xref: /openbmc/linux/net/socket.c (revision a554bf96)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108 
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113 
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117 
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 			      struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 			      unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 			     int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 				struct pipe_inode_info *pipe, size_t len,
131 				unsigned int flags);
132 
133 #ifdef CONFIG_PROC_FS
134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 	struct socket *sock = f->private_data;
137 
138 	if (sock->ops->show_fdinfo)
139 		sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144 
145 /*
146  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147  *	in the operation structures but are done directly via the socketcall() multiplexor.
148  */
149 
150 static const struct file_operations socket_file_ops = {
151 	.owner =	THIS_MODULE,
152 	.llseek =	no_llseek,
153 	.read_iter =	sock_read_iter,
154 	.write_iter =	sock_write_iter,
155 	.poll =		sock_poll,
156 	.unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 	.compat_ioctl = compat_sock_ioctl,
159 #endif
160 	.mmap =		sock_mmap,
161 	.release =	sock_close,
162 	.fasync =	sock_fasync,
163 	.sendpage =	sock_sendpage,
164 	.splice_write = generic_splice_sendpage,
165 	.splice_read =	sock_splice_read,
166 	.show_fdinfo =	sock_show_fdinfo,
167 };
168 
169 static const char * const pf_family_names[] = {
170 	[PF_UNSPEC]	= "PF_UNSPEC",
171 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
172 	[PF_INET]	= "PF_INET",
173 	[PF_AX25]	= "PF_AX25",
174 	[PF_IPX]	= "PF_IPX",
175 	[PF_APPLETALK]	= "PF_APPLETALK",
176 	[PF_NETROM]	= "PF_NETROM",
177 	[PF_BRIDGE]	= "PF_BRIDGE",
178 	[PF_ATMPVC]	= "PF_ATMPVC",
179 	[PF_X25]	= "PF_X25",
180 	[PF_INET6]	= "PF_INET6",
181 	[PF_ROSE]	= "PF_ROSE",
182 	[PF_DECnet]	= "PF_DECnet",
183 	[PF_NETBEUI]	= "PF_NETBEUI",
184 	[PF_SECURITY]	= "PF_SECURITY",
185 	[PF_KEY]	= "PF_KEY",
186 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
187 	[PF_PACKET]	= "PF_PACKET",
188 	[PF_ASH]	= "PF_ASH",
189 	[PF_ECONET]	= "PF_ECONET",
190 	[PF_ATMSVC]	= "PF_ATMSVC",
191 	[PF_RDS]	= "PF_RDS",
192 	[PF_SNA]	= "PF_SNA",
193 	[PF_IRDA]	= "PF_IRDA",
194 	[PF_PPPOX]	= "PF_PPPOX",
195 	[PF_WANPIPE]	= "PF_WANPIPE",
196 	[PF_LLC]	= "PF_LLC",
197 	[PF_IB]		= "PF_IB",
198 	[PF_MPLS]	= "PF_MPLS",
199 	[PF_CAN]	= "PF_CAN",
200 	[PF_TIPC]	= "PF_TIPC",
201 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
202 	[PF_IUCV]	= "PF_IUCV",
203 	[PF_RXRPC]	= "PF_RXRPC",
204 	[PF_ISDN]	= "PF_ISDN",
205 	[PF_PHONET]	= "PF_PHONET",
206 	[PF_IEEE802154]	= "PF_IEEE802154",
207 	[PF_CAIF]	= "PF_CAIF",
208 	[PF_ALG]	= "PF_ALG",
209 	[PF_NFC]	= "PF_NFC",
210 	[PF_VSOCK]	= "PF_VSOCK",
211 	[PF_KCM]	= "PF_KCM",
212 	[PF_QIPCRTR]	= "PF_QIPCRTR",
213 	[PF_SMC]	= "PF_SMC",
214 	[PF_XDP]	= "PF_XDP",
215 };
216 
217 /*
218  *	The protocol list. Each protocol is registered in here.
219  */
220 
221 static DEFINE_SPINLOCK(net_family_lock);
222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
223 
224 /*
225  * Support routines.
226  * Move socket addresses back and forth across the kernel/user
227  * divide and look after the messy bits.
228  */
229 
230 /**
231  *	move_addr_to_kernel	-	copy a socket address into kernel space
232  *	@uaddr: Address in user space
233  *	@kaddr: Address in kernel space
234  *	@ulen: Length in user space
235  *
236  *	The address is copied into kernel space. If the provided address is
237  *	too long an error code of -EINVAL is returned. If the copy gives
238  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
239  */
240 
241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
242 {
243 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
244 		return -EINVAL;
245 	if (ulen == 0)
246 		return 0;
247 	if (copy_from_user(kaddr, uaddr, ulen))
248 		return -EFAULT;
249 	return audit_sockaddr(ulen, kaddr);
250 }
251 
252 /**
253  *	move_addr_to_user	-	copy an address to user space
254  *	@kaddr: kernel space address
255  *	@klen: length of address in kernel
256  *	@uaddr: user space address
257  *	@ulen: pointer to user length field
258  *
259  *	The value pointed to by ulen on entry is the buffer length available.
260  *	This is overwritten with the buffer space used. -EINVAL is returned
261  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
262  *	is returned if either the buffer or the length field are not
263  *	accessible.
264  *	After copying the data up to the limit the user specifies, the true
265  *	length of the data is written over the length limit the user
266  *	specified. Zero is returned for a success.
267  */
268 
269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
270 			     void __user *uaddr, int __user *ulen)
271 {
272 	int err;
273 	int len;
274 
275 	BUG_ON(klen > sizeof(struct sockaddr_storage));
276 	err = get_user(len, ulen);
277 	if (err)
278 		return err;
279 	if (len > klen)
280 		len = klen;
281 	if (len < 0)
282 		return -EINVAL;
283 	if (len) {
284 		if (audit_sockaddr(klen, kaddr))
285 			return -ENOMEM;
286 		if (copy_to_user(uaddr, kaddr, len))
287 			return -EFAULT;
288 	}
289 	/*
290 	 *      "fromlen shall refer to the value before truncation.."
291 	 *                      1003.1g
292 	 */
293 	return __put_user(klen, ulen);
294 }
295 
296 static struct kmem_cache *sock_inode_cachep __ro_after_init;
297 
298 static struct inode *sock_alloc_inode(struct super_block *sb)
299 {
300 	struct socket_alloc *ei;
301 
302 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
303 	if (!ei)
304 		return NULL;
305 	init_waitqueue_head(&ei->socket.wq.wait);
306 	ei->socket.wq.fasync_list = NULL;
307 	ei->socket.wq.flags = 0;
308 
309 	ei->socket.state = SS_UNCONNECTED;
310 	ei->socket.flags = 0;
311 	ei->socket.ops = NULL;
312 	ei->socket.sk = NULL;
313 	ei->socket.file = NULL;
314 
315 	return &ei->vfs_inode;
316 }
317 
318 static void sock_free_inode(struct inode *inode)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = container_of(inode, struct socket_alloc, vfs_inode);
323 	kmem_cache_free(sock_inode_cachep, ei);
324 }
325 
326 static void init_once(void *foo)
327 {
328 	struct socket_alloc *ei = (struct socket_alloc *)foo;
329 
330 	inode_init_once(&ei->vfs_inode);
331 }
332 
333 static void init_inodecache(void)
334 {
335 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
336 					      sizeof(struct socket_alloc),
337 					      0,
338 					      (SLAB_HWCACHE_ALIGN |
339 					       SLAB_RECLAIM_ACCOUNT |
340 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
341 					      init_once);
342 	BUG_ON(sock_inode_cachep == NULL);
343 }
344 
345 static const struct super_operations sockfs_ops = {
346 	.alloc_inode	= sock_alloc_inode,
347 	.free_inode	= sock_free_inode,
348 	.statfs		= simple_statfs,
349 };
350 
351 /*
352  * sockfs_dname() is called from d_path().
353  */
354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
355 {
356 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
357 				d_inode(dentry)->i_ino);
358 }
359 
360 static const struct dentry_operations sockfs_dentry_operations = {
361 	.d_dname  = sockfs_dname,
362 };
363 
364 static int sockfs_xattr_get(const struct xattr_handler *handler,
365 			    struct dentry *dentry, struct inode *inode,
366 			    const char *suffix, void *value, size_t size)
367 {
368 	if (value) {
369 		if (dentry->d_name.len + 1 > size)
370 			return -ERANGE;
371 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
372 	}
373 	return dentry->d_name.len + 1;
374 }
375 
376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
379 
380 static const struct xattr_handler sockfs_xattr_handler = {
381 	.name = XATTR_NAME_SOCKPROTONAME,
382 	.get = sockfs_xattr_get,
383 };
384 
385 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
386 				     struct user_namespace *mnt_userns,
387 				     struct dentry *dentry, struct inode *inode,
388 				     const char *suffix, const void *value,
389 				     size_t size, int flags)
390 {
391 	/* Handled by LSM. */
392 	return -EAGAIN;
393 }
394 
395 static const struct xattr_handler sockfs_security_xattr_handler = {
396 	.prefix = XATTR_SECURITY_PREFIX,
397 	.set = sockfs_security_xattr_set,
398 };
399 
400 static const struct xattr_handler *sockfs_xattr_handlers[] = {
401 	&sockfs_xattr_handler,
402 	&sockfs_security_xattr_handler,
403 	NULL
404 };
405 
406 static int sockfs_init_fs_context(struct fs_context *fc)
407 {
408 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
409 	if (!ctx)
410 		return -ENOMEM;
411 	ctx->ops = &sockfs_ops;
412 	ctx->dops = &sockfs_dentry_operations;
413 	ctx->xattr = sockfs_xattr_handlers;
414 	return 0;
415 }
416 
417 static struct vfsmount *sock_mnt __read_mostly;
418 
419 static struct file_system_type sock_fs_type = {
420 	.name =		"sockfs",
421 	.init_fs_context = sockfs_init_fs_context,
422 	.kill_sb =	kill_anon_super,
423 };
424 
425 /*
426  *	Obtains the first available file descriptor and sets it up for use.
427  *
428  *	These functions create file structures and maps them to fd space
429  *	of the current process. On success it returns file descriptor
430  *	and file struct implicitly stored in sock->file.
431  *	Note that another thread may close file descriptor before we return
432  *	from this function. We use the fact that now we do not refer
433  *	to socket after mapping. If one day we will need it, this
434  *	function will increment ref. count on file by 1.
435  *
436  *	In any case returned fd MAY BE not valid!
437  *	This race condition is unavoidable
438  *	with shared fd spaces, we cannot solve it inside kernel,
439  *	but we take care of internal coherence yet.
440  */
441 
442 /**
443  *	sock_alloc_file - Bind a &socket to a &file
444  *	@sock: socket
445  *	@flags: file status flags
446  *	@dname: protocol name
447  *
448  *	Returns the &file bound with @sock, implicitly storing it
449  *	in sock->file. If dname is %NULL, sets to "".
450  *	On failure the return is a ERR pointer (see linux/err.h).
451  *	This function uses GFP_KERNEL internally.
452  */
453 
454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
455 {
456 	struct file *file;
457 
458 	if (!dname)
459 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
460 
461 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
462 				O_RDWR | (flags & O_NONBLOCK),
463 				&socket_file_ops);
464 	if (IS_ERR(file)) {
465 		sock_release(sock);
466 		return file;
467 	}
468 
469 	sock->file = file;
470 	file->private_data = sock;
471 	stream_open(SOCK_INODE(sock), file);
472 	return file;
473 }
474 EXPORT_SYMBOL(sock_alloc_file);
475 
476 static int sock_map_fd(struct socket *sock, int flags)
477 {
478 	struct file *newfile;
479 	int fd = get_unused_fd_flags(flags);
480 	if (unlikely(fd < 0)) {
481 		sock_release(sock);
482 		return fd;
483 	}
484 
485 	newfile = sock_alloc_file(sock, flags, NULL);
486 	if (!IS_ERR(newfile)) {
487 		fd_install(fd, newfile);
488 		return fd;
489 	}
490 
491 	put_unused_fd(fd);
492 	return PTR_ERR(newfile);
493 }
494 
495 /**
496  *	sock_from_file - Return the &socket bounded to @file.
497  *	@file: file
498  *
499  *	On failure returns %NULL.
500  */
501 
502 struct socket *sock_from_file(struct file *file)
503 {
504 	if (file->f_op == &socket_file_ops)
505 		return file->private_data;	/* set in sock_map_fd */
506 
507 	return NULL;
508 }
509 EXPORT_SYMBOL(sock_from_file);
510 
511 /**
512  *	sockfd_lookup - Go from a file number to its socket slot
513  *	@fd: file handle
514  *	@err: pointer to an error code return
515  *
516  *	The file handle passed in is locked and the socket it is bound
517  *	to is returned. If an error occurs the err pointer is overwritten
518  *	with a negative errno code and NULL is returned. The function checks
519  *	for both invalid handles and passing a handle which is not a socket.
