xref: /openbmc/linux/net/socket.c (revision a09d2831)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <linux/atalk.h>
105 
106 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
107 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
108 			 unsigned long nr_segs, loff_t pos);
109 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
110 			  unsigned long nr_segs, loff_t pos);
111 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
112 
113 static int sock_close(struct inode *inode, struct file *file);
114 static unsigned int sock_poll(struct file *file,
115 			      struct poll_table_struct *wait);
116 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
117 #ifdef CONFIG_COMPAT
118 static long compat_sock_ioctl(struct file *file,
119 			      unsigned int cmd, unsigned long arg);
120 #endif
121 static int sock_fasync(int fd, struct file *filp, int on);
122 static ssize_t sock_sendpage(struct file *file, struct page *page,
123 			     int offset, size_t size, loff_t *ppos, int more);
124 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
125 			        struct pipe_inode_info *pipe, size_t len,
126 				unsigned int flags);
127 
128 /*
129  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
130  *	in the operation structures but are done directly via the socketcall() multiplexor.
131  */
132 
133 static const struct file_operations socket_file_ops = {
134 	.owner =	THIS_MODULE,
135 	.llseek =	no_llseek,
136 	.aio_read =	sock_aio_read,
137 	.aio_write =	sock_aio_write,
138 	.poll =		sock_poll,
139 	.unlocked_ioctl = sock_ioctl,
140 #ifdef CONFIG_COMPAT
141 	.compat_ioctl = compat_sock_ioctl,
142 #endif
143 	.mmap =		sock_mmap,
144 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
145 	.release =	sock_close,
146 	.fasync =	sock_fasync,
147 	.sendpage =	sock_sendpage,
148 	.splice_write = generic_splice_sendpage,
149 	.splice_read =	sock_splice_read,
150 };
151 
152 /*
153  *	The protocol list. Each protocol is registered in here.
154  */
155 
156 static DEFINE_SPINLOCK(net_family_lock);
157 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
158 
159 /*
160  *	Statistics counters of the socket lists
161  */
162 
163 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
172 					   16 for IP, 16 for IPX,
173 					   24 for IPv6,
174 					   about 80 for AX.25
175 					   must be at least one bigger than
176 					   the AF_UNIX size (see net/unix/af_unix.c
177 					   :unix_mkname()).
178 					 */
179 
180 /**
181  *	move_addr_to_kernel	-	copy a socket address into kernel space
182  *	@uaddr: Address in user space
183  *	@kaddr: Address in kernel space
184  *	@ulen: Length in user space
185  *
186  *	The address is copied into kernel space. If the provided address is
187  *	too long an error code of -EINVAL is returned. If the copy gives
188  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
189  */
190 
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
192 {
193 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 		return -EINVAL;
195 	if (ulen == 0)
196 		return 0;
197 	if (copy_from_user(kaddr, uaddr, ulen))
198 		return -EFAULT;
199 	return audit_sockaddr(ulen, kaddr);
200 }
201 
202 /**
203  *	move_addr_to_user	-	copy an address to user space
204  *	@kaddr: kernel space address
205  *	@klen: length of address in kernel
206  *	@uaddr: user space address
207  *	@ulen: pointer to user length field
208  *
209  *	The value pointed to by ulen on entry is the buffer length available.
210  *	This is overwritten with the buffer space used. -EINVAL is returned
211  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
212  *	is returned if either the buffer or the length field are not
213  *	accessible.
214  *	After copying the data up to the limit the user specifies, the true
215  *	length of the data is written over the length limit the user
216  *	specified. Zero is returned for a success.
217  */
218 
219 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
220 		      int __user *ulen)
221 {
222 	int err;
223 	int len;
224 
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0 || len > sizeof(struct sockaddr_storage))
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 
251 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 	if (!ei)
253 		return NULL;
254 	init_waitqueue_head(&ei->socket.wait);
255 
256 	ei->socket.fasync_list = NULL;
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	kmem_cache_free(sock_inode_cachep,
269 			container_of(inode, struct socket_alloc, vfs_inode));
270 }
271 
272 static void init_once(void *foo)
273 {
274 	struct socket_alloc *ei = (struct socket_alloc *)foo;
275 
276 	inode_init_once(&ei->vfs_inode);
277 }
278 
279 static int init_inodecache(void)
280 {
281 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
282 					      sizeof(struct socket_alloc),
283 					      0,
284 					      (SLAB_HWCACHE_ALIGN |
285 					       SLAB_RECLAIM_ACCOUNT |
286 					       SLAB_MEM_SPREAD),
287 					      init_once);
288 	if (sock_inode_cachep == NULL)
289 		return -ENOMEM;
290 	return 0;
291 }
292 
293 static const struct super_operations sockfs_ops = {
294 	.alloc_inode =	sock_alloc_inode,
295 	.destroy_inode =sock_destroy_inode,
296 	.statfs =	simple_statfs,
297 };
298 
299 static int sockfs_get_sb(struct file_system_type *fs_type,
300 			 int flags, const char *dev_name, void *data,
301 			 struct vfsmount *mnt)
302 {
303 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
304 			     mnt);
305 }
306 
307 static struct vfsmount *sock_mnt __read_mostly;
308 
309 static struct file_system_type sock_fs_type = {
310 	.name =		"sockfs",
311 	.get_sb =	sockfs_get_sb,
312 	.kill_sb =	kill_anon_super,
313 };
314 
315 /*
316  * sockfs_dname() is called from d_path().
317  */
318 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
319 {
320 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
321 				dentry->d_inode->i_ino);
322 }
323 
324 static const struct dentry_operations sockfs_dentry_operations = {
325 	.d_dname  = sockfs_dname,
326 };
327 
328 /*
329  *	Obtains the first available file descriptor and sets it up for use.
330  *
331  *	These functions create file structures and maps them to fd space
332  *	of the current process. On success it returns file descriptor
333  *	and file struct implicitly stored in sock->file.
334  *	Note that another thread may close file descriptor before we return
335  *	from this function. We use the fact that now we do not refer
336  *	to socket after mapping. If one day we will need it, this
337  *	function will increment ref. count on file by 1.
338  *
339  *	In any case returned fd MAY BE not valid!
340  *	This race condition is unavoidable
341  *	with shared fd spaces, we cannot solve it inside kernel,
342  *	but we take care of internal coherence yet.
343  */
344 
345 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
346 {
347 	struct qstr name = { .name = "" };
348 	struct path path;
349 	struct file *file;
350 	int fd;
351 
352 	fd = get_unused_fd_flags(flags);
353 	if (unlikely(fd < 0))
354 		return fd;
355 
356 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
357 	if (unlikely(!path.dentry)) {
358 		put_unused_fd(fd);
359 		return -ENOMEM;
360 	}
361 	path.mnt = mntget(sock_mnt);
362 
363 	path.dentry->d_op = &sockfs_dentry_operations;
364 	d_instantiate(path.dentry, SOCK_INODE(sock));
365 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
366 
367 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
368 		  &socket_file_ops);
369 	if (unlikely(!file)) {
370 		/* drop dentry, keep inode */
371 		atomic_inc(&path.dentry->d_inode->i_count);
372 		path_put(&path);
373 		put_unused_fd(fd);
374 		return -ENFILE;
375 	}
376 
377 	sock->file = file;
378 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
379 	file->f_pos = 0;
380 	file->private_data = sock;
381 
382 	*f = file;
383 	return fd;
384 }
385 
386 int sock_map_fd(struct socket *sock, int flags)
387 {
388 	struct file *newfile;
389 	int fd = sock_alloc_file(sock, &newfile, flags);
390 
391 	if (likely(fd >= 0))
392 		fd_install(fd, newfile);
393 
394 	return fd;
395 }
396 
397 static struct socket *sock_from_file(struct file *file, int *err)
398 {
399 	if (file->f_op == &socket_file_ops)
400 		return file->private_data;	/* set in sock_map_fd */
401 
402 	*err = -ENOTSOCK;
403 	return NULL;
404 }
405 
406 /**
407  *	sockfd_lookup	- 	Go from a file number to its socket slot
408  *	@fd: file handle
409  *	@err: pointer to an error code return
410  *
411  *	The file handle passed in is locked and the socket it is bound
412  *	too is returned. If an error occurs the err pointer is overwritten
413  *	with a negative errno code and NULL is returned. The function checks
414  *	for both invalid handles and passing a handle which is not a socket.
415  *
416  *	On a success the socket object pointer is returned.
417  */
418 
419 struct socket *sockfd_lookup(int fd, int *err)
420 {
421 	struct file *file;
422 	struct socket *sock;
423 
424 	file = fget(fd);
425 	if (!file) {
426 		*err = -EBADF;
427 		return NULL;
428 	}
429 
430 	sock = sock_from_file(file, err);
431 	if (!sock)
432 		fput(file);
433 	return sock;
434 }
435 
436 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
437 {
438 	struct file *file;
439 	struct socket *sock;
440 
441 	*err = -EBADF;
442 	file = fget_light(fd, fput_needed);
443 	if (file) {
444 		sock = sock_from_file(file, err);
445 		if (sock)
446 			return sock;
447 		fput_light(file, *fput_needed);
448 	}
449 	return NULL;
450 }
451 
452 /**
453  *	sock_alloc	-	allocate a socket
454  *
455  *	Allocate a new inode and socket object. The two are bound together
456  *	and initialised. The socket is then returned. If we are out of inodes
457  *	NULL is returned.
458  */
459 
460 static struct socket *sock_alloc(void)
461 {
462 	struct inode *inode;
463 	struct socket *sock;
464 
465 	inode = new_inode(sock_mnt->mnt_sb);
466 	if (!inode)
467 		return NULL;
468 
469 	sock = SOCKET_I(inode);
470 
471 	kmemcheck_annotate_bitfield(sock, type);
472 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
473 	inode->i_uid = current_fsuid();
474 	inode->i_gid = current_fsgid();
475 
476 	percpu_add(sockets_in_use, 1);
477 	return sock;
478 }
479 
480 /*
481  *	In theory you can't get an open on this inode, but /proc provides
482  *	a back door. Remember to keep it shut otherwise you'll let the
483  *	creepy crawlies in.
484  */
485 
486 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
487 {
488 	return -ENXIO;
489 }
490 
491 const struct file_operations bad_sock_fops = {
492 	.owner = THIS_MODULE,
493 	.open = sock_no_open,
494 };
495 
496 /**
497  *	sock_release	-	close a socket
498  *	@sock: socket to close
499  *
500  *	The socket is released from the protocol stack if it has a release
501  *	callback, and the inode is then released if the socket is bound to
502  *	an inode not a file.
