {
690 		*ts = ktime_to_timespec(kt);
691 		return 1;
692 	} else {
693 		return 0;
694 	}
695 }
696 
697 /*
698  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
699  */
700 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
701 	struct sk_buff *skb)
702 {
703 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
704 	struct timespec ts[3];
705 	int empty = 1;
706 	struct skb_shared_hwtstamps *shhwtstamps =
707 		skb_hwtstamps(skb);
708 
709 	/* Race occurred between timestamp enabling and packet
710 	   receiving.  Fill in the current time for now. */
711 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
712 		__net_timestamp(skb);
713 
714 	if (need_software_tstamp) {
715 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
716 			struct timeval tv;
717 			skb_get_timestamp(skb, &tv);
718 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
719 				 sizeof(tv), &tv);
720 		} else {
721 			skb_get_timestampns(skb, &ts[0]);
722 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
723 				 sizeof(ts[0]), &ts[0]);
724 		}
725 	}
726 
727 
728 	memset(ts, 0, sizeof(ts));
729 	if (skb->tstamp.tv64 &&
730 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
731 		skb_get_timestampns(skb, ts + 0);
732 		empty = 0;
733 	}
734 	if (shhwtstamps) {
735 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
736 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
737 			empty = 0;
738 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
739 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
740 			empty = 0;
741 	}
742 	if (!empty)
743 		put_cmsg(msg, SOL_SOCKET,
744 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
745 }
746 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
747 
748 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
749 	struct sk_buff *skb)
750 {
751 	int ack;
752 
753 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
754 		return;
755 	if (!skb->wifi_acked_valid)
756 		return;
757 
758 	ack = skb->wifi_acked;
759 
760 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
761 }
762 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
763 
764 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
765 				   struct sk_buff *skb)
766 {
767 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
768 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
769 			sizeof(__u32), &skb->dropcount);
770 }
771 
772 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
773 	struct sk_buff *skb)
774 {
775 	sock_recv_timestamp(msg, sk, skb);
776 	sock_recv_drops(msg, sk, skb);
777 }
778 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
779 
780 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
781 				       struct msghdr *msg, size_t size, int flags)
782 {
783 	struct sock_iocb *si = kiocb_to_siocb(iocb);
784 
785 	si->sock = sock;
786 	si->scm = NULL;
787 	si->msg = msg;
788 	si->size = size;
789 	si->flags = flags;
790 
791 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
792 }
793 
794 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
795 				 struct msghdr *msg, size_t size, int flags)
796 {
797 	int err = security_socket_recvmsg(sock, msg, size, flags);
798 
799 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
800 }
801 
802 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
803 		 size_t size, int flags)
804 {
805 	struct kiocb iocb;
806 	struct sock_iocb siocb;
807 	int ret;
808 
809 	init_sync_kiocb(&iocb, NULL);
810 	iocb.private = &siocb;
811 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
812 	if (-EIOCBQUEUED == ret)
813 		ret = wait_on_sync_kiocb(&iocb);
814 	return ret;
815 }
816 EXPORT_SYMBOL(sock_recvmsg);
817 
818 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
819 			      size_t size, int flags)
820 {
821 	struct kiocb iocb;
822 	struct sock_iocb siocb;
823 	int ret;
824 
825 	init_sync_kiocb(&iocb, NULL);
826 	iocb.private = &siocb;
827 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
828 	if (-EIOCBQUEUED == ret)
829 		ret = wait_on_sync_kiocb(&iocb);
830 	return ret;
831 }
832 
833 /**
834  * kernel_recvmsg - Receive a message from a socket (kernel space)
835  * @sock:       The socket to receive the message from
836  * @msg:        Received message
837  * @vec:        Input s/g array for message data
838  * @num:        Size of input s/g array
839  * @size:       Number of bytes to read
840  * @flags:      Message flags (MSG_DONTWAIT, etc...)
841  *
842  * On return the msg structure contains the scatter/gather array passed in the
843  * vec argument. The array is modified so that it consists of the unfilled
844  * portion of the original array.
845  *
846  * The returned value is the total number of bytes received, or an error.
847  */
848 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
849 		   struct kvec *vec, size_t num, size_t size, int flags)
850 {
851 	mm_segment_t oldfs = get_fs();
852 	int result;
853 
854 	set_fs(KERNEL_DS);
855 	/*
856 	 * the following is safe, since for compiler definitions of kvec and
857 	 * iovec are identical, yielding the same in-core layout and alignment
858 	 */
859 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
860 	result = sock_recvmsg(sock, msg, size, flags);
861 	set_fs(oldfs);
862 	return result;
863 }
864 EXPORT_SYMBOL(kernel_recvmsg);
865 
866 static void sock_aio_dtor(struct kiocb *iocb)
867 {
868 	kfree(iocb->private);
869 }
870 
871 static ssize_t sock_sendpage(struct file *file, struct page *page,
872 			     int offset, size_t size, loff_t *ppos, int more)
873 {
874 	struct socket *sock;
875 	int flags;
876 
877 	sock = file->private_data;
878 
879 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
880 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
881 	flags |= more;
882 
883 	return kernel_sendpage(sock, page, offset, size, flags);
884 }
885 
886 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
887 				struct pipe_inode_info *pipe, size_t len,
888 				unsigned int flags)
889 {
890 	struct socket *sock = file->private_data;
891 
892 	if (unlikely(!sock->ops->splice_read))
893 		return -EINVAL;
894 
895 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
896 }
897 
898 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
899 					 struct sock_iocb *siocb)
900 {
901 	if (!is_sync_kiocb(iocb)) {
902 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
903 		if (!siocb)
904 			return NULL;
905 		iocb->ki_dtor = sock_aio_dtor;
906 	}
907 
908 	siocb->kiocb = iocb;
909 	iocb->private = siocb;
910 	return siocb;
911 }
912 
913 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
914 		struct file *file, const struct iovec *iov,
915 		unsigned long nr_segs)
916 {
917 	struct socket *sock = file->private_data;
918 	size_t size = 0;
919 	int i;
920 
921 	for (i = 0; i < nr_segs; i++)
922 		size += iov[i].iov_len;
923 
924 	msg->msg_name = NULL;
925 	msg->msg_namelen = 0;
926 	msg->msg_control = NULL;
927 	msg->msg_controllen = 0;
928 	msg->msg_iov = (struct iovec *)iov;
929 	msg->msg_iovlen = nr_segs;
930 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
931 
932 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
933 }
934 
935 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
936 				unsigned long nr_segs, loff_t pos)
937 {
938 	struct sock_iocb siocb, *x;
939 
940 	if (pos != 0)
941 		return -ESPIPE;
942 
943 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
944 		return 0;
945 
946 
947 	x = alloc_sock_iocb(iocb, &siocb);
948 	if (!x)
949 		return -ENOMEM;
950 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
951 }
952 
953 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
954 			struct file *file, const struct iovec *iov,
955 			unsigned long nr_segs)
956 {
957 	struct socket *sock = file->private_data;
958 	size_t size = 0;
959 	int i;
960 
961 	for (i = 0; i < nr_segs; i++)
962 		size += iov[i].iov_len;
963 
964 	msg->msg_name = NULL;
965 	msg->msg_namelen = 0;
966 	msg->msg_control = NULL;
967 	msg->msg_controllen = 0;
968 	msg->msg_iov = (struct iovec *)iov;
969 	msg->msg_iovlen = nr_segs;
970 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
971 	if (sock->type == SOCK_SEQPACKET)
972 		msg->msg_flags |= MSG_EOR;
973 
974 	return __sock_sendmsg(iocb, sock, msg, size);
975 }
976 
977 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
978 			  unsigned long nr_segs, loff_t pos)
979 {
980 	struct sock_iocb siocb, *x;
981 
982 	if (pos != 0)
983 		return -ESPIPE;
984 
985 	x = alloc_sock_iocb(iocb, &siocb);
986 	if (!x)
987 		return -ENOMEM;
988 
989 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
990 }
991 
992 /*
993  * Atomic setting of ioctl hooks to avoid race
994  * with module unload.
995  */
996 
997 static DEFINE_MUTEX(br_ioctl_mutex);
998 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
999 
1000 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1001 {
1002 	mutex_lock(&br_ioctl_mutex);
1003 	br_ioctl_hook = hook;
1004 	mutex_unlock(&br_ioctl_mutex);
1005 }
1006 EXPORT_SYMBOL(brioctl_set);
1007 
1008 static DEFINE_MUTEX(vlan_ioctl_mutex);
1009 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1010 
1011 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1012 {
1013 	mutex_lock(&vlan_ioctl_mutex);
1014 	vlan_ioctl_hook = hook;
1015 	mutex_unlock(&vlan_ioctl_mutex);
1016 }
1017 EXPORT_SYMBOL(vlan_ioctl_set);
1018 
1019 static DEFINE_MUTEX(dlci_ioctl_mutex);
1020 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1021 
1022 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1023 {
1024 	mutex_lock(&dlci_ioctl_mutex);
1025 	dlci_ioctl_hook = hook;
1026 	mutex_unlock(&dlci_ioctl_mutex);
1027 }
1028 EXPORT_SYMBOL(dlci_ioctl_set);
1029 
1030 static long sock_do_ioctl(struct net *net, struct socket *sock,
1031 				 unsigned int cmd, unsigned long arg)
1032 {
1033 	int err;
1034 	void __user *argp = (void __user *)arg;
1035 
1036 	err = sock->ops->ioctl(sock, cmd, arg);
1037 
1038 	/*
1039 	 * If this ioctl is unknown try to hand it down
1040 	 * to the NIC driver.
1041 	 */
1042 	if (err == -ENOIOCTLCMD)
1043 		err = dev_ioctl(net, cmd, argp);
1044 
1045 	return err;
1046 }
1047 
1048 /*
1049  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1050  *	what to do with it - that's up to the protocol still.