520  *
521  *	On a success the socket object pointer is returned.
522  */
523 
524 struct socket *sockfd_lookup(int fd, int *err)
525 {
526 	struct file *file;
527 	struct socket *sock;
528 
529 	file = fget(fd);
530 	if (!file) {
531 		*err = -EBADF;
532 		return NULL;
533 	}
534 
535 	sock = sock_from_file(file);
536 	if (!sock) {
537 		*err = -ENOTSOCK;
538 		fput(file);
539 	}
540 	return sock;
541 }
542 EXPORT_SYMBOL(sockfd_lookup);
543 
544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
545 {
546 	struct fd f = fdget(fd);
547 	struct socket *sock;
548 
549 	*err = -EBADF;
550 	if (f.file) {
551 		sock = sock_from_file(f.file);
552 		if (likely(sock)) {
553 			*fput_needed = f.flags & FDPUT_FPUT;
554 			return sock;
555 		}
556 		*err = -ENOTSOCK;
557 		fdput(f);
558 	}
559 	return NULL;
560 }
561 
562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
563 				size_t size)
564 {
565 	ssize_t len;
566 	ssize_t used = 0;
567 
568 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
569 	if (len < 0)
570 		return len;
571 	used += len;
572 	if (buffer) {
573 		if (size < used)
574 			return -ERANGE;
575 		buffer += len;
576 	}
577 
578 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
579 	used += len;
580 	if (buffer) {
581 		if (size < used)
582 			return -ERANGE;
583 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
584 		buffer += len;
585 	}
586 
587 	return used;
588 }
589 
590 static int sockfs_setattr(struct user_namespace *mnt_userns,
591 			  struct dentry *dentry, struct iattr *iattr)
592 {
593 	int err = simple_setattr(&init_user_ns, dentry, iattr);
594 
595 	if (!err && (iattr->ia_valid & ATTR_UID)) {
596 		struct socket *sock = SOCKET_I(d_inode(dentry));
597 
598 		if (sock->sk)
599 			sock->sk->sk_uid = iattr->ia_uid;
600 		else
601 			err = -ENOENT;
602 	}
603 
604 	return err;
605 }
606 
607 static const struct inode_operations sockfs_inode_ops = {
608 	.listxattr = sockfs_listxattr,
609 	.setattr = sockfs_setattr,
610 };
611 
612 /**
613  *	sock_alloc - allocate a socket
614  *
615  *	Allocate a new inode and socket object. The two are bound together
616  *	and initialised. The socket is then returned. If we are out of inodes
617  *	NULL is returned. This functions uses GFP_KERNEL internally.
618  */
619 
620 struct socket *sock_alloc(void)
621 {
622 	struct inode *inode;
623 	struct socket *sock;
624 
625 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
626 	if (!inode)
627 		return NULL;
628 
629 	sock = SOCKET_I(inode);
630 
631 	inode->i_ino = get_next_ino();
632 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
633 	inode->i_uid = current_fsuid();
634 	inode->i_gid = current_fsgid();
635 	inode->i_op = &sockfs_inode_ops;
636 
637 	return sock;
638 }
639 EXPORT_SYMBOL(sock_alloc);
640 
641 static void __sock_release(struct socket *sock, struct inode *inode)
642 {
643 	if (sock->ops) {
644 		struct module *owner = sock->ops->owner;
645 
646 		if (inode)
647 			inode_lock(inode);
648 		sock->ops->release(sock);
649 		sock->sk = NULL;
650 		if (inode)
651 			inode_unlock(inode);
652 		sock->ops = NULL;
653 		module_put(owner);
654 	}
655 
656 	if (sock->wq.fasync_list)
657 		pr_err("%s: fasync list not empty!\n", __func__);
658 
659 	if (!sock->file) {
660 		iput(SOCK_INODE(sock));
661 		return;
662 	}
663 	sock->file = NULL;
664 }
665 
666 /**
667  *	sock_release - close a socket
668  *	@sock: socket to close
669  *
670  *	The socket is released from the protocol stack if it has a release
671  *	callback, and the inode is then released if the socket is bound to
672  *	an inode not a file.
673  */
674 void sock_release(struct socket *sock)
675 {
676 	__sock_release(sock, NULL);
677 }
678 EXPORT_SYMBOL(sock_release);
679 
680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
681 {
682 	u8 flags = *tx_flags;
683 
684 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
685 		flags |= SKBTX_HW_TSTAMP;
686 
687 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
688 		flags |= SKBTX_SW_TSTAMP;
689 
690 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
691 		flags |= SKBTX_SCHED_TSTAMP;
692 
693 	*tx_flags = flags;
694 }
695 EXPORT_SYMBOL(__sock_tx_timestamp);
696 
697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
698 					   size_t));
699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
700 					    size_t));
701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
702 {
703 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
704 				     inet_sendmsg, sock, msg,
705 				     msg_data_left(msg));
706 	BUG_ON(ret == -EIOCBQUEUED);
707 	return ret;
708 }
709 
710 /**
711  *	sock_sendmsg - send a message through @sock
712  *	@sock: socket
713  *	@msg: message to send
714  *
715  *	Sends @msg through @sock, passing through LSM.
716  *	Returns the number of bytes sent, or an error code.
717  */
718 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
719 {
720 	int err = security_socket_sendmsg(sock, msg,
721 					  msg_data_left(msg));
722 
723 	return err ?: sock_sendmsg_nosec(sock, msg);
724 }
725 EXPORT_SYMBOL(sock_sendmsg);
726 
727 /**
728  *	kernel_sendmsg - send a message through @sock (kernel-space)
729  *	@sock: socket
730  *	@msg: message header
731  *	@vec: kernel vec
732  *	@num: vec array length
733  *	@size: total message data size
734  *
735  *	Builds the message data with @vec and sends it through @sock.
736  *	Returns the number of bytes sent, or an error code.
737  */
738 
739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
740 		   struct kvec *vec, size_t num, size_t size)
741 {
742 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
743 	return sock_sendmsg(sock, msg);
744 }
745 EXPORT_SYMBOL(kernel_sendmsg);
746 
747 /**
748  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
749  *	@sk: sock
750  *	@msg: message header
751  *	@vec: output s/g array
752  *	@num: output s/g array length
753  *	@size: total message data size
754  *
755  *	Builds the message data with @vec and sends it through @sock.
756  *	Returns the number of bytes sent, or an error code.
757  *	Caller must hold @sk.
758  */
759 
760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
761 			  struct kvec *vec, size_t num, size_t size)
762 {
763 	struct socket *sock = sk->sk_socket;
764 
765 	if (!sock->ops->sendmsg_locked)
766 		return sock_no_sendmsg_locked(sk, msg, size);
767 
768 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
769 
770 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
771 }
772 EXPORT_SYMBOL(kernel_sendmsg_locked);
773 
774 static bool skb_is_err_queue(const struct sk_buff *skb)
775 {
776 	/* pkt_type of skbs enqueued on the error queue are set to
777 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
778 	 * in recvmsg, since skbs received on a local socket will never
779 	 * have a pkt_type of PACKET_OUTGOING.
780 	 */
781 	return skb->pkt_type == PACKET_OUTGOING;
782 }
783 
784 /* On transmit, software and hardware timestamps are returned independently.
785  * As the two skb clones share the hardware timestamp, which may be updated
786  * before the software timestamp is received, a hardware TX timestamp may be
787  * returned only if there is no software TX timestamp. Ignore false software
788  * timestamps, which may be made in the __sock_recv_timestamp() call when the
789  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
790  * hardware timestamp.
791  */
792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
793 {
794 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
795 }
796 
797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
798 {
799 	struct scm_ts_pktinfo ts_pktinfo;
800 	struct net_device *orig_dev;
801 
802 	if (!skb_mac_header_was_set(skb))
803 		return;
804 
805 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
806 
807 	rcu_read_lock();
808 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
809 	if (orig_dev)
810 		ts_pktinfo.if_index = orig_dev->ifindex;
811 	rcu_read_unlock();
812 
813 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
814 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
815 		 sizeof(ts_pktinfo), &ts_pktinfo);
816 }
817 
818 /*
819  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
820  */
821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
822 	struct sk_buff *skb)
823 {
824 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
825 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
826 	struct scm_timestamping_internal tss;
827 
828 	int empty = 1, false_tstamp = 0;
829 	struct skb_shared_hwtstamps *shhwtstamps =
830 		skb_hwtstamps(skb);
831 
832 	/* Race occurred between timestamp enabling and packet
833 	   receiving.  Fill in the current time for now. */
834 	if (need_software_tstamp && skb->tstamp == 0) {
835 		__net_timestamp(skb);
836 		false_tstamp = 1;
837 	}
838 
839 	if (need_software_tstamp) {
840 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
841 			if (new_tstamp) {
842 				struct __kernel_sock_timeval tv;
843 
844 				skb_get_new_timestamp(skb, &tv);
845 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
846 					 sizeof(tv), &tv);
847 			} else {
848 				struct __kernel_old_timeval tv;
849 
850 				skb_get_timestamp(skb, &tv);
851 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
852 					 sizeof(tv), &tv);
853 			}
854 		} else {
855 			if (new_tstamp) {
856 				struct __kernel_timespec ts;
857 
858 				skb_get_new_timestampns(skb, &ts);
859 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
860 					 sizeof(ts), &ts);
861 			} else {
862 				struct __kernel_old_timespec ts;
863 
864 				skb_get_timestampns(skb, &ts);
865 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
866 					 sizeof(ts), &ts);
867 			}
868 		}
869 	}
870 
871 	memset(&tss, 0, sizeof(tss));
872 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
874 		empty = 0;
875 	if (shhwtstamps &&
876 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
877 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
878 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
879 			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
880 
881 		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
882 					     tss.ts + 2)) {
883 			empty = 0;
884 
885 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
886 			    !skb_is_err_queue(skb))
887 				put_ts_pktinfo(msg, skb);
888 		}
889 	}
890 	if (!empty) {
891 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
892 			put_cmsg_scm_timestamping64(msg, &tss);
893 		else
894 			put_cmsg_scm_timestamping(msg, &tss);
895 
896 		if (skb_is_err_queue(skb) && skb->len &&
897 		    SKB_EXT_ERR(skb)->opt_stats)
898 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
899 				 skb->len, skb->data);
900 	}
901 }
902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
903 
904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
905 	struct sk_buff *skb)
906 {
907 	int ack;
908 
909 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
910 		return;
911 	if (!skb->wifi_acked_valid)
912 		return;
913 
914 	ack = skb->wifi_acked;
915 
916 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
917 }
918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
919 
920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
921 				   struct sk_buff *skb)
922 {
923 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
924 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
925 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
926 }
927 
928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
929 	struct sk_buff *skb)
930 {
931 	sock_recv_timestamp(msg, sk, skb);
932 	sock_recv_drops(msg, sk, skb);
933 }
934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
935 
936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
937 					   size_t, int));
938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
939 					    size_t, int));
940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
941 				     int flags)
942 {
943 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
944 				  inet_recvmsg, sock, msg, msg_data_left(msg),
945 				  flags);
946 }
947 
948 /**
949  *	sock_recvmsg - receive a message from @sock
950  *	@sock: socket
951  *	@msg: message to receive
952  *	@flags: message flags
953  *
954  *	Receives @msg from @sock, passing through LSM. Returns the total number
955  *	of bytes received, or an error.
956  */
957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
958 {
959 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
960 
961 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
962 }
963 EXPORT_SYMBOL(sock_recvmsg);
964 
965 /**
966  *	kernel_recvmsg - Receive a message from a socket (kernel space)
967  *	@sock: The socket to receive the message from
968  *	@msg: Received message
969  *	@vec: Input s/g array for message data
970  *	@num: Size of input s/g array
971  *	@size: Number of bytes to read
972  *	@flags: Message flags (MSG_DONTWAIT, etc...)
973  *
974  *	On return the msg structure contains the scatter/gather array passed in the
975  *	vec argument. The array is modified so that it consists of the unfilled
976  *	portion of the original array.
977  *
978  *	The returned value is the total number of bytes received, or an error.
