1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/rcupdate.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 89 #include <asm/uaccess.h> 90 #include <asm/unistd.h> 91 92 #include <net/compat.h> 93 94 #include <net/sock.h> 95 #include <linux/netfilter.h> 96 97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 98 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 99 unsigned long nr_segs, loff_t pos); 100 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 101 unsigned long nr_segs, loff_t pos); 102 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 103 104 static int sock_close(struct inode *inode, struct file *file); 105 static unsigned int sock_poll(struct file *file, 106 struct poll_table_struct *wait); 107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 108 #ifdef CONFIG_COMPAT 109 static long compat_sock_ioctl(struct file *file, 110 unsigned int cmd, unsigned long arg); 111 #endif 112 static int sock_fasync(int fd, struct file *filp, int on); 113 static ssize_t sock_sendpage(struct file *file, struct page *page, 114 int offset, size_t size, loff_t *ppos, int more); 115 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 116 struct pipe_inode_info *pipe, size_t len, 117 unsigned int flags); 118 119 /* 120 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 121 * in the operation structures but are done directly via the socketcall() multiplexor. 122 */ 123 124 static const struct file_operations socket_file_ops = { 125 .owner = THIS_MODULE, 126 .llseek = no_llseek, 127 .aio_read = sock_aio_read, 128 .aio_write = sock_aio_write, 129 .poll = sock_poll, 130 .unlocked_ioctl = sock_ioctl, 131 #ifdef CONFIG_COMPAT 132 .compat_ioctl = compat_sock_ioctl, 133 #endif 134 .mmap = sock_mmap, 135 .open = sock_no_open, /* special open code to disallow open via /proc */ 136 .release = sock_close, 137 .fasync = sock_fasync, 138 .sendpage = sock_sendpage, 139 .splice_write = generic_splice_sendpage, 140 .splice_read = sock_splice_read, 141 }; 142 143 /* 144 * The protocol list. Each protocol is registered in here. 145 */ 146 147 static DEFINE_SPINLOCK(net_family_lock); 148 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 149 150 /* 151 * Statistics counters of the socket lists 152 */ 153 154 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 155 156 /* 157 * Support routines. 158 * Move socket addresses back and forth across the kernel/user 159 * divide and look after the messy bits. 160 */ 161 162 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 163 16 for IP, 16 for IPX, 164 24 for IPv6, 165 about 80 for AX.25 166 must be at least one bigger than 167 the AF_UNIX size (see net/unix/af_unix.c 168 :unix_mkname()). 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 183 { 184 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 211 int __user *ulen) 212 { 213 int err; 214 int len; 215 216 err = get_user(len, ulen); 217 if (err) 218 return err; 219 if (len > klen) 220 len = klen; 221 if (len < 0 || len > MAX_SOCK_ADDR) 222 return -EINVAL; 223 if (len) { 224 if (audit_sockaddr(klen, kaddr)) 225 return -ENOMEM; 226 if (copy_to_user(uaddr, kaddr, len)) 227 return -EFAULT; 228 } 229 /* 230 * "fromlen shall refer to the value before truncation.." 231 * 1003.1g 232 */ 233 return __put_user(klen, ulen); 234 } 235 236 #define SOCKFS_MAGIC 0x534F434B 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 init_waitqueue_head(&ei->socket.wait); 248 249 ei->socket.fasync_list = NULL; 250 ei->socket.state = SS_UNCONNECTED; 251 ei->socket.flags = 0; 252 ei->socket.ops = NULL; 253 ei->socket.sk = NULL; 254 ei->socket.file = NULL; 255 256 return &ei->vfs_inode; 257 } 258 259 static void sock_destroy_inode(struct inode *inode) 260 { 261 kmem_cache_free(sock_inode_cachep, 262 container_of(inode, struct socket_alloc, vfs_inode)); 263 } 264 265 static void init_once(struct kmem_cache *cachep, void *foo) 266 { 267 struct socket_alloc *ei = (struct socket_alloc *)foo; 268 269 inode_init_once(&ei->vfs_inode); 270 } 271 272 static int init_inodecache(void) 273 { 274 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 275 sizeof(struct socket_alloc), 276 0, 277 (SLAB_HWCACHE_ALIGN | 278 SLAB_RECLAIM_ACCOUNT | 279 SLAB_MEM_SPREAD), 280 init_once); 281 if (sock_inode_cachep == NULL) 282 return -ENOMEM; 283 return 0; 284 } 285 286 static struct super_operations sockfs_ops = { 287 .alloc_inode = sock_alloc_inode, 288 .destroy_inode =sock_destroy_inode, 289 .statfs = simple_statfs, 290 }; 291 292 static int sockfs_get_sb(struct file_system_type *fs_type, 293 int flags, const char *dev_name, void *data, 294 struct vfsmount *mnt) 295 { 296 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 297 mnt); 298 } 299 300 static struct vfsmount *sock_mnt __read_mostly; 301 302 static struct file_system_type sock_fs_type = { 303 .name = "sockfs", 304 .get_sb = sockfs_get_sb, 305 .kill_sb = kill_anon_super, 306 }; 307 308 static int sockfs_delete_dentry(struct dentry *dentry) 309 { 310 /* 311 * At creation time, we pretended this dentry was hashed 312 * (by clearing DCACHE_UNHASHED bit in d_flags) 313 * At delete time, we restore the truth : not hashed. 314 * (so that dput() can proceed correctly) 315 */ 316 dentry->d_flags |= DCACHE_UNHASHED; 317 return 0; 318 } 319 320 /* 321 * sockfs_dname() is called from d_path(). 322 */ 323 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 324 { 325 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 326 dentry->d_inode->i_ino); 327 } 328 329 static struct dentry_operations sockfs_dentry_operations = { 330 .d_delete = sockfs_delete_dentry, 331 .d_dname = sockfs_dname, 332 }; 333 334 /* 335 * Obtains the first available file descriptor and sets it up for use. 336 * 337 * These functions create file structures and maps them to fd space 338 * of the current process. On success it returns file descriptor 339 * and file struct implicitly stored in sock->file. 340 * Note that another thread may close file descriptor before we return 341 * from this function. We use the fact that now we do not refer 342 * to socket after mapping. If one day we will need it, this 343 * function will increment ref. count on file by 1. 344 * 345 * In any case returned fd MAY BE not valid! 346 * This race condition is unavoidable 347 * with shared fd spaces, we cannot solve it inside kernel, 348 * but we take care of internal coherence yet. 349 */ 350 351 static int sock_alloc_fd(struct file **filep) 352 { 353 int fd; 354 355 fd = get_unused_fd(); 356 if (likely(fd >= 0)) { 357 struct file *file = get_empty_filp(); 358 359 *filep = file; 360 if (unlikely(!file)) { 361 put_unused_fd(fd); 362 return -ENFILE; 363 } 364 } else 365 *filep = NULL; 366 return fd; 367 } 368 369 static int sock_attach_fd(struct socket *sock, struct file *file) 370 { 371 struct dentry *dentry; 372 struct qstr name = { .name = "" }; 373 374 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 375 if (unlikely(!dentry)) 376 return -ENOMEM; 377 378 dentry->d_op = &sockfs_dentry_operations; 379 /* 380 * We dont want to push this dentry into global dentry hash table. 