xref: /openbmc/linux/net/socket.c (revision a1e58bbd)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91 
92 #include <net/compat.h>
93 
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
96 
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
99 			 unsigned long nr_segs, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
101 			  unsigned long nr_segs, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 			      struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 #ifdef CONFIG_COMPAT
109 static long compat_sock_ioctl(struct file *file,
110 			      unsigned int cmd, unsigned long arg);
111 #endif
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_sendpage(struct file *file, struct page *page,
114 			     int offset, size_t size, loff_t *ppos, int more);
115 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
116 			        struct pipe_inode_info *pipe, size_t len,
117 				unsigned int flags);
118 
119 /*
120  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121  *	in the operation structures but are done directly via the socketcall() multiplexor.
122  */
123 
124 static const struct file_operations socket_file_ops = {
125 	.owner =	THIS_MODULE,
126 	.llseek =	no_llseek,
127 	.aio_read =	sock_aio_read,
128 	.aio_write =	sock_aio_write,
129 	.poll =		sock_poll,
130 	.unlocked_ioctl = sock_ioctl,
131 #ifdef CONFIG_COMPAT
132 	.compat_ioctl = compat_sock_ioctl,
133 #endif
134 	.mmap =		sock_mmap,
135 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
136 	.release =	sock_close,
137 	.fasync =	sock_fasync,
138 	.sendpage =	sock_sendpage,
139 	.splice_write = generic_splice_sendpage,
140 	.splice_read =	sock_splice_read,
141 };
142 
143 /*
144  *	The protocol list. Each protocol is registered in here.
145  */
146 
147 static DEFINE_SPINLOCK(net_family_lock);
148 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
149 
150 /*
151  *	Statistics counters of the socket lists
152  */
153 
154 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
155 
156 /*
157  * Support routines.
158  * Move socket addresses back and forth across the kernel/user
159  * divide and look after the messy bits.
160  */
161 
162 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
163 					   16 for IP, 16 for IPX,
164 					   24 for IPv6,
165 					   about 80 for AX.25
166 					   must be at least one bigger than
167 					   the AF_UNIX size (see net/unix/af_unix.c
168 					   :unix_mkname()).
169 					 */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
183 {
184 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
211 		      int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	err = get_user(len, ulen);
217 	if (err)
218 		return err;
219 	if (len > klen)
220 		len = klen;
221 	if (len < 0 || len > MAX_SOCK_ADDR)
222 		return -EINVAL;
223 	if (len) {
224 		if (audit_sockaddr(klen, kaddr))
225 			return -ENOMEM;
226 		if (copy_to_user(uaddr, kaddr, len))
227 			return -EFAULT;
228 	}
229 	/*
230 	 *      "fromlen shall refer to the value before truncation.."
231 	 *                      1003.1g
232 	 */
233 	return __put_user(klen, ulen);
234 }
235 
236 #define SOCKFS_MAGIC 0x534F434B
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	init_waitqueue_head(&ei->socket.wait);
248 
249 	ei->socket.fasync_list = NULL;
250 	ei->socket.state = SS_UNCONNECTED;
251 	ei->socket.flags = 0;
252 	ei->socket.ops = NULL;
253 	ei->socket.sk = NULL;
254 	ei->socket.file = NULL;
255 
256 	return &ei->vfs_inode;
257 }
258 
259 static void sock_destroy_inode(struct inode *inode)
260 {
261 	kmem_cache_free(sock_inode_cachep,
262 			container_of(inode, struct socket_alloc, vfs_inode));
263 }
264 
265 static void init_once(struct kmem_cache *cachep, void *foo)
266 {
267 	struct socket_alloc *ei = (struct socket_alloc *)foo;
268 
269 	inode_init_once(&ei->vfs_inode);
270 }
271 
272 static int init_inodecache(void)
273 {
274 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
275 					      sizeof(struct socket_alloc),
276 					      0,
277 					      (SLAB_HWCACHE_ALIGN |
278 					       SLAB_RECLAIM_ACCOUNT |
279 					       SLAB_MEM_SPREAD),
280 					      init_once);
281 	if (sock_inode_cachep == NULL)
282 		return -ENOMEM;
283 	return 0;
284 }
285 
286 static struct super_operations sockfs_ops = {
287 	.alloc_inode =	sock_alloc_inode,
288 	.destroy_inode =sock_destroy_inode,
289 	.statfs =	simple_statfs,
290 };
291 
292 static int sockfs_get_sb(struct file_system_type *fs_type,
293 			 int flags, const char *dev_name, void *data,
294 			 struct vfsmount *mnt)
295 {
296 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
297 			     mnt);
298 }
299 
300 static struct vfsmount *sock_mnt __read_mostly;
301 
302 static struct file_system_type sock_fs_type = {
303 	.name =		"sockfs",
304 	.get_sb =	sockfs_get_sb,
305 	.kill_sb =	kill_anon_super,
306 };
307 
308 static int sockfs_delete_dentry(struct dentry *dentry)
309 {
310 	/*
311 	 * At creation time, we pretended this dentry was hashed
312 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
313 	 * At delete time, we restore the truth : not hashed.
314 	 * (so that dput() can proceed correctly)
315 	 */
316 	dentry->d_flags |= DCACHE_UNHASHED;
317 	return 0;
318 }
319 
320 /*
321  * sockfs_dname() is called from d_path().
322  */
323 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
324 {
325 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
326 				dentry->d_inode->i_ino);
327 }
328 
329 static struct dentry_operations sockfs_dentry_operations = {
330 	.d_delete = sockfs_delete_dentry,
331 	.d_dname  = sockfs_dname,
332 };
333 
334 /*
335  *	Obtains the first available file descriptor and sets it up for use.
336  *
337  *	These functions create file structures and maps them to fd space
338  *	of the current process. On success it returns file descriptor
339  *	and file struct implicitly stored in sock->file.
340  *	Note that another thread may close file descriptor before we return
341  *	from this function. We use the fact that now we do not refer
342  *	to socket after mapping. If one day we will need it, this
343  *	function will increment ref. count on file by 1.
344  *
345  *	In any case returned fd MAY BE not valid!
346  *	This race condition is unavoidable
347  *	with shared fd spaces, we cannot solve it inside kernel,
348  *	but we take care of internal coherence yet.
349  */
350 
351 static int sock_alloc_fd(struct file **filep)
352 {
353 	int fd;
354 
355 	fd = get_unused_fd();
356 	if (likely(fd >= 0)) {
357 		struct file *file = get_empty_filp();
358 
359 		*filep = file;
360 		if (unlikely(!file)) {
361 			put_unused_fd(fd);
362 			return -ENFILE;
363 		}
364 	} else
365 		*filep = NULL;
366 	return fd;
367 }
368 
369 static int sock_attach_fd(struct socket *sock, struct file *file)
370 {
371 	struct dentry *dentry;
372 	struct qstr name = { .name = "" };
373 
374 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
375 	if (unlikely(!dentry))
376 		return -ENOMEM;
377 
378 	dentry->d_op = &sockfs_dentry_operations;
379 	/*
380 	 * We dont want to push this dentry into global dentry hash table.
381 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
382 	 * This permits a working /proc/$pid/fd/XXX on sockets
383 	 */
384 	dentry->d_flags &= ~DCACHE_UNHASHED;
385 	d_instantiate(dentry, SOCK_INODE(sock));
386 
387 	sock->file = file;
388 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
389 		  &socket_file_ops);
390 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
391 	file->f_flags = O_RDWR;
392 	file->f_pos = 0;
393 	file->private_data = sock;
394 
395 	return 0;
396 }
397 
398 int sock_map_fd(struct socket *sock)
399 {
400 	struct file *newfile;
401 	int fd = sock_alloc_fd(&newfile);
402 
403 	if (likely(fd >= 0)) {
404 		int err = sock_attach_fd(sock, newfile);
405 
406 		if (unlikely(err < 0)) {
407 			put_filp(newfile);
408 			put_unused_fd(fd);
409 			return err;
410 		}
411 		fd_install(fd, newfile);
412 	}
413 	return fd;
414 }
415 
416 static struct socket *sock_from_file(struct file *file, int *err)
417 {
418 	if (file->f_op == &socket_file_ops)
419 		return file->private_data;	/* set in sock_map_fd */
420 
421 	*err = -ENOTSOCK;
422 	return NULL;
423 }
424 
425 /**
426  *	sockfd_lookup	- 	Go from a file number to its socket slot
427  *	@fd: file handle
428  *	@err: pointer to an error code return
429  *
430  *	The file handle passed in is locked and the socket it is bound
431  *	too is returned. If an error occurs the err pointer is overwritten
432  *	with a negative errno code and NULL is returned. The function checks
433  *	for both invalid handles and passing a handle which is not a socket.