979  */
980 
981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
982 		   struct kvec *vec, size_t num, size_t size, int flags)
983 {
984 	msg->msg_control_is_user = false;
985 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
986 	return sock_recvmsg(sock, msg, flags);
987 }
988 EXPORT_SYMBOL(kernel_recvmsg);
989 
990 static ssize_t sock_sendpage(struct file *file, struct page *page,
991 			     int offset, size_t size, loff_t *ppos, int more)
992 {
993 	struct socket *sock;
994 	int flags;
995 
996 	sock = file->private_data;
997 
998 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
999 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000 	flags |= more;
1001 
1002 	return kernel_sendpage(sock, page, offset, size, flags);
1003 }
1004 
1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006 				struct pipe_inode_info *pipe, size_t len,
1007 				unsigned int flags)
1008 {
1009 	struct socket *sock = file->private_data;
1010 
1011 	if (unlikely(!sock->ops->splice_read))
1012 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1013 
1014 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015 }
1016 
1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018 {
1019 	struct file *file = iocb->ki_filp;
1020 	struct socket *sock = file->private_data;
1021 	struct msghdr msg = {.msg_iter = *to,
1022 			     .msg_iocb = iocb};
1023 	ssize_t res;
1024 
1025 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026 		msg.msg_flags = MSG_DONTWAIT;
1027 
1028 	if (iocb->ki_pos != 0)
1029 		return -ESPIPE;
1030 
1031 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1032 		return 0;
1033 
1034 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035 	*to = msg.msg_iter;
1036 	return res;
1037 }
1038 
1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040 {
1041 	struct file *file = iocb->ki_filp;
1042 	struct socket *sock = file->private_data;
1043 	struct msghdr msg = {.msg_iter = *from,
1044 			     .msg_iocb = iocb};
1045 	ssize_t res;
1046 
1047 	if (iocb->ki_pos != 0)
1048 		return -ESPIPE;
1049 
1050 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051 		msg.msg_flags = MSG_DONTWAIT;
1052 
1053 	if (sock->type == SOCK_SEQPACKET)
1054 		msg.msg_flags |= MSG_EOR;
1055 
1056 	res = sock_sendmsg(sock, &msg);
1057 	*from = msg.msg_iter;
1058 	return res;
1059 }
1060 
1061 /*
1062  * Atomic setting of ioctl hooks to avoid race
1063  * with module unload.
1064  */
1065 
1066 static DEFINE_MUTEX(br_ioctl_mutex);
1067 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068 
1069 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070 {
1071 	mutex_lock(&br_ioctl_mutex);
1072 	br_ioctl_hook = hook;
1073 	mutex_unlock(&br_ioctl_mutex);
1074 }
1075 EXPORT_SYMBOL(brioctl_set);
1076 
1077 static DEFINE_MUTEX(vlan_ioctl_mutex);
1078 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079 
1080 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081 {
1082 	mutex_lock(&vlan_ioctl_mutex);
1083 	vlan_ioctl_hook = hook;
1084 	mutex_unlock(&vlan_ioctl_mutex);
1085 }
1086 EXPORT_SYMBOL(vlan_ioctl_set);
1087 
1088 static long sock_do_ioctl(struct net *net, struct socket *sock,
1089 			  unsigned int cmd, unsigned long arg)
1090 {
1091 	struct ifreq ifr;
1092 	bool need_copyout;
1093 	int err;
1094 	void __user *argp = (void __user *)arg;
1095 	void __user *data;
1096 
1097 	err = sock->ops->ioctl(sock, cmd, arg);
1098 
1099 	/*
1100 	 * If this ioctl is unknown try to hand it down
1101 	 * to the NIC driver.
1102 	 */
1103 	if (err != -ENOIOCTLCMD)
1104 		return err;
1105 
1106 	if (get_user_ifreq(&ifr, &data, argp))
1107 		return -EFAULT;
1108 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1109 	if (!err && need_copyout)
1110 		if (put_user_ifreq(&ifr, argp))
1111 			return -EFAULT;
1112 
1113 	return err;
1114 }
1115 
1116 /*
1117  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1118  *	what to do with it - that's up to the protocol still.
1119  */
1120 
1121 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1122 {
1123 	struct socket *sock;
1124 	struct sock *sk;
1125 	void __user *argp = (void __user *)arg;
1126 	int pid, err;
1127 	struct net *net;
1128 
1129 	sock = file->private_data;
1130 	sk = sock->sk;
1131 	net = sock_net(sk);
1132 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1133 		struct ifreq ifr;
1134 		void __user *data;
1135 		bool need_copyout;
1136 		if (get_user_ifreq(&ifr, &data, argp))
1137 			return -EFAULT;
1138 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1139 		if (!err && need_copyout)
1140 			if (put_user_ifreq(&ifr, argp))
1141 				return -EFAULT;
1142 	} else
1143 #ifdef CONFIG_WEXT_CORE
1144 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1145 		err = wext_handle_ioctl(net, cmd, argp);
1146 	} else
1147 #endif
1148 		switch (cmd) {
1149 		case FIOSETOWN:
1150 		case SIOCSPGRP:
1151 			err = -EFAULT;
1152 			if (get_user(pid, (int __user *)argp))
1153 				break;
1154 			err = f_setown(sock->file, pid, 1);
1155 			break;
1156 		case FIOGETOWN:
1157 		case SIOCGPGRP:
1158 			err = put_user(f_getown(sock->file),
1159 				       (int __user *)argp);
1160 			break;
1161 		case SIOCGIFBR:
1162 		case SIOCSIFBR:
1163 		case SIOCBRADDBR:
1164 		case SIOCBRDELBR:
1165 			err = -ENOPKG;
1166 			if (!br_ioctl_hook)
1167 				request_module("bridge");
1168 
1169 			mutex_lock(&br_ioctl_mutex);
1170 			if (br_ioctl_hook)
1171 				err = br_ioctl_hook(net, cmd, argp);
1172 			mutex_unlock(&br_ioctl_mutex);
1173 			break;
1174 		case SIOCGIFVLAN:
1175 		case SIOCSIFVLAN:
1176 			err = -ENOPKG;
1177 			if (!vlan_ioctl_hook)
1178 				request_module("8021q");
1179 
1180 			mutex_lock(&vlan_ioctl_mutex);
1181 			if (vlan_ioctl_hook)
1182 				err = vlan_ioctl_hook(net, argp);
1183 			mutex_unlock(&vlan_ioctl_mutex);
1184 			break;
1185 		case SIOCGSKNS:
1186 			err = -EPERM;
1187 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1188 				break;
1189 
1190 			err = open_related_ns(&net->ns, get_net_ns);
1191 			break;
1192 		case SIOCGSTAMP_OLD:
1193 		case SIOCGSTAMPNS_OLD:
1194 			if (!sock->ops->gettstamp) {
1195 				err = -ENOIOCTLCMD;
1196 				break;
1197 			}
1198 			err = sock->ops->gettstamp(sock, argp,
1199 						   cmd == SIOCGSTAMP_OLD,
1200 						   !IS_ENABLED(CONFIG_64BIT));
1201 			break;
1202 		case SIOCGSTAMP_NEW:
1203 		case SIOCGSTAMPNS_NEW:
1204 			if (!sock->ops->gettstamp) {
1205 				err = -ENOIOCTLCMD;
1206 				break;
1207 			}
1208 			err = sock->ops->gettstamp(sock, argp,
1209 						   cmd == SIOCGSTAMP_NEW,
1210 						   false);
1211 			break;
1212 
1213 		case SIOCGIFCONF:
1214 			err = dev_ifconf(net, argp);
1215 			break;
1216 
1217 		default:
1218 			err = sock_do_ioctl(net, sock, cmd, arg);
1219 			break;
1220 		}
1221 	return err;
1222 }
1223 
1224 /**
1225  *	sock_create_lite - creates a socket
1226  *	@family: protocol family (AF_INET, ...)
1227  *	@type: communication type (SOCK_STREAM, ...)
1228  *	@protocol: protocol (0, ...)
1229  *	@res: new socket
1230  *
1231  *	Creates a new socket and assigns it to @res, passing through LSM.
1232  *	The new socket initialization is not complete, see kernel_accept().
1233  *	Returns 0 or an error. On failure @res is set to %NULL.
1234  *	This function internally uses GFP_KERNEL.
1235  */
1236 
1237 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1238 {
1239 	int err;
1240 	struct socket *sock = NULL;
1241 
1242 	err = security_socket_create(family, type, protocol, 1);
1243 	if (err)
1244 		goto out;
1245 
1246 	sock = sock_alloc();
1247 	if (!sock) {
1248 		err = -ENOMEM;
1249 		goto out;
1250 	}
1251 
1252 	sock->type = type;
1253 	err = security_socket_post_create(sock, family, type, protocol, 1);
1254 	if (err)
1255 		goto out_release;
1256 
1257 out:
1258 	*res = sock;
1259 	return err;
1260 out_release:
1261 	sock_release(sock);
1262 	sock = NULL;
1263 	goto out;
1264 }
1265 EXPORT_SYMBOL(sock_create_lite);
1266 
1267 /* No kernel lock held - perfect */
1268 static __poll_t sock_poll(struct file *file, poll_table *wait)
1269 {
1270 	struct socket *sock = file->private_data;
1271 	__poll_t events = poll_requested_events(wait), flag = 0;
1272 
1273 	if (!sock->ops->poll)
1274 		return 0;
1275 
1276 	if (sk_can_busy_loop(sock->sk)) {
1277 		/* poll once if requested by the syscall */
1278 		if (events & POLL_BUSY_LOOP)
1279 			sk_busy_loop(sock->sk, 1);
1280 
1281 		/* if this socket can poll_ll, tell the system call */
1282 		flag = POLL_BUSY_LOOP;
1283 	}
1284 
1285 	return sock->ops->poll(file, sock, wait) | flag;
1286 }
1287 
1288 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1289 {
1290 	struct socket *sock = file->private_data;
1291 
1292 	return sock->ops->mmap(file, sock, vma);
1293 }
1294 
1295 static int sock_close(struct inode *inode, struct file *filp)
1296 {
1297 	__sock_release(SOCKET_I(inode), inode);
1298 	return 0;
1299 }
1300 
1301 /*
1302  *	Update the socket async list
1303  *
1304  *	Fasync_list locking strategy.
1305  *
1306  *	1. fasync_list is modified only under process context socket lock
1307  *	   i.e. under semaphore.
1308  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1309  *	   or under socket lock
1310  */
1311 
1312 static int sock_fasync(int fd, struct file *filp, int on)
1313 {
1314 	struct socket *sock = filp->private_data;
1315 	struct sock *sk = sock->sk;
1316 	struct socket_wq *wq = &sock->wq;
1317 
1318 	if (sk == NULL)
1319 		return -EINVAL;
1320 
1321 	lock_sock(sk);
1322 	fasync_helper(fd, filp, on, &wq->fasync_list);
1323 
1324 	if (!wq->fasync_list)
1325 		sock_reset_flag(sk, SOCK_FASYNC);
1326 	else
1327 		sock_set_flag(sk, SOCK_FASYNC);
1328 
1329 	release_sock(sk);
1330 	return 0;
1331 }
1332 
1333 /* This function may be called only under rcu_lock */
1334 
1335 int sock_wake_async(struct socket_wq *wq, int how, int band)
1336 {
1337 	if (!wq || !wq->fasync_list)
1338 		return -1;
1339 
1340 	switch (how) {
1341 	case SOCK_WAKE_WAITD:
1342 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1343 			break;
1344 		goto call_kill;
1345 	case SOCK_WAKE_SPACE:
1346 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1347 			break;
1348 		fallthrough;
1349 	case SOCK_WAKE_IO:
1350 call_kill:
1351 		kill_fasync(&wq->fasync_list, SIGIO, band);
1352 		break;
1353 	case SOCK_WAKE_URG:
1354 		kill_fasync(&wq->fasync_list, SIGURG, band);
1355 	}
1356 
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL(sock_wake_async);
1360 
1361 /**
1362  *	__sock_create - creates a socket
1363  *	@net: net namespace
1364  *	@family: protocol family (AF_INET, ...)
1365  *	@type: communication type (SOCK_STREAM, ...)
1366  *	@protocol: protocol (0, ...)
1367  *	@res: new socket
1368  *	@kern: boolean for kernel space sockets
1369  *
1370  *	Creates a new socket and assigns it to @res, passing through LSM.
1371  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1372  *	be set to true if the socket resides in kernel space.
1373  *	This function internally uses GFP_KERNEL.
1374  */
1375 
1376 int __sock_create(struct net *net, int family, int type, int protocol,
1377 			 struct socket **res, int kern)
1378 {
1379 	int err;
1380 	struct socket *sock;
1381 	const struct net_proto_family *pf;
1382 
1383 	/*
1384 	 *      Check protocol is in range
1385 	 */
1386 	if (family < 0 || family >= NPROTO)
1387 		return -EAFNOSUPPORT;
1388 	if (type < 0 || type >= SOCK_MAX)
1389 		return -EINVAL;
1390 
1391 	/* Compatibility.
