1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 388 { 389 struct file *file; 390 391 if (!dname) 392 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 393 394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 395 O_RDWR | (flags & O_NONBLOCK), 396 &socket_file_ops); 397 if (IS_ERR(file)) { 398 sock_release(sock); 399 return file; 400 } 401 402 sock->file = file; 403 file->private_data = sock; 404 return file; 405 } 406 EXPORT_SYMBOL(sock_alloc_file); 407 408 static int sock_map_fd(struct socket *sock, int flags) 409 { 410 struct file *newfile; 411 int fd = get_unused_fd_flags(flags); 412 if (unlikely(fd < 0)) { 413 sock_release(sock); 414 return fd; 415 } 416 417 newfile = sock_alloc_file(sock, flags, NULL); 418 if (likely(!IS_ERR(newfile))) { 419 fd_install(fd, newfile); 420 return fd; 421 } 422 423 put_unused_fd(fd); 424 return PTR_ERR(newfile); 425 } 426 427 struct socket *sock_from_file(struct file *file, int *err) 428 { 429 if (file->f_op == &socket_file_ops) 430 return file->private_data; /* set in sock_map_fd */ 431 432 *err = -ENOTSOCK; 433 return NULL; 434 } 435 EXPORT_SYMBOL(sock_from_file); 436 437 /** 438 * sockfd_lookup - Go from a file number to its socket slot 439 * @fd: file handle 440 * @err: pointer to an error code return 441 * 442 * The file handle passed in is locked and the socket it is bound 443 * to is returned. If an error occurs the err pointer is overwritten 444 * with a negative errno code and NULL is returned. The function checks 445 * for both invalid handles and passing a handle which is not a socket. 446 * 447 * On a success the socket object pointer is returned. 448 */ 449 450 struct socket *sockfd_lookup(int fd, int *err) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 file = fget(fd); 456 if (!file) { 457 *err = -EBADF; 458 return NULL; 459 } 460 461 sock = sock_from_file(file, err); 462 if (!sock) 463 fput(file); 464 return sock; 465 } 466 EXPORT_SYMBOL(sockfd_lookup); 467 468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 469 { 470 struct fd f = fdget(fd); 471 struct socket *sock; 472 473 *err = -EBADF; 474 if (f.file) { 475 sock = sock_from_file(f.file, err); 476 if (likely(sock)) { 477 *fput_needed = f.flags; 478 return sock; 479 } 480 fdput(f); 481 } 482 return NULL; 483 } 484 485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 486 size_t size) 487 { 488 ssize_t len; 489 ssize_t used = 0; 490 491 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 492 if (len < 0) 493 return len; 494 used += len; 495 if (buffer) { 496 if (size < used) 497 return -ERANGE; 498 buffer += len; 499 } 500 501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 502 used += len; 503 if (buffer) { 504 if (size < used) 505 return -ERANGE; 506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 507 buffer += len; 508 } 509 510 return used; 511 } 512 513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 514 { 515 int err = simple_setattr(dentry, iattr); 516 517 if (!err && (iattr->ia_valid & ATTR_UID)) { 518 struct socket *sock = SOCKET_I(d_inode(dentry)); 519 520 if (sock->sk) 521 sock->sk->sk_uid = iattr->ia_uid; 522 else 523 err = -ENOENT; 524 } 525 526 return err; 527 } 528 529 static const struct inode_operations sockfs_inode_ops = { 530 .listxattr = sockfs_listxattr, 531 .setattr = sockfs_setattr, 532 }; 533 534 /** 535 * sock_alloc - allocate a socket 536 * 537 * Allocate a new inode and socket object. The two are bound together 538 * and initialised. The socket is then returned. If we are out of inodes 539 * NULL is returned. 540 */ 541 542 struct socket *sock_alloc(void) 543 { 544 struct inode *inode; 545 struct socket *sock; 546 547 inode = new_inode_pseudo(sock_mnt->mnt_sb); 548 if (!inode) 549 return NULL; 550 551 sock = SOCKET_I(inode); 552 553 inode->i_ino = get_next_ino(); 554 inode->i_mode = S_IFSOCK | S_IRWXUGO; 555 inode->i_uid = current_fsuid(); 556 inode->i_gid = current_fsgid(); 557 inode->i_op = &sockfs_inode_ops; 558 559 return sock; 560 } 561 EXPORT_SYMBOL(sock_alloc); 562 563 /** 564 * sock_release - close a socket 565 * @sock: socket to close 566 * 567 * The socket is released from the protocol stack if it has a release 568 * callback, and the inode is then released if the socket is bound to 569 * an inode not a file. 570 */ 571 572 static void __sock_release(struct socket *sock, struct inode *inode) 573 { 574 if (sock->ops) { 575 struct module *owner = sock->ops->owner; 576 577 if (inode) 578 inode_lock(inode); 579 sock->ops->release(sock); 580 if (inode) 581 inode_unlock(inode); 582 sock->ops = NULL; 583 module_put(owner); 584 } 585 586 if (sock->wq->fasync_list) 587 pr_err("%s: fasync list not empty!\n", __func__); 588 589 if (!sock->file) { 590 iput(SOCK_INODE(sock)); 591 return; 592 } 593 sock->file = NULL; 594 } 595 596 void sock_release(struct socket *sock) 597 { 598 __sock_release(sock, NULL); 599 } 600 EXPORT_SYMBOL(sock_release); 601 602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 603 { 604 u8 flags = *tx_flags; 605 606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 607 flags |= SKBTX_HW_TSTAMP; 608 609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 610 flags |= SKBTX_SW_TSTAMP; 611 612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 613 flags |= SKBTX_SCHED_TSTAMP; 614 615 *tx_flags = flags; 616 } 617 EXPORT_SYMBOL(__sock_tx_timestamp); 618 619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 620 { 621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 622 BUG_ON(ret == -EIOCBQUEUED); 623 return ret; 624 } 625 626 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 627 { 628 int err = security_socket_sendmsg(sock, msg, 629 msg_data_left(msg)); 630 631 return err ?: sock_sendmsg_nosec(sock, msg); 632 } 633 EXPORT_SYMBOL(sock_sendmsg); 634 635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 636 struct kvec *vec, size_t num, size_t size) 637 { 638 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 639 return sock_sendmsg(sock, msg); 640 } 641 EXPORT_SYMBOL(kernel_sendmsg); 642 643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 644 struct kvec *vec, size_t num, size_t size) 645 { 646 struct socket *sock = sk->sk_socket; 647 648 if (!sock->ops->sendmsg_locked) 649 return sock_no_sendmsg_locked(sk, msg, size); 650 651 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 652 653 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 654 } 655 EXPORT_SYMBOL(kernel_sendmsg_locked); 656 657 static bool skb_is_err_queue(const struct sk_buff *skb) 658 { 659 /* pkt_type of skbs enqueued on the error queue are set to 660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 661 * in recvmsg, since skbs received on a local socket will never 662 * have a pkt_type of PACKET_OUTGOING. 663 */ 664 return skb->pkt_type == PACKET_OUTGOING; 665 } 666 667 /* On transmit, software and hardware timestamps are returned independently. 668 * As the two skb clones share the hardware timestamp, which may be updated 669 * before the software timestamp is received, a hardware TX timestamp may be 670 * returned only if there is no software TX timestamp. Ignore false software 671 * timestamps, which may be made in the __sock_recv_timestamp() call when the 672 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 673 * hardware timestamp. 674 */ 675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 676 { 677 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 678 } 679 680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 681 { 682 struct scm_ts_pktinfo ts_pktinfo; 683 struct net_device *orig_dev; 684 685 if (!skb_mac_header_was_set(skb)) 686 return; 687 688 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 689 690 rcu_read_lock(); 691 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 692 if (orig_dev) 693 ts_pktinfo.if_index = orig_dev->ifindex; 694 rcu_read_unlock(); 695 696 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 697 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 698 sizeof(ts_pktinfo), &ts_pktinfo); 699 } 700 701 /* 702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 703 */ 704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 705 struct sk_buff *skb) 706 { 707 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 708 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 709 struct scm_timestamping_internal tss; 710 711 int empty = 1, false_tstamp = 0; 712 struct skb_shared_hwtstamps *shhwtstamps = 713 skb_hwtstamps(skb); 714 715 /* Race occurred between timestamp enabling and packet 716 receiving. Fill in the current time for now. */ 717 if (need_software_tstamp && skb->tstamp == 0) { 718 __net_timestamp(skb); 719 false_tstamp = 1; 720 } 721 722 if (need_software_tstamp) { 723 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 724 if (new_tstamp) { 725 struct __kernel_sock_timeval tv; 726 727 skb_get_new_timestamp(skb, &tv); 728 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 729 sizeof(tv), &tv); 730 } else { 731 struct __kernel_old_timeval tv; 732 733 skb_get_timestamp(skb, &tv); 734 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 735 sizeof(tv), &tv); 736 } 737 } else { 738 if (new_tstamp) { 739 struct __kernel_timespec ts; 740 741 skb_get_new_timestampns(skb, &ts); 742 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 743 sizeof(ts), &ts); 744 } else { 745 struct timespec ts; 746 747 skb_get_timestampns(skb, &ts); 748 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 749 sizeof(ts), &ts); 750 } 751 } 752 } 753 754 memset(&tss, 0, sizeof(tss)); 755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 756 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 757 empty = 0; 758 if (shhwtstamps && 759 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 760 !skb_is_swtx_tstamp(skb, false_tstamp) && 761 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 762 empty = 0; 763 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 764 !skb_is_err_queue(skb)) 765 put_ts_pktinfo(msg, skb); 766 } 767 if (!empty) { 768 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 769 put_cmsg_scm_timestamping64(msg, &tss); 770 else 771 put_cmsg_scm_timestamping(msg, &tss); 772 773 if (skb_is_err_queue(skb) && skb->len && 774 SKB_EXT_ERR(skb)->opt_stats) 775 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 776 skb->len, skb->data); 777 } 778 } 779 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 780 781 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 