381 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 382 * This permits a working /proc/$pid/fd/XXX on sockets 383 */ 384 dentry->d_flags &= ~DCACHE_UNHASHED; 385 d_instantiate(dentry, SOCK_INODE(sock)); 386 387 sock->file = file; 388 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE, 389 &socket_file_ops); 390 SOCK_INODE(sock)->i_fop = &socket_file_ops; 391 file->f_flags = O_RDWR; 392 file->f_pos = 0; 393 file->private_data = sock; 394 395 return 0; 396 } 397 398 int sock_map_fd(struct socket *sock) 399 { 400 struct file *newfile; 401 int fd = sock_alloc_fd(&newfile); 402 403 if (likely(fd >= 0)) { 404 int err = sock_attach_fd(sock, newfile); 405 406 if (unlikely(err < 0)) { 407 put_filp(newfile); 408 put_unused_fd(fd); 409 return err; 410 } 411 fd_install(fd, newfile); 412 } 413 return fd; 414 } 415 416 static struct socket *sock_from_file(struct file *file, int *err) 417 { 418 if (file->f_op == &socket_file_ops) 419 return file->private_data; /* set in sock_map_fd */ 420 421 *err = -ENOTSOCK; 422 return NULL; 423 } 424 425 /** 426 * sockfd_lookup - Go from a file number to its socket slot 427 * @fd: file handle 428 * @err: pointer to an error code return 429 * 430 * The file handle passed in is locked and the socket it is bound 431 * too is returned. If an error occurs the err pointer is overwritten 432 * with a negative errno code and NULL is returned. The function checks 433 * for both invalid handles and passing a handle which is not a socket. 434 * 435 * On a success the socket object pointer is returned. 436 */ 437 438 struct socket *sockfd_lookup(int fd, int *err) 439 { 440 struct file *file; 441 struct socket *sock; 442 443 file = fget(fd); 444 if (!file) { 445 *err = -EBADF; 446 return NULL; 447 } 448 449 sock = sock_from_file(file, err); 450 if (!sock) 451 fput(file); 452 return sock; 453 } 454 455 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 456 { 457 struct file *file; 458 struct socket *sock; 459 460 *err = -EBADF; 461 file = fget_light(fd, fput_needed); 462 if (file) { 463 sock = sock_from_file(file, err); 464 if (sock) 465 return sock; 466 fput_light(file, *fput_needed); 467 } 468 return NULL; 469 } 470 471 /** 472 * sock_alloc - allocate a socket 473 * 474 * Allocate a new inode and socket object. The two are bound together 475 * and initialised. The socket is then returned. If we are out of inodes 476 * NULL is returned. 477 */ 478 479 static struct socket *sock_alloc(void) 480 { 481 struct inode *inode; 482 struct socket *sock; 483 484 inode = new_inode(sock_mnt->mnt_sb); 485 if (!inode) 486 return NULL; 487 488 sock = SOCKET_I(inode); 489 490 inode->i_mode = S_IFSOCK | S_IRWXUGO; 491 inode->i_uid = current->fsuid; 492 inode->i_gid = current->fsgid; 493 494 get_cpu_var(sockets_in_use)++; 495 put_cpu_var(sockets_in_use); 496 return sock; 497 } 498 499 /* 500 * In theory you can't get an open on this inode, but /proc provides 501 * a back door. Remember to keep it shut otherwise you'll let the 502 * creepy crawlies in. 503 */ 504 505 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 506 { 507 return -ENXIO; 508 } 509 510 const struct file_operations bad_sock_fops = { 511 .owner = THIS_MODULE, 512 .open = sock_no_open, 513 }; 514 515 /** 516 * sock_release - close a socket 517 * @sock: socket to close 518 * 519 * The socket is released from the protocol stack if it has a release 520 * callback, and the inode is then released if the socket is bound to 521 * an inode not a file. 522 */ 523 524 void sock_release(struct socket *sock) 525 { 526 if (sock->ops) { 527 struct module *owner = sock->ops->owner; 528 529 sock->ops->release(sock); 530 sock->ops = NULL; 531 module_put(owner); 532 } 533 534 if (sock->fasync_list) 535 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 536 537 get_cpu_var(sockets_in_use)--; 538 put_cpu_var(sockets_in_use); 539 if (!sock->file) { 540 iput(SOCK_INODE(sock)); 541 return; 542 } 543 sock->file = NULL; 544 } 545 546 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 547 struct msghdr *msg, size_t size) 548 { 549 struct sock_iocb *si = kiocb_to_siocb(iocb); 550 int err; 551 552 si->sock = sock; 553 si->scm = NULL; 554 si->msg = msg; 555 si->size = size; 556 557 err = security_socket_sendmsg(sock, msg, size); 558 if (err) 559 return err; 560 561 return sock->ops->sendmsg(iocb, sock, msg, size); 562 } 563 564 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 565 { 566 struct kiocb iocb; 567 struct sock_iocb siocb; 568 int ret; 569 570 init_sync_kiocb(&iocb, NULL); 571 iocb.private = &siocb; 572 ret = __sock_sendmsg(&iocb, sock, msg, size); 573 if (-EIOCBQUEUED == ret) 574 ret = wait_on_sync_kiocb(&iocb); 575 return ret; 576 } 577 578 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 579 struct kvec *vec, size_t num, size_t size) 580 { 581 mm_segment_t oldfs = get_fs(); 582 int result; 583 584 set_fs(KERNEL_DS); 585 /* 586 * the following is safe, since for compiler definitions of kvec and 587 * iovec are identical, yielding the same in-core layout and alignment 588 */ 589 msg->msg_iov = (struct iovec *)vec; 590 msg->msg_iovlen = num; 591 result = sock_sendmsg(sock, msg, size); 592 set_fs(oldfs); 593 return result; 594 } 595 596 /* 597 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 598 */ 599 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 600 struct sk_buff *skb) 601 { 602 ktime_t kt = skb->tstamp; 603 604 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 605 struct timeval tv; 606 /* Race occurred between timestamp enabling and packet 607 receiving. Fill in the current time for now. */ 608 if (kt.tv64 == 0) 609 kt = ktime_get_real(); 610 skb->tstamp = kt; 611 tv = ktime_to_timeval(kt); 612 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 613 } else { 614 struct timespec ts; 615 /* Race occurred between timestamp enabling and packet 616 receiving. Fill in the current time for now. */ 617 if (kt.tv64 == 0) 618 kt = ktime_get_real(); 619 skb->tstamp = kt; 620 ts = ktime_to_timespec(kt); 621 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 622 } 623 } 624 625 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 626 627 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 628 struct msghdr *msg, size_t size, int flags) 629 { 630 int err; 631 struct sock_iocb *si = kiocb_to_siocb(iocb); 632 633 si->sock = sock; 634 si->scm = NULL; 635 si->msg = msg; 636 si->size = size; 637 si->flags = flags; 638 639 err = security_socket_recvmsg(sock, msg, size, flags); 640 if (err) 641 return err; 642 643 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 644 } 645 646 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 647 size_t size, int flags) 648 { 649 struct kiocb iocb; 650 struct sock_iocb siocb; 651 int ret; 652 653 init_sync_kiocb(&iocb, NULL); 654 iocb.private = &siocb; 655 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 656 if (-EIOCBQUEUED == ret) 657 ret = wait_on_sync_kiocb(&iocb); 658 return ret; 659 } 660 661 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 662 struct kvec *vec, size_t num, size_t size, int flags) 663 { 664 mm_segment_t oldfs = get_fs(); 665 int result; 666 667 set_fs(KERNEL_DS); 668 /* 669 * the following is safe, since for compiler definitions of kvec and 670 * iovec are identical, yielding the same in-core layout and alignment 671 */ 672 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 673 result = sock_recvmsg(sock, msg, size, flags); 674 set_fs(oldfs); 675 return result; 676 } 677 678 static void sock_aio_dtor(struct kiocb *iocb) 679 { 680 kfree(iocb->private); 681 } 682 683 static ssize_t sock_sendpage(struct file *file, struct page *page, 684 int offset, size_t size, loff_t *ppos, int more) 685 { 686 struct socket *sock; 687 int flags; 688 689 sock = file->private_data; 690 691 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 692 if (more) 693 flags |= MSG_MORE; 694 695 return sock->ops->sendpage(sock, page, offset, size, flags); 696 } 697 698 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 699 struct pipe_inode_info *pipe, size_t len, 700 unsigned int flags) 701 { 702 struct socket *sock = file->private_data; 703 704 if (unlikely(!sock->ops->splice_read)) 705 return -EINVAL; 706 707 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 708 } 709 710 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 711 struct sock_iocb *siocb) 712 { 713 if (!is_sync_kiocb(iocb)) { 714 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 715 if (!siocb) 716 return NULL; 717 iocb->ki_dtor = sock_aio_dtor; 718 } 719 720 siocb->kiocb = iocb; 721 iocb->private = siocb; 722 return siocb; 723 } 724 725 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 726 struct file *file, const struct iovec *iov, 727 unsigned long nr_segs) 728 { 729 struct socket *sock = file->private_data; 730 size_t size = 0; 731 int i; 732 733 for (i = 0; i < nr_segs; i++) 734 size += iov[i].iov_len; 735 736 msg->msg_name = NULL; 737 msg->msg_namelen = 0; 738 msg->msg_control = NULL; 739 msg->msg_controllen = 0; 740 msg->msg_iov = (struct iovec *)iov; 741 msg->msg_iovlen = nr_segs; 742 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 743 744 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 745 } 746 747 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 748 unsigned long nr_segs, loff_t pos) 749 { 750 struct sock_iocb siocb, *x; 751 752 if (pos != 0) 753 return -ESPIPE; 754 755 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 756 return 0; 757 758 759 x = alloc_sock_iocb(iocb, &siocb); 760 if (!x) 761 return -ENOMEM; 762 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 763 } 764 765 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 766 struct file *file, const struct iovec *iov, 767 unsigned long nr_segs) 768 { 769 struct socket *sock = file->private_data; 770 size_t size = 0; 771 int i; 772 773 for (i = 0; i < nr_segs; i++) 774 size += iov[i].iov_len; 775 776 msg->msg_name = NULL; 777 msg->msg_namelen = 0; 778 msg->msg_control = NULL; 779 msg->msg_controllen = 0; 780 msg->msg_iov = (struct iovec *)iov; 781 msg->msg_iovlen = nr_segs; 782 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 783 if (sock->type == SOCK_SEQPACKET) 784 msg->msg_flags |= MSG_EOR; 785 786 return __sock_sendmsg(iocb, sock, msg, size); 787 } 788 789 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 790 unsigned long nr_segs, loff_t pos) 791 { 792 struct sock_iocb siocb, *x; 793 794 if (pos != 0) 795 return -ESPIPE; 796 797 x = alloc_sock_iocb(iocb, &siocb); 798 if (!x) 799 return -ENOMEM; 800 801 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 802 } 803 804 /* 805 * Atomic setting of ioctl hooks to avoid race 806 * with module unload. 807 */ 808 809 static DEFINE_MUTEX(br_ioctl_mutex); 810 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 811 812 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 813 { 814 mutex_lock(&br_ioctl_mutex); 815 br_ioctl_hook = hook; 816 mutex_unlock(&br_ioctl_mutex); 817 } 818 819 EXPORT_SYMBOL(brioctl_set); 820 821 static DEFINE_MUTEX(vlan_ioctl_mutex); 822 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 823 824 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 825 { 826 mutex_lock(&vlan_ioctl_mutex); 827 vlan_ioctl_hook = hook; 828 mutex_unlock(&vlan_ioctl_mutex); 829 } 830 831 EXPORT_SYMBOL(vlan_ioctl_set); 832 833 static DEFINE_MUTEX(dlci_ioctl_mutex); 834 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 835 836 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 837 { 838 mutex_lock(&dlci_ioctl_mutex); 839 dlci_ioctl_hook = hook; 840 mutex_unlock(&dlci_ioctl_mutex); 841 } 842 843 EXPORT_SYMBOL(dlci_ioctl_set); 844 845 /* 846 * With an ioctl, arg may well be a user mode pointer, but we don't know 847 * what to do with it - that's up to the protocol still. 848 */ 849 850 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 851 { 852 struct socket *sock; 853 struct sock *sk; 854 void __user *argp = (void __user *)arg; 855 int pid, err; 856 struct net *net; 857 858 sock = file->private_data; 859 sk = sock->sk; 860 net = sk->sk_net; 861 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 862 err = dev_ioctl(net, cmd, argp); 863 } else 864 #ifdef CONFIG_WIRELESS_EXT 865 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 866 err = dev_ioctl(net, cmd, argp); 867 } else 868 #endif /* CONFIG_WIRELESS_EXT */ 869 switch (cmd) { 870 case FIOSETOWN: 871 case SIOCSPGRP: 872 err = -EFAULT; 873 if (get_user(pid, (int __user *)argp)) 874 break; 875 err = f_setown(sock->file, pid, 1); 876 break; 877 case FIOGETOWN: 878 case SIOCGPGRP: 879 err = put_user(f_getown(sock->file), 880 (int __user *)argp); 881 break; 882 case SIOCGIFBR: 883 case SIOCSIFBR: 884 case SIOCBRADDBR: 885 case SIOCBRDELBR: 886 err = -ENOPKG; 887 if (!br_ioctl_hook) 888 request_module("bridge"); 889 890 mutex_lock(&br_ioctl_mutex); 891 if (br_ioctl_hook) 892 err = br_ioctl_hook(net, cmd, argp); 893 mutex_unlock(&br_ioctl_mutex); 894 break; 895 case SIOCGIFVLAN: 896 case SIOCSIFVLAN: 897 err = -ENOPKG; 898 if (!vlan_ioctl_hook) 899 request_module("8021q"); 900 901 mutex_lock(&vlan_ioctl_mutex); 902 if (vlan_ioctl_hook) 903 err = vlan_ioctl_hook(net, argp); 904 mutex_unlock(&vlan_ioctl_mutex); 905 break; 906 case SIOCADDDLCI: 907 case SIOCDELDLCI: 908 err = -ENOPKG; 909 if (!dlci_ioctl_hook) 910 request_module("dlci"); 911 912 mutex_lock(&dlci_ioctl_mutex); 913 if (dlci_ioctl_hook) 914 err = dlci_ioctl_hook(cmd, argp); 915 mutex_unlock(&dlci_ioctl_mutex); 916 break; 917 default: 918 err = sock->ops->ioctl(sock, cmd, arg); 919 920 /* 921 * If this ioctl is unknown try to hand it down 922 * to the NIC driver. 923 */ 924 if (err == -ENOIOCTLCMD) 925 err = dev_ioctl(net, cmd, argp); 926 break; 927 } 928 return err; 929 } 930 931 int sock_create_lite(int family, int type, int protocol, struct socket **res) 932 { 933 int err; 934 struct socket *sock = NULL; 935 936 err = security_socket_create(family, type, protocol, 1); 937 if (err) 938 goto out; 939 940 sock = sock_alloc(); 941 if (!sock) { 942 err = -ENOMEM; 943 goto out; 944 } 945 946 sock->type = type; 947 err = security_socket_post_create(sock, family, type, protocol, 1); 948 if (err) 949 goto out_release; 950 951 out: 952 *res = sock; 953 return err; 954 out_release: 955 sock_release(sock); 956 sock = NULL; 957 goto out; 958 } 959 960 /* No kernel lock held - perfect */ 961 static unsigned int sock_poll(struct file *file, poll_table *wait) 962 { 963 struct socket *sock; 964 965 /* 966 * We can't return errors to poll, so it's either yes or no. 967 */ 968 sock = file->private_data; 969 return sock->ops->poll(file, sock, wait); 970 } 971 972 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 973 { 974 struct socket *sock = file->private_data; 975 976 return sock->ops->mmap(file, sock, vma); 977 } 978 979 static int sock_close(struct inode *inode, struct file *filp) 980 { 981 /* 982 * It was possible the inode is NULL we were 983 * closing an unfinished socket. 