1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 91 #include <asm/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/sockios.h> 104 #include <linux/atalk.h> 105 106 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 107 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 108 unsigned long nr_segs, loff_t pos); 109 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 112 113 static int sock_close(struct inode *inode, struct file *file); 114 static unsigned int sock_poll(struct file *file, 115 struct poll_table_struct *wait); 116 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 117 #ifdef CONFIG_COMPAT 118 static long compat_sock_ioctl(struct file *file, 119 unsigned int cmd, unsigned long arg); 120 #endif 121 static int sock_fasync(int fd, struct file *filp, int on); 122 static ssize_t sock_sendpage(struct file *file, struct page *page, 123 int offset, size_t size, loff_t *ppos, int more); 124 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 125 struct pipe_inode_info *pipe, size_t len, 126 unsigned int flags); 127 128 /* 129 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 130 * in the operation structures but are done directly via the socketcall() multiplexor. 131 */ 132 133 static const struct file_operations socket_file_ops = { 134 .owner = THIS_MODULE, 135 .llseek = no_llseek, 136 .aio_read = sock_aio_read, 137 .aio_write = sock_aio_write, 138 .poll = sock_poll, 139 .unlocked_ioctl = sock_ioctl, 140 #ifdef CONFIG_COMPAT 141 .compat_ioctl = compat_sock_ioctl, 142 #endif 143 .mmap = sock_mmap, 144 .open = sock_no_open, /* special open code to disallow open via /proc */ 145 .release = sock_close, 146 .fasync = sock_fasync, 147 .sendpage = sock_sendpage, 148 .splice_write = generic_splice_sendpage, 149 .splice_read = sock_splice_read, 150 }; 151 152 /* 153 * The protocol list. Each protocol is registered in here. 154 */ 155 156 static DEFINE_SPINLOCK(net_family_lock); 157 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 158 159 /* 160 * Statistics counters of the socket lists 161 */ 162 163 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 172 16 for IP, 16 for IPX, 173 24 for IPv6, 174 about 80 for AX.25 175 must be at least one bigger than 176 the AF_UNIX size (see net/unix/af_unix.c 177 :unix_mkname()). 178 */ 179 180 /** 181 * move_addr_to_kernel - copy a socket address into kernel space 182 * @uaddr: Address in user space 183 * @kaddr: Address in kernel space 184 * @ulen: Length in user space 185 * 186 * The address is copied into kernel space. If the provided address is 187 * too long an error code of -EINVAL is returned. If the copy gives 188 * invalid addresses -EFAULT is returned. On a success 0 is returned. 189 */ 190 191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 192 { 193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 194 return -EINVAL; 195 if (ulen == 0) 196 return 0; 197 if (copy_from_user(kaddr, uaddr, ulen)) 198 return -EFAULT; 199 return audit_sockaddr(ulen, kaddr); 200 } 201 202 /** 203 * move_addr_to_user - copy an address to user space 204 * @kaddr: kernel space address 205 * @klen: length of address in kernel 206 * @uaddr: user space address 207 * @ulen: pointer to user length field 208 * 209 * The value pointed to by ulen on entry is the buffer length available. 210 * This is overwritten with the buffer space used. -EINVAL is returned 211 * if an overlong buffer is specified or a negative buffer size. -EFAULT 212 * is returned if either the buffer or the length field are not 213 * accessible. 214 * After copying the data up to the limit the user specifies, the true 215 * length of the data is written over the length limit the user 216 * specified. Zero is returned for a success. 217 */ 218 219 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 220 int __user *ulen) 221 { 222 int err; 223 int len; 224 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0 || len > sizeof(struct sockaddr_storage)) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 252 if (!ei) 253 return NULL; 254 init_waitqueue_head(&ei->socket.wait); 255 256 ei->socket.fasync_list = NULL; 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 kmem_cache_free(sock_inode_cachep, 269 container_of(inode, struct socket_alloc, vfs_inode)); 270 } 271 272 static void init_once(void *foo) 273 { 274 struct socket_alloc *ei = (struct socket_alloc *)foo; 275 276 inode_init_once(&ei->vfs_inode); 277 } 278 279 static int init_inodecache(void) 280 { 281 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 282 sizeof(struct socket_alloc), 283 0, 284 (SLAB_HWCACHE_ALIGN | 285 SLAB_RECLAIM_ACCOUNT | 286 SLAB_MEM_SPREAD), 287 init_once); 288 if (sock_inode_cachep == NULL) 289 return -ENOMEM; 290 return 0; 291 } 292 293 static const struct super_operations sockfs_ops = { 294 .alloc_inode = sock_alloc_inode, 295 .destroy_inode =sock_destroy_inode, 296 .statfs = simple_statfs, 297 }; 298 299 static int sockfs_get_sb(struct file_system_type *fs_type, 300 int flags, const char *dev_name, void *data, 301 struct vfsmount *mnt) 302 { 303 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 304 mnt); 305 } 306 307 static struct vfsmount *sock_mnt __read_mostly; 308 309 static struct file_system_type sock_fs_type = { 310 .name = "sockfs", 311 .get_sb = sockfs_get_sb, 312 .kill_sb = kill_anon_super, 313 }; 314 315 /* 316 * sockfs_dname() is called from d_path(). 317 */ 318 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 319 { 320 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 321 dentry->d_inode->i_ino); 322 } 323 324 static const struct dentry_operations sockfs_dentry_operations = { 325 .d_dname = sockfs_dname, 326 }; 327 328 /* 329 * Obtains the first available file descriptor and sets it up for use. 330 * 331 * These functions create file structures and maps them to fd space 332 * of the current process. On success it returns file descriptor 333 * and file struct implicitly stored in sock->file. 334 * Note that another thread may close file descriptor before we return 335 * from this function. We use the fact that now we do not refer 336 * to socket after mapping. If one day we will need it, this 337 * function will increment ref. count on file by 1. 338 * 339 * In any case returned fd MAY BE not valid! 340 * This race condition is unavoidable 341 * with shared fd spaces, we cannot solve it inside kernel, 342 * but we take care of internal coherence yet. 343 */ 344 345 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 346 { 347 struct qstr name = { .name = "" }; 348 struct path path; 349 struct file *file; 350 int fd; 351 352 fd = get_unused_fd_flags(flags); 353 if (unlikely(fd < 0)) 354 return fd; 355 356 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 357 if (unlikely(!path.dentry)) { 358 put_unused_fd(fd); 359 return -ENOMEM; 360 } 361 path.mnt = mntget(sock_mnt); 362 363 path.dentry->d_op = &sockfs_dentry_operations; 364 d_instantiate(path.dentry, SOCK_INODE(sock)); 365 SOCK_INODE(sock)->i_fop = &socket_file_ops; 366 367 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 368 &socket_file_ops); 369 if (unlikely(!file)) { 370 /* drop dentry, keep inode */ 371 atomic_inc(&path.dentry->d_inode->i_count); 372 path_put(&path); 373 put_unused_fd(fd); 374 return -ENFILE; 375 } 376 377 sock->file = file; 378 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 379 file->f_pos = 0; 380 file->private_data = sock; 381 382 *f = file; 383 return fd; 384 } 385 386 int sock_map_fd(struct socket *sock, int flags) 387 { 388 struct file *newfile; 389 int fd = sock_alloc_file(sock, &newfile, flags); 390 391 if (likely(fd >= 0)) 392 fd_install(fd, newfile); 393 394 return fd; 395 } 396 397 static struct socket *sock_from_file(struct file *file, int *err) 398 { 399 if (file->f_op == &socket_file_ops) 400 return file->private_data; /* set in sock_map_fd */ 401 402 *err = -ENOTSOCK; 403 return NULL; 404 } 405 406 /** 407 * sockfd_lookup - Go from a file number to its socket slot 408 * @fd: file handle 409 * @err: pointer to an error code return 410 * 411 * The file handle passed in is locked and the socket it is bound 412 * too is returned. If an error occurs the err pointer is overwritten 413 * with a negative errno code and NULL is returned. The function checks 414 * for both invalid handles and passing a handle which is not a socket. 415 * 416 * On a success the socket object pointer is returned. 417 */ 418 419 struct socket *sockfd_lookup(int fd, int *err) 420 { 421 struct file *file; 422 struct socket *sock; 423 424 file = fget(fd); 425 if (!file) { 426 *err = -EBADF; 427 return NULL; 428 } 429 430 sock = sock_from_file(file, err); 431 if (!sock) 432 fput(file); 433 return sock; 434 } 435 436 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 437 { 438 struct file *file; 439 struct socket *sock; 440 441 *err = -EBADF; 442 file = fget_light(fd, fput_needed); 443 if (file) { 444 sock = sock_from_file(file, err); 445 if (sock) 446 return sock; 447 fput_light(file, *fput_needed); 448 } 449 return NULL; 450 } 451 452 /** 453 * sock_alloc - allocate a socket 454 * 455 * Allocate a new inode and socket object. The two are bound together 456 * and initialised. The socket is then returned. If we are out of inodes 457 * NULL is returned. 