1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 117 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 118 119 static int sock_close(struct inode *inode, struct file *file); 120 static __poll_t sock_poll(struct file *file, 121 struct poll_table_struct *wait); 122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 123 #ifdef CONFIG_COMPAT 124 static long compat_sock_ioctl(struct file *file, 125 unsigned int cmd, unsigned long arg); 126 #endif 127 static int sock_fasync(int fd, struct file *filp, int on); 128 static ssize_t sock_sendpage(struct file *file, struct page *page, 129 int offset, size_t size, loff_t *ppos, int more); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 134 /* 135 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 136 * in the operation structures but are done directly via the socketcall() multiplexor. 137 */ 138 139 static const struct file_operations socket_file_ops = { 140 .owner = THIS_MODULE, 141 .llseek = no_llseek, 142 .read_iter = sock_read_iter, 143 .write_iter = sock_write_iter, 144 .poll = sock_poll, 145 .unlocked_ioctl = sock_ioctl, 146 #ifdef CONFIG_COMPAT 147 .compat_ioctl = compat_sock_ioctl, 148 #endif 149 .mmap = sock_mmap, 150 .release = sock_close, 151 .fasync = sock_fasync, 152 .sendpage = sock_sendpage, 153 .splice_write = generic_splice_sendpage, 154 .splice_read = sock_splice_read, 155 }; 156 157 /* 158 * The protocol list. Each protocol is registered in here. 159 */ 160 161 static DEFINE_SPINLOCK(net_family_lock); 162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 163 164 /* 165 * Support routines. 166 * Move socket addresses back and forth across the kernel/user 167 * divide and look after the messy bits. 168 */ 169 170 /** 171 * move_addr_to_kernel - copy a socket address into kernel space 172 * @uaddr: Address in user space 173 * @kaddr: Address in kernel space 174 * @ulen: Length in user space 175 * 176 * The address is copied into kernel space. If the provided address is 177 * too long an error code of -EINVAL is returned. If the copy gives 178 * invalid addresses -EFAULT is returned. On a success 0 is returned. 179 */ 180 181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 182 { 183 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 184 return -EINVAL; 185 if (ulen == 0) 186 return 0; 187 if (copy_from_user(kaddr, uaddr, ulen)) 188 return -EFAULT; 189 return audit_sockaddr(ulen, kaddr); 190 } 191 192 /** 193 * move_addr_to_user - copy an address to user space 194 * @kaddr: kernel space address 195 * @klen: length of address in kernel 196 * @uaddr: user space address 197 * @ulen: pointer to user length field 198 * 199 * The value pointed to by ulen on entry is the buffer length available. 200 * This is overwritten with the buffer space used. -EINVAL is returned 201 * if an overlong buffer is specified or a negative buffer size. -EFAULT 202 * is returned if either the buffer or the length field are not 203 * accessible. 204 * After copying the data up to the limit the user specifies, the true 205 * length of the data is written over the length limit the user 206 * specified. Zero is returned for a success. 207 */ 208 209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 210 void __user *uaddr, int __user *ulen) 211 { 212 int err; 213 int len; 214 215 BUG_ON(klen > sizeof(struct sockaddr_storage)); 216 err = get_user(len, ulen); 217 if (err) 218 return err; 219 if (len > klen) 220 len = klen; 221 if (len < 0) 222 return -EINVAL; 223 if (len) { 224 if (audit_sockaddr(klen, kaddr)) 225 return -ENOMEM; 226 if (copy_to_user(uaddr, kaddr, len)) 227 return -EFAULT; 228 } 229 /* 230 * "fromlen shall refer to the value before truncation.." 231 * 1003.1g 232 */ 233 return __put_user(klen, ulen); 234 } 235 236 static struct kmem_cache *sock_inode_cachep __ro_after_init; 237 238 static struct inode *sock_alloc_inode(struct super_block *sb) 239 { 240 struct socket_alloc *ei; 241 struct socket_wq *wq; 242 243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 244 if (!ei) 245 return NULL; 246 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 247 if (!wq) { 248 kmem_cache_free(sock_inode_cachep, ei); 249 return NULL; 250 } 251 init_waitqueue_head(&wq->wait); 252 wq->fasync_list = NULL; 253 wq->flags = 0; 254 RCU_INIT_POINTER(ei->socket.wq, wq); 255 256 ei->socket.state = SS_UNCONNECTED; 257 ei->socket.flags = 0; 258 ei->socket.ops = NULL; 259 ei->socket.sk = NULL; 260 ei->socket.file = NULL; 261 262 return &ei->vfs_inode; 263 } 264 265 static void sock_destroy_inode(struct inode *inode) 266 { 267 struct socket_alloc *ei; 268 struct socket_wq *wq; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 wq = rcu_dereference_protected(ei->socket.wq, 1); 272 kfree_rcu(wq, rcu); 273 kmem_cache_free(sock_inode_cachep, ei); 274 } 275 276 static void init_once(void *foo) 277 { 278 struct socket_alloc *ei = (struct socket_alloc *)foo; 279 280 inode_init_once(&ei->vfs_inode); 281 } 282 283 static void init_inodecache(void) 284 { 285 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 286 sizeof(struct socket_alloc), 287 0, 288 (SLAB_HWCACHE_ALIGN | 289 SLAB_RECLAIM_ACCOUNT | 290 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 291 init_once); 292 BUG_ON(sock_inode_cachep == NULL); 293 } 294 295 static const struct super_operations sockfs_ops = { 296 .alloc_inode = sock_alloc_inode, 297 .destroy_inode = sock_destroy_inode, 298 .statfs = simple_statfs, 299 }; 300 301 /* 302 * sockfs_dname() is called from d_path(). 303 */ 304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 305 { 306 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 307 d_inode(dentry)->i_ino); 308 } 309 310 static const struct dentry_operations sockfs_dentry_operations = { 311 .d_dname = sockfs_dname, 312 }; 313 314 static int sockfs_xattr_get(const struct xattr_handler *handler, 315 struct dentry *dentry, struct inode *inode, 316 const char *suffix, void *value, size_t size) 317 { 318 if (value) { 319 if (dentry->d_name.len + 1 > size) 320 return -ERANGE; 321 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 322 } 323 return dentry->d_name.len + 1; 324 } 325 326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 329 330 static const struct xattr_handler sockfs_xattr_handler = { 331 .name = XATTR_NAME_SOCKPROTONAME, 332 .get = sockfs_xattr_get, 333 }; 334 335 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 336 struct dentry *dentry, struct inode *inode, 337 const char *suffix, const void *value, 338 size_t size, int flags) 339 { 340 /* Handled by LSM. */ 341 return -EAGAIN; 342 } 343 344 static const struct xattr_handler sockfs_security_xattr_handler = { 345 .prefix = XATTR_SECURITY_PREFIX, 346 .set = sockfs_security_xattr_set, 347 }; 348 349 static const struct xattr_handler *sockfs_xattr_handlers[] = { 350 &sockfs_xattr_handler, 351 &sockfs_security_xattr_handler, 352 NULL 353 }; 354 355 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 356 int flags, const char *dev_name, void *data) 357 { 358 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 359 sockfs_xattr_handlers, 360 &sockfs_dentry_operations, SOCKFS_MAGIC); 361 } 362 363 static struct vfsmount *sock_mnt __read_mostly; 364 365 static struct file_system_type sock_fs_type = { 366 .name = "sockfs", 367 .mount = sockfs_mount, 368 .kill_sb = kill_anon_super, 369 }; 370 371 /* 372 * Obtains the first available file descriptor and sets it up for use. 373 * 374 * These functions create file structures and maps them to fd space 375 * of the current process. On success it returns file descriptor 376 * and file struct implicitly stored in sock->file. 377 * Note that another thread may close file descriptor before we return 378 * from this function. We use the fact that now we do not refer 379 * to socket after mapping. If one day we will need it, this 380 * function will increment ref. count on file by 1. 381 * 382 * In any case returned fd MAY BE not valid! 383 * This race condition is unavoidable 384 * with shared fd spaces, we cannot solve it inside kernel, 385 * but we take care of internal coherence yet. 386 */ 387 388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 389 { 390 struct qstr name = { .name = "" }; 391 struct path path; 392 struct file *file; 393 394 if (dname) { 395 name.name = dname; 396 name.len = strlen(name.name); 397 } else if (sock->sk) { 398 name.name = sock->sk->sk_prot_creator->name; 399 name.len = strlen(name.name); 400 } 401 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 402 if (unlikely(!path.dentry)) { 403 sock_release(sock); 404 return ERR_PTR(-ENOMEM); 405 } 406 path.mnt = mntget(sock_mnt); 407 408 d_instantiate(path.dentry, SOCK_INODE(sock)); 409 410 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 411 &socket_file_ops); 412 if (IS_ERR(file)) { 413 /* drop dentry, keep inode for a bit */ 414 ihold(d_inode(path.dentry)); 415 path_put(&path); 416 /* ... and now kill it properly */ 417 sock_release(sock); 418 return file; 419 } 420 421 sock->file = file; 422 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 423 file->private_data = sock; 424 return file; 425 } 426 EXPORT_SYMBOL(sock_alloc_file); 427 428 static int sock_map_fd(struct socket *sock, int flags) 429 { 430 struct file *newfile; 431 int fd = get_unused_fd_flags(flags); 432 if (unlikely(fd < 0)) { 433 sock_release(sock); 434 return fd; 435 } 436 437 newfile = sock_alloc_file(sock, flags, NULL); 438 if (likely(!IS_ERR(newfile))) { 439 fd_install(fd, newfile); 440 return fd; 441 } 442 443 put_unused_fd(fd); 444 return PTR_ERR(newfile); 445 } 446 447 struct socket *sock_from_file(struct file *file, int *err) 448 { 449 if (file->f_op == &socket_file_ops) 450 return file->private_data; /* set in sock_map_fd */ 451 452 *err = -ENOTSOCK; 453 return NULL; 454 } 455 EXPORT_SYMBOL(sock_from_file); 456 457 /** 458 * sockfd_lookup - Go from a file number to its socket slot 459 * @fd: file handle 460 * @err: pointer to an error code return 461 * 462 * The file handle passed in is locked and the socket it is bound 463 * to is returned. If an error occurs the err pointer is overwritten 464 * with a negative errno code and NULL is returned. The function checks 465 * for both invalid handles and passing a handle which is not a socket. 466 * 467 * On a success the socket object pointer is returned. 468 */ 469 470 struct socket *sockfd_lookup(int fd, int *err) 471 { 472 struct file *file; 473 struct socket *sock; 474 475 file = fget(fd); 476 if (!file) { 477 *err = -EBADF; 478 return NULL; 479 } 480 481 sock = sock_from_file(file, err); 482 if (!sock) 483 fput(file); 484 return sock; 485 } 486 EXPORT_SYMBOL(sockfd_lookup); 487 488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489 { 490 struct fd f = fdget(fd); 491 struct socket *sock; 492 493 *err = -EBADF; 494 if (f.file) { 495 sock = sock_from_file(f.file, err); 496 if (likely(sock)) { 497 *fput_needed = f.flags; 498 return sock; 499 } 500 fdput(f); 501 } 502 return NULL; 503 } 504 505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 506 size_t size) 507 { 508 ssize_t len; 509 ssize_t used = 0; 510 511 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 512 if (len < 0) 513 return len; 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 buffer += len; 519 } 520 521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 527 buffer += len; 528 } 529 530 return used; 531 } 532 533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 534 { 535 int err = simple_setattr(dentry, iattr); 536 537 if (!err && (iattr->ia_valid & ATTR_UID)) { 538 struct socket *sock = SOCKET_I(d_inode(dentry)); 539 540 if (sock->sk) 541 sock->sk->sk_uid = iattr->ia_uid; 542 else 543 err = -ENOENT; 544 } 545 546 return err; 547 } 548 549 static const struct inode_operations sockfs_inode_ops = { 550 .listxattr = sockfs_listxattr, 551 .setattr = sockfs_setattr, 552 }; 553 554 /** 555 * sock_alloc - allocate a socket 556 * 557 * Allocate a new inode and socket object. The two are bound together 558 * and initialised. The socket is then returned. If we are out of inodes 559 * NULL is returned. 