434  *
435  *	On a success the socket object pointer is returned.
436  */
437 
438 struct socket *sockfd_lookup(int fd, int *err)
439 {
440 	struct file *file;
441 	struct socket *sock;
442 
443 	file = fget(fd);
444 	if (!file) {
445 		*err = -EBADF;
446 		return NULL;
447 	}
448 
449 	sock = sock_from_file(file, err);
450 	if (!sock)
451 		fput(file);
452 	return sock;
453 }
454 
455 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
456 {
457 	struct file *file;
458 	struct socket *sock;
459 
460 	*err = -EBADF;
461 	file = fget_light(fd, fput_needed);
462 	if (file) {
463 		sock = sock_from_file(file, err);
464 		if (sock)
465 			return sock;
466 		fput_light(file, *fput_needed);
467 	}
468 	return NULL;
469 }
470 
471 /**
472  *	sock_alloc	-	allocate a socket
473  *
474  *	Allocate a new inode and socket object. The two are bound together
475  *	and initialised. The socket is then returned. If we are out of inodes
476  *	NULL is returned.
477  */
478 
479 static struct socket *sock_alloc(void)
480 {
481 	struct inode *inode;
482 	struct socket *sock;
483 
484 	inode = new_inode(sock_mnt->mnt_sb);
485 	if (!inode)
486 		return NULL;
487 
488 	sock = SOCKET_I(inode);
489 
490 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
491 	inode->i_uid = current->fsuid;
492 	inode->i_gid = current->fsgid;
493 
494 	get_cpu_var(sockets_in_use)++;
495 	put_cpu_var(sockets_in_use);
496 	return sock;
497 }
498 
499 /*
500  *	In theory you can't get an open on this inode, but /proc provides
501  *	a back door. Remember to keep it shut otherwise you'll let the
502  *	creepy crawlies in.
503  */
504 
505 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
506 {
507 	return -ENXIO;
508 }
509 
510 const struct file_operations bad_sock_fops = {
511 	.owner = THIS_MODULE,
512 	.open = sock_no_open,
513 };
514 
515 /**
516  *	sock_release	-	close a socket
517  *	@sock: socket to close
518  *
519  *	The socket is released from the protocol stack if it has a release
520  *	callback, and the inode is then released if the socket is bound to
521  *	an inode not a file.
522  */
523 
524 void sock_release(struct socket *sock)
525 {
526 	if (sock->ops) {
527 		struct module *owner = sock->ops->owner;
528 
529 		sock->ops->release(sock);
530 		sock->ops = NULL;
531 		module_put(owner);
532 	}
533 
534 	if (sock->fasync_list)
535 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
536 
537 	get_cpu_var(sockets_in_use)--;
538 	put_cpu_var(sockets_in_use);
539 	if (!sock->file) {
540 		iput(SOCK_INODE(sock));
541 		return;
542 	}
543 	sock->file = NULL;
544 }
545 
546 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
547 				 struct msghdr *msg, size_t size)
548 {
549 	struct sock_iocb *si = kiocb_to_siocb(iocb);
550 	int err;
551 
552 	si->sock = sock;
553 	si->scm = NULL;
554 	si->msg = msg;
555 	si->size = size;
556 
557 	err = security_socket_sendmsg(sock, msg, size);
558 	if (err)
559 		return err;
560 
561 	return sock->ops->sendmsg(iocb, sock, msg, size);
562 }
563 
564 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
565 {
566 	struct kiocb iocb;
567 	struct sock_iocb siocb;
568 	int ret;
569 
570 	init_sync_kiocb(&iocb, NULL);
571 	iocb.private = &siocb;
572 	ret = __sock_sendmsg(&iocb, sock, msg, size);
573 	if (-EIOCBQUEUED == ret)
574 		ret = wait_on_sync_kiocb(&iocb);
575 	return ret;
576 }
577 
578 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
579 		   struct kvec *vec, size_t num, size_t size)
580 {
581 	mm_segment_t oldfs = get_fs();
582 	int result;
583 
584 	set_fs(KERNEL_DS);
585 	/*
586 	 * the following is safe, since for compiler definitions of kvec and
587 	 * iovec are identical, yielding the same in-core layout and alignment
588 	 */
589 	msg->msg_iov = (struct iovec *)vec;
590 	msg->msg_iovlen = num;
591 	result = sock_sendmsg(sock, msg, size);
592 	set_fs(oldfs);
593 	return result;
594 }
595 
596 /*
597  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
598  */
599 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
600 	struct sk_buff *skb)
601 {
602 	ktime_t kt = skb->tstamp;
603 
604 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
605 		struct timeval tv;
606 		/* Race occurred between timestamp enabling and packet
607 		   receiving.  Fill in the current time for now. */
608 		if (kt.tv64 == 0)
609 			kt = ktime_get_real();
610 		skb->tstamp = kt;
611 		tv = ktime_to_timeval(kt);
612 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
613 	} else {
614 		struct timespec ts;
615 		/* Race occurred between timestamp enabling and packet
616 		   receiving.  Fill in the current time for now. */
617 		if (kt.tv64 == 0)
618 			kt = ktime_get_real();
619 		skb->tstamp = kt;
620 		ts = ktime_to_timespec(kt);
621 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
622 	}
623 }
624 
625 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
626 
627 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
628 				 struct msghdr *msg, size_t size, int flags)
629 {
630 	int err;
631 	struct sock_iocb *si = kiocb_to_siocb(iocb);
632 
633 	si->sock = sock;
634 	si->scm = NULL;
635 	si->msg = msg;
636 	si->size = size;
637 	si->flags = flags;
638 
639 	err = security_socket_recvmsg(sock, msg, size, flags);
640 	if (err)
641 		return err;
642 
643 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
644 }
645 
646 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
647 		 size_t size, int flags)
648 {
649 	struct kiocb iocb;
650 	struct sock_iocb siocb;
651 	int ret;
652 
653 	init_sync_kiocb(&iocb, NULL);
654 	iocb.private = &siocb;
655 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
656 	if (-EIOCBQUEUED == ret)
657 		ret = wait_on_sync_kiocb(&iocb);
658 	return ret;
659 }
660 
661 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
662 		   struct kvec *vec, size_t num, size_t size, int flags)
663 {
664 	mm_segment_t oldfs = get_fs();
665 	int result;
666 
667 	set_fs(KERNEL_DS);
668 	/*
669 	 * the following is safe, since for compiler definitions of kvec and
670 	 * iovec are identical, yielding the same in-core layout and alignment
671 	 */
672 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
673 	result = sock_recvmsg(sock, msg, size, flags);
674 	set_fs(oldfs);
675 	return result;
676 }
677 
678 static void sock_aio_dtor(struct kiocb *iocb)
679 {
680 	kfree(iocb->private);
681 }
682 
683 static ssize_t sock_sendpage(struct file *file, struct page *page,
684 			     int offset, size_t size, loff_t *ppos, int more)
685 {
686 	struct socket *sock;
687 	int flags;
688 
689 	sock = file->private_data;
690 
691 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
692 	if (more)
693 		flags |= MSG_MORE;
694 
695 	return sock->ops->sendpage(sock, page, offset, size, flags);
696 }
697 
698 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
699 			        struct pipe_inode_info *pipe, size_t len,
700 				unsigned int flags)
701 {
702 	struct socket *sock = file->private_data;
703 
704 	if (unlikely(!sock->ops->splice_read))
705 		return -EINVAL;
706 
707 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
708 }
709 
710 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
711 					 struct sock_iocb *siocb)
712 {
713 	if (!is_sync_kiocb(iocb)) {
