xref: /openbmc/linux/net/socket.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 	if (!ctx)
360 		return -ENOMEM;
361 	ctx->ops = &sockfs_ops;
362 	ctx->dops = &sockfs_dentry_operations;
363 	ctx->xattr = sockfs_xattr_handlers;
364 	return 0;
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.init_fs_context = sockfs_init_fs_context,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 /**
393  *	sock_alloc_file - Bind a &socket to a &file
394  *	@sock: socket
395  *	@flags: file status flags
396  *	@dname: protocol name
397  *
398  *	Returns the &file bound with @sock, implicitly storing it
399  *	in sock->file. If dname is %NULL, sets to "".
400  *	On failure the return is a ERR pointer (see linux/err.h).
401  *	This function uses GFP_KERNEL internally.
402  */
403 
404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 	struct file *file;
407 
408 	if (!dname)
409 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410 
411 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 				O_RDWR | (flags & O_NONBLOCK),
413 				&socket_file_ops);
414 	if (IS_ERR(file)) {
415 		sock_release(sock);
416 		return file;
417 	}
418 
419 	sock->file = file;
420 	file->private_data = sock;
421 	stream_open(SOCK_INODE(sock), file);
422 	return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425 
426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 	struct file *newfile;
429 	int fd = get_unused_fd_flags(flags);
430 	if (unlikely(fd < 0)) {
431 		sock_release(sock);
432 		return fd;
433 	}
434 
435 	newfile = sock_alloc_file(sock, flags, NULL);
436 	if (!IS_ERR(newfile)) {
437 		fd_install(fd, newfile);
438 		return fd;
439 	}
440 
441 	put_unused_fd(fd);
442 	return PTR_ERR(newfile);
443 }
444 
445 /**
446  *	sock_from_file - Return the &socket bounded to @file.
447  *	@file: file
448  *	@err: pointer to an error code return
449  *
450  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
451  */
452 
453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	*err = -ENOTSOCK;
459 	return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462 
463 /**
464  *	sockfd_lookup - Go from a file number to its socket slot
465  *	@fd: file handle
466  *	@err: pointer to an error code return
467  *
468  *	The file handle passed in is locked and the socket it is bound
469  *	to is returned. If an error occurs the err pointer is overwritten
470  *	with a negative errno code and NULL is returned. The function checks
471  *	for both invalid handles and passing a handle which is not a socket.
472  *
473  *	On a success the socket object pointer is returned.
474  */
475 
476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 	struct file *file;
479 	struct socket *sock;
480 
481 	file = fget(fd);
482 	if (!file) {
483 		*err = -EBADF;
484 		return NULL;
485 	}
486 
487 	sock = sock_from_file(file, err);
488 	if (!sock)
489 		fput(file);
490 	return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493 
494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 	struct fd f = fdget(fd);
497 	struct socket *sock;
498 
499 	*err = -EBADF;
500 	if (f.file) {
501 		sock = sock_from_file(f.file, err);
502 		if (likely(sock)) {
503 			*fput_needed = f.flags;
504 			return sock;
505 		}
506 		fdput(f);
507 	}
508 	return NULL;
509 }
510 
511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 				size_t size)
513 {
514 	ssize_t len;
515 	ssize_t used = 0;
516 
517 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 	if (len < 0)
519 		return len;
520 	used += len;
521 	if (buffer) {
522 		if (size < used)
523 			return -ERANGE;
524 		buffer += len;
525 	}
526 
527 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 	used += len;
529 	if (buffer) {
530 		if (size < used)
531 			return -ERANGE;
532 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 		buffer += len;
534 	}
535 
536 	return used;
537 }
538 
539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 	int err = simple_setattr(dentry, iattr);
542 
543 	if (!err && (iattr->ia_valid & ATTR_UID)) {
544 		struct socket *sock = SOCKET_I(d_inode(dentry));
545 
546 		if (sock->sk)
547 			sock->sk->sk_uid = iattr->ia_uid;
548 		else
549 			err = -ENOENT;
550 	}
551 
552 	return err;
553 }
554 
555 static const struct inode_operations sockfs_inode_ops = {
556 	.listxattr = sockfs_listxattr,
557 	.setattr = sockfs_setattr,
558 };
559 
560 /**
561  *	sock_alloc - allocate a socket
562  *
563  *	Allocate a new inode and socket object. The two are bound together
564  *	and initialised. The socket is then returned. If we are out of inodes
565  *	NULL is returned. This functions uses GFP_KERNEL internally.
566  */
567 
568 struct socket *sock_alloc(void)
569 {
570 	struct inode *inode;
571 	struct socket *sock;
572 
573 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 	if (!inode)
575 		return NULL;
576 
577 	sock = SOCKET_I(inode);
578 
579 	inode->i_ino = get_next_ino();
580 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 	inode->i_uid = current_fsuid();
582 	inode->i_gid = current_fsgid();
583 	inode->i_op = &sockfs_inode_ops;
584 
585 	return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588 
589 /**
590  *	sock_release - close a socket
591  *	@sock: socket to close
592  *
593  *	The socket is released from the protocol stack if it has a release
594  *	callback, and the inode is then released if the socket is bound to
595  *	an inode not a file.
596  */
597 
598 static void __sock_release(struct socket *sock, struct inode *inode)
599 {
600 	if (sock->ops) {
601 		struct module *owner = sock->ops->owner;
602 
603 		if (inode)
604 			inode_lock(inode);
605 		sock->ops->release(sock);
606 		sock->sk = NULL;
607 		if (inode)
608 			inode_unlock(inode);
609 		sock->ops = NULL;
610 		module_put(owner);
611 	}
612 
613 	if (sock->wq.fasync_list)
614 		pr_err("%s: fasync list not empty!\n", __func__);
615 
616 	if (!sock->file) {
617 		iput(SOCK_INODE(sock));
618 		return;
619 	}
620 	sock->file = NULL;
621 }
622 
623 void sock_release(struct socket *sock)
624 {
625 	__sock_release(sock, NULL);
626 }
627 EXPORT_SYMBOL(sock_release);
628 
629 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
630 {
631 	u8 flags = *tx_flags;
632 
633 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
634 		flags |= SKBTX_HW_TSTAMP;
635 
636 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
637 		flags |= SKBTX_SW_TSTAMP;
638 
639 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
640 		flags |= SKBTX_SCHED_TSTAMP;
641 
642 	*tx_flags = flags;
643 }
644 EXPORT_SYMBOL(__sock_tx_timestamp);
645 
646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
647 					   size_t));
648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
649 					    size_t));
650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
653 				     inet_sendmsg, sock, msg,
654 				     msg_data_left(msg));
655 	BUG_ON(ret == -EIOCBQUEUED);
656 	return ret;
657 }
658 
659 /**
660  *	sock_sendmsg - send a message through @sock
661  *	@sock: socket
662  *	@msg: message to send
663  *
664  *	Sends @msg through @sock, passing through LSM.
665  *	Returns the number of bytes sent, or an error code.
666  */
667 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
668 {
669 	int err = security_socket_sendmsg(sock, msg,
670 					  msg_data_left(msg));
671 
672 	return err ?: sock_sendmsg_nosec(sock, msg);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675 
676 /**
677  *	kernel_sendmsg - send a message through @sock (kernel-space)
678  *	@sock: socket
679  *	@msg: message header
680  *	@vec: kernel vec
681  *	@num: vec array length
682  *	@size: total message data size
683  *
684  *	Builds the message data with @vec and sends it through @sock.
685  *	Returns the number of bytes sent, or an error code.
686  */
687 
688 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
689 		   struct kvec *vec, size_t num, size_t size)
690 {
691 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
692 	return sock_sendmsg(sock, msg);
693 }
694 EXPORT_SYMBOL(kernel_sendmsg);
695 
696 /**
697  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
698  *	@sk: sock
699  *	@msg: message header
700  *	@vec: output s/g array
701  *	@num: output s/g array length
702  *	@size: total message data size
703  *
704  *	Builds the message data with @vec and sends it through @sock.
705  *	Returns the number of bytes sent, or an error code.
706  *	Caller must hold @sk.
707  */
708 
709 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
710 			  struct kvec *vec, size_t num, size_t size)
711 {
712 	struct socket *sock = sk->sk_socket;
713 
714 	if (!sock->ops->sendmsg_locked)
715 		return sock_no_sendmsg_locked(sk, msg, size);
716 
717 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
718 
719 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
720 }
721 EXPORT_SYMBOL(kernel_sendmsg_locked);
722 
723 static bool skb_is_err_queue(const struct sk_buff *skb)
724 {
725 	/* pkt_type of skbs enqueued on the error queue are set to
726 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
727 	 * in recvmsg, since skbs received on a local socket will never
728 	 * have a pkt_type of PACKET_OUTGOING.
729 	 */
730 	return skb->pkt_type == PACKET_OUTGOING;
731 }
732 
733 /* On transmit, software and hardware timestamps are returned independently.
734  * As the two skb clones share the hardware timestamp, which may be updated
735  * before the software timestamp is received, a hardware TX timestamp may be
736  * returned only if there is no software TX timestamp. Ignore false software
737  * timestamps, which may be made in the __sock_recv_timestamp() call when the
738  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
739  * hardware timestamp.
740  */
741 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
742 {
743 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
744 }
745 
746 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
747 {
748 	struct scm_ts_pktinfo ts_pktinfo;
749 	struct net_device *orig_dev;
750 
751 	if (!skb_mac_header_was_set(skb))
752 		return;
753 
754 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
755 
756 	rcu_read_lock();
757 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
758 	if (orig_dev)
759 		ts_pktinfo.if_index = orig_dev->ifindex;
760 	rcu_read_unlock();
761 
762 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
763 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
764 		 sizeof(ts_pktinfo), &ts_pktinfo);
765 }
766 
767 /*
768  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769  */
770 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
771 	struct sk_buff *skb)
772 {
773 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
774 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
775 	struct scm_timestamping_internal tss;
776 
777 	int empty = 1, false_tstamp = 0;
778 	struct skb_shared_hwtstamps *shhwtstamps =
779 		skb_hwtstamps(skb);
780 
781 	/* Race occurred between timestamp enabling and packet
782 	   receiving.  Fill in the current time for now. */
783 	if (need_software_tstamp && skb->tstamp == 0) {
784 		__net_timestamp(skb);
785 		false_tstamp = 1;
786 	}
787 
788 	if (need_software_tstamp) {
789 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
790 			if (new_tstamp) {
791 				struct __kernel_sock_timeval tv;
792 
793 				skb_get_new_timestamp(skb, &tv);
794 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
795 					 sizeof(tv), &tv);
796 			} else {
797 				struct __kernel_old_timeval tv;
798 
799 				skb_get_timestamp(skb, &tv);
800 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
801 					 sizeof(tv), &tv);
802 			}
803 		} else {
804 			if (new_tstamp) {
805 				struct __kernel_timespec ts;
806 
807 				skb_get_new_timestampns(skb, &ts);
808 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
809 					 sizeof(ts), &ts);
810 			} else {
811 				struct __kernel_old_timespec ts;
812 
813 				skb_get_timestampns(skb, &ts);
814 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
815 					 sizeof(ts), &ts);
816 			}
817 		}
818 	}
819 
820 	memset(&tss, 0, sizeof(tss));
821 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
822 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
823 		empty = 0;
824 	if (shhwtstamps &&
825 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
826 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
827 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
828 		empty = 0;
829 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
830 		    !skb_is_err_queue(skb))
831 			put_ts_pktinfo(msg, skb);
832 	}
833 	if (!empty) {
834 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
835 			put_cmsg_scm_timestamping64(msg, &tss);
836 		else
837 			put_cmsg_scm_timestamping(msg, &tss);
838 
839 		if (skb_is_err_queue(skb) && skb->len &&
840 		    SKB_EXT_ERR(skb)->opt_stats)
841 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
842 				 skb->len, skb->data);
843 	}
844 }
845 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
846 
847 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
848 	struct sk_buff *skb)
849 {
850 	int ack;
851 
852 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
853 		return;
854 	if (!skb->wifi_acked_valid)
855 		return;
856 
857 	ack = skb->wifi_acked;
858 
859 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
860 }
861 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
862 
863 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
864 				   struct sk_buff *skb)
865 {
866 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
867 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
868 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
869 }
870 
871 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
872 	struct sk_buff *skb)
873 {
874 	sock_recv_timestamp(msg, sk, skb);
875 	sock_recv_drops(msg, sk, skb);
876 }
877 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
878 
879 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
880 					   size_t, int));
881 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
882 					    size_t, int));
883 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
884 				     int flags)
885 {
886 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
887 				  inet_recvmsg, sock, msg, msg_data_left(msg),
888 				  flags);
889 }
890 
891 /**
892  *	sock_recvmsg - receive a message from @sock
893  *	@sock: socket
894  *	@msg: message to receive
895  *	@flags: message flags
896  *
897  *	Receives @msg from @sock, passing through LSM. Returns the total number
898  *	of bytes received, or an error.