458 */ 459 460 static struct socket *sock_alloc(void) 461 { 462 struct inode *inode; 463 struct socket *sock; 464 465 inode = new_inode(sock_mnt->mnt_sb); 466 if (!inode) 467 return NULL; 468 469 sock = SOCKET_I(inode); 470 471 kmemcheck_annotate_bitfield(sock, type); 472 inode->i_mode = S_IFSOCK | S_IRWXUGO; 473 inode->i_uid = current_fsuid(); 474 inode->i_gid = current_fsgid(); 475 476 percpu_add(sockets_in_use, 1); 477 return sock; 478 } 479 480 /* 481 * In theory you can't get an open on this inode, but /proc provides 482 * a back door. Remember to keep it shut otherwise you'll let the 483 * creepy crawlies in. 484 */ 485 486 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 487 { 488 return -ENXIO; 489 } 490 491 const struct file_operations bad_sock_fops = { 492 .owner = THIS_MODULE, 493 .open = sock_no_open, 494 }; 495 496 /** 497 * sock_release - close a socket 498 * @sock: socket to close 499 * 500 * The socket is released from the protocol stack if it has a release 501 * callback, and the inode is then released if the socket is bound to 502 * an inode not a file. 503 */ 504 505 void sock_release(struct socket *sock) 506 { 507 if (sock->ops) { 508 struct module *owner = sock->ops->owner; 509 510 sock->ops->release(sock); 511 sock->ops = NULL; 512 module_put(owner); 513 } 514 515 if (sock->fasync_list) 516 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 517 518 percpu_sub(sockets_in_use, 1); 519 if (!sock->file) { 520 iput(SOCK_INODE(sock)); 521 return; 522 } 523 sock->file = NULL; 524 } 525 526 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk, 527 union skb_shared_tx *shtx) 528 { 529 shtx->flags = 0; 530 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 531 shtx->hardware = 1; 532 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 533 shtx->software = 1; 534 return 0; 535 } 536 EXPORT_SYMBOL(sock_tx_timestamp); 537 538 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 539 struct msghdr *msg, size_t size) 540 { 541 struct sock_iocb *si = kiocb_to_siocb(iocb); 542 int err; 543 544 si->sock = sock; 545 si->scm = NULL; 546 si->msg = msg; 547 si->size = size; 548 549 err = security_socket_sendmsg(sock, msg, size); 550 if (err) 551 return err; 552 553 return sock->ops->sendmsg(iocb, sock, msg, size); 554 } 555 556 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 557 { 558 struct kiocb iocb; 559 struct sock_iocb siocb; 560 int ret; 561 562 init_sync_kiocb(&iocb, NULL); 563 iocb.private = &siocb; 564 ret = __sock_sendmsg(&iocb, sock, msg, size); 565 if (-EIOCBQUEUED == ret) 566 ret = wait_on_sync_kiocb(&iocb); 567 return ret; 568 } 569 570 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 571 struct kvec *vec, size_t num, size_t size) 572 { 573 mm_segment_t oldfs = get_fs(); 574 int result; 575 576 set_fs(KERNEL_DS); 577 /* 578 * the following is safe, since for compiler definitions of kvec and 579 * iovec are identical, yielding the same in-core layout and alignment 580 */ 581 msg->msg_iov = (struct iovec *)vec; 582 msg->msg_iovlen = num; 583 result = sock_sendmsg(sock, msg, size); 584 set_fs(oldfs); 585 return result; 586 } 587 588 static int ktime2ts(ktime_t kt, struct timespec *ts) 589 { 590 if (kt.tv64) { 591 *ts = ktime_to_timespec(kt); 592 return 1; 593 } else { 594 return 0; 595 } 596 } 597 598 /* 599 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 600 */ 601 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 602 struct sk_buff *skb) 603 { 604 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 605 struct timespec ts[3]; 606 int empty = 1; 607 struct skb_shared_hwtstamps *shhwtstamps = 608 skb_hwtstamps(skb); 609 610 /* Race occurred between timestamp enabling and packet 611 receiving. Fill in the current time for now. */ 612 if (need_software_tstamp && skb->tstamp.tv64 == 0) 613 __net_timestamp(skb); 614 615 if (need_software_tstamp) { 616 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 617 struct timeval tv; 618 skb_get_timestamp(skb, &tv); 619 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 620 sizeof(tv), &tv); 621 } else { 622 struct timespec ts; 623 skb_get_timestampns(skb, &ts); 624 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 625 sizeof(ts), &ts); 626 } 627 } 628 629 630 memset(ts, 0, sizeof(ts)); 631 if (skb->tstamp.tv64 && 632 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 633 skb_get_timestampns(skb, ts + 0); 634 empty = 0; 635 } 636 if (shhwtstamps) { 637 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 638 ktime2ts(shhwtstamps->syststamp, ts + 1)) 639 empty = 0; 640 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 641 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 642 empty = 0; 643 } 644 if (!empty) 645 put_cmsg(msg, SOL_SOCKET, 646 SCM_TIMESTAMPING, sizeof(ts), &ts); 647 } 648 649 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 650 651 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 652 { 653 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 654 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 655 sizeof(__u32), &skb->dropcount); 656 } 657 658 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 659 struct sk_buff *skb) 660 { 661 sock_recv_timestamp(msg, sk, skb); 662 sock_recv_drops(msg, sk, skb); 663 } 664 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops); 665 666 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 667 struct msghdr *msg, size_t size, int flags) 668 { 669 struct sock_iocb *si = kiocb_to_siocb(iocb); 670 671 si->sock = sock; 672 si->scm = NULL; 673 si->msg = msg; 674 si->size = size; 675 si->flags = flags; 676 677 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 678 } 679 680 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 681 struct msghdr *msg, size_t size, int flags) 682 { 683 int err = security_socket_recvmsg(sock, msg, size, flags); 684 685 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 686 } 687 688 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 689 size_t size, int flags) 690 { 691 struct kiocb iocb; 692 struct sock_iocb siocb; 693 int ret; 694 695 init_sync_kiocb(&iocb, NULL); 696 iocb.private = &siocb; 697 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 698 if (-EIOCBQUEUED == ret) 699 ret = wait_on_sync_kiocb(&iocb); 700 return ret; 701 } 702 703 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 704 size_t size, int flags) 705 { 706 struct kiocb iocb; 707 struct sock_iocb siocb; 708 int ret; 709 710 init_sync_kiocb(&iocb, NULL); 711 iocb.private = &siocb; 712 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 713 if (-EIOCBQUEUED == ret) 714 ret = wait_on_sync_kiocb(&iocb); 715 return ret; 716 } 717 718 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 719 struct kvec *vec, size_t num, size_t size, int flags) 720 { 721 mm_segment_t oldfs = get_fs(); 722 int result; 723 724 set_fs(KERNEL_DS); 725 /* 726 * the following is safe, since for compiler definitions of kvec and 727 * iovec are identical, yielding the same in-core layout and alignment 728 */ 729 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 730 result = sock_recvmsg(sock, msg, size, flags); 731 set_fs(oldfs); 732 return result; 733 } 734 735 static void sock_aio_dtor(struct kiocb *iocb) 736 { 737 kfree(iocb->private); 738 } 739 740 static ssize_t sock_sendpage(struct file *file, struct page *page, 741 int offset, size_t size, loff_t *ppos, int more) 742 { 743 struct socket *sock; 744 int flags; 745 746 sock = file->private_data; 747 748 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 749 if (more) 750 flags |= MSG_MORE; 751 752 return kernel_sendpage(sock, page, offset, size, flags); 753 } 754 755 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 756 struct pipe_inode_info *pipe, size_t len, 757 unsigned int flags) 758 { 759 struct socket *sock = file->private_data; 760 761 if (unlikely(!sock->ops->splice_read)) 762 return -EINVAL; 763 764 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 765 } 766 767 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 768 struct sock_iocb *siocb) 769 { 770 if (!is_sync_kiocb(iocb)) { 771 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 772 if (!siocb) 773 return NULL; 774 iocb->ki_dtor = sock_aio_dtor; 775 } 776 777 siocb->kiocb = iocb; 778 iocb->private = siocb; 779 return siocb; 780 } 781 782 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 783 struct file *file, const struct iovec *iov, 784 unsigned long nr_segs) 785 { 786 struct socket *sock = file->private_data; 787 size_t size = 0; 788 int i; 789 790 for (i = 0; i < nr_segs; i++) 791 size += iov[i].iov_len; 792 793 msg->msg_name = NULL; 794 msg->msg_namelen = 0; 795 msg->msg_control = NULL; 796 msg->msg_controllen = 0; 797 msg->msg_iov = (struct iovec *)iov; 798 msg->msg_iovlen = nr_segs; 799 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 800 801 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 802 } 803 804 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 805 unsigned long nr_segs, loff_t pos) 806 { 807 struct sock_iocb siocb, *x; 808 809 if (pos != 0) 810 return -ESPIPE; 811 812 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 813 return 0; 814 815 816 x = alloc_sock_iocb(iocb, &siocb); 817 if (!x) 818 return -ENOMEM; 819 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 820 } 821 822 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 823 struct file *file, const struct iovec *iov, 824 unsigned long nr_segs) 825 { 826 struct socket *sock = file->private_data; 827 size_t size = 0; 828 int i; 829 830 for (i = 0; i < nr_segs; i++) 831 size += iov[i].iov_len; 832 833 msg->msg_name = NULL; 834 msg->msg_namelen = 0; 835 msg->msg_control = NULL; 836 msg->msg_controllen = 0; 837 msg->msg_iov = (struct iovec *)iov; 838 msg->msg_iovlen = nr_segs; 839 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 840 if (sock->type == SOCK_SEQPACKET) 841 msg->msg_flags |= MSG_EOR; 842 843 return __sock_sendmsg(iocb, sock, msg, size); 844 } 845 846 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 847 unsigned long nr_segs, loff_t pos) 848 { 849 struct sock_iocb siocb, *x; 850 851 if (pos != 0) 852 return -ESPIPE; 853 854 x = alloc_sock_iocb(iocb, &siocb); 855 if (!x) 856 return -ENOMEM; 857 858 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 859 } 860 861 /* 862 * Atomic setting of ioctl hooks to avoid race 863 * with module unload. 