1051  */
1052 
1053 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1054 {
1055 	struct socket *sock;
1056 	struct sock *sk;
1057 	void __user *argp = (void __user *)arg;
1058 	int pid, err;
1059 	struct net *net;
1060 
1061 	sock = file->private_data;
1062 	sk = sock->sk;
1063 	net = sock_net(sk);
1064 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1065 		err = dev_ioctl(net, cmd, argp);
1066 	} else
1067 #ifdef CONFIG_WEXT_CORE
1068 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1069 		err = dev_ioctl(net, cmd, argp);
1070 	} else
1071 #endif
1072 		switch (cmd) {
1073 		case FIOSETOWN:
1074 		case SIOCSPGRP:
1075 			err = -EFAULT;
1076 			if (get_user(pid, (int __user *)argp))
1077 				break;
1078 			err = f_setown(sock->file, pid, 1);
1079 			break;
1080 		case FIOGETOWN:
1081 		case SIOCGPGRP:
1082 			err = put_user(f_getown(sock->file),
1083 				       (int __user *)argp);
1084 			break;
1085 		case SIOCGIFBR:
1086 		case SIOCSIFBR:
1087 		case SIOCBRADDBR:
1088 		case SIOCBRDELBR:
1089 			err = -ENOPKG;
1090 			if (!br_ioctl_hook)
1091 				request_module("bridge");
1092 
1093 			mutex_lock(&br_ioctl_mutex);
1094 			if (br_ioctl_hook)
1095 				err = br_ioctl_hook(net, cmd, argp);
1096 			mutex_unlock(&br_ioctl_mutex);
1097 			break;
1098 		case SIOCGIFVLAN:
1099 		case SIOCSIFVLAN:
1100 			err = -ENOPKG;
1101 			if (!vlan_ioctl_hook)
1102 				request_module("8021q");
1103 
1104 			mutex_lock(&vlan_ioctl_mutex);
1105 			if (vlan_ioctl_hook)
1106 				err = vlan_ioctl_hook(net, argp);
1107 			mutex_unlock(&vlan_ioctl_mutex);
1108 			break;
1109 		case SIOCADDDLCI:
1110 		case SIOCDELDLCI:
1111 			err = -ENOPKG;
1112 			if (!dlci_ioctl_hook)
1113 				request_module("dlci");
1114 
1115 			mutex_lock(&dlci_ioctl_mutex);
1116 			if (dlci_ioctl_hook)
1117 				err = dlci_ioctl_hook(cmd, argp);
1118 			mutex_unlock(&dlci_ioctl_mutex);
1119 			break;
1120 		default:
1121 			err = sock_do_ioctl(net, sock, cmd, arg);
1122 			break;
1123 		}
1124 	return err;
1125 }
1126 
1127 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1128 {
1129 	int err;
1130 	struct socket *sock = NULL;
1131 
1132 	err = security_socket_create(family, type, protocol, 1);
1133 	if (err)
1134 		goto out;
1135 
1136 	sock = sock_alloc();
1137 	if (!sock) {
1138 		err = -ENOMEM;
1139 		goto out;
1140 	}
1141 
1142 	sock->type = type;
1143 	err = security_socket_post_create(sock, family, type, protocol, 1);
1144 	if (err)
1145 		goto out_release;
1146 
1147 out:
1148 	*res = sock;
1149 	return err;
1150 out_release:
1151 	sock_release(sock);
1152 	sock = NULL;
1153 	goto out;
1154 }
1155 EXPORT_SYMBOL(sock_create_lite);
1156 
1157 /* No kernel lock held - perfect */
1158 static unsigned int sock_poll(struct file *file, poll_table *wait)
1159 {
1160 	struct socket *sock;
1161 
1162 	/*
1163 	 *      We can't return errors to poll, so it's either yes or no.
1164 	 */
1165 	sock = file->private_data;
1166 	return sock->ops->poll(file, sock, wait);
1167 }
1168 
1169 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1170 {
1171 	struct socket *sock = file->private_data;
1172 
1173 	return sock->ops->mmap(file, sock, vma);
1174 }
1175 
1176 static int sock_close(struct inode *inode, struct file *filp)
1177 {
1178 	/*
1179 	 *      It was possible the inode is NULL we were
1180 	 *      closing an unfinished socket.
1181 	 */
1182 
1183 	if (!inode) {
1184 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1185 		return 0;
1186 	}
1187 	sock_release(SOCKET_I(inode));
1188 	return 0;
1189 }
1190 
1191 /*
1192  *	Update the socket async list
1193  *
1194  *	Fasync_list locking strategy.
1195  *
1196  *	1. fasync_list is modified only under process context socket lock
1197  *	   i.e. under semaphore.
1198  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1199  *	   or under socket lock
1200  */
1201 
1202 static int sock_fasync(int fd, struct file *filp, int on)
1203 {
1204 	struct socket *sock = filp->private_data;
1205 	struct sock *sk = sock->sk;
1206 	struct socket_wq *wq;
1207 
1208 	if (sk == NULL)
1209 		return -EINVAL;
1210 
1211 	lock_sock(sk);
1212 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1213 	fasync_helper(fd, filp, on, &wq->fasync_list);
1214 
1215 	if (!wq->fasync_list)
1216 		sock_reset_flag(sk, SOCK_FASYNC);
1217 	else
1218 		sock_set_flag(sk, SOCK_FASYNC);
1219 
1220 	release_sock(sk);
1221 	return 0;
1222 }
1223 
1224 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1225 
1226 int sock_wake_async(struct socket *sock, int how, int band)
1227 {
1228 	struct socket_wq *wq;
1229 
1230 	if (!sock)
1231 		return -1;
1232 	rcu_read_lock();
1233 	wq = rcu_dereference(sock->wq);
1234 	if (!wq || !wq->fasync_list) {
1235 		rcu_read_unlock();
1236 		return -1;
1237 	}
1238 	switch (how) {
1239 	case SOCK_WAKE_WAITD:
1240 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1241 			break;
1242 		goto call_kill;
1243 	case SOCK_WAKE_SPACE:
1244 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1245 			break;
1246 		/* fall through */
1247 	case SOCK_WAKE_IO:
1248 call_kill:
1249 		kill_fasync(&wq->fasync_list, SIGIO, band);
1250 		break;
1251 	case SOCK_WAKE_URG:
1252 		kill_fasync(&wq->fasync_list, SIGURG, band);
1253 	}
1254 	rcu_read_unlock();
1255 	return 0;
1256 }
1257 EXPORT_SYMBOL(sock_wake_async);
1258 
1259 int __sock_create(struct net *net, int family, int type, int protocol,
1260 			 struct socket **res, int kern)
1261 {
1262 	int err;
1263 	struct socket *sock;
1264 	const struct net_proto_family *pf;
1265 
1266 	/*
1267 	 *      Check protocol is in range
1268 	 */
1269 	if (family < 0 || family >= NPROTO)
1270 		return -EAFNOSUPPORT;
1271 	if (type < 0 || type >= SOCK_MAX)
1272 		return -EINVAL;
1273 
1274 	/* Compatibility.
1275 
1276 	   This uglymoron is moved from INET layer to here to avoid
1277 	   deadlock in module load.
1278 	 */
1279 	if (family == PF_INET && type == SOCK_PACKET) {
1280 		static int warned;
1281 		if (!warned) {
1282 			warned = 1;
1283 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1284 			       current->comm);
1285 		}
1286 		family = PF_PACKET;
1287 	}
1288 
1289 	err = security_socket_create(family, type, protocol, kern);
1290 	if (err)
1291 		return err;
1292 
1293 	/*
1294 	 *	Allocate the socket and allow the family to set things up. if
1295 	 *	the protocol is 0, the family is instructed to select an appropriate
1296 	 *	default.
1297 	 */
1298 	sock = sock_alloc();
1299 	if (!sock) {
1300 		net_warn_ratelimited("socket: no more sockets\n");
1301 		return -ENFILE;	/* Not exactly a match, but its the
1302 				   closest posix thing */
1303 	}
1304 
1305 	sock->type = type;
1306 
1307 #ifdef CONFIG_MODULES
1308 	/* Attempt to load a protocol module if the find failed.
1309 	 *
1310 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1311 	 * requested real, full-featured networking support upon configuration.
1312 	 * Otherwise module support will break!
1313 	 */
1314 	if (rcu_access_pointer(net_families[family]) == NULL)
1315 		request_module("net-pf-%d", family);
1316 #endif
1317 
1318 	rcu_read_lock();
1319 	pf = rcu_dereference(net_families[family]);
1320 	err = -EAFNOSUPPORT;
1321 	if (!pf)
1322 		goto out_release;
1323 
1324 	/*
1325 	 * We will call the ->create function, that possibly is in a loadable
1326 	 * module, so we have to bump that loadable module refcnt first.
1327 	 */
1328 	if (!try_module_get(pf->owner))
1329 		goto out_release;
1330 
1331 	/* Now protected by module ref count */
1332 	rcu_read_unlock();
1333 
1334 	err = pf->create(net, sock, protocol, kern);
1335 	if (err < 0)
1336 		goto out_module_put;
1337 
1338 	/*
1339 	 * Now to bump the refcnt of the [loadable] module that owns this
1340 	 * socket at sock_release time we decrement its refcnt.
1341 	 */
1342 	if (!try_module_get(sock->ops->owner))
1343 		goto out_module_busy;
1344 
1345 	/*
1346 	 * Now that we're done with the ->create function, the [loadable]
1347 	 * module can have its refcnt decremented
1348 	 */
1349 	module_put(pf->owner);
1350 	err = security_socket_post_create(sock, family, type, protocol, kern);
1351 	if (err)
1352 		goto out_sock_release;
1353 	*res = sock;
1354 
1355 	return 0;
1356 
1357 out_module_busy:
1358 	err = -EAFNOSUPPORT;
1359 out_module_put:
1360 	sock->ops = NULL;
1361 	module_put(pf->owner);
1362 out_sock_release:
1363 	sock_release(sock);
1364 	return err;
1365 
1366 out_release:
1367 	rcu_read_unlock();
1368 	goto out_sock_release;
1369 }
1370 EXPORT_SYMBOL(__sock_create);
1371 
1372 int sock_create(int family, int type, int protocol, struct socket **res)
1373 {
1374 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1375 }
1376 EXPORT_SYMBOL(sock_create);
1377 
1378 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1379 {
1380 	return __sock_create(&init_net, family, type, protocol, res, 1);
1381 }
1382 EXPORT_SYMBOL(sock_create_kern);
1383 
1384 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1385 {
1386 	int retval;
1387 	struct socket *sock;
1388 	int flags;
1389 
1390 	/* Check the SOCK_* constants for consistency.  */
1391 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1392 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1393 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1394 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1395 
1396 	flags = type & ~SOCK_TYPE_MASK;
1397 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1398 		return -EINVAL;
1399 	type &= SOCK_TYPE_MASK;
1400 
1401 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1402 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1403 
1404 	retval = sock_create(family, type, protocol, &sock);
1405 	if (retval < 0)
1406 		goto out;
1407 
1408 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1409 	if (retval < 0)
1410 		goto out_release;
1411 
1412 out:
1413 	/* It may be already another descriptor 8) Not kernel problem. */
1414 	return retval;
1415 
1416 out_release:
1417 	sock_release(sock);
1418 	return retval;
1419 }
1420 
1421 /*
1422  *	Create a pair of connected sockets.