899  */
900 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
901 {
902 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
903 
904 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
905 }
906 EXPORT_SYMBOL(sock_recvmsg);
907 
908 /**
909  *	kernel_recvmsg - Receive a message from a socket (kernel space)
910  *	@sock: The socket to receive the message from
911  *	@msg: Received message
912  *	@vec: Input s/g array for message data
913  *	@num: Size of input s/g array
914  *	@size: Number of bytes to read
915  *	@flags: Message flags (MSG_DONTWAIT, etc...)
916  *
917  *	On return the msg structure contains the scatter/gather array passed in the
918  *	vec argument. The array is modified so that it consists of the unfilled
919  *	portion of the original array.
920  *
921  *	The returned value is the total number of bytes received, or an error.
922  */
923 
924 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
925 		   struct kvec *vec, size_t num, size_t size, int flags)
926 {
927 	msg->msg_control_is_user = false;
928 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
929 	return sock_recvmsg(sock, msg, flags);
930 }
931 EXPORT_SYMBOL(kernel_recvmsg);
932 
933 static ssize_t sock_sendpage(struct file *file, struct page *page,
934 			     int offset, size_t size, loff_t *ppos, int more)
935 {
936 	struct socket *sock;
937 	int flags;
938 
939 	sock = file->private_data;
940 
941 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
942 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
943 	flags |= more;
944 
945 	return kernel_sendpage(sock, page, offset, size, flags);
946 }
947 
948 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
949 				struct pipe_inode_info *pipe, size_t len,
950 				unsigned int flags)
951 {
952 	struct socket *sock = file->private_data;
953 
954 	if (unlikely(!sock->ops->splice_read))
955 		return generic_file_splice_read(file, ppos, pipe, len, flags);
956 
957 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
958 }
959 
960 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
961 {
962 	struct file *file = iocb->ki_filp;
963 	struct socket *sock = file->private_data;
964 	struct msghdr msg = {.msg_iter = *to,
965 			     .msg_iocb = iocb};
966 	ssize_t res;
967 
968 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
969 		msg.msg_flags = MSG_DONTWAIT;
970 
971 	if (iocb->ki_pos != 0)
972 		return -ESPIPE;
973 
974 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
975 		return 0;
976 
977 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
978 	*to = msg.msg_iter;
979 	return res;
980 }
981 
982 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
983 {
984 	struct file *file = iocb->ki_filp;
985 	struct socket *sock = file->private_data;
986 	struct msghdr msg = {.msg_iter = *from,
987 			     .msg_iocb = iocb};
988 	ssize_t res;
989 
990 	if (iocb->ki_pos != 0)
991 		return -ESPIPE;
992 
993 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
994 		msg.msg_flags = MSG_DONTWAIT;
995 
996 	if (sock->type == SOCK_SEQPACKET)
997 		msg.msg_flags |= MSG_EOR;
998 
999 	res = sock_sendmsg(sock, &msg);
1000 	*from = msg.msg_iter;
1001 	return res;
1002 }
1003 
1004 /*
1005  * Atomic setting of ioctl hooks to avoid race
1006  * with module unload.
1007  */
1008 
1009 static DEFINE_MUTEX(br_ioctl_mutex);
1010 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1011 
1012 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1013 {
1014 	mutex_lock(&br_ioctl_mutex);
1015 	br_ioctl_hook = hook;
1016 	mutex_unlock(&br_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(brioctl_set);
1019 
1020 static DEFINE_MUTEX(vlan_ioctl_mutex);
1021 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1022 
1023 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1024 {
1025 	mutex_lock(&vlan_ioctl_mutex);
1026 	vlan_ioctl_hook = hook;
1027 	mutex_unlock(&vlan_ioctl_mutex);
1028 }
1029 EXPORT_SYMBOL(vlan_ioctl_set);
1030 
1031 static DEFINE_MUTEX(dlci_ioctl_mutex);
1032 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1033 
1034 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1035 {
1036 	mutex_lock(&dlci_ioctl_mutex);
1037 	dlci_ioctl_hook = hook;
1038 	mutex_unlock(&dlci_ioctl_mutex);
1039 }
1040 EXPORT_SYMBOL(dlci_ioctl_set);
1041 
1042 static long sock_do_ioctl(struct net *net, struct socket *sock,
1043 			  unsigned int cmd, unsigned long arg)
1044 {
1045 	int err;
1046 	void __user *argp = (void __user *)arg;
1047 
1048 	err = sock->ops->ioctl(sock, cmd, arg);
1049 
1050 	/*
1051 	 * If this ioctl is unknown try to hand it down
1052 	 * to the NIC driver.
1053 	 */
1054 	if (err != -ENOIOCTLCMD)
1055 		return err;
1056 
1057 	if (cmd == SIOCGIFCONF) {
1058 		struct ifconf ifc;
1059 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1060 			return -EFAULT;
1061 		rtnl_lock();
1062 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1063 		rtnl_unlock();
1064 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1065 			err = -EFAULT;
1066 	} else {
1067 		struct ifreq ifr;
1068 		bool need_copyout;
1069 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1070 			return -EFAULT;
1071 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1072 		if (!err && need_copyout)
1073 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1074 				return -EFAULT;
1075 	}
1076 	return err;
1077 }
1078 
1079 /*
1080  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1081  *	what to do with it - that's up to the protocol still.
1082  */
1083 
1084 /**
1085  *	get_net_ns - increment the refcount of the network namespace
1086  *	@ns: common namespace (net)
1087  *
1088  *	Returns the net's common namespace.
1089  */
1090 
1091 struct ns_common *get_net_ns(struct ns_common *ns)
1092 {
1093 	return &get_net(container_of(ns, struct net, ns))->ns;
1094 }
1095 EXPORT_SYMBOL_GPL(get_net_ns);
1096 
1097 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1098 {
1099 	struct socket *sock;
1100 	struct sock *sk;
1101 	void __user *argp = (void __user *)arg;
1102 	int pid, err;
1103 	struct net *net;
1104 
1105 	sock = file->private_data;
1106 	sk = sock->sk;
1107 	net = sock_net(sk);
1108 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1109 		struct ifreq ifr;
1110 		bool need_copyout;
1111 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1112 			return -EFAULT;
1113 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1114 		if (!err && need_copyout)
1115 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1116 				return -EFAULT;
1117 	} else
1118 #ifdef CONFIG_WEXT_CORE
1119 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1120 		err = wext_handle_ioctl(net, cmd, argp);
1121 	} else
1122 #endif
1123 		switch (cmd) {
1124 		case FIOSETOWN:
1125 		case SIOCSPGRP:
1126 			err = -EFAULT;
1127 			if (get_user(pid, (int __user *)argp))
1128 				break;
1129 			err = f_setown(sock->file, pid, 1);
1130 			break;
1131 		case FIOGETOWN:
1132 		case SIOCGPGRP:
1133 			err = put_user(f_getown(sock->file),
1134 				       (int __user *)argp);
1135 			break;
1136 		case SIOCGIFBR:
1137 		case SIOCSIFBR:
1138 		case SIOCBRADDBR:
1139 		case SIOCBRDELBR:
1140 			err = -ENOPKG;
1141 			if (!br_ioctl_hook)
1142 				request_module("bridge");
1143 
1144 			mutex_lock(&br_ioctl_mutex);
1145 			if (br_ioctl_hook)
1146 				err = br_ioctl_hook(net, cmd, argp);
1147 			mutex_unlock(&br_ioctl_mutex);
1148 			break;
1149 		case SIOCGIFVLAN:
1150 		case SIOCSIFVLAN:
1151 			err = -ENOPKG;
1152 			if (!vlan_ioctl_hook)
1153 				request_module("8021q");
1154 
1155 			mutex_lock(&vlan_ioctl_mutex);
1156 			if (vlan_ioctl_hook)
1157 				err = vlan_ioctl_hook(net, argp);
1158 			mutex_unlock(&vlan_ioctl_mutex);
1159 			break;
1160 		case SIOCADDDLCI:
1161 		case SIOCDELDLCI:
1162 			err = -ENOPKG;
1163 			if (!dlci_ioctl_hook)
1164 				request_module("dlci");
1165 
1166 			mutex_lock(&dlci_ioctl_mutex);
1167 			if (dlci_ioctl_hook)
1168 				err = dlci_ioctl_hook(cmd, argp);
1169 			mutex_unlock(&dlci_ioctl_mutex);
1170 			break;
1171 		case SIOCGSKNS:
1172 			err = -EPERM;
1173 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1174 				break;
1175 
1176 			err = open_related_ns(&net->ns, get_net_ns);
1177 			break;
1178 		case SIOCGSTAMP_OLD:
1179 		case SIOCGSTAMPNS_OLD:
1180 			if (!sock->ops->gettstamp) {
1181 				err = -ENOIOCTLCMD;
1182 				break;
1183 			}
1184 			err = sock->ops->gettstamp(sock, argp,
1185 						   cmd == SIOCGSTAMP_OLD,
1186 						   !IS_ENABLED(CONFIG_64BIT));
1187 			break;
1188 		case SIOCGSTAMP_NEW:
1189 		case SIOCGSTAMPNS_NEW:
1190 			if (!sock->ops->gettstamp) {
1191 				err = -ENOIOCTLCMD;
1192 				break;
1193 			}
1194 			err = sock->ops->gettstamp(sock, argp,
1195 						   cmd == SIOCGSTAMP_NEW,
1196 						   false);
1197 			break;
1198 		default:
1199 			err = sock_do_ioctl(net, sock, cmd, arg);
1200 			break;
1201 		}
1202 	return err;
1203 }
1204 
1205 /**
1206  *	sock_create_lite - creates a socket
1207  *	@family: protocol family (AF_INET, ...)
1208  *	@type: communication type (SOCK_STREAM, ...)
1209  *	@protocol: protocol (0, ...)
1210  *	@res: new socket
1211  *
1212  *	Creates a new socket and assigns it to @res, passing through LSM.
1213  *	The new socket initialization is not complete, see kernel_accept().
1214  *	Returns 0 or an error. On failure @res is set to %NULL.
1215  *	This function internally uses GFP_KERNEL.
1216  */
1217 
1218 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1219 {
1220 	int err;
1221 	struct socket *sock = NULL;
1222 
1223 	err = security_socket_create(family, type, protocol, 1);
1224 	if (err)
1225 		goto out;
1226 
1227 	sock = sock_alloc();
1228 	if (!sock) {
1229 		err = -ENOMEM;
1230 		goto out;
1231 	}
1232 
1233 	sock->type = type;
1234 	err = security_socket_post_create(sock, family, type, protocol, 1);
1235 	if (err)
1236 		goto out_release;
1237 
1238 out:
1239 	*res = sock;
1240 	return err;
1241 out_release:
1242 	sock_release(sock);
1243 	sock = NULL;
1244 	goto out;
1245 }
1246 EXPORT_SYMBOL(sock_create_lite);
1247 
1248 /* No kernel lock held - perfect */
1249 static __poll_t sock_poll(struct file *file, poll_table *wait)
1250 {
1251 	struct socket *sock = file->private_data;
1252 	__poll_t events = poll_requested_events(wait), flag = 0;
1253 
1254 	if (!sock->ops->poll)
1255 		return 0;
1256 
1257 	if (sk_can_busy_loop(sock->sk)) {
1258 		/* poll once if requested by the syscall */
1259 		if (events & POLL_BUSY_LOOP)
1260 			sk_busy_loop(sock->sk, 1);
1261 
1262 		/* if this socket can poll_ll, tell the system call */
1263 		flag = POLL_BUSY_LOOP;
1264 	}
1265 
1266 	return sock->ops->poll(file, sock, wait) | flag;
1267 }
1268 
1269 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1270 {
1271 	struct socket *sock = file->private_data;
1272 
1273 	return sock->ops->mmap(file, sock, vma);
1274 }
1275 
1276 static int sock_close(struct inode *inode, struct file *filp)
1277 {
1278 	__sock_release(SOCKET_I(inode), inode);
1279 	return 0;
1280 }
1281 
1282 /*
1283  *	Update the socket async list
1284  *
1285  *	Fasync_list locking strategy.