560 */ 561 562 struct socket *sock_alloc(void) 563 { 564 struct inode *inode; 565 struct socket *sock; 566 567 inode = new_inode_pseudo(sock_mnt->mnt_sb); 568 if (!inode) 569 return NULL; 570 571 sock = SOCKET_I(inode); 572 573 inode->i_ino = get_next_ino(); 574 inode->i_mode = S_IFSOCK | S_IRWXUGO; 575 inode->i_uid = current_fsuid(); 576 inode->i_gid = current_fsgid(); 577 inode->i_op = &sockfs_inode_ops; 578 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 static void __sock_release(struct socket *sock, struct inode *inode) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 if (inode) 598 inode_lock(inode); 599 sock->ops->release(sock); 600 if (inode) 601 inode_unlock(inode); 602 sock->ops = NULL; 603 module_put(owner); 604 } 605 606 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 607 pr_err("%s: fasync list not empty!\n", __func__); 608 609 if (!sock->file) { 610 iput(SOCK_INODE(sock)); 611 return; 612 } 613 sock->file = NULL; 614 } 615 616 void sock_release(struct socket *sock) 617 { 618 __sock_release(sock, NULL); 619 } 620 EXPORT_SYMBOL(sock_release); 621 622 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 623 { 624 u8 flags = *tx_flags; 625 626 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 627 flags |= SKBTX_HW_TSTAMP; 628 629 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 630 flags |= SKBTX_SW_TSTAMP; 631 632 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 633 flags |= SKBTX_SCHED_TSTAMP; 634 635 *tx_flags = flags; 636 } 637 EXPORT_SYMBOL(__sock_tx_timestamp); 638 639 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 640 { 641 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 642 BUG_ON(ret == -EIOCBQUEUED); 643 return ret; 644 } 645 646 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 647 { 648 int err = security_socket_sendmsg(sock, msg, 649 msg_data_left(msg)); 650 651 return err ?: sock_sendmsg_nosec(sock, msg); 652 } 653 EXPORT_SYMBOL(sock_sendmsg); 654 655 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 656 struct kvec *vec, size_t num, size_t size) 657 { 658 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 659 return sock_sendmsg(sock, msg); 660 } 661 EXPORT_SYMBOL(kernel_sendmsg); 662 663 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 664 struct kvec *vec, size_t num, size_t size) 665 { 666 struct socket *sock = sk->sk_socket; 667 668 if (!sock->ops->sendmsg_locked) 669 return sock_no_sendmsg_locked(sk, msg, size); 670 671 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 672 673 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 674 } 675 EXPORT_SYMBOL(kernel_sendmsg_locked); 676 677 static bool skb_is_err_queue(const struct sk_buff *skb) 678 { 679 /* pkt_type of skbs enqueued on the error queue are set to 680 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 681 * in recvmsg, since skbs received on a local socket will never 682 * have a pkt_type of PACKET_OUTGOING. 683 */ 684 return skb->pkt_type == PACKET_OUTGOING; 685 } 686 687 /* On transmit, software and hardware timestamps are returned independently. 688 * As the two skb clones share the hardware timestamp, which may be updated 689 * before the software timestamp is received, a hardware TX timestamp may be 690 * returned only if there is no software TX timestamp. Ignore false software 691 * timestamps, which may be made in the __sock_recv_timestamp() call when the 692 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 693 * hardware timestamp. 694 */ 695 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 696 { 697 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 698 } 699 700 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 701 { 702 struct scm_ts_pktinfo ts_pktinfo; 703 struct net_device *orig_dev; 704 705 if (!skb_mac_header_was_set(skb)) 706 return; 707 708 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 709 710 rcu_read_lock(); 711 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 712 if (orig_dev) 713 ts_pktinfo.if_index = orig_dev->ifindex; 714 rcu_read_unlock(); 715 716 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 717 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 718 sizeof(ts_pktinfo), &ts_pktinfo); 719 } 720 721 /* 722 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 723 */ 724 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 725 struct sk_buff *skb) 726 { 727 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 728 struct scm_timestamping tss; 729 int empty = 1, false_tstamp = 0; 730 struct skb_shared_hwtstamps *shhwtstamps = 731 skb_hwtstamps(skb); 732 733 /* Race occurred between timestamp enabling and packet 734 receiving. Fill in the current time for now. */ 735 if (need_software_tstamp && skb->tstamp == 0) { 736 __net_timestamp(skb); 737 false_tstamp = 1; 738 } 739 740 if (need_software_tstamp) { 741 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 742 struct timeval tv; 743 skb_get_timestamp(skb, &tv); 744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 745 sizeof(tv), &tv); 746 } else { 747 struct timespec ts; 748 skb_get_timestampns(skb, &ts); 749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 750 sizeof(ts), &ts); 751 } 752 } 753 754 memset(&tss, 0, sizeof(tss)); 755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 756 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 757 empty = 0; 758 if (shhwtstamps && 759 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 760 !skb_is_swtx_tstamp(skb, false_tstamp) && 761 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 762 empty = 0; 763 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 764 !skb_is_err_queue(skb)) 765 put_ts_pktinfo(msg, skb); 766 } 767 if (!empty) { 768 put_cmsg(msg, SOL_SOCKET, 769 SCM_TIMESTAMPING, sizeof(tss), &tss); 770 771 if (skb_is_err_queue(skb) && skb->len && 772 SKB_EXT_ERR(skb)->opt_stats) 773 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 774 skb->len, skb->data); 775 } 776 } 777 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 778 779 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 780 struct sk_buff *skb) 781 { 782 int ack; 783 784 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 785 return; 786 if (!skb->wifi_acked_valid) 787 return; 788 789 ack = skb->wifi_acked; 790 791 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 792 } 793 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 794 795 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 796 struct sk_buff *skb) 797 { 798 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 799 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 800 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 801 } 802 803 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 804 struct sk_buff *skb) 805 { 806 sock_recv_timestamp(msg, sk, skb); 807 sock_recv_drops(msg, sk, skb); 808 } 809 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 810 811 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 812 int flags) 813 { 814 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 815 } 816 817 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 818 { 819 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 820 821 return err ?: sock_recvmsg_nosec(sock, msg, flags); 822 } 823 EXPORT_SYMBOL(sock_recvmsg); 824 825 /** 826 * kernel_recvmsg - Receive a message from a socket (kernel space) 827 * @sock: The socket to receive the message from 828 * @msg: Received message 829 * @vec: Input s/g array for message data 830 * @num: Size of input s/g array 831 * @size: Number of bytes to read 832 * @flags: Message flags (MSG_DONTWAIT, etc...) 833 * 834 * On return the msg structure contains the scatter/gather array passed in the 835 * vec argument. The array is modified so that it consists of the unfilled 836 * portion of the original array. 837 * 838 * The returned value is the total number of bytes received, or an error. 839 */ 840 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 841 struct kvec *vec, size_t num, size_t size, int flags) 842 { 843 mm_segment_t oldfs = get_fs(); 844 int result; 845 846 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 847 set_fs(KERNEL_DS); 848 result = sock_recvmsg(sock, msg, flags); 849 set_fs(oldfs); 850 return result; 851 } 852 EXPORT_SYMBOL(kernel_recvmsg); 853 854 static ssize_t sock_sendpage(struct file *file, struct page *page, 855 int offset, size_t size, loff_t *ppos, int more) 856 { 857 struct socket *sock; 858 int flags; 859 860 sock = file->private_data; 861 862 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 863 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 864 flags |= more; 865 866 return kernel_sendpage(sock, page, offset, size, flags); 867 } 868 869 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 870 struct pipe_inode_info *pipe, size_t len, 871 unsigned int flags) 872 { 873 struct socket *sock = file->private_data; 874 875 if (unlikely(!sock->ops->splice_read)) 876 return -EINVAL; 877 878 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 879 } 880 881 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 882 { 883 struct file *file = iocb->ki_filp; 884 struct socket *sock = file->private_data; 885 struct msghdr msg = {.msg_iter = *to, 886 .msg_iocb = iocb}; 887 ssize_t res; 888 889 if (file->f_flags & O_NONBLOCK) 890 msg.msg_flags = MSG_DONTWAIT; 891 892 if (iocb->ki_pos != 0) 893 return -ESPIPE; 894 895 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 896 return 0; 897 898 res = sock_recvmsg(sock, &msg, msg.msg_flags); 899 *to = msg.msg_iter; 900 return res; 901 } 902 903 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 904 { 905 struct file *file = iocb->ki_filp; 906 struct socket *sock = file->private_data; 907 struct msghdr msg = {.msg_iter = *from, 908 .msg_iocb = iocb}; 909 ssize_t res; 910 911 if (iocb->ki_pos != 0) 912 return -ESPIPE; 913 914 if (file->f_flags & O_NONBLOCK) 915 msg.msg_flags = MSG_DONTWAIT; 916 917 if (sock->type == SOCK_SEQPACKET) 918 msg.msg_flags |= MSG_EOR; 919 920 res = sock_sendmsg(sock, &msg); 921 *from = msg.msg_iter; 922 return res; 923 } 924 925 /* 926 * Atomic setting of ioctl hooks to avoid race 927 * with module unload. 