1423  */
1424 
1425 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1426 		int __user *, usockvec)
1427 {
1428 	struct socket *sock1, *sock2;
1429 	int fd1, fd2, err;
1430 	struct file *newfile1, *newfile2;
1431 	int flags;
1432 
1433 	flags = type & ~SOCK_TYPE_MASK;
1434 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1435 		return -EINVAL;
1436 	type &= SOCK_TYPE_MASK;
1437 
1438 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1439 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1440 
1441 	/*
1442 	 * Obtain the first socket and check if the underlying protocol
1443 	 * supports the socketpair call.
1444 	 */
1445 
1446 	err = sock_create(family, type, protocol, &sock1);
1447 	if (err < 0)
1448 		goto out;
1449 
1450 	err = sock_create(family, type, protocol, &sock2);
1451 	if (err < 0)
1452 		goto out_release_1;
1453 
1454 	err = sock1->ops->socketpair(sock1, sock2);
1455 	if (err < 0)
1456 		goto out_release_both;
1457 
1458 	fd1 = get_unused_fd_flags(flags);
1459 	if (unlikely(fd1 < 0)) {
1460 		err = fd1;
1461 		goto out_release_both;
1462 	}
1463 	fd2 = get_unused_fd_flags(flags);
1464 	if (unlikely(fd2 < 0)) {
1465 		err = fd2;
1466 		put_unused_fd(fd1);
1467 		goto out_release_both;
1468 	}
1469 
1470 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1471 	if (unlikely(IS_ERR(newfile1))) {
1472 		err = PTR_ERR(newfile1);
1473 		put_unused_fd(fd1);
1474 		put_unused_fd(fd2);
1475 		goto out_release_both;
1476 	}
1477 
1478 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1479 	if (IS_ERR(newfile2)) {
1480 		err = PTR_ERR(newfile2);
1481 		fput(newfile1);
1482 		put_unused_fd(fd1);
1483 		put_unused_fd(fd2);
1484 		sock_release(sock2);
1485 		goto out;
1486 	}
1487 
1488 	audit_fd_pair(fd1, fd2);
1489 	fd_install(fd1, newfile1);
1490 	fd_install(fd2, newfile2);
1491 	/* fd1 and fd2 may be already another descriptors.
1492 	 * Not kernel problem.
1493 	 */
1494 
1495 	err = put_user(fd1, &usockvec[0]);
1496 	if (!err)
1497 		err = put_user(fd2, &usockvec[1]);
1498 	if (!err)
1499 		return 0;
1500 
1501 	sys_close(fd2);
1502 	sys_close(fd1);
1503 	return err;
1504 
1505 out_release_both:
1506 	sock_release(sock2);
1507 out_release_1:
1508 	sock_release(sock1);
1509 out:
1510 	return err;
1511 }
1512 
1513 /*
1514  *	Bind a name to a socket. Nothing much to do here since it's
1515  *	the protocol's responsibility to handle the local address.
1516  *
1517  *	We move the socket address to kernel space before we call
1518  *	the protocol layer (having also checked the address is ok).
1519  */
1520 
1521 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522 {
1523 	struct socket *sock;
1524 	struct sockaddr_storage address;
1525 	int err, fput_needed;
1526 
1527 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528 	if (sock) {
1529 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530 		if (err >= 0) {
1531 			err = security_socket_bind(sock,
1532 						   (struct sockaddr *)&address,
1533 						   addrlen);
1534 			if (!err)
1535 				err = sock->ops->bind(sock,
1536 						      (struct sockaddr *)
1537 						      &address, addrlen);
1538 		}
1539 		fput_light(sock->file, fput_needed);
1540 	}
1541 	return err;
1542 }
1543 
1544 /*
1545  *	Perform a listen. Basically, we allow the protocol to do anything
1546  *	necessary for a listen, and if that works, we mark the socket as
1547  *	ready for listening.
1548  */
1549 
1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551 {
1552 	struct socket *sock;
1553 	int err, fput_needed;
1554 	int somaxconn;
1555 
1556 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 	if (sock) {
1558 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559 		if ((unsigned int)backlog > somaxconn)
1560 			backlog = somaxconn;
1561 
1562 		err = security_socket_listen(sock, backlog);
1563 		if (!err)
1564 			err = sock->ops->listen(sock, backlog);
1565 
1566 		fput_light(sock->file, fput_needed);
1567 	}
1568 	return err;
1569 }
1570 
1571 /*
1572  *	For accept, we attempt to create a new socket, set up the link
1573  *	with the client, wake up the client, then return the new
1574  *	connected fd. We collect the address of the connector in kernel
1575  *	space and move it to user at the very end. This is unclean because
1576  *	we open the socket then return an error.
1577  *
1578  *	1003.1g adds the ability to recvmsg() to query connection pending
1579  *	status to recvmsg. We need to add that support in a way thats
1580  *	clean when we restucture accept also.
1581  */
1582 
1583 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584 		int __user *, upeer_addrlen, int, flags)
1585 {
1586 	struct socket *sock, *newsock;
1587 	struct file *newfile;
1588 	int err, len, newfd, fput_needed;
1589 	struct sockaddr_storage address;
1590 
1591 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592 		return -EINVAL;
1593 
1594 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596 
1597 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 	if (!sock)
1599 		goto out;
1600 
1601 	err = -ENFILE;
1602 	newsock = sock_alloc();
1603 	if (!newsock)
1604 		goto out_put;
1605 
1606 	newsock->type = sock->type;
1607 	newsock->ops = sock->ops;
1608 
1609 	/*
1610 	 * We don't need try_module_get here, as the listening socket (sock)
1611 	 * has the protocol module (sock->ops->owner) held.
1612 	 */
1613 	__module_get(newsock->ops->owner);
1614 
1615 	newfd = get_unused_fd_flags(flags);
1616 	if (unlikely(newfd < 0)) {
1617 		err = newfd;
1618 		sock_release(newsock);
1619 		goto out_put;
1620 	}
1621 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622 	if (unlikely(IS_ERR(newfile))) {
1623 		err = PTR_ERR(newfile);
1624 		put_unused_fd(newfd);
1625 		sock_release(newsock);
1626 		goto out_put;
1627 	}
1628 
1629 	err = security_socket_accept(sock, newsock);
1630 	if (err)
1631 		goto out_fd;
1632 
1633 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634 	if (err < 0)
1635 		goto out_fd;
1636 
1637 	if (upeer_sockaddr) {
1638 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639 					  &len, 2) < 0) {
1640 			err = -ECONNABORTED;
1641 			goto out_fd;
1642 		}
1643 		err = move_addr_to_user(&address,
1644 					len, upeer_sockaddr, upeer_addrlen);
1645 		if (err < 0)
1646 			goto out_fd;
1647 	}
1648 
1649 	/* File flags are not inherited via accept() unlike another OSes. */
1650 
1651 	fd_install(newfd, newfile);
1652 	err = newfd;
1653 
1654 out_put:
1655 	fput_light(sock->file, fput_needed);
1656 out:
1657 	return err;
1658 out_fd:
1659 	fput(newfile);
1660 	put_unused_fd(newfd);
1661 	goto out_put;
1662 }
1663 
1664 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665 		int __user *, upeer_addrlen)
1666 {
1667 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668 }
1669 
1670 /*
1671  *	Attempt to connect to a socket with the server address.  The address
1672  *	is in user space so we verify it is OK and move it to kernel space.
1673  *
1674  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675  *	break bindings
1676  *
1677  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678  *	other SEQPACKET protocols that take time to connect() as it doesn't
1679  *	include the -EINPROGRESS status for such sockets.
1680  */
1681 
1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683 		int, addrlen)
1684 {
1685 	struct socket *sock;
1686 	struct sockaddr_storage address;
1687 	int err, fput_needed;
1688 
1689 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 	if (!sock)
1691 		goto out;
1692 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693 	if (err < 0)
1694 		goto out_put;
1695 
1696 	err =
1697 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698 	if (err)
1699 		goto out_put;
1700 
1701 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702 				 sock->file->f_flags);
1703 out_put:
1704 	fput_light(sock->file, fput_needed);
1705 out:
1706 	return err;
1707 }
1708 
1709 /*
1710  *	Get the local address ('name') of a socket object. Move the obtained
1711  *	name to user space.
1712  */
1713 
1714 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715 		int __user *, usockaddr_len)
1716 {
1717 	struct socket *sock;
1718 	struct sockaddr_storage address;
1719 	int len, err, fput_needed;
1720 
1721 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722 	if (!sock)
1723 		goto out;
1724 
1725 	err = security_socket_getsockname(sock);
1726 	if (err)
1727 		goto out_put;
1728 
1729 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730 	if (err)
1731 		goto out_put;
1732 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733 
1734 out_put:
1735 	fput_light(sock->file, fput_needed);
1736 out:
1737 	return err;
1738 }
1739 
1740 /*
1741  *	Get the remote address ('name') of a socket object. Move the obtained
1742  *	name to user space.