714 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
715 		if (!siocb)
716 			return NULL;
717 		iocb->ki_dtor = sock_aio_dtor;
718 	}
719 
720 	siocb->kiocb = iocb;
721 	iocb->private = siocb;
722 	return siocb;
723 }
724 
725 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
726 		struct file *file, const struct iovec *iov,
727 		unsigned long nr_segs)
728 {
729 	struct socket *sock = file->private_data;
730 	size_t size = 0;
731 	int i;
732 
733 	for (i = 0; i < nr_segs; i++)
734 		size += iov[i].iov_len;
735 
736 	msg->msg_name = NULL;
737 	msg->msg_namelen = 0;
738 	msg->msg_control = NULL;
739 	msg->msg_controllen = 0;
740 	msg->msg_iov = (struct iovec *)iov;
741 	msg->msg_iovlen = nr_segs;
742 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
743 
744 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
745 }
746 
747 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
748 				unsigned long nr_segs, loff_t pos)
749 {
750 	struct sock_iocb siocb, *x;
751 
752 	if (pos != 0)
753 		return -ESPIPE;
754 
755 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
756 		return 0;
757 
758 
759 	x = alloc_sock_iocb(iocb, &siocb);
760 	if (!x)
761 		return -ENOMEM;
762 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
763 }
764 
765 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
766 			struct file *file, const struct iovec *iov,
767 			unsigned long nr_segs)
768 {
769 	struct socket *sock = file->private_data;
770 	size_t size = 0;
771 	int i;
772 
773 	for (i = 0; i < nr_segs; i++)
774 		size += iov[i].iov_len;
775 
776 	msg->msg_name = NULL;
777 	msg->msg_namelen = 0;
778 	msg->msg_control = NULL;
779 	msg->msg_controllen = 0;
780 	msg->msg_iov = (struct iovec *)iov;
781 	msg->msg_iovlen = nr_segs;
782 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
783 	if (sock->type == SOCK_SEQPACKET)
784 		msg->msg_flags |= MSG_EOR;
785 
786 	return __sock_sendmsg(iocb, sock, msg, size);
787 }
788 
789 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
790 			  unsigned long nr_segs, loff_t pos)
791 {
792 	struct sock_iocb siocb, *x;
793 
794 	if (pos != 0)
795 		return -ESPIPE;
796 
797 	x = alloc_sock_iocb(iocb, &siocb);
798 	if (!x)
799 		return -ENOMEM;
800 
801 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
802 }
803 
804 /*
805  * Atomic setting of ioctl hooks to avoid race
806  * with module unload.
807  */
808 
809 static DEFINE_MUTEX(br_ioctl_mutex);
810 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
811 
812 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
813 {
814 	mutex_lock(&br_ioctl_mutex);
815 	br_ioctl_hook = hook;
816 	mutex_unlock(&br_ioctl_mutex);
817 }
818 
819 EXPORT_SYMBOL(brioctl_set);
820 
821 static DEFINE_MUTEX(vlan_ioctl_mutex);
822 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
823 
824 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
825 {
826 	mutex_lock(&vlan_ioctl_mutex);
827 	vlan_ioctl_hook = hook;
828 	mutex_unlock(&vlan_ioctl_mutex);
829 }
830 
831 EXPORT_SYMBOL(vlan_ioctl_set);
832 
833 static DEFINE_MUTEX(dlci_ioctl_mutex);
834 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
835 
836 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
837 {
838 	mutex_lock(&dlci_ioctl_mutex);
839 	dlci_ioctl_hook = hook;
840 	mutex_unlock(&dlci_ioctl_mutex);
841 }
842 
843 EXPORT_SYMBOL(dlci_ioctl_set);
844 
845 /*
846  *	With an ioctl, arg may well be a user mode pointer, but we don't know
847  *	what to do with it - that's up to the protocol still.
848  */
849 
850 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
851 {
852 	struct socket *sock;
853 	struct sock *sk;
854 	void __user *argp = (void __user *)arg;
855 	int pid, err;
856 	struct net *net;
857 
858 	sock = file->private_data;
859 	sk = sock->sk;
860 	net = sk->sk_net;
861 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
862 		err = dev_ioctl(net, cmd, argp);
863 	} else
864 #ifdef CONFIG_WIRELESS_EXT
865 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
866 		err = dev_ioctl(net, cmd, argp);
867 	} else
868 #endif				/* CONFIG_WIRELESS_EXT */
869 		switch (cmd) {
870 		case FIOSETOWN:
871 		case SIOCSPGRP:
872 			err = -EFAULT;
873 			if (get_user(pid, (int __user *)argp))
874 				break;
875 			err = f_setown(sock->file, pid, 1);
876 			break;
877 		case FIOGETOWN:
878 		case SIOCGPGRP:
879 			err = put_user(f_getown(sock->file),
880 				       (int __user *)argp);
881 			break;
882 		case SIOCGIFBR:
883 		case SIOCSIFBR:
884 		case SIOCBRADDBR:
885 		case SIOCBRDELBR:
886 			err = -ENOPKG;
887 			if (!br_ioctl_hook)
888 				request_module("bridge");
889 
890 			mutex_lock(&br_ioctl_mutex);
891 			if (br_ioctl_hook)
892 				err = br_ioctl_hook(net, cmd, argp);
893 			mutex_unlock(&br_ioctl_mutex);
894 			break;
895 		case SIOCGIFVLAN:
896 		case SIOCSIFVLAN:
897 			err = -ENOPKG;
898 			if (!vlan_ioctl_hook)
899 				request_module("8021q");
900 
901 			mutex_lock(&vlan_ioctl_mutex);
902 			if (vlan_ioctl_hook)
903 				err = vlan_ioctl_hook(net, argp);
904 			mutex_unlock(&vlan_ioctl_mutex);
905 			break;
906 		case SIOCADDDLCI:
907 		case SIOCDELDLCI:
908 			err = -ENOPKG;
909 			if (!dlci_ioctl_hook)
910 				request_module("dlci");
911 
912 			mutex_lock(&dlci_ioctl_mutex);
913 			if (dlci_ioctl_hook)
914 				err = dlci_ioctl_hook(cmd, argp);
915 			mutex_unlock(&dlci_ioctl_mutex);
916 			break;
917 		default:
918 			err = sock->ops->ioctl(sock, cmd, arg);
919 
920 			/*
921 			 * If this ioctl is unknown try to hand it down
922 			 * to the NIC driver.
923 			 */
924 			if (err == -ENOIOCTLCMD)
925 				err = dev_ioctl(net, cmd, argp);
926 			break;
927 		}
928 	return err;
929 }
930 
931 int sock_create_lite(int family, int type, int protocol, struct socket **res)
932 {
933 	int err;
934 	struct socket *sock = NULL;
935 
936 	err = security_socket_create(family, type, protocol, 1);
937 	if (err)
938 		goto out;
939 
940 	sock = sock_alloc();
941 	if (!sock) {
942 		err = -ENOMEM;
943 		goto out;
944 	}
945 
946 	sock->type = type;
947 	err = security_socket_post_create(sock, family, type, protocol, 1);
948 	if (err)
949 		goto out_release;
950 
951 out:
952 	*res = sock;
953 	return err;
954 out_release:
955 	sock_release(sock);
956 	sock = NULL;
957 	goto out;
958 }
959 
960 /* No kernel lock held - perfect */
961 static unsigned int sock_poll(struct file *file, poll_table *wait)
962 {
963 	struct socket *sock;
964 
965 	/*
966 	 *      We can't return errors to poll, so it's either yes or no.
967 	 */
968 	sock = file->private_data;
969 	return sock->ops->poll(file, sock, wait);
970 }
971 
972 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
973 {
974 	struct socket *sock = file->private_data;
975 
976 	return sock->ops->mmap(file, sock, vma);
977 }
978 
979 static int sock_close(struct inode *inode, struct file *filp)
980 {
981 	/*
982 	 *      It was possible the inode is NULL we were
983 	 *      closing an unfinished socket.
984 	 */
985 
986 	if (!inode) {
987 		printk(KERN_DEBUG "sock_close: NULL inode\n");
988 		return 0;
989 	}
990 	sock_fasync(-1, filp, 0);
991 	sock_release(SOCKET_I(inode));
992 	return 0;
993 }
994 
995 /*
996  *	Update the socket async list
997  *
998  *	Fasync_list locking strategy.