503  */
504 
505 void sock_release(struct socket *sock)
506 {
507 	if (sock->ops) {
508 		struct module *owner = sock->ops->owner;
509 
510 		sock->ops->release(sock);
511 		sock->ops = NULL;
512 		module_put(owner);
513 	}
514 
515 	if (sock->fasync_list)
516 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
517 
518 	percpu_sub(sockets_in_use, 1);
519 	if (!sock->file) {
520 		iput(SOCK_INODE(sock));
521 		return;
522 	}
523 	sock->file = NULL;
524 }
525 
526 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
527 		      union skb_shared_tx *shtx)
528 {
529 	shtx->flags = 0;
530 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
531 		shtx->hardware = 1;
532 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
533 		shtx->software = 1;
534 	return 0;
535 }
536 EXPORT_SYMBOL(sock_tx_timestamp);
537 
538 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
539 				 struct msghdr *msg, size_t size)
540 {
541 	struct sock_iocb *si = kiocb_to_siocb(iocb);
542 	int err;
543 
544 	si->sock = sock;
545 	si->scm = NULL;
546 	si->msg = msg;
547 	si->size = size;
548 
549 	err = security_socket_sendmsg(sock, msg, size);
550 	if (err)
551 		return err;
552 
553 	return sock->ops->sendmsg(iocb, sock, msg, size);
554 }
555 
556 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
557 {
558 	struct kiocb iocb;
559 	struct sock_iocb siocb;
560 	int ret;
561 
562 	init_sync_kiocb(&iocb, NULL);
563 	iocb.private = &siocb;
564 	ret = __sock_sendmsg(&iocb, sock, msg, size);
565 	if (-EIOCBQUEUED == ret)
566 		ret = wait_on_sync_kiocb(&iocb);
567 	return ret;
568 }
569 
570 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
571 		   struct kvec *vec, size_t num, size_t size)
572 {
573 	mm_segment_t oldfs = get_fs();
574 	int result;
575 
576 	set_fs(KERNEL_DS);
577 	/*
578 	 * the following is safe, since for compiler definitions of kvec and
579 	 * iovec are identical, yielding the same in-core layout and alignment
580 	 */
581 	msg->msg_iov = (struct iovec *)vec;
582 	msg->msg_iovlen = num;
583 	result = sock_sendmsg(sock, msg, size);
584 	set_fs(oldfs);
585 	return result;
586 }
587 
588 static int ktime2ts(ktime_t kt, struct timespec *ts)
589 {
590 	if (kt.tv64) {
591 		*ts = ktime_to_timespec(kt);
592 		return 1;
593 	} else {
594 		return 0;
595 	}
596 }
597 
598 /*
599  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
600  */
601 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
602 	struct sk_buff *skb)
603 {
604 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
605 	struct timespec ts[3];
606 	int empty = 1;
607 	struct skb_shared_hwtstamps *shhwtstamps =
608 		skb_hwtstamps(skb);
609 
610 	/* Race occurred between timestamp enabling and packet
611 	   receiving.  Fill in the current time for now. */
612 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
613 		__net_timestamp(skb);
614 
615 	if (need_software_tstamp) {
616 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
617 			struct timeval tv;
618 			skb_get_timestamp(skb, &tv);
619 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
620 				 sizeof(tv), &tv);
621 		} else {
622 			struct timespec ts;
623 			skb_get_timestampns(skb, &ts);
624 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
625 				 sizeof(ts), &ts);
626 		}
627 	}
628 
629 
630 	memset(ts, 0, sizeof(ts));
631 	if (skb->tstamp.tv64 &&
632 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
633 		skb_get_timestampns(skb, ts + 0);
634 		empty = 0;
635 	}
636 	if (shhwtstamps) {
637 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
638 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
639 			empty = 0;
640 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
641 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
642 			empty = 0;
643 	}
644 	if (!empty)
645 		put_cmsg(msg, SOL_SOCKET,
646 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
647 }
648 
649 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
650 
651 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
652 {
653 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
654 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
655 			sizeof(__u32), &skb->dropcount);
656 }
657 
658 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
659 	struct sk_buff *skb)
660 {
661 	sock_recv_timestamp(msg, sk, skb);
662 	sock_recv_drops(msg, sk, skb);
663 }
664 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
665 
666 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
667 				       struct msghdr *msg, size_t size, int flags)
668 {
669 	struct sock_iocb *si = kiocb_to_siocb(iocb);
670 
671 	si->sock = sock;
672 	si->scm = NULL;
673 	si->msg = msg;
674 	si->size = size;
675 	si->flags = flags;
676 
677 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
678 }
679 
680 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
681 				 struct msghdr *msg, size_t size, int flags)
682 {
683 	int err = security_socket_recvmsg(sock, msg, size, flags);
684 
685 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
686 }
687 
688 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
689 		 size_t size, int flags)
690 {
691 	struct kiocb iocb;
692 	struct sock_iocb siocb;
693 	int ret;
694 
695 	init_sync_kiocb(&iocb, NULL);
696 	iocb.private = &siocb;
697 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
698 	if (-EIOCBQUEUED == ret)
699 		ret = wait_on_sync_kiocb(&iocb);
700 	return ret;
701 }
702 
703 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
704 			      size_t size, int flags)
705 {
706 	struct kiocb iocb;
707 	struct sock_iocb siocb;
708 	int ret;
709 
710 	init_sync_kiocb(&iocb, NULL);
711 	iocb.private = &siocb;
712 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
713 	if (-EIOCBQUEUED == ret)
714 		ret = wait_on_sync_kiocb(&iocb);
715 	return ret;
716 }
717 
718 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
719 		   struct kvec *vec, size_t num, size_t size, int flags)
720 {
721 	mm_segment_t oldfs = get_fs();
722 	int result;
723 
724 	set_fs(KERNEL_DS);
725 	/*
726 	 * the following is safe, since for compiler definitions of kvec and
727 	 * iovec are identical, yielding the same in-core layout and alignment
728 	 */
729 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
730 	result = sock_recvmsg(sock, msg, size, flags);
731 	set_fs(oldfs);
732 	return result;
733 }
734 
735 static void sock_aio_dtor(struct kiocb *iocb)
736 {
737 	kfree(iocb->private);
738 }
739 
740 static ssize_t sock_sendpage(struct file *file, struct page *page,
741 			     int offset, size_t size, loff_t *ppos, int more)
742 {
743 	struct socket *sock;
744 	int flags;
745 
746 	sock = file->private_data;
747 
748 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
749 	if (more)
750 		flags |= MSG_MORE;
751 
752 	return kernel_sendpage(sock, page, offset, size, flags);
753 }
754 
755 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
756 			        struct pipe_inode_info *pipe, size_t len,
757 				unsigned int flags)
758 {
759 	struct socket *sock = file->private_data;
760 
761 	if (unlikely(!sock->ops->splice_read))
762 		return -EINVAL;
763 
764 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
765 }
766 
767 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
768 					 struct sock_iocb *siocb)
769 {
770 	if (!is_sync_kiocb(iocb)) {
771 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
772 		if (!siocb)
773 			return NULL;
774 		iocb->ki_dtor = sock_aio_dtor;
775 	}
776 
777 	siocb->kiocb = iocb;
778 	iocb->private = siocb;
779 	return siocb;
780 }
781 
782 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
783 		struct file *file, const struct iovec *iov,
784 		unsigned long nr_segs)
785 {
786 	struct socket *sock = file->private_data;
787 	size_t size = 0;
788 	int i;
789 
790 	for (i = 0; i < nr_segs; i++)
791 		size += iov[i].iov_len;
792 
793 	msg->msg_name = NULL;
794 	msg->msg_namelen = 0;
795 	msg->msg_control = NULL;
796 	msg->msg_controllen = 0;
797 	msg->msg_iov = (struct iovec *)iov;
798 	msg->msg_iovlen = nr_segs;
799 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
800 
801 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
802 }
803 
804 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
805 				unsigned long nr_segs, loff_t pos)
806 {
807 	struct sock_iocb siocb, *x;
808 
809 	if (pos != 0)
810 		return -ESPIPE;
811 
812 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
813 		return 0;
814 
815 
816 	x = alloc_sock_iocb(iocb, &siocb);
817 	if (!x)
818 		return -ENOMEM;
819 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
820 }
821 
822 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
823 			struct file *file, const struct iovec *iov,
824 			unsigned long nr_segs)
825 {
826 	struct socket *sock = file->private_data;
827 	size_t size = 0;
828 	int i;
829 
830 	for (i = 0; i < nr_segs; i++)
831 		size += iov[i].iov_len;
832 
833 	msg->msg_name = NULL;
834 	msg->msg_namelen = 0;
835 	msg->msg_control = NULL;
836 	msg->msg_controllen = 0;
837 	msg->msg_iov = (struct iovec *)iov;
838 	msg->msg_iovlen = nr_segs;
839 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
840 	if (sock->type == SOCK_SEQPACKET)
841 		msg->msg_flags |= MSG_EOR;
842 
843 	return __sock_sendmsg(iocb, sock, msg, size);
844 }
845 
846 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
847 			  unsigned long nr_segs, loff_t pos)
848 {
849 	struct sock_iocb siocb, *x;
850 
851 	if (pos != 0)
852 		return -ESPIPE;
853 
854 	x = alloc_sock_iocb(iocb, &siocb);
855 	if (!x)
856 		return -ENOMEM;
857 
858 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
859 }
860 
861 /*
862  * Atomic setting of ioctl hooks to avoid race
863  * with module unload.
864  */
865 
866 static DEFINE_MUTEX(br_ioctl_mutex);
867 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
868 
869 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
870 {
871 	mutex_lock(&br_ioctl_mutex);
872 	br_ioctl_hook = hook;
873 	mutex_unlock(&br_ioctl_mutex);
874 }
875 
876 EXPORT_SYMBOL(brioctl_set);
877 
878 static DEFINE_MUTEX(vlan_ioctl_mutex);
879 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
880 
881 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
882 {
883 	mutex_lock(&vlan_ioctl_mutex);
884 	vlan_ioctl_hook = hook;
885 	mutex_unlock(&vlan_ioctl_mutex);
886 }
887 
888 EXPORT_SYMBOL(vlan_ioctl_set);
889 
890 static DEFINE_MUTEX(dlci_ioctl_mutex);
891 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
892 
893 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
894 {
895 	mutex_lock(&dlci_ioctl_mutex);
896 	dlci_ioctl_hook = hook;
897 	mutex_unlock(&dlci_ioctl_mutex);
898 }
899 
900 EXPORT_SYMBOL(dlci_ioctl_set);
901 
902 static long sock_do_ioctl(struct net *net, struct socket *sock,
903 				 unsigned int cmd, unsigned long arg)
904 {
905 	int err;
906 	void __user *argp = (void __user *)arg;
907 
908 	err = sock->ops->ioctl(sock, cmd, arg);
909 
910 	/*
911 	 * If this ioctl is unknown try to hand it down
912 	 * to the NIC driver.
913 	 */
914 	if (err == -ENOIOCTLCMD)
915 		err = dev_ioctl(net, cmd, argp);
916 
917 	return err;
918 }
919 
920 /*
921  *	With an ioctl, arg may well be a user mode pointer, but we don't know
922  *	what to do with it - that's up to the protocol still.