782 struct sk_buff *skb) 783 { 784 int ack; 785 786 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 787 return; 788 if (!skb->wifi_acked_valid) 789 return; 790 791 ack = skb->wifi_acked; 792 793 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 794 } 795 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 796 797 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 798 struct sk_buff *skb) 799 { 800 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 801 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 802 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 803 } 804 805 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 806 struct sk_buff *skb) 807 { 808 sock_recv_timestamp(msg, sk, skb); 809 sock_recv_drops(msg, sk, skb); 810 } 811 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 812 813 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 814 int flags) 815 { 816 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 817 } 818 819 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 820 { 821 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 822 823 return err ?: sock_recvmsg_nosec(sock, msg, flags); 824 } 825 EXPORT_SYMBOL(sock_recvmsg); 826 827 /** 828 * kernel_recvmsg - Receive a message from a socket (kernel space) 829 * @sock: The socket to receive the message from 830 * @msg: Received message 831 * @vec: Input s/g array for message data 832 * @num: Size of input s/g array 833 * @size: Number of bytes to read 834 * @flags: Message flags (MSG_DONTWAIT, etc...) 835 * 836 * On return the msg structure contains the scatter/gather array passed in the 837 * vec argument. The array is modified so that it consists of the unfilled 838 * portion of the original array. 839 * 840 * The returned value is the total number of bytes received, or an error. 841 */ 842 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 843 struct kvec *vec, size_t num, size_t size, int flags) 844 { 845 mm_segment_t oldfs = get_fs(); 846 int result; 847 848 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 849 set_fs(KERNEL_DS); 850 result = sock_recvmsg(sock, msg, flags); 851 set_fs(oldfs); 852 return result; 853 } 854 EXPORT_SYMBOL(kernel_recvmsg); 855 856 static ssize_t sock_sendpage(struct file *file, struct page *page, 857 int offset, size_t size, loff_t *ppos, int more) 858 { 859 struct socket *sock; 860 int flags; 861 862 sock = file->private_data; 863 864 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 865 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 866 flags |= more; 867 868 return kernel_sendpage(sock, page, offset, size, flags); 869 } 870 871 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 872 struct pipe_inode_info *pipe, size_t len, 873 unsigned int flags) 874 { 875 struct socket *sock = file->private_data; 876 877 if (unlikely(!sock->ops->splice_read)) 878 return generic_file_splice_read(file, ppos, pipe, len, flags); 879 880 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 881 } 882 883 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 884 { 885 struct file *file = iocb->ki_filp; 886 struct socket *sock = file->private_data; 887 struct msghdr msg = {.msg_iter = *to, 888 .msg_iocb = iocb}; 889 ssize_t res; 890 891 if (file->f_flags & O_NONBLOCK) 892 msg.msg_flags = MSG_DONTWAIT; 893 894 if (iocb->ki_pos != 0) 895 return -ESPIPE; 896 897 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 898 return 0; 899 900 res = sock_recvmsg(sock, &msg, msg.msg_flags); 901 *to = msg.msg_iter; 902 return res; 903 } 904 905 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 906 { 907 struct file *file = iocb->ki_filp; 908 struct socket *sock = file->private_data; 909 struct msghdr msg = {.msg_iter = *from, 910 .msg_iocb = iocb}; 911 ssize_t res; 912 913 if (iocb->ki_pos != 0) 914 return -ESPIPE; 915 916 if (file->f_flags & O_NONBLOCK) 917 msg.msg_flags = MSG_DONTWAIT; 918 919 if (sock->type == SOCK_SEQPACKET) 920 msg.msg_flags |= MSG_EOR; 921 922 res = sock_sendmsg(sock, &msg); 923 *from = msg.msg_iter; 924 return res; 925 } 926 927 /* 928 * Atomic setting of ioctl hooks to avoid race 929 * with module unload. 930 */ 931 932 static DEFINE_MUTEX(br_ioctl_mutex); 933 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 934 935 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 936 { 937 mutex_lock(&br_ioctl_mutex); 938 br_ioctl_hook = hook; 939 mutex_unlock(&br_ioctl_mutex); 940 } 941 EXPORT_SYMBOL(brioctl_set); 942 943 static DEFINE_MUTEX(vlan_ioctl_mutex); 944 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 945 946 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 947 { 948 mutex_lock(&vlan_ioctl_mutex); 949 vlan_ioctl_hook = hook; 950 mutex_unlock(&vlan_ioctl_mutex); 951 } 952 EXPORT_SYMBOL(vlan_ioctl_set); 953 954 static DEFINE_MUTEX(dlci_ioctl_mutex); 955 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 956 957 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 958 { 959 mutex_lock(&dlci_ioctl_mutex); 960 dlci_ioctl_hook = hook; 961 mutex_unlock(&dlci_ioctl_mutex); 962 } 963 EXPORT_SYMBOL(dlci_ioctl_set); 964 965 static long sock_do_ioctl(struct net *net, struct socket *sock, 966 unsigned int cmd, unsigned long arg, 967 unsigned int ifreq_size) 968 { 969 int err; 970 void __user *argp = (void __user *)arg; 971 972 err = sock->ops->ioctl(sock, cmd, arg); 973 974 /* 975 * If this ioctl is unknown try to hand it down 976 * to the NIC driver. 977 */ 978 if (err != -ENOIOCTLCMD) 979 return err; 980 981 if (cmd == SIOCGIFCONF) { 982 struct ifconf ifc; 983 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 984 return -EFAULT; 985 rtnl_lock(); 986 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 987 rtnl_unlock(); 988 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 989 err = -EFAULT; 990 } else { 991 struct ifreq ifr; 992 bool need_copyout; 993 if (copy_from_user(&ifr, argp, ifreq_size)) 994 return -EFAULT; 995 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 996 if (!err && need_copyout) 997 if (copy_to_user(argp, &ifr, ifreq_size)) 998 return -EFAULT; 999 } 1000 return err; 1001 } 1002 1003 /* 1004 * With an ioctl, arg may well be a user mode pointer, but we don't know 1005 * what to do with it - that's up to the protocol still. 1006 */ 1007 1008 struct ns_common *get_net_ns(struct ns_common *ns) 1009 { 1010 return &get_net(container_of(ns, struct net, ns))->ns; 1011 } 1012 EXPORT_SYMBOL_GPL(get_net_ns); 1013 1014 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1015 { 1016 struct socket *sock; 1017 struct sock *sk; 1018 void __user *argp = (void __user *)arg; 1019 int pid, err; 1020 struct net *net; 1021 1022 sock = file->private_data; 1023 sk = sock->sk; 1024 net = sock_net(sk); 1025 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1026 struct ifreq ifr; 1027 bool need_copyout; 1028 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1029 return -EFAULT; 1030 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1031 if (!err && need_copyout) 1032 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1033 return -EFAULT; 1034 } else 1035 #ifdef CONFIG_WEXT_CORE 1036 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1037 err = wext_handle_ioctl(net, cmd, argp); 1038 } else 1039 #endif 1040 switch (cmd) { 1041 case FIOSETOWN: 1042 case SIOCSPGRP: 1043 err = -EFAULT; 1044 if (get_user(pid, (int __user *)argp)) 1045 break; 1046 err = f_setown(sock->file, pid, 1); 1047 break; 1048 case FIOGETOWN: 1049 case SIOCGPGRP: 1050 err = put_user(f_getown(sock->file), 1051 (int __user *)argp); 1052 break; 1053 case SIOCGIFBR: 1054 case SIOCSIFBR: 1055 case SIOCBRADDBR: 1056 case SIOCBRDELBR: 1057 err = -ENOPKG; 1058 if (!br_ioctl_hook) 1059 request_module("bridge"); 1060 1061 mutex_lock(&br_ioctl_mutex); 1062 if (br_ioctl_hook) 1063 err = br_ioctl_hook(net, cmd, argp); 1064 mutex_unlock(&br_ioctl_mutex); 1065 break; 1066 case SIOCGIFVLAN: 1067 case SIOCSIFVLAN: 1068 err = -ENOPKG; 1069 if (!vlan_ioctl_hook) 1070 request_module("8021q"); 1071 1072 mutex_lock(&vlan_ioctl_mutex); 1073 if (vlan_ioctl_hook) 1074 err = vlan_ioctl_hook(net, argp); 1075 mutex_unlock(&vlan_ioctl_mutex); 1076 break; 1077 case SIOCADDDLCI: 1078 case SIOCDELDLCI: 1079 err = -ENOPKG; 1080 if (!dlci_ioctl_hook) 1081 request_module("dlci"); 1082 1083 mutex_lock(&dlci_ioctl_mutex); 1084 if (dlci_ioctl_hook) 1085 err = dlci_ioctl_hook(cmd, argp); 1086 mutex_unlock(&dlci_ioctl_mutex); 1087 break; 1088 case SIOCGSKNS: 1089 err = -EPERM; 1090 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1091 break; 1092 1093 err = open_related_ns(&net->ns, get_net_ns); 1094 break; 1095 default: 1096 err = sock_do_ioctl(net, sock, cmd, arg, 1097 sizeof(struct ifreq)); 1098 break; 1099 } 1100 return err; 1101 } 1102 1103 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1104 { 1105 int err; 1106 struct socket *sock = NULL; 1107 1108 err = security_socket_create(family, type, protocol, 1); 1109 if (err) 1110 goto out; 1111 1112 sock = sock_alloc(); 1113 if (!sock) { 1114 err = -ENOMEM; 1115 goto out; 1116 } 1117 1118 sock->type = type; 1119 err = security_socket_post_create(sock, family, type, protocol, 1); 1120 if (err) 1121 goto out_release; 1122 1123 out: 1124 *res = sock; 1125 return err; 1126 out_release: 1127 sock_release(sock); 1128 sock = NULL; 1129 goto out; 1130 } 1131 EXPORT_SYMBOL(sock_create_lite); 1132 1133 /* No kernel lock held - perfect */ 1134 static __poll_t sock_poll(struct file *file, poll_table *wait) 1135 { 1136 struct socket *sock = file->private_data; 1137 __poll_t events = poll_requested_events(wait), flag = 0; 1138 1139 if (!sock->ops->poll) 1140 return 0; 1141 1142 if (sk_can_busy_loop(sock->sk)) { 1143 /* poll once if requested by the syscall */ 1144 if (events & POLL_BUSY_LOOP) 1145 sk_busy_loop(sock->sk, 1); 1146 1147 /* if this socket can poll_ll, tell the system call */ 1148 flag = POLL_BUSY_LOOP; 1149 } 1150 1151 return sock->ops->poll(file, sock, wait) | flag; 1152 } 1153 1154 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1155 { 1156 struct socket *sock = file->private_data; 1157 1158 return sock->ops->mmap(file, sock, vma); 1159 } 1160 1161 static int sock_close(struct inode *inode, struct file *filp) 1162 { 1163 __sock_release(SOCKET_I(inode), inode); 1164 return 0; 1165 } 1166 1167 /* 1168 * Update the socket async list 1169 * 1170 * Fasync_list locking strategy. 1171 * 1172 * 1. fasync_list is modified only under process context socket lock 1173 * i.e. under semaphore. 