984 */ 985 986 if (!inode) { 987 printk(KERN_DEBUG "sock_close: NULL inode\n"); 988 return 0; 989 } 990 sock_fasync(-1, filp, 0); 991 sock_release(SOCKET_I(inode)); 992 return 0; 993 } 994 995 /* 996 * Update the socket async list 997 * 998 * Fasync_list locking strategy. 999 * 1000 * 1. fasync_list is modified only under process context socket lock 1001 * i.e. under semaphore. 1002 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1003 * or under socket lock. 1004 * 3. fasync_list can be used from softirq context, so that 1005 * modification under socket lock have to be enhanced with 1006 * write_lock_bh(&sk->sk_callback_lock). 1007 * --ANK (990710) 1008 */ 1009 1010 static int sock_fasync(int fd, struct file *filp, int on) 1011 { 1012 struct fasync_struct *fa, *fna = NULL, **prev; 1013 struct socket *sock; 1014 struct sock *sk; 1015 1016 if (on) { 1017 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1018 if (fna == NULL) 1019 return -ENOMEM; 1020 } 1021 1022 sock = filp->private_data; 1023 1024 sk = sock->sk; 1025 if (sk == NULL) { 1026 kfree(fna); 1027 return -EINVAL; 1028 } 1029 1030 lock_sock(sk); 1031 1032 prev = &(sock->fasync_list); 1033 1034 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1035 if (fa->fa_file == filp) 1036 break; 1037 1038 if (on) { 1039 if (fa != NULL) { 1040 write_lock_bh(&sk->sk_callback_lock); 1041 fa->fa_fd = fd; 1042 write_unlock_bh(&sk->sk_callback_lock); 1043 1044 kfree(fna); 1045 goto out; 1046 } 1047 fna->fa_file = filp; 1048 fna->fa_fd = fd; 1049 fna->magic = FASYNC_MAGIC; 1050 fna->fa_next = sock->fasync_list; 1051 write_lock_bh(&sk->sk_callback_lock); 1052 sock->fasync_list = fna; 1053 write_unlock_bh(&sk->sk_callback_lock); 1054 } else { 1055 if (fa != NULL) { 1056 write_lock_bh(&sk->sk_callback_lock); 1057 *prev = fa->fa_next; 1058 write_unlock_bh(&sk->sk_callback_lock); 1059 kfree(fa); 1060 } 1061 } 1062 1063 out: 1064 release_sock(sock->sk); 1065 return 0; 1066 } 1067 1068 /* This function may be called only under socket lock or callback_lock */ 1069 1070 int sock_wake_async(struct socket *sock, int how, int band) 1071 { 1072 if (!sock || !sock->fasync_list) 1073 return -1; 1074 switch (how) { 1075 case SOCK_WAKE_WAITD: 1076 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1077 break; 1078 goto call_kill; 1079 case SOCK_WAKE_SPACE: 1080 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1081 break; 1082 /* fall through */ 1083 case SOCK_WAKE_IO: 1084 call_kill: 1085 __kill_fasync(sock->fasync_list, SIGIO, band); 1086 break; 1087 case SOCK_WAKE_URG: 1088 __kill_fasync(sock->fasync_list, SIGURG, band); 1089 } 1090 return 0; 1091 } 1092 1093 static int __sock_create(struct net *net, int family, int type, int protocol, 1094 struct socket **res, int kern) 1095 { 1096 int err; 1097 struct socket *sock; 1098 const struct net_proto_family *pf; 1099 1100 /* 1101 * Check protocol is in range 1102 */ 1103 if (family < 0 || family >= NPROTO) 1104 return -EAFNOSUPPORT; 1105 if (type < 0 || type >= SOCK_MAX) 1106 return -EINVAL; 1107 1108 /* Compatibility. 1109 1110 This uglymoron is moved from INET layer to here to avoid 1111 deadlock in module load. 1112 */ 1113 if (family == PF_INET && type == SOCK_PACKET) { 1114 static int warned; 1115 if (!warned) { 1116 warned = 1; 1117 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1118 current->comm); 1119 } 1120 family = PF_PACKET; 1121 } 1122 1123 err = security_socket_create(family, type, protocol, kern); 1124 if (err) 1125 return err; 1126 1127 /* 1128 * Allocate the socket and allow the family to set things up. if 1129 * the protocol is 0, the family is instructed to select an appropriate 1130 * default. 1131 */ 1132 sock = sock_alloc(); 1133 if (!sock) { 1134 if (net_ratelimit()) 1135 printk(KERN_WARNING "socket: no more sockets\n"); 1136 return -ENFILE; /* Not exactly a match, but its the 1137 closest posix thing */ 1138 } 1139 1140 sock->type = type; 1141 1142 #if defined(CONFIG_KMOD) 1143 /* Attempt to load a protocol module if the find failed. 1144 * 1145 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1146 * requested real, full-featured networking support upon configuration. 1147 * Otherwise module support will break! 1148 */ 1149 if (net_families[family] == NULL) 1150 request_module("net-pf-%d", family); 1151 #endif 1152 1153 rcu_read_lock(); 1154 pf = rcu_dereference(net_families[family]); 1155 err = -EAFNOSUPPORT; 1156 if (!pf) 1157 goto out_release; 1158 1159 /* 1160 * We will call the ->create function, that possibly is in a loadable 1161 * module, so we have to bump that loadable module refcnt first. 1162 */ 1163 if (!try_module_get(pf->owner)) 1164 goto out_release; 1165 1166 /* Now protected by module ref count */ 1167 rcu_read_unlock(); 1168 1169 err = pf->create(net, sock, protocol); 1170 if (err < 0) 1171 goto out_module_put; 1172 1173 /* 1174 * Now to bump the refcnt of the [loadable] module that owns this 1175 * socket at sock_release time we decrement its refcnt. 1176 */ 1177 if (!try_module_get(sock->ops->owner)) 1178 goto out_module_busy; 1179 1180 /* 1181 * Now that we're done with the ->create function, the [loadable] 1182 * module can have its refcnt decremented 1183 */ 1184 module_put(pf->owner); 1185 err = security_socket_post_create(sock, family, type, protocol, kern); 1186 if (err) 1187 goto out_sock_release; 1188 *res = sock; 1189 1190 return 0; 1191 1192 out_module_busy: 1193 err = -EAFNOSUPPORT; 1194 out_module_put: 1195 sock->ops = NULL; 1196 module_put(pf->owner); 1197 out_sock_release: 1198 sock_release(sock); 1199 return err; 1200 1201 out_release: 1202 rcu_read_unlock(); 1203 goto out_sock_release; 1204 } 1205 1206 int sock_create(int family, int type, int protocol, struct socket **res) 1207 { 1208 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1209 } 1210 1211 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1212 { 1213 return __sock_create(&init_net, family, type, protocol, res, 1); 1214 } 1215 1216 asmlinkage long sys_socket(int family, int type, int protocol) 1217 { 1218 int retval; 1219 struct socket *sock; 1220 1221 retval = sock_create(family, type, protocol, &sock); 1222 if (retval < 0) 1223 goto out; 1224 1225 retval = sock_map_fd(sock); 1226 if (retval < 0) 1227 goto out_release; 1228 1229 out: 1230 /* It may be already another descriptor 8) Not kernel problem. */ 1231 return retval; 1232 1233 out_release: 1234 sock_release(sock); 1235 return retval; 1236 } 1237 1238 /* 1239 * Create a pair of connected sockets. 