923  */
924 
925 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
926 {
927 	struct socket *sock;
928 	struct sock *sk;
929 	void __user *argp = (void __user *)arg;
930 	int pid, err;
931 	struct net *net;
932 
933 	sock = file->private_data;
934 	sk = sock->sk;
935 	net = sock_net(sk);
936 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
937 		err = dev_ioctl(net, cmd, argp);
938 	} else
939 #ifdef CONFIG_WEXT_CORE
940 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
941 		err = dev_ioctl(net, cmd, argp);
942 	} else
943 #endif
944 		switch (cmd) {
945 		case FIOSETOWN:
946 		case SIOCSPGRP:
947 			err = -EFAULT;
948 			if (get_user(pid, (int __user *)argp))
949 				break;
950 			err = f_setown(sock->file, pid, 1);
951 			break;
952 		case FIOGETOWN:
953 		case SIOCGPGRP:
954 			err = put_user(f_getown(sock->file),
955 				       (int __user *)argp);
956 			break;
957 		case SIOCGIFBR:
958 		case SIOCSIFBR:
959 		case SIOCBRADDBR:
960 		case SIOCBRDELBR:
961 			err = -ENOPKG;
962 			if (!br_ioctl_hook)
963 				request_module("bridge");
964 
965 			mutex_lock(&br_ioctl_mutex);
966 			if (br_ioctl_hook)
967 				err = br_ioctl_hook(net, cmd, argp);
968 			mutex_unlock(&br_ioctl_mutex);
969 			break;
970 		case SIOCGIFVLAN:
971 		case SIOCSIFVLAN:
972 			err = -ENOPKG;
973 			if (!vlan_ioctl_hook)
974 				request_module("8021q");
975 
976 			mutex_lock(&vlan_ioctl_mutex);
977 			if (vlan_ioctl_hook)
978 				err = vlan_ioctl_hook(net, argp);
979 			mutex_unlock(&vlan_ioctl_mutex);
980 			break;
981 		case SIOCADDDLCI:
982 		case SIOCDELDLCI:
983 			err = -ENOPKG;
984 			if (!dlci_ioctl_hook)
985 				request_module("dlci");
986 
987 			mutex_lock(&dlci_ioctl_mutex);
988 			if (dlci_ioctl_hook)
989 				err = dlci_ioctl_hook(cmd, argp);
990 			mutex_unlock(&dlci_ioctl_mutex);
991 			break;
992 		default:
993 			err = sock_do_ioctl(net, sock, cmd, arg);
994 			break;
995 		}
996 	return err;
997 }
998 
999 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1000 {
1001 	int err;
1002 	struct socket *sock = NULL;
1003 
1004 	err = security_socket_create(family, type, protocol, 1);
1005 	if (err)
1006 		goto out;
1007 
1008 	sock = sock_alloc();
1009 	if (!sock) {
1010 		err = -ENOMEM;
1011 		goto out;
1012 	}
1013 
1014 	sock->type = type;
1015 	err = security_socket_post_create(sock, family, type, protocol, 1);
1016 	if (err)
1017 		goto out_release;
1018 
1019 out:
1020 	*res = sock;
1021 	return err;
1022 out_release:
1023 	sock_release(sock);
1024 	sock = NULL;
1025 	goto out;
1026 }
1027 
1028 /* No kernel lock held - perfect */
1029 static unsigned int sock_poll(struct file *file, poll_table *wait)
1030 {
1031 	struct socket *sock;
1032 
1033 	/*
1034 	 *      We can't return errors to poll, so it's either yes or no.
1035 	 */
1036 	sock = file->private_data;
1037 	return sock->ops->poll(file, sock, wait);
1038 }
1039 
1040 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1041 {
1042 	struct socket *sock = file->private_data;
1043 
1044 	return sock->ops->mmap(file, sock, vma);
1045 }
1046 
1047 static int sock_close(struct inode *inode, struct file *filp)
1048 {
1049 	/*
1050 	 *      It was possible the inode is NULL we were
1051 	 *      closing an unfinished socket.
1052 	 */
1053 
1054 	if (!inode) {
1055 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1056 		return 0;
1057 	}
1058 	sock_release(SOCKET_I(inode));
1059 	return 0;
1060 }
1061 
1062 /*
1063  *	Update the socket async list
1064  *
1065  *	Fasync_list locking strategy.
1066  *
1067  *	1. fasync_list is modified only under process context socket lock
1068  *	   i.e. under semaphore.
1069  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1070  *	   or under socket lock.
1071  *	3. fasync_list can be used from softirq context, so that
1072  *	   modification under socket lock have to be enhanced with
1073  *	   write_lock_bh(&sk->sk_callback_lock).
1074  *							--ANK (990710)
1075  */
1076 
1077 static int sock_fasync(int fd, struct file *filp, int on)
1078 {
1079 	struct fasync_struct *fa, *fna = NULL, **prev;
1080 	struct socket *sock;
1081 	struct sock *sk;
1082 
1083 	if (on) {
1084 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1085 		if (fna == NULL)
1086 			return -ENOMEM;
1087 	}
1088 
1089 	sock = filp->private_data;
1090 
1091 	sk = sock->sk;
1092 	if (sk == NULL) {
1093 		kfree(fna);
1094 		return -EINVAL;
1095 	}
1096 
1097 	lock_sock(sk);
1098 
1099 	spin_lock(&filp->f_lock);
1100 	if (on)
1101 		filp->f_flags |= FASYNC;
1102 	else
1103 		filp->f_flags &= ~FASYNC;
1104 	spin_unlock(&filp->f_lock);
1105 
1106 	prev = &(sock->fasync_list);
1107 
1108 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1109 		if (fa->fa_file == filp)
1110 			break;
1111 
1112 	if (on) {
1113 		if (fa != NULL) {
1114 			write_lock_bh(&sk->sk_callback_lock);
1115 			fa->fa_fd = fd;
1116 			write_unlock_bh(&sk->sk_callback_lock);
1117 
1118 			kfree(fna);
1119 			goto out;
1120 		}
1121 		fna->fa_file = filp;
1122 		fna->fa_fd = fd;
1123 		fna->magic = FASYNC_MAGIC;
1124 		fna->fa_next = sock->fasync_list;
1125 		write_lock_bh(&sk->sk_callback_lock);
1126 		sock->fasync_list = fna;
1127 		sock_set_flag(sk, SOCK_FASYNC);
1128 		write_unlock_bh(&sk->sk_callback_lock);
1129 	} else {
1130 		if (fa != NULL) {
1131 			write_lock_bh(&sk->sk_callback_lock);
1132 			*prev = fa->fa_next;
1133 			if (!sock->fasync_list)
1134 				sock_reset_flag(sk, SOCK_FASYNC);
1135 			write_unlock_bh(&sk->sk_callback_lock);
1136 			kfree(fa);
1137 		}
1138 	}
1139 
1140 out:
1141 	release_sock(sock->sk);
1142 	return 0;
1143 }
1144 
1145 /* This function may be called only under socket lock or callback_lock */
1146 
1147 int sock_wake_async(struct socket *sock, int how, int band)
1148 {
1149 	if (!sock || !sock->fasync_list)
1150 		return -1;
1151 	switch (how) {
1152 	case SOCK_WAKE_WAITD:
1153 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1154 			break;
1155 		goto call_kill;
1156 	case SOCK_WAKE_SPACE:
1157 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1158 			break;
1159 		/* fall through */
1160 	case SOCK_WAKE_IO:
1161 call_kill:
1162 		__kill_fasync(sock->fasync_list, SIGIO, band);
1163 		break;
1164 	case SOCK_WAKE_URG:
1165 		__kill_fasync(sock->fasync_list, SIGURG, band);
1166 	}
1167 	return 0;
1168 }
1169 
1170 static int __sock_create(struct net *net, int family, int type, int protocol,
1171 			 struct socket **res, int kern)
1172 {
1173 	int err;
1174 	struct socket *sock;
1175 	const struct net_proto_family *pf;
1176 
1177 	/*
1178 	 *      Check protocol is in range
1179 	 */
1180 	if (family < 0 || family >= NPROTO)
1181 		return -EAFNOSUPPORT;
1182 	if (type < 0 || type >= SOCK_MAX)
1183 		return -EINVAL;
1184 
1185 	/* Compatibility.
1186 
1187 	   This uglymoron is moved from INET layer to here to avoid
1188 	   deadlock in module load.
1189 	 */
1190 	if (family == PF_INET && type == SOCK_PACKET) {
1191 		static int warned;
1192 		if (!warned) {
1193 			warned = 1;
1194 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1195 			       current->comm);
1196 		}
1197 		family = PF_PACKET;
1198 	}
1199 
1200 	err = security_socket_create(family, type, protocol, kern);
1201 	if (err)
1202 		return err;
1203 
1204 	/*
1205 	 *	Allocate the socket and allow the family to set things up. if
1206 	 *	the protocol is 0, the family is instructed to select an appropriate
1207 	 *	default.
1208 	 */
1209 	sock = sock_alloc();
1210 	if (!sock) {
1211 		if (net_ratelimit())
1212 			printk(KERN_WARNING "socket: no more sockets\n");
1213 		return -ENFILE;	/* Not exactly a match, but its the
1214 				   closest posix thing */
1215 	}
1216 
1217 	sock->type = type;
1218 
1219 #ifdef CONFIG_MODULES
1220 	/* Attempt to load a protocol module if the find failed.
1221 	 *
1222 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1223 	 * requested real, full-featured networking support upon configuration.
1224 	 * Otherwise module support will break!
1225 	 */
1226 	if (net_families[family] == NULL)
1227 		request_module("net-pf-%d", family);
1228 #endif
1229 
1230 	rcu_read_lock();
1231 	pf = rcu_dereference(net_families[family]);
1232 	err = -EAFNOSUPPORT;
1233 	if (!pf)
1234 		goto out_release;
1235 
1236 	/*
1237 	 * We will call the ->create function, that possibly is in a loadable
1238 	 * module, so we have to bump that loadable module refcnt first.
1239 	 */
1240 	if (!try_module_get(pf->owner))
1241 		goto out_release;
1242 
1243 	/* Now protected by module ref count */
1244 	rcu_read_unlock();
1245 
1246 	err = pf->create(net, sock, protocol, kern);
1247 	if (err < 0)
1248 		goto out_module_put;
1249 
1250 	/*
1251 	 * Now to bump the refcnt of the [loadable] module that owns this
1252 	 * socket at sock_release time we decrement its refcnt.
