1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/net.h> 61 #include <linux/interrupt.h> 62 #include <linux/thread_info.h> 63 #include <linux/rcupdate.h> 64 #include <linux/netdevice.h> 65 #include <linux/proc_fs.h> 66 #include <linux/seq_file.h> 67 #include <linux/mutex.h> 68 #include <linux/if_bridge.h> 69 #include <linux/if_vlan.h> 70 #include <linux/ptp_classify.h> 71 #include <linux/init.h> 72 #include <linux/poll.h> 73 #include <linux/cache.h> 74 #include <linux/module.h> 75 #include <linux/highmem.h> 76 #include <linux/mount.h> 77 #include <linux/pseudo_fs.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/compat.h> 81 #include <linux/kmod.h> 82 #include <linux/audit.h> 83 #include <linux/wireless.h> 84 #include <linux/nsproxy.h> 85 #include <linux/magic.h> 86 #include <linux/slab.h> 87 #include <linux/xattr.h> 88 #include <linux/nospec.h> 89 #include <linux/indirect_call_wrapper.h> 90 91 #include <linux/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 #include <net/cls_cgroup.h> 97 98 #include <net/sock.h> 99 #include <linux/netfilter.h> 100 101 #include <linux/if_tun.h> 102 #include <linux/ipv6_route.h> 103 #include <linux/route.h> 104 #include <linux/termios.h> 105 #include <linux/sockios.h> 106 #include <net/busy_poll.h> 107 #include <linux/errqueue.h> 108 #include <linux/ptp_clock_kernel.h> 109 #include <trace/events/sock.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 #ifdef CONFIG_PROC_FS 136 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 137 { 138 struct socket *sock = f->private_data; 139 140 if (sock->ops->show_fdinfo) 141 sock->ops->show_fdinfo(m, sock); 142 } 143 #else 144 #define sock_show_fdinfo NULL 145 #endif 146 147 /* 148 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 149 * in the operation structures but are done directly via the socketcall() multiplexor. 150 */ 151 152 static const struct file_operations socket_file_ops = { 153 .owner = THIS_MODULE, 154 .llseek = no_llseek, 155 .read_iter = sock_read_iter, 156 .write_iter = sock_write_iter, 157 .poll = sock_poll, 158 .unlocked_ioctl = sock_ioctl, 159 #ifdef CONFIG_COMPAT 160 .compat_ioctl = compat_sock_ioctl, 161 #endif 162 .mmap = sock_mmap, 163 .release = sock_close, 164 .fasync = sock_fasync, 165 .sendpage = sock_sendpage, 166 .splice_write = generic_splice_sendpage, 167 .splice_read = sock_splice_read, 168 .show_fdinfo = sock_show_fdinfo, 169 }; 170 171 static const char * const pf_family_names[] = { 172 [PF_UNSPEC] = "PF_UNSPEC", 173 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 174 [PF_INET] = "PF_INET", 175 [PF_AX25] = "PF_AX25", 176 [PF_IPX] = "PF_IPX", 177 [PF_APPLETALK] = "PF_APPLETALK", 178 [PF_NETROM] = "PF_NETROM", 179 [PF_BRIDGE] = "PF_BRIDGE", 180 [PF_ATMPVC] = "PF_ATMPVC", 181 [PF_X25] = "PF_X25", 182 [PF_INET6] = "PF_INET6", 183 [PF_ROSE] = "PF_ROSE", 184 [PF_DECnet] = "PF_DECnet", 185 [PF_NETBEUI] = "PF_NETBEUI", 186 [PF_SECURITY] = "PF_SECURITY", 187 [PF_KEY] = "PF_KEY", 188 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 189 [PF_PACKET] = "PF_PACKET", 190 [PF_ASH] = "PF_ASH", 191 [PF_ECONET] = "PF_ECONET", 192 [PF_ATMSVC] = "PF_ATMSVC", 193 [PF_RDS] = "PF_RDS", 194 [PF_SNA] = "PF_SNA", 195 [PF_IRDA] = "PF_IRDA", 196 [PF_PPPOX] = "PF_PPPOX", 197 [PF_WANPIPE] = "PF_WANPIPE", 198 [PF_LLC] = "PF_LLC", 199 [PF_IB] = "PF_IB", 200 [PF_MPLS] = "PF_MPLS", 201 [PF_CAN] = "PF_CAN", 202 [PF_TIPC] = "PF_TIPC", 203 [PF_BLUETOOTH] = "PF_BLUETOOTH", 204 [PF_IUCV] = "PF_IUCV", 205 [PF_RXRPC] = "PF_RXRPC", 206 [PF_ISDN] = "PF_ISDN", 207 [PF_PHONET] = "PF_PHONET", 208 [PF_IEEE802154] = "PF_IEEE802154", 209 [PF_CAIF] = "PF_CAIF", 210 [PF_ALG] = "PF_ALG", 211 [PF_NFC] = "PF_NFC", 212 [PF_VSOCK] = "PF_VSOCK", 213 [PF_KCM] = "PF_KCM", 214 [PF_QIPCRTR] = "PF_QIPCRTR", 215 [PF_SMC] = "PF_SMC", 216 [PF_XDP] = "PF_XDP", 217 [PF_MCTP] = "PF_MCTP", 218 }; 219 220 /* 221 * The protocol list. Each protocol is registered in here. 222 */ 223 224 static DEFINE_SPINLOCK(net_family_lock); 225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 226 227 /* 228 * Support routines. 229 * Move socket addresses back and forth across the kernel/user 230 * divide and look after the messy bits. 231 */ 232 233 /** 234 * move_addr_to_kernel - copy a socket address into kernel space 235 * @uaddr: Address in user space 236 * @kaddr: Address in kernel space 237 * @ulen: Length in user space 238 * 239 * The address is copied into kernel space. If the provided address is 240 * too long an error code of -EINVAL is returned. If the copy gives 241 * invalid addresses -EFAULT is returned. On a success 0 is returned. 242 */ 243 244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 245 { 246 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 247 return -EINVAL; 248 if (ulen == 0) 249 return 0; 250 if (copy_from_user(kaddr, uaddr, ulen)) 251 return -EFAULT; 252 return audit_sockaddr(ulen, kaddr); 253 } 254 255 /** 256 * move_addr_to_user - copy an address to user space 257 * @kaddr: kernel space address 258 * @klen: length of address in kernel 259 * @uaddr: user space address 260 * @ulen: pointer to user length field 261 * 262 * The value pointed to by ulen on entry is the buffer length available. 263 * This is overwritten with the buffer space used. -EINVAL is returned 264 * if an overlong buffer is specified or a negative buffer size. -EFAULT 265 * is returned if either the buffer or the length field are not 266 * accessible. 267 * After copying the data up to the limit the user specifies, the true 268 * length of the data is written over the length limit the user 269 * specified. Zero is returned for a success. 270 */ 271 272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 273 void __user *uaddr, int __user *ulen) 274 { 275 int err; 276 int len; 277 278 BUG_ON(klen > sizeof(struct sockaddr_storage)); 279 err = get_user(len, ulen); 280 if (err) 281 return err; 282 if (len > klen) 283 len = klen; 284 if (len < 0) 285 return -EINVAL; 286 if (len) { 287 if (audit_sockaddr(klen, kaddr)) 288 return -ENOMEM; 289 if (copy_to_user(uaddr, kaddr, len)) 290 return -EFAULT; 291 } 292 /* 293 * "fromlen shall refer to the value before truncation.." 294 * 1003.1g 295 */ 296 return __put_user(klen, ulen); 297 } 298 299 static struct kmem_cache *sock_inode_cachep __ro_after_init; 300 301 static struct inode *sock_alloc_inode(struct super_block *sb) 302 { 303 struct socket_alloc *ei; 304 305 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 306 if (!ei) 307 return NULL; 308 init_waitqueue_head(&ei->socket.wq.wait); 309 ei->socket.wq.fasync_list = NULL; 310 ei->socket.wq.flags = 0; 311 312 ei->socket.state = SS_UNCONNECTED; 313 ei->socket.flags = 0; 314 ei->socket.ops = NULL; 315 ei->socket.sk = NULL; 316 ei->socket.file = NULL; 317 318 return &ei->vfs_inode; 319 } 320 321 static void sock_free_inode(struct inode *inode) 322 { 323 struct socket_alloc *ei; 324 325 ei = container_of(inode, struct socket_alloc, vfs_inode); 326 kmem_cache_free(sock_inode_cachep, ei); 327 } 328 329 static void init_once(void *foo) 330 { 331 struct socket_alloc *ei = (struct socket_alloc *)foo; 332 333 inode_init_once(&ei->vfs_inode); 334 } 335 336 static void init_inodecache(void) 337 { 338 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 339 sizeof(struct socket_alloc), 340 0, 341 (SLAB_HWCACHE_ALIGN | 342 SLAB_RECLAIM_ACCOUNT | 343 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 344 init_once); 345 BUG_ON(sock_inode_cachep == NULL); 346 } 347 348 static const struct super_operations sockfs_ops = { 349 .alloc_inode = sock_alloc_inode, 350 .free_inode = sock_free_inode, 351 .statfs = simple_statfs, 352 }; 353 354 /* 355 * sockfs_dname() is called from d_path(). 356 */ 357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 358 { 359 return dynamic_dname(buffer, buflen, "socket:[%lu]", 360 d_inode(dentry)->i_ino); 361 } 362 363 static const struct dentry_operations sockfs_dentry_operations = { 364 .d_dname = sockfs_dname, 365 }; 366 367 static int sockfs_xattr_get(const struct xattr_handler *handler, 368 struct dentry *dentry, struct inode *inode, 369 const char *suffix, void *value, size_t size) 370 { 371 if (value) { 372 if (dentry->d_name.len + 1 > size) 373 return -ERANGE; 374 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 375 } 376 return dentry->d_name.len + 1; 377 } 378 379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 382 383 static const struct xattr_handler sockfs_xattr_handler = { 384 .name = XATTR_NAME_SOCKPROTONAME, 385 .get = sockfs_xattr_get, 386 }; 387 388 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 389 struct mnt_idmap *idmap, 390 struct dentry *dentry, struct inode *inode, 391 const char *suffix, const void *value, 392 size_t size, int flags) 393 { 394 /* Handled by LSM. */ 395 return -EAGAIN; 396 } 397 398 static const struct xattr_handler sockfs_security_xattr_handler = { 399 .prefix = XATTR_SECURITY_PREFIX, 400 .set = sockfs_security_xattr_set, 401 }; 402 403 static const struct xattr_handler *sockfs_xattr_handlers[] = { 404 &sockfs_xattr_handler, 405 &sockfs_security_xattr_handler, 406 NULL 407 }; 408 409 static int sockfs_init_fs_context(struct fs_context *fc) 410 { 411 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 412 if (!ctx) 413 return -ENOMEM; 414 ctx->ops = &sockfs_ops; 415 ctx->dops = &sockfs_dentry_operations; 416 ctx->xattr = sockfs_xattr_handlers; 417 return 0; 418 } 419 420 static struct vfsmount *sock_mnt __read_mostly; 421 422 static struct file_system_type sock_fs_type = { 423 .name = "sockfs", 424 .init_fs_context = sockfs_init_fs_context, 425 .kill_sb = kill_anon_super, 426 }; 427 428 /* 429 * Obtains the first available file descriptor and sets it up for use. 430 * 431 * These functions create file structures and maps them to fd space 432 * of the current process. On success it returns file descriptor 433 * and file struct implicitly stored in sock->file. 434 * Note that another thread may close file descriptor before we return 435 * from this function. We use the fact that now we do not refer 436 * to socket after mapping. If one day we will need it, this 437 * function will increment ref. count on file by 1. 438 * 439 * In any case returned fd MAY BE not valid! 440 * This race condition is unavoidable 441 * with shared fd spaces, we cannot solve it inside kernel, 442 * but we take care of internal coherence yet. 443 */ 444 445 /** 446 * sock_alloc_file - Bind a &socket to a &file 447 * @sock: socket 448 * @flags: file status flags 449 * @dname: protocol name 450 * 451 * Returns the &file bound with @sock, implicitly storing it 452 * in sock->file. If dname is %NULL, sets to "". 453 * 454 * On failure @sock is released, and an ERR pointer is returned. 455 * 456 * This function uses GFP_KERNEL internally. 457 */ 458 459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 460 { 461 struct file *file; 462 463 if (!dname) 464 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 465 466 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 467 O_RDWR | (flags & O_NONBLOCK), 468 &socket_file_ops); 469 if (IS_ERR(file)) { 470 sock_release(sock); 471 return file; 472 } 473 474 sock->file = file; 475 file->private_data = sock; 476 stream_open(SOCK_INODE(sock), file); 477 return file; 478 } 479 EXPORT_SYMBOL(sock_alloc_file); 480 481 static int sock_map_fd(struct socket *sock, int flags) 482 { 483 struct file *newfile; 484 int fd = get_unused_fd_flags(flags); 485 if (unlikely(fd < 0)) { 486 sock_release(sock); 487 return fd; 488 } 489 490 newfile = sock_alloc_file(sock, flags, NULL); 491 if (!IS_ERR(newfile)) { 492 fd_install(fd, newfile); 493 return fd; 494 } 495 496 put_unused_fd(fd); 497 return PTR_ERR(newfile); 498 } 499 500 /** 501 * sock_from_file - Return the &socket bounded to @file. 502 * @file: file 503 * 504 * On failure returns %NULL. 505 */ 506 507 struct socket *sock_from_file(struct file *file) 508 { 509 if (file->f_op == &socket_file_ops) 510 return file->private_data; /* set in sock_alloc_file */ 511 512 return NULL; 513 } 514 EXPORT_SYMBOL(sock_from_file); 515 516 /** 517 * sockfd_lookup - Go from a file number to its socket slot 518 * @fd: file handle 519 * @err: pointer to an error code return 520 * 521 * The file handle passed in is locked and the socket it is bound 522 * to is returned. If an error occurs the err pointer is overwritten 523 * with a negative errno code and NULL is returned. The function checks 524 * for both invalid handles and passing a handle which is not a socket. 