928 */ 929 930 static DEFINE_MUTEX(br_ioctl_mutex); 931 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 932 933 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 934 { 935 mutex_lock(&br_ioctl_mutex); 936 br_ioctl_hook = hook; 937 mutex_unlock(&br_ioctl_mutex); 938 } 939 EXPORT_SYMBOL(brioctl_set); 940 941 static DEFINE_MUTEX(vlan_ioctl_mutex); 942 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 943 944 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 945 { 946 mutex_lock(&vlan_ioctl_mutex); 947 vlan_ioctl_hook = hook; 948 mutex_unlock(&vlan_ioctl_mutex); 949 } 950 EXPORT_SYMBOL(vlan_ioctl_set); 951 952 static DEFINE_MUTEX(dlci_ioctl_mutex); 953 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 954 955 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 956 { 957 mutex_lock(&dlci_ioctl_mutex); 958 dlci_ioctl_hook = hook; 959 mutex_unlock(&dlci_ioctl_mutex); 960 } 961 EXPORT_SYMBOL(dlci_ioctl_set); 962 963 static long sock_do_ioctl(struct net *net, struct socket *sock, 964 unsigned int cmd, unsigned long arg) 965 { 966 int err; 967 void __user *argp = (void __user *)arg; 968 969 err = sock->ops->ioctl(sock, cmd, arg); 970 971 /* 972 * If this ioctl is unknown try to hand it down 973 * to the NIC driver. 974 */ 975 if (err != -ENOIOCTLCMD) 976 return err; 977 978 if (cmd == SIOCGIFCONF) { 979 struct ifconf ifc; 980 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 981 return -EFAULT; 982 rtnl_lock(); 983 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 984 rtnl_unlock(); 985 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 986 err = -EFAULT; 987 } else { 988 struct ifreq ifr; 989 bool need_copyout; 990 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 991 return -EFAULT; 992 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 993 if (!err && need_copyout) 994 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 995 return -EFAULT; 996 } 997 return err; 998 } 999 1000 /* 1001 * With an ioctl, arg may well be a user mode pointer, but we don't know 1002 * what to do with it - that's up to the protocol still. 1003 */ 1004 1005 struct ns_common *get_net_ns(struct ns_common *ns) 1006 { 1007 return &get_net(container_of(ns, struct net, ns))->ns; 1008 } 1009 EXPORT_SYMBOL_GPL(get_net_ns); 1010 1011 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1012 { 1013 struct socket *sock; 1014 struct sock *sk; 1015 void __user *argp = (void __user *)arg; 1016 int pid, err; 1017 struct net *net; 1018 1019 sock = file->private_data; 1020 sk = sock->sk; 1021 net = sock_net(sk); 1022 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1023 struct ifreq ifr; 1024 bool need_copyout; 1025 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1026 return -EFAULT; 1027 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1028 if (!err && need_copyout) 1029 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1030 return -EFAULT; 1031 } else 1032 #ifdef CONFIG_WEXT_CORE 1033 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1034 err = wext_handle_ioctl(net, cmd, argp); 1035 } else 1036 #endif 1037 switch (cmd) { 1038 case FIOSETOWN: 1039 case SIOCSPGRP: 1040 err = -EFAULT; 1041 if (get_user(pid, (int __user *)argp)) 1042 break; 1043 err = f_setown(sock->file, pid, 1); 1044 break; 1045 case FIOGETOWN: 1046 case SIOCGPGRP: 1047 err = put_user(f_getown(sock->file), 1048 (int __user *)argp); 1049 break; 1050 case SIOCGIFBR: 1051 case SIOCSIFBR: 1052 case SIOCBRADDBR: 1053 case SIOCBRDELBR: 1054 err = -ENOPKG; 1055 if (!br_ioctl_hook) 1056 request_module("bridge"); 1057 1058 mutex_lock(&br_ioctl_mutex); 1059 if (br_ioctl_hook) 1060 err = br_ioctl_hook(net, cmd, argp); 1061 mutex_unlock(&br_ioctl_mutex); 1062 break; 1063 case SIOCGIFVLAN: 1064 case SIOCSIFVLAN: 1065 err = -ENOPKG; 1066 if (!vlan_ioctl_hook) 1067 request_module("8021q"); 1068 1069 mutex_lock(&vlan_ioctl_mutex); 1070 if (vlan_ioctl_hook) 1071 err = vlan_ioctl_hook(net, argp); 1072 mutex_unlock(&vlan_ioctl_mutex); 1073 break; 1074 case SIOCADDDLCI: 1075 case SIOCDELDLCI: 1076 err = -ENOPKG; 1077 if (!dlci_ioctl_hook) 1078 request_module("dlci"); 1079 1080 mutex_lock(&dlci_ioctl_mutex); 1081 if (dlci_ioctl_hook) 1082 err = dlci_ioctl_hook(cmd, argp); 1083 mutex_unlock(&dlci_ioctl_mutex); 1084 break; 1085 case SIOCGSKNS: 1086 err = -EPERM; 1087 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1088 break; 1089 1090 err = open_related_ns(&net->ns, get_net_ns); 1091 break; 1092 default: 1093 err = sock_do_ioctl(net, sock, cmd, arg); 1094 break; 1095 } 1096 return err; 1097 } 1098 1099 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1100 { 1101 int err; 1102 struct socket *sock = NULL; 1103 1104 err = security_socket_create(family, type, protocol, 1); 1105 if (err) 1106 goto out; 1107 1108 sock = sock_alloc(); 1109 if (!sock) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 1114 sock->type = type; 1115 err = security_socket_post_create(sock, family, type, protocol, 1); 1116 if (err) 1117 goto out_release; 1118 1119 out: 1120 *res = sock; 1121 return err; 1122 out_release: 1123 sock_release(sock); 1124 sock = NULL; 1125 goto out; 1126 } 1127 EXPORT_SYMBOL(sock_create_lite); 1128 1129 /* No kernel lock held - perfect */ 1130 static __poll_t sock_poll(struct file *file, poll_table *wait) 1131 { 1132 struct socket *sock = file->private_data; 1133 __poll_t events = poll_requested_events(wait), flag = 0; 1134 1135 if (!sock->ops->poll) 1136 return 0; 1137 1138 if (sk_can_busy_loop(sock->sk)) { 1139 /* poll once if requested by the syscall */ 1140 if (events & POLL_BUSY_LOOP) 1141 sk_busy_loop(sock->sk, 1); 1142 1143 /* if this socket can poll_ll, tell the system call */ 1144 flag = POLL_BUSY_LOOP; 1145 } 1146 1147 return sock->ops->poll(file, sock, wait) | flag; 1148 } 1149 1150 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1151 { 1152 struct socket *sock = file->private_data; 1153 1154 return sock->ops->mmap(file, sock, vma); 1155 } 1156 1157 static int sock_close(struct inode *inode, struct file *filp) 1158 { 1159 __sock_release(SOCKET_I(inode), inode); 1160 return 0; 1161 } 1162 1163 /* 1164 * Update the socket async list 1165 * 1166 * Fasync_list locking strategy. 1167 * 1168 * 1. fasync_list is modified only under process context socket lock 1169 * i.e. under semaphore. 1170 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1171 * or under socket lock 1172 */ 1173 1174 static int sock_fasync(int fd, struct file *filp, int on) 1175 { 1176 struct socket *sock = filp->private_data; 1177 struct sock *sk = sock->sk; 1178 struct socket_wq *wq; 1179 1180 if (sk == NULL) 1181 return -EINVAL; 1182 1183 lock_sock(sk); 1184 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1185 fasync_helper(fd, filp, on, &wq->fasync_list); 1186 1187 if (!wq->fasync_list) 1188 sock_reset_flag(sk, SOCK_FASYNC); 1189 else 1190 sock_set_flag(sk, SOCK_FASYNC); 1191 1192 release_sock(sk); 1193 return 0; 1194 } 1195 1196 /* This function may be called only under rcu_lock */ 1197 1198 int sock_wake_async(struct socket_wq *wq, int how, int band) 1199 { 1200 if (!wq || !wq->fasync_list) 1201 return -1; 1202 1203 switch (how) { 1204 case SOCK_WAKE_WAITD: 1205 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1206 break; 1207 goto call_kill; 1208 case SOCK_WAKE_SPACE: 1209 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1210 break; 1211 /* fall through */ 1212 case SOCK_WAKE_IO: 1213 call_kill: 1214 kill_fasync(&wq->fasync_list, SIGIO, band); 1215 break; 1216 case SOCK_WAKE_URG: 1217 kill_fasync(&wq->fasync_list, SIGURG, band); 1218 } 1219 1220 return 0; 1221 } 1222 EXPORT_SYMBOL(sock_wake_async); 1223 1224 int __sock_create(struct net *net, int family, int type, int protocol, 1225 struct socket **res, int kern) 1226 { 1227 int err; 1228 struct socket *sock; 1229 const struct net_proto_family *pf; 1230 1231 /* 1232 * Check protocol is in range 1233 */ 1234 if (family < 0 || family >= NPROTO) 1235 return -EAFNOSUPPORT; 1236 if (type < 0 || type >= SOCK_MAX) 1237 return -EINVAL; 1238 1239 /* Compatibility. 1240 1241 This uglymoron is moved from INET layer to here to avoid 1242 deadlock in module load. 1243 */ 1244 if (family == PF_INET && type == SOCK_PACKET) { 1245 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1246 current->comm); 1247 family = PF_PACKET; 1248 } 1249 1250 err = security_socket_create(family, type, protocol, kern); 1251 if (err) 1252 return err; 1253 1254 /* 1255 * Allocate the socket and allow the family to set things up. if 1256 * the protocol is 0, the family is instructed to select an appropriate 1257 * default. 1258 */ 1259 sock = sock_alloc(); 1260 if (!sock) { 1261 net_warn_ratelimited("socket: no more sockets\n"); 1262 return -ENFILE; /* Not exactly a match, but its the 1263 closest posix thing */ 1264 } 1265 1266 sock->type = type; 1267 1268 #ifdef CONFIG_MODULES 1269 /* Attempt to load a protocol module if the find failed. 1270 * 1271 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1272 * requested real, full-featured networking support upon configuration. 1273 * Otherwise module support will break! 1274 */ 1275 if (rcu_access_pointer(net_families[family]) == NULL) 1276 request_module("net-pf-%d", family); 1277 #endif 1278 1279 rcu_read_lock(); 1280 pf = rcu_dereference(net_families[family]); 1281 err = -EAFNOSUPPORT; 1282 if (!pf) 1283 goto out_release; 1284 1285 /* 1286 * We will call the ->create function, that possibly is in a loadable 1287 * module, so we have to bump that loadable module refcnt first. 1288 */ 1289 if (!try_module_get(pf->owner)) 1290 goto out_release; 1291 1292 /* Now protected by module ref count */ 1293 rcu_read_unlock(); 1294 1295 err = pf->create(net, sock, protocol, kern); 1296 if (err < 0) 1297 goto out_module_put; 1298 1299 /* 1300 * Now to bump the refcnt of the [loadable] module that owns this 1301 * socket at sock_release time we decrement its refcnt. 1302 */ 1303 if (!try_module_get(sock->ops->owner)) 1304 goto out_module_busy; 1305 1306 /* 1307 * Now that we're done with the ->create function, the [loadable] 1308 * module can have its refcnt decremented 1309 */ 1310 module_put(pf->owner); 1311 err = security_socket_post_create(sock, family, type, protocol, kern); 1312 if (err) 1313 goto out_sock_release; 1314 *res = sock; 1315 1316 return 0; 1317 1318 out_module_busy: 1319 err = -EAFNOSUPPORT; 1320 out_module_put: 1321 sock->ops = NULL; 1322 module_put(pf->owner); 1323 out_sock_release: 1324 sock_release(sock); 1325 return err; 1326 1327 out_release: 1328 rcu_read_unlock(); 1329 goto out_sock_release; 1330 } 1331 EXPORT_SYMBOL(__sock_create); 1332 1333 int sock_create(int family, int type, int protocol, struct socket **res) 1334 { 1335 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1336 } 1337 EXPORT_SYMBOL(sock_create); 1338 1339 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1340 { 1341 return __sock_create(net, family, type, protocol, res, 1); 1342 } 1343 EXPORT_SYMBOL(sock_create_kern); 1344 1345 int __sys_socket(int family, int type, int protocol) 1346 { 1347 int retval; 1348 struct socket *sock; 1349 int flags; 1350 1351 /* Check the SOCK_* constants for consistency. */ 1352 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1353 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1354 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1355 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1356 1357 flags = type & ~SOCK_TYPE_MASK; 1358 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1359 return -EINVAL; 1360 type &= SOCK_TYPE_MASK; 1361 1362 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1363 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1364 1365 retval = sock_create(family, type, protocol, &sock); 1366 if (retval < 0) 1367 return retval; 1368 1369 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1370 } 1371 1372 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1373 { 1374 return __sys_socket(family, type, protocol); 1375 } 1376 1377 /* 1378 * Create a pair of connected sockets. 