864 */ 865 866 static DEFINE_MUTEX(br_ioctl_mutex); 867 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 868 869 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 870 { 871 mutex_lock(&br_ioctl_mutex); 872 br_ioctl_hook = hook; 873 mutex_unlock(&br_ioctl_mutex); 874 } 875 876 EXPORT_SYMBOL(brioctl_set); 877 878 static DEFINE_MUTEX(vlan_ioctl_mutex); 879 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 880 881 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 882 { 883 mutex_lock(&vlan_ioctl_mutex); 884 vlan_ioctl_hook = hook; 885 mutex_unlock(&vlan_ioctl_mutex); 886 } 887 888 EXPORT_SYMBOL(vlan_ioctl_set); 889 890 static DEFINE_MUTEX(dlci_ioctl_mutex); 891 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 892 893 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 894 { 895 mutex_lock(&dlci_ioctl_mutex); 896 dlci_ioctl_hook = hook; 897 mutex_unlock(&dlci_ioctl_mutex); 898 } 899 900 EXPORT_SYMBOL(dlci_ioctl_set); 901 902 static long sock_do_ioctl(struct net *net, struct socket *sock, 903 unsigned int cmd, unsigned long arg) 904 { 905 int err; 906 void __user *argp = (void __user *)arg; 907 908 err = sock->ops->ioctl(sock, cmd, arg); 909 910 /* 911 * If this ioctl is unknown try to hand it down 912 * to the NIC driver. 913 */ 914 if (err == -ENOIOCTLCMD) 915 err = dev_ioctl(net, cmd, argp); 916 917 return err; 918 } 919 920 /* 921 * With an ioctl, arg may well be a user mode pointer, but we don't know 922 * what to do with it - that's up to the protocol still. 923 */ 924 925 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 926 { 927 struct socket *sock; 928 struct sock *sk; 929 void __user *argp = (void __user *)arg; 930 int pid, err; 931 struct net *net; 932 933 sock = file->private_data; 934 sk = sock->sk; 935 net = sock_net(sk); 936 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 937 err = dev_ioctl(net, cmd, argp); 938 } else 939 #ifdef CONFIG_WEXT_CORE 940 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 941 err = dev_ioctl(net, cmd, argp); 942 } else 943 #endif 944 switch (cmd) { 945 case FIOSETOWN: 946 case SIOCSPGRP: 947 err = -EFAULT; 948 if (get_user(pid, (int __user *)argp)) 949 break; 950 err = f_setown(sock->file, pid, 1); 951 break; 952 case FIOGETOWN: 953 case SIOCGPGRP: 954 err = put_user(f_getown(sock->file), 955 (int __user *)argp); 956 break; 957 case SIOCGIFBR: 958 case SIOCSIFBR: 959 case SIOCBRADDBR: 960 case SIOCBRDELBR: 961 err = -ENOPKG; 962 if (!br_ioctl_hook) 963 request_module("bridge"); 964 965 mutex_lock(&br_ioctl_mutex); 966 if (br_ioctl_hook) 967 err = br_ioctl_hook(net, cmd, argp); 968 mutex_unlock(&br_ioctl_mutex); 969 break; 970 case SIOCGIFVLAN: 971 case SIOCSIFVLAN: 972 err = -ENOPKG; 973 if (!vlan_ioctl_hook) 974 request_module("8021q"); 975 976 mutex_lock(&vlan_ioctl_mutex); 977 if (vlan_ioctl_hook) 978 err = vlan_ioctl_hook(net, argp); 979 mutex_unlock(&vlan_ioctl_mutex); 980 break; 981 case SIOCADDDLCI: 982 case SIOCDELDLCI: 983 err = -ENOPKG; 984 if (!dlci_ioctl_hook) 985 request_module("dlci"); 986 987 mutex_lock(&dlci_ioctl_mutex); 988 if (dlci_ioctl_hook) 989 err = dlci_ioctl_hook(cmd, argp); 990 mutex_unlock(&dlci_ioctl_mutex); 991 break; 992 default: 993 err = sock_do_ioctl(net, sock, cmd, arg); 994 break; 995 } 996 return err; 997 } 998 999 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1000 { 1001 int err; 1002 struct socket *sock = NULL; 1003 1004 err = security_socket_create(family, type, protocol, 1); 1005 if (err) 1006 goto out; 1007 1008 sock = sock_alloc(); 1009 if (!sock) { 1010 err = -ENOMEM; 1011 goto out; 1012 } 1013 1014 sock->type = type; 1015 err = security_socket_post_create(sock, family, type, protocol, 1); 1016 if (err) 1017 goto out_release; 1018 1019 out: 1020 *res = sock; 1021 return err; 1022 out_release: 1023 sock_release(sock); 1024 sock = NULL; 1025 goto out; 1026 } 1027 1028 /* No kernel lock held - perfect */ 1029 static unsigned int sock_poll(struct file *file, poll_table *wait) 1030 { 1031 struct socket *sock; 1032 1033 /* 1034 * We can't return errors to poll, so it's either yes or no. 1035 */ 1036 sock = file->private_data; 1037 return sock->ops->poll(file, sock, wait); 1038 } 1039 1040 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1041 { 1042 struct socket *sock = file->private_data; 1043 1044 return sock->ops->mmap(file, sock, vma); 1045 } 1046 1047 static int sock_close(struct inode *inode, struct file *filp) 1048 { 1049 /* 1050 * It was possible the inode is NULL we were 1051 * closing an unfinished socket. 1052 */ 1053 1054 if (!inode) { 1055 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1056 return 0; 1057 } 1058 sock_release(SOCKET_I(inode)); 1059 return 0; 1060 } 1061 1062 /* 1063 * Update the socket async list 1064 * 1065 * Fasync_list locking strategy. 1066 * 1067 * 1. fasync_list is modified only under process context socket lock 1068 * i.e. under semaphore. 1069 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1070 * or under socket lock. 1071 * 3. fasync_list can be used from softirq context, so that 1072 * modification under socket lock have to be enhanced with 1073 * write_lock_bh(&sk->sk_callback_lock). 1074 * --ANK (990710) 1075 */ 1076 1077 static int sock_fasync(int fd, struct file *filp, int on) 1078 { 1079 struct fasync_struct *fa, *fna = NULL, **prev; 1080 struct socket *sock; 1081 struct sock *sk; 1082 1083 if (on) { 1084 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1085 if (fna == NULL) 1086 return -ENOMEM; 1087 } 1088 1089 sock = filp->private_data; 1090 1091 sk = sock->sk; 1092 if (sk == NULL) { 1093 kfree(fna); 1094 return -EINVAL; 1095 } 1096 1097 lock_sock(sk); 1098 1099 spin_lock(&filp->f_lock); 1100 if (on) 1101 filp->f_flags |= FASYNC; 1102 else 1103 filp->f_flags &= ~FASYNC; 1104 spin_unlock(&filp->f_lock); 1105 1106 prev = &(sock->fasync_list); 1107 1108 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1109 if (fa->fa_file == filp) 1110 break; 1111 1112 if (on) { 1113 if (fa != NULL) { 1114 write_lock_bh(&sk->sk_callback_lock); 1115 fa->fa_fd = fd; 1116 write_unlock_bh(&sk->sk_callback_lock); 1117 1118 kfree(fna); 1119 goto out; 1120 } 1121 fna->fa_file = filp; 1122 fna->fa_fd = fd; 1123 fna->magic = FASYNC_MAGIC; 1124 fna->fa_next = sock->fasync_list; 1125 write_lock_bh(&sk->sk_callback_lock); 1126 sock->fasync_list = fna; 1127 sock_set_flag(sk, SOCK_FASYNC); 1128 write_unlock_bh(&sk->sk_callback_lock); 1129 } else { 1130 if (fa != NULL) { 1131 write_lock_bh(&sk->sk_callback_lock); 1132 *prev = fa->fa_next; 1133 if (!sock->fasync_list) 1134 sock_reset_flag(sk, SOCK_FASYNC); 1135 write_unlock_bh(&sk->sk_callback_lock); 1136 kfree(fa); 1137 } 1138 } 1139 1140 out: 1141 release_sock(sock->sk); 1142 return 0; 1143 } 1144 1145 /* This function may be called only under socket lock or callback_lock */ 1146 1147 int sock_wake_async(struct socket *sock, int how, int band) 1148 { 1149 if (!sock || !sock->fasync_list) 1150 return -1; 1151 switch (how) { 1152 case SOCK_WAKE_WAITD: 1153 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1154 break; 1155 goto call_kill; 1156 case SOCK_WAKE_SPACE: 1157 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1158 break; 1159 /* fall through */ 1160 case SOCK_WAKE_IO: 1161 call_kill: 1162 __kill_fasync(sock->fasync_list, SIGIO, band); 1163 break; 1164 case SOCK_WAKE_URG: 1165 __kill_fasync(sock->fasync_list, SIGURG, band); 1166 } 1167 return 0; 1168 } 1169 1170 static int __sock_create(struct net *net, int family, int type, int protocol, 1171 struct socket **res, int kern) 1172 { 1173 int err; 1174 struct socket *sock; 1175 const struct net_proto_family *pf; 1176 1177 /* 1178 * Check protocol is in range 1179 */ 1180 if (family < 0 || family >= NPROTO) 1181 return -EAFNOSUPPORT; 1182 if (type < 0 || type >= SOCK_MAX) 1183 return -EINVAL; 1184 1185 /* Compatibility. 1186 1187 This uglymoron is moved from INET layer to here to avoid 1188 deadlock in module load. 1189 */ 1190 if (family == PF_INET && type == SOCK_PACKET) { 1191 static int warned; 1192 if (!warned) { 1193 warned = 1; 1194 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1195 current->comm); 1196 } 1197 family = PF_PACKET; 1198 } 1199 1200 err = security_socket_create(family, type, protocol, kern); 1201 if (err) 1202 return err; 1203 1204 /* 1205 * Allocate the socket and allow the family to set things up. if 1206 * the protocol is 0, the family is instructed to select an appropriate 1207 * default. 1208 */ 1209 sock = sock_alloc(); 1210 if (!sock) { 1211 if (net_ratelimit()) 1212 printk(KERN_WARNING "socket: no more sockets\n"); 1213 return -ENFILE; /* Not exactly a match, but its the 1214 closest posix thing */ 1215 } 1216 1217 sock->type = type; 1218 1219 #ifdef CONFIG_MODULES 1220 /* Attempt to load a protocol module if the find failed. 1221 * 1222 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1223 * requested real, full-featured networking support upon configuration. 1224 * Otherwise module support will break! 1225 */ 1226 if (net_families[family] == NULL) 1227 request_module("net-pf-%d", family); 1228 #endif 1229 1230 rcu_read_lock(); 1231 pf = rcu_dereference(net_families[family]); 1232 err = -EAFNOSUPPORT; 1233 if (!pf) 1234 goto out_release; 1235 1236 /* 1237 * We will call the ->create function, that possibly is in a loadable 1238 * module, so we have to bump that loadable module refcnt first. 1239 */ 1240 if (!try_module_get(pf->owner)) 1241 goto out_release; 1242 1243 /* Now protected by module ref count */ 1244 rcu_read_unlock(); 1245 1246 err = pf->create(net, sock, protocol, kern); 1247 if (err < 0) 1248 goto out_module_put; 1249 1250 /* 1251 * Now to bump the refcnt of the [loadable] module that owns this 1252 * socket at sock_release time we decrement its refcnt. 