1174 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1175 * or under socket lock 1176 */ 1177 1178 static int sock_fasync(int fd, struct file *filp, int on) 1179 { 1180 struct socket *sock = filp->private_data; 1181 struct sock *sk = sock->sk; 1182 struct socket_wq *wq; 1183 1184 if (sk == NULL) 1185 return -EINVAL; 1186 1187 lock_sock(sk); 1188 wq = sock->wq; 1189 fasync_helper(fd, filp, on, &wq->fasync_list); 1190 1191 if (!wq->fasync_list) 1192 sock_reset_flag(sk, SOCK_FASYNC); 1193 else 1194 sock_set_flag(sk, SOCK_FASYNC); 1195 1196 release_sock(sk); 1197 return 0; 1198 } 1199 1200 /* This function may be called only under rcu_lock */ 1201 1202 int sock_wake_async(struct socket_wq *wq, int how, int band) 1203 { 1204 if (!wq || !wq->fasync_list) 1205 return -1; 1206 1207 switch (how) { 1208 case SOCK_WAKE_WAITD: 1209 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1210 break; 1211 goto call_kill; 1212 case SOCK_WAKE_SPACE: 1213 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1214 break; 1215 /* fall through */ 1216 case SOCK_WAKE_IO: 1217 call_kill: 1218 kill_fasync(&wq->fasync_list, SIGIO, band); 1219 break; 1220 case SOCK_WAKE_URG: 1221 kill_fasync(&wq->fasync_list, SIGURG, band); 1222 } 1223 1224 return 0; 1225 } 1226 EXPORT_SYMBOL(sock_wake_async); 1227 1228 int __sock_create(struct net *net, int family, int type, int protocol, 1229 struct socket **res, int kern) 1230 { 1231 int err; 1232 struct socket *sock; 1233 const struct net_proto_family *pf; 1234 1235 /* 1236 * Check protocol is in range 1237 */ 1238 if (family < 0 || family >= NPROTO) 1239 return -EAFNOSUPPORT; 1240 if (type < 0 || type >= SOCK_MAX) 1241 return -EINVAL; 1242 1243 /* Compatibility. 1244 1245 This uglymoron is moved from INET layer to here to avoid 1246 deadlock in module load. 1247 */ 1248 if (family == PF_INET && type == SOCK_PACKET) { 1249 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1250 current->comm); 1251 family = PF_PACKET; 1252 } 1253 1254 err = security_socket_create(family, type, protocol, kern); 1255 if (err) 1256 return err; 1257 1258 /* 1259 * Allocate the socket and allow the family to set things up. if 1260 * the protocol is 0, the family is instructed to select an appropriate 1261 * default. 1262 */ 1263 sock = sock_alloc(); 1264 if (!sock) { 1265 net_warn_ratelimited("socket: no more sockets\n"); 1266 return -ENFILE; /* Not exactly a match, but its the 1267 closest posix thing */ 1268 } 1269 1270 sock->type = type; 1271 1272 #ifdef CONFIG_MODULES 1273 /* Attempt to load a protocol module if the find failed. 1274 * 1275 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1276 * requested real, full-featured networking support upon configuration. 1277 * Otherwise module support will break! 1278 */ 1279 if (rcu_access_pointer(net_families[family]) == NULL) 1280 request_module("net-pf-%d", family); 1281 #endif 1282 1283 rcu_read_lock(); 1284 pf = rcu_dereference(net_families[family]); 1285 err = -EAFNOSUPPORT; 1286 if (!pf) 1287 goto out_release; 1288 1289 /* 1290 * We will call the ->create function, that possibly is in a loadable 1291 * module, so we have to bump that loadable module refcnt first. 1292 */ 1293 if (!try_module_get(pf->owner)) 1294 goto out_release; 1295 1296 /* Now protected by module ref count */ 1297 rcu_read_unlock(); 1298 1299 err = pf->create(net, sock, protocol, kern); 1300 if (err < 0) 1301 goto out_module_put; 1302 1303 /* 1304 * Now to bump the refcnt of the [loadable] module that owns this 1305 * socket at sock_release time we decrement its refcnt. 1306 */ 1307 if (!try_module_get(sock->ops->owner)) 1308 goto out_module_busy; 1309 1310 /* 1311 * Now that we're done with the ->create function, the [loadable] 1312 * module can have its refcnt decremented 1313 */ 1314 module_put(pf->owner); 1315 err = security_socket_post_create(sock, family, type, protocol, kern); 1316 if (err) 1317 goto out_sock_release; 1318 *res = sock; 1319 1320 return 0; 1321 1322 out_module_busy: 1323 err = -EAFNOSUPPORT; 1324 out_module_put: 1325 sock->ops = NULL; 1326 module_put(pf->owner); 1327 out_sock_release: 1328 sock_release(sock); 1329 return err; 1330 1331 out_release: 1332 rcu_read_unlock(); 1333 goto out_sock_release; 1334 } 1335 EXPORT_SYMBOL(__sock_create); 1336 1337 int sock_create(int family, int type, int protocol, struct socket **res) 1338 { 1339 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1340 } 1341 EXPORT_SYMBOL(sock_create); 1342 1343 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1344 { 1345 return __sock_create(net, family, type, protocol, res, 1); 1346 } 1347 EXPORT_SYMBOL(sock_create_kern); 1348 1349 int __sys_socket(int family, int type, int protocol) 1350 { 1351 int retval; 1352 struct socket *sock; 1353 int flags; 1354 1355 /* Check the SOCK_* constants for consistency. */ 1356 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1357 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1358 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1359 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1360 1361 flags = type & ~SOCK_TYPE_MASK; 1362 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1363 return -EINVAL; 1364 type &= SOCK_TYPE_MASK; 1365 1366 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1367 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1368 1369 retval = sock_create(family, type, protocol, &sock); 1370 if (retval < 0) 1371 return retval; 1372 1373 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1374 } 1375 1376 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1377 { 1378 return __sys_socket(family, type, protocol); 1379 } 1380 1381 /* 1382 * Create a pair of connected sockets. 1383 */ 1384 1385 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1386 { 1387 struct socket *sock1, *sock2; 1388 int fd1, fd2, err; 1389 struct file *newfile1, *newfile2; 1390 int flags; 1391 1392 flags = type & ~SOCK_TYPE_MASK; 1393 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1394 return -EINVAL; 1395 type &= SOCK_TYPE_MASK; 1396 1397 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1398 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1399 1400 /* 1401 * reserve descriptors and make sure we won't fail 1402 * to return them to userland. 1403 */ 1404 fd1 = get_unused_fd_flags(flags); 1405 if (unlikely(fd1 < 0)) 1406 return fd1; 1407 1408 fd2 = get_unused_fd_flags(flags); 1409 if (unlikely(fd2 < 0)) { 1410 put_unused_fd(fd1); 1411 return fd2; 1412 } 1413 1414 err = put_user(fd1, &usockvec[0]); 1415 if (err) 1416 goto out; 1417 1418 err = put_user(fd2, &usockvec[1]); 1419 if (err) 1420 goto out; 1421 1422 /* 1423 * Obtain the first socket and check if the underlying protocol 1424 * supports the socketpair call. 1425 */ 1426 1427 err = sock_create(family, type, protocol, &sock1); 1428 if (unlikely(err < 0)) 1429 goto out; 1430 1431 err = sock_create(family, type, protocol, &sock2); 1432 if (unlikely(err < 0)) { 1433 sock_release(sock1); 1434 goto out; 1435 } 1436 1437 err = security_socket_socketpair(sock1, sock2); 1438 if (unlikely(err)) { 1439 sock_release(sock2); 1440 sock_release(sock1); 1441 goto out; 1442 } 1443 1444 err = sock1->ops->socketpair(sock1, sock2); 1445 if (unlikely(err < 0)) { 1446 sock_release(sock2); 1447 sock_release(sock1); 1448 goto out; 1449 } 1450 1451 newfile1 = sock_alloc_file(sock1, flags, NULL); 1452 if (IS_ERR(newfile1)) { 1453 err = PTR_ERR(newfile1); 1454 sock_release(sock2); 1455 goto out; 1456 } 1457 1458 newfile2 = sock_alloc_file(sock2, flags, NULL); 1459 if (IS_ERR(newfile2)) { 1460 err = PTR_ERR(newfile2); 1461 fput(newfile1); 1462 goto out; 1463 } 1464 1465 audit_fd_pair(fd1, fd2); 1466 1467 fd_install(fd1, newfile1); 1468 fd_install(fd2, newfile2); 1469 return 0; 1470 1471 out: 1472 put_unused_fd(fd2); 1473 put_unused_fd(fd1); 1474 return err; 1475 } 1476 1477 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1478 int __user *, usockvec) 1479 { 1480 return __sys_socketpair(family, type, protocol, usockvec); 1481 } 1482 1483 /* 1484 * Bind a name to a socket. Nothing much to do here since it's 1485 * the protocol's responsibility to handle the local address. 1486 * 1487 * We move the socket address to kernel space before we call 1488 * the protocol layer (having also checked the address is ok). 1489 */ 1490 1491 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1492 { 1493 struct socket *sock; 1494 struct sockaddr_storage address; 1495 int err, fput_needed; 1496 1497 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1498 if (sock) { 1499 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1500 if (!err) { 1501 err = security_socket_bind(sock, 1502 (struct sockaddr *)&address, 1503 addrlen); 1504 if (!err) 1505 err = sock->ops->bind(sock, 1506 (struct sockaddr *) 1507 &address, addrlen); 1508 } 1509 fput_light(sock->file, fput_needed); 1510 } 1511 return err; 1512 } 1513 1514 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1515 { 1516 return __sys_bind(fd, umyaddr, addrlen); 1517 } 1518 1519 /* 1520 * Perform a listen. Basically, we allow the protocol to do anything 1521 * necessary for a listen, and if that works, we mark the socket as 1522 * ready for listening. 1523 */ 1524 1525 int __sys_listen(int fd, int backlog) 1526 { 1527 struct socket *sock; 1528 int err, fput_needed; 1529 int somaxconn; 1530 1531 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1532 if (sock) { 1533 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1534 if ((unsigned int)backlog > somaxconn) 1535 backlog = somaxconn; 1536 1537 err = security_socket_listen(sock, backlog); 1538 if (!err) 1539 err = sock->ops->listen(sock, backlog); 1540 1541 fput_light(sock->file, fput_needed); 1542 } 1543 return err; 1544 } 1545 1546 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1547 { 1548 return __sys_listen(fd, backlog); 1549 } 1550 1551 /* 1552 * For accept, we attempt to create a new socket, set up the link 1553 * with the client, wake up the client, then return the new 1554 * connected fd. We collect the address of the connector in kernel 1555 * space and move it to user at the very end. This is unclean because 1556 * we open the socket then return an error. 