525 * 526 * On a success the socket object pointer is returned. 527 */ 528 529 struct socket *sockfd_lookup(int fd, int *err) 530 { 531 struct file *file; 532 struct socket *sock; 533 534 file = fget(fd); 535 if (!file) { 536 *err = -EBADF; 537 return NULL; 538 } 539 540 sock = sock_from_file(file); 541 if (!sock) { 542 *err = -ENOTSOCK; 543 fput(file); 544 } 545 return sock; 546 } 547 EXPORT_SYMBOL(sockfd_lookup); 548 549 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 550 { 551 struct fd f = fdget(fd); 552 struct socket *sock; 553 554 *err = -EBADF; 555 if (f.file) { 556 sock = sock_from_file(f.file); 557 if (likely(sock)) { 558 *fput_needed = f.flags & FDPUT_FPUT; 559 return sock; 560 } 561 *err = -ENOTSOCK; 562 fdput(f); 563 } 564 return NULL; 565 } 566 567 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 568 size_t size) 569 { 570 ssize_t len; 571 ssize_t used = 0; 572 573 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 574 if (len < 0) 575 return len; 576 used += len; 577 if (buffer) { 578 if (size < used) 579 return -ERANGE; 580 buffer += len; 581 } 582 583 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 584 used += len; 585 if (buffer) { 586 if (size < used) 587 return -ERANGE; 588 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 589 buffer += len; 590 } 591 592 return used; 593 } 594 595 static int sockfs_setattr(struct mnt_idmap *idmap, 596 struct dentry *dentry, struct iattr *iattr) 597 { 598 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 599 600 if (!err && (iattr->ia_valid & ATTR_UID)) { 601 struct socket *sock = SOCKET_I(d_inode(dentry)); 602 603 if (sock->sk) 604 sock->sk->sk_uid = iattr->ia_uid; 605 else 606 err = -ENOENT; 607 } 608 609 return err; 610 } 611 612 static const struct inode_operations sockfs_inode_ops = { 613 .listxattr = sockfs_listxattr, 614 .setattr = sockfs_setattr, 615 }; 616 617 /** 618 * sock_alloc - allocate a socket 619 * 620 * Allocate a new inode and socket object. The two are bound together 621 * and initialised. The socket is then returned. If we are out of inodes 622 * NULL is returned. This functions uses GFP_KERNEL internally. 623 */ 624 625 struct socket *sock_alloc(void) 626 { 627 struct inode *inode; 628 struct socket *sock; 629 630 inode = new_inode_pseudo(sock_mnt->mnt_sb); 631 if (!inode) 632 return NULL; 633 634 sock = SOCKET_I(inode); 635 636 inode->i_ino = get_next_ino(); 637 inode->i_mode = S_IFSOCK | S_IRWXUGO; 638 inode->i_uid = current_fsuid(); 639 inode->i_gid = current_fsgid(); 640 inode->i_op = &sockfs_inode_ops; 641 642 return sock; 643 } 644 EXPORT_SYMBOL(sock_alloc); 645 646 static void __sock_release(struct socket *sock, struct inode *inode) 647 { 648 if (sock->ops) { 649 struct module *owner = sock->ops->owner; 650 651 if (inode) 652 inode_lock(inode); 653 sock->ops->release(sock); 654 sock->sk = NULL; 655 if (inode) 656 inode_unlock(inode); 657 sock->ops = NULL; 658 module_put(owner); 659 } 660 661 if (sock->wq.fasync_list) 662 pr_err("%s: fasync list not empty!\n", __func__); 663 664 if (!sock->file) { 665 iput(SOCK_INODE(sock)); 666 return; 667 } 668 sock->file = NULL; 669 } 670 671 /** 672 * sock_release - close a socket 673 * @sock: socket to close 674 * 675 * The socket is released from the protocol stack if it has a release 676 * callback, and the inode is then released if the socket is bound to 677 * an inode not a file. 678 */ 679 void sock_release(struct socket *sock) 680 { 681 __sock_release(sock, NULL); 682 } 683 EXPORT_SYMBOL(sock_release); 684 685 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 686 { 687 u8 flags = *tx_flags; 688 689 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 690 flags |= SKBTX_HW_TSTAMP; 691 692 /* PTP hardware clocks can provide a free running cycle counter 693 * as a time base for virtual clocks. Tell driver to use the 694 * free running cycle counter for timestamp if socket is bound 695 * to virtual clock. 696 */ 697 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 698 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 699 } 700 701 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 702 flags |= SKBTX_SW_TSTAMP; 703 704 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 705 flags |= SKBTX_SCHED_TSTAMP; 706 707 *tx_flags = flags; 708 } 709 EXPORT_SYMBOL(__sock_tx_timestamp); 710 711 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 712 size_t)); 713 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 714 size_t)); 715 716 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 717 int flags) 718 { 719 trace_sock_send_length(sk, ret, 0); 720 } 721 722 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 723 { 724 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 725 inet_sendmsg, sock, msg, 726 msg_data_left(msg)); 727 BUG_ON(ret == -EIOCBQUEUED); 728 729 if (trace_sock_send_length_enabled()) 730 call_trace_sock_send_length(sock->sk, ret, 0); 731 return ret; 732 } 733 734 /** 735 * sock_sendmsg - send a message through @sock 736 * @sock: socket 737 * @msg: message to send 738 * 739 * Sends @msg through @sock, passing through LSM. 740 * Returns the number of bytes sent, or an error code. 741 */ 742 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 743 { 744 int err = security_socket_sendmsg(sock, msg, 745 msg_data_left(msg)); 746 747 return err ?: sock_sendmsg_nosec(sock, msg); 748 } 749 EXPORT_SYMBOL(sock_sendmsg); 750 751 /** 752 * kernel_sendmsg - send a message through @sock (kernel-space) 753 * @sock: socket 754 * @msg: message header 755 * @vec: kernel vec 756 * @num: vec array length 757 * @size: total message data size 758 * 759 * Builds the message data with @vec and sends it through @sock. 760 * Returns the number of bytes sent, or an error code. 761 */ 762 763 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 764 struct kvec *vec, size_t num, size_t size) 765 { 766 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 767 return sock_sendmsg(sock, msg); 768 } 769 EXPORT_SYMBOL(kernel_sendmsg); 770 771 /** 772 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 773 * @sk: sock 774 * @msg: message header 775 * @vec: output s/g array 776 * @num: output s/g array length 777 * @size: total message data size 778 * 779 * Builds the message data with @vec and sends it through @sock. 780 * Returns the number of bytes sent, or an error code. 781 * Caller must hold @sk. 782 */ 783 784 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 785 struct kvec *vec, size_t num, size_t size) 786 { 787 struct socket *sock = sk->sk_socket; 788 789 if (!sock->ops->sendmsg_locked) 790 return sock_no_sendmsg_locked(sk, msg, size); 791 792 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 793 794 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 795 } 796 EXPORT_SYMBOL(kernel_sendmsg_locked); 797 798 static bool skb_is_err_queue(const struct sk_buff *skb) 799 { 800 /* pkt_type of skbs enqueued on the error queue are set to 801 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 802 * in recvmsg, since skbs received on a local socket will never 803 * have a pkt_type of PACKET_OUTGOING. 804 */ 805 return skb->pkt_type == PACKET_OUTGOING; 806 } 807 808 /* On transmit, software and hardware timestamps are returned independently. 809 * As the two skb clones share the hardware timestamp, which may be updated 810 * before the software timestamp is received, a hardware TX timestamp may be 811 * returned only if there is no software TX timestamp. Ignore false software 812 * timestamps, which may be made in the __sock_recv_timestamp() call when the 813 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 814 * hardware timestamp. 815 */ 816 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 817 { 818 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 819 } 820 821 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 822 { 823 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 824 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 825 struct net_device *orig_dev; 826 ktime_t hwtstamp; 827 828 rcu_read_lock(); 829 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 830 if (orig_dev) { 831 *if_index = orig_dev->ifindex; 832 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 833 } else { 834 hwtstamp = shhwtstamps->hwtstamp; 835 } 836 rcu_read_unlock(); 837 838 return hwtstamp; 839 } 840 841 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 842 int if_index) 843 { 844 struct scm_ts_pktinfo ts_pktinfo; 845 struct net_device *orig_dev; 846 847 if (!skb_mac_header_was_set(skb)) 848 return; 849 850 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 851 852 if (!if_index) { 853 rcu_read_lock(); 854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 855 if (orig_dev) 856 if_index = orig_dev->ifindex; 857 rcu_read_unlock(); 858 } 859 ts_pktinfo.if_index = if_index; 860 861 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 862 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 863 sizeof(ts_pktinfo), &ts_pktinfo); 864 } 865 866 /* 867 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 868 */ 869 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 870 struct sk_buff *skb) 871 { 872 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 873 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 874 struct scm_timestamping_internal tss; 875 876 int empty = 1, false_tstamp = 0; 877 struct skb_shared_hwtstamps *shhwtstamps = 878 skb_hwtstamps(skb); 879 int if_index; 880 ktime_t hwtstamp; 881 882 /* Race occurred between timestamp enabling and packet 883 receiving. Fill in the current time for now. */ 884 if (need_software_tstamp && skb->tstamp == 0) { 885 __net_timestamp(skb); 886 false_tstamp = 1; 887 } 888 889 if (need_software_tstamp) { 890 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 891 if (new_tstamp) { 892 struct __kernel_sock_timeval tv; 893 894 skb_get_new_timestamp(skb, &tv); 895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 896 sizeof(tv), &tv); 897 } else { 898 struct __kernel_old_timeval tv; 899 900 skb_get_timestamp(skb, &tv); 901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 902 sizeof(tv), &tv); 903 } 904 } else { 905 if (new_tstamp) { 906 struct __kernel_timespec ts; 907 908 skb_get_new_timestampns(skb, &ts); 909 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 910 sizeof(ts), &ts); 911 } else { 912 struct __kernel_old_timespec ts; 913 914 skb_get_timestampns(skb, &ts); 915 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 916 sizeof(ts), &ts); 917 } 918 } 919 } 920 921 memset(&tss, 0, sizeof(tss)); 922 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 923 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 924 empty = 0; 925 if (shhwtstamps && 926 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 927 !skb_is_swtx_tstamp(skb, false_tstamp)) { 928 if_index = 0; 929 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 930 hwtstamp = get_timestamp(sk, skb, &if_index); 931 else 932 hwtstamp = shhwtstamps->hwtstamp; 933 934 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 935 hwtstamp = ptp_convert_timestamp(&hwtstamp, 936 sk->sk_bind_phc); 937 938 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 939 empty = 0; 940 941 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 942 !skb_is_err_queue(skb)) 943 put_ts_pktinfo(msg, skb, if_index); 944 } 945 } 946 if (!empty) { 947 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 948 put_cmsg_scm_timestamping64(msg, &tss); 949 else 950 put_cmsg_scm_timestamping(msg, &tss); 951 952 if (skb_is_err_queue(skb) && skb->len && 953 SKB_EXT_ERR(skb)->opt_stats) 954 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 955 skb->len, skb->data); 956 } 957 } 958 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 959 960 #ifdef CONFIG_WIRELESS 961 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 962 struct sk_buff *skb) 963 { 964 int ack; 965 966 