1253 */ 1254 if (!try_module_get(sock->ops->owner)) 1255 goto out_module_busy; 1256 1257 /* 1258 * Now that we're done with the ->create function, the [loadable] 1259 * module can have its refcnt decremented 1260 */ 1261 module_put(pf->owner); 1262 err = security_socket_post_create(sock, family, type, protocol, kern); 1263 if (err) 1264 goto out_sock_release; 1265 *res = sock; 1266 1267 return 0; 1268 1269 out_module_busy: 1270 err = -EAFNOSUPPORT; 1271 out_module_put: 1272 sock->ops = NULL; 1273 module_put(pf->owner); 1274 out_sock_release: 1275 sock_release(sock); 1276 return err; 1277 1278 out_release: 1279 rcu_read_unlock(); 1280 goto out_sock_release; 1281 } 1282 1283 int sock_create(int family, int type, int protocol, struct socket **res) 1284 { 1285 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1286 } 1287 1288 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1289 { 1290 return __sock_create(&init_net, family, type, protocol, res, 1); 1291 } 1292 1293 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1294 { 1295 int retval; 1296 struct socket *sock; 1297 int flags; 1298 1299 /* Check the SOCK_* constants for consistency. */ 1300 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1301 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1302 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1303 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1304 1305 flags = type & ~SOCK_TYPE_MASK; 1306 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1307 return -EINVAL; 1308 type &= SOCK_TYPE_MASK; 1309 1310 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1311 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1312 1313 retval = sock_create(family, type, protocol, &sock); 1314 if (retval < 0) 1315 goto out; 1316 1317 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1318 if (retval < 0) 1319 goto out_release; 1320 1321 out: 1322 /* It may be already another descriptor 8) Not kernel problem. */ 1323 return retval; 1324 1325 out_release: 1326 sock_release(sock); 1327 return retval; 1328 } 1329 1330 /* 1331 * Create a pair of connected sockets. 1332 */ 1333 1334 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1335 int __user *, usockvec) 1336 { 1337 struct socket *sock1, *sock2; 1338 int fd1, fd2, err; 1339 struct file *newfile1, *newfile2; 1340 int flags; 1341 1342 flags = type & ~SOCK_TYPE_MASK; 1343 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1344 return -EINVAL; 1345 type &= SOCK_TYPE_MASK; 1346 1347 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1348 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1349 1350 /* 1351 * Obtain the first socket and check if the underlying protocol 1352 * supports the socketpair call. 1353 */ 1354 1355 err = sock_create(family, type, protocol, &sock1); 1356 if (err < 0) 1357 goto out; 1358 1359 err = sock_create(family, type, protocol, &sock2); 1360 if (err < 0) 1361 goto out_release_1; 1362 1363 err = sock1->ops->socketpair(sock1, sock2); 1364 if (err < 0) 1365 goto out_release_both; 1366 1367 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1368 if (unlikely(fd1 < 0)) { 1369 err = fd1; 1370 goto out_release_both; 1371 } 1372 1373 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1374 if (unlikely(fd2 < 0)) { 1375 err = fd2; 1376 fput(newfile1); 1377 put_unused_fd(fd1); 1378 sock_release(sock2); 1379 goto out; 1380 } 1381 1382 audit_fd_pair(fd1, fd2); 1383 fd_install(fd1, newfile1); 1384 fd_install(fd2, newfile2); 1385 /* fd1 and fd2 may be already another descriptors. 1386 * Not kernel problem. 1387 */ 1388 1389 err = put_user(fd1, &usockvec[0]); 1390 if (!err) 1391 err = put_user(fd2, &usockvec[1]); 1392 if (!err) 1393 return 0; 1394 1395 sys_close(fd2); 1396 sys_close(fd1); 1397 return err; 1398 1399 out_release_both: 1400 sock_release(sock2); 1401 out_release_1: 1402 sock_release(sock1); 1403 out: 1404 return err; 1405 } 1406 1407 /* 1408 * Bind a name to a socket. Nothing much to do here since it's 1409 * the protocol's responsibility to handle the local address. 1410 * 1411 * We move the socket address to kernel space before we call 1412 * the protocol layer (having also checked the address is ok). 1413 */ 1414 1415 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1416 { 1417 struct socket *sock; 1418 struct sockaddr_storage address; 1419 int err, fput_needed; 1420 1421 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1422 if (sock) { 1423 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1424 if (err >= 0) { 1425 err = security_socket_bind(sock, 1426 (struct sockaddr *)&address, 1427 addrlen); 1428 if (!err) 1429 err = sock->ops->bind(sock, 1430 (struct sockaddr *) 1431 &address, addrlen); 1432 } 1433 fput_light(sock->file, fput_needed); 1434 } 1435 return err; 1436 } 1437 1438 /* 1439 * Perform a listen. Basically, we allow the protocol to do anything 1440 * necessary for a listen, and if that works, we mark the socket as 1441 * ready for listening. 1442 */ 1443 1444 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1445 { 1446 struct socket *sock; 1447 int err, fput_needed; 1448 int somaxconn; 1449 1450 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1451 if (sock) { 1452 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1453 if ((unsigned)backlog > somaxconn) 1454 backlog = somaxconn; 1455 1456 err = security_socket_listen(sock, backlog); 1457 if (!err) 1458 err = sock->ops->listen(sock, backlog); 1459 1460 fput_light(sock->file, fput_needed); 1461 } 1462 return err; 1463 } 1464 1465 /* 1466 * For accept, we attempt to create a new socket, set up the link 1467 * with the client, wake up the client, then return the new 1468 * connected fd. We collect the address of the connector in kernel 1469 * space and move it to user at the very end. This is unclean because 1470 * we open the socket then return an error. 1471 * 1472 * 1003.1g adds the ability to recvmsg() to query connection pending 1473 * status to recvmsg. We need to add that support in a way thats 1474 * clean when we restucture accept also. 1475 */ 1476 1477 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1478 int __user *, upeer_addrlen, int, flags) 1479 { 1480 struct socket *sock, *newsock; 1481 struct file *newfile; 1482 int err, len, newfd, fput_needed; 1483 struct sockaddr_storage address; 1484 1485 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1486 return -EINVAL; 1487 1488 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1489 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1490 1491 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1492 if (!sock) 1493 goto out; 1494 1495 err = -ENFILE; 1496 if (!(newsock = sock_alloc())) 1497 goto out_put; 1498 1499 newsock->type = sock->type; 1500 newsock->ops = sock->ops; 1501 1502 /* 1503 * We don't need try_module_get here, as the listening socket (sock) 1504 * has the protocol module (sock->ops->owner) held. 1505 */ 1506 __module_get(newsock->ops->owner); 1507 1508 newfd = sock_alloc_file(newsock, &newfile, flags); 1509 if (unlikely(newfd < 0)) { 1510 err = newfd; 1511 sock_release(newsock); 1512 goto out_put; 1513 } 1514 1515 err = security_socket_accept(sock, newsock); 1516 if (err) 1517 goto out_fd; 1518 1519 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1520 if (err < 0) 1521 goto out_fd; 1522 1523 if (upeer_sockaddr) { 1524 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1525 &len, 2) < 0) { 1526 err = -ECONNABORTED; 1527 goto out_fd; 1528 } 1529 err = move_addr_to_user((struct sockaddr *)&address, 1530 len, upeer_sockaddr, upeer_addrlen); 1531 if (err < 0) 1532 goto out_fd; 1533 } 1534 1535 /* File flags are not inherited via accept() unlike another OSes. */ 1536 1537 fd_install(newfd, newfile); 1538 err = newfd; 1539 1540 out_put: 1541 fput_light(sock->file, fput_needed); 1542 out: 1543 return err; 1544 out_fd: 1545 fput(newfile); 1546 put_unused_fd(newfd); 1547 goto out_put; 1548 } 1549 1550 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1551 int __user *, upeer_addrlen) 1552 { 1553 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1554 } 1555 1556 /* 1557 * Attempt to connect to a socket with the server address. The address 1558 * is in user space so we verify it is OK and move it to kernel space. 1559 * 1560 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1561 * break bindings 1562 * 1563 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1564 * other SEQPACKET protocols that take time to connect() as it doesn't 1565 * include the -EINPROGRESS status for such sockets. 1566 */ 1567 1568 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1569 int, addrlen) 1570 { 1571 struct socket *sock; 1572 struct sockaddr_storage address; 1573 int err, fput_needed; 1574 1575 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1576 if (!sock) 1577 goto out; 1578 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1579 if (err < 0) 1580 goto out_put; 1581 1582 err = 1583 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1584 if (err) 1585 goto out_put; 1586 1587 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1588 sock->file->f_flags); 1589 out_put: 1590 fput_light(sock->file, fput_needed); 1591 out: 1592 return err; 1593 } 1594 1595 /* 1596 * Get the local address ('name') of a socket object. Move the obtained 1597 * name to user space. 1598 */ 1599 1600 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1601 int __user *, usockaddr_len) 1602 { 1603 struct socket *sock; 1604 struct sockaddr_storage address; 1605 int len, err, fput_needed; 1606 1607 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1608 if (!sock) 1609 goto out; 1610 1611 err = security_socket_getsockname(sock); 1612 if (err) 1613 goto out_put; 1614 1615 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1616 if (err) 1617 goto out_put; 1618 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1619 1620 out_put: 1621 fput_light(sock->file, fput_needed); 1622 out: 1623 return err; 1624 } 1625 1626 /* 1627 * Get the remote address ('name') of a socket object. Move the obtained 1628 * name to user space. 1629 */ 1630 1631 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1632 int __user *, usockaddr_len) 1633 { 1634 struct socket *sock; 1635 struct sockaddr_storage address; 1636 int len, err, fput_needed; 1637 1638 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1639 if (sock != NULL) { 1640 err = security_socket_getpeername(sock); 1641 if (err) { 1642 fput_light(sock->file, fput_needed); 1643 return err; 1644 } 1645 1646 err = 1647 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1648 1); 1649 if (!err) 1650 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1651 usockaddr_len); 1652 fput_light(sock->file, fput_needed); 1653 } 1654 return err; 1655 } 1656 1657 /* 1658 * Send a datagram to a given address. We move the address into kernel 1659 * space and check the user space data area is readable before invoking 1660 * the protocol. 