1392 
1393 	   This uglymoron is moved from INET layer to here to avoid
1394 	   deadlock in module load.
1395 	 */
1396 	if (family == PF_INET && type == SOCK_PACKET) {
1397 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1398 			     current->comm);
1399 		family = PF_PACKET;
1400 	}
1401 
1402 	err = security_socket_create(family, type, protocol, kern);
1403 	if (err)
1404 		return err;
1405 
1406 	/*
1407 	 *	Allocate the socket and allow the family to set things up. if
1408 	 *	the protocol is 0, the family is instructed to select an appropriate
1409 	 *	default.
1410 	 */
1411 	sock = sock_alloc();
1412 	if (!sock) {
1413 		net_warn_ratelimited("socket: no more sockets\n");
1414 		return -ENFILE;	/* Not exactly a match, but its the
1415 				   closest posix thing */
1416 	}
1417 
1418 	sock->type = type;
1419 
1420 #ifdef CONFIG_MODULES
1421 	/* Attempt to load a protocol module if the find failed.
1422 	 *
1423 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1424 	 * requested real, full-featured networking support upon configuration.
1425 	 * Otherwise module support will break!
1426 	 */
1427 	if (rcu_access_pointer(net_families[family]) == NULL)
1428 		request_module("net-pf-%d", family);
1429 #endif
1430 
1431 	rcu_read_lock();
1432 	pf = rcu_dereference(net_families[family]);
1433 	err = -EAFNOSUPPORT;
1434 	if (!pf)
1435 		goto out_release;
1436 
1437 	/*
1438 	 * We will call the ->create function, that possibly is in a loadable
1439 	 * module, so we have to bump that loadable module refcnt first.
1440 	 */
1441 	if (!try_module_get(pf->owner))
1442 		goto out_release;
1443 
1444 	/* Now protected by module ref count */
1445 	rcu_read_unlock();
1446 
1447 	err = pf->create(net, sock, protocol, kern);
1448 	if (err < 0)
1449 		goto out_module_put;
1450 
1451 	/*
1452 	 * Now to bump the refcnt of the [loadable] module that owns this
1453 	 * socket at sock_release time we decrement its refcnt.
1454 	 */
1455 	if (!try_module_get(sock->ops->owner))
1456 		goto out_module_busy;
1457 
1458 	/*
1459 	 * Now that we're done with the ->create function, the [loadable]
1460 	 * module can have its refcnt decremented
1461 	 */
1462 	module_put(pf->owner);
1463 	err = security_socket_post_create(sock, family, type, protocol, kern);
1464 	if (err)
1465 		goto out_sock_release;
1466 	*res = sock;
1467 
1468 	return 0;
1469 
1470 out_module_busy:
1471 	err = -EAFNOSUPPORT;
1472 out_module_put:
1473 	sock->ops = NULL;
1474 	module_put(pf->owner);
1475 out_sock_release:
1476 	sock_release(sock);
1477 	return err;
1478 
1479 out_release:
1480 	rcu_read_unlock();
1481 	goto out_sock_release;
1482 }
1483 EXPORT_SYMBOL(__sock_create);
1484 
1485 /**
1486  *	sock_create - creates a socket
1487  *	@family: protocol family (AF_INET, ...)
1488  *	@type: communication type (SOCK_STREAM, ...)
1489  *	@protocol: protocol (0, ...)
1490  *	@res: new socket
1491  *
1492  *	A wrapper around __sock_create().
1493  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1494  */
1495 
1496 int sock_create(int family, int type, int protocol, struct socket **res)
1497 {
1498 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1499 }
1500 EXPORT_SYMBOL(sock_create);
1501 
1502 /**
1503  *	sock_create_kern - creates a socket (kernel space)
1504  *	@net: net namespace
1505  *	@family: protocol family (AF_INET, ...)
1506  *	@type: communication type (SOCK_STREAM, ...)
1507  *	@protocol: protocol (0, ...)
1508  *	@res: new socket
1509  *
1510  *	A wrapper around __sock_create().
1511  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1512  */
1513 
1514 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1515 {
1516 	return __sock_create(net, family, type, protocol, res, 1);
1517 }
1518 EXPORT_SYMBOL(sock_create_kern);
1519 
1520 int __sys_socket(int family, int type, int protocol)
1521 {
1522 	int retval;
1523 	struct socket *sock;
1524 	int flags;
1525 
1526 	/* Check the SOCK_* constants for consistency.  */
1527 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1528 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1529 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1530 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1531 
1532 	flags = type & ~SOCK_TYPE_MASK;
1533 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1534 		return -EINVAL;
1535 	type &= SOCK_TYPE_MASK;
1536 
1537 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1538 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1539 
1540 	retval = sock_create(family, type, protocol, &sock);
1541 	if (retval < 0)
1542 		return retval;
1543 
1544 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1545 }
1546 
1547 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1548 {
1549 	return __sys_socket(family, type, protocol);
1550 }
1551 
1552 /*
1553  *	Create a pair of connected sockets.
1554  */
1555 
1556 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1557 {
1558 	struct socket *sock1, *sock2;
1559 	int fd1, fd2, err;
1560 	struct file *newfile1, *newfile2;
1561 	int flags;
1562 
1563 	flags = type & ~SOCK_TYPE_MASK;
1564 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1565 		return -EINVAL;
1566 	type &= SOCK_TYPE_MASK;
1567 
1568 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1569 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1570 
1571 	/*
1572 	 * reserve descriptors and make sure we won't fail
1573 	 * to return them to userland.
1574 	 */
1575 	fd1 = get_unused_fd_flags(flags);
1576 	if (unlikely(fd1 < 0))
1577 		return fd1;
1578 
1579 	fd2 = get_unused_fd_flags(flags);
1580 	if (unlikely(fd2 < 0)) {
1581 		put_unused_fd(fd1);
1582 		return fd2;
1583 	}
1584 
1585 	err = put_user(fd1, &usockvec[0]);
1586 	if (err)
1587 		goto out;
1588 
1589 	err = put_user(fd2, &usockvec[1]);
1590 	if (err)
1591 		goto out;
1592 
1593 	/*
1594 	 * Obtain the first socket and check if the underlying protocol
1595 	 * supports the socketpair call.
1596 	 */
1597 
1598 	err = sock_create(family, type, protocol, &sock1);
1599 	if (unlikely(err < 0))
1600 		goto out;
1601 
1602 	err = sock_create(family, type, protocol, &sock2);
1603 	if (unlikely(err < 0)) {
1604 		sock_release(sock1);
1605 		goto out;
1606 	}
1607 
1608 	err = security_socket_socketpair(sock1, sock2);
1609 	if (unlikely(err)) {
1610 		sock_release(sock2);
1611 		sock_release(sock1);
1612 		goto out;
1613 	}
1614 
1615 	err = sock1->ops->socketpair(sock1, sock2);
1616 	if (unlikely(err < 0)) {
1617 		sock_release(sock2);
1618 		sock_release(sock1);
1619 		goto out;
1620 	}
1621 
1622 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1623 	if (IS_ERR(newfile1)) {
1624 		err = PTR_ERR(newfile1);
1625 		sock_release(sock2);
1626 		goto out;
1627 	}
1628 
1629 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1630 	if (IS_ERR(newfile2)) {
1631 		err = PTR_ERR(newfile2);
1632 		fput(newfile1);
1633 		goto out;
1634 	}
1635 
1636 	audit_fd_pair(fd1, fd2);
1637 
1638 	fd_install(fd1, newfile1);
1639 	fd_install(fd2, newfile2);
1640 	return 0;
1641 
1642 out:
1643 	put_unused_fd(fd2);
1644 	put_unused_fd(fd1);
1645 	return err;
1646 }
1647 
1648 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1649 		int __user *, usockvec)
1650 {
1651 	return __sys_socketpair(family, type, protocol, usockvec);
1652 }
1653 
1654 /*
1655  *	Bind a name to a socket. Nothing much to do here since it's
1656  *	the protocol's responsibility to handle the local address.
1657  *
1658  *	We move the socket address to kernel space before we call
1659  *	the protocol layer (having also checked the address is ok).
1660  */
1661 
1662 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1663 {
1664 	struct socket *sock;
1665 	struct sockaddr_storage address;
1666 	int err, fput_needed;
1667 
1668 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1669 	if (sock) {
1670 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1671 		if (!err) {
1672 			err = security_socket_bind(sock,
1673 						   (struct sockaddr *)&address,
1674 						   addrlen);
1675 			if (!err)
1676 				err = sock->ops->bind(sock,
1677 						      (struct sockaddr *)
1678 						      &address, addrlen);
1679 		}
1680 		fput_light(sock->file, fput_needed);
1681 	}
1682 	return err;
1683 }
1684 
1685 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1686 {
1687 	return __sys_bind(fd, umyaddr, addrlen);
1688 }
1689 
1690 /*
1691  *	Perform a listen. Basically, we allow the protocol to do anything
1692  *	necessary for a listen, and if that works, we mark the socket as
1693  *	ready for listening.
1694  */
1695 
1696 int __sys_listen(int fd, int backlog)
1697 {
1698 	struct socket *sock;
1699 	int err, fput_needed;
1700 	int somaxconn;
1701 
1702 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1703 	if (sock) {
1704 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1705 		if ((unsigned int)backlog > somaxconn)
1706 			backlog = somaxconn;
1707 
1708 		err = security_socket_listen(sock, backlog);
1709 		if (!err)
1710 			err = sock->ops->listen(sock, backlog);
1711 
1712 		fput_light(sock->file, fput_needed);
1713 	}
1714 	return err;
1715 }
1716 
1717 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1718 {
1719 	return __sys_listen(fd, backlog);
1720 }
1721 
1722 int __sys_accept4_file(struct file *file, unsigned file_flags,
1723 		       struct sockaddr __user *upeer_sockaddr,
1724 		       int __user *upeer_addrlen, int flags,
1725 		       unsigned long nofile)
1726 {
1727 	struct socket *sock, *newsock;
1728 	struct file *newfile;
1729 	int err, len, newfd;
1730 	struct sockaddr_storage address;
1731 
1732 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1733 		return -EINVAL;
1734 
1735 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1736 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1737 
1738 	sock = sock_from_file(file);
1739 	if (!sock) {
1740 		err = -ENOTSOCK;
1741 		goto out;
1742 	}
1743 
1744 	err = -ENFILE;
1745 	newsock = sock_alloc();
1746 	if (!newsock)
1747 		goto out;
1748 
1749 	newsock->type = sock->type;
1750 	newsock->ops = sock->ops;
1751 
1752 	/*
1753 	 * We don't need try_module_get here, as the listening socket (sock)
1754 	 * has the protocol module (sock->ops->owner) held.
1755 	 */
1756 	__module_get(newsock->ops->owner);
1757 
1758 	newfd = __get_unused_fd_flags(flags, nofile);
1759 	if (unlikely(newfd < 0)) {
1760 		err = newfd;
1761 		sock_release(newsock);
1762 		goto out;
1763 	}
1764 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1765 	if (IS_ERR(newfile)) {
1766 		err = PTR_ERR(newfile);
1767 		put_unused_fd(newfd);
1768 		goto out;
1769 	}
1770 
1771 	err = security_socket_accept(sock, newsock);
1772 	if (err)
1773 		goto out_fd;
1774 
1775 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1776 					false);
1777 	if (err < 0)
1778 		goto out_fd;
1779 
1780 	if (upeer_sockaddr) {
1781 		len = newsock->ops->getname(newsock,
1782 					(struct sockaddr *)&address, 2);
1783 		if (len < 0) {
1784 			err = -ECONNABORTED;
1785 			goto out_fd;
1786 		}
1787 		err = move_addr_to_user(&address,
1788 					len, upeer_sockaddr, upeer_addrlen);
1789 		if (err < 0)
1790 			goto out_fd;
1791 	}
1792 
1793 	/* File flags are not inherited via accept() unlike another OSes. */
1794 
1795 	fd_install(newfd, newfile);
1796 	err = newfd;
1797 out:
1798 	return err;
1799 out_fd:
1800 	fput(newfile);
1801 	put_unused_fd(newfd);
1802 	goto out;
1803 
1804 }
1805 
1806 /*
1807  *	For accept, we attempt to create a new socket, set up the link
1808  *	with the client, wake up the client, then return the new
1809  *	connected fd. We collect the address of the connector in kernel
1810  *	space and move it to user at the very end. This is unclean because
1811  *	we open the socket then return an error.
1812  *
1813  *	1003.1g adds the ability to recvmsg() to query connection pending
1814  *	status to recvmsg. We need to add that support in a way thats
1815  *	clean when we restructure accept also.
