xref: /openbmc/linux/net/socket.c (revision 93d90ad7)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 			 unsigned long nr_segs, loff_t pos);
118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 			  unsigned long nr_segs, loff_t pos);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static unsigned int sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132 			     int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 
137 /*
138  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139  *	in the operation structures but are done directly via the socketcall() multiplexor.
140  */
141 
142 static const struct file_operations socket_file_ops = {
143 	.owner =	THIS_MODULE,
144 	.llseek =	no_llseek,
145 	.aio_read =	sock_aio_read,
146 	.aio_write =	sock_aio_write,
147 	.poll =		sock_poll,
148 	.unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 	.compat_ioctl = compat_sock_ioctl,
151 #endif
152 	.mmap =		sock_mmap,
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				dentry->d_inode->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(IS_ERR(file))) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct fd f = fdget(fd);
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	if (f.file) {
457 		sock = sock_from_file(f.file, err);
458 		if (likely(sock)) {
459 			*fput_needed = f.flags;
460 			return sock;
461 		}
462 		fdput(f);
463 	}
464 	return NULL;
465 }
466 
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 			       const char *name, void *value, size_t size)
472 {
473 	const char *proto_name;
474 	size_t proto_size;
475 	int error;
476 
477 	error = -ENODATA;
478 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 		proto_name = dentry->d_name.name;
480 		proto_size = strlen(proto_name);
481 
482 		if (value) {
483 			error = -ERANGE;
484 			if (proto_size + 1 > size)
485 				goto out;
486 
487 			strncpy(value, proto_name, proto_size + 1);
488 		}
489 		error = proto_size + 1;
490 	}
491 
492 out:
493 	return error;
494 }
495 
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 				size_t size)
498 {
499 	ssize_t len;
500 	ssize_t used = 0;
501 
502 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 	if (len < 0)
504 		return len;
505 	used += len;
506 	if (buffer) {
507 		if (size < used)
508 			return -ERANGE;
509 		buffer += len;
510 	}
511 
512 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 		buffer += len;
519 	}
520 
521 	return used;
522 }
523 
524 static const struct inode_operations sockfs_inode_ops = {
525 	.getxattr = sockfs_getxattr,
526 	.listxattr = sockfs_listxattr,
527 };
528 
529 /**
530  *	sock_alloc	-	allocate a socket
531  *
532  *	Allocate a new inode and socket object. The two are bound together
533  *	and initialised. The socket is then returned. If we are out of inodes
534  *	NULL is returned.
535  */
536 
537 static struct socket *sock_alloc(void)
538 {
539 	struct inode *inode;
540 	struct socket *sock;
541 
542 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 	if (!inode)
544 		return NULL;
545 
546 	sock = SOCKET_I(inode);
547 
548 	kmemcheck_annotate_bitfield(sock, type);
549 	inode->i_ino = get_next_ino();
550 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 	inode->i_uid = current_fsuid();
552 	inode->i_gid = current_fsgid();
553 	inode->i_op = &sockfs_inode_ops;
554 
555 	this_cpu_add(sockets_in_use, 1);
556 	return sock;
557 }
558 
559 /**
560  *	sock_release	-	close a socket
561  *	@sock: socket to close
562  *
563  *	The socket is released from the protocol stack if it has a release
564  *	callback, and the inode is then released if the socket is bound to
565  *	an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570 	if (sock->ops) {
571 		struct module *owner = sock->ops->owner;
572 
573 		sock->ops->release(sock);
574 		sock->ops = NULL;
575 		module_put(owner);
576 	}
577 
578 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 		pr_err("%s: fasync list not empty!\n", __func__);
580 
581 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 		return;
583 
584 	this_cpu_sub(sockets_in_use, 1);
585 	if (!sock->file) {
586 		iput(SOCK_INODE(sock));
587 		return;
588 	}
589 	sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592 
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 	u8 flags = *tx_flags;
596 
597 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 		flags |= SKBTX_HW_TSTAMP;
599 
600 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 		flags |= SKBTX_SW_TSTAMP;
602 
603 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 		flags |= SKBTX_SCHED_TSTAMP;
605 
606 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 		flags |= SKBTX_ACK_TSTAMP;
608 
609 	*tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612 
613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
614 				       struct msghdr *msg, size_t size)
615 {
616 	struct sock_iocb *si = kiocb_to_siocb(iocb);
617 
618 	si->sock = sock;
619 	si->scm = NULL;
620 	si->msg = msg;
621 	si->size = size;
622 
623 	return sock->ops->sendmsg(iocb, sock, msg, size);
624 }
625 
626 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
627 				 struct msghdr *msg, size_t size)
628 {
629 	int err = security_socket_sendmsg(sock, msg, size);
630 
631 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
632 }
633 
634 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
635 			   size_t size, bool nosec)
636 {
637 	struct kiocb iocb;
638 	struct sock_iocb siocb;
639 	int ret;
640 
641 	init_sync_kiocb(&iocb, NULL);
642 	iocb.private = &siocb;
643 	ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
644 		      __sock_sendmsg(&iocb, sock, msg, size);
645 	if (-EIOCBQUEUED == ret)
646 		ret = wait_on_sync_kiocb(&iocb);
647 	return ret;
648 }
649 
650 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
651 {
652 	return do_sock_sendmsg(sock, msg, size, false);
653 }
654 EXPORT_SYMBOL(sock_sendmsg);
655 
656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
657 {
658 	return do_sock_sendmsg(sock, msg, size, true);
659 }
660 
661 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
662 		   struct kvec *vec, size_t num, size_t size)
663 {
664 	mm_segment_t oldfs = get_fs();
665 	int result;
666 
667 	set_fs(KERNEL_DS);
668 	/*
669 	 * the following is safe, since for compiler definitions of kvec and
670 	 * iovec are identical, yielding the same in-core layout and alignment
671 	 */
672 	iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
673 	result = sock_sendmsg(sock, msg, size);
674 	set_fs(oldfs);
675 	return result;
676 }
677 EXPORT_SYMBOL(kernel_sendmsg);
678 
679 /*
680  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
681  */
682 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
683 	struct sk_buff *skb)
684 {
685 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
686 	struct scm_timestamping tss;
687 	int empty = 1;
688 	struct skb_shared_hwtstamps *shhwtstamps =
689 		skb_hwtstamps(skb);
690 
691 	/* Race occurred between timestamp enabling and packet
692 	   receiving.  Fill in the current time for now. */
693 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
694 		__net_timestamp(skb);
695 
696 	if (need_software_tstamp) {
697 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
698 			struct timeval tv;
699 			skb_get_timestamp(skb, &tv);
700 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
701 				 sizeof(tv), &tv);
702 		} else {
703 			struct timespec ts;
704 			skb_get_timestampns(skb, &ts);
705 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
706 				 sizeof(ts), &ts);
707 		}
708 	}
709 
710 	memset(&tss, 0, sizeof(tss));
711 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
712 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
713 		empty = 0;
714 	if (shhwtstamps &&
715 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
716 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
717 		empty = 0;
718 	if (!empty)
719 		put_cmsg(msg, SOL_SOCKET,
720 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
721 }
722 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
723 
724 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
725 	struct sk_buff *skb)
726 {
727 	int ack;
728 
729 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
730 		return;
731 	if (!skb->wifi_acked_valid)
732 		return;
733 
734 	ack = skb->wifi_acked;
735 
736 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
737 }
738 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
739 
740 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
741 				   struct sk_buff *skb)
742 {
743 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
744 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
745 			sizeof(__u32), &skb->dropcount);
746 }
747 
748 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
749 	struct sk_buff *skb)
750 {
751 	sock_recv_timestamp(msg, sk, skb);
752 	sock_recv_drops(msg, sk, skb);
753 }
754 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
755 
756 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
757 				       struct msghdr *msg, size_t size, int flags)
758 {
759 	struct sock_iocb *si = kiocb_to_siocb(iocb);
760 
761 	si->sock = sock;
762 	si->scm = NULL;
763 	si->msg = msg;
764 	si->size = size;
765 	si->flags = flags;
766 
767 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
768 }
769 
770 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
771 				 struct msghdr *msg, size_t size, int flags)
772 {
773 	int err = security_socket_recvmsg(sock, msg, size, flags);
774 
775 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
776 }
777 
778 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
779 		 size_t size, int flags)
780 {
781 	struct kiocb iocb;
782 	struct sock_iocb siocb;
783 	int ret;
784 
785 	init_sync_kiocb(&iocb, NULL);
786 	iocb.private = &siocb;
787 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
788 	if (-EIOCBQUEUED == ret)
789 		ret = wait_on_sync_kiocb(&iocb);
790 	return ret;
791 }
792 EXPORT_SYMBOL(sock_recvmsg);
793 
794 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
795 			      size_t size, int flags)
796 {
797 	struct kiocb iocb;
798 	struct sock_iocb siocb;
799 	int ret;
800 
801 	init_sync_kiocb(&iocb, NULL);
802 	iocb.private = &siocb;
803 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
804 	if (-EIOCBQUEUED == ret)
805 		ret = wait_on_sync_kiocb(&iocb);
806 	return ret;
807 }
808 
809 /**
810  * kernel_recvmsg - Receive a message from a socket (kernel space)
811  * @sock:       The socket to receive the message from
812  * @msg:        Received message
813  * @vec:        Input s/g array for message data
814  * @num:        Size of input s/g array
815  * @size:       Number of bytes to read
816  * @flags:      Message flags (MSG_DONTWAIT, etc...)
817  *
818  * On return the msg structure contains the scatter/gather array passed in the
819  * vec argument. The array is modified so that it consists of the unfilled
820  * portion of the original array.
821  *
822  * The returned value is the total number of bytes received, or an error.