999  *
1000  *	1. fasync_list is modified only under process context socket lock
1001  *	   i.e. under semaphore.
1002  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1003  *	   or under socket lock.
1004  *	3. fasync_list can be used from softirq context, so that
1005  *	   modification under socket lock have to be enhanced with
1006  *	   write_lock_bh(&sk->sk_callback_lock).
1007  *							--ANK (990710)
1008  */
1009 
1010 static int sock_fasync(int fd, struct file *filp, int on)
1011 {
1012 	struct fasync_struct *fa, *fna = NULL, **prev;
1013 	struct socket *sock;
1014 	struct sock *sk;
1015 
1016 	if (on) {
1017 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1018 		if (fna == NULL)
1019 			return -ENOMEM;
1020 	}
1021 
1022 	sock = filp->private_data;
1023 
1024 	sk = sock->sk;
1025 	if (sk == NULL) {
1026 		kfree(fna);
1027 		return -EINVAL;
1028 	}
1029 
1030 	lock_sock(sk);
1031 
1032 	prev = &(sock->fasync_list);
1033 
1034 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1035 		if (fa->fa_file == filp)
1036 			break;
1037 
1038 	if (on) {
1039 		if (fa != NULL) {
1040 			write_lock_bh(&sk->sk_callback_lock);
1041 			fa->fa_fd = fd;
1042 			write_unlock_bh(&sk->sk_callback_lock);
1043 
1044 			kfree(fna);
1045 			goto out;
1046 		}
1047 		fna->fa_file = filp;
1048 		fna->fa_fd = fd;
1049 		fna->magic = FASYNC_MAGIC;
1050 		fna->fa_next = sock->fasync_list;
1051 		write_lock_bh(&sk->sk_callback_lock);
1052 		sock->fasync_list = fna;
1053 		write_unlock_bh(&sk->sk_callback_lock);
1054 	} else {
1055 		if (fa != NULL) {
1056 			write_lock_bh(&sk->sk_callback_lock);
1057 			*prev = fa->fa_next;
1058 			write_unlock_bh(&sk->sk_callback_lock);
1059 			kfree(fa);
1060 		}
1061 	}
1062 
1063 out:
1064 	release_sock(sock->sk);
1065 	return 0;
1066 }
1067 
1068 /* This function may be called only under socket lock or callback_lock */
1069 
1070 int sock_wake_async(struct socket *sock, int how, int band)
1071 {
1072 	if (!sock || !sock->fasync_list)
1073 		return -1;
1074 	switch (how) {
1075 	case SOCK_WAKE_WAITD:
1076 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1077 			break;
1078 		goto call_kill;
1079 	case SOCK_WAKE_SPACE:
1080 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1081 			break;
1082 		/* fall through */
1083 	case SOCK_WAKE_IO:
1084 call_kill:
1085 		__kill_fasync(sock->fasync_list, SIGIO, band);
1086 		break;
1087 	case SOCK_WAKE_URG:
1088 		__kill_fasync(sock->fasync_list, SIGURG, band);
1089 	}
1090 	return 0;
1091 }
1092 
1093 static int __sock_create(struct net *net, int family, int type, int protocol,
1094 			 struct socket **res, int kern)
1095 {
1096 	int err;
1097 	struct socket *sock;
1098 	const struct net_proto_family *pf;
1099 
1100 	/*
1101 	 *      Check protocol is in range
1102 	 */
1103 	if (family < 0 || family >= NPROTO)
1104 		return -EAFNOSUPPORT;
1105 	if (type < 0 || type >= SOCK_MAX)
1106 		return -EINVAL;
1107 
1108 	/* Compatibility.
1109 
1110 	   This uglymoron is moved from INET layer to here to avoid
1111 	   deadlock in module load.
1112 	 */
1113 	if (family == PF_INET && type == SOCK_PACKET) {
1114 		static int warned;
1115 		if (!warned) {
1116 			warned = 1;
1117 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1118 			       current->comm);
1119 		}
1120 		family = PF_PACKET;
1121 	}
1122 
1123 	err = security_socket_create(family, type, protocol, kern);
1124 	if (err)
1125 		return err;
1126 
1127 	/*
1128 	 *	Allocate the socket and allow the family to set things up. if
1129 	 *	the protocol is 0, the family is instructed to select an appropriate
1130 	 *	default.
1131 	 */
1132 	sock = sock_alloc();
1133 	if (!sock) {
1134 		if (net_ratelimit())
1135 			printk(KERN_WARNING "socket: no more sockets\n");
1136 		return -ENFILE;	/* Not exactly a match, but its the
1137 				   closest posix thing */
1138 	}
1139 
1140 	sock->type = type;
1141 
1142 #if defined(CONFIG_KMOD)
1143 	/* Attempt to load a protocol module if the find failed.
1144 	 *
1145 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1146 	 * requested real, full-featured networking support upon configuration.
1147 	 * Otherwise module support will break!
1148 	 */
1149 	if (net_families[family] == NULL)
1150 		request_module("net-pf-%d", family);
1151 #endif
1152 
1153 	rcu_read_lock();
1154 	pf = rcu_dereference(net_families[family]);
1155 	err = -EAFNOSUPPORT;
1156 	if (!pf)
1157 		goto out_release;
1158 
1159 	/*
1160 	 * We will call the ->create function, that possibly is in a loadable
1161 	 * module, so we have to bump that loadable module refcnt first.
1162 	 */
1163 	if (!try_module_get(pf->owner))
1164 		goto out_release;
1165 
1166 	/* Now protected by module ref count */
1167 	rcu_read_unlock();
1168 
1169 	err = pf->create(net, sock, protocol);
1170 	if (err < 0)
1171 		goto out_module_put;
1172 
1173 	/*
1174 	 * Now to bump the refcnt of the [loadable] module that owns this
1175 	 * socket at sock_release time we decrement its refcnt.
1176 	 */
1177 	if (!try_module_get(sock->ops->owner))
1178 		goto out_module_busy;
1179 
1180 	/*
1181 	 * Now that we're done with the ->create function, the [loadable]
1182 	 * module can have its refcnt decremented
1183 	 */
1184 	module_put(pf->owner);
1185 	err = security_socket_post_create(sock, family, type, protocol, kern);
1186 	if (err)
1187 		goto out_sock_release;
1188 	*res = sock;
1189 
1190 	return 0;
1191 
1192 out_module_busy:
1193 	err = -EAFNOSUPPORT;
1194 out_module_put:
1195 	sock->ops = NULL;
1196 	module_put(pf->owner);
1197 out_sock_release:
1198 	sock_release(sock);
1199 	return err;
1200 
1201 out_release:
1202 	rcu_read_unlock();
1203 	goto out_sock_release;
1204 }
1205 
1206 int sock_create(int family, int type, int protocol, struct socket **res)
1207 {
1208 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1209 }
1210 
1211 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1212 {
1213 	return __sock_create(&init_net, family, type, protocol, res, 1);
1214 }
1215 
1216 asmlinkage long sys_socket(int family, int type, int protocol)
1217 {
1218 	int retval;
1219 	struct socket *sock;
1220 
1221 	retval = sock_create(family, type, protocol, &sock);
1222 	if (retval < 0)
1223 		goto out;
1224 
1225 	retval = sock_map_fd(sock);
1226 	if (retval < 0)
1227 		goto out_release;
1228 
1229 out:
1230 	/* It may be already another descriptor 8) Not kernel problem. */
1231 	return retval;
1232 
1233 out_release:
1234 	sock_release(sock);
1235 	return retval;
1236 }
1237 
1238 /*
1239  *	Create a pair of connected sockets.
1240  */
1241 
1242 asmlinkage long sys_socketpair(int family, int type, int protocol,
1243 			       int __user *usockvec)
1244 {
1245 	struct socket *sock1, *sock2;
1246 	int fd1, fd2, err;
1247 	struct file *newfile1, *newfile2;
1248 
1249 	/*
1250 	 * Obtain the first socket and check if the underlying protocol
1251 	 * supports the socketpair call.