1816  */
1817 
1818 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1819 		  int __user *upeer_addrlen, int flags)
1820 {
1821 	int ret = -EBADF;
1822 	struct fd f;
1823 
1824 	f = fdget(fd);
1825 	if (f.file) {
1826 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1827 						upeer_addrlen, flags,
1828 						rlimit(RLIMIT_NOFILE));
1829 		fdput(f);
1830 	}
1831 
1832 	return ret;
1833 }
1834 
1835 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1836 		int __user *, upeer_addrlen, int, flags)
1837 {
1838 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1839 }
1840 
1841 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1842 		int __user *, upeer_addrlen)
1843 {
1844 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1845 }
1846 
1847 /*
1848  *	Attempt to connect to a socket with the server address.  The address
1849  *	is in user space so we verify it is OK and move it to kernel space.
1850  *
1851  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1852  *	break bindings
1853  *
1854  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1855  *	other SEQPACKET protocols that take time to connect() as it doesn't
1856  *	include the -EINPROGRESS status for such sockets.
1857  */
1858 
1859 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1860 		       int addrlen, int file_flags)
1861 {
1862 	struct socket *sock;
1863 	int err;
1864 
1865 	sock = sock_from_file(file);
1866 	if (!sock) {
1867 		err = -ENOTSOCK;
1868 		goto out;
1869 	}
1870 
1871 	err =
1872 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1873 	if (err)
1874 		goto out;
1875 
1876 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1877 				 sock->file->f_flags | file_flags);
1878 out:
1879 	return err;
1880 }
1881 
1882 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1883 {
1884 	int ret = -EBADF;
1885 	struct fd f;
1886 
1887 	f = fdget(fd);
1888 	if (f.file) {
1889 		struct sockaddr_storage address;
1890 
1891 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1892 		if (!ret)
1893 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1894 		fdput(f);
1895 	}
1896 
1897 	return ret;
1898 }
1899 
1900 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1901 		int, addrlen)
1902 {
1903 	return __sys_connect(fd, uservaddr, addrlen);
1904 }
1905 
1906 /*
1907  *	Get the local address ('name') of a socket object. Move the obtained
1908  *	name to user space.
1909  */
1910 
1911 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1912 		      int __user *usockaddr_len)
1913 {
1914 	struct socket *sock;
1915 	struct sockaddr_storage address;
1916 	int err, fput_needed;
1917 
1918 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1919 	if (!sock)
1920 		goto out;
1921 
1922 	err = security_socket_getsockname(sock);
1923 	if (err)
1924 		goto out_put;
1925 
1926 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1927 	if (err < 0)
1928 		goto out_put;
1929         /* "err" is actually length in this case */
1930 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1931 
1932 out_put:
1933 	fput_light(sock->file, fput_needed);
1934 out:
1935 	return err;
1936 }
1937 
1938 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1939 		int __user *, usockaddr_len)
1940 {
1941 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1942 }
1943 
1944 /*
1945  *	Get the remote address ('name') of a socket object. Move the obtained
1946  *	name to user space.
1947  */
1948 
1949 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1950 		      int __user *usockaddr_len)
1951 {
1952 	struct socket *sock;
1953 	struct sockaddr_storage address;
1954 	int err, fput_needed;
1955 
1956 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1957 	if (sock != NULL) {
1958 		err = security_socket_getpeername(sock);
1959 		if (err) {
1960 			fput_light(sock->file, fput_needed);
1961 			return err;
1962 		}
1963 
1964 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1965 		if (err >= 0)
1966 			/* "err" is actually length in this case */
1967 			err = move_addr_to_user(&address, err, usockaddr,
1968 						usockaddr_len);
1969 		fput_light(sock->file, fput_needed);
1970 	}
1971 	return err;
1972 }
1973 
1974 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1975 		int __user *, usockaddr_len)
1976 {
1977 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1978 }
1979 
1980 /*
1981  *	Send a datagram to a given address. We move the address into kernel
1982  *	space and check the user space data area is readable before invoking
1983  *	the protocol.
1984  */
1985 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1986 		 struct sockaddr __user *addr,  int addr_len)
1987 {
1988 	struct socket *sock;
1989 	struct sockaddr_storage address;
1990 	int err;
1991 	struct msghdr msg;
1992 	struct iovec iov;
1993 	int fput_needed;
1994 
1995 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1996 	if (unlikely(err))
1997 		return err;
1998 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1999 	if (!sock)
2000 		goto out;
2001 
2002 	msg.msg_name = NULL;
2003 	msg.msg_control = NULL;
2004 	msg.msg_controllen = 0;
2005 	msg.msg_namelen = 0;
2006 	if (addr) {
2007 		err = move_addr_to_kernel(addr, addr_len, &address);
2008 		if (err < 0)
2009 			goto out_put;
2010 		msg.msg_name = (struct sockaddr *)&address;
2011 		msg.msg_namelen = addr_len;
2012 	}
2013 	if (sock->file->f_flags & O_NONBLOCK)
2014 		flags |= MSG_DONTWAIT;
2015 	msg.msg_flags = flags;
2016 	err = sock_sendmsg(sock, &msg);
2017 
2018 out_put:
2019 	fput_light(sock->file, fput_needed);
2020 out:
2021 	return err;
2022 }
2023 
2024 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2025 		unsigned int, flags, struct sockaddr __user *, addr,
2026 		int, addr_len)
2027 {
2028 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2029 }
2030 
2031 /*
2032  *	Send a datagram down a socket.
2033  */
2034 
2035 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2036 		unsigned int, flags)
2037 {
2038 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2039 }
2040 
2041 /*
2042  *	Receive a frame from the socket and optionally record the address of the
2043  *	sender. We verify the buffers are writable and if needed move the
2044  *	sender address from kernel to user space.
2045  */
2046 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2047 		   struct sockaddr __user *addr, int __user *addr_len)
2048 {
2049 	struct socket *sock;
2050 	struct iovec iov;
2051 	struct msghdr msg;
2052 	struct sockaddr_storage address;
2053 	int err, err2;
2054 	int fput_needed;
2055 
2056 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2057 	if (unlikely(err))
2058 		return err;
2059 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2060 	if (!sock)
2061 		goto out;
2062 
2063 	msg.msg_control = NULL;
2064 	msg.msg_controllen = 0;
2065 	/* Save some cycles and don't copy the address if not needed */
2066 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2067 	/* We assume all kernel code knows the size of sockaddr_storage */
2068 	msg.msg_namelen = 0;
2069 	msg.msg_iocb = NULL;
2070 	msg.msg_flags = 0;
2071 	if (sock->file->f_flags & O_NONBLOCK)
2072 		flags |= MSG_DONTWAIT;
2073 	err = sock_recvmsg(sock, &msg, flags);
2074 
2075 	if (err >= 0 && addr != NULL) {
2076 		err2 = move_addr_to_user(&address,
2077 					 msg.msg_namelen, addr, addr_len);
2078 		if (err2 < 0)
2079 			err = err2;
2080 	}
2081 
2082 	fput_light(sock->file, fput_needed);
2083 out:
2084 	return err;
2085 }
2086 
2087 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2088 		unsigned int, flags, struct sockaddr __user *, addr,
2089 		int __user *, addr_len)
2090 {
2091 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2092 }
2093 
2094 /*
2095  *	Receive a datagram from a socket.
2096  */
2097 
2098 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2099 		unsigned int, flags)
2100 {
2101 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2102 }
2103 
2104 static bool sock_use_custom_sol_socket(const struct socket *sock)
2105 {
2106 	const struct sock *sk = sock->sk;
2107 
2108 	/* Use sock->ops->setsockopt() for MPTCP */
2109 	return IS_ENABLED(CONFIG_MPTCP) &&
2110 	       sk->sk_protocol == IPPROTO_MPTCP &&
2111 	       sk->sk_type == SOCK_STREAM &&
2112 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2113 }
2114 
2115 /*
2116  *	Set a socket option. Because we don't know the option lengths we have
2117  *	to pass the user mode parameter for the protocols to sort out.
2118  */
2119 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2120 		int optlen)
2121 {
2122 	sockptr_t optval = USER_SOCKPTR(user_optval);
2123 	char *kernel_optval = NULL;
2124 	int err, fput_needed;
2125 	struct socket *sock;
2126 
2127 	if (optlen < 0)
2128 		return -EINVAL;
2129 
2130 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2131 	if (!sock)
2132 		return err;
2133 
2134 	err = security_socket_setsockopt(sock, level, optname);
2135 	if (err)
2136 		goto out_put;
2137 
2138 	if (!in_compat_syscall())
2139 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2140 						     user_optval, &optlen,
2141 						     &kernel_optval);
2142 	if (err < 0)
2143 		goto out_put;
2144 	if (err > 0) {
2145 		err = 0;
2146 		goto out_put;
2147 	}
2148 
2149 	if (kernel_optval)
2150 		optval = KERNEL_SOCKPTR(kernel_optval);
2151 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2152 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2153 	else if (unlikely(!sock->ops->setsockopt))
2154 		err = -EOPNOTSUPP;
2155 	else
2156 		err = sock->ops->setsockopt(sock, level, optname, optval,
2157 					    optlen);
2158 	kfree(kernel_optval);
2159 out_put:
2160 	fput_light(sock->file, fput_needed);
2161 	return err;
2162 }
2163 
2164 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2165 		char __user *, optval, int, optlen)
2166 {
2167 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2168 }
2169 
2170 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2171 							 int optname));
2172 
2173 /*
2174  *	Get a socket option. Because we don't know the option lengths we have
2175  *	to pass a user mode parameter for the protocols to sort out.
2176  */
2177 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2178 		int __user *optlen)
2179 {
2180 	int err, fput_needed;
2181 	struct socket *sock;
2182 	int max_optlen;
2183 
2184 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2185 	if (!sock)
2186 		return err;
2187 
2188 	err = security_socket_getsockopt(sock, level, optname);
2189 	if (err)
2190 		goto out_put;
2191 
2192 	if (!in_compat_syscall())
2193 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2194 
2195 	if (level == SOL_SOCKET)
2196 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2197 	else if (unlikely(!sock->ops->getsockopt))
2198 		err = -EOPNOTSUPP;
2199 	else
2200 		err = sock->ops->getsockopt(sock, level, optname, optval,
2201 					    optlen);
2202 
2203 	if (!in_compat_syscall())
2204 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2205 						     optval, optlen, max_optlen,
2206 						     err);
2207 out_put:
2208 	fput_light(sock->file, fput_needed);
2209 	return err;
2210 }
2211 
2212 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2213 		char __user *, optval, int __user *, optlen)
2214 {
2215 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2216 }
2217 
2218 /*
2219  *	Shutdown a socket.
2220  */
2221 
2222 int __sys_shutdown_sock(struct socket *sock, int how)
2223 {
2224 	int err;
2225 
2226 	err = security_socket_shutdown(sock, how);
2227 	if (!err)
2228 		err = sock->ops->shutdown(sock, how);
2229 
2230 	return err;
2231 }
2232 
2233 int __sys_shutdown(int fd, int how)
2234 {
2235 	int err, fput_needed;
2236 	struct socket *sock;
2237 
2238 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2239 	if (sock != NULL) {
2240 		err = __sys_shutdown_sock(sock, how);
2241 		fput_light(sock->file, fput_needed);
2242 	}
2243 	return err;
2244 }
2245 
2246 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2247 {
2248 	return __sys_shutdown(fd, how);
2249 }
2250 
2251 /* A couple of helpful macros for getting the address of the 32/64 bit
2252  * fields which are the same type (int / unsigned) on our platforms.