823  */
824 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
825 		   struct kvec *vec, size_t num, size_t size, int flags)
826 {
827 	mm_segment_t oldfs = get_fs();
828 	int result;
829 
830 	set_fs(KERNEL_DS);
831 	/*
832 	 * the following is safe, since for compiler definitions of kvec and
833 	 * iovec are identical, yielding the same in-core layout and alignment
834 	 */
835 	iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
836 	result = sock_recvmsg(sock, msg, size, flags);
837 	set_fs(oldfs);
838 	return result;
839 }
840 EXPORT_SYMBOL(kernel_recvmsg);
841 
842 static ssize_t sock_sendpage(struct file *file, struct page *page,
843 			     int offset, size_t size, loff_t *ppos, int more)
844 {
845 	struct socket *sock;
846 	int flags;
847 
848 	sock = file->private_data;
849 
850 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
851 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
852 	flags |= more;
853 
854 	return kernel_sendpage(sock, page, offset, size, flags);
855 }
856 
857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
858 				struct pipe_inode_info *pipe, size_t len,
859 				unsigned int flags)
860 {
861 	struct socket *sock = file->private_data;
862 
863 	if (unlikely(!sock->ops->splice_read))
864 		return -EINVAL;
865 
866 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
867 }
868 
869 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
870 					 struct sock_iocb *siocb)
871 {
872 	if (!is_sync_kiocb(iocb))
873 		BUG();
874 
875 	siocb->kiocb = iocb;
876 	iocb->private = siocb;
877 	return siocb;
878 }
879 
880 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
881 		struct file *file, const struct iovec *iov,
882 		unsigned long nr_segs)
883 {
884 	struct socket *sock = file->private_data;
885 	size_t size = 0;
886 	int i;
887 
888 	for (i = 0; i < nr_segs; i++)
889 		size += iov[i].iov_len;
890 
891 	msg->msg_name = NULL;
892 	msg->msg_namelen = 0;
893 	msg->msg_control = NULL;
894 	msg->msg_controllen = 0;
895 	iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size);
896 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
897 
898 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
899 }
900 
901 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
902 				unsigned long nr_segs, loff_t pos)
903 {
904 	struct sock_iocb siocb, *x;
905 
906 	if (pos != 0)
907 		return -ESPIPE;
908 
909 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
910 		return 0;
911 
912 
913 	x = alloc_sock_iocb(iocb, &siocb);
914 	if (!x)
915 		return -ENOMEM;
916 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
917 }
918 
919 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
920 			struct file *file, const struct iovec *iov,
921 			unsigned long nr_segs)
922 {
923 	struct socket *sock = file->private_data;
924 	size_t size = 0;
925 	int i;
926 
927 	for (i = 0; i < nr_segs; i++)
928 		size += iov[i].iov_len;
929 
930 	msg->msg_name = NULL;
931 	msg->msg_namelen = 0;
932 	msg->msg_control = NULL;
933 	msg->msg_controllen = 0;
934 	iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size);
935 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
936 	if (sock->type == SOCK_SEQPACKET)
937 		msg->msg_flags |= MSG_EOR;
938 
939 	return __sock_sendmsg(iocb, sock, msg, size);
940 }
941 
942 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
943 			  unsigned long nr_segs, loff_t pos)
944 {
945 	struct sock_iocb siocb, *x;
946 
947 	if (pos != 0)
948 		return -ESPIPE;
949 
950 	x = alloc_sock_iocb(iocb, &siocb);
951 	if (!x)
952 		return -ENOMEM;
953 
954 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
955 }
956 
957 /*
958  * Atomic setting of ioctl hooks to avoid race
959  * with module unload.
960  */
961 
962 static DEFINE_MUTEX(br_ioctl_mutex);
963 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
964 
965 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
966 {
967 	mutex_lock(&br_ioctl_mutex);
968 	br_ioctl_hook = hook;
969 	mutex_unlock(&br_ioctl_mutex);
970 }
971 EXPORT_SYMBOL(brioctl_set);
972 
973 static DEFINE_MUTEX(vlan_ioctl_mutex);
974 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
975 
976 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
977 {
978 	mutex_lock(&vlan_ioctl_mutex);
979 	vlan_ioctl_hook = hook;
980 	mutex_unlock(&vlan_ioctl_mutex);
981 }
982 EXPORT_SYMBOL(vlan_ioctl_set);
983 
984 static DEFINE_MUTEX(dlci_ioctl_mutex);
985 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
986 
987 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
988 {
989 	mutex_lock(&dlci_ioctl_mutex);
990 	dlci_ioctl_hook = hook;
991 	mutex_unlock(&dlci_ioctl_mutex);
992 }
993 EXPORT_SYMBOL(dlci_ioctl_set);
994 
995 static long sock_do_ioctl(struct net *net, struct socket *sock,
996 				 unsigned int cmd, unsigned long arg)
997 {
998 	int err;
999 	void __user *argp = (void __user *)arg;
1000 
1001 	err = sock->ops->ioctl(sock, cmd, arg);
1002 
1003 	/*
1004 	 * If this ioctl is unknown try to hand it down
1005 	 * to the NIC driver.
1006 	 */
1007 	if (err == -ENOIOCTLCMD)
1008 		err = dev_ioctl(net, cmd, argp);
1009 
1010 	return err;
1011 }
1012 
1013 /*
1014  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1015  *	what to do with it - that's up to the protocol still.
1016  */
1017 
1018 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1019 {
1020 	struct socket *sock;
1021 	struct sock *sk;
1022 	void __user *argp = (void __user *)arg;
1023 	int pid, err;
1024 	struct net *net;
1025 
1026 	sock = file->private_data;
1027 	sk = sock->sk;
1028 	net = sock_net(sk);
1029 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1030 		err = dev_ioctl(net, cmd, argp);
1031 	} else
1032 #ifdef CONFIG_WEXT_CORE
1033 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1034 		err = dev_ioctl(net, cmd, argp);
1035 	} else
1036 #endif
1037 		switch (cmd) {
1038 		case FIOSETOWN:
1039 		case SIOCSPGRP:
1040 			err = -EFAULT;
1041 			if (get_user(pid, (int __user *)argp))
1042 				break;
1043 			f_setown(sock->file, pid, 1);
1044 			err = 0;
1045 			break;
1046 		case FIOGETOWN:
1047 		case SIOCGPGRP:
1048 			err = put_user(f_getown(sock->file),
1049 				       (int __user *)argp);
1050 			break;
1051 		case SIOCGIFBR:
1052 		case SIOCSIFBR:
1053 		case SIOCBRADDBR:
1054 		case SIOCBRDELBR:
1055 			err = -ENOPKG;
1056 			if (!br_ioctl_hook)
1057 				request_module("bridge");
1058 
1059 			mutex_lock(&br_ioctl_mutex);
1060 			if (br_ioctl_hook)
1061 				err = br_ioctl_hook(net, cmd, argp);
1062 			mutex_unlock(&br_ioctl_mutex);
1063 			break;
1064 		case SIOCGIFVLAN:
1065 		case SIOCSIFVLAN:
1066 			err = -ENOPKG;
1067 			if (!vlan_ioctl_hook)
1068 				request_module("8021q");
1069 
1070 			mutex_lock(&vlan_ioctl_mutex);
1071 			if (vlan_ioctl_hook)
1072 				err = vlan_ioctl_hook(net, argp);
1073 			mutex_unlock(&vlan_ioctl_mutex);
1074 			break;
1075 		case SIOCADDDLCI:
1076 		case SIOCDELDLCI:
1077 			err = -ENOPKG;
1078 			if (!dlci_ioctl_hook)
1079 				request_module("dlci");
1080 
1081 			mutex_lock(&dlci_ioctl_mutex);
1082 			if (dlci_ioctl_hook)
1083 				err = dlci_ioctl_hook(cmd, argp);
1084 			mutex_unlock(&dlci_ioctl_mutex);
1085 			break;
1086 		default:
1087 			err = sock_do_ioctl(net, sock, cmd, arg);
1088 			break;
1089 		}
1090 	return err;
1091 }
1092 
1093 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1094 {
1095 	int err;
1096 	struct socket *sock = NULL;
1097 
1098 	err = security_socket_create(family, type, protocol, 1);
1099 	if (err)
1100 		goto out;
1101 
1102 	sock = sock_alloc();
1103 	if (!sock) {
1104 		err = -ENOMEM;
1105 		goto out;
1106 	}
1107 
1108 	sock->type = type;
1109 	err = security_socket_post_create(sock, family, type, protocol, 1);
1110 	if (err)
1111 		goto out_release;
1112 
1113 out:
1114 	*res = sock;
1115 	return err;
1116 out_release:
1117 	sock_release(sock);
1118 	sock = NULL;
1119 	goto out;
1120 }
1121 EXPORT_SYMBOL(sock_create_lite);
1122 
1123 /* No kernel lock held - perfect */
1124 static unsigned int sock_poll(struct file *file, poll_table *wait)
1125 {
1126 	unsigned int busy_flag = 0;
1127 	struct socket *sock;
1128 
1129 	/*
1130 	 *      We can't return errors to poll, so it's either yes or no.
1131 	 */
1132 	sock = file->private_data;
1133 
1134 	if (sk_can_busy_loop(sock->sk)) {
1135 		/* this socket can poll_ll so tell the system call */
1136 		busy_flag = POLL_BUSY_LOOP;
1137 
1138 		/* once, only if requested by syscall */
1139 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1140 			sk_busy_loop(sock->sk, 1);
1141 	}
1142 
1143 	return busy_flag | sock->ops->poll(file, sock, wait);
1144 }
1145 
1146 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1147 {
1148 	struct socket *sock = file->private_data;
1149 
1150 	return sock->ops->mmap(file, sock, vma);
1151 }
1152 
1153 static int sock_close(struct inode *inode, struct file *filp)
1154 {
1155 	sock_release(SOCKET_I(inode));
1156 	return 0;
1157 }
1158 
1159 /*
1160  *	Update the socket async list
1161  *
1162  *	Fasync_list locking strategy.
1163  *
1164  *	1. fasync_list is modified only under process context socket lock
1165  *	   i.e. under semaphore.