1252 	 */
1253 
1254 	err = sock_create(family, type, protocol, &sock1);
1255 	if (err < 0)
1256 		goto out;
1257 
1258 	err = sock_create(family, type, protocol, &sock2);
1259 	if (err < 0)
1260 		goto out_release_1;
1261 
1262 	err = sock1->ops->socketpair(sock1, sock2);
1263 	if (err < 0)
1264 		goto out_release_both;
1265 
1266 	fd1 = sock_alloc_fd(&newfile1);
1267 	if (unlikely(fd1 < 0)) {
1268 		err = fd1;
1269 		goto out_release_both;
1270 	}
1271 
1272 	fd2 = sock_alloc_fd(&newfile2);
1273 	if (unlikely(fd2 < 0)) {
1274 		err = fd2;
1275 		put_filp(newfile1);
1276 		put_unused_fd(fd1);
1277 		goto out_release_both;
1278 	}
1279 
1280 	err = sock_attach_fd(sock1, newfile1);
1281 	if (unlikely(err < 0)) {
1282 		goto out_fd2;
1283 	}
1284 
1285 	err = sock_attach_fd(sock2, newfile2);
1286 	if (unlikely(err < 0)) {
1287 		fput(newfile1);
1288 		goto out_fd1;
1289 	}
1290 
1291 	err = audit_fd_pair(fd1, fd2);
1292 	if (err < 0) {
1293 		fput(newfile1);
1294 		fput(newfile2);
1295 		goto out_fd;
1296 	}
1297 
1298 	fd_install(fd1, newfile1);
1299 	fd_install(fd2, newfile2);
1300 	/* fd1 and fd2 may be already another descriptors.
1301 	 * Not kernel problem.
1302 	 */
1303 
1304 	err = put_user(fd1, &usockvec[0]);
1305 	if (!err)
1306 		err = put_user(fd2, &usockvec[1]);
1307 	if (!err)
1308 		return 0;
1309 
1310 	sys_close(fd2);
1311 	sys_close(fd1);
1312 	return err;
1313 
1314 out_release_both:
1315 	sock_release(sock2);
1316 out_release_1:
1317 	sock_release(sock1);
1318 out:
1319 	return err;
1320 
1321 out_fd2:
1322 	put_filp(newfile1);
1323 	sock_release(sock1);
1324 out_fd1:
1325 	put_filp(newfile2);
1326 	sock_release(sock2);
1327 out_fd:
1328 	put_unused_fd(fd1);
1329 	put_unused_fd(fd2);
1330 	goto out;
1331 }
1332 
1333 /*
1334  *	Bind a name to a socket. Nothing much to do here since it's
1335  *	the protocol's responsibility to handle the local address.
1336  *
1337  *	We move the socket address to kernel space before we call
1338  *	the protocol layer (having also checked the address is ok).
1339  */
1340 
1341 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1342 {
1343 	struct socket *sock;
1344 	char address[MAX_SOCK_ADDR];
1345 	int err, fput_needed;
1346 
1347 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1348 	if (sock) {
1349 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1350 		if (err >= 0) {
1351 			err = security_socket_bind(sock,
1352 						   (struct sockaddr *)address,
1353 						   addrlen);
1354 			if (!err)
1355 				err = sock->ops->bind(sock,
1356 						      (struct sockaddr *)
1357 						      address, addrlen);
1358 		}
1359 		fput_light(sock->file, fput_needed);
1360 	}
1361 	return err;
1362 }
1363 
1364 /*
1365  *	Perform a listen. Basically, we allow the protocol to do anything
1366  *	necessary for a listen, and if that works, we mark the socket as
1367  *	ready for listening.
1368  */
1369 
1370 asmlinkage long sys_listen(int fd, int backlog)
1371 {
1372 	struct socket *sock;
1373 	int err, fput_needed;
1374 	int somaxconn;
1375 
1376 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1377 	if (sock) {
1378 		somaxconn = sock->sk->sk_net->sysctl_somaxconn;
1379 		if ((unsigned)backlog > somaxconn)
1380 			backlog = somaxconn;
1381 
1382 		err = security_socket_listen(sock, backlog);
1383 		if (!err)
1384 			err = sock->ops->listen(sock, backlog);
1385 
1386 		fput_light(sock->file, fput_needed);
1387 	}
1388 	return err;
1389 }
1390 
1391 /*
1392  *	For accept, we attempt to create a new socket, set up the link
1393  *	with the client, wake up the client, then return the new
1394  *	connected fd. We collect the address of the connector in kernel
1395  *	space and move it to user at the very end. This is unclean because
1396  *	we open the socket then return an error.
1397  *
1398  *	1003.1g adds the ability to recvmsg() to query connection pending
1399  *	status to recvmsg. We need to add that support in a way thats
1400  *	clean when we restucture accept also.
1401  */
1402 
1403 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1404 			   int __user *upeer_addrlen)
1405 {
1406 	struct socket *sock, *newsock;
1407 	struct file *newfile;
1408 	int err, len, newfd, fput_needed;
1409 	char address[MAX_SOCK_ADDR];
1410 
1411 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1412 	if (!sock)
1413 		goto out;
1414 
1415 	err = -ENFILE;
1416 	if (!(newsock = sock_alloc()))
1417 		goto out_put;
1418 
1419 	newsock->type = sock->type;
1420 	newsock->ops = sock->ops;
1421 
1422 	/*
1423 	 * We don't need try_module_get here, as the listening socket (sock)
1424 	 * has the protocol module (sock->ops->owner) held.
1425 	 */
1426 	__module_get(newsock->ops->owner);
1427 
1428 	newfd = sock_alloc_fd(&newfile);
1429 	if (unlikely(newfd < 0)) {
1430 		err = newfd;
1431 		sock_release(newsock);
1432 		goto out_put;
1433 	}
1434 
1435 	err = sock_attach_fd(newsock, newfile);
1436 	if (err < 0)
1437 		goto out_fd_simple;
1438 
1439 	err = security_socket_accept(sock, newsock);
1440 	if (err)
1441 		goto out_fd;
1442 
1443 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1444 	if (err < 0)
1445 		goto out_fd;
1446 
1447 	if (upeer_sockaddr) {
1448 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1449 					  &len, 2) < 0) {
1450 			err = -ECONNABORTED;
1451 			goto out_fd;
1452 		}
1453 		err = move_addr_to_user(address, len, upeer_sockaddr,
1454 					upeer_addrlen);
1455 		if (err < 0)
1456 			goto out_fd;
1457 	}
1458 
1459 	/* File flags are not inherited via accept() unlike another OSes. */
1460 
1461 	fd_install(newfd, newfile);
1462 	err = newfd;
1463 
1464 	security_socket_post_accept(sock, newsock);
1465 
1466 out_put:
1467 	fput_light(sock->file, fput_needed);
1468 out:
1469 	return err;
1470 out_fd_simple:
1471 	sock_release(newsock);
1472 	put_filp(newfile);
1473 	put_unused_fd(newfd);
1474 	goto out_put;
1475 out_fd:
1476 	fput(newfile);
1477 	put_unused_fd(newfd);
1478 	goto out_put;
1479 }
1480 
1481 /*
1482  *	Attempt to connect to a socket with the server address.  The address
1483  *	is in user space so we verify it is OK and move it to kernel space.
1484  *
1485  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1486  *	break bindings
1487  *
1488  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1489  *	other SEQPACKET protocols that take time to connect() as it doesn't
1490  *	include the -EINPROGRESS status for such sockets.
1491  */
1492 
1493 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1494 			    int addrlen)
1495 {
1496 	struct socket *sock;
1497 	char address[MAX_SOCK_ADDR];
1498 	int err, fput_needed;
1499 
1500 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1501 	if (!sock)
1502 		goto out;
1503 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1504 	if (err < 0)
1505 		goto out_put;
1506 
1507 	err =
1508 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1509 	if (err)
1510 		goto out_put;
1511 
1512 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1513 				 sock->file->f_flags);
1514 out_put:
1515 	fput_light(sock->file, fput_needed);
1516 out:
1517 	return err;
1518 }
1519 
1520 /*
1521  *	Get the local address ('name') of a socket object. Move the obtained
1522  *	name to user space.