1379 */ 1380 1381 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1382 { 1383 struct socket *sock1, *sock2; 1384 int fd1, fd2, err; 1385 struct file *newfile1, *newfile2; 1386 int flags; 1387 1388 flags = type & ~SOCK_TYPE_MASK; 1389 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1390 return -EINVAL; 1391 type &= SOCK_TYPE_MASK; 1392 1393 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1394 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1395 1396 /* 1397 * reserve descriptors and make sure we won't fail 1398 * to return them to userland. 1399 */ 1400 fd1 = get_unused_fd_flags(flags); 1401 if (unlikely(fd1 < 0)) 1402 return fd1; 1403 1404 fd2 = get_unused_fd_flags(flags); 1405 if (unlikely(fd2 < 0)) { 1406 put_unused_fd(fd1); 1407 return fd2; 1408 } 1409 1410 err = put_user(fd1, &usockvec[0]); 1411 if (err) 1412 goto out; 1413 1414 err = put_user(fd2, &usockvec[1]); 1415 if (err) 1416 goto out; 1417 1418 /* 1419 * Obtain the first socket and check if the underlying protocol 1420 * supports the socketpair call. 1421 */ 1422 1423 err = sock_create(family, type, protocol, &sock1); 1424 if (unlikely(err < 0)) 1425 goto out; 1426 1427 err = sock_create(family, type, protocol, &sock2); 1428 if (unlikely(err < 0)) { 1429 sock_release(sock1); 1430 goto out; 1431 } 1432 1433 err = security_socket_socketpair(sock1, sock2); 1434 if (unlikely(err)) { 1435 sock_release(sock2); 1436 sock_release(sock1); 1437 goto out; 1438 } 1439 1440 err = sock1->ops->socketpair(sock1, sock2); 1441 if (unlikely(err < 0)) { 1442 sock_release(sock2); 1443 sock_release(sock1); 1444 goto out; 1445 } 1446 1447 newfile1 = sock_alloc_file(sock1, flags, NULL); 1448 if (IS_ERR(newfile1)) { 1449 err = PTR_ERR(newfile1); 1450 sock_release(sock2); 1451 goto out; 1452 } 1453 1454 newfile2 = sock_alloc_file(sock2, flags, NULL); 1455 if (IS_ERR(newfile2)) { 1456 err = PTR_ERR(newfile2); 1457 fput(newfile1); 1458 goto out; 1459 } 1460 1461 audit_fd_pair(fd1, fd2); 1462 1463 fd_install(fd1, newfile1); 1464 fd_install(fd2, newfile2); 1465 return 0; 1466 1467 out: 1468 put_unused_fd(fd2); 1469 put_unused_fd(fd1); 1470 return err; 1471 } 1472 1473 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1474 int __user *, usockvec) 1475 { 1476 return __sys_socketpair(family, type, protocol, usockvec); 1477 } 1478 1479 /* 1480 * Bind a name to a socket. Nothing much to do here since it's 1481 * the protocol's responsibility to handle the local address. 1482 * 1483 * We move the socket address to kernel space before we call 1484 * the protocol layer (having also checked the address is ok). 1485 */ 1486 1487 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1488 { 1489 struct socket *sock; 1490 struct sockaddr_storage address; 1491 int err, fput_needed; 1492 1493 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1494 if (sock) { 1495 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1496 if (err >= 0) { 1497 err = security_socket_bind(sock, 1498 (struct sockaddr *)&address, 1499 addrlen); 1500 if (!err) 1501 err = sock->ops->bind(sock, 1502 (struct sockaddr *) 1503 &address, addrlen); 1504 } 1505 fput_light(sock->file, fput_needed); 1506 } 1507 return err; 1508 } 1509 1510 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1511 { 1512 return __sys_bind(fd, umyaddr, addrlen); 1513 } 1514 1515 /* 1516 * Perform a listen. Basically, we allow the protocol to do anything 1517 * necessary for a listen, and if that works, we mark the socket as 1518 * ready for listening. 1519 */ 1520 1521 int __sys_listen(int fd, int backlog) 1522 { 1523 struct socket *sock; 1524 int err, fput_needed; 1525 int somaxconn; 1526 1527 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1528 if (sock) { 1529 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1530 if ((unsigned int)backlog > somaxconn) 1531 backlog = somaxconn; 1532 1533 err = security_socket_listen(sock, backlog); 1534 if (!err) 1535 err = sock->ops->listen(sock, backlog); 1536 1537 fput_light(sock->file, fput_needed); 1538 } 1539 return err; 1540 } 1541 1542 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1543 { 1544 return __sys_listen(fd, backlog); 1545 } 1546 1547 /* 1548 * For accept, we attempt to create a new socket, set up the link 1549 * with the client, wake up the client, then return the new 1550 * connected fd. We collect the address of the connector in kernel 1551 * space and move it to user at the very end. This is unclean because 1552 * we open the socket then return an error. 1553 * 1554 * 1003.1g adds the ability to recvmsg() to query connection pending 1555 * status to recvmsg. We need to add that support in a way thats 1556 * clean when we restructure accept also. 1557 */ 1558 1559 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1560 int __user *upeer_addrlen, int flags) 1561 { 1562 struct socket *sock, *newsock; 1563 struct file *newfile; 1564 int err, len, newfd, fput_needed; 1565 struct sockaddr_storage address; 1566 1567 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1568 return -EINVAL; 1569 1570 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1571 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1572 1573 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1574 if (!sock) 1575 goto out; 1576 1577 err = -ENFILE; 1578 newsock = sock_alloc(); 1579 if (!newsock) 1580 goto out_put; 1581 1582 newsock->type = sock->type; 1583 newsock->ops = sock->ops; 1584 1585 /* 1586 * We don't need try_module_get here, as the listening socket (sock) 1587 * has the protocol module (sock->ops->owner) held. 1588 */ 1589 __module_get(newsock->ops->owner); 1590 1591 newfd = get_unused_fd_flags(flags); 1592 if (unlikely(newfd < 0)) { 1593 err = newfd; 1594 sock_release(newsock); 1595 goto out_put; 1596 } 1597 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1598 if (IS_ERR(newfile)) { 1599 err = PTR_ERR(newfile); 1600 put_unused_fd(newfd); 1601 goto out_put; 1602 } 1603 1604 err = security_socket_accept(sock, newsock); 1605 if (err) 1606 goto out_fd; 1607 1608 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1609 if (err < 0) 1610 goto out_fd; 1611 1612 if (upeer_sockaddr) { 1613 len = newsock->ops->getname(newsock, 1614 (struct sockaddr *)&address, 2); 1615 if (len < 0) { 1616 err = -ECONNABORTED; 1617 goto out_fd; 1618 } 1619 err = move_addr_to_user(&address, 1620 len, upeer_sockaddr, upeer_addrlen); 1621 if (err < 0) 1622 goto out_fd; 1623 } 1624 1625 /* File flags are not inherited via accept() unlike another OSes. */ 1626 1627 fd_install(newfd, newfile); 1628 err = newfd; 1629 1630 out_put: 1631 fput_light(sock->file, fput_needed); 1632 out: 1633 return err; 1634 out_fd: 1635 fput(newfile); 1636 put_unused_fd(newfd); 1637 goto out_put; 1638 } 1639 1640 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1641 int __user *, upeer_addrlen, int, flags) 1642 { 1643 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1644 } 1645 1646 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1647 int __user *, upeer_addrlen) 1648 { 1649 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1650 } 1651 1652 /* 1653 * Attempt to connect to a socket with the server address. The address 1654 * is in user space so we verify it is OK and move it to kernel space. 1655 * 1656 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1657 * break bindings 1658 * 1659 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1660 * other SEQPACKET protocols that take time to connect() as it doesn't 1661 * include the -EINPROGRESS status for such sockets. 1662 */ 1663 1664 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1665 { 1666 struct socket *sock; 1667 struct sockaddr_storage address; 1668 int err, fput_needed; 1669 1670 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1671 if (!sock) 1672 goto out; 1673 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1674 if (err < 0) 1675 goto out_put; 1676 1677 err = 1678 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1679 if (err) 1680 goto out_put; 1681 1682 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1683 sock->file->f_flags); 1684 out_put: 1685 fput_light(sock->file, fput_needed); 1686 out: 1687 return err; 1688 } 1689 1690 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1691 int, addrlen) 1692 { 1693 return __sys_connect(fd, uservaddr, addrlen); 1694 } 1695 1696 /* 1697 * Get the local address ('name') of a socket object. Move the obtained 1698 * name to user space. 1699 */ 1700 1701 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1702 int __user *usockaddr_len) 1703 { 1704 struct socket *sock; 1705 struct sockaddr_storage address; 1706 int err, fput_needed; 1707 1708 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1709 if (!sock) 1710 goto out; 1711 1712 err = security_socket_getsockname(sock); 1713 if (err) 1714 goto out_put; 1715 1716 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1717 if (err < 0) 1718 goto out_put; 1719 /* "err" is actually length in this case */ 1720 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1721 1722 out_put: 1723 fput_light(sock->file, fput_needed); 1724 out: 1725 return err; 1726 } 1727 1728 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1729 int __user *, usockaddr_len) 1730 { 1731 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1732 } 1733 1734 /* 1735 * Get the remote address ('name') of a socket object. Move the obtained 1736 * name to user space. 1737 */ 1738 1739 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1740 int __user *usockaddr_len) 1741 { 1742 struct socket *sock; 1743 struct sockaddr_storage address; 1744 int err, fput_needed; 1745 1746 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1747 if (sock != NULL) { 1748 err = security_socket_getpeername(sock); 1749 if (err) { 1750 fput_light(sock->file, fput_needed); 1751 return err; 1752 } 1753 1754 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1755 if (err >= 0) 1756 /* "err" is actually length in this case */ 1757 err = move_addr_to_user(&address, err, usockaddr, 1758 usockaddr_len); 1759 fput_light(sock->file, fput_needed); 1760 } 1761 return err; 1762 } 1763 1764 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1765 int __user *, usockaddr_len) 1766 { 1767 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1768 } 1769 1770 /* 1771 * Send a datagram to a given address. We move the address into kernel 1772 * space and check the user space data area is readable before invoking 1773 * the protocol. 