1557 * 1558 * 1003.1g adds the ability to recvmsg() to query connection pending 1559 * status to recvmsg. We need to add that support in a way thats 1560 * clean when we restructure accept also. 1561 */ 1562 1563 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1564 int __user *upeer_addrlen, int flags) 1565 { 1566 struct socket *sock, *newsock; 1567 struct file *newfile; 1568 int err, len, newfd, fput_needed; 1569 struct sockaddr_storage address; 1570 1571 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1572 return -EINVAL; 1573 1574 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1575 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1576 1577 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1578 if (!sock) 1579 goto out; 1580 1581 err = -ENFILE; 1582 newsock = sock_alloc(); 1583 if (!newsock) 1584 goto out_put; 1585 1586 newsock->type = sock->type; 1587 newsock->ops = sock->ops; 1588 1589 /* 1590 * We don't need try_module_get here, as the listening socket (sock) 1591 * has the protocol module (sock->ops->owner) held. 1592 */ 1593 __module_get(newsock->ops->owner); 1594 1595 newfd = get_unused_fd_flags(flags); 1596 if (unlikely(newfd < 0)) { 1597 err = newfd; 1598 sock_release(newsock); 1599 goto out_put; 1600 } 1601 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1602 if (IS_ERR(newfile)) { 1603 err = PTR_ERR(newfile); 1604 put_unused_fd(newfd); 1605 goto out_put; 1606 } 1607 1608 err = security_socket_accept(sock, newsock); 1609 if (err) 1610 goto out_fd; 1611 1612 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1613 if (err < 0) 1614 goto out_fd; 1615 1616 if (upeer_sockaddr) { 1617 len = newsock->ops->getname(newsock, 1618 (struct sockaddr *)&address, 2); 1619 if (len < 0) { 1620 err = -ECONNABORTED; 1621 goto out_fd; 1622 } 1623 err = move_addr_to_user(&address, 1624 len, upeer_sockaddr, upeer_addrlen); 1625 if (err < 0) 1626 goto out_fd; 1627 } 1628 1629 /* File flags are not inherited via accept() unlike another OSes. */ 1630 1631 fd_install(newfd, newfile); 1632 err = newfd; 1633 1634 out_put: 1635 fput_light(sock->file, fput_needed); 1636 out: 1637 return err; 1638 out_fd: 1639 fput(newfile); 1640 put_unused_fd(newfd); 1641 goto out_put; 1642 } 1643 1644 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1645 int __user *, upeer_addrlen, int, flags) 1646 { 1647 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1648 } 1649 1650 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1651 int __user *, upeer_addrlen) 1652 { 1653 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1654 } 1655 1656 /* 1657 * Attempt to connect to a socket with the server address. The address 1658 * is in user space so we verify it is OK and move it to kernel space. 1659 * 1660 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1661 * break bindings 1662 * 1663 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1664 * other SEQPACKET protocols that take time to connect() as it doesn't 1665 * include the -EINPROGRESS status for such sockets. 1666 */ 1667 1668 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1669 { 1670 struct socket *sock; 1671 struct sockaddr_storage address; 1672 int err, fput_needed; 1673 1674 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1675 if (!sock) 1676 goto out; 1677 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1678 if (err < 0) 1679 goto out_put; 1680 1681 err = 1682 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1683 if (err) 1684 goto out_put; 1685 1686 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1687 sock->file->f_flags); 1688 out_put: 1689 fput_light(sock->file, fput_needed); 1690 out: 1691 return err; 1692 } 1693 1694 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1695 int, addrlen) 1696 { 1697 return __sys_connect(fd, uservaddr, addrlen); 1698 } 1699 1700 /* 1701 * Get the local address ('name') of a socket object. Move the obtained 1702 * name to user space. 1703 */ 1704 1705 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1706 int __user *usockaddr_len) 1707 { 1708 struct socket *sock; 1709 struct sockaddr_storage address; 1710 int err, fput_needed; 1711 1712 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1713 if (!sock) 1714 goto out; 1715 1716 err = security_socket_getsockname(sock); 1717 if (err) 1718 goto out_put; 1719 1720 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1721 if (err < 0) 1722 goto out_put; 1723 /* "err" is actually length in this case */ 1724 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1725 1726 out_put: 1727 fput_light(sock->file, fput_needed); 1728 out: 1729 return err; 1730 } 1731 1732 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1733 int __user *, usockaddr_len) 1734 { 1735 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1736 } 1737 1738 /* 1739 * Get the remote address ('name') of a socket object. Move the obtained 1740 * name to user space. 1741 */ 1742 1743 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1744 int __user *usockaddr_len) 1745 { 1746 struct socket *sock; 1747 struct sockaddr_storage address; 1748 int err, fput_needed; 1749 1750 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1751 if (sock != NULL) { 1752 err = security_socket_getpeername(sock); 1753 if (err) { 1754 fput_light(sock->file, fput_needed); 1755 return err; 1756 } 1757 1758 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1759 if (err >= 0) 1760 /* "err" is actually length in this case */ 1761 err = move_addr_to_user(&address, err, usockaddr, 1762 usockaddr_len); 1763 fput_light(sock->file, fput_needed); 1764 } 1765 return err; 1766 } 1767 1768 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1769 int __user *, usockaddr_len) 1770 { 1771 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1772 } 1773 1774 /* 1775 * Send a datagram to a given address. We move the address into kernel 1776 * space and check the user space data area is readable before invoking 1777 * the protocol. 1778 */ 1779 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1780 struct sockaddr __user *addr, int addr_len) 1781 { 1782 struct socket *sock; 1783 struct sockaddr_storage address; 1784 int err; 1785 struct msghdr msg; 1786 struct iovec iov; 1787 int fput_needed; 1788 1789 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1790 if (unlikely(err)) 1791 return err; 1792 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1793 if (!sock) 1794 goto out; 1795 1796 msg.msg_name = NULL; 1797 msg.msg_control = NULL; 1798 msg.msg_controllen = 0; 1799 msg.msg_namelen = 0; 1800 if (addr) { 1801 err = move_addr_to_kernel(addr, addr_len, &address); 1802 if (err < 0) 1803 goto out_put; 1804 msg.msg_name = (struct sockaddr *)&address; 1805 msg.msg_namelen = addr_len; 1806 } 1807 if (sock->file->f_flags & O_NONBLOCK) 1808 flags |= MSG_DONTWAIT; 1809 msg.msg_flags = flags; 1810 err = sock_sendmsg(sock, &msg); 1811 1812 out_put: 1813 fput_light(sock->file, fput_needed); 1814 out: 1815 return err; 1816 } 1817 1818 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1819 unsigned int, flags, struct sockaddr __user *, addr, 1820 int, addr_len) 1821 { 1822 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1823 } 1824 1825 /* 1826 * Send a datagram down a socket. 1827 */ 1828 1829 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1830 unsigned int, flags) 1831 { 1832 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1833 } 1834 1835 /* 1836 * Receive a frame from the socket and optionally record the address of the 1837 * sender. We verify the buffers are writable and if needed move the 1838 * sender address from kernel to user space. 1839 */ 1840 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1841 struct sockaddr __user *addr, int __user *addr_len) 1842 { 1843 struct socket *sock; 1844 struct iovec iov; 1845 struct msghdr msg; 1846 struct sockaddr_storage address; 1847 int err, err2; 1848 int fput_needed; 1849 1850 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1851 if (unlikely(err)) 1852 return err; 1853 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1854 if (!sock) 1855 goto out; 1856 1857 msg.msg_control = NULL; 1858 msg.msg_controllen = 0; 1859 /* Save some cycles and don't copy the address if not needed */ 1860 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1861 /* We assume all kernel code knows the size of sockaddr_storage */ 1862 msg.msg_namelen = 0; 1863 msg.msg_iocb = NULL; 1864 msg.msg_flags = 0; 1865 if (sock->file->f_flags & O_NONBLOCK) 1866 flags |= MSG_DONTWAIT; 1867 err = sock_recvmsg(sock, &msg, flags); 1868 1869 if (err >= 0 && addr != NULL) { 1870 err2 = move_addr_to_user(&address, 1871 msg.msg_namelen, addr, addr_len); 1872 if (err2 < 0) 1873 err = err2; 1874 } 1875 1876 fput_light(sock->file, fput_needed); 1877 out: 1878 return err; 1879 } 1880 1881 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1882 unsigned int, flags, struct sockaddr __user *, addr, 1883 int __user *, addr_len) 1884 { 1885 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1886 } 1887 1888 /* 1889 * Receive a datagram from a socket. 1890 */ 1891 1892 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1893 unsigned int, flags) 1894 { 1895 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1896 } 1897 1898 /* 1899 * Set a socket option. Because we don't know the option lengths we have 1900 * to pass the user mode parameter for the protocols to sort out. 1901 */ 1902 1903 static int __sys_setsockopt(int fd, int level, int optname, 1904 char __user *optval, int optlen) 1905 { 1906 int err, fput_needed; 1907 struct socket *sock; 1908 1909 if (optlen < 0) 1910 return -EINVAL; 1911 1912 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1913 if (sock != NULL) { 1914 err = security_socket_setsockopt(sock, level, optname); 1915 if (err) 1916 goto out_put; 1917 1918 if (level == SOL_SOCKET) 1919 err = 1920 sock_setsockopt(sock, level, optname, optval, 1921 optlen); 1922 else 1923 err = 1924 sock->ops->setsockopt(sock, level, optname, optval, 1925 optlen); 1926 out_put: 1927 fput_light(sock->file, fput_needed); 1928 } 1929 return err; 1930 } 1931 1932 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1933 char __user *, optval, int, optlen) 1934 { 1935 return __sys_setsockopt(fd, level, optname, optval, optlen); 1936 } 1937 1938 /* 1939 * Get a socket option. Because we don't know the option lengths we have 1940 * to pass a user mode parameter for the protocols to sort out. 1941 */ 1942 1943 static int __sys_getsockopt(int fd, int level, int optname, 1944 char __user *optval, int __user *optlen) 1945 { 1946 int err, fput_needed; 1947 struct socket *sock; 1948 1949 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1950 if (sock != NULL) { 1951 err = security_socket_getsockopt(sock, level, optname); 1952 if (err) 1953 goto out_put; 1954 1955 if (level == SOL_SOCKET) 1956 err = 1957 sock_getsockopt(sock, level, optname, optval, 1958 optlen); 1959 else 1960 err = 1961 sock->ops->getsockopt(sock, level, optname, optval, 1962 optlen); 1963 out_put: 1964 fput_light(sock->file, fput_needed); 1965 } 1966 return err; 1967 } 1968 1969 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1970 char __user *, optval, int __user *, optlen) 1971 { 1972 return __sys_getsockopt(fd, level, optname, optval, optlen); 1973 } 1974 1975 /* 1976 * Shutdown a socket. 