2253  */
2254 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2255 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2256 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2257 
2258 struct used_address {
2259 	struct sockaddr_storage name;
2260 	unsigned int name_len;
2261 };
2262 
2263 int __copy_msghdr_from_user(struct msghdr *kmsg,
2264 			    struct user_msghdr __user *umsg,
2265 			    struct sockaddr __user **save_addr,
2266 			    struct iovec __user **uiov, size_t *nsegs)
2267 {
2268 	struct user_msghdr msg;
2269 	ssize_t err;
2270 
2271 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2272 		return -EFAULT;
2273 
2274 	kmsg->msg_control_is_user = true;
2275 	kmsg->msg_control_user = msg.msg_control;
2276 	kmsg->msg_controllen = msg.msg_controllen;
2277 	kmsg->msg_flags = msg.msg_flags;
2278 
2279 	kmsg->msg_namelen = msg.msg_namelen;
2280 	if (!msg.msg_name)
2281 		kmsg->msg_namelen = 0;
2282 
2283 	if (kmsg->msg_namelen < 0)
2284 		return -EINVAL;
2285 
2286 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2287 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2288 
2289 	if (save_addr)
2290 		*save_addr = msg.msg_name;
2291 
2292 	if (msg.msg_name && kmsg->msg_namelen) {
2293 		if (!save_addr) {
2294 			err = move_addr_to_kernel(msg.msg_name,
2295 						  kmsg->msg_namelen,
2296 						  kmsg->msg_name);
2297 			if (err < 0)
2298 				return err;
2299 		}
2300 	} else {
2301 		kmsg->msg_name = NULL;
2302 		kmsg->msg_namelen = 0;
2303 	}
2304 
2305 	if (msg.msg_iovlen > UIO_MAXIOV)
2306 		return -EMSGSIZE;
2307 
2308 	kmsg->msg_iocb = NULL;
2309 	*uiov = msg.msg_iov;
2310 	*nsegs = msg.msg_iovlen;
2311 	return 0;
2312 }
2313 
2314 static int copy_msghdr_from_user(struct msghdr *kmsg,
2315 				 struct user_msghdr __user *umsg,
2316 				 struct sockaddr __user **save_addr,
2317 				 struct iovec **iov)
2318 {
2319 	struct user_msghdr msg;
2320 	ssize_t err;
2321 
2322 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2323 					&msg.msg_iovlen);
2324 	if (err)
2325 		return err;
2326 
2327 	err = import_iovec(save_addr ? READ : WRITE,
2328 			    msg.msg_iov, msg.msg_iovlen,
2329 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2330 	return err < 0 ? err : 0;
2331 }
2332 
2333 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2334 			   unsigned int flags, struct used_address *used_address,
2335 			   unsigned int allowed_msghdr_flags)
2336 {
2337 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2338 				__aligned(sizeof(__kernel_size_t));
2339 	/* 20 is size of ipv6_pktinfo */
2340 	unsigned char *ctl_buf = ctl;
2341 	int ctl_len;
2342 	ssize_t err;
2343 
2344 	err = -ENOBUFS;
2345 
2346 	if (msg_sys->msg_controllen > INT_MAX)
2347 		goto out;
2348 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2349 	ctl_len = msg_sys->msg_controllen;
2350 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2351 		err =
2352 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2353 						     sizeof(ctl));
2354 		if (err)
2355 			goto out;
2356 		ctl_buf = msg_sys->msg_control;
2357 		ctl_len = msg_sys->msg_controllen;
2358 	} else if (ctl_len) {
2359 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2360 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2361 		if (ctl_len > sizeof(ctl)) {
2362 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2363 			if (ctl_buf == NULL)
2364 				goto out;
2365 		}
2366 		err = -EFAULT;
2367 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2368 			goto out_freectl;
2369 		msg_sys->msg_control = ctl_buf;
2370 		msg_sys->msg_control_is_user = false;
2371 	}
2372 	msg_sys->msg_flags = flags;
2373 
2374 	if (sock->file->f_flags & O_NONBLOCK)
2375 		msg_sys->msg_flags |= MSG_DONTWAIT;
2376 	/*
2377 	 * If this is sendmmsg() and current destination address is same as
2378 	 * previously succeeded address, omit asking LSM's decision.
2379 	 * used_address->name_len is initialized to UINT_MAX so that the first
2380 	 * destination address never matches.
2381 	 */
2382 	if (used_address && msg_sys->msg_name &&
2383 	    used_address->name_len == msg_sys->msg_namelen &&
2384 	    !memcmp(&used_address->name, msg_sys->msg_name,
2385 		    used_address->name_len)) {
2386 		err = sock_sendmsg_nosec(sock, msg_sys);
2387 		goto out_freectl;
2388 	}
2389 	err = sock_sendmsg(sock, msg_sys);
2390 	/*
2391 	 * If this is sendmmsg() and sending to current destination address was
2392 	 * successful, remember it.
2393 	 */
2394 	if (used_address && err >= 0) {
2395 		used_address->name_len = msg_sys->msg_namelen;
2396 		if (msg_sys->msg_name)
2397 			memcpy(&used_address->name, msg_sys->msg_name,
2398 			       used_address->name_len);
2399 	}
2400 
2401 out_freectl:
2402 	if (ctl_buf != ctl)
2403 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2404 out:
2405 	return err;
2406 }
2407 
2408 int sendmsg_copy_msghdr(struct msghdr *msg,
2409 			struct user_msghdr __user *umsg, unsigned flags,
2410 			struct iovec **iov)
2411 {
2412 	int err;
2413 
2414 	if (flags & MSG_CMSG_COMPAT) {
2415 		struct compat_msghdr __user *msg_compat;
2416 
2417 		msg_compat = (struct compat_msghdr __user *) umsg;
2418 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2419 	} else {
2420 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2421 	}
2422 	if (err < 0)
2423 		return err;
2424 
2425 	return 0;
2426 }
2427 
2428 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2429 			 struct msghdr *msg_sys, unsigned int flags,
2430 			 struct used_address *used_address,
2431 			 unsigned int allowed_msghdr_flags)
2432 {
2433 	struct sockaddr_storage address;
2434 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2435 	ssize_t err;
2436 
2437 	msg_sys->msg_name = &address;
2438 
2439 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2440 	if (err < 0)
2441 		return err;
2442 
2443 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2444 				allowed_msghdr_flags);
2445 	kfree(iov);
2446 	return err;
2447 }
2448 
2449 /*
2450  *	BSD sendmsg interface
2451  */
2452 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2453 			unsigned int flags)
2454 {
2455 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2456 }
2457 
2458 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2459 		   bool forbid_cmsg_compat)
2460 {
2461 	int fput_needed, err;
2462 	struct msghdr msg_sys;
2463 	struct socket *sock;
2464 
2465 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2466 		return -EINVAL;
2467 
2468 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2469 	if (!sock)
2470 		goto out;
2471 
2472 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2473 
2474 	fput_light(sock->file, fput_needed);
2475 out:
2476 	return err;
2477 }
2478 
2479 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2480 {
2481 	return __sys_sendmsg(fd, msg, flags, true);
2482 }
2483 
2484 /*
2485  *	Linux sendmmsg interface
2486  */
2487 
2488 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2489 		   unsigned int flags, bool forbid_cmsg_compat)
2490 {
2491 	int fput_needed, err, datagrams;
2492 	struct socket *sock;
2493 	struct mmsghdr __user *entry;
2494 	struct compat_mmsghdr __user *compat_entry;
2495 	struct msghdr msg_sys;
2496 	struct used_address used_address;
2497 	unsigned int oflags = flags;
2498 
2499 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2500 		return -EINVAL;
2501 
2502 	if (vlen > UIO_MAXIOV)
2503 		vlen = UIO_MAXIOV;
2504 
2505 	datagrams = 0;
2506 
2507 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2508 	if (!sock)
2509 		return err;
2510 
2511 	used_address.name_len = UINT_MAX;
2512 	entry = mmsg;
2513 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2514 	err = 0;
2515 	flags |= MSG_BATCH;
2516 
2517 	while (datagrams < vlen) {
2518 		if (datagrams == vlen - 1)
2519 			flags = oflags;
2520 
2521 		if (MSG_CMSG_COMPAT & flags) {
2522 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2523 					     &msg_sys, flags, &used_address, MSG_EOR);
2524 			if (err < 0)
2525 				break;
2526 			err = __put_user(err, &compat_entry->msg_len);
2527 			++compat_entry;
2528 		} else {
2529 			err = ___sys_sendmsg(sock,
2530 					     (struct user_msghdr __user *)entry,
2531 					     &msg_sys, flags, &used_address, MSG_EOR);
2532 			if (err < 0)
2533 				break;
2534 			err = put_user(err, &entry->msg_len);
2535 			++entry;
2536 		}
2537 
2538 		if (err)
2539 			break;
2540 		++datagrams;
2541 		if (msg_data_left(&msg_sys))
2542 			break;
2543 		cond_resched();
2544 	}
2545 
2546 	fput_light(sock->file, fput_needed);
2547 
2548 	/* We only return an error if no datagrams were able to be sent */
2549 	if (datagrams != 0)
2550 		return datagrams;
2551 
2552 	return err;
2553 }
2554 
2555 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2556 		unsigned int, vlen, unsigned int, flags)
2557 {
2558 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2559 }
2560 
2561 int recvmsg_copy_msghdr(struct msghdr *msg,
2562 			struct user_msghdr __user *umsg, unsigned flags,
2563 			struct sockaddr __user **uaddr,
2564 			struct iovec **iov)
2565 {
2566 	ssize_t err;
2567 
2568 	if (MSG_CMSG_COMPAT & flags) {
2569 		struct compat_msghdr __user *msg_compat;
2570 
2571 		msg_compat = (struct compat_msghdr __user *) umsg;
2572 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2573 	} else {
2574 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2575 	}
2576 	if (err < 0)
2577 		return err;
2578 
2579 	return 0;
2580 }
2581 
2582 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2583 			   struct user_msghdr __user *msg,
2584 			   struct sockaddr __user *uaddr,
2585 			   unsigned int flags, int nosec)
2586 {
2587 	struct compat_msghdr __user *msg_compat =
2588 					(struct compat_msghdr __user *) msg;
2589 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2590 	struct sockaddr_storage addr;
2591 	unsigned long cmsg_ptr;
2592 	int len;
2593 	ssize_t err;
2594 
2595 	msg_sys->msg_name = &addr;
2596 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2597 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2598 
2599 	/* We assume all kernel code knows the size of sockaddr_storage */
2600 	msg_sys->msg_namelen = 0;
2601 
2602 	if (sock->file->f_flags & O_NONBLOCK)
2603 		flags |= MSG_DONTWAIT;
2604 
2605 	if (unlikely(nosec))
2606 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2607 	else
2608 		err = sock_recvmsg(sock, msg_sys, flags);
2609 
2610 	if (err < 0)
2611 		goto out;
2612 	len = err;
2613 
2614 	if (uaddr != NULL) {
2615 		err = move_addr_to_user(&addr,
2616 					msg_sys->msg_namelen, uaddr,
2617 					uaddr_len);
2618 		if (err < 0)
2619 			goto out;
2620 	}
2621 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2622 			 COMPAT_FLAGS(msg));
2623 	if (err)
2624 		goto out;
2625 	if (MSG_CMSG_COMPAT & flags)
2626 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2627 				 &msg_compat->msg_controllen);
2628 	else
2629 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2630 				 &msg->msg_controllen);
2631 	if (err)
2632 		goto out;
2633 	err = len;
2634 out:
2635 	return err;
2636 }
2637 
2638 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2639 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2640 {
2641 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2642 	/* user mode address pointers */
2643 	struct sockaddr __user *uaddr;
2644 	ssize_t err;
2645 
2646 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2647 	if (err < 0)
2648 		return err;
2649 
2650 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2651 	kfree(iov);
2652 	return err;
2653 }
2654 
2655 /*
2656  *	BSD recvmsg interface
2657  */
2658 
2659 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2660 			struct user_msghdr __user *umsg,
2661 			struct sockaddr __user *uaddr, unsigned int flags)
2662 {
2663 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2664 }
2665 
2666 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2667 		   bool forbid_cmsg_compat)
2668 {
2669 	int fput_needed, err;
2670 	struct msghdr msg_sys;
2671 	struct socket *sock;
2672 
2673 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2674 		return -EINVAL;
2675 
2676 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2677 	if (!sock)
2678 		goto out;
2679 
2680 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2681 
2682 	fput_light(sock->file, fput_needed);
2683 out:
2684 	return err;
2685 }
2686 
2687 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2688 		unsigned int, flags)
2689 {
2690 	return __sys_recvmsg(fd, msg, flags, true);
2691 }
2692 
2693 /*
2694  *     Linux recvmmsg interface
2695  */
2696 
2697 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2698 			  unsigned int vlen, unsigned int flags,
2699 			  struct timespec64 *timeout)
2700 {
2701 	int fput_needed, err, datagrams;
2702 	struct socket *sock;
2703 	struct mmsghdr __user *entry;
2704 	struct compat_mmsghdr __user *compat_entry;
2705 	struct msghdr msg_sys;
2706 	struct timespec64 end_time;
2707 	struct timespec64 timeout64;
2708 
2709 	if (timeout &&
2710 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2711 				    timeout->tv_nsec))
2712 		return -EINVAL;
2713 
2714 	datagrams = 0;
2715 
2716 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2717 	if (!sock)
2718 		return err;
2719 
2720 	if (likely(!(flags & MSG_ERRQUEUE))) {
2721 		err = sock_error(sock->sk);
2722 		if (err) {
2723 			datagrams = err;
2724 			goto out_put;
2725 		}
2726 	}
2727 
2728 	entry = mmsg;
2729 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2730 
2731 	while (datagrams < vlen) {
2732 		/*
2733 		 * No need to ask LSM for more than the first datagram.