1253 	 */
1254 	if (!try_module_get(sock->ops->owner))
1255 		goto out_module_busy;
1256 
1257 	/*
1258 	 * Now that we're done with the ->create function, the [loadable]
1259 	 * module can have its refcnt decremented
1260 	 */
1261 	module_put(pf->owner);
1262 	err = security_socket_post_create(sock, family, type, protocol, kern);
1263 	if (err)
1264 		goto out_sock_release;
1265 	*res = sock;
1266 
1267 	return 0;
1268 
1269 out_module_busy:
1270 	err = -EAFNOSUPPORT;
1271 out_module_put:
1272 	sock->ops = NULL;
1273 	module_put(pf->owner);
1274 out_sock_release:
1275 	sock_release(sock);
1276 	return err;
1277 
1278 out_release:
1279 	rcu_read_unlock();
1280 	goto out_sock_release;
1281 }
1282 
1283 int sock_create(int family, int type, int protocol, struct socket **res)
1284 {
1285 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1286 }
1287 
1288 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1289 {
1290 	return __sock_create(&init_net, family, type, protocol, res, 1);
1291 }
1292 
1293 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1294 {
1295 	int retval;
1296 	struct socket *sock;
1297 	int flags;
1298 
1299 	/* Check the SOCK_* constants for consistency.  */
1300 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1301 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1302 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1303 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1304 
1305 	flags = type & ~SOCK_TYPE_MASK;
1306 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1307 		return -EINVAL;
1308 	type &= SOCK_TYPE_MASK;
1309 
1310 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1311 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1312 
1313 	retval = sock_create(family, type, protocol, &sock);
1314 	if (retval < 0)
1315 		goto out;
1316 
1317 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1318 	if (retval < 0)
1319 		goto out_release;
1320 
1321 out:
1322 	/* It may be already another descriptor 8) Not kernel problem. */
1323 	return retval;
1324 
1325 out_release:
1326 	sock_release(sock);
1327 	return retval;
1328 }
1329 
1330 /*
1331  *	Create a pair of connected sockets.
1332  */
1333 
1334 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1335 		int __user *, usockvec)
1336 {
1337 	struct socket *sock1, *sock2;
1338 	int fd1, fd2, err;
1339 	struct file *newfile1, *newfile2;
1340 	int flags;
1341 
1342 	flags = type & ~SOCK_TYPE_MASK;
1343 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1344 		return -EINVAL;
1345 	type &= SOCK_TYPE_MASK;
1346 
1347 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1348 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1349 
1350 	/*
1351 	 * Obtain the first socket and check if the underlying protocol
1352 	 * supports the socketpair call.
1353 	 */
1354 
1355 	err = sock_create(family, type, protocol, &sock1);
1356 	if (err < 0)
1357 		goto out;
1358 
1359 	err = sock_create(family, type, protocol, &sock2);
1360 	if (err < 0)
1361 		goto out_release_1;
1362 
1363 	err = sock1->ops->socketpair(sock1, sock2);
1364 	if (err < 0)
1365 		goto out_release_both;
1366 
1367 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1368 	if (unlikely(fd1 < 0)) {
1369 		err = fd1;
1370 		goto out_release_both;
1371 	}
1372 
1373 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1374 	if (unlikely(fd2 < 0)) {
1375 		err = fd2;
1376 		fput(newfile1);
1377 		put_unused_fd(fd1);
1378 		sock_release(sock2);
1379 		goto out;
1380 	}
1381 
1382 	audit_fd_pair(fd1, fd2);
1383 	fd_install(fd1, newfile1);
1384 	fd_install(fd2, newfile2);
1385 	/* fd1 and fd2 may be already another descriptors.
1386 	 * Not kernel problem.
1387 	 */
1388 
1389 	err = put_user(fd1, &usockvec[0]);
1390 	if (!err)
1391 		err = put_user(fd2, &usockvec[1]);
1392 	if (!err)
1393 		return 0;
1394 
1395 	sys_close(fd2);
1396 	sys_close(fd1);
1397 	return err;
1398 
1399 out_release_both:
1400 	sock_release(sock2);
1401 out_release_1:
1402 	sock_release(sock1);
1403 out:
1404 	return err;
1405 }
1406 
1407 /*
1408  *	Bind a name to a socket. Nothing much to do here since it's
1409  *	the protocol's responsibility to handle the local address.
1410  *
1411  *	We move the socket address to kernel space before we call
1412  *	the protocol layer (having also checked the address is ok).
1413  */
1414 
1415 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1416 {
1417 	struct socket *sock;
1418 	struct sockaddr_storage address;
1419 	int err, fput_needed;
1420 
1421 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1422 	if (sock) {
1423 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1424 		if (err >= 0) {
1425 			err = security_socket_bind(sock,
1426 						   (struct sockaddr *)&address,
1427 						   addrlen);
1428 			if (!err)
1429 				err = sock->ops->bind(sock,
1430 						      (struct sockaddr *)
1431 						      &address, addrlen);
1432 		}
1433 		fput_light(sock->file, fput_needed);
1434 	}
1435 	return err;
1436 }
1437 
1438 /*
1439  *	Perform a listen. Basically, we allow the protocol to do anything
1440  *	necessary for a listen, and if that works, we mark the socket as
1441  *	ready for listening.
1442  */
1443 
1444 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1445 {
1446 	struct socket *sock;
1447 	int err, fput_needed;
1448 	int somaxconn;
1449 
1450 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1451 	if (sock) {
1452 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1453 		if ((unsigned)backlog > somaxconn)
1454 			backlog = somaxconn;
1455 
1456 		err = security_socket_listen(sock, backlog);
1457 		if (!err)
1458 			err = sock->ops->listen(sock, backlog);
1459 
1460 		fput_light(sock->file, fput_needed);
1461 	}
1462 	return err;
1463 }
1464 
1465 /*
1466  *	For accept, we attempt to create a new socket, set up the link
1467  *	with the client, wake up the client, then return the new
1468  *	connected fd. We collect the address of the connector in kernel
1469  *	space and move it to user at the very end. This is unclean because
1470  *	we open the socket then return an error.
1471  *
1472  *	1003.1g adds the ability to recvmsg() to query connection pending
1473  *	status to recvmsg. We need to add that support in a way thats
1474  *	clean when we restucture accept also.
1475  */
1476 
1477 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1478 		int __user *, upeer_addrlen, int, flags)
1479 {
1480 	struct socket *sock, *newsock;
1481 	struct file *newfile;
1482 	int err, len, newfd, fput_needed;
1483 	struct sockaddr_storage address;
1484 
1485 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1486 		return -EINVAL;
1487 
1488 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1489 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1490 
1491 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1492 	if (!sock)
1493 		goto out;
1494 
1495 	err = -ENFILE;
1496 	if (!(newsock = sock_alloc()))
1497 		goto out_put;
1498 
1499 	newsock->type = sock->type;
1500 	newsock->ops = sock->ops;
1501 
1502 	/*
1503 	 * We don't need try_module_get here, as the listening socket (sock)
1504 	 * has the protocol module (sock->ops->owner) held.
1505 	 */
1506 	__module_get(newsock->ops->owner);
1507 
1508 	newfd = sock_alloc_file(newsock, &newfile, flags);
1509 	if (unlikely(newfd < 0)) {
1510 		err = newfd;
1511 		sock_release(newsock);
1512 		goto out_put;
1513 	}
1514 
1515 	err = security_socket_accept(sock, newsock);
1516 	if (err)
1517 		goto out_fd;
1518 
1519 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1520 	if (err < 0)
1521 		goto out_fd;
1522 
1523 	if (upeer_sockaddr) {
1524 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1525 					  &len, 2) < 0) {
1526 			err = -ECONNABORTED;
1527 			goto out_fd;
1528 		}
1529 		err = move_addr_to_user((struct sockaddr *)&address,
1530 					len, upeer_sockaddr, upeer_addrlen);
1531 		if (err < 0)
1532 			goto out_fd;
1533 	}
1534 
1535 	/* File flags are not inherited via accept() unlike another OSes. */
1536 
1537 	fd_install(newfd, newfile);
1538 	err = newfd;
1539 
1540 out_put:
1541 	fput_light(sock->file, fput_needed);
1542 out:
1543 	return err;
1544 out_fd:
1545 	fput(newfile);
1546 	put_unused_fd(newfd);
1547 	goto out_put;
1548 }
1549 
1550 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1551 		int __user *, upeer_addrlen)
1552 {
1553 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1554 }
1555 
1556 /*
1557  *	Attempt to connect to a socket with the server address.  The address
1558  *	is in user space so we verify it is OK and move it to kernel space.
1559  *
1560  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1561  *	break bindings
1562  *
1563  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1564  *	other SEQPACKET protocols that take time to connect() as it doesn't
1565  *	include the -EINPROGRESS status for such sockets.
1566  */
1567 
1568 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1569 		int, addrlen)
1570 {
1571 	struct socket *sock;
1572 	struct sockaddr_storage address;
1573 	int err, fput_needed;
1574 
1575 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1576 	if (!sock)
1577 		goto out;
1578 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1579 	if (err < 0)
1580 		goto out_put;
1581 
1582 	err =
1583 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1584 	if (err)
1585 		goto out_put;
1586 
1587 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1588 				 sock->file->f_flags);
1589 out_put:
1590 	fput_light(sock->file, fput_needed);
1591 out:
1592 	return err;
1593 }
1594 
1595 /*
1596  *	Get the local address ('name') of a socket object. Move the obtained
1597  *	name to user space.
1598  */
1599 
1600 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1601 		int __user *, usockaddr_len)
1602 {
1603 	struct socket *sock;
1604 	struct sockaddr_storage address;
1605 	int len, err, fput_needed;
1606 
1607 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608 	if (!sock)
1609 		goto out;
1610 
1611 	err = security_socket_getsockname(sock);
1612 	if (err)
1613 		goto out_put;
1614 
1615 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1616 	if (err)
1617 		goto out_put;
1618 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1619 
1620 out_put:
1621 	fput_light(sock->file, fput_needed);
1622 out:
1623 	return err;
1624 }
1625 
1626 /*
1627  *	Get the remote address ('name') of a socket object. Move the obtained
1628  *	name to user space.
1629  */
1630 
1631 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1632 		int __user *, usockaddr_len)
1633 {
1634 	struct socket *sock;
1635 	struct sockaddr_storage address;
1636 	int len, err, fput_needed;
1637 
1638 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 	if (sock != NULL) {
1640 		err = security_socket_getpeername(sock);
1641 		if (err) {
1642 			fput_light(sock->file, fput_needed);
1643 			return err;
1644 		}
1645 
1646 		err =
1647 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1648 				       1);
1649 		if (!err)
1650 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1651 						usockaddr_len);
1652 		fput_light(sock->file, fput_needed);
1653 	}
1654 	return err;
1655 }
1656 
1657 /*
1658  *	Send a datagram to a given address. We move the address into kernel
1659  *	space and check the user space data area is readable before invoking
1660  *	the protocol.