1166  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1167  *	   or under socket lock
1168  */
1169 
1170 static int sock_fasync(int fd, struct file *filp, int on)
1171 {
1172 	struct socket *sock = filp->private_data;
1173 	struct sock *sk = sock->sk;
1174 	struct socket_wq *wq;
1175 
1176 	if (sk == NULL)
1177 		return -EINVAL;
1178 
1179 	lock_sock(sk);
1180 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1181 	fasync_helper(fd, filp, on, &wq->fasync_list);
1182 
1183 	if (!wq->fasync_list)
1184 		sock_reset_flag(sk, SOCK_FASYNC);
1185 	else
1186 		sock_set_flag(sk, SOCK_FASYNC);
1187 
1188 	release_sock(sk);
1189 	return 0;
1190 }
1191 
1192 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1193 
1194 int sock_wake_async(struct socket *sock, int how, int band)
1195 {
1196 	struct socket_wq *wq;
1197 
1198 	if (!sock)
1199 		return -1;
1200 	rcu_read_lock();
1201 	wq = rcu_dereference(sock->wq);
1202 	if (!wq || !wq->fasync_list) {
1203 		rcu_read_unlock();
1204 		return -1;
1205 	}
1206 	switch (how) {
1207 	case SOCK_WAKE_WAITD:
1208 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1209 			break;
1210 		goto call_kill;
1211 	case SOCK_WAKE_SPACE:
1212 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1213 			break;
1214 		/* fall through */
1215 	case SOCK_WAKE_IO:
1216 call_kill:
1217 		kill_fasync(&wq->fasync_list, SIGIO, band);
1218 		break;
1219 	case SOCK_WAKE_URG:
1220 		kill_fasync(&wq->fasync_list, SIGURG, band);
1221 	}
1222 	rcu_read_unlock();
1223 	return 0;
1224 }
1225 EXPORT_SYMBOL(sock_wake_async);
1226 
1227 int __sock_create(struct net *net, int family, int type, int protocol,
1228 			 struct socket **res, int kern)
1229 {
1230 	int err;
1231 	struct socket *sock;
1232 	const struct net_proto_family *pf;
1233 
1234 	/*
1235 	 *      Check protocol is in range
1236 	 */
1237 	if (family < 0 || family >= NPROTO)
1238 		return -EAFNOSUPPORT;
1239 	if (type < 0 || type >= SOCK_MAX)
1240 		return -EINVAL;
1241 
1242 	/* Compatibility.
1243 
1244 	   This uglymoron is moved from INET layer to here to avoid
1245 	   deadlock in module load.
1246 	 */
1247 	if (family == PF_INET && type == SOCK_PACKET) {
1248 		static int warned;
1249 		if (!warned) {
1250 			warned = 1;
1251 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1252 				current->comm);
1253 		}
1254 		family = PF_PACKET;
1255 	}
1256 
1257 	err = security_socket_create(family, type, protocol, kern);
1258 	if (err)
1259 		return err;
1260 
1261 	/*
1262 	 *	Allocate the socket and allow the family to set things up. if
1263 	 *	the protocol is 0, the family is instructed to select an appropriate
1264 	 *	default.
1265 	 */
1266 	sock = sock_alloc();
1267 	if (!sock) {
1268 		net_warn_ratelimited("socket: no more sockets\n");
1269 		return -ENFILE;	/* Not exactly a match, but its the
1270 				   closest posix thing */
1271 	}
1272 
1273 	sock->type = type;
1274 
1275 #ifdef CONFIG_MODULES
1276 	/* Attempt to load a protocol module if the find failed.
1277 	 *
1278 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1279 	 * requested real, full-featured networking support upon configuration.
1280 	 * Otherwise module support will break!
1281 	 */
1282 	if (rcu_access_pointer(net_families[family]) == NULL)
1283 		request_module("net-pf-%d", family);
1284 #endif
1285 
1286 	rcu_read_lock();
1287 	pf = rcu_dereference(net_families[family]);
1288 	err = -EAFNOSUPPORT;
1289 	if (!pf)
1290 		goto out_release;
1291 
1292 	/*
1293 	 * We will call the ->create function, that possibly is in a loadable
1294 	 * module, so we have to bump that loadable module refcnt first.
1295 	 */
1296 	if (!try_module_get(pf->owner))
1297 		goto out_release;
1298 
1299 	/* Now protected by module ref count */
1300 	rcu_read_unlock();
1301 
1302 	err = pf->create(net, sock, protocol, kern);
1303 	if (err < 0)
1304 		goto out_module_put;
1305 
1306 	/*
1307 	 * Now to bump the refcnt of the [loadable] module that owns this
1308 	 * socket at sock_release time we decrement its refcnt.
1309 	 */
1310 	if (!try_module_get(sock->ops->owner))
1311 		goto out_module_busy;
1312 
1313 	/*
1314 	 * Now that we're done with the ->create function, the [loadable]
1315 	 * module can have its refcnt decremented
1316 	 */
1317 	module_put(pf->owner);
1318 	err = security_socket_post_create(sock, family, type, protocol, kern);
1319 	if (err)
1320 		goto out_sock_release;
1321 	*res = sock;
1322 
1323 	return 0;
1324 
1325 out_module_busy:
1326 	err = -EAFNOSUPPORT;
1327 out_module_put:
1328 	sock->ops = NULL;
1329 	module_put(pf->owner);
1330 out_sock_release:
1331 	sock_release(sock);
1332 	return err;
1333 
1334 out_release:
1335 	rcu_read_unlock();
1336 	goto out_sock_release;
1337 }
1338 EXPORT_SYMBOL(__sock_create);
1339 
1340 int sock_create(int family, int type, int protocol, struct socket **res)
1341 {
1342 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1343 }
1344 EXPORT_SYMBOL(sock_create);
1345 
1346 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1347 {
1348 	return __sock_create(&init_net, family, type, protocol, res, 1);
1349 }
1350 EXPORT_SYMBOL(sock_create_kern);
1351 
1352 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1353 {
1354 	int retval;
1355 	struct socket *sock;
1356 	int flags;
1357 
1358 	/* Check the SOCK_* constants for consistency.  */
1359 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1360 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1361 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1362 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1363 
1364 	flags = type & ~SOCK_TYPE_MASK;
1365 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1366 		return -EINVAL;
1367 	type &= SOCK_TYPE_MASK;
1368 
1369 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1370 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1371 
1372 	retval = sock_create(family, type, protocol, &sock);
1373 	if (retval < 0)
1374 		goto out;
1375 
1376 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1377 	if (retval < 0)
1378 		goto out_release;
1379 
1380 out:
1381 	/* It may be already another descriptor 8) Not kernel problem. */
1382 	return retval;
1383 
1384 out_release:
1385 	sock_release(sock);
1386 	return retval;
1387 }
1388 
1389 /*
1390  *	Create a pair of connected sockets.
1391  */
1392 
1393 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1394 		int __user *, usockvec)
1395 {
1396 	struct socket *sock1, *sock2;
1397 	int fd1, fd2, err;
1398 	struct file *newfile1, *newfile2;
1399 	int flags;
1400 
1401 	flags = type & ~SOCK_TYPE_MASK;
1402 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1403 		return -EINVAL;
1404 	type &= SOCK_TYPE_MASK;
1405 
1406 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1407 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1408 
1409 	/*
1410 	 * Obtain the first socket and check if the underlying protocol
1411 	 * supports the socketpair call.
1412 	 */
1413 
1414 	err = sock_create(family, type, protocol, &sock1);
1415 	if (err < 0)
1416 		goto out;
1417 
1418 	err = sock_create(family, type, protocol, &sock2);
1419 	if (err < 0)
1420 		goto out_release_1;
1421 
1422 	err = sock1->ops->socketpair(sock1, sock2);
1423 	if (err < 0)
1424 		goto out_release_both;
1425 
1426 	fd1 = get_unused_fd_flags(flags);
1427 	if (unlikely(fd1 < 0)) {
1428 		err = fd1;
1429 		goto out_release_both;
1430 	}
1431 
1432 	fd2 = get_unused_fd_flags(flags);
1433 	if (unlikely(fd2 < 0)) {
1434 		err = fd2;
1435 		goto out_put_unused_1;
1436 	}
1437 
1438 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1439 	if (unlikely(IS_ERR(newfile1))) {
1440 		err = PTR_ERR(newfile1);
1441 		goto out_put_unused_both;
1442 	}
1443 
1444 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1445 	if (IS_ERR(newfile2)) {
1446 		err = PTR_ERR(newfile2);
1447 		goto out_fput_1;
1448 	}
1449 
1450 	err = put_user(fd1, &usockvec[0]);
1451 	if (err)
1452 		goto out_fput_both;
1453 
1454 	err = put_user(fd2, &usockvec[1]);
1455 	if (err)
1456 		goto out_fput_both;
1457 
1458 	audit_fd_pair(fd1, fd2);
1459 
1460 	fd_install(fd1, newfile1);
1461 	fd_install(fd2, newfile2);
1462 	/* fd1 and fd2 may be already another descriptors.
1463 	 * Not kernel problem.
1464 	 */
1465 
1466 	return 0;
1467 
1468 out_fput_both:
1469 	fput(newfile2);
1470 	fput(newfile1);
1471 	put_unused_fd(fd2);
1472 	put_unused_fd(fd1);
1473 	goto out;
1474 
1475 out_fput_1:
1476 	fput(newfile1);
1477 	put_unused_fd(fd2);
1478 	put_unused_fd(fd1);
1479 	sock_release(sock2);
1480 	goto out;
1481 
1482 out_put_unused_both:
1483 	put_unused_fd(fd2);
1484 out_put_unused_1:
1485 	put_unused_fd(fd1);
1486 out_release_both:
1487 	sock_release(sock2);
1488 out_release_1:
1489 	sock_release(sock1);
1490 out:
1491 	return err;
1492 }
1493 
1494 /*
1495  *	Bind a name to a socket. Nothing much to do here since it's
1496  *	the protocol's responsibility to handle the local address.
1497  *
1498  *	We move the socket address to kernel space before we call
1499  *	the protocol layer (having also checked the address is ok).
1500  */
1501 
1502 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1503 {
1504 	struct socket *sock;
1505 	struct sockaddr_storage address;
1506 	int err, fput_needed;
1507 
1508 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1509 	if (sock) {
1510 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1511 		if (err >= 0) {
1512 			err = security_socket_bind(sock,
1513 						   (struct sockaddr *)&address,
1514 						   addrlen);
1515 			if (!err)
1516 				err = sock->ops->bind(sock,
1517 						      (struct sockaddr *)
1518 						      &address, addrlen);
1519 		}
1520 		fput_light(sock->file, fput_needed);
1521 	}
1522 	return err;
1523 }
1524 
1525 /*
1526  *	Perform a listen. Basically, we allow the protocol to do anything
1527  *	necessary for a listen, and if that works, we mark the socket as
1528  *	ready for listening.
1529  */
1530 
1531 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1532 {
1533 	struct socket *sock;
1534 	int err, fput_needed;
1535 	int somaxconn;
1536 
1537 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 	if (sock) {
1539 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1540 		if ((unsigned int)backlog > somaxconn)
1541 			backlog = somaxconn;
1542 
1543 		err = security_socket_listen(sock, backlog);
1544 		if (!err)
1545 			err = sock->ops->listen(sock, backlog);
1546 
1547 		fput_light(sock->file, fput_needed);
1548 	}
1549 	return err;
1550 }
1551 
1552 /*
1553  *	For accept, we attempt to create a new socket, set up the link
1554  *	with the client, wake up the client, then return the new
1555  *	connected fd. We collect the address of the connector in kernel
1556  *	space and move it to user at the very end. This is unclean because
1557  *	we open the socket then return an error.