1286  *
1287  *	1. fasync_list is modified only under process context socket lock
1288  *	   i.e. under semaphore.
1289  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1290  *	   or under socket lock
1291  */
1292 
1293 static int sock_fasync(int fd, struct file *filp, int on)
1294 {
1295 	struct socket *sock = filp->private_data;
1296 	struct sock *sk = sock->sk;
1297 	struct socket_wq *wq = &sock->wq;
1298 
1299 	if (sk == NULL)
1300 		return -EINVAL;
1301 
1302 	lock_sock(sk);
1303 	fasync_helper(fd, filp, on, &wq->fasync_list);
1304 
1305 	if (!wq->fasync_list)
1306 		sock_reset_flag(sk, SOCK_FASYNC);
1307 	else
1308 		sock_set_flag(sk, SOCK_FASYNC);
1309 
1310 	release_sock(sk);
1311 	return 0;
1312 }
1313 
1314 /* This function may be called only under rcu_lock */
1315 
1316 int sock_wake_async(struct socket_wq *wq, int how, int band)
1317 {
1318 	if (!wq || !wq->fasync_list)
1319 		return -1;
1320 
1321 	switch (how) {
1322 	case SOCK_WAKE_WAITD:
1323 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1324 			break;
1325 		goto call_kill;
1326 	case SOCK_WAKE_SPACE:
1327 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1328 			break;
1329 		/* fall through */
1330 	case SOCK_WAKE_IO:
1331 call_kill:
1332 		kill_fasync(&wq->fasync_list, SIGIO, band);
1333 		break;
1334 	case SOCK_WAKE_URG:
1335 		kill_fasync(&wq->fasync_list, SIGURG, band);
1336 	}
1337 
1338 	return 0;
1339 }
1340 EXPORT_SYMBOL(sock_wake_async);
1341 
1342 /**
1343  *	__sock_create - creates a socket
1344  *	@net: net namespace
1345  *	@family: protocol family (AF_INET, ...)
1346  *	@type: communication type (SOCK_STREAM, ...)
1347  *	@protocol: protocol (0, ...)
1348  *	@res: new socket
1349  *	@kern: boolean for kernel space sockets
1350  *
1351  *	Creates a new socket and assigns it to @res, passing through LSM.
1352  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1353  *	be set to true if the socket resides in kernel space.
1354  *	This function internally uses GFP_KERNEL.
1355  */
1356 
1357 int __sock_create(struct net *net, int family, int type, int protocol,
1358 			 struct socket **res, int kern)
1359 {
1360 	int err;
1361 	struct socket *sock;
1362 	const struct net_proto_family *pf;
1363 
1364 	/*
1365 	 *      Check protocol is in range
1366 	 */
1367 	if (family < 0 || family >= NPROTO)
1368 		return -EAFNOSUPPORT;
1369 	if (type < 0 || type >= SOCK_MAX)
1370 		return -EINVAL;
1371 
1372 	/* Compatibility.
1373 
1374 	   This uglymoron is moved from INET layer to here to avoid
1375 	   deadlock in module load.
1376 	 */
1377 	if (family == PF_INET && type == SOCK_PACKET) {
1378 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1379 			     current->comm);
1380 		family = PF_PACKET;
1381 	}
1382 
1383 	err = security_socket_create(family, type, protocol, kern);
1384 	if (err)
1385 		return err;
1386 
1387 	/*
1388 	 *	Allocate the socket and allow the family to set things up. if
1389 	 *	the protocol is 0, the family is instructed to select an appropriate
1390 	 *	default.
1391 	 */
1392 	sock = sock_alloc();
1393 	if (!sock) {
1394 		net_warn_ratelimited("socket: no more sockets\n");
1395 		return -ENFILE;	/* Not exactly a match, but its the
1396 				   closest posix thing */
1397 	}
1398 
1399 	sock->type = type;
1400 
1401 #ifdef CONFIG_MODULES
1402 	/* Attempt to load a protocol module if the find failed.
1403 	 *
1404 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1405 	 * requested real, full-featured networking support upon configuration.
1406 	 * Otherwise module support will break!
1407 	 */
1408 	if (rcu_access_pointer(net_families[family]) == NULL)
1409 		request_module("net-pf-%d", family);
1410 #endif
1411 
1412 	rcu_read_lock();
1413 	pf = rcu_dereference(net_families[family]);
1414 	err = -EAFNOSUPPORT;
1415 	if (!pf)
1416 		goto out_release;
1417 
1418 	/*
1419 	 * We will call the ->create function, that possibly is in a loadable
1420 	 * module, so we have to bump that loadable module refcnt first.
1421 	 */
1422 	if (!try_module_get(pf->owner))
1423 		goto out_release;
1424 
1425 	/* Now protected by module ref count */
1426 	rcu_read_unlock();
1427 
1428 	err = pf->create(net, sock, protocol, kern);
1429 	if (err < 0)
1430 		goto out_module_put;
1431 
1432 	/*
1433 	 * Now to bump the refcnt of the [loadable] module that owns this
1434 	 * socket at sock_release time we decrement its refcnt.
1435 	 */
1436 	if (!try_module_get(sock->ops->owner))
1437 		goto out_module_busy;
1438 
1439 	/*
1440 	 * Now that we're done with the ->create function, the [loadable]
1441 	 * module can have its refcnt decremented
1442 	 */
1443 	module_put(pf->owner);
1444 	err = security_socket_post_create(sock, family, type, protocol, kern);
1445 	if (err)
1446 		goto out_sock_release;
1447 	*res = sock;
1448 
1449 	return 0;
1450 
1451 out_module_busy:
1452 	err = -EAFNOSUPPORT;
1453 out_module_put:
1454 	sock->ops = NULL;
1455 	module_put(pf->owner);
1456 out_sock_release:
1457 	sock_release(sock);
1458 	return err;
1459 
1460 out_release:
1461 	rcu_read_unlock();
1462 	goto out_sock_release;
1463 }
1464 EXPORT_SYMBOL(__sock_create);
1465 
1466 /**
1467  *	sock_create - creates a socket
1468  *	@family: protocol family (AF_INET, ...)
1469  *	@type: communication type (SOCK_STREAM, ...)
1470  *	@protocol: protocol (0, ...)
1471  *	@res: new socket
1472  *
1473  *	A wrapper around __sock_create().
1474  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1475  */
1476 
1477 int sock_create(int family, int type, int protocol, struct socket **res)
1478 {
1479 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1480 }
1481 EXPORT_SYMBOL(sock_create);
1482 
1483 /**
1484  *	sock_create_kern - creates a socket (kernel space)
1485  *	@net: net namespace
1486  *	@family: protocol family (AF_INET, ...)
1487  *	@type: communication type (SOCK_STREAM, ...)
1488  *	@protocol: protocol (0, ...)
1489  *	@res: new socket
1490  *
1491  *	A wrapper around __sock_create().
1492  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1493  */
1494 
1495 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1496 {
1497 	return __sock_create(net, family, type, protocol, res, 1);
1498 }
1499 EXPORT_SYMBOL(sock_create_kern);
1500 
1501 int __sys_socket(int family, int type, int protocol)
1502 {
1503 	int retval;
1504 	struct socket *sock;
1505 	int flags;
1506 
1507 	/* Check the SOCK_* constants for consistency.  */
1508 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1509 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1510 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1511 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1512 
1513 	flags = type & ~SOCK_TYPE_MASK;
1514 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1515 		return -EINVAL;
1516 	type &= SOCK_TYPE_MASK;
1517 
1518 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1519 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1520 
1521 	retval = sock_create(family, type, protocol, &sock);
1522 	if (retval < 0)
1523 		return retval;
1524 
1525 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1526 }
1527 
1528 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1529 {
1530 	return __sys_socket(family, type, protocol);
1531 }
1532 
1533 /*
1534  *	Create a pair of connected sockets.
1535  */
1536 
1537 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1538 {
1539 	struct socket *sock1, *sock2;
1540 	int fd1, fd2, err;
1541 	struct file *newfile1, *newfile2;
1542 	int flags;
1543 
1544 	flags = type & ~SOCK_TYPE_MASK;
1545 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1546 		return -EINVAL;
1547 	type &= SOCK_TYPE_MASK;
1548 
1549 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1550 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1551 
1552 	/*
1553 	 * reserve descriptors and make sure we won't fail
1554 	 * to return them to userland.
1555 	 */
1556 	fd1 = get_unused_fd_flags(flags);
1557 	if (unlikely(fd1 < 0))
1558 		return fd1;
1559 
1560 	fd2 = get_unused_fd_flags(flags);
1561 	if (unlikely(fd2 < 0)) {
1562 		put_unused_fd(fd1);
1563 		return fd2;
1564 	}
1565 
1566 	err = put_user(fd1, &usockvec[0]);
1567 	if (err)
1568 		goto out;
1569 
1570 	err = put_user(fd2, &usockvec[1]);
1571 	if (err)
1572 		goto out;
1573 
1574 	/*
1575 	 * Obtain the first socket and check if the underlying protocol
1576 	 * supports the socketpair call.
1577 	 */
1578 
1579 	err = sock_create(family, type, protocol, &sock1);
1580 	if (unlikely(err < 0))
1581 		goto out;
1582 
1583 	err = sock_create(family, type, protocol, &sock2);
1584 	if (unlikely(err < 0)) {
1585 		sock_release(sock1);
1586 		goto out;
1587 	}
1588 
1589 	err = security_socket_socketpair(sock1, sock2);
1590 	if (unlikely(err)) {
1591 		sock_release(sock2);
1592 		sock_release(sock1);
1593 		goto out;
1594 	}
1595 
1596 	err = sock1->ops->socketpair(sock1, sock2);
1597 	if (unlikely(err < 0)) {
1598 		sock_release(sock2);
1599 		sock_release(sock1);
1600 		goto out;
1601 	}
1602 
1603 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1604 	if (IS_ERR(newfile1)) {
1605 		err = PTR_ERR(newfile1);
1606 		sock_release(sock2);
1607 		goto out;
1608 	}
1609 
1610 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1611 	if (IS_ERR(newfile2)) {
1612 		err = PTR_ERR(newfile2);
1613 		fput(newfile1);
1614 		goto out;
1615 	}
1616 
1617 	audit_fd_pair(fd1, fd2);
1618 
1619 	fd_install(fd1, newfile1);
1620 	fd_install(fd2, newfile2);
1621 	return 0;
1622 
1623 out:
1624 	put_unused_fd(fd2);
1625 	put_unused_fd(fd1);
1626 	return err;
1627 }
1628 
1629 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1630 		int __user *, usockvec)
1631 {
1632 	return __sys_socketpair(family, type, protocol, usockvec);
1633 }
1634 
1635 /*
1636  *	Bind a name to a socket. Nothing much to do here since it's
1637  *	the protocol's responsibility to handle the local address.
1638  *
1639  *	We move the socket address to kernel space before we call
1640  *	the protocol layer (having also checked the address is ok).
1641  */
1642 
1643 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1644 {
1645 	struct socket *sock;
1646 	struct sockaddr_storage address;
1647 	int err, fput_needed;
1648 
1649 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1650 	if (sock) {
1651 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1652 		if (!err) {
1653 			err = security_socket_bind(sock,
1654 						   (struct sockaddr *)&address,
1655 						   addrlen);
1656 			if (!err)
1657 				err = sock->ops->bind(sock,
1658 						      (struct sockaddr *)
1659 						      &address, addrlen);
1660 		}
1661 		fput_light(sock->file, fput_needed);
1662 	}
1663 	return err;
1664 }
1665 
1666 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1667 {
1668 	return __sys_bind(fd, umyaddr, addrlen);
1669 }
1670 
1671 /*
1672  *	Perform a listen. Basically, we allow the protocol to do anything
1673  *	necessary for a listen, and if that works, we mark the socket as
1674  *	ready for listening.