1661  */
1662 
1663 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1664 		unsigned, flags, struct sockaddr __user *, addr,
1665 		int, addr_len)
1666 {
1667 	struct socket *sock;
1668 	struct sockaddr_storage address;
1669 	int err;
1670 	struct msghdr msg;
1671 	struct iovec iov;
1672 	int fput_needed;
1673 
1674 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1675 	if (!sock)
1676 		goto out;
1677 
1678 	iov.iov_base = buff;
1679 	iov.iov_len = len;
1680 	msg.msg_name = NULL;
1681 	msg.msg_iov = &iov;
1682 	msg.msg_iovlen = 1;
1683 	msg.msg_control = NULL;
1684 	msg.msg_controllen = 0;
1685 	msg.msg_namelen = 0;
1686 	if (addr) {
1687 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1688 		if (err < 0)
1689 			goto out_put;
1690 		msg.msg_name = (struct sockaddr *)&address;
1691 		msg.msg_namelen = addr_len;
1692 	}
1693 	if (sock->file->f_flags & O_NONBLOCK)
1694 		flags |= MSG_DONTWAIT;
1695 	msg.msg_flags = flags;
1696 	err = sock_sendmsg(sock, &msg, len);
1697 
1698 out_put:
1699 	fput_light(sock->file, fput_needed);
1700 out:
1701 	return err;
1702 }
1703 
1704 /*
1705  *	Send a datagram down a socket.
1706  */
1707 
1708 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1709 		unsigned, flags)
1710 {
1711 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1712 }
1713 
1714 /*
1715  *	Receive a frame from the socket and optionally record the address of the
1716  *	sender. We verify the buffers are writable and if needed move the
1717  *	sender address from kernel to user space.
1718  */
1719 
1720 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1721 		unsigned, flags, struct sockaddr __user *, addr,
1722 		int __user *, addr_len)
1723 {
1724 	struct socket *sock;
1725 	struct iovec iov;
1726 	struct msghdr msg;
1727 	struct sockaddr_storage address;
1728 	int err, err2;
1729 	int fput_needed;
1730 
1731 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732 	if (!sock)
1733 		goto out;
1734 
1735 	msg.msg_control = NULL;
1736 	msg.msg_controllen = 0;
1737 	msg.msg_iovlen = 1;
1738 	msg.msg_iov = &iov;
1739 	iov.iov_len = size;
1740 	iov.iov_base = ubuf;
1741 	msg.msg_name = (struct sockaddr *)&address;
1742 	msg.msg_namelen = sizeof(address);
1743 	if (sock->file->f_flags & O_NONBLOCK)
1744 		flags |= MSG_DONTWAIT;
1745 	err = sock_recvmsg(sock, &msg, size, flags);
1746 
1747 	if (err >= 0 && addr != NULL) {
1748 		err2 = move_addr_to_user((struct sockaddr *)&address,
1749 					 msg.msg_namelen, addr, addr_len);
1750 		if (err2 < 0)
1751 			err = err2;
1752 	}
1753 
1754 	fput_light(sock->file, fput_needed);
1755 out:
1756 	return err;
1757 }
1758 
1759 /*
1760  *	Receive a datagram from a socket.
1761  */
1762 
1763 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1764 			 unsigned flags)
1765 {
1766 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1767 }
1768 
1769 /*
1770  *	Set a socket option. Because we don't know the option lengths we have
1771  *	to pass the user mode parameter for the protocols to sort out.
1772  */
1773 
1774 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1775 		char __user *, optval, int, optlen)
1776 {
1777 	int err, fput_needed;
1778 	struct socket *sock;
1779 
1780 	if (optlen < 0)
1781 		return -EINVAL;
1782 
1783 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 	if (sock != NULL) {
1785 		err = security_socket_setsockopt(sock, level, optname);
1786 		if (err)
1787 			goto out_put;
1788 
1789 		if (level == SOL_SOCKET)
1790 			err =
1791 			    sock_setsockopt(sock, level, optname, optval,
1792 					    optlen);
1793 		else
1794 			err =
1795 			    sock->ops->setsockopt(sock, level, optname, optval,
1796 						  optlen);
1797 out_put:
1798 		fput_light(sock->file, fput_needed);
1799 	}
1800 	return err;
1801 }
1802 
1803 /*
1804  *	Get a socket option. Because we don't know the option lengths we have
1805  *	to pass a user mode parameter for the protocols to sort out.
1806  */
1807 
1808 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1809 		char __user *, optval, int __user *, optlen)
1810 {
1811 	int err, fput_needed;
1812 	struct socket *sock;
1813 
1814 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1815 	if (sock != NULL) {
1816 		err = security_socket_getsockopt(sock, level, optname);
1817 		if (err)
1818 			goto out_put;
1819 
1820 		if (level == SOL_SOCKET)
1821 			err =
1822 			    sock_getsockopt(sock, level, optname, optval,
1823 					    optlen);
1824 		else
1825 			err =
1826 			    sock->ops->getsockopt(sock, level, optname, optval,
1827 						  optlen);
1828 out_put:
1829 		fput_light(sock->file, fput_needed);
1830 	}
1831 	return err;
1832 }
1833 
1834 /*
1835  *	Shutdown a socket.
1836  */
1837 
1838 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1839 {
1840 	int err, fput_needed;
1841 	struct socket *sock;
1842 
1843 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1844 	if (sock != NULL) {
1845 		err = security_socket_shutdown(sock, how);
1846 		if (!err)
1847 			err = sock->ops->shutdown(sock, how);
1848 		fput_light(sock->file, fput_needed);
1849 	}
1850 	return err;
1851 }
1852 
1853 /* A couple of helpful macros for getting the address of the 32/64 bit
1854  * fields which are the same type (int / unsigned) on our platforms.
1855  */
1856 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1857 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1858 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1859 
1860 /*
1861  *	BSD sendmsg interface
1862  */
1863 
1864 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1865 {
1866 	struct compat_msghdr __user *msg_compat =
1867 	    (struct compat_msghdr __user *)msg;
1868 	struct socket *sock;
1869 	struct sockaddr_storage address;
1870 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1871 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1872 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1873 	/* 20 is size of ipv6_pktinfo */
1874 	unsigned char *ctl_buf = ctl;
1875 	struct msghdr msg_sys;
1876 	int err, ctl_len, iov_size, total_len;
1877 	int fput_needed;
1878 
1879 	err = -EFAULT;
1880 	if (MSG_CMSG_COMPAT & flags) {
1881 		if (get_compat_msghdr(&msg_sys, msg_compat))
1882 			return -EFAULT;
1883 	}
1884 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1885 		return -EFAULT;
1886 
1887 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1888 	if (!sock)
1889 		goto out;
1890 
1891 	/* do not move before msg_sys is valid */
1892 	err = -EMSGSIZE;
1893 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1894 		goto out_put;
1895 
1896 	/* Check whether to allocate the iovec area */
1897 	err = -ENOMEM;
1898 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1899 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1900 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1901 		if (!iov)
1902 			goto out_put;
1903 	}
1904 
1905 	/* This will also move the address data into kernel space */
1906 	if (MSG_CMSG_COMPAT & flags) {
1907 		err = verify_compat_iovec(&msg_sys, iov,
1908 					  (struct sockaddr *)&address,
1909 					  VERIFY_READ);
1910 	} else
1911 		err = verify_iovec(&msg_sys, iov,
1912 				   (struct sockaddr *)&address,
1913 				   VERIFY_READ);
1914 	if (err < 0)
1915 		goto out_freeiov;
1916 	total_len = err;
1917 
1918 	err = -ENOBUFS;
1919 
1920 	if (msg_sys.msg_controllen > INT_MAX)
1921 		goto out_freeiov;
1922 	ctl_len = msg_sys.msg_controllen;
1923 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1924 		err =
1925 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1926 						     sizeof(ctl));
1927 		if (err)
1928 			goto out_freeiov;
1929 		ctl_buf = msg_sys.msg_control;
1930 		ctl_len = msg_sys.msg_controllen;
1931 	} else if (ctl_len) {
1932 		if (ctl_len > sizeof(ctl)) {
1933 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1934 			if (ctl_buf == NULL)
1935 				goto out_freeiov;
1936 		}
1937 		err = -EFAULT;
1938 		/*
1939 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1940 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1941 		 * checking falls down on this.
1942 		 */
1943 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1944 				   ctl_len))
1945 			goto out_freectl;
1946 		msg_sys.msg_control = ctl_buf;
1947 	}
1948 	msg_sys.msg_flags = flags;
1949 
1950 	if (sock->file->f_flags & O_NONBLOCK)
1951 		msg_sys.msg_flags |= MSG_DONTWAIT;
1952 	err = sock_sendmsg(sock, &msg_sys, total_len);
1953 
1954 out_freectl:
1955 	if (ctl_buf != ctl)
1956 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1957 out_freeiov:
1958 	if (iov != iovstack)
1959 		sock_kfree_s(sock->sk, iov, iov_size);
1960 out_put:
1961 	fput_light(sock->file, fput_needed);
1962 out:
1963 	return err;
1964 }
1965 
1966 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1967 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1968 {
1969 	struct compat_msghdr __user *msg_compat =
1970 	    (struct compat_msghdr __user *)msg;
1971 	struct iovec iovstack[UIO_FASTIOV];
1972 	struct iovec *iov = iovstack;
1973 	unsigned long cmsg_ptr;
1974 	int err, iov_size, total_len, len;
1975 
1976 	/* kernel mode address */
1977 	struct sockaddr_storage addr;
1978 
1979 	/* user mode address pointers */
1980 	struct sockaddr __user *uaddr;
1981 	int __user *uaddr_len;
1982 
1983 	if (MSG_CMSG_COMPAT & flags) {
1984 		if (get_compat_msghdr(msg_sys, msg_compat))
1985 			return -EFAULT;
1986 	}
1987 	else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1988 		return -EFAULT;
1989 
1990 	err = -EMSGSIZE;
1991 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1992 		goto out;
1993 
1994 	/* Check whether to allocate the iovec area */
1995 	err = -ENOMEM;
1996 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1997 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1998 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1999 		if (!iov)
2000 			goto out;
2001 	}
2002 
2003 	/*
2004 	 *      Save the user-mode address (verify_iovec will change the
2005 	 *      kernel msghdr to use the kernel address space)
2006 	 */
2007 
2008 	uaddr = (__force void __user *)msg_sys->msg_name;
2009 	uaddr_len = COMPAT_NAMELEN(msg);
2010 	if (MSG_CMSG_COMPAT & flags) {
2011 		err = verify_compat_iovec(msg_sys, iov,
2012 					  (struct sockaddr *)&addr,
2013 					  VERIFY_WRITE);
2014 	} else
2015 		err = verify_iovec(msg_sys, iov,
2016 				   (struct sockaddr *)&addr,
2017 				   VERIFY_WRITE);
2018 	if (err < 0)
2019 		goto out_freeiov;
2020 	total_len = err;
2021 
2022 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2023 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2024 
2025 	if (sock->file->f_flags & O_NONBLOCK)
2026 		flags |= MSG_DONTWAIT;
2027 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2028 							  total_len, flags);
2029 	if (err < 0)
2030 		goto out_freeiov;
2031 	len = err;
2032 
2033 	if (uaddr != NULL) {
2034 		err = move_addr_to_user((struct sockaddr *)&addr,
2035 					msg_sys->msg_namelen, uaddr,
2036 					uaddr_len);
2037 		if (err < 0)
2038 			goto out_freeiov;
2039 	}
2040 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2041 			 COMPAT_FLAGS(msg));
2042 	if (err)
2043 		goto out_freeiov;
2044 	if (MSG_CMSG_COMPAT & flags)
2045 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2046 				 &msg_compat->msg_controllen);
2047 	else
2048 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2049 				 &msg->msg_controllen);
2050 	if (err)
2051 		goto out_freeiov;
2052 	err = len;
2053 
2054 out_freeiov:
2055 	if (iov != iovstack)
2056 		sock_kfree_s(sock->sk, iov, iov_size);
2057 out:
2058 	return err;
2059 }
2060 
2061 /*
2062  *	BSD recvmsg interface
2063  */
2064 
2065 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2066 		unsigned int, flags)
2067 {
2068 	int fput_needed, err;
2069 	struct msghdr msg_sys;
2070 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2071 
2072 	if (!sock)
2073 		goto out;
2074 
2075 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2076 
2077 	fput_light(sock->file, fput_needed);
2078 out:
2079 	return err;
2080 }
2081 
2082 /*
2083  *     Linux recvmmsg interface
2084  */
2085 
2086 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2087 		   unsigned int flags, struct timespec *timeout)
2088 {
2089 	int fput_needed, err, datagrams;
2090 	struct socket *sock;
2091 	struct mmsghdr __user *entry;
2092 	struct compat_mmsghdr __user *compat_entry;
2093 	struct msghdr msg_sys;
2094 	struct timespec end_time;
2095 
2096 	if (timeout &&
2097 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2098 				    timeout->tv_nsec))
2099 		return -EINVAL;
2100 
2101 	datagrams = 0;
2102 
2103 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 	if (!sock)
2105 		return err;
2106 
2107 	err = sock_error(sock->sk);
2108 	if (err)
2109 		goto out_put;
2110 
2111 	entry = mmsg;
2112 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2113 
2114 	while (datagrams < vlen) {
2115 		/*
2116 		 * No need to ask LSM for more than the first datagram.