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 967 return; 968 if (!skb->wifi_acked_valid) 969 return; 970 971 ack = skb->wifi_acked; 972 973 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 974 } 975 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 976 #endif 977 978 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 979 struct sk_buff *skb) 980 { 981 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 982 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 983 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 984 } 985 986 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 987 struct sk_buff *skb) 988 { 989 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 990 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 991 __u32 mark = skb->mark; 992 993 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 994 } 995 } 996 997 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 998 struct sk_buff *skb) 999 { 1000 sock_recv_timestamp(msg, sk, skb); 1001 sock_recv_drops(msg, sk, skb); 1002 sock_recv_mark(msg, sk, skb); 1003 } 1004 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1005 1006 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1007 size_t, int)); 1008 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1009 size_t, int)); 1010 1011 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1012 { 1013 trace_sock_recv_length(sk, ret, flags); 1014 } 1015 1016 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1017 int flags) 1018 { 1019 int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 1020 inet_recvmsg, sock, msg, 1021 msg_data_left(msg), flags); 1022 if (trace_sock_recv_length_enabled()) 1023 call_trace_sock_recv_length(sock->sk, ret, flags); 1024 return ret; 1025 } 1026 1027 /** 1028 * sock_recvmsg - receive a message from @sock 1029 * @sock: socket 1030 * @msg: message to receive 1031 * @flags: message flags 1032 * 1033 * Receives @msg from @sock, passing through LSM. Returns the total number 1034 * of bytes received, or an error. 1035 */ 1036 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1037 { 1038 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1039 1040 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1041 } 1042 EXPORT_SYMBOL(sock_recvmsg); 1043 1044 /** 1045 * kernel_recvmsg - Receive a message from a socket (kernel space) 1046 * @sock: The socket to receive the message from 1047 * @msg: Received message 1048 * @vec: Input s/g array for message data 1049 * @num: Size of input s/g array 1050 * @size: Number of bytes to read 1051 * @flags: Message flags (MSG_DONTWAIT, etc...) 1052 * 1053 * On return the msg structure contains the scatter/gather array passed in the 1054 * vec argument. The array is modified so that it consists of the unfilled 1055 * portion of the original array. 1056 * 1057 * The returned value is the total number of bytes received, or an error. 1058 */ 1059 1060 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1061 struct kvec *vec, size_t num, size_t size, int flags) 1062 { 1063 msg->msg_control_is_user = false; 1064 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1065 return sock_recvmsg(sock, msg, flags); 1066 } 1067 EXPORT_SYMBOL(kernel_recvmsg); 1068 1069 static ssize_t sock_sendpage(struct file *file, struct page *page, 1070 int offset, size_t size, loff_t *ppos, int more) 1071 { 1072 struct socket *sock; 1073 int flags; 1074 int ret; 1075 1076 sock = file->private_data; 1077 1078 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 1079 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1080 flags |= more; 1081 1082 ret = kernel_sendpage(sock, page, offset, size, flags); 1083 1084 if (trace_sock_send_length_enabled()) 1085 call_trace_sock_send_length(sock->sk, ret, 0); 1086 return ret; 1087 } 1088 1089 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1090 struct pipe_inode_info *pipe, size_t len, 1091 unsigned int flags) 1092 { 1093 struct socket *sock = file->private_data; 1094 1095 if (unlikely(!sock->ops->splice_read)) 1096 return generic_file_splice_read(file, ppos, pipe, len, flags); 1097 1098 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1099 } 1100 1101 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1102 { 1103 struct file *file = iocb->ki_filp; 1104 struct socket *sock = file->private_data; 1105 struct msghdr msg = {.msg_iter = *to, 1106 .msg_iocb = iocb}; 1107 ssize_t res; 1108 1109 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1110 msg.msg_flags = MSG_DONTWAIT; 1111 1112 if (iocb->ki_pos != 0) 1113 return -ESPIPE; 1114 1115 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1116 return 0; 1117 1118 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1119 *to = msg.msg_iter; 1120 return res; 1121 } 1122 1123 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1124 { 1125 struct file *file = iocb->ki_filp; 1126 struct socket *sock = file->private_data; 1127 struct msghdr msg = {.msg_iter = *from, 1128 .msg_iocb = iocb}; 1129 ssize_t res; 1130 1131 if (iocb->ki_pos != 0) 1132 return -ESPIPE; 1133 1134 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1135 msg.msg_flags = MSG_DONTWAIT; 1136 1137 if (sock->type == SOCK_SEQPACKET) 1138 msg.msg_flags |= MSG_EOR; 1139 1140 res = sock_sendmsg(sock, &msg); 1141 *from = msg.msg_iter; 1142 return res; 1143 } 1144 1145 /* 1146 * Atomic setting of ioctl hooks to avoid race 1147 * with module unload. 1148 */ 1149 1150 static DEFINE_MUTEX(br_ioctl_mutex); 1151 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1152 unsigned int cmd, struct ifreq *ifr, 1153 void __user *uarg); 1154 1155 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1156 unsigned int cmd, struct ifreq *ifr, 1157 void __user *uarg)) 1158 { 1159 mutex_lock(&br_ioctl_mutex); 1160 br_ioctl_hook = hook; 1161 mutex_unlock(&br_ioctl_mutex); 1162 } 1163 EXPORT_SYMBOL(brioctl_set); 1164 1165 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1166 struct ifreq *ifr, void __user *uarg) 1167 { 1168 int err = -ENOPKG; 1169 1170 if (!br_ioctl_hook) 1171 request_module("bridge"); 1172 1173 mutex_lock(&br_ioctl_mutex); 1174 if (br_ioctl_hook) 1175 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1176 mutex_unlock(&br_ioctl_mutex); 1177 1178 return err; 1179 } 1180 1181 static DEFINE_MUTEX(vlan_ioctl_mutex); 1182 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1183 1184 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1185 { 1186 mutex_lock(&vlan_ioctl_mutex); 1187 vlan_ioctl_hook = hook; 1188 mutex_unlock(&vlan_ioctl_mutex); 1189 } 1190 EXPORT_SYMBOL(vlan_ioctl_set); 1191 1192 static long sock_do_ioctl(struct net *net, struct socket *sock, 1193 unsigned int cmd, unsigned long arg) 1194 { 1195 struct ifreq ifr; 1196 bool need_copyout; 1197 int err; 1198 void __user *argp = (void __user *)arg; 1199 void __user *data; 1200 1201 err = sock->ops->ioctl(sock, cmd, arg); 1202 1203 /* 1204 * If this ioctl is unknown try to hand it down 1205 * to the NIC driver. 1206 */ 1207 if (err != -ENOIOCTLCMD) 1208 return err; 1209 1210 if (!is_socket_ioctl_cmd(cmd)) 1211 return -ENOTTY; 1212 1213 if (get_user_ifreq(&ifr, &data, argp)) 1214 return -EFAULT; 1215 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1216 if (!err && need_copyout) 1217 if (put_user_ifreq(&ifr, argp)) 1218 return -EFAULT; 1219 1220 return err; 1221 } 1222 1223 /* 1224 * With an ioctl, arg may well be a user mode pointer, but we don't know 1225 * what to do with it - that's up to the protocol still. 1226 */ 1227 1228 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1229 { 1230 struct socket *sock; 1231 struct sock *sk; 1232 void __user *argp = (void __user *)arg; 1233 int pid, err; 1234 struct net *net; 1235 1236 sock = file->private_data; 1237 sk = sock->sk; 1238 net = sock_net(sk); 1239 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1240 struct ifreq ifr; 1241 void __user *data; 1242 bool need_copyout; 1243 if (get_user_ifreq(&ifr, &data, argp)) 1244 return -EFAULT; 1245 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1246 if (!err && need_copyout) 1247 if (put_user_ifreq(&ifr, argp)) 1248 return -EFAULT; 1249 } else 1250 #ifdef CONFIG_WEXT_CORE 1251 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1252 err = wext_handle_ioctl(net, cmd, argp); 1253 } else 1254 #endif 1255 switch (cmd) { 1256 case FIOSETOWN: 1257 case SIOCSPGRP: 1258 err = -EFAULT; 1259 if (get_user(pid, (int __user *)argp)) 1260 break; 1261 err = f_setown(sock->file, pid, 1); 1262 break; 1263 case FIOGETOWN: 1264 case SIOCGPGRP: 1265 err = put_user(f_getown(sock->file), 1266 (int __user *)argp); 1267 break; 1268 case SIOCGIFBR: 1269 case SIOCSIFBR: 1270 case SIOCBRADDBR: 1271 case SIOCBRDELBR: 1272 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1273 break; 1274 case SIOCGIFVLAN: 1275 case SIOCSIFVLAN: 1276 err = -ENOPKG; 1277 if (!vlan_ioctl_hook) 1278 request_module("8021q"); 1279 1280 mutex_lock(&vlan_ioctl_mutex); 1281 if (vlan_ioctl_hook) 1282 err = vlan_ioctl_hook(net, argp); 1283 mutex_unlock(&vlan_ioctl_mutex); 1284 break; 1285 case SIOCGSKNS: 1286 err = -EPERM; 1287 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1288 break; 1289 1290 err = open_related_ns(&net->ns, get_net_ns); 1291 break; 1292 case SIOCGSTAMP_OLD: 1293 case SIOCGSTAMPNS_OLD: 1294 if (!sock->ops->gettstamp) { 1295 err = -ENOIOCTLCMD; 1296 break; 1297 } 1298 err = sock->ops->gettstamp(sock, argp, 1299 cmd == SIOCGSTAMP_OLD, 1300 !IS_ENABLED(CONFIG_64BIT)); 1301 break; 1302 case SIOCGSTAMP_NEW: 1303 case SIOCGSTAMPNS_NEW: 1304 if (!sock->ops->gettstamp) { 1305 err = -ENOIOCTLCMD; 1306 break; 1307 } 1308 err = sock->ops->gettstamp(sock, argp, 1309 cmd == SIOCGSTAMP_NEW, 1310 false); 1311 break; 1312 1313 case SIOCGIFCONF: 1314 err = dev_ifconf(net, argp); 1315 break; 1316 1317 default: 1318 err = sock_do_ioctl(net, sock, cmd, arg); 1319 break; 1320 } 1321 return err; 1322 } 1323 1324 /** 1325 * sock_create_lite - creates a socket 1326 * @family: protocol family (AF_INET, ...) 1327 * @type: communication type (SOCK_STREAM, ...) 1328 * @protocol: protocol (0, ...) 1329 * @res: new socket 1330 * 1331 * Creates a new socket and assigns it to @res, passing through LSM. 1332 * The new socket initialization is not complete, see kernel_accept(). 1333 * Returns 0 or an error. On failure @res is set to %NULL. 1334 * This function internally uses GFP_KERNEL. 1335 */ 1336 1337 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1338 { 1339 int err; 1340 struct socket *sock = NULL; 1341 1342 err = security_socket_create(family, type, protocol, 1); 1343 if (err) 1344 goto out; 1345 1346 sock = sock_alloc(); 1347 if (!sock) { 1348 err = -ENOMEM; 1349 goto out; 1350 } 1351 1352 sock->type = type; 1353 err = security_socket_post_create(sock, family, type, protocol, 1); 1354 if (err) 1355 goto out_release; 1356 1357 out: 1358 *res = sock; 1359 return err; 1360 out_release: 1361 sock_release(sock); 1362 sock = NULL; 1363 goto out; 1364 } 1365 EXPORT_SYMBOL(sock_create_lite); 1366 1367 /* No kernel lock held - perfect */ 1368 static __poll_t sock_poll(struct file *file, poll_table *wait) 1369 { 1370 struct socket *sock = file->private_data; 1371 __poll_t events = poll_requested_events(wait), flag = 0; 1372 1373 if (!sock->ops->poll) 1374 return 0; 1375 1376 if (sk_can_busy_loop(sock->sk)) { 1377 /* poll once if requested by the syscall */ 1378 if (events & POLL_BUSY_LOOP) 1379 sk_busy_loop(sock->sk, 1); 1380 1381 /* if this socket can poll_ll, tell the system call */ 1382 flag = POLL_BUSY_LOOP; 1383 } 1384 1385 return sock->ops->poll(file, sock, wait) | flag; 1386 } 1387 1388 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1389 { 1390 struct socket *sock = file->private_data; 1391 1392 return sock->ops->mmap(file, sock, vma); 1393 } 1394 1395 static int sock_close(struct inode *inode, struct file *filp) 1396 { 1397 __sock_release(SOCKET_I(inode), inode); 1398 return 0; 1399 } 1400 1401 /* 1402 * Update the socket async list 1403 * 1404 * Fasync_list locking strategy. 1405 * 1406 * 1. fasync_list is modified only under process context socket lock 1407 * i.e. under semaphore. 