1774 */ 1775 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1776 struct sockaddr __user *addr, int addr_len) 1777 { 1778 struct socket *sock; 1779 struct sockaddr_storage address; 1780 int err; 1781 struct msghdr msg; 1782 struct iovec iov; 1783 int fput_needed; 1784 1785 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1786 if (unlikely(err)) 1787 return err; 1788 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1789 if (!sock) 1790 goto out; 1791 1792 msg.msg_name = NULL; 1793 msg.msg_control = NULL; 1794 msg.msg_controllen = 0; 1795 msg.msg_namelen = 0; 1796 if (addr) { 1797 err = move_addr_to_kernel(addr, addr_len, &address); 1798 if (err < 0) 1799 goto out_put; 1800 msg.msg_name = (struct sockaddr *)&address; 1801 msg.msg_namelen = addr_len; 1802 } 1803 if (sock->file->f_flags & O_NONBLOCK) 1804 flags |= MSG_DONTWAIT; 1805 msg.msg_flags = flags; 1806 err = sock_sendmsg(sock, &msg); 1807 1808 out_put: 1809 fput_light(sock->file, fput_needed); 1810 out: 1811 return err; 1812 } 1813 1814 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1815 unsigned int, flags, struct sockaddr __user *, addr, 1816 int, addr_len) 1817 { 1818 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1819 } 1820 1821 /* 1822 * Send a datagram down a socket. 1823 */ 1824 1825 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1826 unsigned int, flags) 1827 { 1828 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1829 } 1830 1831 /* 1832 * Receive a frame from the socket and optionally record the address of the 1833 * sender. We verify the buffers are writable and if needed move the 1834 * sender address from kernel to user space. 1835 */ 1836 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1837 struct sockaddr __user *addr, int __user *addr_len) 1838 { 1839 struct socket *sock; 1840 struct iovec iov; 1841 struct msghdr msg; 1842 struct sockaddr_storage address; 1843 int err, err2; 1844 int fput_needed; 1845 1846 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1847 if (unlikely(err)) 1848 return err; 1849 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1850 if (!sock) 1851 goto out; 1852 1853 msg.msg_control = NULL; 1854 msg.msg_controllen = 0; 1855 /* Save some cycles and don't copy the address if not needed */ 1856 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1857 /* We assume all kernel code knows the size of sockaddr_storage */ 1858 msg.msg_namelen = 0; 1859 msg.msg_iocb = NULL; 1860 msg.msg_flags = 0; 1861 if (sock->file->f_flags & O_NONBLOCK) 1862 flags |= MSG_DONTWAIT; 1863 err = sock_recvmsg(sock, &msg, flags); 1864 1865 if (err >= 0 && addr != NULL) { 1866 err2 = move_addr_to_user(&address, 1867 msg.msg_namelen, addr, addr_len); 1868 if (err2 < 0) 1869 err = err2; 1870 } 1871 1872 fput_light(sock->file, fput_needed); 1873 out: 1874 return err; 1875 } 1876 1877 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1878 unsigned int, flags, struct sockaddr __user *, addr, 1879 int __user *, addr_len) 1880 { 1881 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1882 } 1883 1884 /* 1885 * Receive a datagram from a socket. 1886 */ 1887 1888 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1889 unsigned int, flags) 1890 { 1891 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1892 } 1893 1894 /* 1895 * Set a socket option. Because we don't know the option lengths we have 1896 * to pass the user mode parameter for the protocols to sort out. 1897 */ 1898 1899 static int __sys_setsockopt(int fd, int level, int optname, 1900 char __user *optval, int optlen) 1901 { 1902 int err, fput_needed; 1903 struct socket *sock; 1904 1905 if (optlen < 0) 1906 return -EINVAL; 1907 1908 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1909 if (sock != NULL) { 1910 err = security_socket_setsockopt(sock, level, optname); 1911 if (err) 1912 goto out_put; 1913 1914 if (level == SOL_SOCKET) 1915 err = 1916 sock_setsockopt(sock, level, optname, optval, 1917 optlen); 1918 else 1919 err = 1920 sock->ops->setsockopt(sock, level, optname, optval, 1921 optlen); 1922 out_put: 1923 fput_light(sock->file, fput_needed); 1924 } 1925 return err; 1926 } 1927 1928 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1929 char __user *, optval, int, optlen) 1930 { 1931 return __sys_setsockopt(fd, level, optname, optval, optlen); 1932 } 1933 1934 /* 1935 * Get a socket option. Because we don't know the option lengths we have 1936 * to pass a user mode parameter for the protocols to sort out. 1937 */ 1938 1939 static int __sys_getsockopt(int fd, int level, int optname, 1940 char __user *optval, int __user *optlen) 1941 { 1942 int err, fput_needed; 1943 struct socket *sock; 1944 1945 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1946 if (sock != NULL) { 1947 err = security_socket_getsockopt(sock, level, optname); 1948 if (err) 1949 goto out_put; 1950 1951 if (level == SOL_SOCKET) 1952 err = 1953 sock_getsockopt(sock, level, optname, optval, 1954 optlen); 1955 else 1956 err = 1957 sock->ops->getsockopt(sock, level, optname, optval, 1958 optlen); 1959 out_put: 1960 fput_light(sock->file, fput_needed); 1961 } 1962 return err; 1963 } 1964 1965 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1966 char __user *, optval, int __user *, optlen) 1967 { 1968 return __sys_getsockopt(fd, level, optname, optval, optlen); 1969 } 1970 1971 /* 1972 * Shutdown a socket. 1973 */ 1974 1975 int __sys_shutdown(int fd, int how) 1976 { 1977 int err, fput_needed; 1978 struct socket *sock; 1979 1980 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1981 if (sock != NULL) { 1982 err = security_socket_shutdown(sock, how); 1983 if (!err) 1984 err = sock->ops->shutdown(sock, how); 1985 fput_light(sock->file, fput_needed); 1986 } 1987 return err; 1988 } 1989 1990 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1991 { 1992 return __sys_shutdown(fd, how); 1993 } 1994 1995 /* A couple of helpful macros for getting the address of the 32/64 bit 1996 * fields which are the same type (int / unsigned) on our platforms. 1997 */ 1998 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1999 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2000 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2001 2002 struct used_address { 2003 struct sockaddr_storage name; 2004 unsigned int name_len; 2005 }; 2006 2007 static int copy_msghdr_from_user(struct msghdr *kmsg, 2008 struct user_msghdr __user *umsg, 2009 struct sockaddr __user **save_addr, 2010 struct iovec **iov) 2011 { 2012 struct user_msghdr msg; 2013 ssize_t err; 2014 2015 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2016 return -EFAULT; 2017 2018 kmsg->msg_control = (void __force *)msg.msg_control; 2019 kmsg->msg_controllen = msg.msg_controllen; 2020 kmsg->msg_flags = msg.msg_flags; 2021 2022 kmsg->msg_namelen = msg.msg_namelen; 2023 if (!msg.msg_name) 2024 kmsg->msg_namelen = 0; 2025 2026 if (kmsg->msg_namelen < 0) 2027 return -EINVAL; 2028 2029 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2030 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2031 2032 if (save_addr) 2033 *save_addr = msg.msg_name; 2034 2035 if (msg.msg_name && kmsg->msg_namelen) { 2036 if (!save_addr) { 2037 err = move_addr_to_kernel(msg.msg_name, 2038 kmsg->msg_namelen, 2039 kmsg->msg_name); 2040 if (err < 0) 2041 return err; 2042 } 2043 } else { 2044 kmsg->msg_name = NULL; 2045 kmsg->msg_namelen = 0; 2046 } 2047 2048 if (msg.msg_iovlen > UIO_MAXIOV) 2049 return -EMSGSIZE; 2050 2051 kmsg->msg_iocb = NULL; 2052 2053 return import_iovec(save_addr ? READ : WRITE, 2054 msg.msg_iov, msg.msg_iovlen, 2055 UIO_FASTIOV, iov, &kmsg->msg_iter); 2056 } 2057 2058 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2059 struct msghdr *msg_sys, unsigned int flags, 2060 struct used_address *used_address, 2061 unsigned int allowed_msghdr_flags) 2062 { 2063 struct compat_msghdr __user *msg_compat = 2064 (struct compat_msghdr __user *)msg; 2065 struct sockaddr_storage address; 2066 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2067 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2068 __aligned(sizeof(__kernel_size_t)); 2069 /* 20 is size of ipv6_pktinfo */ 2070 unsigned char *ctl_buf = ctl; 2071 int ctl_len; 2072 ssize_t err; 2073 2074 msg_sys->msg_name = &address; 2075 2076 if (MSG_CMSG_COMPAT & flags) 2077 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2078 else 2079 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2080 if (err < 0) 2081 return err; 2082 2083 err = -ENOBUFS; 2084 2085 if (msg_sys->msg_controllen > INT_MAX) 2086 goto out_freeiov; 2087 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2088 ctl_len = msg_sys->msg_controllen; 2089 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2090 err = 2091 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2092 sizeof(ctl)); 2093 if (err) 2094 goto out_freeiov; 2095 ctl_buf = msg_sys->msg_control; 2096 ctl_len = msg_sys->msg_controllen; 2097 } else if (ctl_len) { 2098 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2099 CMSG_ALIGN(sizeof(struct cmsghdr))); 2100 if (ctl_len > sizeof(ctl)) { 2101 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2102 if (ctl_buf == NULL) 2103 goto out_freeiov; 2104 } 2105 err = -EFAULT; 2106 /* 2107 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2108 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2109 * checking falls down on this. 2110 */ 2111 if (copy_from_user(ctl_buf, 2112 (void __user __force *)msg_sys->msg_control, 2113 ctl_len)) 2114 goto out_freectl; 2115 msg_sys->msg_control = ctl_buf; 2116 } 2117 msg_sys->msg_flags = flags; 2118 2119 if (sock->file->f_flags & O_NONBLOCK) 2120 msg_sys->msg_flags |= MSG_DONTWAIT; 2121 /* 2122 * If this is sendmmsg() and current destination address is same as 2123 * previously succeeded address, omit asking LSM's decision. 2124 * used_address->name_len is initialized to UINT_MAX so that the first 2125 * destination address never matches. 