1743  */
1744 
1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746 		int __user *, usockaddr_len)
1747 {
1748 	struct socket *sock;
1749 	struct sockaddr_storage address;
1750 	int len, err, fput_needed;
1751 
1752 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753 	if (sock != NULL) {
1754 		err = security_socket_getpeername(sock);
1755 		if (err) {
1756 			fput_light(sock->file, fput_needed);
1757 			return err;
1758 		}
1759 
1760 		err =
1761 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762 				       1);
1763 		if (!err)
1764 			err = move_addr_to_user(&address, len, usockaddr,
1765 						usockaddr_len);
1766 		fput_light(sock->file, fput_needed);
1767 	}
1768 	return err;
1769 }
1770 
1771 /*
1772  *	Send a datagram to a given address. We move the address into kernel
1773  *	space and check the user space data area is readable before invoking
1774  *	the protocol.
1775  */
1776 
1777 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778 		unsigned int, flags, struct sockaddr __user *, addr,
1779 		int, addr_len)
1780 {
1781 	struct socket *sock;
1782 	struct sockaddr_storage address;
1783 	int err;
1784 	struct msghdr msg;
1785 	struct iovec iov;
1786 	int fput_needed;
1787 
1788 	if (len > INT_MAX)
1789 		len = INT_MAX;
1790 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791 	if (!sock)
1792 		goto out;
1793 
1794 	iov.iov_base = buff;
1795 	iov.iov_len = len;
1796 	msg.msg_name = NULL;
1797 	msg.msg_iov = &iov;
1798 	msg.msg_iovlen = 1;
1799 	msg.msg_control = NULL;
1800 	msg.msg_controllen = 0;
1801 	msg.msg_namelen = 0;
1802 	if (addr) {
1803 		err = move_addr_to_kernel(addr, addr_len, &address);
1804 		if (err < 0)
1805 			goto out_put;
1806 		msg.msg_name = (struct sockaddr *)&address;
1807 		msg.msg_namelen = addr_len;
1808 	}
1809 	if (sock->file->f_flags & O_NONBLOCK)
1810 		flags |= MSG_DONTWAIT;
1811 	msg.msg_flags = flags;
1812 	err = sock_sendmsg(sock, &msg, len);
1813 
1814 out_put:
1815 	fput_light(sock->file, fput_needed);
1816 out:
1817 	return err;
1818 }
1819 
1820 /*
1821  *	Send a datagram down a socket.
1822  */
1823 
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 		unsigned int, flags)
1826 {
1827 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1828 }
1829 
1830 /*
1831  *	Receive a frame from the socket and optionally record the address of the
1832  *	sender. We verify the buffers are writable and if needed move the
1833  *	sender address from kernel to user space.
1834  */
1835 
1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 		unsigned int, flags, struct sockaddr __user *, addr,
1838 		int __user *, addr_len)
1839 {
1840 	struct socket *sock;
1841 	struct iovec iov;
1842 	struct msghdr msg;
1843 	struct sockaddr_storage address;
1844 	int err, err2;
1845 	int fput_needed;
1846 
1847 	if (size > INT_MAX)
1848 		size = INT_MAX;
1849 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 	if (!sock)
1851 		goto out;
1852 
1853 	msg.msg_control = NULL;
1854 	msg.msg_controllen = 0;
1855 	msg.msg_iovlen = 1;
1856 	msg.msg_iov = &iov;
1857 	iov.iov_len = size;
1858 	iov.iov_base = ubuf;
1859 	msg.msg_name = (struct sockaddr *)&address;
1860 	msg.msg_namelen = sizeof(address);
1861 	if (sock->file->f_flags & O_NONBLOCK)
1862 		flags |= MSG_DONTWAIT;
1863 	err = sock_recvmsg(sock, &msg, size, flags);
1864 
1865 	if (err >= 0 && addr != NULL) {
1866 		err2 = move_addr_to_user(&address,
1867 					 msg.msg_namelen, addr, addr_len);
1868 		if (err2 < 0)
1869 			err = err2;
1870 	}
1871 
1872 	fput_light(sock->file, fput_needed);
1873 out:
1874 	return err;
1875 }
1876 
1877 /*
1878  *	Receive a datagram from a socket.
1879  */
1880 
1881 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1882 			 unsigned int flags)
1883 {
1884 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1885 }
1886 
1887 /*
1888  *	Set a socket option. Because we don't know the option lengths we have
1889  *	to pass the user mode parameter for the protocols to sort out.
1890  */
1891 
1892 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1893 		char __user *, optval, int, optlen)
1894 {
1895 	int err, fput_needed;
1896 	struct socket *sock;
1897 
1898 	if (optlen < 0)
1899 		return -EINVAL;
1900 
1901 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1902 	if (sock != NULL) {
1903 		err = security_socket_setsockopt(sock, level, optname);
1904 		if (err)
1905 			goto out_put;
1906 
1907 		if (level == SOL_SOCKET)
1908 			err =
1909 			    sock_setsockopt(sock, level, optname, optval,
1910 					    optlen);
1911 		else
1912 			err =
1913 			    sock->ops->setsockopt(sock, level, optname, optval,
1914 						  optlen);
1915 out_put:
1916 		fput_light(sock->file, fput_needed);
1917 	}
1918 	return err;
1919 }
1920 
1921 /*
1922  *	Get a socket option. Because we don't know the option lengths we have
1923  *	to pass a user mode parameter for the protocols to sort out.
1924  */
1925 
1926 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1927 		char __user *, optval, int __user *, optlen)
1928 {
1929 	int err, fput_needed;
1930 	struct socket *sock;
1931 
1932 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1933 	if (sock != NULL) {
1934 		err = security_socket_getsockopt(sock, level, optname);
1935 		if (err)
1936 			goto out_put;
1937 
1938 		if (level == SOL_SOCKET)
1939 			err =
1940 			    sock_getsockopt(sock, level, optname, optval,
1941 					    optlen);
1942 		else
1943 			err =
1944 			    sock->ops->getsockopt(sock, level, optname, optval,
1945 						  optlen);
1946 out_put:
1947 		fput_light(sock->file, fput_needed);
1948 	}
1949 	return err;
1950 }
1951 
1952 /*
1953  *	Shutdown a socket.
1954  */
1955 
1956 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1957 {
1958 	int err, fput_needed;
1959 	struct socket *sock;
1960 
1961 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 	if (sock != NULL) {
1963 		err = security_socket_shutdown(sock, how);
1964 		if (!err)
1965 			err = sock->ops->shutdown(sock, how);
1966 		fput_light(sock->file, fput_needed);
1967 	}
1968 	return err;
1969 }
1970 
1971 /* A couple of helpful macros for getting the address of the 32/64 bit
1972  * fields which are the same type (int / unsigned) on our platforms.
1973  */
1974 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1975 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1976 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1977 
1978 struct used_address {
1979 	struct sockaddr_storage name;
1980 	unsigned int name_len;
1981 };
1982 
1983 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1984 			 struct msghdr *msg_sys, unsigned int flags,
1985 			 struct used_address *used_address)
1986 {
1987 	struct compat_msghdr __user *msg_compat =
1988 	    (struct compat_msghdr __user *)msg;
1989 	struct sockaddr_storage address;
1990 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1991 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1992 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1993 	/* 20 is size of ipv6_pktinfo */
1994 	unsigned char *ctl_buf = ctl;
1995 	int err, ctl_len, total_len;
1996 
1997 	err = -EFAULT;
1998 	if (MSG_CMSG_COMPAT & flags) {
1999 		if (get_compat_msghdr(msg_sys, msg_compat))
2000 			return -EFAULT;
2001 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2002 		return -EFAULT;
2003 
2004 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2005 		err = -EMSGSIZE;
2006 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2007 			goto out;
2008 		err = -ENOMEM;
2009 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2010 			      GFP_KERNEL);
2011 		if (!iov)
2012 			goto out;
2013 	}
2014 
2015 	/* This will also move the address data into kernel space */
2016 	if (MSG_CMSG_COMPAT & flags) {
2017 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2018 	} else
2019 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2020 	if (err < 0)
2021 		goto out_freeiov;
2022 	total_len = err;
2023 
2024 	err = -ENOBUFS;
2025 
2026 	if (msg_sys->msg_controllen > INT_MAX)
2027 		goto out_freeiov;
2028 	ctl_len = msg_sys->msg_controllen;
2029 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2030 		err =
2031 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2032 						     sizeof(ctl));
2033 		if (err)
2034 			goto out_freeiov;
2035 		ctl_buf = msg_sys->msg_control;
2036 		ctl_len = msg_sys->msg_controllen;
2037 	} else if (ctl_len) {
2038 		if (ctl_len > sizeof(ctl)) {
2039 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2040 			if (ctl_buf == NULL)
2041 				goto out_freeiov;
2042 		}
2043 		err = -EFAULT;
2044 		/*
2045 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2046 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2047 		 * checking falls down on this.
2048 		 */
2049 		if (copy_from_user(ctl_buf,
2050 				   (void __user __force *)msg_sys->msg_control,
2051 				   ctl_len))
2052 			goto out_freectl;
2053 		msg_sys->msg_control = ctl_buf;
2054 	}
2055 	msg_sys->msg_flags = flags;
2056 
2057 	if (sock->file->f_flags & O_NONBLOCK)
2058 		msg_sys->msg_flags |= MSG_DONTWAIT;
2059 	/*
2060 	 * If this is sendmmsg() and current destination address is same as
2061 	 * previously succeeded address, omit asking LSM's decision.
2062 	 * used_address->name_len is initialized to UINT_MAX so that the first
2063 	 * destination address never matches.
2064 	 */
2065 	if (used_address && msg_sys->msg_name &&
2066 	    used_address->name_len == msg_sys->msg_namelen &&
2067 	    !memcmp(&used_address->name, msg_sys->msg_name,
2068 		    used_address->name_len)) {
2069 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2070 		goto out_freectl;
2071 	}
2072 	err = sock_sendmsg(sock, msg_sys, total_len);
2073 	/*
2074 	 * If this is sendmmsg() and sending to current destination address was
2075 	 * successful, remember it.