1558  *
1559  *	1003.1g adds the ability to recvmsg() to query connection pending
1560  *	status to recvmsg. We need to add that support in a way thats
1561  *	clean when we restucture accept also.
1562  */
1563 
1564 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1565 		int __user *, upeer_addrlen, int, flags)
1566 {
1567 	struct socket *sock, *newsock;
1568 	struct file *newfile;
1569 	int err, len, newfd, fput_needed;
1570 	struct sockaddr_storage address;
1571 
1572 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1573 		return -EINVAL;
1574 
1575 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1576 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1577 
1578 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1579 	if (!sock)
1580 		goto out;
1581 
1582 	err = -ENFILE;
1583 	newsock = sock_alloc();
1584 	if (!newsock)
1585 		goto out_put;
1586 
1587 	newsock->type = sock->type;
1588 	newsock->ops = sock->ops;
1589 
1590 	/*
1591 	 * We don't need try_module_get here, as the listening socket (sock)
1592 	 * has the protocol module (sock->ops->owner) held.
1593 	 */
1594 	__module_get(newsock->ops->owner);
1595 
1596 	newfd = get_unused_fd_flags(flags);
1597 	if (unlikely(newfd < 0)) {
1598 		err = newfd;
1599 		sock_release(newsock);
1600 		goto out_put;
1601 	}
1602 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1603 	if (unlikely(IS_ERR(newfile))) {
1604 		err = PTR_ERR(newfile);
1605 		put_unused_fd(newfd);
1606 		sock_release(newsock);
1607 		goto out_put;
1608 	}
1609 
1610 	err = security_socket_accept(sock, newsock);
1611 	if (err)
1612 		goto out_fd;
1613 
1614 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1615 	if (err < 0)
1616 		goto out_fd;
1617 
1618 	if (upeer_sockaddr) {
1619 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1620 					  &len, 2) < 0) {
1621 			err = -ECONNABORTED;
1622 			goto out_fd;
1623 		}
1624 		err = move_addr_to_user(&address,
1625 					len, upeer_sockaddr, upeer_addrlen);
1626 		if (err < 0)
1627 			goto out_fd;
1628 	}
1629 
1630 	/* File flags are not inherited via accept() unlike another OSes. */
1631 
1632 	fd_install(newfd, newfile);
1633 	err = newfd;
1634 
1635 out_put:
1636 	fput_light(sock->file, fput_needed);
1637 out:
1638 	return err;
1639 out_fd:
1640 	fput(newfile);
1641 	put_unused_fd(newfd);
1642 	goto out_put;
1643 }
1644 
1645 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1646 		int __user *, upeer_addrlen)
1647 {
1648 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1649 }
1650 
1651 /*
1652  *	Attempt to connect to a socket with the server address.  The address
1653  *	is in user space so we verify it is OK and move it to kernel space.
1654  *
1655  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1656  *	break bindings
1657  *
1658  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1659  *	other SEQPACKET protocols that take time to connect() as it doesn't
1660  *	include the -EINPROGRESS status for such sockets.
1661  */
1662 
1663 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1664 		int, addrlen)
1665 {
1666 	struct socket *sock;
1667 	struct sockaddr_storage address;
1668 	int err, fput_needed;
1669 
1670 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671 	if (!sock)
1672 		goto out;
1673 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1674 	if (err < 0)
1675 		goto out_put;
1676 
1677 	err =
1678 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1679 	if (err)
1680 		goto out_put;
1681 
1682 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1683 				 sock->file->f_flags);
1684 out_put:
1685 	fput_light(sock->file, fput_needed);
1686 out:
1687 	return err;
1688 }
1689 
1690 /*
1691  *	Get the local address ('name') of a socket object. Move the obtained
1692  *	name to user space.
1693  */
1694 
1695 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1696 		int __user *, usockaddr_len)
1697 {
1698 	struct socket *sock;
1699 	struct sockaddr_storage address;
1700 	int len, err, fput_needed;
1701 
1702 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1703 	if (!sock)
1704 		goto out;
1705 
1706 	err = security_socket_getsockname(sock);
1707 	if (err)
1708 		goto out_put;
1709 
1710 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1711 	if (err)
1712 		goto out_put;
1713 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1714 
1715 out_put:
1716 	fput_light(sock->file, fput_needed);
1717 out:
1718 	return err;
1719 }
1720 
1721 /*
1722  *	Get the remote address ('name') of a socket object. Move the obtained
1723  *	name to user space.
1724  */
1725 
1726 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1727 		int __user *, usockaddr_len)
1728 {
1729 	struct socket *sock;
1730 	struct sockaddr_storage address;
1731 	int len, err, fput_needed;
1732 
1733 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 	if (sock != NULL) {
1735 		err = security_socket_getpeername(sock);
1736 		if (err) {
1737 			fput_light(sock->file, fput_needed);
1738 			return err;
1739 		}
1740 
1741 		err =
1742 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1743 				       1);
1744 		if (!err)
1745 			err = move_addr_to_user(&address, len, usockaddr,
1746 						usockaddr_len);
1747 		fput_light(sock->file, fput_needed);
1748 	}
1749 	return err;
1750 }
1751 
1752 /*
1753  *	Send a datagram to a given address. We move the address into kernel
1754  *	space and check the user space data area is readable before invoking
1755  *	the protocol.
1756  */
1757 
1758 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1759 		unsigned int, flags, struct sockaddr __user *, addr,
1760 		int, addr_len)
1761 {
1762 	struct socket *sock;
1763 	struct sockaddr_storage address;
1764 	int err;
1765 	struct msghdr msg;
1766 	struct iovec iov;
1767 	int fput_needed;
1768 
1769 	if (len > INT_MAX)
1770 		len = INT_MAX;
1771 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 	if (!sock)
1773 		goto out;
1774 
1775 	iov.iov_base = buff;
1776 	iov.iov_len = len;
1777 	msg.msg_name = NULL;
1778 	iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1779 	msg.msg_control = NULL;
1780 	msg.msg_controllen = 0;
1781 	msg.msg_namelen = 0;
1782 	if (addr) {
1783 		err = move_addr_to_kernel(addr, addr_len, &address);
1784 		if (err < 0)
1785 			goto out_put;
1786 		msg.msg_name = (struct sockaddr *)&address;
1787 		msg.msg_namelen = addr_len;
1788 	}
1789 	if (sock->file->f_flags & O_NONBLOCK)
1790 		flags |= MSG_DONTWAIT;
1791 	msg.msg_flags = flags;
1792 	err = sock_sendmsg(sock, &msg, len);
1793 
1794 out_put:
1795 	fput_light(sock->file, fput_needed);
1796 out:
1797 	return err;
1798 }
1799 
1800 /*
1801  *	Send a datagram down a socket.
1802  */
1803 
1804 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1805 		unsigned int, flags)
1806 {
1807 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1808 }
1809 
1810 /*
1811  *	Receive a frame from the socket and optionally record the address of the
1812  *	sender. We verify the buffers are writable and if needed move the
1813  *	sender address from kernel to user space.
1814  */
1815 
1816 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1817 		unsigned int, flags, struct sockaddr __user *, addr,
1818 		int __user *, addr_len)
1819 {
1820 	struct socket *sock;
1821 	struct iovec iov;
1822 	struct msghdr msg;
1823 	struct sockaddr_storage address;
1824 	int err, err2;
1825 	int fput_needed;
1826 
1827 	if (size > INT_MAX)
1828 		size = INT_MAX;
1829 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1830 	if (!sock)
1831 		goto out;
1832 
1833 	msg.msg_control = NULL;
1834 	msg.msg_controllen = 0;
1835 	iov.iov_len = size;
1836 	iov.iov_base = ubuf;
1837 	iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1838 	/* Save some cycles and don't copy the address if not needed */
1839 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1840 	/* We assume all kernel code knows the size of sockaddr_storage */
1841 	msg.msg_namelen = 0;
1842 	if (sock->file->f_flags & O_NONBLOCK)
1843 		flags |= MSG_DONTWAIT;
1844 	err = sock_recvmsg(sock, &msg, size, flags);
1845 
1846 	if (err >= 0 && addr != NULL) {
1847 		err2 = move_addr_to_user(&address,
1848 					 msg.msg_namelen, addr, addr_len);
1849 		if (err2 < 0)
1850 			err = err2;
1851 	}
1852 
1853 	fput_light(sock->file, fput_needed);
1854 out:
1855 	return err;
1856 }
1857 
1858 /*
1859  *	Receive a datagram from a socket.
1860  */
1861 
1862 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1863 		unsigned int, flags)
1864 {
1865 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1866 }
1867 
1868 /*
1869  *	Set a socket option. Because we don't know the option lengths we have
1870  *	to pass the user mode parameter for the protocols to sort out.
1871  */
1872 
1873 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1874 		char __user *, optval, int, optlen)
1875 {
1876 	int err, fput_needed;
1877 	struct socket *sock;
1878 
1879 	if (optlen < 0)
1880 		return -EINVAL;
1881 
1882 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1883 	if (sock != NULL) {
1884 		err = security_socket_setsockopt(sock, level, optname);
1885 		if (err)
1886 			goto out_put;
1887 
1888 		if (level == SOL_SOCKET)
1889 			err =
1890 			    sock_setsockopt(sock, level, optname, optval,
1891 					    optlen);
1892 		else
1893 			err =
1894 			    sock->ops->setsockopt(sock, level, optname, optval,
1895 						  optlen);
1896 out_put:
1897 		fput_light(sock->file, fput_needed);
1898 	}
1899 	return err;
1900 }
1901 
1902 /*
1903  *	Get a socket option. Because we don't know the option lengths we have
1904  *	to pass a user mode parameter for the protocols to sort out.
1905  */
1906 
1907 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1908 		char __user *, optval, int __user *, optlen)
1909 {
1910 	int err, fput_needed;
1911 	struct socket *sock;
1912 
1913 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1914 	if (sock != NULL) {
1915 		err = security_socket_getsockopt(sock, level, optname);
1916 		if (err)
1917 			goto out_put;
1918 
1919 		if (level == SOL_SOCKET)
1920 			err =
1921 			    sock_getsockopt(sock, level, optname, optval,
1922 					    optlen);
1923 		else
1924 			err =
1925 			    sock->ops->getsockopt(sock, level, optname, optval,
1926 						  optlen);
1927 out_put:
1928 		fput_light(sock->file, fput_needed);
1929 	}
1930 	return err;
1931 }
1932 
1933 /*
1934  *	Shutdown a socket.