2734 		 */
2735 		if (MSG_CMSG_COMPAT & flags) {
2736 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2737 					     &msg_sys, flags & ~MSG_WAITFORONE,
2738 					     datagrams);
2739 			if (err < 0)
2740 				break;
2741 			err = __put_user(err, &compat_entry->msg_len);
2742 			++compat_entry;
2743 		} else {
2744 			err = ___sys_recvmsg(sock,
2745 					     (struct user_msghdr __user *)entry,
2746 					     &msg_sys, flags & ~MSG_WAITFORONE,
2747 					     datagrams);
2748 			if (err < 0)
2749 				break;
2750 			err = put_user(err, &entry->msg_len);
2751 			++entry;
2752 		}
2753 
2754 		if (err)
2755 			break;
2756 		++datagrams;
2757 
2758 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2759 		if (flags & MSG_WAITFORONE)
2760 			flags |= MSG_DONTWAIT;
2761 
2762 		if (timeout) {
2763 			ktime_get_ts64(&timeout64);
2764 			*timeout = timespec64_sub(end_time, timeout64);
2765 			if (timeout->tv_sec < 0) {
2766 				timeout->tv_sec = timeout->tv_nsec = 0;
2767 				break;
2768 			}
2769 
2770 			/* Timeout, return less than vlen datagrams */
2771 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2772 				break;
2773 		}
2774 
2775 		/* Out of band data, return right away */
2776 		if (msg_sys.msg_flags & MSG_OOB)
2777 			break;
2778 		cond_resched();
2779 	}
2780 
2781 	if (err == 0)
2782 		goto out_put;
2783 
2784 	if (datagrams == 0) {
2785 		datagrams = err;
2786 		goto out_put;
2787 	}
2788 
2789 	/*
2790 	 * We may return less entries than requested (vlen) if the
2791 	 * sock is non block and there aren't enough datagrams...
2792 	 */
2793 	if (err != -EAGAIN) {
2794 		/*
2795 		 * ... or  if recvmsg returns an error after we
2796 		 * received some datagrams, where we record the
2797 		 * error to return on the next call or if the
2798 		 * app asks about it using getsockopt(SO_ERROR).
2799 		 */
2800 		sock->sk->sk_err = -err;
2801 	}
2802 out_put:
2803 	fput_light(sock->file, fput_needed);
2804 
2805 	return datagrams;
2806 }
2807 
2808 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2809 		   unsigned int vlen, unsigned int flags,
2810 		   struct __kernel_timespec __user *timeout,
2811 		   struct old_timespec32 __user *timeout32)
2812 {
2813 	int datagrams;
2814 	struct timespec64 timeout_sys;
2815 
2816 	if (timeout && get_timespec64(&timeout_sys, timeout))
2817 		return -EFAULT;
2818 
2819 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2820 		return -EFAULT;
2821 
2822 	if (!timeout && !timeout32)
2823 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2824 
2825 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2826 
2827 	if (datagrams <= 0)
2828 		return datagrams;
2829 
2830 	if (timeout && put_timespec64(&timeout_sys, timeout))
2831 		datagrams = -EFAULT;
2832 
2833 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2834 		datagrams = -EFAULT;
2835 
2836 	return datagrams;
2837 }
2838 
2839 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2840 		unsigned int, vlen, unsigned int, flags,
2841 		struct __kernel_timespec __user *, timeout)
2842 {
2843 	if (flags & MSG_CMSG_COMPAT)
2844 		return -EINVAL;
2845 
2846 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2847 }
2848 
2849 #ifdef CONFIG_COMPAT_32BIT_TIME
2850 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2851 		unsigned int, vlen, unsigned int, flags,
2852 		struct old_timespec32 __user *, timeout)
2853 {
2854 	if (flags & MSG_CMSG_COMPAT)
2855 		return -EINVAL;
2856 
2857 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2858 }
2859 #endif
2860 
2861 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2862 /* Argument list sizes for sys_socketcall */
2863 #define AL(x) ((x) * sizeof(unsigned long))
2864 static const unsigned char nargs[21] = {
2865 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2866 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2867 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2868 	AL(4), AL(5), AL(4)
2869 };
2870 
2871 #undef AL
2872 
2873 /*
2874  *	System call vectors.
2875  *
2876  *	Argument checking cleaned up. Saved 20% in size.
2877  *  This function doesn't need to set the kernel lock because
2878  *  it is set by the callees.
2879  */
2880 
2881 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2882 {
2883 	unsigned long a[AUDITSC_ARGS];
2884 	unsigned long a0, a1;
2885 	int err;
2886 	unsigned int len;
2887 
2888 	if (call < 1 || call > SYS_SENDMMSG)
2889 		return -EINVAL;
2890 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2891 
2892 	len = nargs[call];
2893 	if (len > sizeof(a))
2894 		return -EINVAL;
2895 
2896 	/* copy_from_user should be SMP safe. */
2897 	if (copy_from_user(a, args, len))
2898 		return -EFAULT;
2899 
2900 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2901 	if (err)
2902 		return err;
2903 
2904 	a0 = a[0];
2905 	a1 = a[1];
2906 
2907 	switch (call) {
2908 	case SYS_SOCKET:
2909 		err = __sys_socket(a0, a1, a[2]);
2910 		break;
2911 	case SYS_BIND:
2912 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2913 		break;
2914 	case SYS_CONNECT:
2915 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2916 		break;
2917 	case SYS_LISTEN:
2918 		err = __sys_listen(a0, a1);
2919 		break;
2920 	case SYS_ACCEPT:
2921 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2922 				    (int __user *)a[2], 0);
2923 		break;
2924 	case SYS_GETSOCKNAME:
2925 		err =
2926 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2927 				      (int __user *)a[2]);
2928 		break;
2929 	case SYS_GETPEERNAME:
2930 		err =
2931 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2932 				      (int __user *)a[2]);
2933 		break;
2934 	case SYS_SOCKETPAIR:
2935 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2936 		break;
2937 	case SYS_SEND:
2938 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2939 				   NULL, 0);
2940 		break;
2941 	case SYS_SENDTO:
2942 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2943 				   (struct sockaddr __user *)a[4], a[5]);
2944 		break;
2945 	case SYS_RECV:
2946 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2947 				     NULL, NULL);
2948 		break;
2949 	case SYS_RECVFROM:
2950 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2951 				     (struct sockaddr __user *)a[4],
2952 				     (int __user *)a[5]);
2953 		break;
2954 	case SYS_SHUTDOWN:
2955 		err = __sys_shutdown(a0, a1);
2956 		break;
2957 	case SYS_SETSOCKOPT:
2958 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2959 				       a[4]);
2960 		break;
2961 	case SYS_GETSOCKOPT:
2962 		err =
2963 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2964 				     (int __user *)a[4]);
2965 		break;
2966 	case SYS_SENDMSG:
2967 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2968 				    a[2], true);
2969 		break;
2970 	case SYS_SENDMMSG:
2971 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2972 				     a[3], true);
2973 		break;
2974 	case SYS_RECVMSG:
2975 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2976 				    a[2], true);
2977 		break;
2978 	case SYS_RECVMMSG:
2979 		if (IS_ENABLED(CONFIG_64BIT))
2980 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2981 					     a[2], a[3],
2982 					     (struct __kernel_timespec __user *)a[4],
2983 					     NULL);
2984 		else
2985 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986 					     a[2], a[3], NULL,
2987 					     (struct old_timespec32 __user *)a[4]);
2988 		break;
2989 	case SYS_ACCEPT4:
2990 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2991 				    (int __user *)a[2], a[3]);
2992 		break;
2993 	default:
2994 		err = -EINVAL;
2995 		break;
2996 	}
2997 	return err;
2998 }
2999 
3000 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3001 
3002 /**
3003  *	sock_register - add a socket protocol handler
3004  *	@ops: description of protocol
3005  *
3006  *	This function is called by a protocol handler that wants to
3007  *	advertise its address family, and have it linked into the
3008  *	socket interface. The value ops->family corresponds to the
3009  *	socket system call protocol family.
3010  */
3011 int sock_register(const struct net_proto_family *ops)
3012 {
3013 	int err;
3014 
3015 	if (ops->family >= NPROTO) {
3016 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3017 		return -ENOBUFS;
3018 	}
3019 
3020 	spin_lock(&net_family_lock);
3021 	if (rcu_dereference_protected(net_families[ops->family],
3022 				      lockdep_is_held(&net_family_lock)))
3023 		err = -EEXIST;
3024 	else {
3025 		rcu_assign_pointer(net_families[ops->family], ops);
3026 		err = 0;
3027 	}
3028 	spin_unlock(&net_family_lock);
3029 
3030 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3031 	return err;
3032 }
3033 EXPORT_SYMBOL(sock_register);
3034 
3035 /**
3036  *	sock_unregister - remove a protocol handler
3037  *	@family: protocol family to remove
3038  *
3039  *	This function is called by a protocol handler that wants to
3040  *	remove its address family, and have it unlinked from the
3041  *	new socket creation.
3042  *
3043  *	If protocol handler is a module, then it can use module reference
3044  *	counts to protect against new references. If protocol handler is not
3045  *	a module then it needs to provide its own protection in
3046  *	the ops->create routine.
3047  */
3048 void sock_unregister(int family)
3049 {
3050 	BUG_ON(family < 0 || family >= NPROTO);
3051 
3052 	spin_lock(&net_family_lock);
3053 	RCU_INIT_POINTER(net_families[family], NULL);
3054 	spin_unlock(&net_family_lock);
3055 
3056 	synchronize_rcu();
3057 
3058 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3059 }
3060 EXPORT_SYMBOL(sock_unregister);
3061 
3062 bool sock_is_registered(int family)
3063 {
3064 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3065 }
3066 
3067 static int __init sock_init(void)
3068 {
3069 	int err;
3070 	/*
3071 	 *      Initialize the network sysctl infrastructure.
3072 	 */
3073 	err = net_sysctl_init();
3074 	if (err)
3075 		goto out;
3076 
3077 	/*
3078 	 *      Initialize skbuff SLAB cache
3079 	 */
3080 	skb_init();
3081 
3082 	/*
3083 	 *      Initialize the protocols module.
3084 	 */
3085 
3086 	init_inodecache();
3087 
3088 	err = register_filesystem(&sock_fs_type);
3089 	if (err)
3090 		goto out;
3091 	sock_mnt = kern_mount(&sock_fs_type);
3092 	if (IS_ERR(sock_mnt)) {
3093 		err = PTR_ERR(sock_mnt);
3094 		goto out_mount;
3095 	}
3096 
3097 	/* The real protocol initialization is performed in later initcalls.
3098 	 */
3099 
3100 #ifdef CONFIG_NETFILTER
3101 	err = netfilter_init();
3102 	if (err)
3103 		goto out;
3104 #endif
3105 
3106 	ptp_classifier_init();
3107 
3108 out:
3109 	return err;
3110 
3111 out_mount:
3112 	unregister_filesystem(&sock_fs_type);
3113 	goto out;
3114 }
3115 
3116 core_initcall(sock_init);	/* early initcall */
3117 
3118 #ifdef CONFIG_PROC_FS
3119 void socket_seq_show(struct seq_file *seq)
3120 {
3121 	seq_printf(seq, "sockets: used %d\n",
3122 		   sock_inuse_get(seq->private));
3123 }
3124 #endif				/* CONFIG_PROC_FS */
3125 
3126 /* Handle the fact that while struct ifreq has the same *layout* on
3127  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3128  * which are handled elsewhere, it still has different *size* due to
3129  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3130  * resulting in struct ifreq being 32 and 40 bytes respectively).
3131  * As a result, if the struct happens to be at the end of a page and
3132  * the next page isn't readable/writable, we get a fault. To prevent
3133  * that, copy back and forth to the full size.