1675  */
1676 
1677 int __sys_listen(int fd, int backlog)
1678 {
1679 	struct socket *sock;
1680 	int err, fput_needed;
1681 	int somaxconn;
1682 
1683 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1684 	if (sock) {
1685 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1686 		if ((unsigned int)backlog > somaxconn)
1687 			backlog = somaxconn;
1688 
1689 		err = security_socket_listen(sock, backlog);
1690 		if (!err)
1691 			err = sock->ops->listen(sock, backlog);
1692 
1693 		fput_light(sock->file, fput_needed);
1694 	}
1695 	return err;
1696 }
1697 
1698 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1699 {
1700 	return __sys_listen(fd, backlog);
1701 }
1702 
1703 int __sys_accept4_file(struct file *file, unsigned file_flags,
1704 		       struct sockaddr __user *upeer_sockaddr,
1705 		       int __user *upeer_addrlen, int flags,
1706 		       unsigned long nofile)
1707 {
1708 	struct socket *sock, *newsock;
1709 	struct file *newfile;
1710 	int err, len, newfd;
1711 	struct sockaddr_storage address;
1712 
1713 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1714 		return -EINVAL;
1715 
1716 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718 
1719 	sock = sock_from_file(file, &err);
1720 	if (!sock)
1721 		goto out;
1722 
1723 	err = -ENFILE;
1724 	newsock = sock_alloc();
1725 	if (!newsock)
1726 		goto out;
1727 
1728 	newsock->type = sock->type;
1729 	newsock->ops = sock->ops;
1730 
1731 	/*
1732 	 * We don't need try_module_get here, as the listening socket (sock)
1733 	 * has the protocol module (sock->ops->owner) held.
1734 	 */
1735 	__module_get(newsock->ops->owner);
1736 
1737 	newfd = __get_unused_fd_flags(flags, nofile);
1738 	if (unlikely(newfd < 0)) {
1739 		err = newfd;
1740 		sock_release(newsock);
1741 		goto out;
1742 	}
1743 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1744 	if (IS_ERR(newfile)) {
1745 		err = PTR_ERR(newfile);
1746 		put_unused_fd(newfd);
1747 		goto out;
1748 	}
1749 
1750 	err = security_socket_accept(sock, newsock);
1751 	if (err)
1752 		goto out_fd;
1753 
1754 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1755 					false);
1756 	if (err < 0)
1757 		goto out_fd;
1758 
1759 	if (upeer_sockaddr) {
1760 		len = newsock->ops->getname(newsock,
1761 					(struct sockaddr *)&address, 2);
1762 		if (len < 0) {
1763 			err = -ECONNABORTED;
1764 			goto out_fd;
1765 		}
1766 		err = move_addr_to_user(&address,
1767 					len, upeer_sockaddr, upeer_addrlen);
1768 		if (err < 0)
1769 			goto out_fd;
1770 	}
1771 
1772 	/* File flags are not inherited via accept() unlike another OSes. */
1773 
1774 	fd_install(newfd, newfile);
1775 	err = newfd;
1776 out:
1777 	return err;
1778 out_fd:
1779 	fput(newfile);
1780 	put_unused_fd(newfd);
1781 	goto out;
1782 
1783 }
1784 
1785 /*
1786  *	For accept, we attempt to create a new socket, set up the link
1787  *	with the client, wake up the client, then return the new
1788  *	connected fd. We collect the address of the connector in kernel
1789  *	space and move it to user at the very end. This is unclean because
1790  *	we open the socket then return an error.
1791  *
1792  *	1003.1g adds the ability to recvmsg() to query connection pending
1793  *	status to recvmsg. We need to add that support in a way thats
1794  *	clean when we restructure accept also.
1795  */
1796 
1797 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1798 		  int __user *upeer_addrlen, int flags)
1799 {
1800 	int ret = -EBADF;
1801 	struct fd f;
1802 
1803 	f = fdget(fd);
1804 	if (f.file) {
1805 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1806 						upeer_addrlen, flags,
1807 						rlimit(RLIMIT_NOFILE));
1808 		if (f.flags)
1809 			fput(f.file);
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1816 		int __user *, upeer_addrlen, int, flags)
1817 {
1818 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1819 }
1820 
1821 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1822 		int __user *, upeer_addrlen)
1823 {
1824 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1825 }
1826 
1827 /*
1828  *	Attempt to connect to a socket with the server address.  The address
1829  *	is in user space so we verify it is OK and move it to kernel space.
1830  *
1831  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1832  *	break bindings
1833  *
1834  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1835  *	other SEQPACKET protocols that take time to connect() as it doesn't
1836  *	include the -EINPROGRESS status for such sockets.
1837  */
1838 
1839 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1840 		       int addrlen, int file_flags)
1841 {
1842 	struct socket *sock;
1843 	int err;
1844 
1845 	sock = sock_from_file(file, &err);
1846 	if (!sock)
1847 		goto out;
1848 
1849 	err =
1850 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1851 	if (err)
1852 		goto out;
1853 
1854 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1855 				 sock->file->f_flags | file_flags);
1856 out:
1857 	return err;
1858 }
1859 
1860 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1861 {
1862 	int ret = -EBADF;
1863 	struct fd f;
1864 
1865 	f = fdget(fd);
1866 	if (f.file) {
1867 		struct sockaddr_storage address;
1868 
1869 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1870 		if (!ret)
1871 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1872 		if (f.flags)
1873 			fput(f.file);
1874 	}
1875 
1876 	return ret;
1877 }
1878 
1879 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1880 		int, addrlen)
1881 {
1882 	return __sys_connect(fd, uservaddr, addrlen);
1883 }
1884 
1885 /*
1886  *	Get the local address ('name') of a socket object. Move the obtained
1887  *	name to user space.
1888  */
1889 
1890 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1891 		      int __user *usockaddr_len)
1892 {
1893 	struct socket *sock;
1894 	struct sockaddr_storage address;
1895 	int err, fput_needed;
1896 
1897 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1898 	if (!sock)
1899 		goto out;
1900 
1901 	err = security_socket_getsockname(sock);
1902 	if (err)
1903 		goto out_put;
1904 
1905 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1906 	if (err < 0)
1907 		goto out_put;
1908         /* "err" is actually length in this case */
1909 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1910 
1911 out_put:
1912 	fput_light(sock->file, fput_needed);
1913 out:
1914 	return err;
1915 }
1916 
1917 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1918 		int __user *, usockaddr_len)
1919 {
1920 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1921 }
1922 
1923 /*
1924  *	Get the remote address ('name') of a socket object. Move the obtained
1925  *	name to user space.
1926  */
1927 
1928 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1929 		      int __user *usockaddr_len)
1930 {
1931 	struct socket *sock;
1932 	struct sockaddr_storage address;
1933 	int err, fput_needed;
1934 
1935 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1936 	if (sock != NULL) {
1937 		err = security_socket_getpeername(sock);
1938 		if (err) {
1939 			fput_light(sock->file, fput_needed);
1940 			return err;
1941 		}
1942 
1943 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1944 		if (err >= 0)
1945 			/* "err" is actually length in this case */
1946 			err = move_addr_to_user(&address, err, usockaddr,
1947 						usockaddr_len);
1948 		fput_light(sock->file, fput_needed);
1949 	}
1950 	return err;
1951 }
1952 
1953 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1954 		int __user *, usockaddr_len)
1955 {
1956 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1957 }
1958 
1959 /*
1960  *	Send a datagram to a given address. We move the address into kernel
1961  *	space and check the user space data area is readable before invoking
1962  *	the protocol.
1963  */
1964 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1965 		 struct sockaddr __user *addr,  int addr_len)
1966 {
1967 	struct socket *sock;
1968 	struct sockaddr_storage address;
1969 	int err;
1970 	struct msghdr msg;
1971 	struct iovec iov;
1972 	int fput_needed;
1973 
1974 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1975 	if (unlikely(err))
1976 		return err;
1977 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1978 	if (!sock)
1979 		goto out;
1980 
1981 	msg.msg_name = NULL;
1982 	msg.msg_control = NULL;
1983 	msg.msg_controllen = 0;
1984 	msg.msg_namelen = 0;
1985 	if (addr) {
1986 		err = move_addr_to_kernel(addr, addr_len, &address);
1987 		if (err < 0)
1988 			goto out_put;
1989 		msg.msg_name = (struct sockaddr *)&address;
1990 		msg.msg_namelen = addr_len;
1991 	}
1992 	if (sock->file->f_flags & O_NONBLOCK)
1993 		flags |= MSG_DONTWAIT;
1994 	msg.msg_flags = flags;
1995 	err = sock_sendmsg(sock, &msg);
1996 
1997 out_put:
1998 	fput_light(sock->file, fput_needed);
1999 out:
2000 	return err;
2001 }
2002 
2003 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2004 		unsigned int, flags, struct sockaddr __user *, addr,
2005 		int, addr_len)
2006 {
2007 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2008 }
2009 
2010 /*
2011  *	Send a datagram down a socket.
2012  */
2013 
2014 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2015 		unsigned int, flags)
2016 {
2017 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2018 }
2019 
2020 /*
2021  *	Receive a frame from the socket and optionally record the address of the
2022  *	sender. We verify the buffers are writable and if needed move the
2023  *	sender address from kernel to user space.
2024  */
2025 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2026 		   struct sockaddr __user *addr, int __user *addr_len)
2027 {
2028 	struct socket *sock;
2029 	struct iovec iov;
2030 	struct msghdr msg;
2031 	struct sockaddr_storage address;
2032 	int err, err2;
2033 	int fput_needed;
2034 
2035 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2036 	if (unlikely(err))
2037 		return err;
2038 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2039 	if (!sock)
2040 		goto out;
2041 
2042 	msg.msg_control = NULL;
2043 	msg.msg_controllen = 0;
2044 	/* Save some cycles and don't copy the address if not needed */
2045 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2046 	/* We assume all kernel code knows the size of sockaddr_storage */
2047 	msg.msg_namelen = 0;
2048 	msg.msg_iocb = NULL;
2049 	msg.msg_flags = 0;
2050 	if (sock->file->f_flags & O_NONBLOCK)
2051 		flags |= MSG_DONTWAIT;
2052 	err = sock_recvmsg(sock, &msg, flags);
2053 
2054 	if (err >= 0 && addr != NULL) {
2055 		err2 = move_addr_to_user(&address,
2056 					 msg.msg_namelen, addr, addr_len);
2057 		if (err2 < 0)
2058 			err = err2;
2059 	}
2060 
2061 	fput_light(sock->file, fput_needed);
2062 out:
2063 	return err;
2064 }
2065 
2066 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2067 		unsigned int, flags, struct sockaddr __user *, addr,
2068 		int __user *, addr_len)
2069 {
2070 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2071 }
2072 
2073 /*
2074  *	Receive a datagram from a socket.
2075  */
2076 
2077 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2078 		unsigned int, flags)
2079 {
2080 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2081 }
2082 
2083 /*
2084  *	Set a socket option. Because we don't know the option lengths we have
2085  *	to pass the user mode parameter for the protocols to sort out.