1935  */
1936 
1937 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1938 {
1939 	int err, fput_needed;
1940 	struct socket *sock;
1941 
1942 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 	if (sock != NULL) {
1944 		err = security_socket_shutdown(sock, how);
1945 		if (!err)
1946 			err = sock->ops->shutdown(sock, how);
1947 		fput_light(sock->file, fput_needed);
1948 	}
1949 	return err;
1950 }
1951 
1952 /* A couple of helpful macros for getting the address of the 32/64 bit
1953  * fields which are the same type (int / unsigned) on our platforms.
1954  */
1955 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1956 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1957 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1958 
1959 struct used_address {
1960 	struct sockaddr_storage name;
1961 	unsigned int name_len;
1962 };
1963 
1964 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1965 				     struct user_msghdr __user *umsg,
1966 				     struct sockaddr __user **save_addr,
1967 				     struct iovec **iov)
1968 {
1969 	struct sockaddr __user *uaddr;
1970 	struct iovec __user *uiov;
1971 	size_t nr_segs;
1972 	ssize_t err;
1973 
1974 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1975 	    __get_user(uaddr, &umsg->msg_name) ||
1976 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1977 	    __get_user(uiov, &umsg->msg_iov) ||
1978 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1979 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1980 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1981 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1982 		return -EFAULT;
1983 
1984 	if (!uaddr)
1985 		kmsg->msg_namelen = 0;
1986 
1987 	if (kmsg->msg_namelen < 0)
1988 		return -EINVAL;
1989 
1990 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1991 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1992 
1993 	if (save_addr)
1994 		*save_addr = uaddr;
1995 
1996 	if (uaddr && kmsg->msg_namelen) {
1997 		if (!save_addr) {
1998 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1999 						  kmsg->msg_name);
2000 			if (err < 0)
2001 				return err;
2002 		}
2003 	} else {
2004 		kmsg->msg_name = NULL;
2005 		kmsg->msg_namelen = 0;
2006 	}
2007 
2008 	if (nr_segs > UIO_MAXIOV)
2009 		return -EMSGSIZE;
2010 
2011 	err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2012 				    uiov, nr_segs,
2013 				    UIO_FASTIOV, *iov, iov);
2014 	if (err >= 0)
2015 		iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
2016 			      *iov, nr_segs, err);
2017 	return err;
2018 }
2019 
2020 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2021 			 struct msghdr *msg_sys, unsigned int flags,
2022 			 struct used_address *used_address)
2023 {
2024 	struct compat_msghdr __user *msg_compat =
2025 	    (struct compat_msghdr __user *)msg;
2026 	struct sockaddr_storage address;
2027 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2028 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2029 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2030 	/* 20 is size of ipv6_pktinfo */
2031 	unsigned char *ctl_buf = ctl;
2032 	int ctl_len, total_len;
2033 	ssize_t err;
2034 
2035 	msg_sys->msg_name = &address;
2036 
2037 	if (MSG_CMSG_COMPAT & flags)
2038 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2039 	else
2040 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2041 	if (err < 0)
2042 		goto out_freeiov;
2043 	total_len = err;
2044 
2045 	err = -ENOBUFS;
2046 
2047 	if (msg_sys->msg_controllen > INT_MAX)
2048 		goto out_freeiov;
2049 	ctl_len = msg_sys->msg_controllen;
2050 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2051 		err =
2052 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2053 						     sizeof(ctl));
2054 		if (err)
2055 			goto out_freeiov;
2056 		ctl_buf = msg_sys->msg_control;
2057 		ctl_len = msg_sys->msg_controllen;
2058 	} else if (ctl_len) {
2059 		if (ctl_len > sizeof(ctl)) {
2060 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2061 			if (ctl_buf == NULL)
2062 				goto out_freeiov;
2063 		}
2064 		err = -EFAULT;
2065 		/*
2066 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2067 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2068 		 * checking falls down on this.
2069 		 */
2070 		if (copy_from_user(ctl_buf,
2071 				   (void __user __force *)msg_sys->msg_control,
2072 				   ctl_len))
2073 			goto out_freectl;
2074 		msg_sys->msg_control = ctl_buf;
2075 	}
2076 	msg_sys->msg_flags = flags;
2077 
2078 	if (sock->file->f_flags & O_NONBLOCK)
2079 		msg_sys->msg_flags |= MSG_DONTWAIT;
2080 	/*
2081 	 * If this is sendmmsg() and current destination address is same as
2082 	 * previously succeeded address, omit asking LSM's decision.
2083 	 * used_address->name_len is initialized to UINT_MAX so that the first
2084 	 * destination address never matches.
2085 	 */
2086 	if (used_address && msg_sys->msg_name &&
2087 	    used_address->name_len == msg_sys->msg_namelen &&
2088 	    !memcmp(&used_address->name, msg_sys->msg_name,
2089 		    used_address->name_len)) {
2090 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2091 		goto out_freectl;
2092 	}
2093 	err = sock_sendmsg(sock, msg_sys, total_len);
2094 	/*
2095 	 * If this is sendmmsg() and sending to current destination address was
2096 	 * successful, remember it.
2097 	 */
2098 	if (used_address && err >= 0) {
2099 		used_address->name_len = msg_sys->msg_namelen;
2100 		if (msg_sys->msg_name)
2101 			memcpy(&used_address->name, msg_sys->msg_name,
2102 			       used_address->name_len);
2103 	}
2104 
2105 out_freectl:
2106 	if (ctl_buf != ctl)
2107 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2108 out_freeiov:
2109 	if (iov != iovstack)
2110 		kfree(iov);
2111 	return err;
2112 }
2113 
2114 /*
2115  *	BSD sendmsg interface
2116  */
2117 
2118 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2119 {
2120 	int fput_needed, err;
2121 	struct msghdr msg_sys;
2122 	struct socket *sock;
2123 
2124 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2125 	if (!sock)
2126 		goto out;
2127 
2128 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2129 
2130 	fput_light(sock->file, fput_needed);
2131 out:
2132 	return err;
2133 }
2134 
2135 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2136 {
2137 	if (flags & MSG_CMSG_COMPAT)
2138 		return -EINVAL;
2139 	return __sys_sendmsg(fd, msg, flags);
2140 }
2141 
2142 /*
2143  *	Linux sendmmsg interface
2144  */
2145 
2146 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2147 		   unsigned int flags)
2148 {
2149 	int fput_needed, err, datagrams;
2150 	struct socket *sock;
2151 	struct mmsghdr __user *entry;
2152 	struct compat_mmsghdr __user *compat_entry;
2153 	struct msghdr msg_sys;
2154 	struct used_address used_address;
2155 
2156 	if (vlen > UIO_MAXIOV)
2157 		vlen = UIO_MAXIOV;
2158 
2159 	datagrams = 0;
2160 
2161 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2162 	if (!sock)
2163 		return err;
2164 
2165 	used_address.name_len = UINT_MAX;
2166 	entry = mmsg;
2167 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2168 	err = 0;
2169 
2170 	while (datagrams < vlen) {
2171 		if (MSG_CMSG_COMPAT & flags) {
2172 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2173 					     &msg_sys, flags, &used_address);
2174 			if (err < 0)
2175 				break;
2176 			err = __put_user(err, &compat_entry->msg_len);
2177 			++compat_entry;
2178 		} else {
2179 			err = ___sys_sendmsg(sock,
2180 					     (struct user_msghdr __user *)entry,
2181 					     &msg_sys, flags, &used_address);
2182 			if (err < 0)
2183 				break;
2184 			err = put_user(err, &entry->msg_len);
2185 			++entry;
2186 		}
2187 
2188 		if (err)
2189 			break;
2190 		++datagrams;
2191 	}
2192 
2193 	fput_light(sock->file, fput_needed);
2194 
2195 	/* We only return an error if no datagrams were able to be sent */
2196 	if (datagrams != 0)
2197 		return datagrams;
2198 
2199 	return err;
2200 }
2201 
2202 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2203 		unsigned int, vlen, unsigned int, flags)
2204 {
2205 	if (flags & MSG_CMSG_COMPAT)
2206 		return -EINVAL;
2207 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2208 }
2209 
2210 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2211 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2212 {
2213 	struct compat_msghdr __user *msg_compat =
2214 	    (struct compat_msghdr __user *)msg;
2215 	struct iovec iovstack[UIO_FASTIOV];
2216 	struct iovec *iov = iovstack;
2217 	unsigned long cmsg_ptr;
2218 	int total_len, len;
2219 	ssize_t err;
2220 
2221 	/* kernel mode address */
2222 	struct sockaddr_storage addr;
2223 
2224 	/* user mode address pointers */
2225 	struct sockaddr __user *uaddr;
2226 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2227 
2228 	msg_sys->msg_name = &addr;
2229 
2230 	if (MSG_CMSG_COMPAT & flags)
2231 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2232 	else
2233 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2234 	if (err < 0)
2235 		goto out_freeiov;
2236 	total_len = err;
2237 
2238 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2239 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2240 
2241 	/* We assume all kernel code knows the size of sockaddr_storage */
2242 	msg_sys->msg_namelen = 0;
2243 
2244 	if (sock->file->f_flags & O_NONBLOCK)
2245 		flags |= MSG_DONTWAIT;
2246 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2247 							  total_len, flags);
2248 	if (err < 0)
2249 		goto out_freeiov;
2250 	len = err;
2251 
2252 	if (uaddr != NULL) {
2253 		err = move_addr_to_user(&addr,
2254 					msg_sys->msg_namelen, uaddr,
2255 					uaddr_len);
2256 		if (err < 0)
2257 			goto out_freeiov;
2258 	}
2259 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2260 			 COMPAT_FLAGS(msg));
2261 	if (err)
2262 		goto out_freeiov;
2263 	if (MSG_CMSG_COMPAT & flags)
2264 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2265 				 &msg_compat->msg_controllen);
2266 	else
2267 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2268 				 &msg->msg_controllen);
2269 	if (err)
2270 		goto out_freeiov;
2271 	err = len;
2272 
2273 out_freeiov:
2274 	if (iov != iovstack)
2275 		kfree(iov);
2276 	return err;
2277 }
2278 
2279 /*
2280  *	BSD recvmsg interface
2281  */
2282 
2283 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2284 {
2285 	int fput_needed, err;
2286 	struct msghdr msg_sys;
2287 	struct socket *sock;
2288 
2289 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2290 	if (!sock)
2291 		goto out;
2292 
2293 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2294 
2295 	fput_light(sock->file, fput_needed);
2296 out:
2297 	return err;
2298 }
2299 
2300 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2301 		unsigned int, flags)
2302 {
2303 	if (flags & MSG_CMSG_COMPAT)
2304 		return -EINVAL;
2305 	return __sys_recvmsg(fd, msg, flags);
2306 }
2307 
2308 /*
2309  *     Linux recvmmsg interface
2310  */
2311 
2312 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2313 		   unsigned int flags, struct timespec *timeout)
2314 {
2315 	int fput_needed, err, datagrams;
2316 	struct socket *sock;
2317 	struct mmsghdr __user *entry;
2318 	struct compat_mmsghdr __user *compat_entry;
2319 	struct msghdr msg_sys;
2320 	struct timespec end_time;
2321 
2322 	if (timeout &&
2323 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2324 				    timeout->tv_nsec))
2325 		return -EINVAL;
2326 
2327 	datagrams = 0;
2328 
2329 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2330 	if (!sock)
2331 		return err;
2332 
2333 	err = sock_error(sock->sk);
2334 	if (err)
2335 		goto out_put;
2336 
2337 	entry = mmsg;
2338 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2339 
2340 	while (datagrams < vlen) {
2341 		/*
2342 		 * No need to ask LSM for more than the first datagram.