3134  */
3135 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3136 {
3137 	if (in_compat_syscall()) {
3138 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3139 
3140 		memset(ifr, 0, sizeof(*ifr));
3141 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3142 			return -EFAULT;
3143 
3144 		if (ifrdata)
3145 			*ifrdata = compat_ptr(ifr32->ifr_data);
3146 
3147 		return 0;
3148 	}
3149 
3150 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3151 		return -EFAULT;
3152 
3153 	if (ifrdata)
3154 		*ifrdata = ifr->ifr_data;
3155 
3156 	return 0;
3157 }
3158 EXPORT_SYMBOL(get_user_ifreq);
3159 
3160 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3161 {
3162 	size_t size = sizeof(*ifr);
3163 
3164 	if (in_compat_syscall())
3165 		size = sizeof(struct compat_ifreq);
3166 
3167 	if (copy_to_user(arg, ifr, size))
3168 		return -EFAULT;
3169 
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL(put_user_ifreq);
3173 
3174 #ifdef CONFIG_COMPAT
3175 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3176 {
3177 	compat_uptr_t uptr32;
3178 	struct ifreq ifr;
3179 	void __user *saved;
3180 	int err;
3181 
3182 	if (get_user_ifreq(&ifr, NULL, uifr32))
3183 		return -EFAULT;
3184 
3185 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3186 		return -EFAULT;
3187 
3188 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3189 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3190 
3191 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3192 	if (!err) {
3193 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3194 		if (put_user_ifreq(&ifr, uifr32))
3195 			err = -EFAULT;
3196 	}
3197 	return err;
3198 }
3199 
3200 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3201 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3202 				 struct compat_ifreq __user *u_ifreq32)
3203 {
3204 	struct ifreq ifreq;
3205 	void __user *data;
3206 
3207 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3208 		return -EFAULT;
3209 	ifreq.ifr_data = data;
3210 
3211 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3212 }
3213 
3214 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3215  * for some operations; this forces use of the newer bridge-utils that
3216  * use compatible ioctls
3217  */
3218 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3219 {
3220 	compat_ulong_t tmp;
3221 
3222 	if (get_user(tmp, argp))
3223 		return -EFAULT;
3224 	if (tmp == BRCTL_GET_VERSION)
3225 		return BRCTL_VERSION + 1;
3226 	return -EINVAL;
3227 }
3228 
3229 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3230 			 unsigned int cmd, unsigned long arg)
3231 {
3232 	void __user *argp = compat_ptr(arg);
3233 	struct sock *sk = sock->sk;
3234 	struct net *net = sock_net(sk);
3235 
3236 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3237 		return compat_ifr_data_ioctl(net, cmd, argp);
3238 
3239 	switch (cmd) {
3240 	case SIOCSIFBR:
3241 	case SIOCGIFBR:
3242 		return old_bridge_ioctl(argp);
3243 	case SIOCWANDEV:
3244 		return compat_siocwandev(net, argp);
3245 	case SIOCGSTAMP_OLD:
3246 	case SIOCGSTAMPNS_OLD:
3247 		if (!sock->ops->gettstamp)
3248 			return -ENOIOCTLCMD;
3249 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3250 					    !COMPAT_USE_64BIT_TIME);
3251 
3252 	case SIOCETHTOOL:
3253 	case SIOCBONDSLAVEINFOQUERY:
3254 	case SIOCBONDINFOQUERY:
3255 	case SIOCSHWTSTAMP:
3256 	case SIOCGHWTSTAMP:
3257 		return compat_ifr_data_ioctl(net, cmd, argp);
3258 
3259 	case FIOSETOWN:
3260 	case SIOCSPGRP:
3261 	case FIOGETOWN:
3262 	case SIOCGPGRP:
3263 	case SIOCBRADDBR:
3264 	case SIOCBRDELBR:
3265 	case SIOCGIFVLAN:
3266 	case SIOCSIFVLAN:
3267 	case SIOCGSKNS:
3268 	case SIOCGSTAMP_NEW:
3269 	case SIOCGSTAMPNS_NEW:
3270 	case SIOCGIFCONF:
3271 		return sock_ioctl(file, cmd, arg);
3272 
3273 	case SIOCGIFFLAGS:
3274 	case SIOCSIFFLAGS:
3275 	case SIOCGIFMAP:
3276 	case SIOCSIFMAP:
3277 	case SIOCGIFMETRIC:
3278 	case SIOCSIFMETRIC:
3279 	case SIOCGIFMTU:
3280 	case SIOCSIFMTU:
3281 	case SIOCGIFMEM:
3282 	case SIOCSIFMEM:
3283 	case SIOCGIFHWADDR:
3284 	case SIOCSIFHWADDR:
3285 	case SIOCADDMULTI:
3286 	case SIOCDELMULTI:
3287 	case SIOCGIFINDEX:
3288 	case SIOCGIFADDR:
3289 	case SIOCSIFADDR:
3290 	case SIOCSIFHWBROADCAST:
3291 	case SIOCDIFADDR:
3292 	case SIOCGIFBRDADDR:
3293 	case SIOCSIFBRDADDR:
3294 	case SIOCGIFDSTADDR:
3295 	case SIOCSIFDSTADDR:
3296 	case SIOCGIFNETMASK:
3297 	case SIOCSIFNETMASK:
3298 	case SIOCSIFPFLAGS:
3299 	case SIOCGIFPFLAGS:
3300 	case SIOCGIFTXQLEN:
3301 	case SIOCSIFTXQLEN:
3302 	case SIOCBRADDIF:
3303 	case SIOCBRDELIF:
3304 	case SIOCGIFNAME:
3305 	case SIOCSIFNAME:
3306 	case SIOCGMIIPHY:
3307 	case SIOCGMIIREG:
3308 	case SIOCSMIIREG:
3309 	case SIOCBONDENSLAVE:
3310 	case SIOCBONDRELEASE:
3311 	case SIOCBONDSETHWADDR:
3312 	case SIOCBONDCHANGEACTIVE:
3313 	case SIOCSARP:
3314 	case SIOCGARP:
3315 	case SIOCDARP:
3316 	case SIOCOUTQ:
3317 	case SIOCOUTQNSD:
3318 	case SIOCATMARK:
3319 		return sock_do_ioctl(net, sock, cmd, arg);
3320 	}
3321 
3322 	return -ENOIOCTLCMD;
3323 }
3324 
3325 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3326 			      unsigned long arg)
3327 {
3328 	struct socket *sock = file->private_data;
3329 	int ret = -ENOIOCTLCMD;
3330 	struct sock *sk;
3331 	struct net *net;
3332 
3333 	sk = sock->sk;
3334 	net = sock_net(sk);
3335 
3336 	if (sock->ops->compat_ioctl)
3337 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3338 
3339 	if (ret == -ENOIOCTLCMD &&
3340 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3341 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3342 
3343 	if (ret == -ENOIOCTLCMD)
3344 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3345 
3346 	return ret;
3347 }
3348 #endif
3349 
3350 /**
3351  *	kernel_bind - bind an address to a socket (kernel space)
3352  *	@sock: socket
3353  *	@addr: address
3354  *	@addrlen: length of address
3355  *
3356  *	Returns 0 or an error.
3357  */
3358 
3359 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3360 {
3361 	return sock->ops->bind(sock, addr, addrlen);
3362 }
3363 EXPORT_SYMBOL(kernel_bind);
3364 
3365 /**
3366  *	kernel_listen - move socket to listening state (kernel space)
3367  *	@sock: socket
3368  *	@backlog: pending connections queue size
3369  *
3370  *	Returns 0 or an error.
3371  */
3372 
3373 int kernel_listen(struct socket *sock, int backlog)
3374 {
3375 	return sock->ops->listen(sock, backlog);
3376 }
3377 EXPORT_SYMBOL(kernel_listen);
3378 
3379 /**
3380  *	kernel_accept - accept a connection (kernel space)
3381  *	@sock: listening socket
3382  *	@newsock: new connected socket
3383  *	@flags: flags
3384  *
3385  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3386  *	If it fails, @newsock is guaranteed to be %NULL.
3387  *	Returns 0 or an error.
3388  */
3389 
3390 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3391 {
3392 	struct sock *sk = sock->sk;
3393 	int err;
3394 
3395 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3396 			       newsock);
3397 	if (err < 0)
3398 		goto done;
3399 
3400 	err = sock->ops->accept(sock, *newsock, flags, true);
3401 	if (err < 0) {
3402 		sock_release(*newsock);
3403 		*newsock = NULL;
3404 		goto done;
3405 	}
3406 
3407 	(*newsock)->ops = sock->ops;
3408 	__module_get((*newsock)->ops->owner);
3409 
3410 done:
3411 	return err;
3412 }
3413 EXPORT_SYMBOL(kernel_accept);
3414 
3415 /**
3416  *	kernel_connect - connect a socket (kernel space)
3417  *	@sock: socket
3418  *	@addr: address
3419  *	@addrlen: address length
3420  *	@flags: flags (O_NONBLOCK, ...)
3421  *
3422  *	For datagram sockets, @addr is the address to which datagrams are sent
3423  *	by default, and the only address from which datagrams are received.
3424  *	For stream sockets, attempts to connect to @addr.
3425  *	Returns 0 or an error code.
3426  */
3427 
3428 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3429 		   int flags)
3430 {
3431 	return sock->ops->connect(sock, addr, addrlen, flags);
3432 }
3433 EXPORT_SYMBOL(kernel_connect);
3434 
3435 /**
3436  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3437  *	@sock: socket
3438  *	@addr: address holder
3439  *
3440  * 	Fills the @addr pointer with the address which the socket is bound.
3441  *	Returns 0 or an error code.
3442  */
3443 
3444 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3445 {
3446 	return sock->ops->getname(sock, addr, 0);
3447 }
3448 EXPORT_SYMBOL(kernel_getsockname);
3449 
3450 /**
3451  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3452  *	@sock: socket
3453  *	@addr: address holder
3454  *
3455  * 	Fills the @addr pointer with the address which the socket is connected.
3456  *	Returns 0 or an error code.
3457  */
3458 
3459 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3460 {
3461 	return sock->ops->getname(sock, addr, 1);
3462 }
3463 EXPORT_SYMBOL(kernel_getpeername);
3464 
3465 /**
3466  *	kernel_sendpage - send a &page through a socket (kernel space)
3467  *	@sock: socket
3468  *	@page: page
3469  *	@offset: page offset
3470  *	@size: total size in bytes
3471  *	@flags: flags (MSG_DONTWAIT, ...)
3472  *
3473  *	Returns the total amount sent in bytes or an error.
3474  */
3475 
3476 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3477 		    size_t size, int flags)
3478 {
3479 	if (sock->ops->sendpage) {
3480 		/* Warn in case the improper page to zero-copy send */
3481 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3482 		return sock->ops->sendpage(sock, page, offset, size, flags);
3483 	}
3484 	return sock_no_sendpage(sock, page, offset, size, flags);
3485 }
3486 EXPORT_SYMBOL(kernel_sendpage);
3487 
3488 /**
3489  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3490  *	@sk: sock
3491  *	@page: page
3492  *	@offset: page offset
3493  *	@size: total size in bytes
3494  *	@flags: flags (MSG_DONTWAIT, ...)
3495  *
3496  *	Returns the total amount sent in bytes or an error.
3497  *	Caller must hold @sk.
3498  */
3499 
3500 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3501 			   size_t size, int flags)
3502 {
3503 	struct socket *sock = sk->sk_socket;
3504 
3505 	if (sock->ops->sendpage_locked)
3506 		return sock->ops->sendpage_locked(sk, page, offset, size,
3507 						  flags);
3508 
3509 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3510 }
3511 EXPORT_SYMBOL(kernel_sendpage_locked);
3512 
3513 /**
3514  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3515  *	@sock: socket
3516  *	@how: connection part
3517  *
3518  *	Returns 0 or an error.
3519  */
3520 
3521 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3522 {
3523 	return sock->ops->shutdown(sock, how);
3524 }
3525 EXPORT_SYMBOL(kernel_sock_shutdown);
3526 
3527 /**
3528  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3529  *	@sk: socket
3530  *
3531  *	This routine returns the IP overhead imposed by a socket i.e.
3532  *	the length of the underlying IP header, depending on whether
3533  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3534  *	on at the socket. Assumes that the caller has a lock on the socket.
3535  */
3536 
3537 u32 kernel_sock_ip_overhead(struct sock *sk)
3538 {
3539 	struct inet_sock *inet;
3540 	struct ip_options_rcu *opt;
3541 	u32 overhead = 0;
3542 #if IS_ENABLED(CONFIG_IPV6)
3543 	struct ipv6_pinfo *np;
3544 	struct ipv6_txoptions *optv6 = NULL;
3545 #endif /* IS_ENABLED(CONFIG_IPV6) */
3546 
3547 	if (!sk)
3548 		return overhead;
3549 
3550 	switch (sk->sk_family) {
3551 	case AF_INET:
3552 		inet = inet_sk(sk);
3553 		overhead += sizeof(struct iphdr);
3554 		opt = rcu_dereference_protected(inet->inet_opt,
3555 						sock_owned_by_user(sk));
3556 		if (opt)
3557 			overhead += opt->opt.optlen;
3558 		return overhead;
3559 #if IS_ENABLED(CONFIG_IPV6)
3560 	case AF_INET6:
3561 		np = inet6_sk(sk);
3562 		overhead += sizeof(struct ipv6hdr);
3563 		if (np)
3564 			optv6 = rcu_dereference_protected(np->opt,
3565 							  sock_owned_by_user(sk));
3566 		if (optv6)
3567 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3568 		return overhead;
3569 #endif /* IS_ENABLED(CONFIG_IPV6) */
3570 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3571 		return overhead;
3572 	}
3573 }
3574 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3575