2076 	 */
2077 	if (used_address && err >= 0) {
2078 		used_address->name_len = msg_sys->msg_namelen;
2079 		if (msg_sys->msg_name)
2080 			memcpy(&used_address->name, msg_sys->msg_name,
2081 			       used_address->name_len);
2082 	}
2083 
2084 out_freectl:
2085 	if (ctl_buf != ctl)
2086 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2087 out_freeiov:
2088 	if (iov != iovstack)
2089 		kfree(iov);
2090 out:
2091 	return err;
2092 }
2093 
2094 /*
2095  *	BSD sendmsg interface
2096  */
2097 
2098 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2099 {
2100 	int fput_needed, err;
2101 	struct msghdr msg_sys;
2102 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2103 
2104 	if (!sock)
2105 		goto out;
2106 
2107 	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2108 
2109 	fput_light(sock->file, fput_needed);
2110 out:
2111 	return err;
2112 }
2113 
2114 /*
2115  *	Linux sendmmsg interface
2116  */
2117 
2118 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2119 		   unsigned int flags)
2120 {
2121 	int fput_needed, err, datagrams;
2122 	struct socket *sock;
2123 	struct mmsghdr __user *entry;
2124 	struct compat_mmsghdr __user *compat_entry;
2125 	struct msghdr msg_sys;
2126 	struct used_address used_address;
2127 
2128 	if (vlen > UIO_MAXIOV)
2129 		vlen = UIO_MAXIOV;
2130 
2131 	datagrams = 0;
2132 
2133 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2134 	if (!sock)
2135 		return err;
2136 
2137 	used_address.name_len = UINT_MAX;
2138 	entry = mmsg;
2139 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2140 	err = 0;
2141 
2142 	while (datagrams < vlen) {
2143 		if (MSG_CMSG_COMPAT & flags) {
2144 			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2145 					    &msg_sys, flags, &used_address);
2146 			if (err < 0)
2147 				break;
2148 			err = __put_user(err, &compat_entry->msg_len);
2149 			++compat_entry;
2150 		} else {
2151 			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2152 					    &msg_sys, flags, &used_address);
2153 			if (err < 0)
2154 				break;
2155 			err = put_user(err, &entry->msg_len);
2156 			++entry;
2157 		}
2158 
2159 		if (err)
2160 			break;
2161 		++datagrams;
2162 	}
2163 
2164 	fput_light(sock->file, fput_needed);
2165 
2166 	/* We only return an error if no datagrams were able to be sent */
2167 	if (datagrams != 0)
2168 		return datagrams;
2169 
2170 	return err;
2171 }
2172 
2173 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2174 		unsigned int, vlen, unsigned int, flags)
2175 {
2176 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2177 }
2178 
2179 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2180 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2181 {
2182 	struct compat_msghdr __user *msg_compat =
2183 	    (struct compat_msghdr __user *)msg;
2184 	struct iovec iovstack[UIO_FASTIOV];
2185 	struct iovec *iov = iovstack;
2186 	unsigned long cmsg_ptr;
2187 	int err, total_len, len;
2188 
2189 	/* kernel mode address */
2190 	struct sockaddr_storage addr;
2191 
2192 	/* user mode address pointers */
2193 	struct sockaddr __user *uaddr;
2194 	int __user *uaddr_len;
2195 
2196 	if (MSG_CMSG_COMPAT & flags) {
2197 		if (get_compat_msghdr(msg_sys, msg_compat))
2198 			return -EFAULT;
2199 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2200 		return -EFAULT;
2201 
2202 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2203 		err = -EMSGSIZE;
2204 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2205 			goto out;
2206 		err = -ENOMEM;
2207 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2208 			      GFP_KERNEL);
2209 		if (!iov)
2210 			goto out;
2211 	}
2212 
2213 	/*
2214 	 *      Save the user-mode address (verify_iovec will change the
2215 	 *      kernel msghdr to use the kernel address space)
2216 	 */
2217 
2218 	uaddr = (__force void __user *)msg_sys->msg_name;
2219 	uaddr_len = COMPAT_NAMELEN(msg);
2220 	if (MSG_CMSG_COMPAT & flags) {
2221 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2222 	} else
2223 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2224 	if (err < 0)
2225 		goto out_freeiov;
2226 	total_len = err;
2227 
2228 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2229 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2230 
2231 	if (sock->file->f_flags & O_NONBLOCK)
2232 		flags |= MSG_DONTWAIT;
2233 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2234 							  total_len, flags);
2235 	if (err < 0)
2236 		goto out_freeiov;
2237 	len = err;
2238 
2239 	if (uaddr != NULL) {
2240 		err = move_addr_to_user(&addr,
2241 					msg_sys->msg_namelen, uaddr,
2242 					uaddr_len);
2243 		if (err < 0)
2244 			goto out_freeiov;
2245 	}
2246 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2247 			 COMPAT_FLAGS(msg));
2248 	if (err)
2249 		goto out_freeiov;
2250 	if (MSG_CMSG_COMPAT & flags)
2251 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2252 				 &msg_compat->msg_controllen);
2253 	else
2254 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2255 				 &msg->msg_controllen);
2256 	if (err)
2257 		goto out_freeiov;
2258 	err = len;
2259 
2260 out_freeiov:
2261 	if (iov != iovstack)
2262 		kfree(iov);
2263 out:
2264 	return err;
2265 }
2266 
2267 /*
2268  *	BSD recvmsg interface
2269  */
2270 
2271 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2272 		unsigned int, flags)
2273 {
2274 	int fput_needed, err;
2275 	struct msghdr msg_sys;
2276 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2277 
2278 	if (!sock)
2279 		goto out;
2280 
2281 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2282 
2283 	fput_light(sock->file, fput_needed);
2284 out:
2285 	return err;
2286 }
2287 
2288 /*
2289  *     Linux recvmmsg interface
2290  */
2291 
2292 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2293 		   unsigned int flags, struct timespec *timeout)
2294 {
2295 	int fput_needed, err, datagrams;
2296 	struct socket *sock;
2297 	struct mmsghdr __user *entry;
2298 	struct compat_mmsghdr __user *compat_entry;
2299 	struct msghdr msg_sys;
2300 	struct timespec end_time;
2301 
2302 	if (timeout &&
2303 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2304 				    timeout->tv_nsec))
2305 		return -EINVAL;
2306 
2307 	datagrams = 0;
2308 
2309 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2310 	if (!sock)
2311 		return err;
2312 
2313 	err = sock_error(sock->sk);
2314 	if (err)
2315 		goto out_put;
2316 
2317 	entry = mmsg;
2318 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2319 
2320 	while (datagrams < vlen) {
2321 		/*
2322 		 * No need to ask LSM for more than the first datagram.
2323 		 */
2324 		if (MSG_CMSG_COMPAT & flags) {
2325 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2326 					    &msg_sys, flags & ~MSG_WAITFORONE,
2327 					    datagrams);
2328 			if (err < 0)
2329 				break;
2330 			err = __put_user(err, &compat_entry->msg_len);
2331 			++compat_entry;
2332 		} else {
2333 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2334 					    &msg_sys, flags & ~MSG_WAITFORONE,
2335 					    datagrams);
2336 			if (err < 0)
2337 				break;
2338 			err = put_user(err, &entry->msg_len);
2339 			++entry;
2340 		}
2341 
2342 		if (err)
2343 			break;
2344 		++datagrams;
2345 
2346 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2347 		if (flags & MSG_WAITFORONE)
2348 			flags |= MSG_DONTWAIT;
2349 
2350 		if (timeout) {
2351 			ktime_get_ts(timeout);
2352 			*timeout = timespec_sub(end_time, *timeout);
2353 			if (timeout->tv_sec < 0) {
2354 				timeout->tv_sec = timeout->tv_nsec = 0;
2355 				break;
2356 			}
2357 
2358 			/* Timeout, return less than vlen datagrams */
2359 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2360 				break;
2361 		}
2362 
2363 		/* Out of band data, return right away */
2364 		if (msg_sys.msg_flags & MSG_OOB)
2365 			break;
2366 	}
2367 
2368 out_put:
2369 	fput_light(sock->file, fput_needed);
2370 
2371 	if (err == 0)
2372 		return datagrams;
2373 
2374 	if (datagrams != 0) {
2375 		/*
2376 		 * We may return less entries than requested (vlen) if the
2377 		 * sock is non block and there aren't enough datagrams...
2378 		 */
2379 		if (err != -EAGAIN) {
2380 			/*
2381 			 * ... or  if recvmsg returns an error after we
2382 			 * received some datagrams, where we record the
2383 			 * error to return on the next call or if the
2384 			 * app asks about it using getsockopt(SO_ERROR).
2385 			 */
2386 			sock->sk->sk_err = -err;
2387 		}
2388 
2389 		return datagrams;
2390 	}
2391 
2392 	return err;
2393 }
2394 
2395 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2396 		unsigned int, vlen, unsigned int, flags,
2397 		struct timespec __user *, timeout)
2398 {
2399 	int datagrams;
2400 	struct timespec timeout_sys;
2401 
2402 	if (!timeout)
2403 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2404 
2405 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2406 		return -EFAULT;
2407 
2408 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2409 
2410 	if (datagrams > 0 &&
2411 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2412 		datagrams = -EFAULT;
2413 
2414 	return datagrams;
2415 }
2416 
2417 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2418 /* Argument list sizes for sys_socketcall */
2419 #define AL(x) ((x) * sizeof(unsigned long))
2420 static const unsigned char nargs[21] = {
2421 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2422 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2423 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2424 	AL(4), AL(5), AL(4)
2425 };
2426 
2427 #undef AL
2428 
2429 /*
2430  *	System call vectors.
2431  *
2432  *	Argument checking cleaned up. Saved 20% in size.
2433  *  This function doesn't need to set the kernel lock because
2434  *  it is set by the callees.