2117 		 */
2118 		if (MSG_CMSG_COMPAT & flags) {
2119 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2120 					    &msg_sys, flags, datagrams);
2121 			if (err < 0)
2122 				break;
2123 			err = __put_user(err, &compat_entry->msg_len);
2124 			++compat_entry;
2125 		} else {
2126 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2127 					    &msg_sys, flags, datagrams);
2128 			if (err < 0)
2129 				break;
2130 			err = put_user(err, &entry->msg_len);
2131 			++entry;
2132 		}
2133 
2134 		if (err)
2135 			break;
2136 		++datagrams;
2137 
2138 		if (timeout) {
2139 			ktime_get_ts(timeout);
2140 			*timeout = timespec_sub(end_time, *timeout);
2141 			if (timeout->tv_sec < 0) {
2142 				timeout->tv_sec = timeout->tv_nsec = 0;
2143 				break;
2144 			}
2145 
2146 			/* Timeout, return less than vlen datagrams */
2147 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2148 				break;
2149 		}
2150 
2151 		/* Out of band data, return right away */
2152 		if (msg_sys.msg_flags & MSG_OOB)
2153 			break;
2154 	}
2155 
2156 out_put:
2157 	fput_light(sock->file, fput_needed);
2158 
2159 	if (err == 0)
2160 		return datagrams;
2161 
2162 	if (datagrams != 0) {
2163 		/*
2164 		 * We may return less entries than requested (vlen) if the
2165 		 * sock is non block and there aren't enough datagrams...
2166 		 */
2167 		if (err != -EAGAIN) {
2168 			/*
2169 			 * ... or  if recvmsg returns an error after we
2170 			 * received some datagrams, where we record the
2171 			 * error to return on the next call or if the
2172 			 * app asks about it using getsockopt(SO_ERROR).
2173 			 */
2174 			sock->sk->sk_err = -err;
2175 		}
2176 
2177 		return datagrams;
2178 	}
2179 
2180 	return err;
2181 }
2182 
2183 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2184 		unsigned int, vlen, unsigned int, flags,
2185 		struct timespec __user *, timeout)
2186 {
2187 	int datagrams;
2188 	struct timespec timeout_sys;
2189 
2190 	if (!timeout)
2191 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2192 
2193 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2194 		return -EFAULT;
2195 
2196 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2197 
2198 	if (datagrams > 0 &&
2199 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2200 		datagrams = -EFAULT;
2201 
2202 	return datagrams;
2203 }
2204 
2205 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2206 /* Argument list sizes for sys_socketcall */
2207 #define AL(x) ((x) * sizeof(unsigned long))
2208 static const unsigned char nargs[20] = {
2209 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2210 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2211 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2212 	AL(4),AL(5)
2213 };
2214 
2215 #undef AL
2216 
2217 /*
2218  *	System call vectors.
2219  *
2220  *	Argument checking cleaned up. Saved 20% in size.
2221  *  This function doesn't need to set the kernel lock because
2222  *  it is set by the callees.
2223  */
2224 
2225 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2226 {
2227 	unsigned long a[6];
2228 	unsigned long a0, a1;
2229 	int err;
2230 	unsigned int len;
2231 
2232 	if (call < 1 || call > SYS_RECVMMSG)
2233 		return -EINVAL;
2234 
2235 	len = nargs[call];
2236 	if (len > sizeof(a))
2237 		return -EINVAL;
2238 
2239 	/* copy_from_user should be SMP safe. */
2240 	if (copy_from_user(a, args, len))
2241 		return -EFAULT;
2242 
2243 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2244 
2245 	a0 = a[0];
2246 	a1 = a[1];
2247 
2248 	switch (call) {
2249 	case SYS_SOCKET:
2250 		err = sys_socket(a0, a1, a[2]);
2251 		break;
2252 	case SYS_BIND:
2253 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2254 		break;
2255 	case SYS_CONNECT:
2256 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2257 		break;
2258 	case SYS_LISTEN:
2259 		err = sys_listen(a0, a1);
2260 		break;
2261 	case SYS_ACCEPT:
2262 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2263 				  (int __user *)a[2], 0);
2264 		break;
2265 	case SYS_GETSOCKNAME:
2266 		err =
2267 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2268 				    (int __user *)a[2]);
2269 		break;
2270 	case SYS_GETPEERNAME:
2271 		err =
2272 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2273 				    (int __user *)a[2]);
2274 		break;
2275 	case SYS_SOCKETPAIR:
2276 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2277 		break;
2278 	case SYS_SEND:
2279 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2280 		break;
2281 	case SYS_SENDTO:
2282 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2283 				 (struct sockaddr __user *)a[4], a[5]);
2284 		break;
2285 	case SYS_RECV:
2286 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2287 		break;
2288 	case SYS_RECVFROM:
2289 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2290 				   (struct sockaddr __user *)a[4],
2291 				   (int __user *)a[5]);
2292 		break;
2293 	case SYS_SHUTDOWN:
2294 		err = sys_shutdown(a0, a1);
2295 		break;
2296 	case SYS_SETSOCKOPT:
2297 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2298 		break;
2299 	case SYS_GETSOCKOPT:
2300 		err =
2301 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2302 				   (int __user *)a[4]);
2303 		break;
2304 	case SYS_SENDMSG:
2305 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2306 		break;
2307 	case SYS_RECVMSG:
2308 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2309 		break;
2310 	case SYS_RECVMMSG:
2311 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2312 				   (struct timespec __user *)a[4]);
2313 		break;
2314 	case SYS_ACCEPT4:
2315 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2316 				  (int __user *)a[2], a[3]);
2317 		break;
2318 	default:
2319 		err = -EINVAL;
2320 		break;
2321 	}
2322 	return err;
2323 }
2324 
2325 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2326 
2327 /**
2328  *	sock_register - add a socket protocol handler
2329  *	@ops: description of protocol
2330  *
2331  *	This function is called by a protocol handler that wants to
2332  *	advertise its address family, and have it linked into the
2333  *	socket interface. The value ops->family coresponds to the
2334  *	socket system call protocol family.
2335  */
2336 int sock_register(const struct net_proto_family *ops)
2337 {
2338 	int err;
2339 
2340 	if (ops->family >= NPROTO) {
2341 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2342 		       NPROTO);
2343 		return -ENOBUFS;
2344 	}
2345 
2346 	spin_lock(&net_family_lock);
2347 	if (net_families[ops->family])
2348 		err = -EEXIST;
2349 	else {
2350 		net_families[ops->family] = ops;
2351 		err = 0;
2352 	}
2353 	spin_unlock(&net_family_lock);
2354 
2355 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2356 	return err;
2357 }
2358 
2359 /**
2360  *	sock_unregister - remove a protocol handler
2361  *	@family: protocol family to remove
2362  *
2363  *	This function is called by a protocol handler that wants to
2364  *	remove its address family, and have it unlinked from the
2365  *	new socket creation.
2366  *
2367  *	If protocol handler is a module, then it can use module reference
2368  *	counts to protect against new references. If protocol handler is not
2369  *	a module then it needs to provide its own protection in
2370  *	the ops->create routine.
2371  */
2372 void sock_unregister(int family)
2373 {
2374 	BUG_ON(family < 0 || family >= NPROTO);
2375 
2376 	spin_lock(&net_family_lock);
2377 	net_families[family] = NULL;
2378 	spin_unlock(&net_family_lock);
2379 
2380 	synchronize_rcu();
2381 
2382 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2383 }
2384 
2385 static int __init sock_init(void)
2386 {
2387 	/*
2388 	 *      Initialize sock SLAB cache.
2389 	 */
2390 
2391 	sk_init();
2392 
2393 	/*
2394 	 *      Initialize skbuff SLAB cache
2395 	 */
2396 	skb_init();
2397 
2398 	/*
2399 	 *      Initialize the protocols module.
2400 	 */
2401 
2402 	init_inodecache();
2403 	register_filesystem(&sock_fs_type);
2404 	sock_mnt = kern_mount(&sock_fs_type);
2405 
2406 	/* The real protocol initialization is performed in later initcalls.