1523  */
1524 
1525 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1526 				int __user *usockaddr_len)
1527 {
1528 	struct socket *sock;
1529 	char address[MAX_SOCK_ADDR];
1530 	int len, err, fput_needed;
1531 
1532 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533 	if (!sock)
1534 		goto out;
1535 
1536 	err = security_socket_getsockname(sock);
1537 	if (err)
1538 		goto out_put;
1539 
1540 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1541 	if (err)
1542 		goto out_put;
1543 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1544 
1545 out_put:
1546 	fput_light(sock->file, fput_needed);
1547 out:
1548 	return err;
1549 }
1550 
1551 /*
1552  *	Get the remote address ('name') of a socket object. Move the obtained
1553  *	name to user space.
1554  */
1555 
1556 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1557 				int __user *usockaddr_len)
1558 {
1559 	struct socket *sock;
1560 	char address[MAX_SOCK_ADDR];
1561 	int len, err, fput_needed;
1562 
1563 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1564 	if (sock != NULL) {
1565 		err = security_socket_getpeername(sock);
1566 		if (err) {
1567 			fput_light(sock->file, fput_needed);
1568 			return err;
1569 		}
1570 
1571 		err =
1572 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1573 				       1);
1574 		if (!err)
1575 			err = move_addr_to_user(address, len, usockaddr,
1576 						usockaddr_len);
1577 		fput_light(sock->file, fput_needed);
1578 	}
1579 	return err;
1580 }
1581 
1582 /*
1583  *	Send a datagram to a given address. We move the address into kernel
1584  *	space and check the user space data area is readable before invoking
1585  *	the protocol.
1586  */
1587 
1588 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1589 			   unsigned flags, struct sockaddr __user *addr,
1590 			   int addr_len)
1591 {
1592 	struct socket *sock;
1593 	char address[MAX_SOCK_ADDR];
1594 	int err;
1595 	struct msghdr msg;
1596 	struct iovec iov;
1597 	int fput_needed;
1598 
1599 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600 	if (!sock)
1601 		goto out;
1602 
1603 	iov.iov_base = buff;
1604 	iov.iov_len = len;
1605 	msg.msg_name = NULL;
1606 	msg.msg_iov = &iov;
1607 	msg.msg_iovlen = 1;
1608 	msg.msg_control = NULL;
1609 	msg.msg_controllen = 0;
1610 	msg.msg_namelen = 0;
1611 	if (addr) {
1612 		err = move_addr_to_kernel(addr, addr_len, address);
1613 		if (err < 0)
1614 			goto out_put;
1615 		msg.msg_name = address;
1616 		msg.msg_namelen = addr_len;
1617 	}
1618 	if (sock->file->f_flags & O_NONBLOCK)
1619 		flags |= MSG_DONTWAIT;
1620 	msg.msg_flags = flags;
1621 	err = sock_sendmsg(sock, &msg, len);
1622 
1623 out_put:
1624 	fput_light(sock->file, fput_needed);
1625 out:
1626 	return err;
1627 }
1628 
1629 /*
1630  *	Send a datagram down a socket.
1631  */
1632 
1633 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1634 {
1635 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1636 }
1637 
1638 /*
1639  *	Receive a frame from the socket and optionally record the address of the
1640  *	sender. We verify the buffers are writable and if needed move the
1641  *	sender address from kernel to user space.
1642  */
1643 
1644 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1645 			     unsigned flags, struct sockaddr __user *addr,
1646 			     int __user *addr_len)
1647 {
1648 	struct socket *sock;
1649 	struct iovec iov;
1650 	struct msghdr msg;
1651 	char address[MAX_SOCK_ADDR];
1652 	int err, err2;
1653 	int fput_needed;
1654 
1655 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1656 	if (!sock)
1657 		goto out;
1658 
1659 	msg.msg_control = NULL;
1660 	msg.msg_controllen = 0;
1661 	msg.msg_iovlen = 1;
1662 	msg.msg_iov = &iov;
1663 	iov.iov_len = size;
1664 	iov.iov_base = ubuf;
1665 	msg.msg_name = address;
1666 	msg.msg_namelen = MAX_SOCK_ADDR;
1667 	if (sock->file->f_flags & O_NONBLOCK)
1668 		flags |= MSG_DONTWAIT;
1669 	err = sock_recvmsg(sock, &msg, size, flags);
1670 
1671 	if (err >= 0 && addr != NULL) {
1672 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1673 		if (err2 < 0)
1674 			err = err2;
1675 	}
1676 
1677 	fput_light(sock->file, fput_needed);
1678 out:
1679 	return err;
1680 }
1681 
1682 /*
1683  *	Receive a datagram from a socket.
1684  */
1685 
1686 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1687 			 unsigned flags)
1688 {
1689 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1690 }
1691 
1692 /*
1693  *	Set a socket option. Because we don't know the option lengths we have
1694  *	to pass the user mode parameter for the protocols to sort out.
1695  */
1696 
1697 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1698 			       char __user *optval, int optlen)
1699 {
1700 	int err, fput_needed;
1701 	struct socket *sock;
1702 
1703 	if (optlen < 0)
1704 		return -EINVAL;
1705 
1706 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707 	if (sock != NULL) {
1708 		err = security_socket_setsockopt(sock, level, optname);
1709 		if (err)
1710 			goto out_put;
1711 
1712 		if (level == SOL_SOCKET)
1713 			err =
1714 			    sock_setsockopt(sock, level, optname, optval,
1715 					    optlen);
1716 		else
1717 			err =
1718 			    sock->ops->setsockopt(sock, level, optname, optval,
1719 						  optlen);
1720 out_put:
1721 		fput_light(sock->file, fput_needed);
1722 	}
1723 	return err;
1724 }
1725 
1726 /*
1727  *	Get a socket option. Because we don't know the option lengths we have
1728  *	to pass a user mode parameter for the protocols to sort out.
1729  */
1730 
1731 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1732 			       char __user *optval, int __user *optlen)
1733 {
1734 	int err, fput_needed;
1735 	struct socket *sock;
1736 
1737 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738 	if (sock != NULL) {
1739 		err = security_socket_getsockopt(sock, level, optname);
1740 		if (err)
1741 			goto out_put;
1742 
1743 		if (level == SOL_SOCKET)
1744 			err =
1745 			    sock_getsockopt(sock, level, optname, optval,
1746 					    optlen);
1747 		else
1748 			err =
1749 			    sock->ops->getsockopt(sock, level, optname, optval,
1750 						  optlen);
1751 out_put:
1752 		fput_light(sock->file, fput_needed);
1753 	}
1754 	return err;
1755 }
1756 
1757 /*
1758  *	Shutdown a socket.
1759  */
1760 
1761 asmlinkage long sys_shutdown(int fd, int how)
1762 {
1763 	int err, fput_needed;
1764 	struct socket *sock;
1765 
1766 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767 	if (sock != NULL) {
1768 		err = security_socket_shutdown(sock, how);
1769 		if (!err)
1770 			err = sock->ops->shutdown(sock, how);
1771 		fput_light(sock->file, fput_needed);
1772 	}
1773 	return err;
1774 }
1775 
1776 /* A couple of helpful macros for getting the address of the 32/64 bit
1777  * fields which are the same type (int / unsigned) on our platforms.