2435  */
2436 
2437 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2438 {
2439 	unsigned long a[6];
2440 	unsigned long a0, a1;
2441 	int err;
2442 	unsigned int len;
2443 
2444 	if (call < 1 || call > SYS_SENDMMSG)
2445 		return -EINVAL;
2446 
2447 	len = nargs[call];
2448 	if (len > sizeof(a))
2449 		return -EINVAL;
2450 
2451 	/* copy_from_user should be SMP safe. */
2452 	if (copy_from_user(a, args, len))
2453 		return -EFAULT;
2454 
2455 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2456 
2457 	a0 = a[0];
2458 	a1 = a[1];
2459 
2460 	switch (call) {
2461 	case SYS_SOCKET:
2462 		err = sys_socket(a0, a1, a[2]);
2463 		break;
2464 	case SYS_BIND:
2465 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2466 		break;
2467 	case SYS_CONNECT:
2468 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2469 		break;
2470 	case SYS_LISTEN:
2471 		err = sys_listen(a0, a1);
2472 		break;
2473 	case SYS_ACCEPT:
2474 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2475 				  (int __user *)a[2], 0);
2476 		break;
2477 	case SYS_GETSOCKNAME:
2478 		err =
2479 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2480 				    (int __user *)a[2]);
2481 		break;
2482 	case SYS_GETPEERNAME:
2483 		err =
2484 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2485 				    (int __user *)a[2]);
2486 		break;
2487 	case SYS_SOCKETPAIR:
2488 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2489 		break;
2490 	case SYS_SEND:
2491 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2492 		break;
2493 	case SYS_SENDTO:
2494 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2495 				 (struct sockaddr __user *)a[4], a[5]);
2496 		break;
2497 	case SYS_RECV:
2498 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2499 		break;
2500 	case SYS_RECVFROM:
2501 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2502 				   (struct sockaddr __user *)a[4],
2503 				   (int __user *)a[5]);
2504 		break;
2505 	case SYS_SHUTDOWN:
2506 		err = sys_shutdown(a0, a1);
2507 		break;
2508 	case SYS_SETSOCKOPT:
2509 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2510 		break;
2511 	case SYS_GETSOCKOPT:
2512 		err =
2513 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2514 				   (int __user *)a[4]);
2515 		break;
2516 	case SYS_SENDMSG:
2517 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2518 		break;
2519 	case SYS_SENDMMSG:
2520 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2521 		break;
2522 	case SYS_RECVMSG:
2523 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2524 		break;
2525 	case SYS_RECVMMSG:
2526 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2527 				   (struct timespec __user *)a[4]);
2528 		break;
2529 	case SYS_ACCEPT4:
2530 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2531 				  (int __user *)a[2], a[3]);
2532 		break;
2533 	default:
2534 		err = -EINVAL;
2535 		break;
2536 	}
2537 	return err;
2538 }
2539 
2540 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2541 
2542 /**
2543  *	sock_register - add a socket protocol handler
2544  *	@ops: description of protocol
2545  *
2546  *	This function is called by a protocol handler that wants to
2547  *	advertise its address family, and have it linked into the
2548  *	socket interface. The value ops->family coresponds to the
2549  *	socket system call protocol family.
2550  */
2551 int sock_register(const struct net_proto_family *ops)
2552 {
2553 	int err;
2554 
2555 	if (ops->family >= NPROTO) {
2556 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2557 		       NPROTO);
2558 		return -ENOBUFS;
2559 	}
2560 
2561 	spin_lock(&net_family_lock);
2562 	if (rcu_dereference_protected(net_families[ops->family],
2563 				      lockdep_is_held(&net_family_lock)))
2564 		err = -EEXIST;
2565 	else {
2566 		rcu_assign_pointer(net_families[ops->family], ops);
2567 		err = 0;
2568 	}
2569 	spin_unlock(&net_family_lock);
2570 
2571 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2572 	return err;
2573 }
2574 EXPORT_SYMBOL(sock_register);
2575 
2576 /**
2577  *	sock_unregister - remove a protocol handler
2578  *	@family: protocol family to remove
2579  *
2580  *	This function is called by a protocol handler that wants to
2581  *	remove its address family, and have it unlinked from the
2582  *	new socket creation.
2583  *
2584  *	If protocol handler is a module, then it can use module reference
2585  *	counts to protect against new references. If protocol handler is not
2586  *	a module then it needs to provide its own protection in
2587  *	the ops->create routine.
2588  */
2589 void sock_unregister(int family)
2590 {
2591 	BUG_ON(family < 0 || family >= NPROTO);
2592 
2593 	spin_lock(&net_family_lock);
2594 	RCU_INIT_POINTER(net_families[family], NULL);
2595 	spin_unlock(&net_family_lock);
2596 
2597 	synchronize_rcu();
2598 
2599 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2600 }
2601 EXPORT_SYMBOL(sock_unregister);
2602 
2603 static int __init sock_init(void)
2604 {
2605 	int err;
2606 	/*
2607 	 *      Initialize the network sysctl infrastructure.
2608 	 */
2609 	err = net_sysctl_init();
2610 	if (err)
2611 		goto out;
2612 
2613 	/*
2614 	 *      Initialize skbuff SLAB cache
2615 	 */
2616 	skb_init();
2617 
2618 	/*
2619 	 *      Initialize the protocols module.
2620 	 */
2621 
2622 	init_inodecache();
2623 
2624 	err = register_filesystem(&sock_fs_type);
2625 	if (err)
2626 		goto out_fs;
2627 	sock_mnt = kern_mount(&sock_fs_type);
2628 	if (IS_ERR(sock_mnt)) {
2629 		err = PTR_ERR(sock_mnt);
2630 		goto out_mount;
2631 	}
2632 
2633 	/* The real protocol initialization is performed in later initcalls.
2634 	 */
2635 
2636 #ifdef CONFIG_NETFILTER
2637 	netfilter_init();
2638 #endif
2639 
2640 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2641 	skb_timestamping_init();
2642 #endif
2643 
2644 out:
2645 	return err;
2646 
2647 out_mount:
2648 	unregister_filesystem(&sock_fs_type);
2649 out_fs:
2650 	goto out;
2651 }
2652 
2653 core_initcall(sock_init);	/* early initcall */
2654 
2655 #ifdef CONFIG_PROC_FS
2656 void socket_seq_show(struct seq_file *seq)
2657 {
2658 	int cpu;
2659 	int counter = 0;
2660 
2661 	for_each_possible_cpu(cpu)
2662 	    counter += per_cpu(sockets_in_use, cpu);
2663 
2664 	/* It can be negative, by the way. 8) */
2665 	if (counter < 0)
2666 		counter = 0;
2667 
2668 	seq_printf(seq, "sockets: used %d\n", counter);
2669 }
2670 #endif				/* CONFIG_PROC_FS */
2671 
2672 #ifdef CONFIG_COMPAT
2673 static int do_siocgstamp(struct net *net, struct socket *sock,
2674 			 unsigned int cmd, void __user *up)
2675 {
2676 	mm_segment_t old_fs = get_fs();
2677 	struct timeval ktv;
2678 	int err;
2679 
2680 	set_fs(KERNEL_DS);
2681 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2682 	set_fs(old_fs);
2683 	if (!err)
2684 		err = compat_put_timeval(&ktv, up);
2685 
2686 	return err;
2687 }
2688 
2689 static int do_siocgstampns(struct net *net, struct socket *sock,
2690 			   unsigned int cmd, void __user *up)
2691 {
2692 	mm_segment_t old_fs = get_fs();
2693 	struct timespec kts;
2694 	int err;
2695 
2696 	set_fs(KERNEL_DS);
2697 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2698 	set_fs(old_fs);
2699 	if (!err)
2700 		err = compat_put_timespec(&kts, up);
2701 
2702 	return err;
2703 }
2704 
2705 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2706 {
2707 	struct ifreq __user *uifr;
2708 	int err;
2709 
2710 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2711 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2712 		return -EFAULT;
2713 
2714 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2715 	if (err)
2716 		return err;
2717 
2718 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2719 		return -EFAULT;
2720 
2721 	return 0;
2722 }
2723 
2724 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2725 {
2726 	struct compat_ifconf ifc32;
2727 	struct ifconf ifc;
2728 	struct ifconf __user *uifc;
2729 	struct compat_ifreq __user *ifr32;
2730 	struct ifreq __user *ifr;
2731 	unsigned int i, j;
2732 	int err;
2733 
2734 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2735 		return -EFAULT;
2736 
2737 	memset(&ifc, 0, sizeof(ifc));
2738 	if (ifc32.ifcbuf == 0) {
2739 		ifc32.ifc_len = 0;
2740 		ifc.ifc_len = 0;
2741 		ifc.ifc_req = NULL;
2742 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2743 	} else {
2744 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2745 			sizeof(struct ifreq);
2746 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2747 		ifc.ifc_len = len;
2748 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2749 		ifr32 = compat_ptr(ifc32.ifcbuf);
2750 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2751 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2752 				return -EFAULT;
2753 			ifr++;
2754 			ifr32++;
2755 		}
2756 	}
2757 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2758 		return -EFAULT;
2759 
2760 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2761 	if (err)
2762 		return err;
2763 
2764 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2765 		return -EFAULT;
2766 
2767 	ifr = ifc.ifc_req;
2768 	ifr32 = compat_ptr(ifc32.ifcbuf);
2769 	for (i = 0, j = 0;
2770 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2771 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2772 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2773 			return -EFAULT;
2774 		ifr32++;
2775 		ifr++;
2776 	}
2777 
2778 	if (ifc32.ifcbuf == 0) {
2779 		/* Translate from 64-bit structure multiple to
2780 		 * a 32-bit one.
2781 		 */
2782 		i = ifc.ifc_len;
2783 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2784 		ifc32.ifc_len = i;
2785 	} else {
2786 		ifc32.ifc_len = i;
2787 	}
2788 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2789 		return -EFAULT;
2790 
2791 	return 0;
2792 }
2793 
2794 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2795 {
2796 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2797 	bool convert_in = false, convert_out = false;
2798 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2799 	struct ethtool_rxnfc __user *rxnfc;
2800 	struct ifreq __user *ifr;
2801 	u32 rule_cnt = 0, actual_rule_cnt;
2802 	u32 ethcmd;
2803 	u32 data;
2804 	int ret;
2805 
2806 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2807 		return -EFAULT;
2808 
2809 	compat_rxnfc = compat_ptr(data);
2810 
2811 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2812 		return -EFAULT;
2813 
2814 	/* Most ethtool structures are defined without padding.
2815 	 * Unfortunately struct ethtool_rxnfc is an exception.