1408 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1409 * or under socket lock 1410 */ 1411 1412 static int sock_fasync(int fd, struct file *filp, int on) 1413 { 1414 struct socket *sock = filp->private_data; 1415 struct sock *sk = sock->sk; 1416 struct socket_wq *wq = &sock->wq; 1417 1418 if (sk == NULL) 1419 return -EINVAL; 1420 1421 lock_sock(sk); 1422 fasync_helper(fd, filp, on, &wq->fasync_list); 1423 1424 if (!wq->fasync_list) 1425 sock_reset_flag(sk, SOCK_FASYNC); 1426 else 1427 sock_set_flag(sk, SOCK_FASYNC); 1428 1429 release_sock(sk); 1430 return 0; 1431 } 1432 1433 /* This function may be called only under rcu_lock */ 1434 1435 int sock_wake_async(struct socket_wq *wq, int how, int band) 1436 { 1437 if (!wq || !wq->fasync_list) 1438 return -1; 1439 1440 switch (how) { 1441 case SOCK_WAKE_WAITD: 1442 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1443 break; 1444 goto call_kill; 1445 case SOCK_WAKE_SPACE: 1446 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1447 break; 1448 fallthrough; 1449 case SOCK_WAKE_IO: 1450 call_kill: 1451 kill_fasync(&wq->fasync_list, SIGIO, band); 1452 break; 1453 case SOCK_WAKE_URG: 1454 kill_fasync(&wq->fasync_list, SIGURG, band); 1455 } 1456 1457 return 0; 1458 } 1459 EXPORT_SYMBOL(sock_wake_async); 1460 1461 /** 1462 * __sock_create - creates a socket 1463 * @net: net namespace 1464 * @family: protocol family (AF_INET, ...) 1465 * @type: communication type (SOCK_STREAM, ...) 1466 * @protocol: protocol (0, ...) 1467 * @res: new socket 1468 * @kern: boolean for kernel space sockets 1469 * 1470 * Creates a new socket and assigns it to @res, passing through LSM. 1471 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1472 * be set to true if the socket resides in kernel space. 1473 * This function internally uses GFP_KERNEL. 1474 */ 1475 1476 int __sock_create(struct net *net, int family, int type, int protocol, 1477 struct socket **res, int kern) 1478 { 1479 int err; 1480 struct socket *sock; 1481 const struct net_proto_family *pf; 1482 1483 /* 1484 * Check protocol is in range 1485 */ 1486 if (family < 0 || family >= NPROTO) 1487 return -EAFNOSUPPORT; 1488 if (type < 0 || type >= SOCK_MAX) 1489 return -EINVAL; 1490 1491 /* Compatibility. 1492 1493 This uglymoron is moved from INET layer to here to avoid 1494 deadlock in module load. 1495 */ 1496 if (family == PF_INET && type == SOCK_PACKET) { 1497 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1498 current->comm); 1499 family = PF_PACKET; 1500 } 1501 1502 err = security_socket_create(family, type, protocol, kern); 1503 if (err) 1504 return err; 1505 1506 /* 1507 * Allocate the socket and allow the family to set things up. if 1508 * the protocol is 0, the family is instructed to select an appropriate 1509 * default. 1510 */ 1511 sock = sock_alloc(); 1512 if (!sock) { 1513 net_warn_ratelimited("socket: no more sockets\n"); 1514 return -ENFILE; /* Not exactly a match, but its the 1515 closest posix thing */ 1516 } 1517 1518 sock->type = type; 1519 1520 #ifdef CONFIG_MODULES 1521 /* Attempt to load a protocol module if the find failed. 1522 * 1523 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1524 * requested real, full-featured networking support upon configuration. 1525 * Otherwise module support will break! 1526 */ 1527 if (rcu_access_pointer(net_families[family]) == NULL) 1528 request_module("net-pf-%d", family); 1529 #endif 1530 1531 rcu_read_lock(); 1532 pf = rcu_dereference(net_families[family]); 1533 err = -EAFNOSUPPORT; 1534 if (!pf) 1535 goto out_release; 1536 1537 /* 1538 * We will call the ->create function, that possibly is in a loadable 1539 * module, so we have to bump that loadable module refcnt first. 1540 */ 1541 if (!try_module_get(pf->owner)) 1542 goto out_release; 1543 1544 /* Now protected by module ref count */ 1545 rcu_read_unlock(); 1546 1547 err = pf->create(net, sock, protocol, kern); 1548 if (err < 0) 1549 goto out_module_put; 1550 1551 /* 1552 * Now to bump the refcnt of the [loadable] module that owns this 1553 * socket at sock_release time we decrement its refcnt. 1554 */ 1555 if (!try_module_get(sock->ops->owner)) 1556 goto out_module_busy; 1557 1558 /* 1559 * Now that we're done with the ->create function, the [loadable] 1560 * module can have its refcnt decremented 1561 */ 1562 module_put(pf->owner); 1563 err = security_socket_post_create(sock, family, type, protocol, kern); 1564 if (err) 1565 goto out_sock_release; 1566 *res = sock; 1567 1568 return 0; 1569 1570 out_module_busy: 1571 err = -EAFNOSUPPORT; 1572 out_module_put: 1573 sock->ops = NULL; 1574 module_put(pf->owner); 1575 out_sock_release: 1576 sock_release(sock); 1577 return err; 1578 1579 out_release: 1580 rcu_read_unlock(); 1581 goto out_sock_release; 1582 } 1583 EXPORT_SYMBOL(__sock_create); 1584 1585 /** 1586 * sock_create - creates a socket 1587 * @family: protocol family (AF_INET, ...) 1588 * @type: communication type (SOCK_STREAM, ...) 1589 * @protocol: protocol (0, ...) 1590 * @res: new socket 1591 * 1592 * A wrapper around __sock_create(). 1593 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1594 */ 1595 1596 int sock_create(int family, int type, int protocol, struct socket **res) 1597 { 1598 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1599 } 1600 EXPORT_SYMBOL(sock_create); 1601 1602 /** 1603 * sock_create_kern - creates a socket (kernel space) 1604 * @net: net namespace 1605 * @family: protocol family (AF_INET, ...) 1606 * @type: communication type (SOCK_STREAM, ...) 1607 * @protocol: protocol (0, ...) 1608 * @res: new socket 1609 * 1610 * A wrapper around __sock_create(). 1611 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1612 */ 1613 1614 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1615 { 1616 return __sock_create(net, family, type, protocol, res, 1); 1617 } 1618 EXPORT_SYMBOL(sock_create_kern); 1619 1620 static struct socket *__sys_socket_create(int family, int type, int protocol) 1621 { 1622 struct socket *sock; 1623 int retval; 1624 1625 /* Check the SOCK_* constants for consistency. */ 1626 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1627 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1628 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1629 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1630 1631 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1632 return ERR_PTR(-EINVAL); 1633 type &= SOCK_TYPE_MASK; 1634 1635 retval = sock_create(family, type, protocol, &sock); 1636 if (retval < 0) 1637 return ERR_PTR(retval); 1638 1639 return sock; 1640 } 1641 1642 struct file *__sys_socket_file(int family, int type, int protocol) 1643 { 1644 struct socket *sock; 1645 int flags; 1646 1647 sock = __sys_socket_create(family, type, protocol); 1648 if (IS_ERR(sock)) 1649 return ERR_CAST(sock); 1650 1651 flags = type & ~SOCK_TYPE_MASK; 1652 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1653 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1654 1655 return sock_alloc_file(sock, flags, NULL); 1656 } 1657 1658 int __sys_socket(int family, int type, int protocol) 1659 { 1660 struct socket *sock; 1661 int flags; 1662 1663 sock = __sys_socket_create(family, type, protocol); 1664 if (IS_ERR(sock)) 1665 return PTR_ERR(sock); 1666 1667 flags = type & ~SOCK_TYPE_MASK; 1668 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1669 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1670 1671 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1672 } 1673 1674 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1675 { 1676 return __sys_socket(family, type, protocol); 1677 } 1678 1679 /* 1680 * Create a pair of connected sockets. 1681 */ 1682 1683 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1684 { 1685 struct socket *sock1, *sock2; 1686 int fd1, fd2, err; 1687 struct file *newfile1, *newfile2; 1688 int flags; 1689 1690 flags = type & ~SOCK_TYPE_MASK; 1691 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1692 return -EINVAL; 1693 type &= SOCK_TYPE_MASK; 1694 1695 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1696 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1697 1698 /* 1699 * reserve descriptors and make sure we won't fail 1700 * to return them to userland. 1701 */ 1702 fd1 = get_unused_fd_flags(flags); 1703 if (unlikely(fd1 < 0)) 1704 return fd1; 1705 1706 fd2 = get_unused_fd_flags(flags); 1707 if (unlikely(fd2 < 0)) { 1708 put_unused_fd(fd1); 1709 return fd2; 1710 } 1711 1712 err = put_user(fd1, &usockvec[0]); 1713 if (err) 1714 goto out; 1715 1716 err = put_user(fd2, &usockvec[1]); 1717 if (err) 1718 goto out; 1719 1720 /* 1721 * Obtain the first socket and check if the underlying protocol 1722 * supports the socketpair call. 1723 */ 1724 1725 err = sock_create(family, type, protocol, &sock1); 1726 if (unlikely(err < 0)) 1727 goto out; 1728 1729 err = sock_create(family, type, protocol, &sock2); 1730 if (unlikely(err < 0)) { 1731 sock_release(sock1); 1732 goto out; 1733 } 1734 1735 err = security_socket_socketpair(sock1, sock2); 1736 if (unlikely(err)) { 1737 sock_release(sock2); 1738 sock_release(sock1); 1739 goto out; 1740 } 1741 1742 err = sock1->ops->socketpair(sock1, sock2); 1743 if (unlikely(err < 0)) { 1744 sock_release(sock2); 1745 sock_release(sock1); 1746 goto out; 1747 } 1748 1749 newfile1 = sock_alloc_file(sock1, flags, NULL); 1750 if (IS_ERR(newfile1)) { 1751 err = PTR_ERR(newfile1); 1752 sock_release(sock2); 1753 goto out; 1754 } 1755 1756 newfile2 = sock_alloc_file(sock2, flags, NULL); 1757 if (IS_ERR(newfile2)) { 1758 err = PTR_ERR(newfile2); 1759 fput(newfile1); 1760 goto out; 1761 } 1762 1763 audit_fd_pair(fd1, fd2); 1764 1765 fd_install(fd1, newfile1); 1766 fd_install(fd2, newfile2); 1767 return 0; 1768 1769 out: 1770 put_unused_fd(fd2); 1771 put_unused_fd(fd1); 1772 return err; 1773 } 1774 1775 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1776 int __user *, usockvec) 1777 { 1778 return __sys_socketpair(family, type, protocol, usockvec); 1779 } 1780 1781 /* 1782 * Bind a name to a socket. Nothing much to do here since it's 1783 * the protocol's responsibility to handle the local address. 1784 * 1785 * We move the socket address to kernel space before we call 1786 * the protocol layer (having also checked the address is ok). 1787 */ 1788 1789 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1790 { 1791 struct socket *sock; 1792 struct sockaddr_storage address; 1793 int err, fput_needed; 1794 1795 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1796 if (sock) { 1797 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1798 if (!err) { 1799 err = security_socket_bind(sock, 1800 (struct sockaddr *)&address, 1801 addrlen); 1802 if (!err) 1803 err = sock->ops->bind(sock, 1804 (struct sockaddr *) 1805 &address, addrlen); 1806 } 1807 fput_light(sock->file, fput_needed); 1808 } 1809 return err; 1810 } 1811 1812 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1813 { 1814 return __sys_bind(fd, umyaddr, addrlen); 1815 } 1816 1817 /* 1818 * Perform a listen. Basically, we allow the protocol to do anything 1819 * necessary for a listen, and if that works, we mark the socket as 1820 * ready for listening. 