1661 */ 1662 1663 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1664 unsigned, flags, struct sockaddr __user *, addr, 1665 int, addr_len) 1666 { 1667 struct socket *sock; 1668 struct sockaddr_storage address; 1669 int err; 1670 struct msghdr msg; 1671 struct iovec iov; 1672 int fput_needed; 1673 1674 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1675 if (!sock) 1676 goto out; 1677 1678 iov.iov_base = buff; 1679 iov.iov_len = len; 1680 msg.msg_name = NULL; 1681 msg.msg_iov = &iov; 1682 msg.msg_iovlen = 1; 1683 msg.msg_control = NULL; 1684 msg.msg_controllen = 0; 1685 msg.msg_namelen = 0; 1686 if (addr) { 1687 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1688 if (err < 0) 1689 goto out_put; 1690 msg.msg_name = (struct sockaddr *)&address; 1691 msg.msg_namelen = addr_len; 1692 } 1693 if (sock->file->f_flags & O_NONBLOCK) 1694 flags |= MSG_DONTWAIT; 1695 msg.msg_flags = flags; 1696 err = sock_sendmsg(sock, &msg, len); 1697 1698 out_put: 1699 fput_light(sock->file, fput_needed); 1700 out: 1701 return err; 1702 } 1703 1704 /* 1705 * Send a datagram down a socket. 1706 */ 1707 1708 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1709 unsigned, flags) 1710 { 1711 return sys_sendto(fd, buff, len, flags, NULL, 0); 1712 } 1713 1714 /* 1715 * Receive a frame from the socket and optionally record the address of the 1716 * sender. We verify the buffers are writable and if needed move the 1717 * sender address from kernel to user space. 1718 */ 1719 1720 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1721 unsigned, flags, struct sockaddr __user *, addr, 1722 int __user *, addr_len) 1723 { 1724 struct socket *sock; 1725 struct iovec iov; 1726 struct msghdr msg; 1727 struct sockaddr_storage address; 1728 int err, err2; 1729 int fput_needed; 1730 1731 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1732 if (!sock) 1733 goto out; 1734 1735 msg.msg_control = NULL; 1736 msg.msg_controllen = 0; 1737 msg.msg_iovlen = 1; 1738 msg.msg_iov = &iov; 1739 iov.iov_len = size; 1740 iov.iov_base = ubuf; 1741 msg.msg_name = (struct sockaddr *)&address; 1742 msg.msg_namelen = sizeof(address); 1743 if (sock->file->f_flags & O_NONBLOCK) 1744 flags |= MSG_DONTWAIT; 1745 err = sock_recvmsg(sock, &msg, size, flags); 1746 1747 if (err >= 0 && addr != NULL) { 1748 err2 = move_addr_to_user((struct sockaddr *)&address, 1749 msg.msg_namelen, addr, addr_len); 1750 if (err2 < 0) 1751 err = err2; 1752 } 1753 1754 fput_light(sock->file, fput_needed); 1755 out: 1756 return err; 1757 } 1758 1759 /* 1760 * Receive a datagram from a socket. 1761 */ 1762 1763 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1764 unsigned flags) 1765 { 1766 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1767 } 1768 1769 /* 1770 * Set a socket option. Because we don't know the option lengths we have 1771 * to pass the user mode parameter for the protocols to sort out. 1772 */ 1773 1774 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1775 char __user *, optval, int, optlen) 1776 { 1777 int err, fput_needed; 1778 struct socket *sock; 1779 1780 if (optlen < 0) 1781 return -EINVAL; 1782 1783 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1784 if (sock != NULL) { 1785 err = security_socket_setsockopt(sock, level, optname); 1786 if (err) 1787 goto out_put; 1788 1789 if (level == SOL_SOCKET) 1790 err = 1791 sock_setsockopt(sock, level, optname, optval, 1792 optlen); 1793 else 1794 err = 1795 sock->ops->setsockopt(sock, level, optname, optval, 1796 optlen); 1797 out_put: 1798 fput_light(sock->file, fput_needed); 1799 } 1800 return err; 1801 } 1802 1803 /* 1804 * Get a socket option. Because we don't know the option lengths we have 1805 * to pass a user mode parameter for the protocols to sort out. 1806 */ 1807 1808 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1809 char __user *, optval, int __user *, optlen) 1810 { 1811 int err, fput_needed; 1812 struct socket *sock; 1813 1814 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1815 if (sock != NULL) { 1816 err = security_socket_getsockopt(sock, level, optname); 1817 if (err) 1818 goto out_put; 1819 1820 if (level == SOL_SOCKET) 1821 err = 1822 sock_getsockopt(sock, level, optname, optval, 1823 optlen); 1824 else 1825 err = 1826 sock->ops->getsockopt(sock, level, optname, optval, 1827 optlen); 1828 out_put: 1829 fput_light(sock->file, fput_needed); 1830 } 1831 return err; 1832 } 1833 1834 /* 1835 * Shutdown a socket. 1836 */ 1837 1838 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1839 { 1840 int err, fput_needed; 1841 struct socket *sock; 1842 1843 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1844 if (sock != NULL) { 1845 err = security_socket_shutdown(sock, how); 1846 if (!err) 1847 err = sock->ops->shutdown(sock, how); 1848 fput_light(sock->file, fput_needed); 1849 } 1850 return err; 1851 } 1852 1853 /* A couple of helpful macros for getting the address of the 32/64 bit 1854 * fields which are the same type (int / unsigned) on our platforms. 1855 */ 1856 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1857 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1858 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1859 1860 /* 1861 * BSD sendmsg interface 1862 */ 1863 1864 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1865 { 1866 struct compat_msghdr __user *msg_compat = 1867 (struct compat_msghdr __user *)msg; 1868 struct socket *sock; 1869 struct sockaddr_storage address; 1870 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1871 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1872 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1873 /* 20 is size of ipv6_pktinfo */ 1874 unsigned char *ctl_buf = ctl; 1875 struct msghdr msg_sys; 1876 int err, ctl_len, iov_size, total_len; 1877 int fput_needed; 1878 1879 err = -EFAULT; 1880 if (MSG_CMSG_COMPAT & flags) { 1881 if (get_compat_msghdr(&msg_sys, msg_compat)) 1882 return -EFAULT; 1883 } 1884 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1885 return -EFAULT; 1886 1887 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1888 if (!sock) 1889 goto out; 1890 1891 /* do not move before msg_sys is valid */ 1892 err = -EMSGSIZE; 1893 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1894 goto out_put; 1895 1896 /* Check whether to allocate the iovec area */ 1897 err = -ENOMEM; 1898 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1899 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1900 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1901 if (!iov) 1902 goto out_put; 1903 } 1904 1905 /* This will also move the address data into kernel space */ 1906 if (MSG_CMSG_COMPAT & flags) { 1907 err = verify_compat_iovec(&msg_sys, iov, 1908 (struct sockaddr *)&address, 1909 VERIFY_READ); 1910 } else 1911 err = verify_iovec(&msg_sys, iov, 1912 (struct sockaddr *)&address, 1913 VERIFY_READ); 1914 if (err < 0) 1915 goto out_freeiov; 1916 total_len = err; 1917 1918 err = -ENOBUFS; 1919 1920 if (msg_sys.msg_controllen > INT_MAX) 1921 goto out_freeiov; 1922 ctl_len = msg_sys.msg_controllen; 1923 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1924 err = 1925 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1926 sizeof(ctl)); 1927 if (err) 1928 goto out_freeiov; 1929 ctl_buf = msg_sys.msg_control; 1930 ctl_len = msg_sys.msg_controllen; 1931 } else if (ctl_len) { 1932 if (ctl_len > sizeof(ctl)) { 1933 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1934 if (ctl_buf == NULL) 1935 goto out_freeiov; 1936 } 1937 err = -EFAULT; 1938 /* 1939 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1940 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1941 * checking falls down on this. 1942 */ 1943 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1944 ctl_len)) 1945 goto out_freectl; 1946 msg_sys.msg_control = ctl_buf; 1947 } 1948 msg_sys.msg_flags = flags; 1949 1950 if (sock->file->f_flags & O_NONBLOCK) 1951 msg_sys.msg_flags |= MSG_DONTWAIT; 1952 err = sock_sendmsg(sock, &msg_sys, total_len); 1953 1954 out_freectl: 1955 if (ctl_buf != ctl) 1956 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1957 out_freeiov: 1958 if (iov != iovstack) 1959 sock_kfree_s(sock->sk, iov, iov_size); 1960 out_put: 1961 fput_light(sock->file, fput_needed); 1962 out: 1963 return err; 1964 } 1965 1966 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1967 struct msghdr *msg_sys, unsigned flags, int nosec) 1968 { 1969 struct compat_msghdr __user *msg_compat = 1970 (struct compat_msghdr __user *)msg; 1971 struct iovec iovstack[UIO_FASTIOV]; 1972 struct iovec *iov = iovstack; 1973 unsigned long cmsg_ptr; 1974 int err, iov_size, total_len, len; 1975 1976 /* kernel mode address */ 1977 struct sockaddr_storage addr; 1978 1979 /* user mode address pointers */ 1980 struct sockaddr __user *uaddr; 1981 int __user *uaddr_len; 1982 1983 if (MSG_CMSG_COMPAT & flags) { 1984 if (get_compat_msghdr(msg_sys, msg_compat)) 1985 return -EFAULT; 1986 } 1987 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1988 return -EFAULT; 1989 1990 err = -EMSGSIZE; 1991 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1992 goto out; 1993 1994 /* Check whether to allocate the iovec area */ 1995 err = -ENOMEM; 1996 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1997 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1998 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1999 if (!iov) 2000 goto out; 2001 } 2002 2003 /* 2004 * Save the user-mode address (verify_iovec will change the 2005 * kernel msghdr to use the kernel address space) 2006 */ 2007 2008 uaddr = (__force void __user *)msg_sys->msg_name; 2009 uaddr_len = COMPAT_NAMELEN(msg); 2010 if (MSG_CMSG_COMPAT & flags) { 2011 err = verify_compat_iovec(msg_sys, iov, 2012 (struct sockaddr *)&addr, 2013 VERIFY_WRITE); 2014 } else 2015 err = verify_iovec(msg_sys, iov, 2016 (struct sockaddr *)&addr, 2017 VERIFY_WRITE); 2018 if (err < 0) 2019 goto out_freeiov; 2020 total_len = err; 2021 2022 