2086  */
2087 
2088 static int __sys_setsockopt(int fd, int level, int optname,
2089 			    char __user *optval, int optlen)
2090 {
2091 	mm_segment_t oldfs = get_fs();
2092 	char *kernel_optval = NULL;
2093 	int err, fput_needed;
2094 	struct socket *sock;
2095 
2096 	if (optlen < 0)
2097 		return -EINVAL;
2098 
2099 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2100 	if (sock != NULL) {
2101 		err = security_socket_setsockopt(sock, level, optname);
2102 		if (err)
2103 			goto out_put;
2104 
2105 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2106 						     &optname, optval, &optlen,
2107 						     &kernel_optval);
2108 
2109 		if (err < 0) {
2110 			goto out_put;
2111 		} else if (err > 0) {
2112 			err = 0;
2113 			goto out_put;
2114 		}
2115 
2116 		if (kernel_optval) {
2117 			set_fs(KERNEL_DS);
2118 			optval = (char __user __force *)kernel_optval;
2119 		}
2120 
2121 		if (level == SOL_SOCKET)
2122 			err =
2123 			    sock_setsockopt(sock, level, optname, optval,
2124 					    optlen);
2125 		else
2126 			err =
2127 			    sock->ops->setsockopt(sock, level, optname, optval,
2128 						  optlen);
2129 
2130 		if (kernel_optval) {
2131 			set_fs(oldfs);
2132 			kfree(kernel_optval);
2133 		}
2134 out_put:
2135 		fput_light(sock->file, fput_needed);
2136 	}
2137 	return err;
2138 }
2139 
2140 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2141 		char __user *, optval, int, optlen)
2142 {
2143 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2144 }
2145 
2146 /*
2147  *	Get a socket option. Because we don't know the option lengths we have
2148  *	to pass a user mode parameter for the protocols to sort out.
2149  */
2150 
2151 static int __sys_getsockopt(int fd, int level, int optname,
2152 			    char __user *optval, int __user *optlen)
2153 {
2154 	int err, fput_needed;
2155 	struct socket *sock;
2156 	int max_optlen;
2157 
2158 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2159 	if (sock != NULL) {
2160 		err = security_socket_getsockopt(sock, level, optname);
2161 		if (err)
2162 			goto out_put;
2163 
2164 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2165 
2166 		if (level == SOL_SOCKET)
2167 			err =
2168 			    sock_getsockopt(sock, level, optname, optval,
2169 					    optlen);
2170 		else
2171 			err =
2172 			    sock->ops->getsockopt(sock, level, optname, optval,
2173 						  optlen);
2174 
2175 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2176 						     optval, optlen,
2177 						     max_optlen, err);
2178 out_put:
2179 		fput_light(sock->file, fput_needed);
2180 	}
2181 	return err;
2182 }
2183 
2184 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2185 		char __user *, optval, int __user *, optlen)
2186 {
2187 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2188 }
2189 
2190 /*
2191  *	Shutdown a socket.
2192  */
2193 
2194 int __sys_shutdown(int fd, int how)
2195 {
2196 	int err, fput_needed;
2197 	struct socket *sock;
2198 
2199 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2200 	if (sock != NULL) {
2201 		err = security_socket_shutdown(sock, how);
2202 		if (!err)
2203 			err = sock->ops->shutdown(sock, how);
2204 		fput_light(sock->file, fput_needed);
2205 	}
2206 	return err;
2207 }
2208 
2209 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2210 {
2211 	return __sys_shutdown(fd, how);
2212 }
2213 
2214 /* A couple of helpful macros for getting the address of the 32/64 bit
2215  * fields which are the same type (int / unsigned) on our platforms.
2216  */
2217 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2218 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2219 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2220 
2221 struct used_address {
2222 	struct sockaddr_storage name;
2223 	unsigned int name_len;
2224 };
2225 
2226 int __copy_msghdr_from_user(struct msghdr *kmsg,
2227 			    struct user_msghdr __user *umsg,
2228 			    struct sockaddr __user **save_addr,
2229 			    struct iovec __user **uiov, size_t *nsegs)
2230 {
2231 	struct user_msghdr msg;
2232 	ssize_t err;
2233 
2234 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2235 		return -EFAULT;
2236 
2237 	kmsg->msg_control_is_user = true;
2238 	kmsg->msg_control_user = msg.msg_control;
2239 	kmsg->msg_controllen = msg.msg_controllen;
2240 	kmsg->msg_flags = msg.msg_flags;
2241 
2242 	kmsg->msg_namelen = msg.msg_namelen;
2243 	if (!msg.msg_name)
2244 		kmsg->msg_namelen = 0;
2245 
2246 	if (kmsg->msg_namelen < 0)
2247 		return -EINVAL;
2248 
2249 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2250 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2251 
2252 	if (save_addr)
2253 		*save_addr = msg.msg_name;
2254 
2255 	if (msg.msg_name && kmsg->msg_namelen) {
2256 		if (!save_addr) {
2257 			err = move_addr_to_kernel(msg.msg_name,
2258 						  kmsg->msg_namelen,
2259 						  kmsg->msg_name);
2260 			if (err < 0)
2261 				return err;
2262 		}
2263 	} else {
2264 		kmsg->msg_name = NULL;
2265 		kmsg->msg_namelen = 0;
2266 	}
2267 
2268 	if (msg.msg_iovlen > UIO_MAXIOV)
2269 		return -EMSGSIZE;
2270 
2271 	kmsg->msg_iocb = NULL;
2272 	*uiov = msg.msg_iov;
2273 	*nsegs = msg.msg_iovlen;
2274 	return 0;
2275 }
2276 
2277 static int copy_msghdr_from_user(struct msghdr *kmsg,
2278 				 struct user_msghdr __user *umsg,
2279 				 struct sockaddr __user **save_addr,
2280 				 struct iovec **iov)
2281 {
2282 	struct user_msghdr msg;
2283 	ssize_t err;
2284 
2285 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2286 					&msg.msg_iovlen);
2287 	if (err)
2288 		return err;
2289 
2290 	err = import_iovec(save_addr ? READ : WRITE,
2291 			    msg.msg_iov, msg.msg_iovlen,
2292 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2293 	return err < 0 ? err : 0;
2294 }
2295 
2296 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2297 			   unsigned int flags, struct used_address *used_address,
2298 			   unsigned int allowed_msghdr_flags)
2299 {
2300 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2301 				__aligned(sizeof(__kernel_size_t));
2302 	/* 20 is size of ipv6_pktinfo */
2303 	unsigned char *ctl_buf = ctl;
2304 	int ctl_len;
2305 	ssize_t err;
2306 
2307 	err = -ENOBUFS;
2308 
2309 	if (msg_sys->msg_controllen > INT_MAX)
2310 		goto out;
2311 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2312 	ctl_len = msg_sys->msg_controllen;
2313 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2314 		err =
2315 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2316 						     sizeof(ctl));
2317 		if (err)
2318 			goto out;
2319 		ctl_buf = msg_sys->msg_control;
2320 		ctl_len = msg_sys->msg_controllen;
2321 	} else if (ctl_len) {
2322 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2323 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2324 		if (ctl_len > sizeof(ctl)) {
2325 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2326 			if (ctl_buf == NULL)
2327 				goto out;
2328 		}
2329 		err = -EFAULT;
2330 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2331 			goto out_freectl;
2332 		msg_sys->msg_control = ctl_buf;
2333 		msg_sys->msg_control_is_user = false;
2334 	}
2335 	msg_sys->msg_flags = flags;
2336 
2337 	if (sock->file->f_flags & O_NONBLOCK)
2338 		msg_sys->msg_flags |= MSG_DONTWAIT;
2339 	/*
2340 	 * If this is sendmmsg() and current destination address is same as
2341 	 * previously succeeded address, omit asking LSM's decision.
2342 	 * used_address->name_len is initialized to UINT_MAX so that the first
2343 	 * destination address never matches.
2344 	 */
2345 	if (used_address && msg_sys->msg_name &&
2346 	    used_address->name_len == msg_sys->msg_namelen &&
2347 	    !memcmp(&used_address->name, msg_sys->msg_name,
2348 		    used_address->name_len)) {
2349 		err = sock_sendmsg_nosec(sock, msg_sys);
2350 		goto out_freectl;
2351 	}
2352 	err = sock_sendmsg(sock, msg_sys);
2353 	/*
2354 	 * If this is sendmmsg() and sending to current destination address was
2355 	 * successful, remember it.
2356 	 */
2357 	if (used_address && err >= 0) {
2358 		used_address->name_len = msg_sys->msg_namelen;
2359 		if (msg_sys->msg_name)
2360 			memcpy(&used_address->name, msg_sys->msg_name,
2361 			       used_address->name_len);
2362 	}
2363 
2364 out_freectl:
2365 	if (ctl_buf != ctl)
2366 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2367 out:
2368 	return err;
2369 }
2370 
2371 int sendmsg_copy_msghdr(struct msghdr *msg,
2372 			struct user_msghdr __user *umsg, unsigned flags,
2373 			struct iovec **iov)
2374 {
2375 	int err;
2376 
2377 	if (flags & MSG_CMSG_COMPAT) {
2378 		struct compat_msghdr __user *msg_compat;
2379 
2380 		msg_compat = (struct compat_msghdr __user *) umsg;
2381 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2382 	} else {
2383 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2384 	}
2385 	if (err < 0)
2386 		return err;
2387 
2388 	return 0;
2389 }
2390 
2391 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2392 			 struct msghdr *msg_sys, unsigned int flags,
2393 			 struct used_address *used_address,
2394 			 unsigned int allowed_msghdr_flags)
2395 {
2396 	struct sockaddr_storage address;
2397 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2398 	ssize_t err;
2399 
2400 	msg_sys->msg_name = &address;
2401 
2402 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2403 	if (err < 0)
2404 		return err;
2405 
2406 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2407 				allowed_msghdr_flags);
2408 	kfree(iov);
2409 	return err;
2410 }
2411 
2412 /*
2413  *	BSD sendmsg interface
2414  */
2415 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2416 			unsigned int flags)
2417 {
2418 	/* disallow ancillary data requests from this path */
2419 	if (msg->msg_control || msg->msg_controllen)
2420 		return -EINVAL;
2421 
2422 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2423 }
2424 
2425 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2426 		   bool forbid_cmsg_compat)
2427 {
2428 	int fput_needed, err;
2429 	struct msghdr msg_sys;
2430 	struct socket *sock;
2431 
2432 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2433 		return -EINVAL;
2434 
2435 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2436 	if (!sock)
2437 		goto out;
2438 
2439 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2440 
2441 	fput_light(sock->file, fput_needed);
2442 out:
2443 	return err;
2444 }
2445 
2446 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2447 {
2448 	return __sys_sendmsg(fd, msg, flags, true);
2449 }
2450 
2451 /*
2452  *	Linux sendmmsg interface
2453  */
2454 
2455 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2456 		   unsigned int flags, bool forbid_cmsg_compat)
2457 {
2458 	int fput_needed, err, datagrams;
2459 	struct socket *sock;
2460 	struct mmsghdr __user *entry;
2461 	struct compat_mmsghdr __user *compat_entry;
2462 	struct msghdr msg_sys;
2463 	struct used_address used_address;
2464 	unsigned int oflags = flags;
2465 
2466 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2467 		return -EINVAL;
2468 
2469 	if (vlen > UIO_MAXIOV)
2470 		vlen = UIO_MAXIOV;
2471 
2472 	datagrams = 0;
2473 
2474 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2475 	if (!sock)
2476 		return err;
2477 
2478 	used_address.name_len = UINT_MAX;
2479 	entry = mmsg;
2480 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2481 	err = 0;
2482 	flags |= MSG_BATCH;
2483 
2484 	while (datagrams < vlen) {
2485 		if (datagrams == vlen - 1)
2486 			flags = oflags;
2487 
2488 		if (MSG_CMSG_COMPAT & flags) {
2489 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2490 					     &msg_sys, flags, &used_address, MSG_EOR);
2491 			if (err < 0)
2492 				break;
2493 			err = __put_user(err, &compat_entry->msg_len);
2494 			++compat_entry;
2495 		} else {
2496 			err = ___sys_sendmsg(sock,
2497 					     (struct user_msghdr __user *)entry,
2498 					     &msg_sys, flags, &used_address, MSG_EOR);
2499 			if (err < 0)
2500 				break;
2501 			err = put_user(err, &entry->msg_len);
2502 			++entry;
2503 		}
2504 
2505 		if (err)
2506 			break;
2507 		++datagrams;
2508 		if (msg_data_left(&msg_sys))
2509 			break;
2510 		cond_resched();
2511 	}
2512 
2513 	fput_light(sock->file, fput_needed);
2514 
2515 	/* We only return an error if no datagrams were able to be sent */
2516 	if (datagrams != 0)
2517 		return datagrams;
2518 
2519 	return err;
2520 }
2521 
2522 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2523 		unsigned int, vlen, unsigned int, flags)
2524 {
2525 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2526 }
2527 
2528 int recvmsg_copy_msghdr(struct msghdr *msg,
2529 			struct user_msghdr __user *umsg, unsigned flags,
2530 			struct sockaddr __user **uaddr,
2531 			struct iovec **iov)
2532 {
2533 	ssize_t err;