1821 */ 1822 1823 int __sys_listen(int fd, int backlog) 1824 { 1825 struct socket *sock; 1826 int err, fput_needed; 1827 int somaxconn; 1828 1829 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1830 if (sock) { 1831 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1832 if ((unsigned int)backlog > somaxconn) 1833 backlog = somaxconn; 1834 1835 err = security_socket_listen(sock, backlog); 1836 if (!err) 1837 err = sock->ops->listen(sock, backlog); 1838 1839 fput_light(sock->file, fput_needed); 1840 } 1841 return err; 1842 } 1843 1844 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1845 { 1846 return __sys_listen(fd, backlog); 1847 } 1848 1849 struct file *do_accept(struct file *file, unsigned file_flags, 1850 struct sockaddr __user *upeer_sockaddr, 1851 int __user *upeer_addrlen, int flags) 1852 { 1853 struct socket *sock, *newsock; 1854 struct file *newfile; 1855 int err, len; 1856 struct sockaddr_storage address; 1857 1858 sock = sock_from_file(file); 1859 if (!sock) 1860 return ERR_PTR(-ENOTSOCK); 1861 1862 newsock = sock_alloc(); 1863 if (!newsock) 1864 return ERR_PTR(-ENFILE); 1865 1866 newsock->type = sock->type; 1867 newsock->ops = sock->ops; 1868 1869 /* 1870 * We don't need try_module_get here, as the listening socket (sock) 1871 * has the protocol module (sock->ops->owner) held. 1872 */ 1873 __module_get(newsock->ops->owner); 1874 1875 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1876 if (IS_ERR(newfile)) 1877 return newfile; 1878 1879 err = security_socket_accept(sock, newsock); 1880 if (err) 1881 goto out_fd; 1882 1883 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1884 false); 1885 if (err < 0) 1886 goto out_fd; 1887 1888 if (upeer_sockaddr) { 1889 len = newsock->ops->getname(newsock, 1890 (struct sockaddr *)&address, 2); 1891 if (len < 0) { 1892 err = -ECONNABORTED; 1893 goto out_fd; 1894 } 1895 err = move_addr_to_user(&address, 1896 len, upeer_sockaddr, upeer_addrlen); 1897 if (err < 0) 1898 goto out_fd; 1899 } 1900 1901 /* File flags are not inherited via accept() unlike another OSes. */ 1902 return newfile; 1903 out_fd: 1904 fput(newfile); 1905 return ERR_PTR(err); 1906 } 1907 1908 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1909 int __user *upeer_addrlen, int flags) 1910 { 1911 struct file *newfile; 1912 int newfd; 1913 1914 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1915 return -EINVAL; 1916 1917 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1918 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1919 1920 newfd = get_unused_fd_flags(flags); 1921 if (unlikely(newfd < 0)) 1922 return newfd; 1923 1924 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1925 flags); 1926 if (IS_ERR(newfile)) { 1927 put_unused_fd(newfd); 1928 return PTR_ERR(newfile); 1929 } 1930 fd_install(newfd, newfile); 1931 return newfd; 1932 } 1933 1934 /* 1935 * For accept, we attempt to create a new socket, set up the link 1936 * with the client, wake up the client, then return the new 1937 * connected fd. We collect the address of the connector in kernel 1938 * space and move it to user at the very end. This is unclean because 1939 * we open the socket then return an error. 1940 * 1941 * 1003.1g adds the ability to recvmsg() to query connection pending 1942 * status to recvmsg. We need to add that support in a way thats 1943 * clean when we restructure accept also. 1944 */ 1945 1946 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1947 int __user *upeer_addrlen, int flags) 1948 { 1949 int ret = -EBADF; 1950 struct fd f; 1951 1952 f = fdget(fd); 1953 if (f.file) { 1954 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1955 upeer_addrlen, flags); 1956 fdput(f); 1957 } 1958 1959 return ret; 1960 } 1961 1962 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1963 int __user *, upeer_addrlen, int, flags) 1964 { 1965 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1966 } 1967 1968 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1969 int __user *, upeer_addrlen) 1970 { 1971 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1972 } 1973 1974 /* 1975 * Attempt to connect to a socket with the server address. The address 1976 * is in user space so we verify it is OK and move it to kernel space. 1977 * 1978 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1979 * break bindings 1980 * 1981 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1982 * other SEQPACKET protocols that take time to connect() as it doesn't 1983 * include the -EINPROGRESS status for such sockets. 1984 */ 1985 1986 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1987 int addrlen, int file_flags) 1988 { 1989 struct socket *sock; 1990 int err; 1991 1992 sock = sock_from_file(file); 1993 if (!sock) { 1994 err = -ENOTSOCK; 1995 goto out; 1996 } 1997 1998 err = 1999 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2000 if (err) 2001 goto out; 2002 2003 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 2004 sock->file->f_flags | file_flags); 2005 out: 2006 return err; 2007 } 2008 2009 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2010 { 2011 int ret = -EBADF; 2012 struct fd f; 2013 2014 f = fdget(fd); 2015 if (f.file) { 2016 struct sockaddr_storage address; 2017 2018 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2019 if (!ret) 2020 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2021 fdput(f); 2022 } 2023 2024 return ret; 2025 } 2026 2027 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2028 int, addrlen) 2029 { 2030 return __sys_connect(fd, uservaddr, addrlen); 2031 } 2032 2033 /* 2034 * Get the local address ('name') of a socket object. Move the obtained 2035 * name to user space. 2036 */ 2037 2038 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2039 int __user *usockaddr_len) 2040 { 2041 struct socket *sock; 2042 struct sockaddr_storage address; 2043 int err, fput_needed; 2044 2045 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2046 if (!sock) 2047 goto out; 2048 2049 err = security_socket_getsockname(sock); 2050 if (err) 2051 goto out_put; 2052 2053 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 2054 if (err < 0) 2055 goto out_put; 2056 /* "err" is actually length in this case */ 2057 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2058 2059 out_put: 2060 fput_light(sock->file, fput_needed); 2061 out: 2062 return err; 2063 } 2064 2065 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2066 int __user *, usockaddr_len) 2067 { 2068 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2069 } 2070 2071 /* 2072 * Get the remote address ('name') of a socket object. Move the obtained 2073 * name to user space. 2074 */ 2075 2076 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2077 int __user *usockaddr_len) 2078 { 2079 struct socket *sock; 2080 struct sockaddr_storage address; 2081 int err, fput_needed; 2082 2083 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2084 if (sock != NULL) { 2085 err = security_socket_getpeername(sock); 2086 if (err) { 2087 fput_light(sock->file, fput_needed); 2088 return err; 2089 } 2090 2091 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 2092 if (err >= 0) 2093 /* "err" is actually length in this case */ 2094 err = move_addr_to_user(&address, err, usockaddr, 2095 usockaddr_len); 2096 fput_light(sock->file, fput_needed); 2097 } 2098 return err; 2099 } 2100 2101 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2102 int __user *, usockaddr_len) 2103 { 2104 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2105 } 2106 2107 /* 2108 * Send a datagram to a given address. We move the address into kernel 2109 * space and check the user space data area is readable before invoking 2110 * the protocol. 2111 */ 2112 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2113 struct sockaddr __user *addr, int addr_len) 2114 { 2115 struct socket *sock; 2116 struct sockaddr_storage address; 2117 int err; 2118 struct msghdr msg; 2119 struct iovec iov; 2120 int fput_needed; 2121 2122 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2123 if (unlikely(err)) 2124 return err; 2125 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2126 if (!sock) 2127 goto out; 2128 2129 msg.msg_name = NULL; 2130 msg.msg_control = NULL; 2131 msg.msg_controllen = 0; 2132 msg.msg_namelen = 0; 2133 msg.msg_ubuf = NULL; 2134 if (addr) { 2135 err = move_addr_to_kernel(addr, addr_len, &address); 2136 if (err < 0) 2137 goto out_put; 2138 msg.msg_name = (struct sockaddr *)&address; 2139 msg.msg_namelen = addr_len; 2140 } 2141 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2142 if (sock->file->f_flags & O_NONBLOCK) 2143 flags |= MSG_DONTWAIT; 2144 msg.msg_flags = flags; 2145 err = sock_sendmsg(sock, &msg); 2146 2147 out_put: 2148 fput_light(sock->file, fput_needed); 2149 out: 2150 return err; 2151 } 2152 2153 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2154 unsigned int, flags, struct sockaddr __user *, addr, 2155 int, addr_len) 2156 { 2157 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2158 } 2159 2160 /* 2161 * Send a datagram down a socket. 2162 */ 2163 2164 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2165 unsigned int, flags) 2166 { 2167 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2168 } 2169 2170 /* 2171 * Receive a frame from the socket and optionally record the address of the 2172 * sender. We verify the buffers are writable and if needed move the 2173 * sender address from kernel to user space. 2174 */ 2175 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2176 struct sockaddr __user *addr, int __user *addr_len) 2177 { 2178 struct sockaddr_storage address; 2179 struct msghdr msg = { 2180 /* Save some cycles and don't copy the address if not needed */ 2181 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2182 }; 2183 struct socket *sock; 2184 struct iovec iov; 2185 int err, err2; 2186 int fput_needed; 2187 2188 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2189 if (unlikely(err)) 2190 return err; 2191 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2192 if (!sock) 2193 goto out; 2194 2195 if (sock->file->f_flags & O_NONBLOCK) 2196 flags |= MSG_DONTWAIT; 2197 err = sock_recvmsg(sock, &msg, flags); 2198 2199 if (err >= 0 && addr != NULL) { 2200 err2 = move_addr_to_user(&address, 2201 msg.msg_namelen, addr, addr_len); 2202 if (err2 < 0) 2203 err = err2; 2204 } 2205 2206 fput_light(sock->file, fput_needed); 2207 out: 2208 return err; 2209 } 2210 2211 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2212 unsigned int, flags, struct sockaddr __user *, addr, 2213 int __user *, addr_len) 2214 { 2215 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2216 } 2217 2218 /* 2219 * Receive a datagram from a socket. 2220 */ 2221 2222 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2223 unsigned int, flags) 2224 { 2225 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2226 } 2227 2228 static bool sock_use_custom_sol_socket(const struct socket *sock) 2229 { 2230 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2231 } 2232 2233 /* 2234 * Set a socket option. Because we don't know the option lengths we have 2235 * to pass the user mode parameter for the protocols to sort out. 2236 */ 2237 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2238 int optlen) 2239 { 2240 sockptr_t optval = USER_SOCKPTR(user_optval); 2241 char *kernel_optval = NULL; 2242 int err, fput_needed; 2243 struct socket *sock; 2244 2245 if (optlen < 0) 2246 return -EINVAL; 2247 2248 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2249 if (!sock) 2250 return err; 2251 2252 err = security_socket_setsockopt(sock, level, optname); 2253 if (err) 2254 goto out_put; 2255 2256 if (!in_compat_syscall()) 2257 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2258 user_optval, &optlen, 2259 &kernel_optval); 2260 if (err < 0) 2261 goto out_put; 2262 if (err > 0) { 2263 err = 0; 2264 goto out_put; 2265 } 2266 2267 if (kernel_optval) 2268 optval = KERNEL_SOCKPTR(kernel_optval); 2269 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2270 err = sock_setsockopt(sock, level, optname, optval, optlen); 2271 else if (unlikely(!sock->ops->setsockopt)) 2272 err = -EOPNOTSUPP; 2273 else 2274 err = sock->ops->setsockopt(sock, level, optname, optval, 2275 optlen); 2276 kfree(kernel_optval); 2277 out_put: 2278 fput_light(sock->file, fput_needed); 2279 return err; 2280 } 2281 2282 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2283 char __user *, optval, int, optlen) 2284 { 2285 return __sys_setsockopt(fd, level, optname, optval, optlen); 2286 } 2287 2288 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2289 int optname)); 2290 2291 /* 2292 * Get a socket option. Because we don't know the option lengths we have 2293 * to pass a user mode parameter for the protocols to sort out. 2294 */ 2295 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2296 int __user *optlen) 2297 { 2298 int max_optlen __maybe_unused; 2299 int err, fput_needed; 2300 struct socket *sock; 2301 2302 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2303 if (!sock) 2304 return err; 2305 2306 err = security_socket_getsockopt(sock, level, optname); 2307 if (err) 2308 goto out_put; 2309 2310 if (!in_compat_syscall()) 2311 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2312 2313 if (level == SOL_SOCKET) 2314 err = sock_getsockopt(sock, level, optname, optval, optlen); 2315 else if (unlikely(!sock->ops->getsockopt)) 2316 err = -EOPNOTSUPP; 2317 else 2318 err = sock->ops->getsockopt(sock, level, optname, optval, 2319 optlen); 2320 2321 if (!in_compat_syscall()) 2322 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2323 optval, optlen, max_optlen, 2324 err); 2325 out_put: 2326 fput_light(sock->file, fput_needed); 2327 return err; 2328 } 2329 2330 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2331 char __user *, optval, int __user *, optlen) 2332 { 2333 return __sys_getsockopt(fd, level, optname, optval, optlen); 2334 } 2335 2336 /* 2337 * Shutdown a socket. 