2407 	 */
2408 
2409 #ifdef CONFIG_NETFILTER
2410 	netfilter_init();
2411 #endif
2412 
2413 	return 0;
2414 }
2415 
2416 core_initcall(sock_init);	/* early initcall */
2417 
2418 #ifdef CONFIG_PROC_FS
2419 void socket_seq_show(struct seq_file *seq)
2420 {
2421 	int cpu;
2422 	int counter = 0;
2423 
2424 	for_each_possible_cpu(cpu)
2425 	    counter += per_cpu(sockets_in_use, cpu);
2426 
2427 	/* It can be negative, by the way. 8) */
2428 	if (counter < 0)
2429 		counter = 0;
2430 
2431 	seq_printf(seq, "sockets: used %d\n", counter);
2432 }
2433 #endif				/* CONFIG_PROC_FS */
2434 
2435 #ifdef CONFIG_COMPAT
2436 static int do_siocgstamp(struct net *net, struct socket *sock,
2437 			 unsigned int cmd, struct compat_timeval __user *up)
2438 {
2439 	mm_segment_t old_fs = get_fs();
2440 	struct timeval ktv;
2441 	int err;
2442 
2443 	set_fs(KERNEL_DS);
2444 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2445 	set_fs(old_fs);
2446 	if (!err) {
2447 		err = put_user(ktv.tv_sec, &up->tv_sec);
2448 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2449 	}
2450 	return err;
2451 }
2452 
2453 static int do_siocgstampns(struct net *net, struct socket *sock,
2454 			 unsigned int cmd, struct compat_timespec __user *up)
2455 {
2456 	mm_segment_t old_fs = get_fs();
2457 	struct timespec kts;
2458 	int err;
2459 
2460 	set_fs(KERNEL_DS);
2461 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2462 	set_fs(old_fs);
2463 	if (!err) {
2464 		err = put_user(kts.tv_sec, &up->tv_sec);
2465 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2466 	}
2467 	return err;
2468 }
2469 
2470 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2471 {
2472 	struct ifreq __user *uifr;
2473 	int err;
2474 
2475 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2476 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2477 		return -EFAULT;
2478 
2479 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2480 	if (err)
2481 		return err;
2482 
2483 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2484 		return -EFAULT;
2485 
2486 	return 0;
2487 }
2488 
2489 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2490 {
2491 	struct compat_ifconf ifc32;
2492 	struct ifconf ifc;
2493 	struct ifconf __user *uifc;
2494 	struct compat_ifreq __user *ifr32;
2495 	struct ifreq __user *ifr;
2496 	unsigned int i, j;
2497 	int err;
2498 
2499 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2500 		return -EFAULT;
2501 
2502 	if (ifc32.ifcbuf == 0) {
2503 		ifc32.ifc_len = 0;
2504 		ifc.ifc_len = 0;
2505 		ifc.ifc_req = NULL;
2506 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2507 	} else {
2508 		size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2509 			sizeof (struct ifreq);
2510 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2511 		ifc.ifc_len = len;
2512 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2513 		ifr32 = compat_ptr(ifc32.ifcbuf);
2514 		for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2515 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2516 				return -EFAULT;
2517 			ifr++;
2518 			ifr32++;
2519 		}
2520 	}
2521 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2522 		return -EFAULT;
2523 
2524 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2525 	if (err)
2526 		return err;
2527 
2528 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2529 		return -EFAULT;
2530 
2531 	ifr = ifc.ifc_req;
2532 	ifr32 = compat_ptr(ifc32.ifcbuf);
2533 	for (i = 0, j = 0;
2534              i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2535 	     i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2536 		if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2537 			return -EFAULT;
2538 		ifr32++;
2539 		ifr++;
2540 	}
2541 
2542 	if (ifc32.ifcbuf == 0) {
2543 		/* Translate from 64-bit structure multiple to
2544 		 * a 32-bit one.
2545 		 */
2546 		i = ifc.ifc_len;
2547 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2548 		ifc32.ifc_len = i;
2549 	} else {
2550 		ifc32.ifc_len = i;
2551 	}
2552 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2553 		return -EFAULT;
2554 
2555 	return 0;
2556 }
2557 
2558 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2559 {
2560 	struct ifreq __user *ifr;
2561 	u32 data;
2562 	void __user *datap;
2563 
2564 	ifr = compat_alloc_user_space(sizeof(*ifr));
2565 
2566 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2567 		return -EFAULT;
2568 
2569 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2570 		return -EFAULT;
2571 
2572 	datap = compat_ptr(data);
2573 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2574 		return -EFAULT;
2575 
2576 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2577 }
2578 
2579 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2580 {
2581 	void __user *uptr;
2582 	compat_uptr_t uptr32;
2583 	struct ifreq __user *uifr;
2584 
2585 	uifr = compat_alloc_user_space(sizeof (*uifr));
2586 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2587 		return -EFAULT;
2588 
2589 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2590 		return -EFAULT;
2591 
2592 	uptr = compat_ptr(uptr32);
2593 
2594 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2595 		return -EFAULT;
2596 
2597 	return dev_ioctl(net, SIOCWANDEV, uifr);
2598 }
2599 
2600 static int bond_ioctl(struct net *net, unsigned int cmd,
2601 			 struct compat_ifreq __user *ifr32)
2602 {
2603 	struct ifreq kifr;
2604 	struct ifreq __user *uifr;
2605 	mm_segment_t old_fs;
2606 	int err;
2607 	u32 data;
2608 	void __user *datap;
2609 
2610 	switch (cmd) {
2611 	case SIOCBONDENSLAVE:
2612 	case SIOCBONDRELEASE:
2613 	case SIOCBONDSETHWADDR:
2614 	case SIOCBONDCHANGEACTIVE:
2615 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2616 			return -EFAULT;
2617 
2618 		old_fs = get_fs();
2619 		set_fs (KERNEL_DS);
2620 		err = dev_ioctl(net, cmd, &kifr);
2621 		set_fs (old_fs);
2622 
2623 		return err;
2624 	case SIOCBONDSLAVEINFOQUERY:
2625 	case SIOCBONDINFOQUERY:
2626 		uifr = compat_alloc_user_space(sizeof(*uifr));
2627 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2628 			return -EFAULT;
2629 
2630 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2631 			return -EFAULT;
2632 
2633 		datap = compat_ptr(data);
2634 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2635 			return -EFAULT;
2636 
2637 		return dev_ioctl(net, cmd, uifr);
2638 	default:
2639 		return -EINVAL;
2640 	};
2641 }
2642 
2643 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2644 				 struct compat_ifreq __user *u_ifreq32)
2645 {
2646 	struct ifreq __user *u_ifreq64;
2647 	char tmp_buf[IFNAMSIZ];
2648 	void __user *data64;
2649 	u32 data32;
2650 
2651 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2652 			   IFNAMSIZ))
2653 		return -EFAULT;
2654 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2655 		return -EFAULT;
2656 	data64 = compat_ptr(data32);
2657 
2658 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2659 
2660 	/* Don't check these user accesses, just let that get trapped
2661 	 * in the ioctl handler instead.
2662 	 */
2663 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2664 			 IFNAMSIZ))
2665 		return -EFAULT;
2666 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2667 		return -EFAULT;
2668 
2669 	return dev_ioctl(net, cmd, u_ifreq64);
2670 }
2671 
2672 static int dev_ifsioc(struct net *net, struct socket *sock,
2673 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2674 {
2675 	struct ifreq __user *uifr;
2676 	int err;
2677 
2678 	uifr = compat_alloc_user_space(sizeof(*uifr));
2679 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2680 		return -EFAULT;
2681 
2682 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2683 
2684 	if (!err) {
2685 		switch (cmd) {
2686 		case SIOCGIFFLAGS:
2687 		case SIOCGIFMETRIC:
2688 		case SIOCGIFMTU:
2689 		case SIOCGIFMEM:
2690 		case SIOCGIFHWADDR:
2691 		case SIOCGIFINDEX:
2692 		case SIOCGIFADDR:
2693 		case SIOCGIFBRDADDR:
2694 		case SIOCGIFDSTADDR:
2695 		case SIOCGIFNETMASK:
2696 		case SIOCGIFPFLAGS:
2697 		case SIOCGIFTXQLEN:
2698 		case SIOCGMIIPHY:
2699 		case SIOCGMIIREG:
2700 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2701 				err = -EFAULT;
2702 			break;
2703 		}
2704 	}
2705 	return err;
2706 }
2707 
2708 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2709 			struct compat_ifreq __user *uifr32)
2710 {
2711 	struct ifreq ifr;
2712 	struct compat_ifmap __user *uifmap32;
2713 	mm_segment_t old_fs;
2714 	int err;
2715 
2716 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2717 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2718 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2719 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2720 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2721 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2722 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2723 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2724 	if (err)
2725 		return -EFAULT;
2726 
2727 	old_fs = get_fs();
2728 	set_fs (KERNEL_DS);
2729 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2730 	set_fs (old_fs);
2731 
2732 	if (cmd == SIOCGIFMAP && !err) {
2733 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2734 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2735 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2736 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2737 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2738 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2739 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2740 		if (err)
2741 			err = -EFAULT;
2742 	}
2743 	return err;
2744 }
2745 
2746 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2747 {
2748 	void __user *uptr;
2749 	compat_uptr_t uptr32;
2750 	struct ifreq __user *uifr;
2751 
2752 	uifr = compat_alloc_user_space(sizeof (*uifr));
2753 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2754 		return -EFAULT;
2755 
2756 	if (get_user(uptr32, &uifr32->ifr_data))
2757 		return -EFAULT;
2758 
2759 	uptr = compat_ptr(uptr32);
2760 
2761 	if (put_user(uptr, &uifr->ifr_data))
2762 		return -EFAULT;
2763 
2764 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2765 }
2766 
2767 struct rtentry32 {
2768 	u32   		rt_pad1;
2769 	struct sockaddr rt_dst;         /* target address               */
2770 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2771 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2772 	unsigned short  rt_flags;
2773 	short           rt_pad2;
2774 	u32   		rt_pad3;
2775 	unsigned char   rt_tos;