2534 
2535 	if (MSG_CMSG_COMPAT & flags) {
2536 		struct compat_msghdr __user *msg_compat;
2537 
2538 		msg_compat = (struct compat_msghdr __user *) umsg;
2539 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2540 	} else {
2541 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2542 	}
2543 	if (err < 0)
2544 		return err;
2545 
2546 	return 0;
2547 }
2548 
2549 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2550 			   struct user_msghdr __user *msg,
2551 			   struct sockaddr __user *uaddr,
2552 			   unsigned int flags, int nosec)
2553 {
2554 	struct compat_msghdr __user *msg_compat =
2555 					(struct compat_msghdr __user *) msg;
2556 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2557 	struct sockaddr_storage addr;
2558 	unsigned long cmsg_ptr;
2559 	int len;
2560 	ssize_t err;
2561 
2562 	msg_sys->msg_name = &addr;
2563 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2564 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2565 
2566 	/* We assume all kernel code knows the size of sockaddr_storage */
2567 	msg_sys->msg_namelen = 0;
2568 
2569 	if (sock->file->f_flags & O_NONBLOCK)
2570 		flags |= MSG_DONTWAIT;
2571 
2572 	if (unlikely(nosec))
2573 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2574 	else
2575 		err = sock_recvmsg(sock, msg_sys, flags);
2576 
2577 	if (err < 0)
2578 		goto out;
2579 	len = err;
2580 
2581 	if (uaddr != NULL) {
2582 		err = move_addr_to_user(&addr,
2583 					msg_sys->msg_namelen, uaddr,
2584 					uaddr_len);
2585 		if (err < 0)
2586 			goto out;
2587 	}
2588 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2589 			 COMPAT_FLAGS(msg));
2590 	if (err)
2591 		goto out;
2592 	if (MSG_CMSG_COMPAT & flags)
2593 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2594 				 &msg_compat->msg_controllen);
2595 	else
2596 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2597 				 &msg->msg_controllen);
2598 	if (err)
2599 		goto out;
2600 	err = len;
2601 out:
2602 	return err;
2603 }
2604 
2605 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2606 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2607 {
2608 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2609 	/* user mode address pointers */
2610 	struct sockaddr __user *uaddr;
2611 	ssize_t err;
2612 
2613 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2614 	if (err < 0)
2615 		return err;
2616 
2617 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2618 	kfree(iov);
2619 	return err;
2620 }
2621 
2622 /*
2623  *	BSD recvmsg interface
2624  */
2625 
2626 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2627 			struct user_msghdr __user *umsg,
2628 			struct sockaddr __user *uaddr, unsigned int flags)
2629 {
2630 	/* disallow ancillary data requests from this path */
2631 	if (msg->msg_control || msg->msg_controllen)
2632 		return -EINVAL;
2633 
2634 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2635 }
2636 
2637 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2638 		   bool forbid_cmsg_compat)
2639 {
2640 	int fput_needed, err;
2641 	struct msghdr msg_sys;
2642 	struct socket *sock;
2643 
2644 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2645 		return -EINVAL;
2646 
2647 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2648 	if (!sock)
2649 		goto out;
2650 
2651 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2652 
2653 	fput_light(sock->file, fput_needed);
2654 out:
2655 	return err;
2656 }
2657 
2658 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2659 		unsigned int, flags)
2660 {
2661 	return __sys_recvmsg(fd, msg, flags, true);
2662 }
2663 
2664 /*
2665  *     Linux recvmmsg interface
2666  */
2667 
2668 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2669 			  unsigned int vlen, unsigned int flags,
2670 			  struct timespec64 *timeout)
2671 {
2672 	int fput_needed, err, datagrams;
2673 	struct socket *sock;
2674 	struct mmsghdr __user *entry;
2675 	struct compat_mmsghdr __user *compat_entry;
2676 	struct msghdr msg_sys;
2677 	struct timespec64 end_time;
2678 	struct timespec64 timeout64;
2679 
2680 	if (timeout &&
2681 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2682 				    timeout->tv_nsec))
2683 		return -EINVAL;
2684 
2685 	datagrams = 0;
2686 
2687 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2688 	if (!sock)
2689 		return err;
2690 
2691 	if (likely(!(flags & MSG_ERRQUEUE))) {
2692 		err = sock_error(sock->sk);
2693 		if (err) {
2694 			datagrams = err;
2695 			goto out_put;
2696 		}
2697 	}
2698 
2699 	entry = mmsg;
2700 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2701 
2702 	while (datagrams < vlen) {
2703 		/*
2704 		 * No need to ask LSM for more than the first datagram.
2705 		 */
2706 		if (MSG_CMSG_COMPAT & flags) {
2707 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2708 					     &msg_sys, flags & ~MSG_WAITFORONE,
2709 					     datagrams);
2710 			if (err < 0)
2711 				break;
2712 			err = __put_user(err, &compat_entry->msg_len);
2713 			++compat_entry;
2714 		} else {
2715 			err = ___sys_recvmsg(sock,
2716 					     (struct user_msghdr __user *)entry,
2717 					     &msg_sys, flags & ~MSG_WAITFORONE,
2718 					     datagrams);
2719 			if (err < 0)
2720 				break;
2721 			err = put_user(err, &entry->msg_len);
2722 			++entry;
2723 		}
2724 
2725 		if (err)
2726 			break;
2727 		++datagrams;
2728 
2729 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2730 		if (flags & MSG_WAITFORONE)
2731 			flags |= MSG_DONTWAIT;
2732 
2733 		if (timeout) {
2734 			ktime_get_ts64(&timeout64);
2735 			*timeout = timespec64_sub(end_time, timeout64);
2736 			if (timeout->tv_sec < 0) {
2737 				timeout->tv_sec = timeout->tv_nsec = 0;
2738 				break;
2739 			}
2740 
2741 			/* Timeout, return less than vlen datagrams */
2742 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2743 				break;
2744 		}
2745 
2746 		/* Out of band data, return right away */
2747 		if (msg_sys.msg_flags & MSG_OOB)
2748 			break;
2749 		cond_resched();
2750 	}
2751 
2752 	if (err == 0)
2753 		goto out_put;
2754 
2755 	if (datagrams == 0) {
2756 		datagrams = err;
2757 		goto out_put;
2758 	}
2759 
2760 	/*
2761 	 * We may return less entries than requested (vlen) if the
2762 	 * sock is non block and there aren't enough datagrams...
2763 	 */
2764 	if (err != -EAGAIN) {
2765 		/*
2766 		 * ... or  if recvmsg returns an error after we
2767 		 * received some datagrams, where we record the
2768 		 * error to return on the next call or if the
2769 		 * app asks about it using getsockopt(SO_ERROR).
2770 		 */
2771 		sock->sk->sk_err = -err;
2772 	}
2773 out_put:
2774 	fput_light(sock->file, fput_needed);
2775 
2776 	return datagrams;
2777 }
2778 
2779 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2780 		   unsigned int vlen, unsigned int flags,
2781 		   struct __kernel_timespec __user *timeout,
2782 		   struct old_timespec32 __user *timeout32)
2783 {
2784 	int datagrams;
2785 	struct timespec64 timeout_sys;
2786 
2787 	if (timeout && get_timespec64(&timeout_sys, timeout))
2788 		return -EFAULT;
2789 
2790 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2791 		return -EFAULT;
2792 
2793 	if (!timeout && !timeout32)
2794 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2795 
2796 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2797 
2798 	if (datagrams <= 0)
2799 		return datagrams;
2800 
2801 	if (timeout && put_timespec64(&timeout_sys, timeout))
2802 		datagrams = -EFAULT;
2803 
2804 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2805 		datagrams = -EFAULT;
2806 
2807 	return datagrams;
2808 }
2809 
2810 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2811 		unsigned int, vlen, unsigned int, flags,
2812 		struct __kernel_timespec __user *, timeout)
2813 {
2814 	if (flags & MSG_CMSG_COMPAT)
2815 		return -EINVAL;
2816 
2817 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2818 }
2819 
2820 #ifdef CONFIG_COMPAT_32BIT_TIME
2821 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2822 		unsigned int, vlen, unsigned int, flags,
2823 		struct old_timespec32 __user *, timeout)
2824 {
2825 	if (flags & MSG_CMSG_COMPAT)
2826 		return -EINVAL;
2827 
2828 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2829 }
2830 #endif
2831 
2832 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2833 /* Argument list sizes for sys_socketcall */
2834 #define AL(x) ((x) * sizeof(unsigned long))
2835 static const unsigned char nargs[21] = {
2836 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2837 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2838 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2839 	AL(4), AL(5), AL(4)
2840 };
2841 
2842 #undef AL
2843 
2844 /*
2845  *	System call vectors.
2846  *
2847  *	Argument checking cleaned up. Saved 20% in size.
2848  *  This function doesn't need to set the kernel lock because
2849  *  it is set by the callees.
2850  */
2851 
2852 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2853 {
2854 	unsigned long a[AUDITSC_ARGS];
2855 	unsigned long a0, a1;
2856 	int err;
2857 	unsigned int len;
2858 
2859 	if (call < 1 || call > SYS_SENDMMSG)
2860 		return -EINVAL;
2861 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2862 
2863 	len = nargs[call];
2864 	if (len > sizeof(a))
2865 		return -EINVAL;
2866 
2867 	/* copy_from_user should be SMP safe. */
2868 	if (copy_from_user(a, args, len))
2869 		return -EFAULT;
2870 
2871 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2872 	if (err)
2873 		return err;
2874 
2875 	a0 = a[0];
2876 	a1 = a[1];
2877 
2878 	switch (call) {
2879 	case SYS_SOCKET:
2880 		err = __sys_socket(a0, a1, a[2]);
2881 		break;
2882 	case SYS_BIND:
2883 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2884 		break;
2885 	case SYS_CONNECT:
2886 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2887 		break;
2888 	case SYS_LISTEN:
2889 		err = __sys_listen(a0, a1);
2890 		break;
2891 	case SYS_ACCEPT:
2892 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2893 				    (int __user *)a[2], 0);
2894 		break;
2895 	case SYS_GETSOCKNAME:
2896 		err =
2897 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2898 				      (int __user *)a[2]);
2899 		break;
2900 	case SYS_GETPEERNAME:
2901 		err =
2902 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2903 				      (int __user *)a[2]);
2904 		break;
2905 	case SYS_SOCKETPAIR:
2906 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2907 		break;
2908 	case SYS_SEND:
2909 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2910 				   NULL, 0);
2911 		break;
2912 	case SYS_SENDTO:
2913 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2914 				   (struct sockaddr __user *)a[4], a[5]);
2915 		break;
2916 	case SYS_RECV:
2917 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2918 				     NULL, NULL);
2919 		break;
2920 	case SYS_RECVFROM:
2921 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2922 				     (struct sockaddr __user *)a[4],
2923 				     (int __user *)a[5]);
2924 		break;
2925 	case SYS_SHUTDOWN:
2926 		err = __sys_shutdown(a0, a1);
2927 		break;
2928 	case SYS_SETSOCKOPT:
2929 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2930 				       a[4]);
2931 		break;
2932 	case SYS_GETSOCKOPT:
2933 		err =
2934 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2935 				     (int __user *)a[4]);
2936 		break;
2937 	case SYS_SENDMSG:
2938 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2939 				    a[2], true);
2940 		break;
2941 	case SYS_SENDMMSG:
2942 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2943 				     a[3], true);
2944 		break;
2945 	case SYS_RECVMSG:
2946 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2947 				    a[2], true);
2948 		break;
2949 	case SYS_RECVMMSG:
2950 		if (IS_ENABLED(CONFIG_64BIT))
2951 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2952 					     a[2], a[3],
2953 					     (struct __kernel_timespec __user *)a[4],
2954 					     NULL);
2955 		else
2956 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2957 					     a[2], a[3], NULL,
2958 					     (struct old_timespec32 __user *)a[4]);
2959 		break;
2960 	case SYS_ACCEPT4:
2961 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2962 				    (int __user *)a[2], a[3]);
2963 		break;
2964 	default:
2965 		err = -EINVAL;
2966 		break;
2967 	}
2968 	return err;
2969 }
2970 
2971 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2972 
2973 /**
2974  *	sock_register - add a socket protocol handler
2975  *	@ops: description of protocol
2976  *
2977  *	This function is called by a protocol handler that wants to
2978  *	advertise its address family, and have it linked into the
2979  *	socket interface. The value ops->family corresponds to the
2980  *	socket system call protocol family.