1240 */ 1241 1242 asmlinkage long sys_socketpair(int family, int type, int protocol, 1243 int __user *usockvec) 1244 { 1245 struct socket *sock1, *sock2; 1246 int fd1, fd2, err; 1247 struct file *newfile1, *newfile2; 1248 1249 /* 1250 * Obtain the first socket and check if the underlying protocol 1251 * supports the socketpair call. 1252 */ 1253 1254 err = sock_create(family, type, protocol, &sock1); 1255 if (err < 0) 1256 goto out; 1257 1258 err = sock_create(family, type, protocol, &sock2); 1259 if (err < 0) 1260 goto out_release_1; 1261 1262 err = sock1->ops->socketpair(sock1, sock2); 1263 if (err < 0) 1264 goto out_release_both; 1265 1266 fd1 = sock_alloc_fd(&newfile1); 1267 if (unlikely(fd1 < 0)) { 1268 err = fd1; 1269 goto out_release_both; 1270 } 1271 1272 fd2 = sock_alloc_fd(&newfile2); 1273 if (unlikely(fd2 < 0)) { 1274 err = fd2; 1275 put_filp(newfile1); 1276 put_unused_fd(fd1); 1277 goto out_release_both; 1278 } 1279 1280 err = sock_attach_fd(sock1, newfile1); 1281 if (unlikely(err < 0)) { 1282 goto out_fd2; 1283 } 1284 1285 err = sock_attach_fd(sock2, newfile2); 1286 if (unlikely(err < 0)) { 1287 fput(newfile1); 1288 goto out_fd1; 1289 } 1290 1291 err = audit_fd_pair(fd1, fd2); 1292 if (err < 0) { 1293 fput(newfile1); 1294 fput(newfile2); 1295 goto out_fd; 1296 } 1297 1298 fd_install(fd1, newfile1); 1299 fd_install(fd2, newfile2); 1300 /* fd1 and fd2 may be already another descriptors. 1301 * Not kernel problem. 1302 */ 1303 1304 err = put_user(fd1, &usockvec[0]); 1305 if (!err) 1306 err = put_user(fd2, &usockvec[1]); 1307 if (!err) 1308 return 0; 1309 1310 sys_close(fd2); 1311 sys_close(fd1); 1312 return err; 1313 1314 out_release_both: 1315 sock_release(sock2); 1316 out_release_1: 1317 sock_release(sock1); 1318 out: 1319 return err; 1320 1321 out_fd2: 1322 put_filp(newfile1); 1323 sock_release(sock1); 1324 out_fd1: 1325 put_filp(newfile2); 1326 sock_release(sock2); 1327 out_fd: 1328 put_unused_fd(fd1); 1329 put_unused_fd(fd2); 1330 goto out; 1331 } 1332 1333 /* 1334 * Bind a name to a socket. Nothing much to do here since it's 1335 * the protocol's responsibility to handle the local address. 1336 * 1337 * We move the socket address to kernel space before we call 1338 * the protocol layer (having also checked the address is ok). 1339 */ 1340 1341 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1342 { 1343 struct socket *sock; 1344 char address[MAX_SOCK_ADDR]; 1345 int err, fput_needed; 1346 1347 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1348 if (sock) { 1349 err = move_addr_to_kernel(umyaddr, addrlen, address); 1350 if (err >= 0) { 1351 err = security_socket_bind(sock, 1352 (struct sockaddr *)address, 1353 addrlen); 1354 if (!err) 1355 err = sock->ops->bind(sock, 1356 (struct sockaddr *) 1357 address, addrlen); 1358 } 1359 fput_light(sock->file, fput_needed); 1360 } 1361 return err; 1362 } 1363 1364 /* 1365 * Perform a listen. Basically, we allow the protocol to do anything 1366 * necessary for a listen, and if that works, we mark the socket as 1367 * ready for listening. 1368 */ 1369 1370 asmlinkage long sys_listen(int fd, int backlog) 1371 { 1372 struct socket *sock; 1373 int err, fput_needed; 1374 int somaxconn; 1375 1376 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1377 if (sock) { 1378 somaxconn = sock->sk->sk_net->sysctl_somaxconn; 1379 if ((unsigned)backlog > somaxconn) 1380 backlog = somaxconn; 1381 1382 err = security_socket_listen(sock, backlog); 1383 if (!err) 1384 err = sock->ops->listen(sock, backlog); 1385 1386 fput_light(sock->file, fput_needed); 1387 } 1388 return err; 1389 } 1390 1391 /* 1392 * For accept, we attempt to create a new socket, set up the link 1393 * with the client, wake up the client, then return the new 1394 * connected fd. We collect the address of the connector in kernel 1395 * space and move it to user at the very end. This is unclean because 1396 * we open the socket then return an error. 1397 * 1398 * 1003.1g adds the ability to recvmsg() to query connection pending 1399 * status to recvmsg. We need to add that support in a way thats 1400 * clean when we restucture accept also. 1401 */ 1402 1403 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1404 int __user *upeer_addrlen) 1405 { 1406 struct socket *sock, *newsock; 1407 struct file *newfile; 1408 int err, len, newfd, fput_needed; 1409 char address[MAX_SOCK_ADDR]; 1410 1411 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1412 if (!sock) 1413 goto out; 1414 1415 err = -ENFILE; 1416 if (!(newsock = sock_alloc())) 1417 goto out_put; 1418 1419 newsock->type = sock->type; 1420 newsock->ops = sock->ops; 1421 1422 /* 1423 * We don't need try_module_get here, as the listening socket (sock) 1424 * has the protocol module (sock->ops->owner) held. 1425 */ 1426 __module_get(newsock->ops->owner); 1427 1428 newfd = sock_alloc_fd(&newfile); 1429 if (unlikely(newfd < 0)) { 1430 err = newfd; 1431 sock_release(newsock); 1432 goto out_put; 1433 } 1434 1435 err = sock_attach_fd(newsock, newfile); 1436 if (err < 0) 1437 goto out_fd_simple; 1438 1439 err = security_socket_accept(sock, newsock); 1440 if (err) 1441 goto out_fd; 1442 1443 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1444 if (err < 0) 1445 goto out_fd; 1446 1447 if (upeer_sockaddr) { 1448 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1449 &len, 2) < 0) { 1450 err = -ECONNABORTED; 1451 goto out_fd; 1452 } 1453 err = move_addr_to_user(address, len, upeer_sockaddr, 1454 upeer_addrlen); 1455 if (err < 0) 1456 goto out_fd; 1457 } 1458 1459 /* File flags are not inherited via accept() unlike another OSes. */ 1460 1461 fd_install(newfd, newfile); 1462 err = newfd; 1463 1464 security_socket_post_accept(sock, newsock); 1465 1466 out_put: 1467 fput_light(sock->file, fput_needed); 1468 out: 1469 return err; 1470 out_fd_simple: 1471 sock_release(newsock); 1472 put_filp(newfile); 1473 put_unused_fd(newfd); 1474 goto out_put; 1475 out_fd: 1476 fput(newfile); 1477 put_unused_fd(newfd); 1478 goto out_put; 1479 } 1480 1481 /* 1482 * Attempt to connect to a socket with the server address. The address 1483 * is in user space so we verify it is OK and move it to kernel space. 1484 * 1485 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1486 * break bindings 1487 * 1488 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1489 * other SEQPACKET protocols that take time to connect() as it doesn't 1490 * include the -EINPROGRESS status for such sockets. 1491 */ 1492 1493 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1494 int addrlen) 1495 { 1496 struct socket *sock; 1497 char address[MAX_SOCK_ADDR]; 1498 int err, fput_needed; 1499 1500 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1501 if (!sock) 1502 goto out; 1503 err = move_addr_to_kernel(uservaddr, addrlen, address); 1504 if (err < 0) 1505 goto out_put; 1506 1507 err = 1508 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1509 if (err) 1510 goto out_put; 1511 1512 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1513 sock->file->f_flags); 1514 out_put: 1515 fput_light(sock->file, fput_needed); 1516 out: 1517 return err; 1518 } 1519 1520 /* 1521 * Get the local address ('name') of a socket object. Move the obtained 1522 * name to user space. 1523 */ 1524 1525 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1526 int __user *usockaddr_len) 1527 { 1528 struct socket *sock; 1529 char address[MAX_SOCK_ADDR]; 1530 int len, err, fput_needed; 1531 1532 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1533 if (!sock) 1534 goto out; 1535 1536 err = security_socket_getsockname(sock); 1537 if (err) 1538 goto out_put; 1539 1540 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1541 if (err) 1542 goto out_put; 1543 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1544 1545 out_put: 1546 fput_light(sock->file, fput_needed); 1547 out: 1548 return err; 1549 } 1550 1551 /* 1552 * Get the remote address ('name') of a socket object. Move the obtained 1553 * name to user space. 