2338 */ 2339 2340 int __sys_shutdown_sock(struct socket *sock, int how) 2341 { 2342 int err; 2343 2344 err = security_socket_shutdown(sock, how); 2345 if (!err) 2346 err = sock->ops->shutdown(sock, how); 2347 2348 return err; 2349 } 2350 2351 int __sys_shutdown(int fd, int how) 2352 { 2353 int err, fput_needed; 2354 struct socket *sock; 2355 2356 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2357 if (sock != NULL) { 2358 err = __sys_shutdown_sock(sock, how); 2359 fput_light(sock->file, fput_needed); 2360 } 2361 return err; 2362 } 2363 2364 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2365 { 2366 return __sys_shutdown(fd, how); 2367 } 2368 2369 /* A couple of helpful macros for getting the address of the 32/64 bit 2370 * fields which are the same type (int / unsigned) on our platforms. 2371 */ 2372 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2373 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2374 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2375 2376 struct used_address { 2377 struct sockaddr_storage name; 2378 unsigned int name_len; 2379 }; 2380 2381 int __copy_msghdr(struct msghdr *kmsg, 2382 struct user_msghdr *msg, 2383 struct sockaddr __user **save_addr) 2384 { 2385 ssize_t err; 2386 2387 kmsg->msg_control_is_user = true; 2388 kmsg->msg_get_inq = 0; 2389 kmsg->msg_control_user = msg->msg_control; 2390 kmsg->msg_controllen = msg->msg_controllen; 2391 kmsg->msg_flags = msg->msg_flags; 2392 2393 kmsg->msg_namelen = msg->msg_namelen; 2394 if (!msg->msg_name) 2395 kmsg->msg_namelen = 0; 2396 2397 if (kmsg->msg_namelen < 0) 2398 return -EINVAL; 2399 2400 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2401 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2402 2403 if (save_addr) 2404 *save_addr = msg->msg_name; 2405 2406 if (msg->msg_name && kmsg->msg_namelen) { 2407 if (!save_addr) { 2408 err = move_addr_to_kernel(msg->msg_name, 2409 kmsg->msg_namelen, 2410 kmsg->msg_name); 2411 if (err < 0) 2412 return err; 2413 } 2414 } else { 2415 kmsg->msg_name = NULL; 2416 kmsg->msg_namelen = 0; 2417 } 2418 2419 if (msg->msg_iovlen > UIO_MAXIOV) 2420 return -EMSGSIZE; 2421 2422 kmsg->msg_iocb = NULL; 2423 kmsg->msg_ubuf = NULL; 2424 return 0; 2425 } 2426 2427 static int copy_msghdr_from_user(struct msghdr *kmsg, 2428 struct user_msghdr __user *umsg, 2429 struct sockaddr __user **save_addr, 2430 struct iovec **iov) 2431 { 2432 struct user_msghdr msg; 2433 ssize_t err; 2434 2435 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2436 return -EFAULT; 2437 2438 err = __copy_msghdr(kmsg, &msg, save_addr); 2439 if (err) 2440 return err; 2441 2442 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2443 msg.msg_iov, msg.msg_iovlen, 2444 UIO_FASTIOV, iov, &kmsg->msg_iter); 2445 return err < 0 ? err : 0; 2446 } 2447 2448 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2449 unsigned int flags, struct used_address *used_address, 2450 unsigned int allowed_msghdr_flags) 2451 { 2452 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2453 __aligned(sizeof(__kernel_size_t)); 2454 /* 20 is size of ipv6_pktinfo */ 2455 unsigned char *ctl_buf = ctl; 2456 int ctl_len; 2457 ssize_t err; 2458 2459 err = -ENOBUFS; 2460 2461 if (msg_sys->msg_controllen > INT_MAX) 2462 goto out; 2463 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2464 ctl_len = msg_sys->msg_controllen; 2465 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2466 err = 2467 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2468 sizeof(ctl)); 2469 if (err) 2470 goto out; 2471 ctl_buf = msg_sys->msg_control; 2472 ctl_len = msg_sys->msg_controllen; 2473 } else if (ctl_len) { 2474 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2475 CMSG_ALIGN(sizeof(struct cmsghdr))); 2476 if (ctl_len > sizeof(ctl)) { 2477 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2478 if (ctl_buf == NULL) 2479 goto out; 2480 } 2481 err = -EFAULT; 2482 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2483 goto out_freectl; 2484 msg_sys->msg_control = ctl_buf; 2485 msg_sys->msg_control_is_user = false; 2486 } 2487 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2488 msg_sys->msg_flags = flags; 2489 2490 if (sock->file->f_flags & O_NONBLOCK) 2491 msg_sys->msg_flags |= MSG_DONTWAIT; 2492 /* 2493 * If this is sendmmsg() and current destination address is same as 2494 * previously succeeded address, omit asking LSM's decision. 2495 * used_address->name_len is initialized to UINT_MAX so that the first 2496 * destination address never matches. 2497 */ 2498 if (used_address && msg_sys->msg_name && 2499 used_address->name_len == msg_sys->msg_namelen && 2500 !memcmp(&used_address->name, msg_sys->msg_name, 2501 used_address->name_len)) { 2502 err = sock_sendmsg_nosec(sock, msg_sys); 2503 goto out_freectl; 2504 } 2505 err = sock_sendmsg(sock, msg_sys); 2506 /* 2507 * If this is sendmmsg() and sending to current destination address was 2508 * successful, remember it. 2509 */ 2510 if (used_address && err >= 0) { 2511 used_address->name_len = msg_sys->msg_namelen; 2512 if (msg_sys->msg_name) 2513 memcpy(&used_address->name, msg_sys->msg_name, 2514 used_address->name_len); 2515 } 2516 2517 out_freectl: 2518 if (ctl_buf != ctl) 2519 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2520 out: 2521 return err; 2522 } 2523 2524 int sendmsg_copy_msghdr(struct msghdr *msg, 2525 struct user_msghdr __user *umsg, unsigned flags, 2526 struct iovec **iov) 2527 { 2528 int err; 2529 2530 if (flags & MSG_CMSG_COMPAT) { 2531 struct compat_msghdr __user *msg_compat; 2532 2533 msg_compat = (struct compat_msghdr __user *) umsg; 2534 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2535 } else { 2536 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2537 } 2538 if (err < 0) 2539 return err; 2540 2541 return 0; 2542 } 2543 2544 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2545 struct msghdr *msg_sys, unsigned int flags, 2546 struct used_address *used_address, 2547 unsigned int allowed_msghdr_flags) 2548 { 2549 struct sockaddr_storage address; 2550 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2551 ssize_t err; 2552 2553 msg_sys->msg_name = &address; 2554 2555 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2556 if (err < 0) 2557 return err; 2558 2559 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2560 allowed_msghdr_flags); 2561 kfree(iov); 2562 return err; 2563 } 2564 2565 /* 2566 * BSD sendmsg interface 2567 */ 2568 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2569 unsigned int flags) 2570 { 2571 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2572 } 2573 2574 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2575 bool forbid_cmsg_compat) 2576 { 2577 int fput_needed, err; 2578 struct msghdr msg_sys; 2579 struct socket *sock; 2580 2581 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2582 return -EINVAL; 2583 2584 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2585 if (!sock) 2586 goto out; 2587 2588 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2589 2590 fput_light(sock->file, fput_needed); 2591 out: 2592 return err; 2593 } 2594 2595 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2596 { 2597 return __sys_sendmsg(fd, msg, flags, true); 2598 } 2599 2600 /* 2601 * Linux sendmmsg interface 2602 */ 2603 2604 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2605 unsigned int flags, bool forbid_cmsg_compat) 2606 { 2607 int fput_needed, err, datagrams; 2608 struct socket *sock; 2609 struct mmsghdr __user *entry; 2610 struct compat_mmsghdr __user *compat_entry; 2611 struct msghdr msg_sys; 2612 struct used_address used_address; 2613 unsigned int oflags = flags; 2614 2615 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2616 return -EINVAL; 2617 2618 if (vlen > UIO_MAXIOV) 2619 vlen = UIO_MAXIOV; 2620 2621 datagrams = 0; 2622 2623 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2624 if (!sock) 2625 return err; 2626 2627 used_address.name_len = UINT_MAX; 2628 entry = mmsg; 2629 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2630 err = 0; 2631 flags |= MSG_BATCH; 2632 2633 while (datagrams < vlen) { 2634 if (datagrams == vlen - 1) 2635 flags = oflags; 2636 2637 if (MSG_CMSG_COMPAT & flags) { 2638 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2639 &msg_sys, flags, &used_address, MSG_EOR); 2640 if (err < 0) 2641 break; 2642 err = __put_user(err, &compat_entry->msg_len); 2643 ++compat_entry; 2644 } else { 2645 err = ___sys_sendmsg(sock, 2646 (struct user_msghdr __user *)entry, 2647 &msg_sys, flags, &used_address, MSG_EOR); 2648 if (err < 0) 2649 break; 2650 err = put_user(err, &entry->msg_len); 2651 ++entry; 2652 } 2653 2654 if (err) 2655 break; 2656 ++datagrams; 2657 if (msg_data_left(&msg_sys)) 2658 break; 2659 cond_resched(); 2660 } 2661 2662 fput_light(sock->file, fput_needed); 2663 2664 /* We only return an error if no datagrams were able to be sent */ 2665 if (datagrams != 0) 2666 return datagrams; 2667 2668 return err; 2669 } 2670 2671 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2672 unsigned int, vlen, unsigned int, flags) 2673 { 2674 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2675 } 2676 2677 int recvmsg_copy_msghdr(struct msghdr *msg, 2678 struct user_msghdr __user *umsg, unsigned flags, 2679 struct sockaddr __user **uaddr, 2680 struct iovec **iov) 2681 { 2682 ssize_t err; 2683 2684 if (MSG_CMSG_COMPAT & flags) { 2685 struct compat_msghdr __user *msg_compat; 2686 2687 msg_compat = (struct compat_msghdr __user *) umsg; 2688 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2689 } else { 2690 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2691 } 2692 if (err < 0) 2693 return err; 2694 2695 return 0; 2696 } 2697 2698 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2699 struct user_msghdr __user *msg, 2700 struct sockaddr __user *uaddr, 2701 unsigned int flags, int nosec) 2702 { 2703 struct compat_msghdr __user *msg_compat = 2704 (struct compat_msghdr __user *) msg; 2705 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2706 struct sockaddr_storage addr; 2707 unsigned long cmsg_ptr; 2708 int len; 2709 ssize_t err; 2710 2711 msg_sys->msg_name = &addr; 2712 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2713 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2714 2715 /* We assume all kernel code knows the size of sockaddr_storage */ 2716 msg_sys->msg_namelen = 0; 2717 2718 if (sock->file->f_flags & O_NONBLOCK) 2719 flags |= MSG_DONTWAIT; 2720 2721 if (unlikely(nosec)) 2722 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2723 else 2724 err = sock_recvmsg(sock, msg_sys, flags); 2725 2726 if (err < 0) 2727 goto out; 2728 len = err; 2729 2730 if (uaddr != NULL) { 2731 err = move_addr_to_user(&addr, 2732 msg_sys->msg_namelen, uaddr, 2733 uaddr_len); 2734 if (err < 0) 2735 goto out; 2736 } 2737 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2738 COMPAT_FLAGS(msg)); 2739 if (err) 2740 goto out; 2741 if (MSG_CMSG_COMPAT & flags) 2742 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2743 &msg_compat->msg_controllen); 2744 else 2745 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2746 &msg->msg_controllen); 2747 if (err) 2748 goto out; 2749 err = len; 2750 out: 2751 return err; 2752 } 2753 2754 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2755 struct msghdr *msg_sys, unsigned int flags, int nosec) 2756 { 2757 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2758 /* user mode address pointers */ 2759 struct sockaddr __user *uaddr; 2760 ssize_t err; 2761 2762 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2763 if (err < 0) 2764 return err; 2765 2766 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2767 kfree(iov); 2768 return err; 2769 } 2770 2771 /* 2772 * BSD recvmsg interface 2773 */ 2774 2775 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2776 struct user_msghdr __user *umsg, 2777 struct sockaddr __user *uaddr, unsigned int flags) 2778 { 2779 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2780 } 2781 2782 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2783 bool forbid_cmsg_compat) 2784 { 2785 int fput_needed, err; 2786 struct msghdr msg_sys; 2787 struct socket *sock; 2788 2789 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2790 return -EINVAL; 2791 2792 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2793 if (!sock) 2794 goto out; 2795 2796 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2797 2798 fput_light(sock->file, fput_needed); 2799 out: 2800 return err; 2801 } 2802 2803 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2804 unsigned int, flags) 2805 { 2806 return __sys_recvmsg(fd, msg, flags, true); 2807 } 2808 2809 /* 2810 * Linux recvmmsg interface 2811 */ 2812 2813 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2814 unsigned int vlen, unsigned int flags, 2815 struct timespec64 *timeout) 2816 { 2817 int fput_needed, err, datagrams; 2818 struct socket *sock; 2819 struct mmsghdr __user *entry; 2820 struct compat_mmsghdr __user *compat_entry; 2821 struct msghdr msg_sys; 2822 struct timespec64 end_time; 2823 struct timespec64 timeout64; 2824 2825 if (timeout && 2826 poll_select_set_timeout(&end_time, timeout->tv_sec, 2827 timeout->tv_nsec)) 2828 return -EINVAL; 2829 2830 datagrams = 0; 2831 2832 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2833 if (!sock) 2834 return err; 2835 2836 if (likely(!