1778  */
1779 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1780 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1781 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1782 
1783 /*
1784  *	BSD sendmsg interface
1785  */
1786 
1787 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1788 {
1789 	struct compat_msghdr __user *msg_compat =
1790 	    (struct compat_msghdr __user *)msg;
1791 	struct socket *sock;
1792 	char address[MAX_SOCK_ADDR];
1793 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1794 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1795 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1796 	/* 20 is size of ipv6_pktinfo */
1797 	unsigned char *ctl_buf = ctl;
1798 	struct msghdr msg_sys;
1799 	int err, ctl_len, iov_size, total_len;
1800 	int fput_needed;
1801 
1802 	err = -EFAULT;
1803 	if (MSG_CMSG_COMPAT & flags) {
1804 		if (get_compat_msghdr(&msg_sys, msg_compat))
1805 			return -EFAULT;
1806 	}
1807 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1808 		return -EFAULT;
1809 
1810 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1811 	if (!sock)
1812 		goto out;
1813 
1814 	/* do not move before msg_sys is valid */
1815 	err = -EMSGSIZE;
1816 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1817 		goto out_put;
1818 
1819 	/* Check whether to allocate the iovec area */
1820 	err = -ENOMEM;
1821 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1822 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1823 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1824 		if (!iov)
1825 			goto out_put;
1826 	}
1827 
1828 	/* This will also move the address data into kernel space */
1829 	if (MSG_CMSG_COMPAT & flags) {
1830 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1831 	} else
1832 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1833 	if (err < 0)
1834 		goto out_freeiov;
1835 	total_len = err;
1836 
1837 	err = -ENOBUFS;
1838 
1839 	if (msg_sys.msg_controllen > INT_MAX)
1840 		goto out_freeiov;
1841 	ctl_len = msg_sys.msg_controllen;
1842 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1843 		err =
1844 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1845 						     sizeof(ctl));
1846 		if (err)
1847 			goto out_freeiov;
1848 		ctl_buf = msg_sys.msg_control;
1849 		ctl_len = msg_sys.msg_controllen;
1850 	} else if (ctl_len) {
1851 		if (ctl_len > sizeof(ctl)) {
1852 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1853 			if (ctl_buf == NULL)
1854 				goto out_freeiov;
1855 		}
1856 		err = -EFAULT;
1857 		/*
1858 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1859 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1860 		 * checking falls down on this.
1861 		 */
1862 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1863 				   ctl_len))
1864 			goto out_freectl;
1865 		msg_sys.msg_control = ctl_buf;
1866 	}
1867 	msg_sys.msg_flags = flags;
1868 
1869 	if (sock->file->f_flags & O_NONBLOCK)
1870 		msg_sys.msg_flags |= MSG_DONTWAIT;
1871 	err = sock_sendmsg(sock, &msg_sys, total_len);
1872 
1873 out_freectl:
1874 	if (ctl_buf != ctl)
1875 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1876 out_freeiov:
1877 	if (iov != iovstack)
1878 		sock_kfree_s(sock->sk, iov, iov_size);
1879 out_put:
1880 	fput_light(sock->file, fput_needed);
1881 out:
1882 	return err;
1883 }
1884 
1885 /*
1886  *	BSD recvmsg interface
1887  */
1888 
1889 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1890 			    unsigned int flags)
1891 {
1892 	struct compat_msghdr __user *msg_compat =
1893 	    (struct compat_msghdr __user *)msg;
1894 	struct socket *sock;
1895 	struct iovec iovstack[UIO_FASTIOV];
1896 	struct iovec *iov = iovstack;
1897 	struct msghdr msg_sys;
1898 	unsigned long cmsg_ptr;
1899 	int err, iov_size, total_len, len;
1900 	int fput_needed;
1901 
1902 	/* kernel mode address */
1903 	char addr[MAX_SOCK_ADDR];
1904 
1905 	/* user mode address pointers */
1906 	struct sockaddr __user *uaddr;
1907 	int __user *uaddr_len;
1908 
1909 	if (MSG_CMSG_COMPAT & flags) {
1910 		if (get_compat_msghdr(&msg_sys, msg_compat))
1911 			return -EFAULT;
1912 	}
1913 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1914 		return -EFAULT;
1915 
1916 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1917 	if (!sock)
1918 		goto out;
1919 
1920 	err = -EMSGSIZE;
1921 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1922 		goto out_put;
1923 
1924 	/* Check whether to allocate the iovec area */
1925 	err = -ENOMEM;
1926 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1927 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1928 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1929 		if (!iov)
1930 			goto out_put;
1931 	}
1932 
1933 	/*
1934 	 *      Save the user-mode address (verify_iovec will change the
1935 	 *      kernel msghdr to use the kernel address space)
1936 	 */
1937 
1938 	uaddr = (__force void __user *)msg_sys.msg_name;
1939 	uaddr_len = COMPAT_NAMELEN(msg);
1940 	if (MSG_CMSG_COMPAT & flags) {
1941 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1942 	} else
1943 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1944 	if (err < 0)
1945 		goto out_freeiov;
1946 	total_len = err;
1947 
1948 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1949 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1950 
1951 	if (sock->file->f_flags & O_NONBLOCK)
1952 		flags |= MSG_DONTWAIT;
1953 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1954 	if (err < 0)
1955 		goto out_freeiov;
1956 	len = err;
1957 
1958 	if (uaddr != NULL) {
1959 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1960 					uaddr_len);
1961 		if (err < 0)
1962 			goto out_freeiov;
1963 	}
1964 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1965 			 COMPAT_FLAGS(msg));
1966 	if (err)
1967 		goto out_freeiov;
1968 	if (MSG_CMSG_COMPAT & flags)
1969 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1970 				 &msg_compat->msg_controllen);
1971 	else
1972 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1973 				 &msg->msg_controllen);
1974 	if (err)
1975 		goto out_freeiov;
1976 	err = len;
1977 
1978 out_freeiov:
1979 	if (iov != iovstack)
1980 		sock_kfree_s(sock->sk, iov, iov_size);
1981 out_put:
1982 	fput_light(sock->file, fput_needed);
1983 out:
1984 	return err;
1985 }
1986 
1987 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1988 
1989 /* Argument list sizes for sys_socketcall */
1990 #define AL(x) ((x) * sizeof(unsigned long))
1991 static const unsigned char nargs[18]={
1992 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1993 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1994 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1995 };
1996 
1997 #undef AL
1998 
1999 /*
2000  *	System call vectors.
2001  *
2002  *	Argument checking cleaned up. Saved 20% in size.
2003  *  This function doesn't need to set the kernel lock because
2004  *  it is set by the callees.
2005  */
2006 
2007 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2008 {
2009 	unsigned long a[6];
2010 	unsigned long a0, a1;
2011 	int err;
2012 
2013 	if (call < 1 || call > SYS_RECVMSG)
2014 		return -EINVAL;
2015 
2016 	/* copy_from_user should be SMP safe. */
2017 	if (copy_from_user(a, args, nargs[call]))
2018 		return -EFAULT;
2019 
2020 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2021 	if (err)
2022 		return err;
2023 
2024 	a0 = a[0];
2025 	a1 = a[1];
2026 
2027 	switch (call) {
2028 	case SYS_SOCKET:
2029 		err = sys_socket(a0, a1, a[2]);
2030 		break;
2031 	case SYS_BIND:
2032 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2033 		break;
2034 	case SYS_CONNECT:
2035 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2036 		break;
2037 	case SYS_LISTEN:
2038 		err = sys_listen(a0, a1);
2039 		break;
2040 	case SYS_ACCEPT:
2041 		err =
2042 		    sys_accept(a0, (struct sockaddr __user *)a1,
2043 			       (int __user *)a[2]);
2044 		break;
2045 	case SYS_GETSOCKNAME:
2046 		err =
2047 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2048 				    (int __user *)a[2]);
2049 		break;
2050 	case SYS_GETPEERNAME:
2051 		err =
2052 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2053 				    (int __user *)a[2]);
2054 		break;
2055 	case SYS_SOCKETPAIR:
2056 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2057 		break;
2058 	case SYS_SEND:
2059 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2060 		break;
2061 	case SYS_SENDTO:
2062 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2063 				 (struct sockaddr __user *)a[4], a[5]);
2064 		break;
2065 	case SYS_RECV:
2066 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2067 		break;
2068 	case SYS_RECVFROM:
2069 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2070 				   (struct sockaddr __user *)a[4],
2071 				   (int __user *)a[5]);
2072 		break;
2073 	case SYS_SHUTDOWN:
2074 		err = sys_shutdown(a0, a1);
2075 		break;
2076 	case SYS_SETSOCKOPT:
2077 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2078 		break;
2079 	case SYS_GETSOCKOPT:
2080 		err =
2081 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2082 				   (int __user *)a[4]);
2083 		break;
2084 	case SYS_SENDMSG:
2085 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2086 		break;
2087 	case SYS_RECVMSG:
2088 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2089 		break;
2090 	default:
2091 		err = -EINVAL;
2092 		break;
2093 	}
2094 	return err;
2095 }
2096 
2097 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2098 
2099 /**
2100  *	sock_register - add a socket protocol handler
2101  *	@ops: description of protocol
2102  *
2103  *	This function is called by a protocol handler that wants to
2104  *	advertise its address family, and have it linked into the
2105  *	socket interface. The value ops->family coresponds to the
2106  *	socket system call protocol family.