2816 	 */
2817 	switch (ethcmd) {
2818 	default:
2819 		break;
2820 	case ETHTOOL_GRXCLSRLALL:
2821 		/* Buffer size is variable */
2822 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2823 			return -EFAULT;
2824 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2825 			return -ENOMEM;
2826 		buf_size += rule_cnt * sizeof(u32);
2827 		/* fall through */
2828 	case ETHTOOL_GRXRINGS:
2829 	case ETHTOOL_GRXCLSRLCNT:
2830 	case ETHTOOL_GRXCLSRULE:
2831 	case ETHTOOL_SRXCLSRLINS:
2832 		convert_out = true;
2833 		/* fall through */
2834 	case ETHTOOL_SRXCLSRLDEL:
2835 		buf_size += sizeof(struct ethtool_rxnfc);
2836 		convert_in = true;
2837 		break;
2838 	}
2839 
2840 	ifr = compat_alloc_user_space(buf_size);
2841 	rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2842 
2843 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2844 		return -EFAULT;
2845 
2846 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2847 		     &ifr->ifr_ifru.ifru_data))
2848 		return -EFAULT;
2849 
2850 	if (convert_in) {
2851 		/* We expect there to be holes between fs.m_ext and
2852 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2853 		 */
2854 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2855 			     sizeof(compat_rxnfc->fs.m_ext) !=
2856 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2857 			     sizeof(rxnfc->fs.m_ext));
2858 		BUILD_BUG_ON(
2859 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2860 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2861 			offsetof(struct ethtool_rxnfc, fs.location) -
2862 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2863 
2864 		if (copy_in_user(rxnfc, compat_rxnfc,
2865 				 (void *)(&rxnfc->fs.m_ext + 1) -
2866 				 (void *)rxnfc) ||
2867 		    copy_in_user(&rxnfc->fs.ring_cookie,
2868 				 &compat_rxnfc->fs.ring_cookie,
2869 				 (void *)(&rxnfc->fs.location + 1) -
2870 				 (void *)&rxnfc->fs.ring_cookie) ||
2871 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2872 				 sizeof(rxnfc->rule_cnt)))
2873 			return -EFAULT;
2874 	}
2875 
2876 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2877 	if (ret)
2878 		return ret;
2879 
2880 	if (convert_out) {
2881 		if (copy_in_user(compat_rxnfc, rxnfc,
2882 				 (const void *)(&rxnfc->fs.m_ext + 1) -
2883 				 (const void *)rxnfc) ||
2884 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2885 				 &rxnfc->fs.ring_cookie,
2886 				 (const void *)(&rxnfc->fs.location + 1) -
2887 				 (const void *)&rxnfc->fs.ring_cookie) ||
2888 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2889 				 sizeof(rxnfc->rule_cnt)))
2890 			return -EFAULT;
2891 
2892 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2893 			/* As an optimisation, we only copy the actual
2894 			 * number of rules that the underlying
2895 			 * function returned.  Since Mallory might
2896 			 * change the rule count in user memory, we
2897 			 * check that it is less than the rule count
2898 			 * originally given (as the user buffer size),
2899 			 * which has been range-checked.
2900 			 */
2901 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2902 				return -EFAULT;
2903 			if (actual_rule_cnt < rule_cnt)
2904 				rule_cnt = actual_rule_cnt;
2905 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2906 					 &rxnfc->rule_locs[0],
2907 					 rule_cnt * sizeof(u32)))
2908 				return -EFAULT;
2909 		}
2910 	}
2911 
2912 	return 0;
2913 }
2914 
2915 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2916 {
2917 	void __user *uptr;
2918 	compat_uptr_t uptr32;
2919 	struct ifreq __user *uifr;
2920 
2921 	uifr = compat_alloc_user_space(sizeof(*uifr));
2922 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2923 		return -EFAULT;
2924 
2925 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2926 		return -EFAULT;
2927 
2928 	uptr = compat_ptr(uptr32);
2929 
2930 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2931 		return -EFAULT;
2932 
2933 	return dev_ioctl(net, SIOCWANDEV, uifr);
2934 }
2935 
2936 static int bond_ioctl(struct net *net, unsigned int cmd,
2937 			 struct compat_ifreq __user *ifr32)
2938 {
2939 	struct ifreq kifr;
2940 	struct ifreq __user *uifr;
2941 	mm_segment_t old_fs;
2942 	int err;
2943 	u32 data;
2944 	void __user *datap;
2945 
2946 	switch (cmd) {
2947 	case SIOCBONDENSLAVE:
2948 	case SIOCBONDRELEASE:
2949 	case SIOCBONDSETHWADDR:
2950 	case SIOCBONDCHANGEACTIVE:
2951 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2952 			return -EFAULT;
2953 
2954 		old_fs = get_fs();
2955 		set_fs(KERNEL_DS);
2956 		err = dev_ioctl(net, cmd,
2957 				(struct ifreq __user __force *) &kifr);
2958 		set_fs(old_fs);
2959 
2960 		return err;
2961 	case SIOCBONDSLAVEINFOQUERY:
2962 	case SIOCBONDINFOQUERY:
2963 		uifr = compat_alloc_user_space(sizeof(*uifr));
2964 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2965 			return -EFAULT;
2966 
2967 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2968 			return -EFAULT;
2969 
2970 		datap = compat_ptr(data);
2971 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2972 			return -EFAULT;
2973 
2974 		return dev_ioctl(net, cmd, uifr);
2975 	default:
2976 		return -ENOIOCTLCMD;
2977 	}
2978 }
2979 
2980 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2981 				 struct compat_ifreq __user *u_ifreq32)
2982 {
2983 	struct ifreq __user *u_ifreq64;
2984 	char tmp_buf[IFNAMSIZ];
2985 	void __user *data64;
2986 	u32 data32;
2987 
2988 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2989 			   IFNAMSIZ))
2990 		return -EFAULT;
2991 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2992 		return -EFAULT;
2993 	data64 = compat_ptr(data32);
2994 
2995 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2996 
2997 	/* Don't check these user accesses, just let that get trapped
2998 	 * in the ioctl handler instead.
2999 	 */
3000 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3001 			 IFNAMSIZ))
3002 		return -EFAULT;
3003 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3004 		return -EFAULT;
3005 
3006 	return dev_ioctl(net, cmd, u_ifreq64);
3007 }
3008 
3009 static int dev_ifsioc(struct net *net, struct socket *sock,
3010 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3011 {
3012 	struct ifreq __user *uifr;
3013 	int err;
3014 
3015 	uifr = compat_alloc_user_space(sizeof(*uifr));
3016 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3017 		return -EFAULT;
3018 
3019 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3020 
3021 	if (!err) {
3022 		switch (cmd) {
3023 		case SIOCGIFFLAGS:
3024 		case SIOCGIFMETRIC:
3025 		case SIOCGIFMTU:
3026 		case SIOCGIFMEM:
3027 		case SIOCGIFHWADDR:
3028 		case SIOCGIFINDEX:
3029 		case SIOCGIFADDR:
3030 		case SIOCGIFBRDADDR:
3031 		case SIOCGIFDSTADDR:
3032 		case SIOCGIFNETMASK:
3033 		case SIOCGIFPFLAGS:
3034 		case SIOCGIFTXQLEN:
3035 		case SIOCGMIIPHY:
3036 		case SIOCGMIIREG:
3037 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3038 				err = -EFAULT;
3039 			break;
3040 		}
3041 	}
3042 	return err;
3043 }
3044 
3045 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3046 			struct compat_ifreq __user *uifr32)
3047 {
3048 	struct ifreq ifr;
3049 	struct compat_ifmap __user *uifmap32;
3050 	mm_segment_t old_fs;
3051 	int err;
3052 
3053 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3054 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3055 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3056 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3057 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3058 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3059 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3060 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3061 	if (err)
3062 		return -EFAULT;
3063 
3064 	old_fs = get_fs();
3065 	set_fs(KERNEL_DS);
3066 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3067 	set_fs(old_fs);
3068 
3069 	if (cmd == SIOCGIFMAP && !err) {
3070 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3071 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3072 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3073 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3074 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3075 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3076 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3077 		if (err)
3078 			err = -EFAULT;
3079 	}
3080 	return err;
3081 }
3082 
3083 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3084 {
3085 	void __user *uptr;
3086 	compat_uptr_t uptr32;
3087 	struct ifreq __user *uifr;
3088 
3089 	uifr = compat_alloc_user_space(sizeof(*uifr));
3090 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3091 		return -EFAULT;
3092 
3093 	if (get_user(uptr32, &uifr32->ifr_data))
3094 		return -EFAULT;
3095 
3096 	uptr = compat_ptr(uptr32);
3097 
3098 	if (put_user(uptr, &uifr->ifr_data))
3099 		return -EFAULT;
3100 
3101 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3102 }
3103 
3104 struct rtentry32 {
3105 	u32		rt_pad1;
3106 	struct sockaddr rt_dst;         /* target address               */
3107 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3108 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3109 	unsigned short	rt_flags;
3110 	short		rt_pad2;
3111 	u32		rt_pad3;
3112 	unsigned char	rt_tos;
3113 	unsigned char	rt_class;
3114 	short		rt_pad4;
3115 	short		rt_metric;      /* +1 for binary compatibility! */
3116 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3117 	u32		rt_mtu;         /* per route MTU/Window         */
3118 	u32		rt_window;      /* Window clamping              */