(flags & MSG_ERRQUEUE))) { 2837 err = sock_error(sock->sk); 2838 if (err) { 2839 datagrams = err; 2840 goto out_put; 2841 } 2842 } 2843 2844 entry = mmsg; 2845 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2846 2847 while (datagrams < vlen) { 2848 /* 2849 * No need to ask LSM for more than the first datagram. 2850 */ 2851 if (MSG_CMSG_COMPAT & flags) { 2852 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2853 &msg_sys, flags & ~MSG_WAITFORONE, 2854 datagrams); 2855 if (err < 0) 2856 break; 2857 err = __put_user(err, &compat_entry->msg_len); 2858 ++compat_entry; 2859 } else { 2860 err = ___sys_recvmsg(sock, 2861 (struct user_msghdr __user *)entry, 2862 &msg_sys, flags & ~MSG_WAITFORONE, 2863 datagrams); 2864 if (err < 0) 2865 break; 2866 err = put_user(err, &entry->msg_len); 2867 ++entry; 2868 } 2869 2870 if (err) 2871 break; 2872 ++datagrams; 2873 2874 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2875 if (flags & MSG_WAITFORONE) 2876 flags |= MSG_DONTWAIT; 2877 2878 if (timeout) { 2879 ktime_get_ts64(&timeout64); 2880 *timeout = timespec64_sub(end_time, timeout64); 2881 if (timeout->tv_sec < 0) { 2882 timeout->tv_sec = timeout->tv_nsec = 0; 2883 break; 2884 } 2885 2886 /* Timeout, return less than vlen datagrams */ 2887 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2888 break; 2889 } 2890 2891 /* Out of band data, return right away */ 2892 if (msg_sys.msg_flags & MSG_OOB) 2893 break; 2894 cond_resched(); 2895 } 2896 2897 if (err == 0) 2898 goto out_put; 2899 2900 if (datagrams == 0) { 2901 datagrams = err; 2902 goto out_put; 2903 } 2904 2905 /* 2906 * We may return less entries than requested (vlen) if the 2907 * sock is non block and there aren't enough datagrams... 2908 */ 2909 if (err != -EAGAIN) { 2910 /* 2911 * ... or if recvmsg returns an error after we 2912 * received some datagrams, where we record the 2913 * error to return on the next call or if the 2914 * app asks about it using getsockopt(SO_ERROR). 2915 */ 2916 WRITE_ONCE(sock->sk->sk_err, -err); 2917 } 2918 out_put: 2919 fput_light(sock->file, fput_needed); 2920 2921 return datagrams; 2922 } 2923 2924 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2925 unsigned int vlen, unsigned int flags, 2926 struct __kernel_timespec __user *timeout, 2927 struct old_timespec32 __user *timeout32) 2928 { 2929 int datagrams; 2930 struct timespec64 timeout_sys; 2931 2932 if (timeout && get_timespec64(&timeout_sys, timeout)) 2933 return -EFAULT; 2934 2935 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2936 return -EFAULT; 2937 2938 if (!timeout && !timeout32) 2939 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2940 2941 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2942 2943 if (datagrams <= 0) 2944 return datagrams; 2945 2946 if (timeout && put_timespec64(&timeout_sys, timeout)) 2947 datagrams = -EFAULT; 2948 2949 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2950 datagrams = -EFAULT; 2951 2952 return datagrams; 2953 } 2954 2955 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2956 unsigned int, vlen, unsigned int, flags, 2957 struct __kernel_timespec __user *, timeout) 2958 { 2959 if (flags & MSG_CMSG_COMPAT) 2960 return -EINVAL; 2961 2962 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2963 } 2964 2965 #ifdef CONFIG_COMPAT_32BIT_TIME 2966 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2967 unsigned int, vlen, unsigned int, flags, 2968 struct old_timespec32 __user *, timeout) 2969 { 2970 if (flags & MSG_CMSG_COMPAT) 2971 return -EINVAL; 2972 2973 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2974 } 2975 #endif 2976 2977 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2978 /* Argument list sizes for sys_socketcall */ 2979 #define AL(x) ((x) * sizeof(unsigned long)) 2980 static const unsigned char nargs[21] = { 2981 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2982 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2983 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2984 AL(4), AL(5), AL(4) 2985 }; 2986 2987 #undef AL 2988 2989 /* 2990 * System call vectors. 2991 * 2992 * Argument checking cleaned up. Saved 20% in size. 2993 * This function doesn't need to set the kernel lock because 2994 * it is set by the callees. 2995 */ 2996 2997 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2998 { 2999 unsigned long a[AUDITSC_ARGS]; 3000 unsigned long a0, a1; 3001 int err; 3002 unsigned int len; 3003 3004 if (call < 1 || call > SYS_SENDMMSG) 3005 return -EINVAL; 3006 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3007 3008 len = nargs[call]; 3009 if (len > sizeof(a)) 3010 return -EINVAL; 3011 3012 /* copy_from_user should be SMP safe. */ 3013 if (copy_from_user(a, args, len)) 3014 return -EFAULT; 3015 3016 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3017 if (err) 3018 return err; 3019 3020 a0 = a[0]; 3021 a1 = a[1]; 3022 3023 switch (call) { 3024 case SYS_SOCKET: 3025 err = __sys_socket(a0, a1, a[2]); 3026 break; 3027 case SYS_BIND: 3028 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3029 break; 3030 case SYS_CONNECT: 3031 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3032 break; 3033 case SYS_LISTEN: 3034 err = __sys_listen(a0, a1); 3035 break; 3036 case SYS_ACCEPT: 3037 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3038 (int __user *)a[2], 0); 3039 break; 3040 case SYS_GETSOCKNAME: 3041 err = 3042 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3043 (int __user *)a[2]); 3044 break; 3045 case SYS_GETPEERNAME: 3046 err = 3047 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3048 (int __user *)a[2]); 3049 break; 3050 case SYS_SOCKETPAIR: 3051 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3052 break; 3053 case SYS_SEND: 3054 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3055 NULL, 0); 3056 break; 3057 case SYS_SENDTO: 3058 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3059 (struct sockaddr __user *)a[4], a[5]); 3060 break; 3061 case SYS_RECV: 3062 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3063 NULL, NULL); 3064 break; 3065 case SYS_RECVFROM: 3066 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3067 (struct sockaddr __user *)a[4], 3068 (int __user *)a[5]); 3069 break; 3070 case SYS_SHUTDOWN: 3071 err = __sys_shutdown(a0, a1); 3072 break; 3073 case SYS_SETSOCKOPT: 3074 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3075 a[4]); 3076 break; 3077 case SYS_GETSOCKOPT: 3078 err = 3079 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3080 (int __user *)a[4]); 3081 break; 3082 case SYS_SENDMSG: 3083 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3084 a[2], true); 3085 break; 3086 case SYS_SENDMMSG: 3087 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3088 a[3], true); 3089 break; 3090 case SYS_RECVMSG: 3091 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3092 a[2], true); 3093 break; 3094 case SYS_RECVMMSG: 3095 if (IS_ENABLED(CONFIG_64BIT)) 3096 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3097 a[2], a[3], 3098 (struct __kernel_timespec __user *)a[4], 3099 NULL); 3100 else 3101 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3102 a[2], a[3], NULL, 3103 (struct old_timespec32 __user *)a[4]); 3104 break; 3105 case SYS_ACCEPT4: 3106 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3107 (int __user *)a[2], a[3]); 3108 break; 3109 default: 3110 err = -EINVAL; 3111 break; 3112 } 3113 return err; 3114 } 3115 3116 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3117 3118 /** 3119 * sock_register - add a socket protocol handler 3120 * @ops: description of protocol 3121 * 3122 * This function is called by a protocol handler that wants to 3123 * advertise its address family, and have it linked into the 3124 * socket interface. The value ops->family corresponds to the 3125 * socket system call protocol family. 3126 */ 3127 int sock_register(const struct net_proto_family *ops) 3128 { 3129 int err; 3130 3131 if (ops->family >= NPROTO) { 3132 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3133 return -ENOBUFS; 3134 } 3135 3136 spin_lock(&net_family_lock); 3137 if (rcu_dereference_protected(net_families[ops->family], 3138 lockdep_is_held(&net_family_lock))) 3139 err = -EEXIST; 3140 else { 3141 rcu_assign_pointer(net_families[ops->family], ops); 3142 err = 0; 3143 } 3144 spin_unlock(&net_family_lock); 3145 3146 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3147 return err; 3148 } 3149 EXPORT_SYMBOL(sock_register); 3150 3151 /** 3152 * sock_unregister - remove a protocol handler 3153 * @family: protocol family to remove 3154 * 3155 * This function is called by a protocol handler that wants to 3156 * remove its address family, and have it unlinked from the 3157 * new socket creation. 3158 * 3159 * If protocol handler is a module, then it can use module reference 3160 * counts to protect against new references. If protocol handler is not 3161 * a module then it needs to provide its own protection in 3162 * the ops->create routine. 3163 */ 3164 void sock_unregister(int family) 3165 { 3166 BUG_ON(family < 0 || family >= NPROTO); 3167 3168 spin_lock(&net_family_lock); 3169 RCU_INIT_POINTER(net_families[family], NULL); 3170 spin_unlock(&net_family_lock); 3171 3172 synchronize_rcu(); 3173 3174 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3175 } 3176 EXPORT_SYMBOL(sock_unregister); 3177 3178 bool sock_is_registered(int family) 3179 { 3180 return family < NPROTO && rcu_access_pointer(net_families[family]); 3181 } 3182 3183 static int __init sock_init(void) 3184 { 3185 int err; 3186 /* 3187 * Initialize the network sysctl infrastructure. 3188 */ 3189 err = net_sysctl_init(); 3190 if (err) 3191 goto out; 3192 3193 /* 3194 * Initialize skbuff SLAB cache 3195 */ 3196 skb_init(); 3197 3198 /* 3199 * Initialize the protocols module. 3200 */ 3201 3202 init_inodecache(); 3203 3204 err = register_filesystem(&sock_fs_type); 3205 if (err) 3206 goto out; 3207 sock_mnt = kern_mount(&sock_fs_type); 3208 if (IS_ERR(sock_mnt)) { 3209 err = PTR_ERR(sock_mnt); 3210 goto out_mount; 3211 } 3212 3213 /* The real protocol initialization is performed in later initcalls. 