2981  */
2982 int sock_register(const struct net_proto_family *ops)
2983 {
2984 	int err;
2985 
2986 	if (ops->family >= NPROTO) {
2987 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2988 		return -ENOBUFS;
2989 	}
2990 
2991 	spin_lock(&net_family_lock);
2992 	if (rcu_dereference_protected(net_families[ops->family],
2993 				      lockdep_is_held(&net_family_lock)))
2994 		err = -EEXIST;
2995 	else {
2996 		rcu_assign_pointer(net_families[ops->family], ops);
2997 		err = 0;
2998 	}
2999 	spin_unlock(&net_family_lock);
3000 
3001 	pr_info("NET: Registered protocol family %d\n", ops->family);
3002 	return err;
3003 }
3004 EXPORT_SYMBOL(sock_register);
3005 
3006 /**
3007  *	sock_unregister - remove a protocol handler
3008  *	@family: protocol family to remove
3009  *
3010  *	This function is called by a protocol handler that wants to
3011  *	remove its address family, and have it unlinked from the
3012  *	new socket creation.
3013  *
3014  *	If protocol handler is a module, then it can use module reference
3015  *	counts to protect against new references. If protocol handler is not
3016  *	a module then it needs to provide its own protection in
3017  *	the ops->create routine.
3018  */
3019 void sock_unregister(int family)
3020 {
3021 	BUG_ON(family < 0 || family >= NPROTO);
3022 
3023 	spin_lock(&net_family_lock);
3024 	RCU_INIT_POINTER(net_families[family], NULL);
3025 	spin_unlock(&net_family_lock);
3026 
3027 	synchronize_rcu();
3028 
3029 	pr_info("NET: Unregistered protocol family %d\n", family);
3030 }
3031 EXPORT_SYMBOL(sock_unregister);
3032 
3033 bool sock_is_registered(int family)
3034 {
3035 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3036 }
3037 
3038 static int __init sock_init(void)
3039 {
3040 	int err;
3041 	/*
3042 	 *      Initialize the network sysctl infrastructure.
3043 	 */
3044 	err = net_sysctl_init();
3045 	if (err)
3046 		goto out;
3047 
3048 	/*
3049 	 *      Initialize skbuff SLAB cache
3050 	 */
3051 	skb_init();
3052 
3053 	/*
3054 	 *      Initialize the protocols module.
3055 	 */
3056 
3057 	init_inodecache();
3058 
3059 	err = register_filesystem(&sock_fs_type);
3060 	if (err)
3061 		goto out_fs;
3062 	sock_mnt = kern_mount(&sock_fs_type);
3063 	if (IS_ERR(sock_mnt)) {
3064 		err = PTR_ERR(sock_mnt);
3065 		goto out_mount;
3066 	}
3067 
3068 	/* The real protocol initialization is performed in later initcalls.
3069 	 */
3070 
3071 #ifdef CONFIG_NETFILTER
3072 	err = netfilter_init();
3073 	if (err)
3074 		goto out;
3075 #endif
3076 
3077 	ptp_classifier_init();
3078 
3079 out:
3080 	return err;
3081 
3082 out_mount:
3083 	unregister_filesystem(&sock_fs_type);
3084 out_fs:
3085 	goto out;
3086 }
3087 
3088 core_initcall(sock_init);	/* early initcall */
3089 
3090 #ifdef CONFIG_PROC_FS
3091 void socket_seq_show(struct seq_file *seq)
3092 {
3093 	seq_printf(seq, "sockets: used %d\n",
3094 		   sock_inuse_get(seq->private));
3095 }
3096 #endif				/* CONFIG_PROC_FS */
3097 
3098 #ifdef CONFIG_COMPAT
3099 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3100 {
3101 	struct compat_ifconf ifc32;
3102 	struct ifconf ifc;
3103 	int err;
3104 
3105 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3106 		return -EFAULT;
3107 
3108 	ifc.ifc_len = ifc32.ifc_len;
3109 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3110 
3111 	rtnl_lock();
3112 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3113 	rtnl_unlock();
3114 	if (err)
3115 		return err;
3116 
3117 	ifc32.ifc_len = ifc.ifc_len;
3118 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3119 		return -EFAULT;
3120 
3121 	return 0;
3122 }
3123 
3124 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3125 {
3126 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3127 	bool convert_in = false, convert_out = false;
3128 	size_t buf_size = 0;
3129 	struct ethtool_rxnfc __user *rxnfc = NULL;
3130 	struct ifreq ifr;
3131 	u32 rule_cnt = 0, actual_rule_cnt;
3132 	u32 ethcmd;
3133 	u32 data;
3134 	int ret;
3135 
3136 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3137 		return -EFAULT;
3138 
3139 	compat_rxnfc = compat_ptr(data);
3140 
3141 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3142 		return -EFAULT;
3143 
3144 	/* Most ethtool structures are defined without padding.
3145 	 * Unfortunately struct ethtool_rxnfc is an exception.
3146 	 */
3147 	switch (ethcmd) {
3148 	default:
3149 		break;
3150 	case ETHTOOL_GRXCLSRLALL:
3151 		/* Buffer size is variable */
3152 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3153 			return -EFAULT;
3154 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3155 			return -ENOMEM;
3156 		buf_size += rule_cnt * sizeof(u32);
3157 		/* fall through */
3158 	case ETHTOOL_GRXRINGS:
3159 	case ETHTOOL_GRXCLSRLCNT:
3160 	case ETHTOOL_GRXCLSRULE:
3161 	case ETHTOOL_SRXCLSRLINS:
3162 		convert_out = true;
3163 		/* fall through */
3164 	case ETHTOOL_SRXCLSRLDEL:
3165 		buf_size += sizeof(struct ethtool_rxnfc);
3166 		convert_in = true;
3167 		rxnfc = compat_alloc_user_space(buf_size);
3168 		break;
3169 	}
3170 
3171 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3172 		return -EFAULT;
3173 
3174 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3175 
3176 	if (convert_in) {
3177 		/* We expect there to be holes between fs.m_ext and
3178 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3179 		 */
3180 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3181 			     sizeof(compat_rxnfc->fs.m_ext) !=
3182 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3183 			     sizeof(rxnfc->fs.m_ext));
3184 		BUILD_BUG_ON(
3185 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3186 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3187 			offsetof(struct ethtool_rxnfc, fs.location) -
3188 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3189 
3190 		if (copy_in_user(rxnfc, compat_rxnfc,
3191 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3192 				 (void __user *)rxnfc) ||
3193 		    copy_in_user(&rxnfc->fs.ring_cookie,
3194 				 &compat_rxnfc->fs.ring_cookie,
3195 				 (void __user *)(&rxnfc->fs.location + 1) -
3196 				 (void __user *)&rxnfc->fs.ring_cookie))
3197 			return -EFAULT;
3198 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3199 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3200 				return -EFAULT;
3201 		} else if (copy_in_user(&rxnfc->rule_cnt,
3202 					&compat_rxnfc->rule_cnt,
3203 					sizeof(rxnfc->rule_cnt)))
3204 			return -EFAULT;
3205 	}
3206 
3207 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3208 	if (ret)
3209 		return ret;
3210 
3211 	if (convert_out) {
3212 		if (copy_in_user(compat_rxnfc, rxnfc,
3213 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3214 				 (const void __user *)rxnfc) ||
3215 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3216 				 &rxnfc->fs.ring_cookie,
3217 				 (const void __user *)(&rxnfc->fs.location + 1) -
3218 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3219 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3220 				 sizeof(rxnfc->rule_cnt)))
3221 			return -EFAULT;
3222 
3223 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3224 			/* As an optimisation, we only copy the actual
3225 			 * number of rules that the underlying
3226 			 * function returned.  Since Mallory might
3227 			 * change the rule count in user memory, we
3228 			 * check that it is less than the rule count
3229 			 * originally given (as the user buffer size),
3230 			 * which has been range-checked.
3231 			 */
3232 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3233 				return -EFAULT;
3234 			if (actual_rule_cnt < rule_cnt)
3235 				rule_cnt = actual_rule_cnt;
3236 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3237 					 &rxnfc->rule_locs[0],
3238 					 rule_cnt * sizeof(u32)))
3239 				return -EFAULT;
3240 		}
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3247 {
3248 	compat_uptr_t uptr32;
3249 	struct ifreq ifr;
3250 	void __user *saved;
3251 	int err;
3252 
3253 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3254 		return -EFAULT;
3255 
3256 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3257 		return -EFAULT;
3258 
3259 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3260 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3261 
3262 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3263 	if (!err) {
3264 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3265 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3266 			err = -EFAULT;
3267 	}
3268 	return err;
3269 }
3270 
3271 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3272 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3273 				 struct compat_ifreq __user *u_ifreq32)
3274 {
3275 	struct ifreq ifreq;
3276 	u32 data32;
3277 
3278 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3279 		return -EFAULT;
3280 	if (get_user(data32, &u_ifreq32->ifr_data))
3281 		return -EFAULT;
3282 	ifreq.ifr_data = compat_ptr(data32);
3283 
3284 	return dev_ioctl(net, cmd, &ifreq, NULL);
3285 }
3286 
3287 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3288 			      unsigned int cmd,
3289 			      struct compat_ifreq __user *uifr32)
3290 {
3291 	struct ifreq __user *uifr;
3292 	int err;
3293 
3294 	/* Handle the fact that while struct ifreq has the same *layout* on
3295 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3296 	 * which are handled elsewhere, it still has different *size* due to
3297 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3298 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3299 	 * As a result, if the struct happens to be at the end of a page and
3300 	 * the next page isn't readable/writable, we get a fault. To prevent
3301 	 * that, copy back and forth to the full size.