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2023 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2024 2025 if (sock->file->f_flags & O_NONBLOCK) 2026 flags |= MSG_DONTWAIT; 2027 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2028 total_len, flags); 2029 if (err < 0) 2030 goto out_freeiov; 2031 len = err; 2032 2033 if (uaddr != NULL) { 2034 err = move_addr_to_user((struct sockaddr *)&addr, 2035 msg_sys->msg_namelen, uaddr, 2036 uaddr_len); 2037 if (err < 0) 2038 goto out_freeiov; 2039 } 2040 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2041 COMPAT_FLAGS(msg)); 2042 if (err) 2043 goto out_freeiov; 2044 if (MSG_CMSG_COMPAT & flags) 2045 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2046 &msg_compat->msg_controllen); 2047 else 2048 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2049 &msg->msg_controllen); 2050 if (err) 2051 goto out_freeiov; 2052 err = len; 2053 2054 out_freeiov: 2055 if (iov != iovstack) 2056 sock_kfree_s(sock->sk, iov, iov_size); 2057 out: 2058 return err; 2059 } 2060 2061 /* 2062 * BSD recvmsg interface 2063 */ 2064 2065 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2066 unsigned int, flags) 2067 { 2068 int fput_needed, err; 2069 struct msghdr msg_sys; 2070 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2071 2072 if (!sock) 2073 goto out; 2074 2075 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2076 2077 fput_light(sock->file, fput_needed); 2078 out: 2079 return err; 2080 } 2081 2082 /* 2083 * Linux recvmmsg interface 2084 */ 2085 2086 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2087 unsigned int flags, struct timespec *timeout) 2088 { 2089 int fput_needed, err, datagrams; 2090 struct socket *sock; 2091 struct mmsghdr __user *entry; 2092 struct compat_mmsghdr __user *compat_entry; 2093 struct msghdr msg_sys; 2094 struct timespec end_time; 2095 2096 if (timeout && 2097 poll_select_set_timeout(&end_time, timeout->tv_sec, 2098 timeout->tv_nsec)) 2099 return -EINVAL; 2100 2101 datagrams = 0; 2102 2103 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2104 if (!sock) 2105 return err; 2106 2107 err = sock_error(sock->sk); 2108 if (err) 2109 goto out_put; 2110 2111 entry = mmsg; 2112 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2113 2114 while (datagrams < vlen) { 2115 /* 2116 * No need to ask LSM for more than the first datagram. 2117 */ 2118 if (MSG_CMSG_COMPAT & flags) { 2119 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2120 &msg_sys, flags, datagrams); 2121 if (err < 0) 2122 break; 2123 err = __put_user(err, &compat_entry->msg_len); 2124 ++compat_entry; 2125 } else { 2126 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2127 &msg_sys, flags, datagrams); 2128 if (err < 0) 2129 break; 2130 err = put_user(err, &entry->msg_len); 2131 ++entry; 2132 } 2133 2134 if (err) 2135 break; 2136 ++datagrams; 2137 2138 if (timeout) { 2139 ktime_get_ts(timeout); 2140 *timeout = timespec_sub(end_time, *timeout); 2141 if (timeout->tv_sec < 0) { 2142 timeout->tv_sec = timeout->tv_nsec = 0; 2143 break; 2144 } 2145 2146 /* Timeout, return less than vlen datagrams */ 2147 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2148 break; 2149 } 2150 2151 /* Out of band data, return right away */ 2152 if (msg_sys.msg_flags & MSG_OOB) 2153 break; 2154 } 2155 2156 out_put: 2157 fput_light(sock->file, fput_needed); 2158 2159 if (err == 0) 2160 return datagrams; 2161 2162 if (datagrams != 0) { 2163 /* 2164 * We may return less entries than requested (vlen) if the 2165 * sock is non block and there aren't enough datagrams... 2166 */ 2167 if (err != -EAGAIN) { 2168 /* 2169 * ... or if recvmsg returns an error after we 2170 * received some datagrams, where we record the 2171 * error to return on the next call or if the 2172 * app asks about it using getsockopt(SO_ERROR). 2173 */ 2174 sock->sk->sk_err = -err; 2175 } 2176 2177 return datagrams; 2178 } 2179 2180 return err; 2181 } 2182 2183 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2184 unsigned int, vlen, unsigned int, flags, 2185 struct timespec __user *, timeout) 2186 { 2187 int datagrams; 2188 struct timespec timeout_sys; 2189 2190 if (!timeout) 2191 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2192 2193 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2194 return -EFAULT; 2195 2196 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2197 2198 if (datagrams > 0 && 2199 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2200 datagrams = -EFAULT; 2201 2202 return datagrams; 2203 } 2204 2205 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2206 /* Argument list sizes for sys_socketcall */ 2207 #define AL(x) ((x) * sizeof(unsigned long)) 2208 static const unsigned char nargs[20] = { 2209 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 2210 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 2211 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3), 2212 AL(4),AL(5) 2213 }; 2214 2215 #undef AL 2216 2217 /* 2218 * System call vectors. 2219 * 2220 * Argument checking cleaned up. Saved 20% in size. 2221 * This function doesn't need to set the kernel lock because 2222 * it is set by the callees. 2223 */ 2224 2225 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2226 { 2227 unsigned long a[6]; 2228 unsigned long a0, a1; 2229 int err; 2230 unsigned int len; 2231 2232 if (call < 1 || call > SYS_RECVMMSG) 2233 return -EINVAL; 2234 2235 len = nargs[call]; 2236 if (len > sizeof(a)) 2237 return -EINVAL; 2238 2239 /* copy_from_user should be SMP safe. */ 2240 if (copy_from_user(a, args, len)) 2241 return -EFAULT; 2242 2243 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2244 2245 a0 = a[0]; 2246 a1 = a[1]; 2247 2248 switch (call) { 2249 case SYS_SOCKET: 2250 err = sys_socket(a0, a1, a[2]); 2251 break; 2252 case SYS_BIND: 2253 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2254 break; 2255 case SYS_CONNECT: 2256 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2257 break; 2258 case SYS_LISTEN: 2259 err = sys_listen(a0, a1); 2260 break; 2261 case SYS_ACCEPT: 2262 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2263 (int __user *)a[2], 0); 2264 break; 2265 case SYS_GETSOCKNAME: 2266 err = 2267 sys_getsockname(a0, (struct sockaddr __user *)a1, 2268 (int __user *)a[2]); 2269 break; 2270 case SYS_GETPEERNAME: 2271 err = 2272 sys_getpeername(a0, (struct sockaddr __user *)a1, 2273 (int __user *)a[2]); 2274 break; 2275 case SYS_SOCKETPAIR: 2276 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2277 break; 2278 case SYS_SEND: 2279 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2280 break; 2281 case SYS_SENDTO: 2282 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2283 (struct sockaddr __user *)a[4], a[5]); 2284 break; 2285 case SYS_RECV: 2286 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2287 break; 2288 case SYS_RECVFROM: 2289 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2290 (struct sockaddr __user *)a[4], 2291 (int __user *)a[5]); 2292 break; 2293 case SYS_SHUTDOWN: 2294 err = sys_shutdown(a0, a1); 2295 break; 2296 case SYS_SETSOCKOPT: 2297 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2298 break; 2299 case SYS_GETSOCKOPT: 2300 err = 2301 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2302 (int __user *)a[4]); 2303 break; 2304 case SYS_SENDMSG: 2305 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2306 break; 2307 case SYS_RECVMSG: 2308 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2309 break; 2310 case SYS_RECVMMSG: 2311 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2312 (struct timespec __user *)a[4]); 2313 break; 2314 case SYS_ACCEPT4: 2315 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2316 (int __user *)a[2], a[3]); 2317 break; 2318 default: 2319 err = -EINVAL; 2320 break; 2321 } 2322 return err; 2323 } 2324 2325 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2326 2327 /** 2328 * sock_register - add a socket protocol handler 2329 * @ops: description of protocol 2330 * 2331 * This function is called by a protocol handler that wants to 2332 * advertise its address family, and have it linked into the 2333 * socket interface. The value ops->family coresponds to the 2334 * socket system call protocol family. 2335 */ 2336 int sock_register(const struct net_proto_family *ops) 2337 { 2338 int err; 2339 2340 if (ops->family >= NPROTO) { 2341 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2342 NPROTO); 2343 return -ENOBUFS; 2344 } 2345 2346 spin_lock(&net_family_lock); 2347 if (net_families[ops->family]) 2348 err = -EEXIST; 2349 else { 2350 net_families[ops->family] = ops; 2351 err = 0; 2352 } 2353 spin_unlock(&net_family_lock); 2354 2355 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2356 return err; 2357 } 2358 2359 /** 2360 * sock_unregister - remove a protocol handler 2361 * @family: protocol family to remove 2362 * 2363 * This function is called by a protocol handler that wants to 2364 * remove its address family, and have it unlinked from the 2365 * new socket creation. 2366 * 2367 * If protocol handler is a module, then it can use module reference 2368 * counts to protect against new references. If protocol handler is not 2369 * a module then it needs to provide its own protection in 2370 * the ops->create routine. 2371 */ 2372 void sock_unregister(int family) 2373 { 2374 BUG_ON(family < 0 || family >= NPROTO); 2375 2376 spin_lock(&net_family_lock); 2377 net_families[family] = NULL; 2378 spin_unlock(&net_family_lock); 2379 2380 synchronize_rcu(); 2381 2382 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2383 } 2384 2385 static int __init sock_init(void) 2386 { 2387 /* 2388 * Initialize sock SLAB cache. 2389 */ 2390 2391 sk_init(); 2392 2393 /* 2394 * Initialize skbuff SLAB cache 2395 */ 2396 skb_init(); 2397 2398 /* 2399 * Initialize the protocols module. 2400 */ 2401 2402 init_inodecache(); 2403 register_filesystem(&sock_fs_type); 2404 sock_mnt = kern_mount(&sock_fs_type); 2405 2406 /* The real protocol initialization is performed in later initcalls. 