1554 */ 1555 1556 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1557 int __user *usockaddr_len) 1558 { 1559 struct socket *sock; 1560 char address[MAX_SOCK_ADDR]; 1561 int len, err, fput_needed; 1562 1563 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1564 if (sock != NULL) { 1565 err = security_socket_getpeername(sock); 1566 if (err) { 1567 fput_light(sock->file, fput_needed); 1568 return err; 1569 } 1570 1571 err = 1572 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1573 1); 1574 if (!err) 1575 err = move_addr_to_user(address, len, usockaddr, 1576 usockaddr_len); 1577 fput_light(sock->file, fput_needed); 1578 } 1579 return err; 1580 } 1581 1582 /* 1583 * Send a datagram to a given address. We move the address into kernel 1584 * space and check the user space data area is readable before invoking 1585 * the protocol. 1586 */ 1587 1588 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1589 unsigned flags, struct sockaddr __user *addr, 1590 int addr_len) 1591 { 1592 struct socket *sock; 1593 char address[MAX_SOCK_ADDR]; 1594 int err; 1595 struct msghdr msg; 1596 struct iovec iov; 1597 int fput_needed; 1598 1599 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1600 if (!sock) 1601 goto out; 1602 1603 iov.iov_base = buff; 1604 iov.iov_len = len; 1605 msg.msg_name = NULL; 1606 msg.msg_iov = &iov; 1607 msg.msg_iovlen = 1; 1608 msg.msg_control = NULL; 1609 msg.msg_controllen = 0; 1610 msg.msg_namelen = 0; 1611 if (addr) { 1612 err = move_addr_to_kernel(addr, addr_len, address); 1613 if (err < 0) 1614 goto out_put; 1615 msg.msg_name = address; 1616 msg.msg_namelen = addr_len; 1617 } 1618 if (sock->file->f_flags & O_NONBLOCK) 1619 flags |= MSG_DONTWAIT; 1620 msg.msg_flags = flags; 1621 err = sock_sendmsg(sock, &msg, len); 1622 1623 out_put: 1624 fput_light(sock->file, fput_needed); 1625 out: 1626 return err; 1627 } 1628 1629 /* 1630 * Send a datagram down a socket. 1631 */ 1632 1633 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1634 { 1635 return sys_sendto(fd, buff, len, flags, NULL, 0); 1636 } 1637 1638 /* 1639 * Receive a frame from the socket and optionally record the address of the 1640 * sender. We verify the buffers are writable and if needed move the 1641 * sender address from kernel to user space. 1642 */ 1643 1644 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1645 unsigned flags, struct sockaddr __user *addr, 1646 int __user *addr_len) 1647 { 1648 struct socket *sock; 1649 struct iovec iov; 1650 struct msghdr msg; 1651 char address[MAX_SOCK_ADDR]; 1652 int err, err2; 1653 int fput_needed; 1654 1655 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1656 if (!sock) 1657 goto out; 1658 1659 msg.msg_control = NULL; 1660 msg.msg_controllen = 0; 1661 msg.msg_iovlen = 1; 1662 msg.msg_iov = &iov; 1663 iov.iov_len = size; 1664 iov.iov_base = ubuf; 1665 msg.msg_name = address; 1666 msg.msg_namelen = MAX_SOCK_ADDR; 1667 if (sock->file->f_flags & O_NONBLOCK) 1668 flags |= MSG_DONTWAIT; 1669 err = sock_recvmsg(sock, &msg, size, flags); 1670 1671 if (err >= 0 && addr != NULL) { 1672 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1673 if (err2 < 0) 1674 err = err2; 1675 } 1676 1677 fput_light(sock->file, fput_needed); 1678 out: 1679 return err; 1680 } 1681 1682 /* 1683 * Receive a datagram from a socket. 1684 */ 1685 1686 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1687 unsigned flags) 1688 { 1689 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1690 } 1691 1692 /* 1693 * Set a socket option. Because we don't know the option lengths we have 1694 * to pass the user mode parameter for the protocols to sort out. 1695 */ 1696 1697 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1698 char __user *optval, int optlen) 1699 { 1700 int err, fput_needed; 1701 struct socket *sock; 1702 1703 if (optlen < 0) 1704 return -EINVAL; 1705 1706 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1707 if (sock != NULL) { 1708 err = security_socket_setsockopt(sock, level, optname); 1709 if (err) 1710 goto out_put; 1711 1712 if (level == SOL_SOCKET) 1713 err = 1714 sock_setsockopt(sock, level, optname, optval, 1715 optlen); 1716 else 1717 err = 1718 sock->ops->setsockopt(sock, level, optname, optval, 1719 optlen); 1720 out_put: 1721 fput_light(sock->file, fput_needed); 1722 } 1723 return err; 1724 } 1725 1726 /* 1727 * Get a socket option. Because we don't know the option lengths we have 1728 * to pass a user mode parameter for the protocols to sort out. 1729 */ 1730 1731 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1732 char __user *optval, int __user *optlen) 1733 { 1734 int err, fput_needed; 1735 struct socket *sock; 1736 1737 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1738 if (sock != NULL) { 1739 err = security_socket_getsockopt(sock, level, optname); 1740 if (err) 1741 goto out_put; 1742 1743 if (level == SOL_SOCKET) 1744 err = 1745 sock_getsockopt(sock, level, optname, optval, 1746 optlen); 1747 else 1748 err = 1749 sock->ops->getsockopt(sock, level, optname, optval, 1750 optlen); 1751 out_put: 1752 fput_light(sock->file, fput_needed); 1753 } 1754 return err; 1755 } 1756 1757 /* 1758 * Shutdown a socket. 1759 */ 1760 1761 asmlinkage long sys_shutdown(int fd, int how) 1762 { 1763 int err, fput_needed; 1764 struct socket *sock; 1765 1766 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1767 if (sock != NULL) { 1768 err = security_socket_shutdown(sock, how); 1769 if (!err) 1770 err = sock->ops->shutdown(sock, how); 1771 fput_light(sock->file, fput_needed); 1772 } 1773 return err; 1774 } 1775 1776 /* A couple of helpful macros for getting the address of the 32/64 bit 1777 * fields which are the same type (int / unsigned) on our platforms. 1778 */ 1779 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1780 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1781 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1782 1783 /* 1784 * BSD sendmsg interface 1785 */ 1786 1787 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1788 { 1789 struct compat_msghdr __user *msg_compat = 1790 (struct compat_msghdr __user *)msg; 1791 struct socket *sock; 1792 char address[MAX_SOCK_ADDR]; 1793 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1794 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1795 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1796 /* 20 is size of ipv6_pktinfo */ 1797 unsigned char *ctl_buf = ctl; 1798 struct msghdr msg_sys; 1799 int err, ctl_len, iov_size, total_len; 1800 int fput_needed; 1801 1802 err = -EFAULT; 1803 if (MSG_CMSG_COMPAT & flags) { 1804 if (get_compat_msghdr(&msg_sys, msg_compat)) 1805 return -EFAULT; 1806 } 1807 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1808 return -EFAULT; 1809 1810 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1811 if (!sock) 1812 goto out; 1813 1814 /* do not move before msg_sys is valid */ 1815 err = -EMSGSIZE; 1816 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1817 