1977 */ 1978 1979 int __sys_shutdown(int fd, int how) 1980 { 1981 int err, fput_needed; 1982 struct socket *sock; 1983 1984 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1985 if (sock != NULL) { 1986 err = security_socket_shutdown(sock, how); 1987 if (!err) 1988 err = sock->ops->shutdown(sock, how); 1989 fput_light(sock->file, fput_needed); 1990 } 1991 return err; 1992 } 1993 1994 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1995 { 1996 return __sys_shutdown(fd, how); 1997 } 1998 1999 /* A couple of helpful macros for getting the address of the 32/64 bit 2000 * fields which are the same type (int / unsigned) on our platforms. 2001 */ 2002 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2003 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2004 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2005 2006 struct used_address { 2007 struct sockaddr_storage name; 2008 unsigned int name_len; 2009 }; 2010 2011 static int copy_msghdr_from_user(struct msghdr *kmsg, 2012 struct user_msghdr __user *umsg, 2013 struct sockaddr __user **save_addr, 2014 struct iovec **iov) 2015 { 2016 struct user_msghdr msg; 2017 ssize_t err; 2018 2019 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2020 return -EFAULT; 2021 2022 kmsg->msg_control = (void __force *)msg.msg_control; 2023 kmsg->msg_controllen = msg.msg_controllen; 2024 kmsg->msg_flags = msg.msg_flags; 2025 2026 kmsg->msg_namelen = msg.msg_namelen; 2027 if (!msg.msg_name) 2028 kmsg->msg_namelen = 0; 2029 2030 if (kmsg->msg_namelen < 0) 2031 return -EINVAL; 2032 2033 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2034 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2035 2036 if (save_addr) 2037 *save_addr = msg.msg_name; 2038 2039 if (msg.msg_name && kmsg->msg_namelen) { 2040 if (!save_addr) { 2041 err = move_addr_to_kernel(msg.msg_name, 2042 kmsg->msg_namelen, 2043 kmsg->msg_name); 2044 if (err < 0) 2045 return err; 2046 } 2047 } else { 2048 kmsg->msg_name = NULL; 2049 kmsg->msg_namelen = 0; 2050 } 2051 2052 if (msg.msg_iovlen > UIO_MAXIOV) 2053 return -EMSGSIZE; 2054 2055 kmsg->msg_iocb = NULL; 2056 2057 return import_iovec(save_addr ? READ : WRITE, 2058 msg.msg_iov, msg.msg_iovlen, 2059 UIO_FASTIOV, iov, &kmsg->msg_iter); 2060 } 2061 2062 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2063 struct msghdr *msg_sys, unsigned int flags, 2064 struct used_address *used_address, 2065 unsigned int allowed_msghdr_flags) 2066 { 2067 struct compat_msghdr __user *msg_compat = 2068 (struct compat_msghdr __user *)msg; 2069 struct sockaddr_storage address; 2070 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2071 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2072 __aligned(sizeof(__kernel_size_t)); 2073 /* 20 is size of ipv6_pktinfo */ 2074 unsigned char *ctl_buf = ctl; 2075 int ctl_len; 2076 ssize_t err; 2077 2078 msg_sys->msg_name = &address; 2079 2080 if (MSG_CMSG_COMPAT & flags) 2081 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2082 else 2083 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2084 if (err < 0) 2085 return err; 2086 2087 err = -ENOBUFS; 2088 2089 if (msg_sys->msg_controllen > INT_MAX) 2090 goto out_freeiov; 2091 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2092 ctl_len = msg_sys->msg_controllen; 2093 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2094 err = 2095 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2096 sizeof(ctl)); 2097 if (err) 2098 goto out_freeiov; 2099 ctl_buf = msg_sys->msg_control; 2100 ctl_len = msg_sys->msg_controllen; 2101 } else if (ctl_len) { 2102 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2103 CMSG_ALIGN(sizeof(struct cmsghdr))); 2104 if (ctl_len > sizeof(ctl)) { 2105 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2106 if (ctl_buf == NULL) 2107 goto out_freeiov; 2108 } 2109 err = -EFAULT; 2110 /* 2111 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2112 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2113 * checking falls down on this. 2114 */ 2115 if (copy_from_user(ctl_buf, 2116 (void __user __force *)msg_sys->msg_control, 2117 ctl_len)) 2118 goto out_freectl; 2119 msg_sys->msg_control = ctl_buf; 2120 } 2121 msg_sys->msg_flags = flags; 2122 2123 if (sock->file->f_flags & O_NONBLOCK) 2124 msg_sys->msg_flags |= MSG_DONTWAIT; 2125 /* 2126 * If this is sendmmsg() and current destination address is same as 2127 * previously succeeded address, omit asking LSM's decision. 2128 * used_address->name_len is initialized to UINT_MAX so that the first 2129 * destination address never matches. 2130 */ 2131 if (used_address && msg_sys->msg_name && 2132 used_address->name_len == msg_sys->msg_namelen && 2133 !memcmp(&used_address->name, msg_sys->msg_name, 2134 used_address->name_len)) { 2135 err = sock_sendmsg_nosec(sock, msg_sys); 2136 goto out_freectl; 2137 } 2138 err = sock_sendmsg(sock, msg_sys); 2139 /* 2140 * If this is sendmmsg() and sending to current destination address was 2141 * successful, remember it. 2142 */ 2143 if (used_address && err >= 0) { 2144 used_address->name_len = msg_sys->msg_namelen; 2145 if (msg_sys->msg_name) 2146 memcpy(&used_address->name, msg_sys->msg_name, 2147 used_address->name_len); 2148 } 2149 2150 out_freectl: 2151 if (ctl_buf != ctl) 2152 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2153 out_freeiov: 2154 kfree(iov); 2155 return err; 2156 } 2157 2158 /* 2159 * BSD sendmsg interface 2160 */ 2161 2162 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2163 bool forbid_cmsg_compat) 2164 { 2165 int fput_needed, err; 2166 struct msghdr msg_sys; 2167 struct socket *sock; 2168 2169 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2170 return -EINVAL; 2171 2172 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2173 if (!sock) 2174 goto out; 2175 2176 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2177 2178 fput_light(sock->file, fput_needed); 2179 out: 2180 return err; 2181 } 2182 2183 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2184 { 2185 return __sys_sendmsg(fd, msg, flags, true); 2186 } 2187 2188 /* 2189 * Linux sendmmsg interface 2190 */ 2191 2192 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2193 unsigned int flags, bool forbid_cmsg_compat) 2194 { 2195 int fput_needed, err, datagrams; 2196 struct socket *sock; 2197 struct mmsghdr __user *entry; 2198 struct compat_mmsghdr __user *compat_entry; 2199 struct msghdr msg_sys; 2200 struct used_address used_address; 2201 unsigned int oflags = flags; 2202 2203 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2204 return -EINVAL; 2205 2206 if (vlen > UIO_MAXIOV) 2207 vlen = UIO_MAXIOV; 2208 2209 datagrams = 0; 2210 2211 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2212 if (!sock) 2213 return err; 2214 2215 used_address.name_len = UINT_MAX; 2216 entry = mmsg; 2217 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2218 err = 0; 2219 flags |= MSG_BATCH; 2220 2221 while (datagrams < vlen) { 2222 if (datagrams == vlen - 1) 2223 flags = oflags; 2224 2225 if (MSG_CMSG_COMPAT & flags) { 2226 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2227 &msg_sys, flags, &used_address, MSG_EOR); 2228 if (err < 0) 2229 break; 2230 err = __put_user(err, &compat_entry->msg_len); 2231 ++compat_entry; 2232 } else { 2233 err = ___sys_sendmsg(sock, 2234 (struct user_msghdr __user *)entry, 2235 &msg_sys, flags, &used_address, MSG_EOR); 2236 if (err < 0) 2237 break; 2238 err = put_user(err, &entry->msg_len); 2239 ++entry; 2240 } 2241 2242 if (err) 2243 break; 2244 ++datagrams; 2245 if (msg_data_left(&msg_sys)) 2246 break; 2247 cond_resched(); 2248 } 2249 2250 fput_light(sock->file, fput_needed); 2251 2252 /* We only return an error if no datagrams were able to be sent */ 2253 if (datagrams != 0) 2254 return datagrams; 2255 2256 return err; 2257 } 2258 2259 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2260 unsigned int, vlen, unsigned int, flags) 2261 { 2262 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2263 } 2264 2265 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2266 struct msghdr *msg_sys, unsigned int flags, int nosec) 2267 { 2268 struct compat_msghdr __user *msg_compat = 2269 (struct compat_msghdr __user *)msg; 2270 struct iovec iovstack[UIO_FASTIOV]; 2271 struct iovec *iov = iovstack; 2272 unsigned long cmsg_ptr; 2273 int len; 2274 ssize_t err; 2275 2276 /* kernel mode address */ 2277 struct sockaddr_storage addr; 2278 2279 /* user mode address pointers */ 2280 struct sockaddr __user *uaddr; 2281 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2282 2283 msg_sys->msg_name = &addr; 2284 2285 if (MSG_CMSG_COMPAT & flags) 2286 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2287 else 2288 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2289 if (err < 0) 2290 return err; 2291 2292 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2293 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2294 2295 /* We assume all kernel code knows the size of sockaddr_storage */ 2296 msg_sys->msg_namelen = 0; 2297 2298 if (sock->file->f_flags & O_NONBLOCK) 2299 flags |= MSG_DONTWAIT; 2300 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2301 if (err < 0) 2302 goto out_freeiov; 2303 len = err; 2304 2305 if (uaddr != NULL) { 2306 err = move_addr_to_user(&addr, 2307 msg_sys->msg_namelen, uaddr, 2308 uaddr_len); 2309 if (err < 0) 2310 goto out_freeiov; 2311 } 2312 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2313 COMPAT_FLAGS(msg)); 2314 if (err) 2315 goto out_freeiov; 2316 if (MSG_CMSG_COMPAT & flags) 2317 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2318 &msg_compat->msg_controllen); 2319 else 2320 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2321 &msg->msg_controllen); 2322 if (err) 2323 goto out_freeiov; 2324 err = len; 2325 2326 out_freeiov: 2327 kfree(iov); 2328 return err; 2329 } 2330 2331 /* 2332 * BSD recvmsg interface 2333 */ 2334 2335 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2336 bool forbid_cmsg_compat) 2337 { 2338 int fput_needed, err; 2339 struct msghdr msg_sys; 2340 struct socket *sock; 2341 2342 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2343 return -EINVAL; 2344 2345 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2346 if (!sock) 2347 goto out; 2348 2349 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2350 2351 fput_light(sock->file, fput_needed); 2352 out: 2353 return err; 2354 } 2355 2356 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2357 unsigned int, flags) 2358 { 2359 return __sys_recvmsg(fd, msg, flags, true); 2360 } 2361 2362 /* 2363 * Linux recvmmsg interface 2364 */ 2365 2366 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2367 unsigned int vlen, unsigned int flags, 2368 struct timespec64 *timeout) 2369 { 2370 int fput_needed, err, datagrams; 2371 struct socket *sock; 2372 struct mmsghdr __user *entry; 2373 struct compat_mmsghdr __user *compat_entry; 2374 struct msghdr msg_sys; 2375 struct timespec64 end_time; 2376 struct timespec64 timeout64; 2377 2378 if (timeout && 2379 poll_select_set_timeout(&end_time, timeout->tv_sec, 2380 timeout->tv_nsec)) 2381 return -EINVAL; 2382 2383 datagrams = 0; 2384 2385 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2386 if (!sock) 2387 return err; 2388 2389 if (likely(!