2407 */ 2408 2409 #ifdef CONFIG_NETFILTER 2410 netfilter_init(); 2411 #endif 2412 2413 return 0; 2414 } 2415 2416 core_initcall(sock_init); /* early initcall */ 2417 2418 #ifdef CONFIG_PROC_FS 2419 void socket_seq_show(struct seq_file *seq) 2420 { 2421 int cpu; 2422 int counter = 0; 2423 2424 for_each_possible_cpu(cpu) 2425 counter += per_cpu(sockets_in_use, cpu); 2426 2427 /* It can be negative, by the way. 8) */ 2428 if (counter < 0) 2429 counter = 0; 2430 2431 seq_printf(seq, "sockets: used %d\n", counter); 2432 } 2433 #endif /* CONFIG_PROC_FS */ 2434 2435 #ifdef CONFIG_COMPAT 2436 static int do_siocgstamp(struct net *net, struct socket *sock, 2437 unsigned int cmd, struct compat_timeval __user *up) 2438 { 2439 mm_segment_t old_fs = get_fs(); 2440 struct timeval ktv; 2441 int err; 2442 2443 set_fs(KERNEL_DS); 2444 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2445 set_fs(old_fs); 2446 if (!err) { 2447 err = put_user(ktv.tv_sec, &up->tv_sec); 2448 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2449 } 2450 return err; 2451 } 2452 2453 static int do_siocgstampns(struct net *net, struct socket *sock, 2454 unsigned int cmd, struct compat_timespec __user *up) 2455 { 2456 mm_segment_t old_fs = get_fs(); 2457 struct timespec kts; 2458 int err; 2459 2460 set_fs(KERNEL_DS); 2461 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2462 set_fs(old_fs); 2463 if (!err) { 2464 err = put_user(kts.tv_sec, &up->tv_sec); 2465 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2466 } 2467 return err; 2468 } 2469 2470 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2471 { 2472 struct ifreq __user *uifr; 2473 int err; 2474 2475 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2476 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2477 return -EFAULT; 2478 2479 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2480 if (err) 2481 return err; 2482 2483 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2484 return -EFAULT; 2485 2486 return 0; 2487 } 2488 2489 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2490 { 2491 struct compat_ifconf ifc32; 2492 struct ifconf ifc; 2493 struct ifconf __user *uifc; 2494 struct compat_ifreq __user *ifr32; 2495 struct ifreq __user *ifr; 2496 unsigned int i, j; 2497 int err; 2498 2499 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2500 return -EFAULT; 2501 2502 if (ifc32.ifcbuf == 0) { 2503 ifc32.ifc_len = 0; 2504 ifc.ifc_len = 0; 2505 ifc.ifc_req = NULL; 2506 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2507 } else { 2508 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) * 2509 sizeof (struct ifreq); 2510 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2511 ifc.ifc_len = len; 2512 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2513 ifr32 = compat_ptr(ifc32.ifcbuf); 2514 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) { 2515 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2516 return -EFAULT; 2517 ifr++; 2518 ifr32++; 2519 } 2520 } 2521 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2522 return -EFAULT; 2523 2524 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2525 if (err) 2526 return err; 2527 2528 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2529 return -EFAULT; 2530 2531 ifr = ifc.ifc_req; 2532 ifr32 = compat_ptr(ifc32.ifcbuf); 2533 for (i = 0, j = 0; 2534 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2535 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) { 2536 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq))) 2537 return -EFAULT; 2538 ifr32++; 2539 ifr++; 2540 } 2541 2542 if (ifc32.ifcbuf == 0) { 2543 /* Translate from 64-bit structure multiple to 2544 * a 32-bit one. 2545 */ 2546 i = ifc.ifc_len; 2547 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2548 ifc32.ifc_len = i; 2549 } else { 2550 ifc32.ifc_len = i; 2551 } 2552 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2553 return -EFAULT; 2554 2555 return 0; 2556 } 2557 2558 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2559 { 2560 struct ifreq __user *ifr; 2561 u32 data; 2562 void __user *datap; 2563 2564 ifr = compat_alloc_user_space(sizeof(*ifr)); 2565 2566 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2567 return -EFAULT; 2568 2569 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2570 return -EFAULT; 2571 2572 datap = compat_ptr(data); 2573 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2574 return -EFAULT; 2575 2576 return dev_ioctl(net, SIOCETHTOOL, ifr); 2577 } 2578 2579 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2580 { 2581 void __user *uptr; 2582 compat_uptr_t uptr32; 2583 struct ifreq __user *uifr; 2584 2585 uifr = compat_alloc_user_space(sizeof (*uifr)); 2586 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2587 return -EFAULT; 2588 2589 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2590 return -EFAULT; 2591 2592 uptr = compat_ptr(uptr32); 2593 2594 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2595 return -EFAULT; 2596 2597 return dev_ioctl(net, SIOCWANDEV, uifr); 2598 } 2599 2600 static int bond_ioctl(struct net *net, unsigned int cmd, 2601 struct compat_ifreq __user *ifr32) 2602 { 2603 struct ifreq kifr; 2604 struct ifreq __user *uifr; 2605 mm_segment_t old_fs; 2606 int err; 2607 u32 data; 2608 void __user *datap; 2609 2610 switch (cmd) { 2611 case SIOCBONDENSLAVE: 2612 case SIOCBONDRELEASE: 2613 case SIOCBONDSETHWADDR: 2614 case SIOCBONDCHANGEACTIVE: 2615 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2616 return -EFAULT; 2617 2618 old_fs = get_fs(); 2619 set_fs (KERNEL_DS); 2620 err = dev_ioctl(net, cmd, &kifr); 2621 set_fs (old_fs); 2622 2623 return err; 2624 case SIOCBONDSLAVEINFOQUERY: 2625 case SIOCBONDINFOQUERY: 2626 uifr = compat_alloc_user_space(sizeof(*uifr)); 2627 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2628 return -EFAULT; 2629 2630 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2631 return -EFAULT; 2632 2633 datap = compat_ptr(data); 2634 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2635 return -EFAULT; 2636 2637 return dev_ioctl(net, cmd, uifr); 2638 default: 2639 return -EINVAL; 2640 }; 2641 } 2642 2643 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2644 struct compat_ifreq __user *u_ifreq32) 2645 { 2646 struct ifreq __user *u_ifreq64; 2647 char tmp_buf[IFNAMSIZ]; 2648 void __user *data64; 2649 u32 data32; 2650 2651 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2652 IFNAMSIZ)) 2653 return -EFAULT; 2654 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2655 return -EFAULT; 2656 data64 = compat_ptr(data32); 2657 2658 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2659 2660 /* Don't check these user accesses, just let that get trapped 2661 * in the ioctl handler instead. 2662 */ 2663 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2664 IFNAMSIZ)) 2665 return -EFAULT; 2666 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2667 return -EFAULT; 2668 2669 return dev_ioctl(net, cmd, u_ifreq64); 2670 } 2671 2672 static int dev_ifsioc(struct net *net, struct socket *sock, 2673 unsigned int cmd, struct compat_ifreq __user *uifr32) 2674 { 2675 struct ifreq __user *uifr; 2676 int err; 2677 2678 uifr = compat_alloc_user_space(sizeof(*uifr)); 2679 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2680 return -EFAULT; 2681 2682 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2683 2684 if (!err) { 2685 switch (cmd) { 2686 case SIOCGIFFLAGS: 2687 case SIOCGIFMETRIC: 2688 case SIOCGIFMTU: 2689 case SIOCGIFMEM: 2690 case SIOCGIFHWADDR: 2691 case SIOCGIFINDEX: 2692 case SIOCGIFADDR: 2693 case SIOCGIFBRDADDR: 2694 case SIOCGIFDSTADDR: 2695 case SIOCGIFNETMASK: 2696 case SIOCGIFPFLAGS: 2697 case SIOCGIFTXQLEN: 2698 case SIOCGMIIPHY: 2699 case SIOCGMIIREG: 2700 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2701 err = -EFAULT; 2702 break; 2703 } 2704 } 2705 return err; 2706 } 2707 2708 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2709 struct compat_ifreq __user *uifr32) 2710 { 2711 struct ifreq ifr; 2712 struct compat_ifmap __user *uifmap32; 2713 mm_segment_t old_fs; 2714 int err; 2715 2716 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2717 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2718 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2719 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2720 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2721 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2722 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2723 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2724 if (err) 2725 return -EFAULT; 2726 2727 old_fs = get_fs(); 2728 set_fs (KERNEL_DS); 2729 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2730 set_fs (old_fs); 2731 2732 if (cmd == SIOCGIFMAP && !err) { 2733 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2734 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2735 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2736 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2737 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2738 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2739 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2740 if (err) 2741 err = -EFAULT; 2742 } 2743 return err; 2744 } 2745 2746 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2747 { 2748 void __user *uptr; 2749 compat_uptr_t uptr32; 2750 struct ifreq __user *uifr; 2751 2752 uifr = compat_alloc_user_space(sizeof (*uifr)); 2753 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2754 return -EFAULT; 2755 2756 if (get_user(uptr32, &uifr32->ifr_data)) 2757 return -EFAULT; 2758 2759 uptr = compat_ptr(uptr32); 2760 2761 if (put_user(uptr, &uifr->ifr_data)) 2762 return -EFAULT; 2763 2764 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2765 } 2766 2767 struct rtentry32 { 2768 u32 rt_pad1; 2769 struct sockaddr rt_dst; /* target address */ 2770 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2771 struct sockaddr rt_genmask; /* target network mask (IP) */ 2772 unsigned short rt_flags; 2773 short rt_pad2; 2774 u32 rt_pad3; 2775 unsigned char rt_tos; 2776 unsigned