goto out_put; 1818 1819 /* Check whether to allocate the iovec area */ 1820 err = -ENOMEM; 1821 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1822 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1823 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1824 if (!iov) 1825 goto out_put; 1826 } 1827 1828 /* This will also move the address data into kernel space */ 1829 if (MSG_CMSG_COMPAT & flags) { 1830 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1831 } else 1832 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1833 if (err < 0) 1834 goto out_freeiov; 1835 total_len = err; 1836 1837 err = -ENOBUFS; 1838 1839 if (msg_sys.msg_controllen > INT_MAX) 1840 goto out_freeiov; 1841 ctl_len = msg_sys.msg_controllen; 1842 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1843 err = 1844 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1845 sizeof(ctl)); 1846 if (err) 1847 goto out_freeiov; 1848 ctl_buf = msg_sys.msg_control; 1849 ctl_len = msg_sys.msg_controllen; 1850 } else if (ctl_len) { 1851 if (ctl_len > sizeof(ctl)) { 1852 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1853 if (ctl_buf == NULL) 1854 goto out_freeiov; 1855 } 1856 err = -EFAULT; 1857 /* 1858 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1859 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1860 * checking falls down on this. 1861 */ 1862 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1863 ctl_len)) 1864 goto out_freectl; 1865 msg_sys.msg_control = ctl_buf; 1866 } 1867 msg_sys.msg_flags = flags; 1868 1869 if (sock->file->f_flags & O_NONBLOCK) 1870 msg_sys.msg_flags |= MSG_DONTWAIT; 1871 err = sock_sendmsg(sock, &msg_sys, total_len); 1872 1873 out_freectl: 1874 if (ctl_buf != ctl) 1875 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1876 out_freeiov: 1877 if (iov != iovstack) 1878 sock_kfree_s(sock->sk, iov, iov_size); 1879 out_put: 1880 fput_light(sock->file, fput_needed); 1881 out: 1882 return err; 1883 } 1884 1885 /* 1886 * BSD recvmsg interface 1887 */ 1888 1889 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1890 unsigned int flags) 1891 { 1892 struct compat_msghdr __user *msg_compat = 1893 (struct compat_msghdr __user *)msg; 1894 struct socket *sock; 1895 struct iovec iovstack[UIO_FASTIOV]; 1896 struct iovec *iov = iovstack; 1897 struct msghdr msg_sys; 1898 unsigned long cmsg_ptr; 1899 int err, iov_size, total_len, len; 1900 int fput_needed; 1901 1902 /* kernel mode address */ 1903 char addr[MAX_SOCK_ADDR]; 1904 1905 /* user mode address pointers */ 1906 struct sockaddr __user *uaddr; 1907 int __user *uaddr_len; 1908 1909 if (MSG_CMSG_COMPAT & flags) { 1910 if (get_compat_msghdr(&msg_sys, msg_compat)) 1911 return -EFAULT; 1912 } 1913 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1914 return -EFAULT; 1915 1916 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1917 if (!sock) 1918 goto out; 1919 1920 err = -EMSGSIZE; 1921 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1922 goto out_put; 1923 1924 /* Check whether to allocate the iovec area */ 1925 err = -ENOMEM; 1926 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1927 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1928 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1929 if (!iov) 1930 goto out_put; 1931 } 1932 1933 /* 1934 * Save the user-mode address (verify_iovec will change the 1935 * kernel msghdr to use the kernel address space) 1936 */ 1937 1938 uaddr = (__force void __user *)msg_sys.msg_name; 1939 uaddr_len = COMPAT_NAMELEN(msg); 1940 if (MSG_CMSG_COMPAT & flags) { 1941 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1942 } else 1943 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1944 if (err < 0) 1945 goto out_freeiov; 1946 total_len = err; 1947 1948 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1949 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 1950 1951 if (sock->file->f_flags & O_NONBLOCK) 1952 flags |= MSG_DONTWAIT; 1953 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1954 if (err < 0) 1955 goto out_freeiov; 1956 len = err; 1957 1958 if (uaddr != NULL) { 1959 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1960 uaddr_len); 1961 if (err < 0) 1962 goto out_freeiov; 1963 } 1964 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1965 COMPAT_FLAGS(msg)); 1966 if (err) 1967 goto out_freeiov; 1968 if (MSG_CMSG_COMPAT & flags) 1969 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1970 &msg_compat->msg_controllen); 1971 else 1972 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1973 &msg->msg_controllen); 1974 if (err) 1975 goto out_freeiov; 1976 err = len; 1977 1978 out_freeiov: 1979 if (iov != iovstack) 1980 sock_kfree_s(sock->sk, iov, iov_size); 1981 out_put: 1982 fput_light(sock->file, fput_needed); 1983 out: 1984 return err; 1985 } 1986 1987 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1988 1989 /* Argument list sizes for sys_socketcall */ 1990 #define AL(x) ((x) * sizeof(unsigned long)) 1991 static const unsigned char nargs[18]={ 1992 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1993 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1994 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1995 }; 1996 1997 #undef AL 1998 1999 /* 2000 * System call vectors. 2001 * 2002 * Argument checking cleaned up. Saved 20% in size. 2003 * This function doesn't need to set the kernel lock because 2004 * it is set by the callees. 2005 */ 2006 2007 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 2008 { 2009 unsigned long a[6]; 2010 unsigned long a0, a1; 2011 int err; 2012 2013 if (call < 1 || call > SYS_RECVMSG) 2014 return -EINVAL; 2015 2016 /* copy_from_user should be SMP safe. */ 2017 if (copy_from_user(a, args, nargs[call])) 2018 return -EFAULT; 2019 2020 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2021 if (err) 2022 return err; 2023 2024 a0 = a[0]; 2025 a1 = a[1]; 2026 2027 switch (call) { 2028 case SYS_SOCKET: 2029 err = sys_socket(a0, a1, a[2]); 2030 break; 2031 case SYS_BIND: 2032 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2033 break; 2034 case SYS_CONNECT: 2035 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2036 break; 2037 case SYS_LISTEN: 2038 err = sys_listen(a0, a1); 2039 break; 2040 case SYS_ACCEPT: 2041 err = 2042 sys_accept(a0, (struct sockaddr __user *)a1, 2043 (int __user *)a[2]); 2044 break; 2045 case SYS_GETSOCKNAME: 2046 err = 2047 sys_getsockname(a0, (struct sockaddr __user *)a1, 2048 (int __user *)a[2]); 2049 break; 2050 case SYS_GETPEERNAME: 2051 err = 2052 sys_getpeername(a0, (struct sockaddr __user *)a1, 2053 (int __user *)a[2]); 2054 break; 2055 case SYS_SOCKETPAIR: 2056 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2057 break; 2058 case SYS_SEND: 2059 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2060 break; 2061 case SYS_SENDTO: 2062 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2063 (struct sockaddr __user *)a[4], a[5]); 2064 break; 2065 case SYS_RECV: 2066 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2067 break; 2068 case SYS_RECVFROM: 2069 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2070 (struct sockaddr __user *)a[4], 2071 (int __user *)a[5]); 2072 break; 2073 case SYS_SHUTDOWN: 2074 err = sys_shutdown(a0, a1); 2075 break; 2076 case SYS_SETSOCKOPT: 2077 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2078 break; 2079 case SYS_GETSOCKOPT: 2080 err = 2081 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2082 (int __user *)a[4]); 2083 break; 2084 case SYS_SENDMSG: 2085 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2086 break; 2087 case SYS_RECVMSG: 2088 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2089 break; 2090 default: 2091 err = -EINVAL; 2092 break; 2093 } 2094 return err; 2095 } 2096 2097 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2098 2099 /** 2100 * sock_register - add a socket protocol handler 2101 * @ops: description of protocol 2102 * 2103 * This function is called by a protocol handler that wants to 2104 * advertise its address family, and have it linked into the 2105 * socket interface. The value ops->family coresponds to the 2106 * socket system call protocol family. 