3214 */ 3215 3216 #ifdef CONFIG_NETFILTER 3217 err = netfilter_init(); 3218 if (err) 3219 goto out; 3220 #endif 3221 3222 ptp_classifier_init(); 3223 3224 out: 3225 return err; 3226 3227 out_mount: 3228 unregister_filesystem(&sock_fs_type); 3229 goto out; 3230 } 3231 3232 core_initcall(sock_init); /* early initcall */ 3233 3234 #ifdef CONFIG_PROC_FS 3235 void socket_seq_show(struct seq_file *seq) 3236 { 3237 seq_printf(seq, "sockets: used %d\n", 3238 sock_inuse_get(seq->private)); 3239 } 3240 #endif /* CONFIG_PROC_FS */ 3241 3242 /* Handle the fact that while struct ifreq has the same *layout* on 3243 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3244 * which are handled elsewhere, it still has different *size* due to 3245 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3246 * resulting in struct ifreq being 32 and 40 bytes respectively). 3247 * As a result, if the struct happens to be at the end of a page and 3248 * the next page isn't readable/writable, we get a fault. To prevent 3249 * that, copy back and forth to the full size. 3250 */ 3251 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3252 { 3253 if (in_compat_syscall()) { 3254 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3255 3256 memset(ifr, 0, sizeof(*ifr)); 3257 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3258 return -EFAULT; 3259 3260 if (ifrdata) 3261 *ifrdata = compat_ptr(ifr32->ifr_data); 3262 3263 return 0; 3264 } 3265 3266 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3267 return -EFAULT; 3268 3269 if (ifrdata) 3270 *ifrdata = ifr->ifr_data; 3271 3272 return 0; 3273 } 3274 EXPORT_SYMBOL(get_user_ifreq); 3275 3276 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3277 { 3278 size_t size = sizeof(*ifr); 3279 3280 if (in_compat_syscall()) 3281 size = sizeof(struct compat_ifreq); 3282 3283 if (copy_to_user(arg, ifr, size)) 3284 return -EFAULT; 3285 3286 return 0; 3287 } 3288 EXPORT_SYMBOL(put_user_ifreq); 3289 3290 #ifdef CONFIG_COMPAT 3291 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3292 { 3293 compat_uptr_t uptr32; 3294 struct ifreq ifr; 3295 void __user *saved; 3296 int err; 3297 3298 if (get_user_ifreq(&ifr, NULL, uifr32)) 3299 return -EFAULT; 3300 3301 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3302 return -EFAULT; 3303 3304 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3305 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3306 3307 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3308 if (!err) { 3309 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3310 if (put_user_ifreq(&ifr, uifr32)) 3311 err = -EFAULT; 3312 } 3313 return err; 3314 } 3315 3316 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3317 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3318 struct compat_ifreq __user *u_ifreq32) 3319 { 3320 struct ifreq ifreq; 3321 void __user *data; 3322 3323 if (!is_socket_ioctl_cmd(cmd)) 3324 return -ENOTTY; 3325 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3326 return -EFAULT; 3327 ifreq.ifr_data = data; 3328 3329 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3330 } 3331 3332 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3333 unsigned int cmd, unsigned long arg) 3334 { 3335 void __user *argp = compat_ptr(arg); 3336 struct sock *sk = sock->sk; 3337 struct net *net = sock_net(sk); 3338 3339 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3340 return sock_ioctl(file, cmd, (unsigned long)argp); 3341 3342 switch (cmd) { 3343 case SIOCWANDEV: 3344 return compat_siocwandev(net, argp); 3345 case SIOCGSTAMP_OLD: 3346 case SIOCGSTAMPNS_OLD: 3347 if (!sock->ops->gettstamp) 3348 return -ENOIOCTLCMD; 3349 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3350 !COMPAT_USE_64BIT_TIME); 3351 3352 case SIOCETHTOOL: 3353 case SIOCBONDSLAVEINFOQUERY: 3354 case SIOCBONDINFOQUERY: 3355 case SIOCSHWTSTAMP: 3356 case SIOCGHWTSTAMP: 3357 return compat_ifr_data_ioctl(net, cmd, argp); 3358 3359 case FIOSETOWN: 3360 case SIOCSPGRP: 3361 case FIOGETOWN: 3362 case SIOCGPGRP: 3363 case SIOCBRADDBR: 3364 case SIOCBRDELBR: 3365 case SIOCGIFVLAN: 3366 case SIOCSIFVLAN: 3367 case SIOCGSKNS: 3368 case SIOCGSTAMP_NEW: 3369 case SIOCGSTAMPNS_NEW: 3370 case SIOCGIFCONF: 3371 case SIOCSIFBR: 3372 case SIOCGIFBR: 3373 return sock_ioctl(file, cmd, arg); 3374 3375 case SIOCGIFFLAGS: 3376 case SIOCSIFFLAGS: 3377 case SIOCGIFMAP: 3378 case SIOCSIFMAP: 3379 case SIOCGIFMETRIC: 3380 case SIOCSIFMETRIC: 3381 case SIOCGIFMTU: 3382 case SIOCSIFMTU: 3383 case SIOCGIFMEM: 3384 case SIOCSIFMEM: 3385 case SIOCGIFHWADDR: 3386 case SIOCSIFHWADDR: 3387 case SIOCADDMULTI: 3388 case SIOCDELMULTI: 3389 case SIOCGIFINDEX: 3390 case SIOCGIFADDR: 3391 case SIOCSIFADDR: 3392 case SIOCSIFHWBROADCAST: 3393 case SIOCDIFADDR: 3394 case SIOCGIFBRDADDR: 3395 case SIOCSIFBRDADDR: 3396 case SIOCGIFDSTADDR: 3397 case SIOCSIFDSTADDR: 3398 case SIOCGIFNETMASK: 3399 case SIOCSIFNETMASK: 3400 case SIOCSIFPFLAGS: 3401 case SIOCGIFPFLAGS: 3402 case SIOCGIFTXQLEN: 3403 case SIOCSIFTXQLEN: 3404 case SIOCBRADDIF: 3405 case SIOCBRDELIF: 3406 case SIOCGIFNAME: 3407 case SIOCSIFNAME: 3408 case SIOCGMIIPHY: 3409 case SIOCGMIIREG: 3410 case SIOCSMIIREG: 3411 case SIOCBONDENSLAVE: 3412 case SIOCBONDRELEASE: 3413 case SIOCBONDSETHWADDR: 3414 case SIOCBONDCHANGEACTIVE: 3415 case SIOCSARP: 3416 case SIOCGARP: 3417 case SIOCDARP: 3418 case SIOCOUTQ: 3419 case SIOCOUTQNSD: 3420 case SIOCATMARK: 3421 return sock_do_ioctl(net, sock, cmd, arg); 3422 } 3423 3424 return -ENOIOCTLCMD; 3425 } 3426 3427 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3428 unsigned long arg) 3429 { 3430 struct socket *sock = file->private_data; 3431 int ret = -ENOIOCTLCMD; 3432 struct sock *sk; 3433 struct net *net; 3434 3435 sk = sock->sk; 3436 net = sock_net(sk); 3437 3438 if (sock->ops->compat_ioctl) 3439 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3440 3441 if (ret == -ENOIOCTLCMD && 3442 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3443 ret = compat_wext_handle_ioctl(net, cmd, arg); 3444 3445 if (ret == -ENOIOCTLCMD) 3446 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3447 3448 return ret; 3449 } 3450 #endif 3451 3452 /** 3453 * kernel_bind - bind an address to a socket (kernel space) 3454 * @sock: socket 3455 * @addr: address 3456 * @addrlen: length of address 3457 * 3458 * Returns 0 or an error. 3459 */ 3460 3461 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3462 { 3463 return sock->ops->bind(sock, addr, addrlen); 3464 } 3465 EXPORT_SYMBOL(kernel_bind); 3466 3467 /** 3468 * kernel_listen - move socket to listening state (kernel space) 3469 * @sock: socket 3470 * @backlog: pending connections queue size 3471 * 3472 * Returns 0 or an error. 3473 */ 3474 3475 int kernel_listen(struct socket *sock, int backlog) 3476 { 3477 return sock->ops->listen(sock, backlog); 3478 } 3479 EXPORT_SYMBOL(kernel_listen); 3480 3481 /** 3482 * kernel_accept - accept a connection (kernel space) 3483 * @sock: listening socket 3484 * @newsock: new connected socket 3485 * @flags: flags 3486 * 3487 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3488 * If it fails, @newsock is guaranteed to be %NULL. 3489 * Returns 0 or an error. 3490 */ 3491 3492 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3493 { 3494 struct sock *sk = sock->sk; 3495 int err; 3496 3497 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3498 newsock); 3499 if (err < 0) 3500 goto done; 3501 3502 err = sock->ops->accept(sock, *newsock, flags, true); 3503 if (err < 0) { 3504 sock_release(*newsock); 3505 *newsock = NULL; 3506 goto done; 3507 } 3508 3509 (*newsock)->ops = sock->ops; 3510 __module_get((*newsock)->ops->owner); 3511 3512 done: 3513 return err; 3514 } 3515 EXPORT_SYMBOL(kernel_accept); 3516 3517 /** 3518 * kernel_connect - connect a socket (kernel space) 3519 * @sock: socket 3520 * @addr: address 3521 * @addrlen: address length 3522 * @flags: flags (O_NONBLOCK, ...) 3523 * 3524 * For datagram sockets, @addr is the address to which datagrams are sent 3525 * by default, and the only address from which datagrams are received. 3526 * For stream sockets, attempts to connect to @addr. 3527 * Returns 0 or an error code. 3528 */ 3529 3530 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3531 int flags) 3532 { 3533 return sock->ops->connect(sock, addr, addrlen, flags); 3534 } 3535 EXPORT_SYMBOL(kernel_connect); 3536 3537 /** 3538 * kernel_getsockname - get the address which the socket is bound (kernel space) 3539 * @sock: socket 3540 * @addr: address holder 3541 * 3542 * Fills the @addr pointer with the address which the socket is bound. 3543 * Returns the length of the address in bytes or an error code. 3544 */ 3545 3546 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3547 { 3548 return sock->ops->getname(sock, addr, 0); 3549 } 3550 EXPORT_SYMBOL(kernel_getsockname); 3551 3552 /** 3553 * kernel_getpeername - get the address which the socket is connected (kernel space) 3554 * @sock: socket 3555 * @addr: address holder 3556 * 3557 * Fills the @addr pointer with the address which the socket is connected. 3558 * Returns the length of the address in bytes or an error code. 3559 */ 3560 3561 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3562 { 3563 return sock->ops->getname(sock, addr, 1); 3564 } 3565 EXPORT_SYMBOL(kernel_getpeername); 3566 3567 /** 3568 * kernel_sendpage - send a &page through a socket (kernel space) 3569 * @sock: socket 3570 * @page: page 3571 * @offset: page offset 3572 * @size: total size in bytes 3573 * @flags: flags (MSG_DONTWAIT, ...) 3574 * 3575 * Returns the total amount sent in bytes or an error. 3576 */ 3577 3578 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3579 size_t size, int flags) 3580 { 3581 if (sock->ops->sendpage) { 3582 /* Warn in case the improper page to zero-copy send */ 3583 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3584 return sock->ops->sendpage(sock, page, offset, size, flags); 3585 } 3586 return sock_no_sendpage(sock, page, offset, size, flags); 3587 } 3588 EXPORT_SYMBOL(kernel_sendpage); 3589 3590 /** 3591 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3592 * @sk: sock 3593 * @page: page 3594 * @offset: page offset 3595 * @size: total size in bytes 3596 * @flags: flags (MSG_DONTWAIT, ...) 3597 * 3598 * Returns the total amount sent in bytes or an error. 3599 * Caller must hold @sk. 3600 */ 3601 3602 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3603 size_t size, int flags) 3604 { 3605 struct socket *sock = sk->sk_socket; 3606 3607 if (sock->ops->sendpage_locked) 3608 return sock->ops->sendpage_locked(sk, page, offset, size, 3609 flags); 3610 3611 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3612 } 3613 EXPORT_SYMBOL(kernel_sendpage_locked); 3614 3615 /** 3616 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3617 * @sock: socket 3618 * @how: connection part 3619 * 3620 * Returns 0 or an error. 3621 */ 3622 3623 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3624 { 3625 return sock->ops->shutdown(sock, how); 3626 } 3627 EXPORT_SYMBOL(kernel_sock_shutdown); 3628 3629 /** 3630 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3631 * @sk: socket 3632 * 3633 * This routine returns the IP overhead imposed by a socket i.e. 3634 * the length of the underlying IP header, depending on whether 3635 * this is an IPv4 or IPv6 socket and the length from IP options turned 3636 * on at the socket. Assumes that the caller has a lock on the socket. 3637 */ 3638 3639 u32 kernel_sock_ip_overhead(struct sock *sk) 3640 { 3641 struct inet_sock *inet; 3642 struct ip_options_rcu *opt; 3643 u32 overhead = 0; 3644 #if IS_ENABLED(CONFIG_IPV6) 3645 struct ipv6_pinfo *np; 3646 struct ipv6_txoptions *optv6 = NULL; 3647 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3648 3649 if (!sk) 3650 return overhead; 3651 3652 switch (sk->sk_family) { 3653 case AF_INET: 3654 inet = inet_sk(sk); 3655 overhead += sizeof(struct iphdr); 3656 opt = rcu_dereference_protected(inet->inet_opt, 3657 sock_owned_by_user(sk)); 3658 if (opt) 3659 overhead += opt->opt.optlen; 3660 return overhead; 3661 #if IS_ENABLED(CONFIG_IPV6) 3662 case AF_INET6: 3663 np = inet6_sk(sk); 3664 overhead += sizeof(struct ipv6hdr); 3665 if (np) 3666 optv6 = rcu_dereference_protected(np->opt, 3667 sock_owned_by_user(sk)); 3668 if (optv6) 3669 overhead += (optv6->opt_flen + optv6->opt_nflen); 3670 return overhead; 3671 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3672 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3673 return overhead; 3674 } 3675 } 3676 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3677