2126 */ 2127 if (used_address && msg_sys->msg_name && 2128 used_address->name_len == msg_sys->msg_namelen && 2129 !memcmp(&used_address->name, msg_sys->msg_name, 2130 used_address->name_len)) { 2131 err = sock_sendmsg_nosec(sock, msg_sys); 2132 goto out_freectl; 2133 } 2134 err = sock_sendmsg(sock, msg_sys); 2135 /* 2136 * If this is sendmmsg() and sending to current destination address was 2137 * successful, remember it. 2138 */ 2139 if (used_address && err >= 0) { 2140 used_address->name_len = msg_sys->msg_namelen; 2141 if (msg_sys->msg_name) 2142 memcpy(&used_address->name, msg_sys->msg_name, 2143 used_address->name_len); 2144 } 2145 2146 out_freectl: 2147 if (ctl_buf != ctl) 2148 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2149 out_freeiov: 2150 kfree(iov); 2151 return err; 2152 } 2153 2154 /* 2155 * BSD sendmsg interface 2156 */ 2157 2158 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2159 bool forbid_cmsg_compat) 2160 { 2161 int fput_needed, err; 2162 struct msghdr msg_sys; 2163 struct socket *sock; 2164 2165 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2166 return -EINVAL; 2167 2168 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2169 if (!sock) 2170 goto out; 2171 2172 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2173 2174 fput_light(sock->file, fput_needed); 2175 out: 2176 return err; 2177 } 2178 2179 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2180 { 2181 return __sys_sendmsg(fd, msg, flags, true); 2182 } 2183 2184 /* 2185 * Linux sendmmsg interface 2186 */ 2187 2188 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2189 unsigned int flags, bool forbid_cmsg_compat) 2190 { 2191 int fput_needed, err, datagrams; 2192 struct socket *sock; 2193 struct mmsghdr __user *entry; 2194 struct compat_mmsghdr __user *compat_entry; 2195 struct msghdr msg_sys; 2196 struct used_address used_address; 2197 unsigned int oflags = flags; 2198 2199 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2200 return -EINVAL; 2201 2202 if (vlen > UIO_MAXIOV) 2203 vlen = UIO_MAXIOV; 2204 2205 datagrams = 0; 2206 2207 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2208 if (!sock) 2209 return err; 2210 2211 used_address.name_len = UINT_MAX; 2212 entry = mmsg; 2213 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2214 err = 0; 2215 flags |= MSG_BATCH; 2216 2217 while (datagrams < vlen) { 2218 if (datagrams == vlen - 1) 2219 flags = oflags; 2220 2221 if (MSG_CMSG_COMPAT & flags) { 2222 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2223 &msg_sys, flags, &used_address, MSG_EOR); 2224 if (err < 0) 2225 break; 2226 err = __put_user(err, &compat_entry->msg_len); 2227 ++compat_entry; 2228 } else { 2229 err = ___sys_sendmsg(sock, 2230 (struct user_msghdr __user *)entry, 2231 &msg_sys, flags, &used_address, MSG_EOR); 2232 if (err < 0) 2233 break; 2234 err = put_user(err, &entry->msg_len); 2235 ++entry; 2236 } 2237 2238 if (err) 2239 break; 2240 ++datagrams; 2241 if (msg_data_left(&msg_sys)) 2242 break; 2243 cond_resched(); 2244 } 2245 2246 fput_light(sock->file, fput_needed); 2247 2248 /* We only return an error if no datagrams were able to be sent */ 2249 if (datagrams != 0) 2250 return datagrams; 2251 2252 return err; 2253 } 2254 2255 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2256 unsigned int, vlen, unsigned int, flags) 2257 { 2258 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2259 } 2260 2261 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2262 struct msghdr *msg_sys, unsigned int flags, int nosec) 2263 { 2264 struct compat_msghdr __user *msg_compat = 2265 (struct compat_msghdr __user *)msg; 2266 struct iovec iovstack[UIO_FASTIOV]; 2267 struct iovec *iov = iovstack; 2268 unsigned long cmsg_ptr; 2269 int len; 2270 ssize_t err; 2271 2272 /* kernel mode address */ 2273 struct sockaddr_storage addr; 2274 2275 /* user mode address pointers */ 2276 struct sockaddr __user *uaddr; 2277 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2278 2279 msg_sys->msg_name = &addr; 2280 2281 if (MSG_CMSG_COMPAT & flags) 2282 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2283 else 2284 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2285 if (err < 0) 2286 return err; 2287 2288 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2289 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2290 2291 /* We assume all kernel code knows the size of sockaddr_storage */ 2292 msg_sys->msg_namelen = 0; 2293 2294 if (sock->file->f_flags & O_NONBLOCK) 2295 flags |= MSG_DONTWAIT; 2296 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2297 if (err < 0) 2298 goto out_freeiov; 2299 len = err; 2300 2301 if (uaddr != NULL) { 2302 err = move_addr_to_user(&addr, 2303 msg_sys->msg_namelen, uaddr, 2304 uaddr_len); 2305 if (err < 0) 2306 goto out_freeiov; 2307 } 2308 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2309 COMPAT_FLAGS(msg)); 2310 if (err) 2311 goto out_freeiov; 2312 if (MSG_CMSG_COMPAT & flags) 2313 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2314 &msg_compat->msg_controllen); 2315 else 2316 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2317 &msg->msg_controllen); 2318 if (err) 2319 goto out_freeiov; 2320 err = len; 2321 2322 out_freeiov: 2323 kfree(iov); 2324 return err; 2325 } 2326 2327 /* 2328 * BSD recvmsg interface 2329 */ 2330 2331 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2332 bool forbid_cmsg_compat) 2333 { 2334 int fput_needed, err; 2335 struct msghdr msg_sys; 2336 struct socket *sock; 2337 2338 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2339 return -EINVAL; 2340 2341 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2342 if (!sock) 2343 goto out; 2344 2345 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2346 2347 fput_light(sock->file, fput_needed); 2348 out: 2349 return err; 2350 } 2351 2352 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2353 unsigned int, flags) 2354 { 2355 return __sys_recvmsg(fd, msg, flags, true); 2356 } 2357 2358 /* 2359 * Linux recvmmsg interface 2360 */ 2361 2362 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2363 unsigned int flags, struct timespec *timeout) 2364 { 2365 int fput_needed, err, datagrams; 2366 struct socket *sock; 2367 struct mmsghdr __user *entry; 2368 struct compat_mmsghdr __user *compat_entry; 2369 struct msghdr msg_sys; 2370 struct timespec64 end_time; 2371 struct timespec64 timeout64; 2372 2373 if (timeout && 2374 poll_select_set_timeout(&end_time, timeout->tv_sec, 2375 timeout->tv_nsec)) 2376 return -EINVAL; 2377 2378 datagrams = 0; 2379 2380 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2381 if (!sock) 2382 return err; 2383 2384 if (likely(!(flags & MSG_ERRQUEUE))) { 2385 err = sock_error(sock->sk); 2386 if (err) { 2387 datagrams = err; 2388 goto out_put; 2389 } 2390 } 2391 2392 entry = mmsg; 2393 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2394 2395 while (datagrams < vlen) { 2396 /* 2397 * No need to ask LSM for more than the first datagram. 2398 */ 2399 if (MSG_CMSG_COMPAT & flags) { 2400 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2401 &msg_sys, flags & ~MSG_WAITFORONE, 2402 datagrams); 2403 if (err < 0) 2404 break; 2405 err = __put_user(err, &compat_entry->msg_len); 2406 ++compat_entry; 2407 } else { 2408 err = ___sys_recvmsg(sock, 2409 (struct user_msghdr __user *)entry, 2410 &msg_sys, flags & ~MSG_WAITFORONE, 2411 datagrams); 2412 if (err < 0) 2413 break; 2414 err = put_user(err, &entry->msg_len); 2415 ++entry; 2416 } 2417 2418 if (err) 2419 break; 2420 ++datagrams; 2421 2422 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2423 if (flags & MSG_WAITFORONE) 2424 flags |= MSG_DONTWAIT; 2425 2426 if (timeout) { 2427 ktime_get_ts64(&timeout64); 2428 *timeout = timespec64_to_timespec( 2429 timespec64_sub(end_time, timeout64)); 2430 if (timeout->tv_sec < 0) { 2431 timeout->tv_sec = timeout->tv_nsec = 0; 2432 break; 2433 } 2434 2435 /* Timeout, return less than vlen datagrams */ 2436 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2437 break; 2438 } 2439 2440 /* Out of band data, return right away */ 2441 if (msg_sys.msg_flags & MSG_OOB) 2442 break; 2443 cond_resched(); 2444 } 2445 2446 if (err == 0) 2447 goto out_put; 2448 2449 if (datagrams == 0) { 2450 datagrams = err; 2451 goto out_put; 2452 } 2453 2454 /* 2455 * We may return less entries than requested (vlen) if the 2456 * sock is non block and there aren't enough datagrams... 2457 */ 2458 if (err != -EAGAIN) { 2459 /* 2460 * ... or if recvmsg returns an error after we 2461 * received some datagrams, where we record the 2462 * error to return on the next call or if the 2463 * app asks about it using getsockopt(SO_ERROR). 2464 */ 2465 sock->sk->sk_err = -err; 2466 } 2467 out_put: 2468 fput_light(sock->file, fput_needed); 2469 2470 return datagrams; 2471 } 2472 2473 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2474 unsigned int vlen, unsigned int flags, 2475 struct timespec __user *timeout) 2476 { 2477 int datagrams; 2478 struct timespec timeout_sys; 2479 2480 if (flags & MSG_CMSG_COMPAT) 2481 return -EINVAL; 2482 2483 if (!timeout) 2484 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2485 2486 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2487 return -EFAULT; 2488 2489 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2490 2491 if (datagrams > 0 && 2492 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2493 datagrams = -EFAULT; 2494 2495 return datagrams; 2496 } 2497 2498 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2499 unsigned int, vlen, unsigned int, flags, 2500 struct timespec __user *, timeout) 2501 { 2502 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2503 } 2504 2505 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2506 /* Argument list sizes for sys_socketcall */ 2507 #define AL(x) ((x) * sizeof(unsigned long)) 2508 static const unsigned char nargs[21] = { 2509 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2510 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2511 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2512 AL(4), AL(5), AL(4) 2513 }; 2514 2515 #undef AL 2516 2517 /* 2518 * System call vectors. 2519 * 2520 * Argument checking cleaned up. Saved 20% in size. 2521 * This function doesn't need to set the kernel lock because 2522 * it is set by the callees. 2523 */ 2524 2525 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2526 { 2527 unsigned long a[AUDITSC_ARGS]; 2528 unsigned long a0, a1; 2529 int err; 2530 unsigned int len; 2531 2532 if (call < 1 || call > SYS_SENDMMSG) 2533 return -EINVAL; 2534 2535 len = nargs[call]; 2536 if (len > sizeof(a)) 2537 return -EINVAL; 2538 2539 /* copy_from_user should be SMP safe. */ 2540 if (copy_from_user(a, args, len)) 2541 return -EFAULT; 2542 2543 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2544 if (err) 2545 return err; 2546 2547 a0 = a[0]; 2548 a1 = a[1]; 2549 2550 switch (call) { 2551 case SYS_SOCKET: 2552 err = __sys_socket(a0, a1, a[2]); 2553 break; 2554 case SYS_BIND: 2555 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2556 break; 2557 case SYS_CONNECT: 2558 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2559 break; 2560 case SYS_LISTEN: 2561 err = __sys_listen(a0, a1); 2562 break; 2563 case SYS_ACCEPT: 2564 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2565 (int __user *)a[2], 0); 2566 break; 2567 case SYS_GETSOCKNAME: 2568 err = 2569 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2570 (int __user *)a[2]); 2571 break; 2572 case SYS_GETPEERNAME: 2573 err = 2574 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2575 (int __user *)a[2]); 2576 break; 2577 case SYS_SOCKETPAIR: 2578 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2579 break; 2580 case SYS_SEND: 2581 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2582 NULL, 0); 2583 break; 2584 case SYS_SENDTO: 2585 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2586 (struct sockaddr __user *)a[4], a[5]); 2587 break; 2588 case SYS_RECV: 2589 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2590 NULL, NULL); 2591 break; 2592 case SYS_RECVFROM: 2593 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2594 (struct sockaddr __user *)a[4], 2595 (int __user *)a[5]); 2596 break; 2597 case SYS_SHUTDOWN: 2598 err = __sys_shutdown(a0, a1); 2599 break; 2600 case SYS_SETSOCKOPT: 2601 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2602 a[4]); 2603 break; 2604 case SYS_GETSOCKOPT: 2605 err = 2606 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2607 (int __user *)a[4]); 2608 break; 2609 case SYS_SENDMSG: 2610 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2611 a[2], true); 2612 break; 2613 case SYS_SENDMMSG: 2614 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2615 a[3], true); 2616 break; 2617 case SYS_RECVMSG: 2618 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2619 a[2], true); 2620 break; 2621 case SYS_RECVMMSG: 2622 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2623 a[3], (struct timespec __user *)a[4]); 2624 break; 2625 case SYS_ACCEPT4: 2626 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2627 (int __user *)a[2], a[3]); 2628 break; 2629 default: 2630 err = -EINVAL; 2631 break; 2632 } 2633 return err; 2634 } 2635 2636 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2637 2638 /** 2639 * sock_register - add a socket protocol handler 2640 * @ops: description of protocol 2641 * 2642 * This function is called by a protocol handler that wants to 2643 * advertise its address family, and have it linked into the 2644 * socket interface. The value ops->family corresponds to the 2645 * socket system call protocol family. 