3119 	unsigned short  rt_irtt;        /* Initial RTT                  */
3120 };
3121 
3122 struct in6_rtmsg32 {
3123 	struct in6_addr		rtmsg_dst;
3124 	struct in6_addr		rtmsg_src;
3125 	struct in6_addr		rtmsg_gateway;
3126 	u32			rtmsg_type;
3127 	u16			rtmsg_dst_len;
3128 	u16			rtmsg_src_len;
3129 	u32			rtmsg_metric;
3130 	u32			rtmsg_info;
3131 	u32			rtmsg_flags;
3132 	s32			rtmsg_ifindex;
3133 };
3134 
3135 static int routing_ioctl(struct net *net, struct socket *sock,
3136 			 unsigned int cmd, void __user *argp)
3137 {
3138 	int ret;
3139 	void *r = NULL;
3140 	struct in6_rtmsg r6;
3141 	struct rtentry r4;
3142 	char devname[16];
3143 	u32 rtdev;
3144 	mm_segment_t old_fs = get_fs();
3145 
3146 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3147 		struct in6_rtmsg32 __user *ur6 = argp;
3148 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3149 			3 * sizeof(struct in6_addr));
3150 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3151 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3152 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3153 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3154 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3155 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3156 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3157 
3158 		r = (void *) &r6;
3159 	} else { /* ipv4 */
3160 		struct rtentry32 __user *ur4 = argp;
3161 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3162 					3 * sizeof(struct sockaddr));
3163 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3164 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3165 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3166 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3167 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3168 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3169 		if (rtdev) {
3170 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3171 			r4.rt_dev = (char __user __force *)devname;
3172 			devname[15] = 0;
3173 		} else
3174 			r4.rt_dev = NULL;
3175 
3176 		r = (void *) &r4;
3177 	}
3178 
3179 	if (ret) {
3180 		ret = -EFAULT;
3181 		goto out;
3182 	}
3183 
3184 	set_fs(KERNEL_DS);
3185 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3186 	set_fs(old_fs);
3187 
3188 out:
3189 	return ret;
3190 }
3191 
3192 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3193  * for some operations; this forces use of the newer bridge-utils that
3194  * use compatible ioctls
3195  */
3196 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3197 {
3198 	compat_ulong_t tmp;
3199 
3200 	if (get_user(tmp, argp))
3201 		return -EFAULT;
3202 	if (tmp == BRCTL_GET_VERSION)
3203 		return BRCTL_VERSION + 1;
3204 	return -EINVAL;
3205 }
3206 
3207 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3208 			 unsigned int cmd, unsigned long arg)
3209 {
3210 	void __user *argp = compat_ptr(arg);
3211 	struct sock *sk = sock->sk;
3212 	struct net *net = sock_net(sk);
3213 
3214 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3215 		return siocdevprivate_ioctl(net, cmd, argp);
3216 
3217 	switch (cmd) {
3218 	case SIOCSIFBR:
3219 	case SIOCGIFBR:
3220 		return old_bridge_ioctl(argp);
3221 	case SIOCGIFNAME:
3222 		return dev_ifname32(net, argp);
3223 	case SIOCGIFCONF:
3224 		return dev_ifconf(net, argp);
3225 	case SIOCETHTOOL:
3226 		return ethtool_ioctl(net, argp);
3227 	case SIOCWANDEV:
3228 		return compat_siocwandev(net, argp);
3229 	case SIOCGIFMAP:
3230 	case SIOCSIFMAP:
3231 		return compat_sioc_ifmap(net, cmd, argp);
3232 	case SIOCBONDENSLAVE:
3233 	case SIOCBONDRELEASE:
3234 	case SIOCBONDSETHWADDR:
3235 	case SIOCBONDSLAVEINFOQUERY:
3236 	case SIOCBONDINFOQUERY:
3237 	case SIOCBONDCHANGEACTIVE:
3238 		return bond_ioctl(net, cmd, argp);
3239 	case SIOCADDRT:
3240 	case SIOCDELRT:
3241 		return routing_ioctl(net, sock, cmd, argp);
3242 	case SIOCGSTAMP:
3243 		return do_siocgstamp(net, sock, cmd, argp);
3244 	case SIOCGSTAMPNS:
3245 		return do_siocgstampns(net, sock, cmd, argp);
3246 	case SIOCSHWTSTAMP:
3247 		return compat_siocshwtstamp(net, argp);
3248 
3249 	case FIOSETOWN:
3250 	case SIOCSPGRP:
3251 	case FIOGETOWN:
3252 	case SIOCGPGRP:
3253 	case SIOCBRADDBR:
3254 	case SIOCBRDELBR:
3255 	case SIOCGIFVLAN:
3256 	case SIOCSIFVLAN:
3257 	case SIOCADDDLCI:
3258 	case SIOCDELDLCI:
3259 		return sock_ioctl(file, cmd, arg);
3260 
3261 	case SIOCGIFFLAGS:
3262 	case SIOCSIFFLAGS:
3263 	case SIOCGIFMETRIC:
3264 	case SIOCSIFMETRIC:
3265 	case SIOCGIFMTU:
3266 	case SIOCSIFMTU:
3267 	case SIOCGIFMEM:
3268 	case SIOCSIFMEM:
3269 	case SIOCGIFHWADDR:
3270 	case SIOCSIFHWADDR:
3271 	case SIOCADDMULTI:
3272 	case SIOCDELMULTI:
3273 	case SIOCGIFINDEX:
3274 	case SIOCGIFADDR:
3275 	case SIOCSIFADDR:
3276 	case SIOCSIFHWBROADCAST:
3277 	case SIOCDIFADDR:
3278 	case SIOCGIFBRDADDR:
3279 	case SIOCSIFBRDADDR:
3280 	case SIOCGIFDSTADDR:
3281 	case SIOCSIFDSTADDR:
3282 	case SIOCGIFNETMASK:
3283 	case SIOCSIFNETMASK:
3284 	case SIOCSIFPFLAGS:
3285 	case SIOCGIFPFLAGS:
3286 	case SIOCGIFTXQLEN:
3287 	case SIOCSIFTXQLEN:
3288 	case SIOCBRADDIF:
3289 	case SIOCBRDELIF:
3290 	case SIOCSIFNAME:
3291 	case SIOCGMIIPHY:
3292 	case SIOCGMIIREG:
3293 	case SIOCSMIIREG:
3294 		return dev_ifsioc(net, sock, cmd, argp);
3295 
3296 	case SIOCSARP:
3297 	case SIOCGARP:
3298 	case SIOCDARP:
3299 	case SIOCATMARK:
3300 		return sock_do_ioctl(net, sock, cmd, arg);
3301 	}
3302 
3303 	return -ENOIOCTLCMD;
3304 }
3305 
3306 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3307 			      unsigned long arg)
3308 {
3309 	struct socket *sock = file->private_data;
3310 	int ret = -ENOIOCTLCMD;
3311 	struct sock *sk;
3312 	struct net *net;
3313 
3314 	sk = sock->sk;
3315 	net = sock_net(sk);
3316 
3317 	if (sock->ops->compat_ioctl)
3318 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3319 
3320 	if (ret == -ENOIOCTLCMD &&
3321 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3322 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3323 
3324 	if (ret == -ENOIOCTLCMD)
3325 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3326 
3327 	return ret;
3328 }
3329 #endif
3330 
3331 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3332 {
3333 	return sock->ops->bind(sock, addr, addrlen);
3334 }
3335 EXPORT_SYMBOL(kernel_bind);
3336 
3337 int kernel_listen(struct socket *sock, int backlog)
3338 {
3339 	return sock->ops->listen(sock, backlog);
3340 }
3341 EXPORT_SYMBOL(kernel_listen);
3342 
3343 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3344 {
3345 	struct sock *sk = sock->sk;
3346 	int err;
3347 
3348 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3349 			       newsock);
3350 	if (err < 0)
3351 		goto done;
3352 
3353 	err = sock->ops->accept(sock, *newsock, flags);
3354 	if (err < 0) {
3355 		sock_release(*newsock);
3356 		*newsock = NULL;
3357 		goto done;
3358 	}
3359 
3360 	(*newsock)->ops = sock->ops;
3361 	__module_get((*newsock)->ops->owner);
3362 
3363 done:
3364 	return err;
3365 }
3366 EXPORT_SYMBOL(kernel_accept);
3367 
3368 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3369 		   int flags)
3370 {
3371 	return sock->ops->connect(sock, addr, addrlen, flags);
3372 }
3373 EXPORT_SYMBOL(kernel_connect);
3374 
3375 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3376 			 int *addrlen)
3377 {
3378 	return sock->ops->getname(sock, addr, addrlen, 0);
3379 }
3380 EXPORT_SYMBOL(kernel_getsockname);
3381 
3382 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3383 			 int *addrlen)
3384 {
3385 	return sock->ops->getname(sock, addr, addrlen, 1);
3386 }
3387 EXPORT_SYMBOL(kernel_getpeername);
3388 
3389 int kernel_getsockopt(struct socket *sock, int level, int optname,
3390 			char *optval, int *optlen)
3391 {
3392 	mm_segment_t oldfs = get_fs();
3393 	char __user *uoptval;
3394 	int __user *uoptlen;
3395 	int err;
3396 
3397 	uoptval = (char __user __force *) optval;
3398 	uoptlen = (int __user __force *) optlen;
3399 
3400 	set_fs(KERNEL_DS);
3401 	if (level == SOL_SOCKET)
3402 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3403 	else
3404 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3405 					    uoptlen);
3406 	set_fs(oldfs);
3407 	return err;
3408 }
3409 EXPORT_SYMBOL(kernel_getsockopt);
3410 
3411 int kernel_setsockopt(struct socket *sock, int level, int optname,
3412 			char *optval, unsigned int optlen)
3413 {
3414 	mm_segment_t oldfs = get_fs();
3415 	char __user *uoptval;
3416 	int err;
3417 
3418 	uoptval = (char __user __force *) optval;
3419 
3420 	set_fs(KERNEL_DS);
3421 	if (level == SOL_SOCKET)
3422 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3423 	else
3424 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3425 					    optlen);
3426 	set_fs(oldfs);
3427 	return err;
3428 }
3429 EXPORT_SYMBOL(kernel_setsockopt);
3430 
3431 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3432 		    size_t size, int flags)
3433 {
3434 	if (sock->ops->sendpage)
3435 		return sock->ops->sendpage(sock, page, offset, size, flags);
3436 
3437 	return sock_no_sendpage(sock, page, offset, size, flags);
3438 }
3439 EXPORT_SYMBOL(kernel_sendpage);
3440 
3441 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3442 {
3443 	mm_segment_t oldfs = get_fs();
3444 	int err;
3445 
3446 	set_fs(KERNEL_DS);
3447 	err = sock->ops->ioctl(sock, cmd, arg);
3448 	set_fs(oldfs);
3449 
3450 	return err;
3451 }
3452 EXPORT_SYMBOL(kernel_sock_ioctl);
3453 
3454 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3455 {
3456 	return sock->ops->shutdown(sock, how);
3457 }
3458 EXPORT_SYMBOL(kernel_sock_shutdown);
3459