2343 		 */
2344 		if (MSG_CMSG_COMPAT & flags) {
2345 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2346 					     &msg_sys, flags & ~MSG_WAITFORONE,
2347 					     datagrams);
2348 			if (err < 0)
2349 				break;
2350 			err = __put_user(err, &compat_entry->msg_len);
2351 			++compat_entry;
2352 		} else {
2353 			err = ___sys_recvmsg(sock,
2354 					     (struct user_msghdr __user *)entry,
2355 					     &msg_sys, flags & ~MSG_WAITFORONE,
2356 					     datagrams);
2357 			if (err < 0)
2358 				break;
2359 			err = put_user(err, &entry->msg_len);
2360 			++entry;
2361 		}
2362 
2363 		if (err)
2364 			break;
2365 		++datagrams;
2366 
2367 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2368 		if (flags & MSG_WAITFORONE)
2369 			flags |= MSG_DONTWAIT;
2370 
2371 		if (timeout) {
2372 			ktime_get_ts(timeout);
2373 			*timeout = timespec_sub(end_time, *timeout);
2374 			if (timeout->tv_sec < 0) {
2375 				timeout->tv_sec = timeout->tv_nsec = 0;
2376 				break;
2377 			}
2378 
2379 			/* Timeout, return less than vlen datagrams */
2380 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2381 				break;
2382 		}
2383 
2384 		/* Out of band data, return right away */
2385 		if (msg_sys.msg_flags & MSG_OOB)
2386 			break;
2387 	}
2388 
2389 out_put:
2390 	fput_light(sock->file, fput_needed);
2391 
2392 	if (err == 0)
2393 		return datagrams;
2394 
2395 	if (datagrams != 0) {
2396 		/*
2397 		 * We may return less entries than requested (vlen) if the
2398 		 * sock is non block and there aren't enough datagrams...
2399 		 */
2400 		if (err != -EAGAIN) {
2401 			/*
2402 			 * ... or  if recvmsg returns an error after we
2403 			 * received some datagrams, where we record the
2404 			 * error to return on the next call or if the
2405 			 * app asks about it using getsockopt(SO_ERROR).
2406 			 */
2407 			sock->sk->sk_err = -err;
2408 		}
2409 
2410 		return datagrams;
2411 	}
2412 
2413 	return err;
2414 }
2415 
2416 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2417 		unsigned int, vlen, unsigned int, flags,
2418 		struct timespec __user *, timeout)
2419 {
2420 	int datagrams;
2421 	struct timespec timeout_sys;
2422 
2423 	if (flags & MSG_CMSG_COMPAT)
2424 		return -EINVAL;
2425 
2426 	if (!timeout)
2427 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2428 
2429 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2430 		return -EFAULT;
2431 
2432 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2433 
2434 	if (datagrams > 0 &&
2435 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2436 		datagrams = -EFAULT;
2437 
2438 	return datagrams;
2439 }
2440 
2441 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2442 /* Argument list sizes for sys_socketcall */
2443 #define AL(x) ((x) * sizeof(unsigned long))
2444 static const unsigned char nargs[21] = {
2445 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2446 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2447 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2448 	AL(4), AL(5), AL(4)
2449 };
2450 
2451 #undef AL
2452 
2453 /*
2454  *	System call vectors.
2455  *
2456  *	Argument checking cleaned up. Saved 20% in size.
2457  *  This function doesn't need to set the kernel lock because
2458  *  it is set by the callees.
2459  */
2460 
2461 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2462 {
2463 	unsigned long a[AUDITSC_ARGS];
2464 	unsigned long a0, a1;
2465 	int err;
2466 	unsigned int len;
2467 
2468 	if (call < 1 || call > SYS_SENDMMSG)
2469 		return -EINVAL;
2470 
2471 	len = nargs[call];
2472 	if (len > sizeof(a))
2473 		return -EINVAL;
2474 
2475 	/* copy_from_user should be SMP safe. */
2476 	if (copy_from_user(a, args, len))
2477 		return -EFAULT;
2478 
2479 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2480 	if (err)
2481 		return err;
2482 
2483 	a0 = a[0];
2484 	a1 = a[1];
2485 
2486 	switch (call) {
2487 	case SYS_SOCKET:
2488 		err = sys_socket(a0, a1, a[2]);
2489 		break;
2490 	case SYS_BIND:
2491 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2492 		break;
2493 	case SYS_CONNECT:
2494 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2495 		break;
2496 	case SYS_LISTEN:
2497 		err = sys_listen(a0, a1);
2498 		break;
2499 	case SYS_ACCEPT:
2500 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2501 				  (int __user *)a[2], 0);
2502 		break;
2503 	case SYS_GETSOCKNAME:
2504 		err =
2505 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2506 				    (int __user *)a[2]);
2507 		break;
2508 	case SYS_GETPEERNAME:
2509 		err =
2510 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2511 				    (int __user *)a[2]);
2512 		break;
2513 	case SYS_SOCKETPAIR:
2514 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2515 		break;
2516 	case SYS_SEND:
2517 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2518 		break;
2519 	case SYS_SENDTO:
2520 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2521 				 (struct sockaddr __user *)a[4], a[5]);
2522 		break;
2523 	case SYS_RECV:
2524 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2525 		break;
2526 	case SYS_RECVFROM:
2527 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2528 				   (struct sockaddr __user *)a[4],
2529 				   (int __user *)a[5]);
2530 		break;
2531 	case SYS_SHUTDOWN:
2532 		err = sys_shutdown(a0, a1);
2533 		break;
2534 	case SYS_SETSOCKOPT:
2535 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2536 		break;
2537 	case SYS_GETSOCKOPT:
2538 		err =
2539 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2540 				   (int __user *)a[4]);
2541 		break;
2542 	case SYS_SENDMSG:
2543 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2544 		break;
2545 	case SYS_SENDMMSG:
2546 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2547 		break;
2548 	case SYS_RECVMSG:
2549 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2550 		break;
2551 	case SYS_RECVMMSG:
2552 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2553 				   (struct timespec __user *)a[4]);
2554 		break;
2555 	case SYS_ACCEPT4:
2556 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2557 				  (int __user *)a[2], a[3]);
2558 		break;
2559 	default:
2560 		err = -EINVAL;
2561 		break;
2562 	}
2563 	return err;
2564 }
2565 
2566 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2567 
2568 /**
2569  *	sock_register - add a socket protocol handler
2570  *	@ops: description of protocol
2571  *
2572  *	This function is called by a protocol handler that wants to
2573  *	advertise its address family, and have it linked into the
2574  *	socket interface. The value ops->family corresponds to the
2575  *	socket system call protocol family.
2576  */
2577 int sock_register(const struct net_proto_family *ops)
2578 {
2579 	int err;
2580 
2581 	if (ops->family >= NPROTO) {
2582 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2583 		return -ENOBUFS;
2584 	}
2585 
2586 	spin_lock(&net_family_lock);
2587 	if (rcu_dereference_protected(net_families[ops->family],
2588 				      lockdep_is_held(&net_family_lock)))
2589 		err = -EEXIST;
2590 	else {
2591 		rcu_assign_pointer(net_families[ops->family], ops);
2592 		err = 0;
2593 	}
2594 	spin_unlock(&net_family_lock);
2595 
2596 	pr_info("NET: Registered protocol family %d\n", ops->family);
2597 	return err;
2598 }
2599 EXPORT_SYMBOL(sock_register);
2600 
2601 /**
2602  *	sock_unregister - remove a protocol handler
2603  *	@family: protocol family to remove
2604  *
2605  *	This function is called by a protocol handler that wants to
2606  *	remove its address family, and have it unlinked from the
2607  *	new socket creation.
2608  *
2609  *	If protocol handler is a module, then it can use module reference
2610  *	counts to protect against new references. If protocol handler is not
2611  *	a module then it needs to provide its own protection in
2612  *	the ops->create routine.
2613  */
2614 void sock_unregister(int family)
2615 {
2616 	BUG_ON(family < 0 || family >= NPROTO);
2617 
2618 	spin_lock(&net_family_lock);
2619 	RCU_INIT_POINTER(net_families[family], NULL);
2620 	spin_unlock(&net_family_lock);
2621 
2622 	synchronize_rcu();
2623 
2624 	pr_info("NET: Unregistered protocol family %d\n", family);
2625 }
2626 EXPORT_SYMBOL(sock_unregister);
2627 
2628 static int __init sock_init(void)
2629 {
2630 	int err;
2631 	/*
2632 	 *      Initialize the network sysctl infrastructure.
2633 	 */
2634 	err = net_sysctl_init();
2635 	if (err)
2636 		goto out;
2637 
2638 	/*
2639 	 *      Initialize skbuff SLAB cache
2640 	 */
2641 	skb_init();
2642 
2643 	/*
2644 	 *      Initialize the protocols module.
2645 	 */
2646 
2647 	init_inodecache();
2648 
2649 	err = register_filesystem(&sock_fs_type);
2650 	if (err)
2651 		goto out_fs;
2652 	sock_mnt = kern_mount(&sock_fs_type);
2653 	if (IS_ERR(sock_mnt)) {
2654 		err = PTR_ERR(sock_mnt);
2655 		goto out_mount;
2656 	}
2657 
2658 	/* The real protocol initialization is performed in later initcalls.