2107 */ 2108 int sock_register(const struct net_proto_family *ops) 2109 { 2110 int err; 2111 2112 if (ops->family >= NPROTO) { 2113 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2114 NPROTO); 2115 return -ENOBUFS; 2116 } 2117 2118 spin_lock(&net_family_lock); 2119 if (net_families[ops->family]) 2120 err = -EEXIST; 2121 else { 2122 net_families[ops->family] = ops; 2123 err = 0; 2124 } 2125 spin_unlock(&net_family_lock); 2126 2127 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2128 return err; 2129 } 2130 2131 /** 2132 * sock_unregister - remove a protocol handler 2133 * @family: protocol family to remove 2134 * 2135 * This function is called by a protocol handler that wants to 2136 * remove its address family, and have it unlinked from the 2137 * new socket creation. 2138 * 2139 * If protocol handler is a module, then it can use module reference 2140 * counts to protect against new references. If protocol handler is not 2141 * a module then it needs to provide its own protection in 2142 * the ops->create routine. 2143 */ 2144 void sock_unregister(int family) 2145 { 2146 BUG_ON(family < 0 || family >= NPROTO); 2147 2148 spin_lock(&net_family_lock); 2149 net_families[family] = NULL; 2150 spin_unlock(&net_family_lock); 2151 2152 synchronize_rcu(); 2153 2154 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2155 } 2156 2157 static int __init sock_init(void) 2158 { 2159 /* 2160 * Initialize sock SLAB cache. 2161 */ 2162 2163 sk_init(); 2164 2165 /* 2166 * Initialize skbuff SLAB cache 2167 */ 2168 skb_init(); 2169 2170 /* 2171 * Initialize the protocols module. 2172 */ 2173 2174 init_inodecache(); 2175 register_filesystem(&sock_fs_type); 2176 sock_mnt = kern_mount(&sock_fs_type); 2177 2178 /* The real protocol initialization is performed in later initcalls. 2179 */ 2180 2181 #ifdef CONFIG_NETFILTER 2182 netfilter_init(); 2183 #endif 2184 2185 return 0; 2186 } 2187 2188 core_initcall(sock_init); /* early initcall */ 2189 2190 #ifdef CONFIG_PROC_FS 2191 void socket_seq_show(struct seq_file *seq) 2192 { 2193 int cpu; 2194 int counter = 0; 2195 2196 for_each_possible_cpu(cpu) 2197 counter += per_cpu(sockets_in_use, cpu); 2198 2199 /* It can be negative, by the way. 8) */ 2200 if (counter < 0) 2201 counter = 0; 2202 2203 seq_printf(seq, "sockets: used %d\n", counter); 2204 } 2205 #endif /* CONFIG_PROC_FS */ 2206 2207 #ifdef CONFIG_COMPAT 2208 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2209 unsigned long arg) 2210 { 2211 struct socket *sock = file->private_data; 2212 int ret = -ENOIOCTLCMD; 2213 2214 if (sock->ops->compat_ioctl) 2215 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2216 2217 return ret; 2218 } 2219 #endif 2220 2221 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2222 { 2223 return sock->ops->bind(sock, addr, addrlen); 2224 } 2225 2226 int kernel_listen(struct socket *sock, int backlog) 2227 { 2228 return sock->ops->listen(sock, backlog); 2229 } 2230 2231 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2232 { 2233 struct sock *sk = sock->sk; 2234 int err; 2235 2236 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2237 newsock); 2238 if (err < 0) 2239 goto done; 2240 2241 err = sock->ops->accept(sock, *newsock, flags); 2242 if (err < 0) { 2243 sock_release(*newsock); 2244 *newsock = NULL; 2245 goto done; 2246 } 2247 2248 (*newsock)->ops = sock->ops; 2249 2250 done: 2251 return err; 2252 } 2253 2254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2255 int flags) 2256 { 2257 return sock->ops->connect(sock, addr, addrlen, flags); 2258 } 2259 2260 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2261 int *addrlen) 2262 { 2263 return sock->ops->getname(sock, addr, addrlen, 0); 2264 } 2265 2266 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2267 int *addrlen) 2268 { 2269 return sock->ops->getname(sock, addr, addrlen, 1); 2270 } 2271 2272 int kernel_getsockopt(struct socket *sock, int level, int optname, 2273 char *optval, int *optlen) 2274 { 2275 mm_segment_t oldfs = get_fs(); 2276 int err; 2277 2278 set_fs(KERNEL_DS); 2279 if (level == SOL_SOCKET) 2280 err = sock_getsockopt(sock, level, optname, optval, optlen); 2281 else 2282 err = sock->ops->getsockopt(sock, level, optname, optval, 2283 optlen); 2284 set_fs(oldfs); 2285 return err; 2286 } 2287 2288 int kernel_setsockopt(struct socket *sock, int level, int optname, 2289 char *optval, int optlen) 2290 { 2291 mm_segment_t oldfs = get_fs(); 2292 int err; 2293 2294 set_fs(KERNEL_DS); 2295 if (level == SOL_SOCKET) 2296 err = sock_setsockopt(sock, level, optname, optval, optlen); 2297 else 2298 err = sock->ops->setsockopt(sock, level, optname, optval, 2299 optlen); 2300 set_fs(oldfs); 2301 return err; 2302 } 2303 2304 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2305 size_t size, int flags) 2306 { 2307 if (sock->ops->sendpage) 2308 return sock->ops->sendpage(sock, page, offset, size, flags); 2309 2310 return sock_no_sendpage(sock, page, offset, size, flags); 2311 } 2312 2313 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2314 { 2315 mm_segment_t oldfs = get_fs(); 2316 int err; 2317 2318 set_fs(KERNEL_DS); 2319 err = sock->ops->ioctl(sock, cmd, arg); 2320 set_fs(oldfs); 2321 2322 return err; 2323 } 2324 2325 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 2326 { 2327 return sock->ops->shutdown(sock, how); 2328 } 2329 2330 /* ABI emulation layers need these two */ 2331 EXPORT_SYMBOL(move_addr_to_kernel); 2332 EXPORT_SYMBOL(move_addr_to_user); 2333 EXPORT_SYMBOL(sock_create); 2334 EXPORT_SYMBOL(sock_create_kern); 2335 EXPORT_SYMBOL(sock_create_lite); 2336 EXPORT_SYMBOL(sock_map_fd); 2337 EXPORT_SYMBOL(sock_recvmsg); 2338 EXPORT_SYMBOL(sock_register); 2339 EXPORT_SYMBOL(sock_release); 2340 EXPORT_SYMBOL(sock_sendmsg); 2341 EXPORT_SYMBOL(sock_unregister); 2342 EXPORT_SYMBOL(sock_wake_async); 2343 EXPORT_SYMBOL(sockfd_lookup); 2344 EXPORT_SYMBOL(kernel_sendmsg); 2345 EXPORT_SYMBOL(kernel_recvmsg); 2346 EXPORT_SYMBOL(kernel_bind); 2347 EXPORT_SYMBOL(kernel_listen); 2348 EXPORT_SYMBOL(kernel_accept); 2349 EXPORT_SYMBOL(kernel_connect); 2350 EXPORT_SYMBOL(kernel_getsockname); 2351 EXPORT_SYMBOL(kernel_getpeername); 2352 EXPORT_SYMBOL(kernel_getsockopt); 2353 EXPORT_SYMBOL(kernel_setsockopt); 2354 EXPORT_SYMBOL(kernel_sendpage); 2355 EXPORT_SYMBOL(kernel_sock_ioctl); 2356 EXPORT_SYMBOL(kernel_sock_shutdown); 2357