3302 	 */
3303 
3304 	uifr = compat_alloc_user_space(sizeof(*uifr));
3305 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3306 		return -EFAULT;
3307 
3308 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3309 
3310 	if (!err) {
3311 		switch (cmd) {
3312 		case SIOCGIFFLAGS:
3313 		case SIOCGIFMETRIC:
3314 		case SIOCGIFMTU:
3315 		case SIOCGIFMEM:
3316 		case SIOCGIFHWADDR:
3317 		case SIOCGIFINDEX:
3318 		case SIOCGIFADDR:
3319 		case SIOCGIFBRDADDR:
3320 		case SIOCGIFDSTADDR:
3321 		case SIOCGIFNETMASK:
3322 		case SIOCGIFPFLAGS:
3323 		case SIOCGIFTXQLEN:
3324 		case SIOCGMIIPHY:
3325 		case SIOCGMIIREG:
3326 		case SIOCGIFNAME:
3327 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3328 				err = -EFAULT;
3329 			break;
3330 		}
3331 	}
3332 	return err;
3333 }
3334 
3335 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3336 			struct compat_ifreq __user *uifr32)
3337 {
3338 	struct ifreq ifr;
3339 	struct compat_ifmap __user *uifmap32;
3340 	int err;
3341 
3342 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3343 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3344 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3345 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3346 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3347 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3348 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3349 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3350 	if (err)
3351 		return -EFAULT;
3352 
3353 	err = dev_ioctl(net, cmd, &ifr, NULL);
3354 
3355 	if (cmd == SIOCGIFMAP && !err) {
3356 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3357 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3358 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3359 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3360 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3361 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3362 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3363 		if (err)
3364 			err = -EFAULT;
3365 	}
3366 	return err;
3367 }
3368 
3369 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3370  * for some operations; this forces use of the newer bridge-utils that
3371  * use compatible ioctls
3372  */
3373 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3374 {
3375 	compat_ulong_t tmp;
3376 
3377 	if (get_user(tmp, argp))
3378 		return -EFAULT;
3379 	if (tmp == BRCTL_GET_VERSION)
3380 		return BRCTL_VERSION + 1;
3381 	return -EINVAL;
3382 }
3383 
3384 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3385 			 unsigned int cmd, unsigned long arg)
3386 {
3387 	void __user *argp = compat_ptr(arg);
3388 	struct sock *sk = sock->sk;
3389 	struct net *net = sock_net(sk);
3390 
3391 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3392 		return compat_ifr_data_ioctl(net, cmd, argp);
3393 
3394 	switch (cmd) {
3395 	case SIOCSIFBR:
3396 	case SIOCGIFBR:
3397 		return old_bridge_ioctl(argp);
3398 	case SIOCGIFCONF:
3399 		return compat_dev_ifconf(net, argp);
3400 	case SIOCETHTOOL:
3401 		return ethtool_ioctl(net, argp);
3402 	case SIOCWANDEV:
3403 		return compat_siocwandev(net, argp);
3404 	case SIOCGIFMAP:
3405 	case SIOCSIFMAP:
3406 		return compat_sioc_ifmap(net, cmd, argp);
3407 	case SIOCGSTAMP_OLD:
3408 	case SIOCGSTAMPNS_OLD:
3409 		if (!sock->ops->gettstamp)
3410 			return -ENOIOCTLCMD;
3411 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3412 					    !COMPAT_USE_64BIT_TIME);
3413 
3414 	case SIOCBONDSLAVEINFOQUERY:
3415 	case SIOCBONDINFOQUERY:
3416 	case SIOCSHWTSTAMP:
3417 	case SIOCGHWTSTAMP:
3418 		return compat_ifr_data_ioctl(net, cmd, argp);
3419 
3420 	case FIOSETOWN:
3421 	case SIOCSPGRP:
3422 	case FIOGETOWN:
3423 	case SIOCGPGRP:
3424 	case SIOCBRADDBR:
3425 	case SIOCBRDELBR:
3426 	case SIOCGIFVLAN:
3427 	case SIOCSIFVLAN:
3428 	case SIOCADDDLCI:
3429 	case SIOCDELDLCI:
3430 	case SIOCGSKNS:
3431 	case SIOCGSTAMP_NEW:
3432 	case SIOCGSTAMPNS_NEW:
3433 		return sock_ioctl(file, cmd, arg);
3434 
3435 	case SIOCGIFFLAGS:
3436 	case SIOCSIFFLAGS:
3437 	case SIOCGIFMETRIC:
3438 	case SIOCSIFMETRIC:
3439 	case SIOCGIFMTU:
3440 	case SIOCSIFMTU:
3441 	case SIOCGIFMEM:
3442 	case SIOCSIFMEM:
3443 	case SIOCGIFHWADDR:
3444 	case SIOCSIFHWADDR:
3445 	case SIOCADDMULTI:
3446 	case SIOCDELMULTI:
3447 	case SIOCGIFINDEX:
3448 	case SIOCGIFADDR:
3449 	case SIOCSIFADDR:
3450 	case SIOCSIFHWBROADCAST:
3451 	case SIOCDIFADDR:
3452 	case SIOCGIFBRDADDR:
3453 	case SIOCSIFBRDADDR:
3454 	case SIOCGIFDSTADDR:
3455 	case SIOCSIFDSTADDR:
3456 	case SIOCGIFNETMASK:
3457 	case SIOCSIFNETMASK:
3458 	case SIOCSIFPFLAGS:
3459 	case SIOCGIFPFLAGS:
3460 	case SIOCGIFTXQLEN:
3461 	case SIOCSIFTXQLEN:
3462 	case SIOCBRADDIF:
3463 	case SIOCBRDELIF:
3464 	case SIOCGIFNAME:
3465 	case SIOCSIFNAME:
3466 	case SIOCGMIIPHY:
3467 	case SIOCGMIIREG:
3468 	case SIOCSMIIREG:
3469 	case SIOCBONDENSLAVE:
3470 	case SIOCBONDRELEASE:
3471 	case SIOCBONDSETHWADDR:
3472 	case SIOCBONDCHANGEACTIVE:
3473 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3474 
3475 	case SIOCSARP:
3476 	case SIOCGARP:
3477 	case SIOCDARP:
3478 	case SIOCOUTQ:
3479 	case SIOCOUTQNSD:
3480 	case SIOCATMARK:
3481 		return sock_do_ioctl(net, sock, cmd, arg);
3482 	}
3483 
3484 	return -ENOIOCTLCMD;
3485 }
3486 
3487 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3488 			      unsigned long arg)
3489 {
3490 	struct socket *sock = file->private_data;
3491 	int ret = -ENOIOCTLCMD;
3492 	struct sock *sk;
3493 	struct net *net;
3494 
3495 	sk = sock->sk;
3496 	net = sock_net(sk);
3497 
3498 	if (sock->ops->compat_ioctl)
3499 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3500 
3501 	if (ret == -ENOIOCTLCMD &&
3502 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3503 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3504 
3505 	if (ret == -ENOIOCTLCMD)
3506 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3507 
3508 	return ret;
3509 }
3510 #endif
3511 
3512 /**
3513  *	kernel_bind - bind an address to a socket (kernel space)
3514  *	@sock: socket
3515  *	@addr: address
3516  *	@addrlen: length of address
3517  *
3518  *	Returns 0 or an error.
3519  */
3520 
3521 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3522 {
3523 	return sock->ops->bind(sock, addr, addrlen);
3524 }
3525 EXPORT_SYMBOL(kernel_bind);
3526 
3527 /**
3528  *	kernel_listen - move socket to listening state (kernel space)
3529  *	@sock: socket
3530  *	@backlog: pending connections queue size
3531  *
3532  *	Returns 0 or an error.
3533  */
3534 
3535 int kernel_listen(struct socket *sock, int backlog)
3536 {
3537 	return sock->ops->listen(sock, backlog);
3538 }
3539 EXPORT_SYMBOL(kernel_listen);
3540 
3541 /**
3542  *	kernel_accept - accept a connection (kernel space)
3543  *	@sock: listening socket
3544  *	@newsock: new connected socket
3545  *	@flags: flags
3546  *
3547  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3548  *	If it fails, @newsock is guaranteed to be %NULL.
3549  *	Returns 0 or an error.
3550  */
3551 
3552 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3553 {
3554 	struct sock *sk = sock->sk;
3555 	int err;
3556 
3557 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3558 			       newsock);
3559 	if (err < 0)
3560 		goto done;
3561 
3562 	err = sock->ops->accept(sock, *newsock, flags, true);
3563 	if (err < 0) {
3564 		sock_release(*newsock);
3565 		*newsock = NULL;
3566 		goto done;
3567 	}
3568 
3569 	(*newsock)->ops = sock->ops;
3570 	__module_get((*newsock)->ops->owner);
3571 
3572 done:
3573 	return err;
3574 }
3575 EXPORT_SYMBOL(kernel_accept);
3576 
3577 /**
3578  *	kernel_connect - connect a socket (kernel space)
3579  *	@sock: socket
3580  *	@addr: address
3581  *	@addrlen: address length
3582  *	@flags: flags (O_NONBLOCK, ...)
3583  *
3584  *	For datagram sockets, @addr is the addres to which datagrams are sent
3585  *	by default, and the only address from which datagrams are received.
3586  *	For stream sockets, attempts to connect to @addr.
3587  *	Returns 0 or an error code.
3588  */
3589 
3590 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3591 		   int flags)
3592 {
3593 	return sock->ops->connect(sock, addr, addrlen, flags);
3594 }
3595 EXPORT_SYMBOL(kernel_connect);
3596 
3597 /**
3598  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3599  *	@sock: socket
3600  *	@addr: address holder
3601  *
3602  * 	Fills the @addr pointer with the address which the socket is bound.
3603  *	Returns 0 or an error code.
3604  */
3605 
3606 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3607 {
3608 	return sock->ops->getname(sock, addr, 0);
3609 }
3610 EXPORT_SYMBOL(kernel_getsockname);
3611 
3612 /**
3613  *	kernel_peername - get the address which the socket is connected (kernel space)
3614  *	@sock: socket
3615  *	@addr: address holder
3616  *
3617  * 	Fills the @addr pointer with the address which the socket is connected.
3618  *	Returns 0 or an error code.
3619  */
3620 
3621 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3622 {
3623 	return sock->ops->getname(sock, addr, 1);
3624 }
3625 EXPORT_SYMBOL(kernel_getpeername);
3626 
3627 /**
3628  *	kernel_sendpage - send a &page through a socket (kernel space)
3629  *	@sock: socket
3630  *	@page: page
3631  *	@offset: page offset
3632  *	@size: total size in bytes
3633  *	@flags: flags (MSG_DONTWAIT, ...)
3634  *
3635  *	Returns the total amount sent in bytes or an error.
3636  */
3637 
3638 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3639 		    size_t size, int flags)
3640 {
3641 	if (sock->ops->sendpage)
3642 		return sock->ops->sendpage(sock, page, offset, size, flags);
3643 
3644 	return sock_no_sendpage(sock, page, offset, size, flags);
3645 }
3646 EXPORT_SYMBOL(kernel_sendpage);
3647 
3648 /**
3649  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3650  *	@sk: sock
3651  *	@page: page
3652  *	@offset: page offset
3653  *	@size: total size in bytes
3654  *	@flags: flags (MSG_DONTWAIT, ...)
3655  *
3656  *	Returns the total amount sent in bytes or an error.
3657  *	Caller must hold @sk.
3658  */
3659 
3660 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3661 			   size_t size, int flags)
3662 {
3663 	struct socket *sock = sk->sk_socket;
3664 
3665 	if (sock->ops->sendpage_locked)
3666 		return sock->ops->sendpage_locked(sk, page, offset, size,
3667 						  flags);
3668 
3669 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3670 }
3671 EXPORT_SYMBOL(kernel_sendpage_locked);
3672 
3673 /**
3674  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3675  *	@sock: socket
3676  *	@how: connection part
3677  *
3678  *	Returns 0 or an error.
3679  */
3680 
3681 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3682 {
3683 	return sock->ops->shutdown(sock, how);
3684 }
3685 EXPORT_SYMBOL(kernel_sock_shutdown);
3686 
3687 /**
3688  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3689  *	@sk: socket
3690  *
3691  *	This routine returns the IP overhead imposed by a socket i.e.
3692  *	the length of the underlying IP header, depending on whether
3693  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3694  *	on at the socket. Assumes that the caller has a lock on the socket.
3695  */
3696 
3697 u32 kernel_sock_ip_overhead(struct sock *sk)
3698 {
3699 	struct inet_sock *inet;
3700 	struct ip_options_rcu *opt;
3701 	u32 overhead = 0;
3702 #if IS_ENABLED(CONFIG_IPV6)
3703 	struct ipv6_pinfo *np;
3704 	struct ipv6_txoptions *optv6 = NULL;
3705 #endif /* IS_ENABLED(CONFIG_IPV6) */
3706 
3707 	if (!sk)
3708 		return overhead;
3709 
3710 	switch (sk->sk_family) {
3711 	case AF_INET:
3712 		inet = inet_sk(sk);
3713 		overhead += sizeof(struct iphdr);
3714 		opt = rcu_dereference_protected(inet->inet_opt,
3715 						sock_owned_by_user(sk));
3716 		if (opt)
3717 			overhead += opt->opt.optlen;
3718 		return overhead;
3719 #if IS_ENABLED(CONFIG_IPV6)
3720 	case AF_INET6:
3721 		np = inet6_sk(sk);
3722 		overhead += sizeof(struct ipv6hdr);
3723 		if (np)
3724 			optv6 = rcu_dereference_protected(np->opt,
3725 							  sock_owned_by_user(sk));
3726 		if (optv6)
3727 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3728 		return overhead;
3729 #endif /* IS_ENABLED(CONFIG_IPV6) */
3730 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3731 		return overhead;
3732 	}
3733 }
3734 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3735