2646 */ 2647 int sock_register(const struct net_proto_family *ops) 2648 { 2649 int err; 2650 2651 if (ops->family >= NPROTO) { 2652 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2653 return -ENOBUFS; 2654 } 2655 2656 spin_lock(&net_family_lock); 2657 if (rcu_dereference_protected(net_families[ops->family], 2658 lockdep_is_held(&net_family_lock))) 2659 err = -EEXIST; 2660 else { 2661 rcu_assign_pointer(net_families[ops->family], ops); 2662 err = 0; 2663 } 2664 spin_unlock(&net_family_lock); 2665 2666 pr_info("NET: Registered protocol family %d\n", ops->family); 2667 return err; 2668 } 2669 EXPORT_SYMBOL(sock_register); 2670 2671 /** 2672 * sock_unregister - remove a protocol handler 2673 * @family: protocol family to remove 2674 * 2675 * This function is called by a protocol handler that wants to 2676 * remove its address family, and have it unlinked from the 2677 * new socket creation. 2678 * 2679 * If protocol handler is a module, then it can use module reference 2680 * counts to protect against new references. If protocol handler is not 2681 * a module then it needs to provide its own protection in 2682 * the ops->create routine. 2683 */ 2684 void sock_unregister(int family) 2685 { 2686 BUG_ON(family < 0 || family >= NPROTO); 2687 2688 spin_lock(&net_family_lock); 2689 RCU_INIT_POINTER(net_families[family], NULL); 2690 spin_unlock(&net_family_lock); 2691 2692 synchronize_rcu(); 2693 2694 pr_info("NET: Unregistered protocol family %d\n", family); 2695 } 2696 EXPORT_SYMBOL(sock_unregister); 2697 2698 bool sock_is_registered(int family) 2699 { 2700 return family < NPROTO && rcu_access_pointer(net_families[family]); 2701 } 2702 2703 static int __init sock_init(void) 2704 { 2705 int err; 2706 /* 2707 * Initialize the network sysctl infrastructure. 2708 */ 2709 err = net_sysctl_init(); 2710 if (err) 2711 goto out; 2712 2713 /* 2714 * Initialize skbuff SLAB cache 2715 */ 2716 skb_init(); 2717 2718 /* 2719 * Initialize the protocols module. 2720 */ 2721 2722 init_inodecache(); 2723 2724 err = register_filesystem(&sock_fs_type); 2725 if (err) 2726 goto out_fs; 2727 sock_mnt = kern_mount(&sock_fs_type); 2728 if (IS_ERR(sock_mnt)) { 2729 err = PTR_ERR(sock_mnt); 2730 goto out_mount; 2731 } 2732 2733 /* The real protocol initialization is performed in later initcalls. 2734 */ 2735 2736 #ifdef CONFIG_NETFILTER 2737 err = netfilter_init(); 2738 if (err) 2739 goto out; 2740 #endif 2741 2742 ptp_classifier_init(); 2743 2744 out: 2745 return err; 2746 2747 out_mount: 2748 unregister_filesystem(&sock_fs_type); 2749 out_fs: 2750 goto out; 2751 } 2752 2753 core_initcall(sock_init); /* early initcall */ 2754 2755 #ifdef CONFIG_PROC_FS 2756 void socket_seq_show(struct seq_file *seq) 2757 { 2758 seq_printf(seq, "sockets: used %d\n", 2759 sock_inuse_get(seq->private)); 2760 } 2761 #endif /* CONFIG_PROC_FS */ 2762 2763 #ifdef CONFIG_COMPAT 2764 static int do_siocgstamp(struct net *net, struct socket *sock, 2765 unsigned int cmd, void __user *up) 2766 { 2767 mm_segment_t old_fs = get_fs(); 2768 struct timeval ktv; 2769 int err; 2770 2771 set_fs(KERNEL_DS); 2772 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2773 set_fs(old_fs); 2774 if (!err) 2775 err = compat_put_timeval(&ktv, up); 2776 2777 return err; 2778 } 2779 2780 static int do_siocgstampns(struct net *net, struct socket *sock, 2781 unsigned int cmd, void __user *up) 2782 { 2783 mm_segment_t old_fs = get_fs(); 2784 struct timespec kts; 2785 int err; 2786 2787 set_fs(KERNEL_DS); 2788 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2789 set_fs(old_fs); 2790 if (!err) 2791 err = compat_put_timespec(&kts, up); 2792 2793 return err; 2794 } 2795 2796 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2797 { 2798 struct compat_ifconf ifc32; 2799 struct ifconf ifc; 2800 int err; 2801 2802 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2803 return -EFAULT; 2804 2805 ifc.ifc_len = ifc32.ifc_len; 2806 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2807 2808 rtnl_lock(); 2809 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2810 rtnl_unlock(); 2811 if (err) 2812 return err; 2813 2814 ifc32.ifc_len = ifc.ifc_len; 2815 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2816 return -EFAULT; 2817 2818 return 0; 2819 } 2820 2821 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2822 { 2823 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2824 bool convert_in = false, convert_out = false; 2825 size_t buf_size = 0; 2826 struct ethtool_rxnfc __user *rxnfc = NULL; 2827 struct ifreq ifr; 2828 u32 rule_cnt = 0, actual_rule_cnt; 2829 u32 ethcmd; 2830 u32 data; 2831 int ret; 2832 2833 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2834 return -EFAULT; 2835 2836 compat_rxnfc = compat_ptr(data); 2837 2838 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2839 return -EFAULT; 2840 2841 /* Most ethtool structures are defined without padding. 2842 * Unfortunately struct ethtool_rxnfc is an exception. 2843 */ 2844 switch (ethcmd) { 2845 default: 2846 break; 2847 case ETHTOOL_GRXCLSRLALL: 2848 /* Buffer size is variable */ 2849 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2850 return -EFAULT; 2851 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2852 return -ENOMEM; 2853 buf_size += rule_cnt * sizeof(u32); 2854 /* fall through */ 2855 case ETHTOOL_GRXRINGS: 2856 case ETHTOOL_GRXCLSRLCNT: 2857 case ETHTOOL_GRXCLSRULE: 2858 case ETHTOOL_SRXCLSRLINS: 2859 convert_out = true; 2860 /* fall through */ 2861 case ETHTOOL_SRXCLSRLDEL: 2862 buf_size += sizeof(struct ethtool_rxnfc); 2863 convert_in = true; 2864 rxnfc = compat_alloc_user_space(buf_size); 2865 break; 2866 } 2867 2868 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2869 return -EFAULT; 2870 2871 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2872 2873 if (convert_in) { 2874 /* We expect there to be holes between fs.m_ext and 2875 * fs.ring_cookie and at the end of fs, but nowhere else. 2876 */ 2877 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2878 sizeof(compat_rxnfc->fs.m_ext) != 2879 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2880 sizeof(rxnfc->fs.m_ext)); 2881 BUILD_BUG_ON( 2882 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2883 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2884 offsetof(struct ethtool_rxnfc, fs.location) - 2885 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2886 2887 if (copy_in_user(rxnfc, compat_rxnfc, 2888 (void __user *)(&rxnfc->fs.m_ext + 1) - 2889 (void __user *)rxnfc) || 2890 copy_in_user(&rxnfc->fs.ring_cookie, 2891 &compat_rxnfc->fs.ring_cookie, 2892 (void __user *)(&rxnfc->fs.location + 1) - 2893 (void __user *)&rxnfc->fs.ring_cookie) || 2894 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2895 sizeof(rxnfc->rule_cnt))) 2896 return -EFAULT; 2897 } 2898 2899 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2900 if (ret) 2901 return ret; 2902 2903 if (convert_out) { 2904 if (copy_in_user(compat_rxnfc, rxnfc, 2905 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2906 (const void __user *)rxnfc) || 2907 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2908 &rxnfc->fs.ring_cookie, 2909 (const void __user *)(&rxnfc->fs.location + 1) - 2910 (const void __user *)&rxnfc->fs.ring_cookie) || 2911 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2912 sizeof(rxnfc->rule_cnt))) 2913 return -EFAULT; 2914 2915 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2916 /* As an optimisation, we only copy the actual 2917 * number of rules that the underlying 2918 * function returned. Since Mallory might 2919 * change the rule count in user memory, we 2920 * check that it is less than the rule count 2921 * originally given (as the user buffer size), 2922 * which has been range-checked. 2923 */ 2924 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2925 return -EFAULT; 2926 if (actual_rule_cnt < rule_cnt) 2927 rule_cnt = actual_rule_cnt; 2928 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2929 &rxnfc->rule_locs[0], 2930 rule_cnt * sizeof(u32))) 2931 return -EFAULT; 2932 } 2933 } 2934 2935 return 0; 2936 } 2937 2938 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2939 { 2940 compat_uptr_t uptr32; 2941 struct ifreq ifr; 2942 void __user *saved; 2943 int err; 2944 2945 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2946 return -EFAULT; 2947 2948 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2949 return -EFAULT; 2950 2951 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2952 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2953 2954 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2955 if (!err) { 2956 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2957 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2958 err = -EFAULT; 2959 } 2960 return err; 2961 } 2962 2963 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2964 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2965 struct compat_ifreq __user *u_ifreq32) 2966 { 2967 struct ifreq ifreq; 2968 u32 data32; 2969 2970 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2971 return -EFAULT; 2972 if (get_user(data32, &u_ifreq32->ifr_data)) 2973 return -EFAULT; 2974 ifreq.ifr_data = compat_ptr(data32); 2975 2976 return dev_ioctl(net, cmd, &ifreq, NULL); 2977 } 2978 2979 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2980 struct compat_ifreq __user *uifr32) 2981 { 2982 struct ifreq ifr; 2983 struct compat_ifmap __user *uifmap32; 2984 int err; 2985 2986 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2987 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2988 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2989 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2990 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2991 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2992 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2993 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2994 if (err) 2995 return -EFAULT; 2996 2997 err = dev_ioctl(net, cmd, &ifr, NULL); 2998 2999 if (cmd == SIOCGIFMAP && !err) { 3000 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3001 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3002 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3003 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3004 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3005 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3006 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3007 