(flags & MSG_ERRQUEUE))) { 2390 err = sock_error(sock->sk); 2391 if (err) { 2392 datagrams = err; 2393 goto out_put; 2394 } 2395 } 2396 2397 entry = mmsg; 2398 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2399 2400 while (datagrams < vlen) { 2401 /* 2402 * No need to ask LSM for more than the first datagram. 2403 */ 2404 if (MSG_CMSG_COMPAT & flags) { 2405 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2406 &msg_sys, flags & ~MSG_WAITFORONE, 2407 datagrams); 2408 if (err < 0) 2409 break; 2410 err = __put_user(err, &compat_entry->msg_len); 2411 ++compat_entry; 2412 } else { 2413 err = ___sys_recvmsg(sock, 2414 (struct user_msghdr __user *)entry, 2415 &msg_sys, flags & ~MSG_WAITFORONE, 2416 datagrams); 2417 if (err < 0) 2418 break; 2419 err = put_user(err, &entry->msg_len); 2420 ++entry; 2421 } 2422 2423 if (err) 2424 break; 2425 ++datagrams; 2426 2427 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2428 if (flags & MSG_WAITFORONE) 2429 flags |= MSG_DONTWAIT; 2430 2431 if (timeout) { 2432 ktime_get_ts64(&timeout64); 2433 *timeout = timespec64_sub(end_time, timeout64); 2434 if (timeout->tv_sec < 0) { 2435 timeout->tv_sec = timeout->tv_nsec = 0; 2436 break; 2437 } 2438 2439 /* Timeout, return less than vlen datagrams */ 2440 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2441 break; 2442 } 2443 2444 /* Out of band data, return right away */ 2445 if (msg_sys.msg_flags & MSG_OOB) 2446 break; 2447 cond_resched(); 2448 } 2449 2450 if (err == 0) 2451 goto out_put; 2452 2453 if (datagrams == 0) { 2454 datagrams = err; 2455 goto out_put; 2456 } 2457 2458 /* 2459 * We may return less entries than requested (vlen) if the 2460 * sock is non block and there aren't enough datagrams... 2461 */ 2462 if (err != -EAGAIN) { 2463 /* 2464 * ... or if recvmsg returns an error after we 2465 * received some datagrams, where we record the 2466 * error to return on the next call or if the 2467 * app asks about it using getsockopt(SO_ERROR). 2468 */ 2469 sock->sk->sk_err = -err; 2470 } 2471 out_put: 2472 fput_light(sock->file, fput_needed); 2473 2474 return datagrams; 2475 } 2476 2477 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2478 unsigned int vlen, unsigned int flags, 2479 struct __kernel_timespec __user *timeout, 2480 struct old_timespec32 __user *timeout32) 2481 { 2482 int datagrams; 2483 struct timespec64 timeout_sys; 2484 2485 if (timeout && get_timespec64(&timeout_sys, timeout)) 2486 return -EFAULT; 2487 2488 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2489 return -EFAULT; 2490 2491 if (!timeout && !timeout32) 2492 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2493 2494 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2495 2496 if (datagrams <= 0) 2497 return datagrams; 2498 2499 if (timeout && put_timespec64(&timeout_sys, timeout)) 2500 datagrams = -EFAULT; 2501 2502 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2503 datagrams = -EFAULT; 2504 2505 return datagrams; 2506 } 2507 2508 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2509 unsigned int, vlen, unsigned int, flags, 2510 struct __kernel_timespec __user *, timeout) 2511 { 2512 if (flags & MSG_CMSG_COMPAT) 2513 return -EINVAL; 2514 2515 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2516 } 2517 2518 #ifdef CONFIG_COMPAT_32BIT_TIME 2519 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2520 unsigned int, vlen, unsigned int, flags, 2521 struct old_timespec32 __user *, timeout) 2522 { 2523 if (flags & MSG_CMSG_COMPAT) 2524 return -EINVAL; 2525 2526 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2527 } 2528 #endif 2529 2530 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2531 /* Argument list sizes for sys_socketcall */ 2532 #define AL(x) ((x) * sizeof(unsigned long)) 2533 static const unsigned char nargs[21] = { 2534 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2535 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2536 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2537 AL(4), AL(5), AL(4) 2538 }; 2539 2540 #undef AL 2541 2542 /* 2543 * System call vectors. 2544 * 2545 * Argument checking cleaned up. Saved 20% in size. 2546 * This function doesn't need to set the kernel lock because 2547 * it is set by the callees. 2548 */ 2549 2550 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2551 { 2552 unsigned long a[AUDITSC_ARGS]; 2553 unsigned long a0, a1; 2554 int err; 2555 unsigned int len; 2556 2557 if (call < 1 || call > SYS_SENDMMSG) 2558 return -EINVAL; 2559 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2560 2561 len = nargs[call]; 2562 if (len > sizeof(a)) 2563 return -EINVAL; 2564 2565 /* copy_from_user should be SMP safe. */ 2566 if (copy_from_user(a, args, len)) 2567 return -EFAULT; 2568 2569 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2570 if (err) 2571 return err; 2572 2573 a0 = a[0]; 2574 a1 = a[1]; 2575 2576 switch (call) { 2577 case SYS_SOCKET: 2578 err = __sys_socket(a0, a1, a[2]); 2579 break; 2580 case SYS_BIND: 2581 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2582 break; 2583 case SYS_CONNECT: 2584 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2585 break; 2586 case SYS_LISTEN: 2587 err = __sys_listen(a0, a1); 2588 break; 2589 case SYS_ACCEPT: 2590 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2591 (int __user *)a[2], 0); 2592 break; 2593 case SYS_GETSOCKNAME: 2594 err = 2595 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2596 (int __user *)a[2]); 2597 break; 2598 case SYS_GETPEERNAME: 2599 err = 2600 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2601 (int __user *)a[2]); 2602 break; 2603 case SYS_SOCKETPAIR: 2604 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2605 break; 2606 case SYS_SEND: 2607 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2608 NULL, 0); 2609 break; 2610 case SYS_SENDTO: 2611 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2612 (struct sockaddr __user *)a[4], a[5]); 2613 break; 2614 case SYS_RECV: 2615 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2616 NULL, NULL); 2617 break; 2618 case SYS_RECVFROM: 2619 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2620 (struct sockaddr __user *)a[4], 2621 (int __user *)a[5]); 2622 break; 2623 case SYS_SHUTDOWN: 2624 err = __sys_shutdown(a0, a1); 2625 break; 2626 case SYS_SETSOCKOPT: 2627 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2628 a[4]); 2629 break; 2630 case SYS_GETSOCKOPT: 2631 err = 2632 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2633 (int __user *)a[4]); 2634 break; 2635 case SYS_SENDMSG: 2636 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2637 a[2], true); 2638 break; 2639 case SYS_SENDMMSG: 2640 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2641 a[3], true); 2642 break; 2643 case SYS_RECVMSG: 2644 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2645 a[2], true); 2646 break; 2647 case SYS_RECVMMSG: 2648 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2649 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2650 a[2], a[3], 2651 (struct __kernel_timespec __user *)a[4], 2652 NULL); 2653 else 2654 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2655 a[2], a[3], NULL, 2656 (struct old_timespec32 __user *)a[4]); 2657 break; 2658 case SYS_ACCEPT4: 2659 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2660 (int __user *)a[2], a[3]); 2661 break; 2662 default: 2663 err = -EINVAL; 2664 break; 2665 } 2666 return err; 2667 } 2668 2669 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2670 2671 /** 2672 * sock_register - add a socket protocol handler 2673 * @ops: description of protocol 2674 * 2675 * This function is called by a protocol handler that wants to 2676 * advertise its address family, and have it linked into the 2677 * socket interface. The value ops->family corresponds to the 2678 * socket system call protocol family. 2679 */ 2680 int sock_register(const struct net_proto_family *ops) 2681 { 2682 int err; 2683 2684 if (ops->family >= NPROTO) { 2685 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2686 return -ENOBUFS; 2687 } 2688 2689 spin_lock(&net_family_lock); 2690 if (rcu_dereference_protected(net_families[ops->family], 2691 lockdep_is_held(&net_family_lock))) 2692 err = -EEXIST; 2693 else { 2694 rcu_assign_pointer(net_families[ops->family], ops); 2695 err = 0; 2696 } 2697 spin_unlock(&net_family_lock); 2698 2699 pr_info("NET: Registered protocol family %d\n", ops->family); 2700 return err; 2701 } 2702 EXPORT_SYMBOL(sock_register); 2703 2704 /** 2705 * sock_unregister - remove a protocol handler 2706 * @family: protocol family to remove 2707 * 2708 * This function is called by a protocol handler that wants to 2709 * remove its address family, and have it unlinked from the 2710 * new socket creation. 2711 * 2712 * If protocol handler is a module, then it can use module reference 2713 * counts to protect against new references. If protocol handler is not 2714 * a module then it needs to provide its own protection in 2715 * the ops->create routine. 