2107  */
2108 int sock_register(const struct net_proto_family *ops)
2109 {
2110 	int err;
2111 
2112 	if (ops->family >= NPROTO) {
2113 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2114 		       NPROTO);
2115 		return -ENOBUFS;
2116 	}
2117 
2118 	spin_lock(&net_family_lock);
2119 	if (net_families[ops->family])
2120 		err = -EEXIST;
2121 	else {
2122 		net_families[ops->family] = ops;
2123 		err = 0;
2124 	}
2125 	spin_unlock(&net_family_lock);
2126 
2127 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2128 	return err;
2129 }
2130 
2131 /**
2132  *	sock_unregister - remove a protocol handler
2133  *	@family: protocol family to remove
2134  *
2135  *	This function is called by a protocol handler that wants to
2136  *	remove its address family, and have it unlinked from the
2137  *	new socket creation.
2138  *
2139  *	If protocol handler is a module, then it can use module reference
2140  *	counts to protect against new references. If protocol handler is not
2141  *	a module then it needs to provide its own protection in
2142  *	the ops->create routine.
2143  */
2144 void sock_unregister(int family)
2145 {
2146 	BUG_ON(family < 0 || family >= NPROTO);
2147 
2148 	spin_lock(&net_family_lock);
2149 	net_families[family] = NULL;
2150 	spin_unlock(&net_family_lock);
2151 
2152 	synchronize_rcu();
2153 
2154 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2155 }
2156 
2157 static int __init sock_init(void)
2158 {
2159 	/*
2160 	 *      Initialize sock SLAB cache.
2161 	 */
2162 
2163 	sk_init();
2164 
2165 	/*
2166 	 *      Initialize skbuff SLAB cache
2167 	 */
2168 	skb_init();
2169 
2170 	/*
2171 	 *      Initialize the protocols module.
2172 	 */
2173 
2174 	init_inodecache();
2175 	register_filesystem(&sock_fs_type);
2176 	sock_mnt = kern_mount(&sock_fs_type);
2177 
2178 	/* The real protocol initialization is performed in later initcalls.
2179 	 */
2180 
2181 #ifdef CONFIG_NETFILTER
2182 	netfilter_init();
2183 #endif
2184 
2185 	return 0;
2186 }
2187 
2188 core_initcall(sock_init);	/* early initcall */
2189 
2190 #ifdef CONFIG_PROC_FS
2191 void socket_seq_show(struct seq_file *seq)
2192 {
2193 	int cpu;
2194 	int counter = 0;
2195 
2196 	for_each_possible_cpu(cpu)
2197 	    counter += per_cpu(sockets_in_use, cpu);
2198 
2199 	/* It can be negative, by the way. 8) */
2200 	if (counter < 0)
2201 		counter = 0;
2202 
2203 	seq_printf(seq, "sockets: used %d\n", counter);
2204 }
2205 #endif				/* CONFIG_PROC_FS */
2206 
2207 #ifdef CONFIG_COMPAT
2208 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2209 			      unsigned long arg)
2210 {
2211 	struct socket *sock = file->private_data;
2212 	int ret = -ENOIOCTLCMD;
2213 
2214 	if (sock->ops->compat_ioctl)
2215 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2216 
2217 	return ret;
2218 }
2219 #endif
2220 
2221 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2222 {
2223 	return sock->ops->bind(sock, addr, addrlen);
2224 }
2225 
2226 int kernel_listen(struct socket *sock, int backlog)
2227 {
2228 	return sock->ops->listen(sock, backlog);
2229 }
2230 
2231 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2232 {
2233 	struct sock *sk = sock->sk;
2234 	int err;
2235 
2236 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2237 			       newsock);
2238 	if (err < 0)
2239 		goto done;
2240 
2241 	err = sock->ops->accept(sock, *newsock, flags);
2242 	if (err < 0) {
2243 		sock_release(*newsock);
2244 		*newsock = NULL;
2245 		goto done;
2246 	}
2247 
2248 	(*newsock)->ops = sock->ops;
2249 
2250 done:
2251 	return err;
2252 }
2253 
2254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2255 		   int flags)
2256 {
2257 	return sock->ops->connect(sock, addr, addrlen, flags);
2258 }
2259 
2260 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2261 			 int *addrlen)
2262 {
2263 	return sock->ops->getname(sock, addr, addrlen, 0);
2264 }
2265 
2266 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2267 			 int *addrlen)
2268 {
2269 	return sock->ops->getname(sock, addr, addrlen, 1);
2270 }
2271 
2272 int kernel_getsockopt(struct socket *sock, int level, int optname,
2273 			char *optval, int *optlen)
2274 {
2275 	mm_segment_t oldfs = get_fs();
2276 	int err;
2277 
2278 	set_fs(KERNEL_DS);
2279 	if (level == SOL_SOCKET)
2280 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2281 	else
2282 		err = sock->ops->getsockopt(sock, level, optname, optval,
2283 					    optlen);
2284 	set_fs(oldfs);
2285 	return err;
2286 }
2287 
2288 int kernel_setsockopt(struct socket *sock, int level, int optname,
2289 			char *optval, int optlen)
2290 {
2291 	mm_segment_t oldfs = get_fs();
2292 	int err;
2293 
2294 	set_fs(KERNEL_DS);
2295 	if (level == SOL_SOCKET)
2296 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2297 	else
2298 		err = sock->ops->setsockopt(sock, level, optname, optval,
2299 					    optlen);
2300 	set_fs(oldfs);
2301 	return err;
2302 }
2303 
2304 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2305 		    size_t size, int flags)
2306 {
2307 	if (sock->ops->sendpage)
2308 		return sock->ops->sendpage(sock, page, offset, size, flags);
2309 
2310 	return sock_no_sendpage(sock, page, offset, size, flags);
2311 }
2312 
2313 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2314 {
2315 	mm_segment_t oldfs = get_fs();
2316 	int err;
2317 
2318 	set_fs(KERNEL_DS);
2319 	err = sock->ops->ioctl(sock, cmd, arg);
2320 	set_fs(oldfs);
2321 
2322 	return err;
2323 }
2324 
2325 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2326 {
2327 	return sock->ops->shutdown(sock, how);
2328 }
2329 
2330 /* ABI emulation layers need these two */
2331 EXPORT_SYMBOL(move_addr_to_kernel);
2332 EXPORT_SYMBOL(move_addr_to_user);
2333 EXPORT_SYMBOL(sock_create);
2334 EXPORT_SYMBOL(sock_create_kern);
2335 EXPORT_SYMBOL(sock_create_lite);
2336 EXPORT_SYMBOL(sock_map_fd);
2337 EXPORT_SYMBOL(sock_recvmsg);
2338 EXPORT_SYMBOL(sock_register);
2339 EXPORT_SYMBOL(sock_release);
2340 EXPORT_SYMBOL(sock_sendmsg);
2341 EXPORT_SYMBOL(sock_unregister);
2342 EXPORT_SYMBOL(sock_wake_async);
2343 EXPORT_SYMBOL(sockfd_lookup);
2344 EXPORT_SYMBOL(kernel_sendmsg);
2345 EXPORT_SYMBOL(kernel_recvmsg);
2346 EXPORT_SYMBOL(kernel_bind);
2347 EXPORT_SYMBOL(kernel_listen);
2348 EXPORT_SYMBOL(kernel_accept);
2349 EXPORT_SYMBOL(kernel_connect);
2350 EXPORT_SYMBOL(kernel_getsockname);
2351 EXPORT_SYMBOL(kernel_getpeername);
2352 EXPORT_SYMBOL(kernel_getsockopt);
2353 EXPORT_SYMBOL(kernel_setsockopt);
2354 EXPORT_SYMBOL(kernel_sendpage);
2355 EXPORT_SYMBOL(kernel_sock_ioctl);
2356 EXPORT_SYMBOL(kernel_sock_shutdown);
2357