2659 	 */
2660 
2661 #ifdef CONFIG_NETFILTER
2662 	err = netfilter_init();
2663 	if (err)
2664 		goto out;
2665 #endif
2666 
2667 	ptp_classifier_init();
2668 
2669 out:
2670 	return err;
2671 
2672 out_mount:
2673 	unregister_filesystem(&sock_fs_type);
2674 out_fs:
2675 	goto out;
2676 }
2677 
2678 core_initcall(sock_init);	/* early initcall */
2679 
2680 #ifdef CONFIG_PROC_FS
2681 void socket_seq_show(struct seq_file *seq)
2682 {
2683 	int cpu;
2684 	int counter = 0;
2685 
2686 	for_each_possible_cpu(cpu)
2687 	    counter += per_cpu(sockets_in_use, cpu);
2688 
2689 	/* It can be negative, by the way. 8) */
2690 	if (counter < 0)
2691 		counter = 0;
2692 
2693 	seq_printf(seq, "sockets: used %d\n", counter);
2694 }
2695 #endif				/* CONFIG_PROC_FS */
2696 
2697 #ifdef CONFIG_COMPAT
2698 static int do_siocgstamp(struct net *net, struct socket *sock,
2699 			 unsigned int cmd, void __user *up)
2700 {
2701 	mm_segment_t old_fs = get_fs();
2702 	struct timeval ktv;
2703 	int err;
2704 
2705 	set_fs(KERNEL_DS);
2706 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2707 	set_fs(old_fs);
2708 	if (!err)
2709 		err = compat_put_timeval(&ktv, up);
2710 
2711 	return err;
2712 }
2713 
2714 static int do_siocgstampns(struct net *net, struct socket *sock,
2715 			   unsigned int cmd, void __user *up)
2716 {
2717 	mm_segment_t old_fs = get_fs();
2718 	struct timespec kts;
2719 	int err;
2720 
2721 	set_fs(KERNEL_DS);
2722 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2723 	set_fs(old_fs);
2724 	if (!err)
2725 		err = compat_put_timespec(&kts, up);
2726 
2727 	return err;
2728 }
2729 
2730 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2731 {
2732 	struct ifreq __user *uifr;
2733 	int err;
2734 
2735 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2736 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2737 		return -EFAULT;
2738 
2739 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2740 	if (err)
2741 		return err;
2742 
2743 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2744 		return -EFAULT;
2745 
2746 	return 0;
2747 }
2748 
2749 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2750 {
2751 	struct compat_ifconf ifc32;
2752 	struct ifconf ifc;
2753 	struct ifconf __user *uifc;
2754 	struct compat_ifreq __user *ifr32;
2755 	struct ifreq __user *ifr;
2756 	unsigned int i, j;
2757 	int err;
2758 
2759 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2760 		return -EFAULT;
2761 
2762 	memset(&ifc, 0, sizeof(ifc));
2763 	if (ifc32.ifcbuf == 0) {
2764 		ifc32.ifc_len = 0;
2765 		ifc.ifc_len = 0;
2766 		ifc.ifc_req = NULL;
2767 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2768 	} else {
2769 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2770 			sizeof(struct ifreq);
2771 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2772 		ifc.ifc_len = len;
2773 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2774 		ifr32 = compat_ptr(ifc32.ifcbuf);
2775 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2776 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2777 				return -EFAULT;
2778 			ifr++;
2779 			ifr32++;
2780 		}
2781 	}
2782 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2783 		return -EFAULT;
2784 
2785 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2786 	if (err)
2787 		return err;
2788 
2789 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2790 		return -EFAULT;
2791 
2792 	ifr = ifc.ifc_req;
2793 	ifr32 = compat_ptr(ifc32.ifcbuf);
2794 	for (i = 0, j = 0;
2795 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2796 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2797 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2798 			return -EFAULT;
2799 		ifr32++;
2800 		ifr++;
2801 	}
2802 
2803 	if (ifc32.ifcbuf == 0) {
2804 		/* Translate from 64-bit structure multiple to
2805 		 * a 32-bit one.
2806 		 */
2807 		i = ifc.ifc_len;
2808 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2809 		ifc32.ifc_len = i;
2810 	} else {
2811 		ifc32.ifc_len = i;
2812 	}
2813 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2814 		return -EFAULT;
2815 
2816 	return 0;
2817 }
2818 
2819 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2820 {
2821 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2822 	bool convert_in = false, convert_out = false;
2823 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2824 	struct ethtool_rxnfc __user *rxnfc;
2825 	struct ifreq __user *ifr;
2826 	u32 rule_cnt = 0, actual_rule_cnt;
2827 	u32 ethcmd;
2828 	u32 data;
2829 	int ret;
2830 
2831 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2832 		return -EFAULT;
2833 
2834 	compat_rxnfc = compat_ptr(data);
2835 
2836 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2837 		return -EFAULT;
2838 
2839 	/* Most ethtool structures are defined without padding.
2840 	 * Unfortunately struct ethtool_rxnfc is an exception.
2841 	 */
2842 	switch (ethcmd) {
2843 	default:
2844 		break;
2845 	case ETHTOOL_GRXCLSRLALL:
2846 		/* Buffer size is variable */
2847 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2848 			return -EFAULT;
2849 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2850 			return -ENOMEM;
2851 		buf_size += rule_cnt * sizeof(u32);
2852 		/* fall through */
2853 	case ETHTOOL_GRXRINGS:
2854 	case ETHTOOL_GRXCLSRLCNT:
2855 	case ETHTOOL_GRXCLSRULE:
2856 	case ETHTOOL_SRXCLSRLINS:
2857 		convert_out = true;
2858 		/* fall through */
2859 	case ETHTOOL_SRXCLSRLDEL:
2860 		buf_size += sizeof(struct ethtool_rxnfc);
2861 		convert_in = true;
2862 		break;
2863 	}
2864 
2865 	ifr = compat_alloc_user_space(buf_size);
2866 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2867 
2868 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2869 		return -EFAULT;
2870 
2871 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2872 		     &ifr->ifr_ifru.ifru_data))
2873 		return -EFAULT;
2874 
2875 	if (convert_in) {
2876 		/* We expect there to be holes between fs.m_ext and
2877 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2878 		 */
2879 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2880 			     sizeof(compat_rxnfc->fs.m_ext) !=
2881 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2882 			     sizeof(rxnfc->fs.m_ext));
2883 		BUILD_BUG_ON(
2884 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2885 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2886 			offsetof(struct ethtool_rxnfc, fs.location) -
2887 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2888 
2889 		if (copy_in_user(rxnfc, compat_rxnfc,
2890 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2891 				 (void __user *)rxnfc) ||
2892 		    copy_in_user(&rxnfc->fs.ring_cookie,
2893 				 &compat_rxnfc->fs.ring_cookie,
2894 				 (void __user *)(&rxnfc->fs.location + 1) -
2895 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2896 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2897 				 sizeof(rxnfc->rule_cnt)))
2898 			return -EFAULT;
2899 	}
2900 
2901 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2902 	if (ret)
2903 		return ret;
2904 
2905 	if (convert_out) {
2906 		if (copy_in_user(compat_rxnfc, rxnfc,
2907 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2908 				 (const void __user *)rxnfc) ||
2909 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2910 				 &rxnfc->fs.ring_cookie,
2911 				 (const void __user *)(&rxnfc->fs.location + 1) -
2912 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2913 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2914 				 sizeof(rxnfc->rule_cnt)))
2915 			return -EFAULT;
2916 
2917 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2918 			/* As an optimisation, we only copy the actual
2919 			 * number of rules that the underlying
2920 			 * function returned.  Since Mallory might
2921 			 * change the rule count in user memory, we
2922 			 * check that it is less than the rule count
2923 			 * originally given (as the user buffer size),
2924 			 * which has been range-checked.