char rt_class; 2777 short rt_pad4; 2778 short rt_metric; /* +1 for binary compatibility! */ 2779 /* char * */ u32 rt_dev; /* forcing the device at add */ 2780 u32 rt_mtu; /* per route MTU/Window */ 2781 u32 rt_window; /* Window clamping */ 2782 unsigned short rt_irtt; /* Initial RTT */ 2783 }; 2784 2785 struct in6_rtmsg32 { 2786 struct in6_addr rtmsg_dst; 2787 struct in6_addr rtmsg_src; 2788 struct in6_addr rtmsg_gateway; 2789 u32 rtmsg_type; 2790 u16 rtmsg_dst_len; 2791 u16 rtmsg_src_len; 2792 u32 rtmsg_metric; 2793 u32 rtmsg_info; 2794 u32 rtmsg_flags; 2795 s32 rtmsg_ifindex; 2796 }; 2797 2798 static int routing_ioctl(struct net *net, struct socket *sock, 2799 unsigned int cmd, void __user *argp) 2800 { 2801 int ret; 2802 void *r = NULL; 2803 struct in6_rtmsg r6; 2804 struct rtentry r4; 2805 char devname[16]; 2806 u32 rtdev; 2807 mm_segment_t old_fs = get_fs(); 2808 2809 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2810 struct in6_rtmsg32 __user *ur6 = argp; 2811 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2812 3 * sizeof(struct in6_addr)); 2813 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type)); 2814 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2815 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2816 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2817 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info)); 2818 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2819 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2820 2821 r = (void *) &r6; 2822 } else { /* ipv4 */ 2823 struct rtentry32 __user *ur4 = argp; 2824 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst), 2825 3 * sizeof(struct sockaddr)); 2826 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags)); 2827 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric)); 2828 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu)); 2829 ret |= __get_user (r4.rt_window, &(ur4->rt_window)); 2830 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt)); 2831 ret |= __get_user (rtdev, &(ur4->rt_dev)); 2832 if (rtdev) { 2833 ret |= copy_from_user (devname, compat_ptr(rtdev), 15); 2834 r4.rt_dev = devname; devname[15] = 0; 2835 } else 2836 r4.rt_dev = NULL; 2837 2838 r = (void *) &r4; 2839 } 2840 2841 if (ret) { 2842 ret = -EFAULT; 2843 goto out; 2844 } 2845 2846 set_fs (KERNEL_DS); 2847 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2848 set_fs (old_fs); 2849 2850 out: 2851 return ret; 2852 } 2853 2854 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2855 * for some operations; this forces use of the newer bridge-utils that 2856 * use compatiable ioctls 2857 */ 2858 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2859 { 2860 compat_ulong_t tmp; 2861 2862 if (get_user(tmp, argp)) 2863 return -EFAULT; 2864 if (tmp == BRCTL_GET_VERSION) 2865 return BRCTL_VERSION + 1; 2866 return -EINVAL; 2867 } 2868 2869 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2870 unsigned int cmd, unsigned long arg) 2871 { 2872 void __user *argp = compat_ptr(arg); 2873 struct sock *sk = sock->sk; 2874 struct net *net = sock_net(sk); 2875 2876 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2877 return siocdevprivate_ioctl(net, cmd, argp); 2878 2879 switch (cmd) { 2880 case SIOCSIFBR: 2881 case SIOCGIFBR: 2882 return old_bridge_ioctl(argp); 2883 case SIOCGIFNAME: 2884 return dev_ifname32(net, argp); 2885 case SIOCGIFCONF: 2886 return dev_ifconf(net, argp); 2887 case SIOCETHTOOL: 2888 return ethtool_ioctl(net, argp); 2889 case SIOCWANDEV: 2890 return compat_siocwandev(net, argp); 2891 case SIOCGIFMAP: 2892 case SIOCSIFMAP: 2893 return compat_sioc_ifmap(net, cmd, argp); 2894 case SIOCBONDENSLAVE: 2895 case SIOCBONDRELEASE: 2896 case SIOCBONDSETHWADDR: 2897 case SIOCBONDSLAVEINFOQUERY: 2898 case SIOCBONDINFOQUERY: 2899 case SIOCBONDCHANGEACTIVE: 2900 return bond_ioctl(net, cmd, argp); 2901 case SIOCADDRT: 2902 case SIOCDELRT: 2903 return routing_ioctl(net, sock, cmd, argp); 2904 case SIOCGSTAMP: 2905 return do_siocgstamp(net, sock, cmd, argp); 2906 case SIOCGSTAMPNS: 2907 return do_siocgstampns(net, sock, cmd, argp); 2908 case SIOCSHWTSTAMP: 2909 return compat_siocshwtstamp(net, argp); 2910 2911 case FIOSETOWN: 2912 case SIOCSPGRP: 2913 case FIOGETOWN: 2914 case SIOCGPGRP: 2915 case SIOCBRADDBR: 2916 case SIOCBRDELBR: 2917 case SIOCGIFVLAN: 2918 case SIOCSIFVLAN: 2919 case SIOCADDDLCI: 2920 case SIOCDELDLCI: 2921 return sock_ioctl(file, cmd, arg); 2922 2923 case SIOCGIFFLAGS: 2924 case SIOCSIFFLAGS: 2925 case SIOCGIFMETRIC: 2926 case SIOCSIFMETRIC: 2927 case SIOCGIFMTU: 2928 case SIOCSIFMTU: 2929 case SIOCGIFMEM: 2930 case SIOCSIFMEM: 2931 case SIOCGIFHWADDR: 2932 case SIOCSIFHWADDR: 2933 case SIOCADDMULTI: 2934 case SIOCDELMULTI: 2935 case SIOCGIFINDEX: 2936 case SIOCGIFADDR: 2937 case SIOCSIFADDR: 2938 case SIOCSIFHWBROADCAST: 2939 case SIOCDIFADDR: 2940 case SIOCGIFBRDADDR: 2941 case SIOCSIFBRDADDR: 2942 case SIOCGIFDSTADDR: 2943 case SIOCSIFDSTADDR: 2944 case SIOCGIFNETMASK: 2945 case SIOCSIFNETMASK: 2946 case SIOCSIFPFLAGS: 2947 case SIOCGIFPFLAGS: 2948 case SIOCGIFTXQLEN: 2949 case SIOCSIFTXQLEN: 2950 case SIOCBRADDIF: 2951 case SIOCBRDELIF: 2952 case SIOCSIFNAME: 2953 case SIOCGMIIPHY: 2954 case SIOCGMIIREG: 2955 case SIOCSMIIREG: 2956 return dev_ifsioc(net, sock, cmd, argp); 2957 2958 case SIOCSARP: 2959 case SIOCGARP: 2960 case SIOCDARP: 2961 case SIOCATMARK: 2962 return sock_do_ioctl(net, sock, cmd, arg); 2963 } 2964 2965 /* Prevent warning from compat_sys_ioctl, these always 2966 * result in -EINVAL in the native case anyway. */ 2967 switch (cmd) { 2968 case SIOCRTMSG: 2969 case SIOCGIFCOUNT: 2970 case SIOCSRARP: 2971 case SIOCGRARP: 2972 case SIOCDRARP: 2973 case SIOCSIFLINK: 2974 case SIOCGIFSLAVE: 2975 case SIOCSIFSLAVE: 2976 return -EINVAL; 2977 } 2978 2979 return -ENOIOCTLCMD; 2980 } 2981 2982 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2983 unsigned long arg) 2984 { 2985 struct socket *sock = file->private_data; 2986 int ret = -ENOIOCTLCMD; 2987 struct sock *sk; 2988 struct net *net; 2989 2990 sk = sock->sk; 2991 net = sock_net(sk); 2992 2993 if (sock->ops->compat_ioctl) 2994 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2995 2996 if (ret == -ENOIOCTLCMD && 2997 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2998 ret = compat_wext_handle_ioctl(net, cmd, arg); 2999 3000 if (ret == -ENOIOCTLCMD) 3001 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3002 3003 return ret; 3004 } 3005 #endif 3006 3007 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3008 { 3009 return sock->ops->bind(sock, addr, addrlen); 3010 } 3011 3012 int kernel_listen(struct socket *sock, int backlog) 3013 { 3014 return sock->ops->listen(sock, backlog); 3015 } 3016 3017 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3018 { 3019 struct sock *sk = sock->sk; 3020 int err; 3021 3022 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3023 newsock); 3024 if (err < 0) 3025 goto done; 3026 3027 err = sock->ops->accept(sock, *newsock, flags); 3028 if (err < 0) { 3029 sock_release(*newsock); 3030 *newsock = NULL; 3031 goto done; 3032 } 3033 3034 (*newsock)->ops = sock->ops; 3035 __module_get((*newsock)->ops->owner); 3036 3037 done: 3038 return err; 3039 } 3040 3041 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3042 int flags) 3043 { 3044 return sock->ops->connect(sock, addr, addrlen, flags); 3045 } 3046 3047 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3048 int *addrlen) 3049 { 3050 return sock->ops->getname(sock, addr, addrlen, 0); 3051 } 3052 3053 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3054 int *addrlen) 3055 { 3056 return sock->ops->getname(sock, addr, addrlen, 1); 3057 } 3058 3059 int kernel_getsockopt(struct socket *sock, int level, int optname, 3060 char *optval, int *optlen) 3061 { 3062 mm_segment_t oldfs = get_fs(); 3063 int err; 3064 3065 set_fs(KERNEL_DS); 3066 if (level == SOL_SOCKET) 3067 err = sock_getsockopt(sock, level, optname, optval, optlen); 3068 else 3069 err = sock->ops->getsockopt(sock, level, optname, optval, 3070 optlen); 3071 set_fs(oldfs); 3072 return err; 3073 } 3074 3075 int kernel_setsockopt(struct socket *sock, int level, int optname, 3076 char *optval, unsigned int optlen) 3077 { 3078 mm_segment_t oldfs = get_fs(); 3079 int err; 3080 3081 set_fs(KERNEL_DS); 3082 if (level == SOL_SOCKET) 3083 err = sock_setsockopt(sock, level, optname, optval, optlen); 3084 else 3085 err = sock->ops->setsockopt(sock, level, optname, optval, 3086 optlen); 3087 set_fs(oldfs); 3088 return err; 3089 } 3090 3091 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3092 size_t size, int flags) 3093 { 3094 if (sock->ops->sendpage) 3095 return sock->ops->sendpage(sock, page, offset, size, flags); 3096 3097 return sock_no_sendpage(sock, page, offset, size, flags); 3098 } 3099 3100 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3101 { 3102 mm_segment_t oldfs = get_fs(); 3103 int err; 3104 3105 set_fs(KERNEL_DS); 3106 err = sock->ops->ioctl(sock, cmd, arg); 3107 set_fs(oldfs); 3108 3109 return err; 3110 } 3111 3112 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3113 { 3114 return sock->ops->shutdown(sock, how); 3115 } 3116 3117 EXPORT_SYMBOL(sock_create); 3118 EXPORT_SYMBOL(sock_create_kern); 3119 EXPORT_SYMBOL(sock_create_lite); 3120 EXPORT_SYMBOL(sock_map_fd); 3121 EXPORT_SYMBOL(sock_recvmsg); 3122 EXPORT_SYMBOL(sock_register); 3123 EXPORT_SYMBOL(sock_release); 3124 EXPORT_SYMBOL(sock_sendmsg); 3125 EXPORT_SYMBOL(sock_unregister); 3126 EXPORT_SYMBOL(sock_wake_async); 3127 EXPORT_SYMBOL(sockfd_lookup); 3128 EXPORT_SYMBOL(kernel_sendmsg); 3129 EXPORT_SYMBOL(kernel_recvmsg); 3130 EXPORT_SYMBOL(kernel_bind); 3131 EXPORT_SYMBOL(kernel_listen); 3132 EXPORT_SYMBOL(kernel_accept); 3133 EXPORT_SYMBOL(kernel_connect); 3134 EXPORT_SYMBOL(kernel_getsockname); 3135 EXPORT_SYMBOL(kernel_getpeername); 3136 EXPORT_SYMBOL(kernel_getsockopt); 3137 EXPORT_SYMBOL(kernel_setsockopt); 3138 EXPORT_SYMBOL(kernel_sendpage); 3139 EXPORT_SYMBOL(kernel_sock_ioctl); 3140 EXPORT_SYMBOL(kernel_sock_shutdown); 3141