2776 	unsigned char   rt_class;
2777 	short           rt_pad4;
2778 	short           rt_metric;      /* +1 for binary compatibility! */
2779 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2780 	u32   		rt_mtu;         /* per route MTU/Window         */
2781 	u32   		rt_window;      /* Window clamping              */
2782 	unsigned short  rt_irtt;        /* Initial RTT                  */
2783 };
2784 
2785 struct in6_rtmsg32 {
2786 	struct in6_addr		rtmsg_dst;
2787 	struct in6_addr		rtmsg_src;
2788 	struct in6_addr		rtmsg_gateway;
2789 	u32			rtmsg_type;
2790 	u16			rtmsg_dst_len;
2791 	u16			rtmsg_src_len;
2792 	u32			rtmsg_metric;
2793 	u32			rtmsg_info;
2794 	u32			rtmsg_flags;
2795 	s32			rtmsg_ifindex;
2796 };
2797 
2798 static int routing_ioctl(struct net *net, struct socket *sock,
2799 			 unsigned int cmd, void __user *argp)
2800 {
2801 	int ret;
2802 	void *r = NULL;
2803 	struct in6_rtmsg r6;
2804 	struct rtentry r4;
2805 	char devname[16];
2806 	u32 rtdev;
2807 	mm_segment_t old_fs = get_fs();
2808 
2809 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2810 		struct in6_rtmsg32 __user *ur6 = argp;
2811 		ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2812 			3 * sizeof(struct in6_addr));
2813 		ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2814 		ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2815 		ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2816 		ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2817 		ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2818 		ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2819 		ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2820 
2821 		r = (void *) &r6;
2822 	} else { /* ipv4 */
2823 		struct rtentry32 __user *ur4 = argp;
2824 		ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2825 					3 * sizeof(struct sockaddr));
2826 		ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2827 		ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2828 		ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2829 		ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2830 		ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2831 		ret |= __get_user (rtdev, &(ur4->rt_dev));
2832 		if (rtdev) {
2833 			ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2834 			r4.rt_dev = devname; devname[15] = 0;
2835 		} else
2836 			r4.rt_dev = NULL;
2837 
2838 		r = (void *) &r4;
2839 	}
2840 
2841 	if (ret) {
2842 		ret = -EFAULT;
2843 		goto out;
2844 	}
2845 
2846 	set_fs (KERNEL_DS);
2847 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2848 	set_fs (old_fs);
2849 
2850 out:
2851 	return ret;
2852 }
2853 
2854 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2855  * for some operations; this forces use of the newer bridge-utils that
2856  * use compatiable ioctls
2857  */
2858 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2859 {
2860 	compat_ulong_t tmp;
2861 
2862 	if (get_user(tmp, argp))
2863 		return -EFAULT;
2864 	if (tmp == BRCTL_GET_VERSION)
2865 		return BRCTL_VERSION + 1;
2866 	return -EINVAL;
2867 }
2868 
2869 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2870 			 unsigned int cmd, unsigned long arg)
2871 {
2872 	void __user *argp = compat_ptr(arg);
2873 	struct sock *sk = sock->sk;
2874 	struct net *net = sock_net(sk);
2875 
2876 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2877 		return siocdevprivate_ioctl(net, cmd, argp);
2878 
2879 	switch (cmd) {
2880 	case SIOCSIFBR:
2881 	case SIOCGIFBR:
2882 		return old_bridge_ioctl(argp);
2883 	case SIOCGIFNAME:
2884 		return dev_ifname32(net, argp);
2885 	case SIOCGIFCONF:
2886 		return dev_ifconf(net, argp);
2887 	case SIOCETHTOOL:
2888 		return ethtool_ioctl(net, argp);
2889 	case SIOCWANDEV:
2890 		return compat_siocwandev(net, argp);
2891 	case SIOCGIFMAP:
2892 	case SIOCSIFMAP:
2893 		return compat_sioc_ifmap(net, cmd, argp);
2894 	case SIOCBONDENSLAVE:
2895 	case SIOCBONDRELEASE:
2896 	case SIOCBONDSETHWADDR:
2897 	case SIOCBONDSLAVEINFOQUERY:
2898 	case SIOCBONDINFOQUERY:
2899 	case SIOCBONDCHANGEACTIVE:
2900 		return bond_ioctl(net, cmd, argp);
2901 	case SIOCADDRT:
2902 	case SIOCDELRT:
2903 		return routing_ioctl(net, sock, cmd, argp);
2904 	case SIOCGSTAMP:
2905 		return do_siocgstamp(net, sock, cmd, argp);
2906 	case SIOCGSTAMPNS:
2907 		return do_siocgstampns(net, sock, cmd, argp);
2908 	case SIOCSHWTSTAMP:
2909 		return compat_siocshwtstamp(net, argp);
2910 
2911 	case FIOSETOWN:
2912 	case SIOCSPGRP:
2913 	case FIOGETOWN:
2914 	case SIOCGPGRP:
2915 	case SIOCBRADDBR:
2916 	case SIOCBRDELBR:
2917 	case SIOCGIFVLAN:
2918 	case SIOCSIFVLAN:
2919 	case SIOCADDDLCI:
2920 	case SIOCDELDLCI:
2921 		return sock_ioctl(file, cmd, arg);
2922 
2923 	case SIOCGIFFLAGS:
2924 	case SIOCSIFFLAGS:
2925 	case SIOCGIFMETRIC:
2926 	case SIOCSIFMETRIC:
2927 	case SIOCGIFMTU:
2928 	case SIOCSIFMTU:
2929 	case SIOCGIFMEM:
2930 	case SIOCSIFMEM:
2931 	case SIOCGIFHWADDR:
2932 	case SIOCSIFHWADDR:
2933 	case SIOCADDMULTI:
2934 	case SIOCDELMULTI:
2935 	case SIOCGIFINDEX:
2936 	case SIOCGIFADDR:
2937 	case SIOCSIFADDR:
2938 	case SIOCSIFHWBROADCAST:
2939 	case SIOCDIFADDR:
2940 	case SIOCGIFBRDADDR:
2941 	case SIOCSIFBRDADDR:
2942 	case SIOCGIFDSTADDR:
2943 	case SIOCSIFDSTADDR:
2944 	case SIOCGIFNETMASK:
2945 	case SIOCSIFNETMASK:
2946 	case SIOCSIFPFLAGS:
2947 	case SIOCGIFPFLAGS:
2948 	case SIOCGIFTXQLEN:
2949 	case SIOCSIFTXQLEN:
2950 	case SIOCBRADDIF:
2951 	case SIOCBRDELIF:
2952 	case SIOCSIFNAME:
2953 	case SIOCGMIIPHY:
2954 	case SIOCGMIIREG:
2955 	case SIOCSMIIREG:
2956 		return dev_ifsioc(net, sock, cmd, argp);
2957 
2958 	case SIOCSARP:
2959 	case SIOCGARP:
2960 	case SIOCDARP:
2961 	case SIOCATMARK:
2962 		return sock_do_ioctl(net, sock, cmd, arg);
2963 	}
2964 
2965 	/* Prevent warning from compat_sys_ioctl, these always
2966 	 * result in -EINVAL in the native case anyway. */
2967 	switch (cmd) {
2968 	case SIOCRTMSG:
2969 	case SIOCGIFCOUNT:
2970 	case SIOCSRARP:
2971 	case SIOCGRARP:
2972 	case SIOCDRARP:
2973 	case SIOCSIFLINK:
2974 	case SIOCGIFSLAVE:
2975 	case SIOCSIFSLAVE:
2976 		return -EINVAL;
2977 	}
2978 
2979 	return -ENOIOCTLCMD;
2980 }
2981 
2982 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2983 			      unsigned long arg)
2984 {
2985 	struct socket *sock = file->private_data;
2986 	int ret = -ENOIOCTLCMD;
2987 	struct sock *sk;
2988 	struct net *net;
2989 
2990 	sk = sock->sk;
2991 	net = sock_net(sk);
2992 
2993 	if (sock->ops->compat_ioctl)
2994 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2995 
2996 	if (ret == -ENOIOCTLCMD &&
2997 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2998 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2999 
3000 	if (ret == -ENOIOCTLCMD)
3001 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3002 
3003 	return ret;
3004 }
3005 #endif
3006 
3007 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3008 {
3009 	return sock->ops->bind(sock, addr, addrlen);
3010 }
3011 
3012 int kernel_listen(struct socket *sock, int backlog)
3013 {
3014 	return sock->ops->listen(sock, backlog);
3015 }
3016 
3017 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3018 {
3019 	struct sock *sk = sock->sk;
3020 	int err;
3021 
3022 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3023 			       newsock);
3024 	if (err < 0)
3025 		goto done;
3026 
3027 	err = sock->ops->accept(sock, *newsock, flags);
3028 	if (err < 0) {
3029 		sock_release(*newsock);
3030 		*newsock = NULL;
3031 		goto done;
3032 	}
3033 
3034 	(*newsock)->ops = sock->ops;
3035 	__module_get((*newsock)->ops->owner);
3036 
3037 done:
3038 	return err;
3039 }
3040 
3041 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3042 		   int flags)
3043 {
3044 	return sock->ops->connect(sock, addr, addrlen, flags);
3045 }
3046 
3047 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3048 			 int *addrlen)
3049 {
3050 	return sock->ops->getname(sock, addr, addrlen, 0);
3051 }
3052 
3053 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3054 			 int *addrlen)
3055 {
3056 	return sock->ops->getname(sock, addr, addrlen, 1);
3057 }
3058 
3059 int kernel_getsockopt(struct socket *sock, int level, int optname,
3060 			char *optval, int *optlen)
3061 {
3062 	mm_segment_t oldfs = get_fs();
3063 	int err;
3064 
3065 	set_fs(KERNEL_DS);
3066 	if (level == SOL_SOCKET)
3067 		err = sock_getsockopt(sock, level, optname, optval, optlen);
3068 	else
3069 		err = sock->ops->getsockopt(sock, level, optname, optval,
3070 					    optlen);
3071 	set_fs(oldfs);
3072 	return err;
3073 }
3074 
3075 int kernel_setsockopt(struct socket *sock, int level, int optname,
3076 			char *optval, unsigned int optlen)
3077 {
3078 	mm_segment_t oldfs = get_fs();
3079 	int err;
3080 
3081 	set_fs(KERNEL_DS);
3082 	if (level == SOL_SOCKET)
3083 		err = sock_setsockopt(sock, level, optname, optval, optlen);
3084 	else
3085 		err = sock->ops->setsockopt(sock, level, optname, optval,
3086 					    optlen);
3087 	set_fs(oldfs);
3088 	return err;
3089 }
3090 
3091 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3092 		    size_t size, int flags)
3093 {
3094 	if (sock->ops->sendpage)
3095 		return sock->ops->sendpage(sock, page, offset, size, flags);
3096 
3097 	return sock_no_sendpage(sock, page, offset, size, flags);
3098 }
3099 
3100 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3101 {
3102 	mm_segment_t oldfs = get_fs();
3103 	int err;
3104 
3105 	set_fs(KERNEL_DS);
3106 	err = sock->ops->ioctl(sock, cmd, arg);
3107 	set_fs(oldfs);
3108 
3109 	return err;
3110 }
3111 
3112 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3113 {
3114 	return sock->ops->shutdown(sock, how);
3115 }
3116 
3117 EXPORT_SYMBOL(sock_create);
3118 EXPORT_SYMBOL(sock_create_kern);
3119 EXPORT_SYMBOL(sock_create_lite);
3120 EXPORT_SYMBOL(sock_map_fd);
3121 EXPORT_SYMBOL(sock_recvmsg);
3122 EXPORT_SYMBOL(sock_register);
3123 EXPORT_SYMBOL(sock_release);
3124 EXPORT_SYMBOL(sock_sendmsg);
3125 EXPORT_SYMBOL(sock_unregister);
3126 EXPORT_SYMBOL(sock_wake_async);
3127 EXPORT_SYMBOL(sockfd_lookup);
3128 EXPORT_SYMBOL(kernel_sendmsg);
3129 EXPORT_SYMBOL(kernel_recvmsg);
3130 EXPORT_SYMBOL(kernel_bind);
3131 EXPORT_SYMBOL(kernel_listen);
3132 EXPORT_SYMBOL(kernel_accept);
3133 EXPORT_SYMBOL(kernel_connect);
3134 EXPORT_SYMBOL(kernel_getsockname);
3135 EXPORT_SYMBOL(kernel_getpeername);
3136 EXPORT_SYMBOL(kernel_getsockopt);
3137 EXPORT_SYMBOL(kernel_setsockopt);
3138 EXPORT_SYMBOL(kernel_sendpage);
3139 EXPORT_SYMBOL(kernel_sock_ioctl);
3140 EXPORT_SYMBOL(kernel_sock_shutdown);
3141