if (err) 3008 err = -EFAULT; 3009 } 3010 return err; 3011 } 3012 3013 struct rtentry32 { 3014 u32 rt_pad1; 3015 struct sockaddr rt_dst; /* target address */ 3016 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3017 struct sockaddr rt_genmask; /* target network mask (IP) */ 3018 unsigned short rt_flags; 3019 short rt_pad2; 3020 u32 rt_pad3; 3021 unsigned char rt_tos; 3022 unsigned char rt_class; 3023 short rt_pad4; 3024 short rt_metric; /* +1 for binary compatibility! */ 3025 /* char * */ u32 rt_dev; /* forcing the device at add */ 3026 u32 rt_mtu; /* per route MTU/Window */ 3027 u32 rt_window; /* Window clamping */ 3028 unsigned short rt_irtt; /* Initial RTT */ 3029 }; 3030 3031 struct in6_rtmsg32 { 3032 struct in6_addr rtmsg_dst; 3033 struct in6_addr rtmsg_src; 3034 struct in6_addr rtmsg_gateway; 3035 u32 rtmsg_type; 3036 u16 rtmsg_dst_len; 3037 u16 rtmsg_src_len; 3038 u32 rtmsg_metric; 3039 u32 rtmsg_info; 3040 u32 rtmsg_flags; 3041 s32 rtmsg_ifindex; 3042 }; 3043 3044 static int routing_ioctl(struct net *net, struct socket *sock, 3045 unsigned int cmd, void __user *argp) 3046 { 3047 int ret; 3048 void *r = NULL; 3049 struct in6_rtmsg r6; 3050 struct rtentry r4; 3051 char devname[16]; 3052 u32 rtdev; 3053 mm_segment_t old_fs = get_fs(); 3054 3055 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3056 struct in6_rtmsg32 __user *ur6 = argp; 3057 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3058 3 * sizeof(struct in6_addr)); 3059 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3060 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3061 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3062 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3063 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3064 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3065 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3066 3067 r = (void *) &r6; 3068 } else { /* ipv4 */ 3069 struct rtentry32 __user *ur4 = argp; 3070 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3071 3 * sizeof(struct sockaddr)); 3072 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3073 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3074 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3075 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3076 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3077 ret |= get_user(rtdev, &(ur4->rt_dev)); 3078 if (rtdev) { 3079 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3080 r4.rt_dev = (char __user __force *)devname; 3081 devname[15] = 0; 3082 } else 3083 r4.rt_dev = NULL; 3084 3085 r = (void *) &r4; 3086 } 3087 3088 if (ret) { 3089 ret = -EFAULT; 3090 goto out; 3091 } 3092 3093 set_fs(KERNEL_DS); 3094 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3095 set_fs(old_fs); 3096 3097 out: 3098 return ret; 3099 } 3100 3101 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3102 * for some operations; this forces use of the newer bridge-utils that 3103 * use compatible ioctls 3104 */ 3105 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3106 { 3107 compat_ulong_t tmp; 3108 3109 if (get_user(tmp, argp)) 3110 return -EFAULT; 3111 if (tmp == BRCTL_GET_VERSION) 3112 return BRCTL_VERSION + 1; 3113 return -EINVAL; 3114 } 3115 3116 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3117 unsigned int cmd, unsigned long arg) 3118 { 3119 void __user *argp = compat_ptr(arg); 3120 struct sock *sk = sock->sk; 3121 struct net *net = sock_net(sk); 3122 3123 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3124 return compat_ifr_data_ioctl(net, cmd, argp); 3125 3126 switch (cmd) { 3127 case SIOCSIFBR: 3128 case SIOCGIFBR: 3129 return old_bridge_ioctl(argp); 3130 case SIOCGIFCONF: 3131 return compat_dev_ifconf(net, argp); 3132 case SIOCETHTOOL: 3133 return ethtool_ioctl(net, argp); 3134 case SIOCWANDEV: 3135 return compat_siocwandev(net, argp); 3136 case SIOCGIFMAP: 3137 case SIOCSIFMAP: 3138 return compat_sioc_ifmap(net, cmd, argp); 3139 case SIOCADDRT: 3140 case SIOCDELRT: 3141 return routing_ioctl(net, sock, cmd, argp); 3142 case SIOCGSTAMP: 3143 return do_siocgstamp(net, sock, cmd, argp); 3144 case SIOCGSTAMPNS: 3145 return do_siocgstampns(net, sock, cmd, argp); 3146 case SIOCBONDSLAVEINFOQUERY: 3147 case SIOCBONDINFOQUERY: 3148 case SIOCSHWTSTAMP: 3149 case SIOCGHWTSTAMP: 3150 return compat_ifr_data_ioctl(net, cmd, argp); 3151 3152 case FIOSETOWN: 3153 case SIOCSPGRP: 3154 case FIOGETOWN: 3155 case SIOCGPGRP: 3156 case SIOCBRADDBR: 3157 case SIOCBRDELBR: 3158 case SIOCGIFVLAN: 3159 case SIOCSIFVLAN: 3160 case SIOCADDDLCI: 3161 case SIOCDELDLCI: 3162 case SIOCGSKNS: 3163 return sock_ioctl(file, cmd, arg); 3164 3165 case SIOCGIFFLAGS: 3166 case SIOCSIFFLAGS: 3167 case SIOCGIFMETRIC: 3168 case SIOCSIFMETRIC: 3169 case SIOCGIFMTU: 3170 case SIOCSIFMTU: 3171 case SIOCGIFMEM: 3172 case SIOCSIFMEM: 3173 case SIOCGIFHWADDR: 3174 case SIOCSIFHWADDR: 3175 case SIOCADDMULTI: 3176 case SIOCDELMULTI: 3177 case SIOCGIFINDEX: 3178 case SIOCGIFADDR: 3179 case SIOCSIFADDR: 3180 case SIOCSIFHWBROADCAST: 3181 case SIOCDIFADDR: 3182 case SIOCGIFBRDADDR: 3183 case SIOCSIFBRDADDR: 3184 case SIOCGIFDSTADDR: 3185 case SIOCSIFDSTADDR: 3186 case SIOCGIFNETMASK: 3187 case SIOCSIFNETMASK: 3188 case SIOCSIFPFLAGS: 3189 case SIOCGIFPFLAGS: 3190 case SIOCGIFTXQLEN: 3191 case SIOCSIFTXQLEN: 3192 case SIOCBRADDIF: 3193 case SIOCBRDELIF: 3194 case SIOCSIFNAME: 3195 case SIOCGMIIPHY: 3196 case SIOCGMIIREG: 3197 case SIOCSMIIREG: 3198 case SIOCSARP: 3199 case SIOCGARP: 3200 case SIOCDARP: 3201 case SIOCATMARK: 3202 case SIOCBONDENSLAVE: 3203 case SIOCBONDRELEASE: 3204 case SIOCBONDSETHWADDR: 3205 case SIOCBONDCHANGEACTIVE: 3206 case SIOCGIFNAME: 3207 return sock_do_ioctl(net, sock, cmd, arg); 3208 } 3209 3210 return -ENOIOCTLCMD; 3211 } 3212 3213 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3214 unsigned long arg) 3215 { 3216 struct socket *sock = file->private_data; 3217 int ret = -ENOIOCTLCMD; 3218 struct sock *sk; 3219 struct net *net; 3220 3221 sk = sock->sk; 3222 net = sock_net(sk); 3223 3224 if (sock->ops->compat_ioctl) 3225 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3226 3227 if (ret == -ENOIOCTLCMD && 3228 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3229 ret = compat_wext_handle_ioctl(net, cmd, arg); 3230 3231 if (ret == -ENOIOCTLCMD) 3232 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3233 3234 return ret; 3235 } 3236 #endif 3237 3238 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3239 { 3240 return sock->ops->bind(sock, addr, addrlen); 3241 } 3242 EXPORT_SYMBOL(kernel_bind); 3243 3244 int kernel_listen(struct socket *sock, int backlog) 3245 { 3246 return sock->ops->listen(sock, backlog); 3247 } 3248 EXPORT_SYMBOL(kernel_listen); 3249 3250 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3251 { 3252 struct sock *sk = sock->sk; 3253 int err; 3254 3255 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3256 newsock); 3257 if (err < 0) 3258 goto done; 3259 3260 err = sock->ops->accept(sock, *newsock, flags, true); 3261 if (err < 0) { 3262 sock_release(*newsock); 3263 *newsock = NULL; 3264 goto done; 3265 } 3266 3267 (*newsock)->ops = sock->ops; 3268 __module_get((*newsock)->ops->owner); 3269 3270 done: 3271 return err; 3272 } 3273 EXPORT_SYMBOL(kernel_accept); 3274 3275 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3276 int flags) 3277 { 3278 return sock->ops->connect(sock, addr, addrlen, flags); 3279 } 3280 EXPORT_SYMBOL(kernel_connect); 3281 3282 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3283 { 3284 return sock->ops->getname(sock, addr, 0); 3285 } 3286 EXPORT_SYMBOL(kernel_getsockname); 3287 3288 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3289 { 3290 return sock->ops->getname(sock, addr, 1); 3291 } 3292 EXPORT_SYMBOL(kernel_getpeername); 3293 3294 int kernel_getsockopt(struct socket *sock, int level, int optname, 3295 char *optval, int *optlen) 3296 { 3297 mm_segment_t oldfs = get_fs(); 3298 char __user *uoptval; 3299 int __user *uoptlen; 3300 int err; 3301 3302 uoptval = (char __user __force *) optval; 3303 uoptlen = (int __user __force *) optlen; 3304 3305 set_fs(KERNEL_DS); 3306 if (level == SOL_SOCKET) 3307 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3308 else 3309 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3310 uoptlen); 3311 set_fs(oldfs); 3312 return err; 3313 } 3314 EXPORT_SYMBOL(kernel_getsockopt); 3315 3316 int kernel_setsockopt(struct socket *sock, int level, int optname, 3317 char *optval, unsigned int optlen) 3318 { 3319 mm_segment_t oldfs = get_fs(); 3320 char __user *uoptval; 3321 int err; 3322 3323 uoptval = (char __user __force *) optval; 3324 3325 set_fs(KERNEL_DS); 3326 if (level == SOL_SOCKET) 3327 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3328 else 3329 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3330 optlen); 3331 set_fs(oldfs); 3332 return err; 3333 } 3334 EXPORT_SYMBOL(kernel_setsockopt); 3335 3336 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3337 size_t size, int flags) 3338 { 3339 if (sock->ops->sendpage) 3340 return sock->ops->sendpage(sock, page, offset, size, flags); 3341 3342 return sock_no_sendpage(sock, page, offset, size, flags); 3343 } 3344 EXPORT_SYMBOL(kernel_sendpage); 3345 3346 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3347 size_t size, int flags) 3348 { 3349 struct socket *sock = sk->sk_socket; 3350 3351 if (sock->ops->sendpage_locked) 3352 return sock->ops->sendpage_locked(sk, page, offset, size, 3353 flags); 3354 3355 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3356 } 3357 EXPORT_SYMBOL(kernel_sendpage_locked); 3358 3359 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3360 { 3361 return sock->ops->shutdown(sock, how); 3362 } 3363 EXPORT_SYMBOL(kernel_sock_shutdown); 3364 3365 /* This routine returns the IP overhead imposed by a socket i.e. 3366 * the length of the underlying IP header, depending on whether 3367 * this is an IPv4 or IPv6 socket and the length from IP options turned 3368 * on at the socket. Assumes that the caller has a lock on the socket. 3369 */ 3370 u32 kernel_sock_ip_overhead(struct sock *sk) 3371 { 3372 struct inet_sock *inet; 3373 struct ip_options_rcu *opt; 3374 u32 overhead = 0; 3375 #if IS_ENABLED(CONFIG_IPV6) 3376 struct ipv6_pinfo *np; 3377 struct ipv6_txoptions *optv6 = NULL; 3378 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3379 3380 if (!sk) 3381 return overhead; 3382 3383 switch (sk->sk_family) { 3384 case AF_INET: 3385 inet = inet_sk(sk); 3386 overhead += sizeof(struct iphdr); 3387 opt = rcu_dereference_protected(inet->inet_opt, 3388 sock_owned_by_user(sk)); 3389 if (opt) 3390 overhead += opt->opt.optlen; 3391 return overhead; 3392 #if IS_ENABLED(CONFIG_IPV6) 3393 case AF_INET6: 3394 np = inet6_sk(sk); 3395 overhead += sizeof(struct ipv6hdr); 3396 if (np) 3397 optv6 = rcu_dereference_protected(np->opt, 3398 sock_owned_by_user(sk)); 3399 if (optv6) 3400 overhead += (optv6->opt_flen + optv6->opt_nflen); 3401 return overhead; 3402 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3403 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3404 return overhead; 3405 } 3406 } 3407 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3408