2716 */ 2717 void sock_unregister(int family) 2718 { 2719 BUG_ON(family < 0 || family >= NPROTO); 2720 2721 spin_lock(&net_family_lock); 2722 RCU_INIT_POINTER(net_families[family], NULL); 2723 spin_unlock(&net_family_lock); 2724 2725 synchronize_rcu(); 2726 2727 pr_info("NET: Unregistered protocol family %d\n", family); 2728 } 2729 EXPORT_SYMBOL(sock_unregister); 2730 2731 bool sock_is_registered(int family) 2732 { 2733 return family < NPROTO && rcu_access_pointer(net_families[family]); 2734 } 2735 2736 static int __init sock_init(void) 2737 { 2738 int err; 2739 /* 2740 * Initialize the network sysctl infrastructure. 2741 */ 2742 err = net_sysctl_init(); 2743 if (err) 2744 goto out; 2745 2746 /* 2747 * Initialize skbuff SLAB cache 2748 */ 2749 skb_init(); 2750 2751 /* 2752 * Initialize the protocols module. 2753 */ 2754 2755 init_inodecache(); 2756 2757 err = register_filesystem(&sock_fs_type); 2758 if (err) 2759 goto out_fs; 2760 sock_mnt = kern_mount(&sock_fs_type); 2761 if (IS_ERR(sock_mnt)) { 2762 err = PTR_ERR(sock_mnt); 2763 goto out_mount; 2764 } 2765 2766 /* The real protocol initialization is performed in later initcalls. 2767 */ 2768 2769 #ifdef CONFIG_NETFILTER 2770 err = netfilter_init(); 2771 if (err) 2772 goto out; 2773 #endif 2774 2775 ptp_classifier_init(); 2776 2777 out: 2778 return err; 2779 2780 out_mount: 2781 unregister_filesystem(&sock_fs_type); 2782 out_fs: 2783 goto out; 2784 } 2785 2786 core_initcall(sock_init); /* early initcall */ 2787 2788 #ifdef CONFIG_PROC_FS 2789 void socket_seq_show(struct seq_file *seq) 2790 { 2791 seq_printf(seq, "sockets: used %d\n", 2792 sock_inuse_get(seq->private)); 2793 } 2794 #endif /* CONFIG_PROC_FS */ 2795 2796 #ifdef CONFIG_COMPAT 2797 static int do_siocgstamp(struct net *net, struct socket *sock, 2798 unsigned int cmd, void __user *up) 2799 { 2800 mm_segment_t old_fs = get_fs(); 2801 struct timeval ktv; 2802 int err; 2803 2804 set_fs(KERNEL_DS); 2805 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv, 2806 sizeof(struct compat_ifreq)); 2807 set_fs(old_fs); 2808 if (!err) 2809 err = compat_put_timeval(&ktv, up); 2810 2811 return err; 2812 } 2813 2814 static int do_siocgstampns(struct net *net, struct socket *sock, 2815 unsigned int cmd, void __user *up) 2816 { 2817 mm_segment_t old_fs = get_fs(); 2818 struct timespec kts; 2819 int err; 2820 2821 set_fs(KERNEL_DS); 2822 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts, 2823 sizeof(struct compat_ifreq)); 2824 set_fs(old_fs); 2825 if (!err) 2826 err = compat_put_timespec(&kts, up); 2827 2828 return err; 2829 } 2830 2831 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2832 { 2833 struct compat_ifconf ifc32; 2834 struct ifconf ifc; 2835 int err; 2836 2837 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2838 return -EFAULT; 2839 2840 ifc.ifc_len = ifc32.ifc_len; 2841 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2842 2843 rtnl_lock(); 2844 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2845 rtnl_unlock(); 2846 if (err) 2847 return err; 2848 2849 ifc32.ifc_len = ifc.ifc_len; 2850 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2851 return -EFAULT; 2852 2853 return 0; 2854 } 2855 2856 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2857 { 2858 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2859 bool convert_in = false, convert_out = false; 2860 size_t buf_size = 0; 2861 struct ethtool_rxnfc __user *rxnfc = NULL; 2862 struct ifreq ifr; 2863 u32 rule_cnt = 0, actual_rule_cnt; 2864 u32 ethcmd; 2865 u32 data; 2866 int ret; 2867 2868 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2869 return -EFAULT; 2870 2871 compat_rxnfc = compat_ptr(data); 2872 2873 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2874 return -EFAULT; 2875 2876 /* Most ethtool structures are defined without padding. 2877 * Unfortunately struct ethtool_rxnfc is an exception. 2878 */ 2879 switch (ethcmd) { 2880 default: 2881 break; 2882 case ETHTOOL_GRXCLSRLALL: 2883 /* Buffer size is variable */ 2884 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2885 return -EFAULT; 2886 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2887 return -ENOMEM; 2888 buf_size += rule_cnt * sizeof(u32); 2889 /* fall through */ 2890 case ETHTOOL_GRXRINGS: 2891 case ETHTOOL_GRXCLSRLCNT: 2892 case ETHTOOL_GRXCLSRULE: 2893 case ETHTOOL_SRXCLSRLINS: 2894 convert_out = true; 2895 /* fall through */ 2896 case ETHTOOL_SRXCLSRLDEL: 2897 buf_size += sizeof(struct ethtool_rxnfc); 2898 convert_in = true; 2899 rxnfc = compat_alloc_user_space(buf_size); 2900 break; 2901 } 2902 2903 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2904 return -EFAULT; 2905 2906 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2907 2908 if (convert_in) { 2909 /* We expect there to be holes between fs.m_ext and 2910 * fs.ring_cookie and at the end of fs, but nowhere else. 2911 */ 2912 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2913 sizeof(compat_rxnfc->fs.m_ext) != 2914 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2915 sizeof(rxnfc->fs.m_ext)); 2916 BUILD_BUG_ON( 2917 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2918 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2919 offsetof(struct ethtool_rxnfc, fs.location) - 2920 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2921 2922 if (copy_in_user(rxnfc, compat_rxnfc, 2923 (void __user *)(&rxnfc->fs.m_ext + 1) - 2924 (void __user *)rxnfc) || 2925 copy_in_user(&rxnfc->fs.ring_cookie, 2926 &compat_rxnfc->fs.ring_cookie, 2927 (void __user *)(&rxnfc->fs.location + 1) - 2928 (void __user *)&rxnfc->fs.ring_cookie)) 2929 return -EFAULT; 2930 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2931 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 2932 return -EFAULT; 2933 } else if (copy_in_user(&rxnfc->rule_cnt, 2934 &compat_rxnfc->rule_cnt, 2935 sizeof(rxnfc->rule_cnt))) 2936 return -EFAULT; 2937 } 2938 2939 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2940 if (ret) 2941 return ret; 2942 2943 if (convert_out) { 2944 if (copy_in_user(compat_rxnfc, rxnfc, 2945 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2946 (const void __user *)rxnfc) || 2947 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2948 &rxnfc->fs.ring_cookie, 2949 (const void __user *)(&rxnfc->fs.location + 1) - 2950 (const void __user *)&rxnfc->fs.ring_cookie) || 2951 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2952 sizeof(rxnfc->rule_cnt))) 2953 return -EFAULT; 2954 2955 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2956 /* As an optimisation, we only copy the actual 2957 * number of rules that the underlying 2958 * function returned. Since Mallory might 2959 * change the rule count in user memory, we 2960 * check that it is less than the rule count 2961 * originally given (as the user buffer size), 2962 * which has been range-checked. 2963 */ 2964 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2965 return -EFAULT; 2966 if (actual_rule_cnt < rule_cnt) 2967 rule_cnt = actual_rule_cnt; 2968 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2969 &rxnfc->rule_locs[0], 2970 rule_cnt * sizeof(u32))) 2971 return -EFAULT; 2972 } 2973 } 2974 2975 return 0; 2976 } 2977 2978 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2979 { 2980 compat_uptr_t uptr32; 2981 struct ifreq ifr; 2982 void __user *saved; 2983 int err; 2984 2985 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2986 return -EFAULT; 2987 2988 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2989 return -EFAULT; 2990 2991 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2992 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2993 2994 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2995 if (!err) { 2996 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2997 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2998 err = -EFAULT; 2999 } 3000 return err; 3001 } 3002 3003 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3004 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3005 struct compat_ifreq __user *u_ifreq32) 3006 { 3007 struct ifreq ifreq; 3008 u32 data32; 3009 3010 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3011 return -EFAULT; 3012 if (get_user(data32, &u_ifreq32->ifr_data)) 3013 return -EFAULT; 3014 ifreq.ifr_data = compat_ptr(data32); 3015 3016 return dev_ioctl(net, cmd, &ifreq, NULL); 3017 } 3018 3019 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3020 struct compat_ifreq __user *uifr32) 3021 { 3022 struct ifreq ifr; 3023 struct compat_ifmap __user *uifmap32; 3024 int err; 3025 3026 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3027 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3028 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3029 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3030 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3031 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3032 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3033 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3034 if (err) 3035 return -EFAULT; 3036 3037 err = dev_ioctl(net, cmd, &ifr, NULL); 3038 3039 if (cmd == SIOCGIFMAP && !err) { 3040 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3041 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3042 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3043 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3044 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3045 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3046 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3047 if (err) 3048 err = -EFAULT; 3049 } 3050 return err; 3051 } 3052 3053 struct rtentry32 { 3054 u32 rt_pad1; 3055 struct sockaddr rt_dst; /* target address */ 3056 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3057 struct sockaddr rt_genmask; /* target network mask (IP) */ 3058 unsigned short rt_flags; 3059 short rt_pad2; 3060 u32 rt_pad3; 3061 unsigned char rt_tos; 3062 unsigned char rt_class; 3063 short rt_pad4; 3064 short rt_metric; /* +1 for binary compatibility! */ 3065 /* char * */ u32 rt_dev; /* forcing the device at add */ 3066 u32 rt_mtu; /* per route MTU/Window */ 3067 u32 rt_window; /* Window clamping */ 3068 unsigned short rt_irtt; /* Initial RTT */ 3069 }; 3070 3071 struct in6_rtmsg32 { 3072 struct in6_addr rtmsg_dst; 3073 struct in6_addr rtmsg_src; 3074 struct in6_addr rtmsg_gateway; 3075 u32 rtmsg_type; 3076 u16 rtmsg_dst_len; 3077 u16 rtmsg_src_len; 3078 u32 rtmsg_metric; 3079 u32 rtmsg_info; 3080 u32 rtmsg_flags; 3081 s32 rtmsg_ifindex; 3082 }; 3083 3084 static int routing_ioctl(struct net *net, struct socket *sock, 3085 unsigned int cmd, void __user *argp) 3086 { 3087 int ret; 3088 void *r = NULL; 3089 struct in6_rtmsg r6; 3090 struct rtentry r4; 3091 char devname[16]; 3092 u32 rtdev; 3093 mm_segment_t old_fs = get_fs(); 3094 3095 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3096 struct in6_rtmsg32 __user *ur6 = argp; 3097 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3098 3 * sizeof(struct in6_addr)); 3099 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3100 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3101 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3102 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3103 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3104 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3105 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3106 3107 r = (void *) &r6; 3108 } else { /* ipv4 */ 3109 struct rtentry32 __user *ur4 = argp; 3110 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3111 3 * sizeof(struct sockaddr)); 3112 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3113 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3114 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3115 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3116 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3117 ret |= get_user(rtdev, &(ur4->rt_dev)); 3118 if (rtdev) { 3119 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3120 r4.rt_dev = (char __user __force *)devname; 3121 devname[15] = 0; 3122 } else 3123 r4.rt_dev = NULL; 3124 3125 r = (void *) &r4; 3126 } 3127 3128 if (ret) { 3129 ret = -EFAULT; 3130 goto out; 3131 } 3132 3133 set_fs(KERNEL_DS); 3134 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r, 3135 sizeof(struct compat_ifreq)); 3136 set_fs(old_fs); 3137 3138 out: 3139 return ret; 3140 } 3141 3142 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3143 * for some operations; this forces use of the newer bridge-utils that 3144 * use compatible ioctls 3145 */ 3146 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3147 { 3148 compat_ulong_t tmp; 3149 3150 if (get_user(tmp, argp)) 3151 return -EFAULT; 3152 if (tmp == BRCTL_GET_VERSION) 3153 return BRCTL_VERSION + 1; 3154 return -EINVAL; 3155 } 3156 3157 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3158 unsigned int cmd, unsigned long arg) 3159 { 3160 void __user *argp = compat_ptr(arg); 3161 struct sock *sk = sock->sk; 3162 struct net *net = sock_net(sk); 3163 3164 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3165 return compat_ifr_data_ioctl(net, cmd, argp); 3166 3167 switch (cmd) { 3168 case SIOCSIFBR: 3169 case SIOCGIFBR: 3170 return old_bridge_ioctl(argp); 3171 case SIOCGIFCONF: 3172 return compat_dev_ifconf(net, argp); 3173 case SIOCETHTOOL: 3174 return ethtool_ioctl(net, argp); 3175 case SIOCWANDEV: 3176 return compat_siocwandev(net, argp); 3177 case SIOCGIFMAP: 3178 case SIOCSIFMAP: 3179 return compat_sioc_ifmap(net, cmd, argp); 3180 case SIOCADDRT: 3181 case SIOCDELRT: 3182 return routing_ioctl(net, sock, cmd, argp); 3183 case SIOCGSTAMP: 3184 return do_siocgstamp(net, sock, cmd, argp); 3185 case SIOCGSTAMPNS: 3186 return do_siocgstampns(net, sock, cmd, argp); 3187 case SIOCBONDSLAVEINFOQUERY: 3188 case SIOCBONDINFOQUERY: 3189 case SIOCSHWTSTAMP: 3190 case SIOCGHWTSTAMP: 3191 return compat_ifr_data_ioctl(net, cmd, argp); 3192 3193 case FIOSETOWN: 3194 case SIOCSPGRP: 3195 case FIOGETOWN: 3196 case SIOCGPGRP: 3197 case SIOCBRADDBR: 3198 case SIOCBRDELBR: 3199 case SIOCGIFVLAN: 3200 case SIOCSIFVLAN: 3201 case SIOCADDDLCI: 3202 case SIOCDELDLCI: 3203 case SIOCGSKNS: 3204 return sock_ioctl(file, cmd, arg); 3205 3206 case SIOCGIFFLAGS: 3207 case SIOCSIFFLAGS: 3208 case SIOCGIFMETRIC: 3209 case SIOCSIFMETRIC: 3210 case SIOCGIFMTU: 3211 case SIOCSIFMTU: 3212 case SIOCGIFMEM: 3213 case SIOCSIFMEM: 3214 case SIOCGIFHWADDR: 3215 case SIOCSIFHWADDR: 3216 case SIOCADDMULTI: 3217 case SIOCDELMULTI: 3218 case SIOCGIFINDEX: 3219 case SIOCGIFADDR: 3220 case SIOCSIFADDR: 3221 case SIOCSIFHWBROADCAST: 3222 case SIOCDIFADDR: 3223 case SIOCGIFBRDADDR: 3224 case SIOCSIFBRDADDR: 3225 case SIOCGIFDSTADDR: 3226 case SIOCSIFDSTADDR: 3227 case SIOCGIFNETMASK: 3228 case SIOCSIFNETMASK: 3229 case SIOCSIFPFLAGS: 3230 case SIOCGIFPFLAGS: 3231 case SIOCGIFTXQLEN: 3232 case SIOCSIFTXQLEN: 3233 case SIOCBRADDIF: 3234 case SIOCBRDELIF: 3235 case SIOCSIFNAME: 3236 case SIOCGMIIPHY: 3237 case SIOCGMIIREG: 3238 case SIOCSMIIREG: 3239 case SIOCSARP: 3240 case SIOCGARP: 3241 case SIOCDARP: 3242 case SIOCATMARK: 3243 case SIOCBONDENSLAVE: 3244 case SIOCBONDRELEASE: 3245 case SIOCBONDSETHWADDR: 3246 case SIOCBONDCHANGEACTIVE: 3247 case SIOCGIFNAME: 3248 return sock_do_ioctl(net, sock, cmd, arg, 3249 sizeof(struct compat_ifreq)); 3250 } 3251 3252 return -ENOIOCTLCMD; 3253 } 3254 3255 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3256 unsigned long arg) 3257 { 3258 struct socket *sock = file->private_data; 3259 int ret = -ENOIOCTLCMD; 3260 struct sock *sk; 3261 struct net *net; 3262 3263 sk = sock->sk; 3264 net = sock_net(sk); 3265 3266 if (sock->ops->compat_ioctl) 3267 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3268 3269 if (ret == -ENOIOCTLCMD && 3270 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3271 ret = compat_wext_handle_ioctl(net, cmd, arg); 3272 3273 if (ret == -ENOIOCTLCMD) 3274 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3275 3276 return ret; 3277 } 3278 #endif 3279 3280 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3281 { 3282 return sock->ops->bind(sock, addr, addrlen); 3283 } 3284 EXPORT_SYMBOL(kernel_bind); 3285 3286 int kernel_listen(struct socket *sock, int backlog) 3287 { 3288 return sock->ops->listen(sock, backlog); 3289 } 3290 EXPORT_SYMBOL(kernel_listen); 3291 3292 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3293 { 3294 struct sock *sk = sock->sk; 3295 int err; 3296 3297 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3298 newsock); 3299 if (err < 0) 3300 goto done; 3301 3302 err = sock->ops->accept(sock, *newsock, flags, true); 3303 if (err < 0) { 3304 sock_release(*newsock); 3305 *newsock = NULL; 3306 goto done; 3307 } 3308 3309 (*newsock)->ops = sock->ops; 3310 __module_get((*newsock)->ops->owner); 3311 3312 done: 3313 return err; 3314 } 3315 EXPORT_SYMBOL(kernel_accept); 3316 3317 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3318 int flags) 3319 { 3320 return sock->ops->connect(sock, addr, addrlen, flags); 3321 } 3322 EXPORT_SYMBOL(kernel_connect); 3323 3324 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3325 { 3326 return sock->ops->getname(sock, addr, 0); 3327 } 3328 EXPORT_SYMBOL(kernel_getsockname); 3329 3330 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3331 { 3332 return sock->ops->getname(sock, addr, 1); 3333 } 3334 EXPORT_SYMBOL(kernel_getpeername); 3335 3336 int kernel_getsockopt(struct socket *sock, int level, int optname, 3337 char *optval, int *optlen) 3338 { 3339 mm_segment_t oldfs = get_fs(); 3340 char __user *uoptval; 3341 int __user *uoptlen; 3342 int err; 3343 3344 uoptval = (char __user __force *) optval; 3345 uoptlen = (int __user __force *) optlen; 3346 3347 set_fs(KERNEL_DS); 3348 if (level == SOL_SOCKET) 3349 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3350 else 3351 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3352 uoptlen); 3353 set_fs(oldfs); 3354 return err; 3355 } 3356 EXPORT_SYMBOL(kernel_getsockopt); 3357 3358 int kernel_setsockopt(struct socket *sock, int level, int optname, 3359 char *optval, unsigned int optlen) 3360 { 3361 mm_segment_t oldfs = get_fs(); 3362 char __user *uoptval; 3363 int err; 3364 3365 uoptval = (char __user __force *) optval; 3366 3367 set_fs(KERNEL_DS); 3368 if (level == SOL_SOCKET) 3369 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3370 else 3371 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3372 optlen); 3373 set_fs(oldfs); 3374 return err; 3375 } 3376 EXPORT_SYMBOL(kernel_setsockopt); 3377 3378 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3379 size_t size, int flags) 3380 { 3381 if (sock->ops->sendpage) 3382 return sock->ops->sendpage(sock, page, offset, size, flags); 3383 3384 return sock_no_sendpage(sock, page, offset, size, flags); 3385 } 3386 EXPORT_SYMBOL(kernel_sendpage); 3387 3388 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3389 size_t size, int flags) 3390 { 3391 struct socket *sock = sk->sk_socket; 3392 3393 if (sock->ops->sendpage_locked) 3394 return sock->ops->sendpage_locked(sk, page, offset, size, 3395 flags); 3396 3397 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3398 } 3399 EXPORT_SYMBOL(kernel_sendpage_locked); 3400 3401 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3402 { 3403 return sock->ops->shutdown(sock, how); 3404 } 3405 EXPORT_SYMBOL(kernel_sock_shutdown); 3406 3407 /* This routine returns the IP overhead imposed by a socket i.e. 3408 * the length of the underlying IP header, depending on whether 3409 * this is an IPv4 or IPv6 socket and the length from IP options turned 3410 * on at the socket. Assumes that the caller has a lock on the socket. 3411 */ 3412 u32 kernel_sock_ip_overhead(struct sock *sk) 3413 { 3414 struct inet_sock *inet; 3415 struct ip_options_rcu *opt; 3416 u32 overhead = 0; 3417 #if IS_ENABLED(CONFIG_IPV6) 3418 struct ipv6_pinfo *np; 3419 struct ipv6_txoptions *optv6 = NULL; 3420 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3421 3422 if (!sk) 3423 return overhead; 3424 3425 switch (sk->sk_family) { 3426 case AF_INET: 3427 inet = inet_sk(sk); 3428 overhead += sizeof(struct iphdr); 3429 opt = rcu_dereference_protected(inet->inet_opt, 3430 sock_owned_by_user(sk)); 3431 if (opt) 3432 overhead += opt->opt.optlen; 3433 return overhead; 3434 #if IS_ENABLED(CONFIG_IPV6) 3435 case AF_INET6: 3436 np = inet6_sk(sk); 3437 overhead += sizeof(struct ipv6hdr); 3438 if (np) 3439 optv6 = rcu_dereference_protected(np->opt, 3440 sock_owned_by_user(sk)); 3441 if (optv6) 3442 overhead += (optv6->opt_flen + optv6->opt_nflen); 3443 return overhead; 3444 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3445 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3446 return overhead; 3447 } 3448 } 3449 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3450