2925 			 */
2926 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2927 				return -EFAULT;
2928 			if (actual_rule_cnt < rule_cnt)
2929 				rule_cnt = actual_rule_cnt;
2930 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2931 					 &rxnfc->rule_locs[0],
2932 					 rule_cnt * sizeof(u32)))
2933 				return -EFAULT;
2934 		}
2935 	}
2936 
2937 	return 0;
2938 }
2939 
2940 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2941 {
2942 	void __user *uptr;
2943 	compat_uptr_t uptr32;
2944 	struct ifreq __user *uifr;
2945 
2946 	uifr = compat_alloc_user_space(sizeof(*uifr));
2947 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2948 		return -EFAULT;
2949 
2950 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2951 		return -EFAULT;
2952 
2953 	uptr = compat_ptr(uptr32);
2954 
2955 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2956 		return -EFAULT;
2957 
2958 	return dev_ioctl(net, SIOCWANDEV, uifr);
2959 }
2960 
2961 static int bond_ioctl(struct net *net, unsigned int cmd,
2962 			 struct compat_ifreq __user *ifr32)
2963 {
2964 	struct ifreq kifr;
2965 	mm_segment_t old_fs;
2966 	int err;
2967 
2968 	switch (cmd) {
2969 	case SIOCBONDENSLAVE:
2970 	case SIOCBONDRELEASE:
2971 	case SIOCBONDSETHWADDR:
2972 	case SIOCBONDCHANGEACTIVE:
2973 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2974 			return -EFAULT;
2975 
2976 		old_fs = get_fs();
2977 		set_fs(KERNEL_DS);
2978 		err = dev_ioctl(net, cmd,
2979 				(struct ifreq __user __force *) &kifr);
2980 		set_fs(old_fs);
2981 
2982 		return err;
2983 	default:
2984 		return -ENOIOCTLCMD;
2985 	}
2986 }
2987 
2988 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2989 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2990 				 struct compat_ifreq __user *u_ifreq32)
2991 {
2992 	struct ifreq __user *u_ifreq64;
2993 	char tmp_buf[IFNAMSIZ];
2994 	void __user *data64;
2995 	u32 data32;
2996 
2997 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2998 			   IFNAMSIZ))
2999 		return -EFAULT;
3000 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3001 		return -EFAULT;
3002 	data64 = compat_ptr(data32);
3003 
3004 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3005 
3006 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3007 			 IFNAMSIZ))
3008 		return -EFAULT;
3009 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3010 		return -EFAULT;
3011 
3012 	return dev_ioctl(net, cmd, u_ifreq64);
3013 }
3014 
3015 static int dev_ifsioc(struct net *net, struct socket *sock,
3016 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3017 {
3018 	struct ifreq __user *uifr;
3019 	int err;
3020 
3021 	uifr = compat_alloc_user_space(sizeof(*uifr));
3022 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3023 		return -EFAULT;
3024 
3025 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3026 
3027 	if (!err) {
3028 		switch (cmd) {
3029 		case SIOCGIFFLAGS:
3030 		case SIOCGIFMETRIC:
3031 		case SIOCGIFMTU:
3032 		case SIOCGIFMEM:
3033 		case SIOCGIFHWADDR:
3034 		case SIOCGIFINDEX:
3035 		case SIOCGIFADDR:
3036 		case SIOCGIFBRDADDR:
3037 		case SIOCGIFDSTADDR:
3038 		case SIOCGIFNETMASK:
3039 		case SIOCGIFPFLAGS:
3040 		case SIOCGIFTXQLEN:
3041 		case SIOCGMIIPHY:
3042 		case SIOCGMIIREG:
3043 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3044 				err = -EFAULT;
3045 			break;
3046 		}
3047 	}
3048 	return err;
3049 }
3050 
3051 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3052 			struct compat_ifreq __user *uifr32)
3053 {
3054 	struct ifreq ifr;
3055 	struct compat_ifmap __user *uifmap32;
3056 	mm_segment_t old_fs;
3057 	int err;
3058 
3059 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3060 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3061 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3062 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3063 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3064 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3065 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3066 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3067 	if (err)
3068 		return -EFAULT;
3069 
3070 	old_fs = get_fs();
3071 	set_fs(KERNEL_DS);
3072 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3073 	set_fs(old_fs);
3074 
3075 	if (cmd == SIOCGIFMAP && !err) {
3076 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3077 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3078 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3079 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3080 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3081 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3082 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3083 		if (err)
3084 			err = -EFAULT;
3085 	}
3086 	return err;
3087 }
3088 
3089 struct rtentry32 {
3090 	u32		rt_pad1;
3091 	struct sockaddr rt_dst;         /* target address               */
3092 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3093 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3094 	unsigned short	rt_flags;
3095 	short		rt_pad2;
3096 	u32		rt_pad3;
3097 	unsigned char	rt_tos;
3098 	unsigned char	rt_class;
3099 	short		rt_pad4;
3100 	short		rt_metric;      /* +1 for binary compatibility! */
3101 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3102 	u32		rt_mtu;         /* per route MTU/Window         */
3103 	u32		rt_window;      /* Window clamping              */
3104 	unsigned short  rt_irtt;        /* Initial RTT                  */
3105 };
3106 
3107 struct in6_rtmsg32 {
3108 	struct in6_addr		rtmsg_dst;
3109 	struct in6_addr		rtmsg_src;
3110 	struct in6_addr		rtmsg_gateway;
3111 	u32			rtmsg_type;
3112 	u16			rtmsg_dst_len;
3113 	u16			rtmsg_src_len;
3114 	u32			rtmsg_metric;
3115 	u32			rtmsg_info;
3116 	u32			rtmsg_flags;
3117 	s32			rtmsg_ifindex;
3118 };
3119 
3120 static int routing_ioctl(struct net *net, struct socket *sock,
3121 			 unsigned int cmd, void __user *argp)
3122 {
3123 	int ret;
3124 	void *r = NULL;
3125 	struct in6_rtmsg r6;
3126 	struct rtentry r4;
3127 	char devname[16];
3128 	u32 rtdev;
3129 	mm_segment_t old_fs = get_fs();
3130 
3131 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3132 		struct in6_rtmsg32 __user *ur6 = argp;
3133 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3134 			3 * sizeof(struct in6_addr));
3135 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3136 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3137 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3138 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3139 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3140 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3141 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3142 
3143 		r = (void *) &r6;
3144 	} else { /* ipv4 */
3145 		struct rtentry32 __user *ur4 = argp;
3146 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3147 					3 * sizeof(struct sockaddr));
3148 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3149 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3150 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3151 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3152 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3153 		ret |= get_user(rtdev, &(ur4->rt_dev));
3154 		if (rtdev) {
3155 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3156 			r4.rt_dev = (char __user __force *)devname;
3157 			devname[15] = 0;
3158 		} else
3159 			r4.rt_dev = NULL;
3160 
3161 		r = (void *) &r4;
3162 	}
3163 
3164 	if (ret) {
3165 		ret = -EFAULT;
3166 		goto out;
3167 	}
3168 
3169 	set_fs(KERNEL_DS);
3170 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3171 	set_fs(old_fs);
3172 
3173 out:
3174 	return ret;
3175 }
3176 
3177 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3178  * for some operations; this forces use of the newer bridge-utils that
3179  * use compatible ioctls
3180  */
3181 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3182 {
3183 	compat_ulong_t tmp;
3184 
3185 	if (get_user(tmp, argp))
3186 		return -EFAULT;
3187 	if (tmp == BRCTL_GET_VERSION)
3188 		return BRCTL_VERSION + 1;
3189 	return -EINVAL;
3190 }
3191 
3192 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3193 			 unsigned int cmd, unsigned long arg)
3194 {
3195 	void __user *argp = compat_ptr(arg);
3196 	struct sock *sk = sock->sk;
3197 	struct net *net = sock_net(sk);
3198 
3199 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3200 		return compat_ifr_data_ioctl(net, cmd, argp);
3201 
3202 	switch (cmd) {
3203 	case SIOCSIFBR:
3204 	case SIOCGIFBR:
3205 		return old_bridge_ioctl(argp);
3206 	case SIOCGIFNAME:
3207 		return dev_ifname32(net, argp);
3208 	case SIOCGIFCONF:
3209 		return dev_ifconf(net, argp);
3210 	case SIOCETHTOOL:
3211 		return ethtool_ioctl(net, argp);
3212 	case SIOCWANDEV:
3213 		return compat_siocwandev(net, argp);
3214 	case SIOCGIFMAP:
3215 	case SIOCSIFMAP:
3216 		return compat_sioc_ifmap(net, cmd, argp);
3217 	case SIOCBONDENSLAVE:
3218 	case SIOCBONDRELEASE:
3219 	case SIOCBONDSETHWADDR:
3220 	case SIOCBONDCHANGEACTIVE:
3221 		return bond_ioctl(net, cmd, argp);
3222 	case SIOCADDRT:
3223 	case SIOCDELRT:
3224 		return routing_ioctl(net, sock, cmd, argp);
3225 	case SIOCGSTAMP:
3226 		return do_siocgstamp(net, sock, cmd, argp);
3227 	case SIOCGSTAMPNS:
3228 		return do_siocgstampns(net, sock, cmd, argp);
3229 	case SIOCBONDSLAVEINFOQUERY:
3230 	case SIOCBONDINFOQUERY:
3231 	case SIOCSHWTSTAMP:
3232 	case SIOCGHWTSTAMP:
3233 		return compat_ifr_data_ioctl(net, cmd, argp);
3234 
3235 	case FIOSETOWN:
3236 	case SIOCSPGRP:
3237 	case FIOGETOWN:
3238 	case SIOCGPGRP:
3239 	case SIOCBRADDBR:
3240 	case SIOCBRDELBR:
3241 	case SIOCGIFVLAN:
3242 	case SIOCSIFVLAN:
3243 	case SIOCADDDLCI:
3244 	case SIOCDELDLCI:
3245 		return sock_ioctl(file, cmd, arg);
3246 
3247 	case SIOCGIFFLAGS:
3248 	case SIOCSIFFLAGS:
3249 	case SIOCGIFMETRIC:
3250 	case SIOCSIFMETRIC:
3251 	case SIOCGIFMTU:
3252 	case SIOCSIFMTU:
3253 	case SIOCGIFMEM:
3254 	case SIOCSIFMEM:
3255 	case SIOCGIFHWADDR:
3256 	case SIOCSIFHWADDR:
3257 	case SIOCADDMULTI:
3258 	case SIOCDELMULTI:
3259 	case SIOCGIFINDEX:
3260 	case SIOCGIFADDR:
3261 	case SIOCSIFADDR:
3262 	case SIOCSIFHWBROADCAST:
3263 	case SIOCDIFADDR:
3264 	case SIOCGIFBRDADDR:
3265 	case SIOCSIFBRDADDR:
3266 	case SIOCGIFDSTADDR:
3267 	case SIOCSIFDSTADDR:
3268 	case SIOCGIFNETMASK:
3269 	case SIOCSIFNETMASK:
3270 	case SIOCSIFPFLAGS:
3271 	case SIOCGIFPFLAGS:
3272 	case SIOCGIFTXQLEN:
3273 	case SIOCSIFTXQLEN:
3274 	case SIOCBRADDIF:
3275 	case SIOCBRDELIF:
3276 	case SIOCSIFNAME:
3277 	case SIOCGMIIPHY:
3278 	case SIOCGMIIREG:
3279 	case SIOCSMIIREG:
3280 		return dev_ifsioc(net, sock, cmd, argp);
3281 
3282 	case SIOCSARP:
3283 	case SIOCGARP:
3284 	case SIOCDARP:
3285 	case SIOCATMARK:
3286 		return sock_do_ioctl(net, sock, cmd, arg);
3287 	}
3288 
3289 	return -ENOIOCTLCMD;
3290 }
3291 
3292 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3293 			      unsigned long arg)
3294 {
3295 	struct socket *sock = file->private_data;
3296 	int ret = -ENOIOCTLCMD;
3297 	struct sock *sk;
3298 	struct net *net;
3299 
3300 	sk = sock->sk;
3301 	net = sock_net(sk);
3302 
3303 	if (sock->ops->compat_ioctl)
3304 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3305 
3306 	if (ret == -ENOIOCTLCMD &&
3307 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3308 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3309 
3310 	if (ret == -ENOIOCTLCMD)
3311 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3312 
3313 	return ret;
3314 }
3315 #endif
3316 
3317 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3318 {
3319 	return sock->ops->bind(sock, addr, addrlen);
3320 }
3321 EXPORT_SYMBOL(kernel_bind);
3322 
3323 int kernel_listen(struct socket *sock, int backlog)
3324 {
3325 	return sock->ops->listen(sock, backlog);
3326 }
3327 EXPORT_SYMBOL(kernel_listen);
3328 
3329 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3330 {
3331 	struct sock *sk = sock->sk;
3332 	int err;
3333 
3334 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3335 			       newsock);
3336 	if (err < 0)
3337 		goto done;
3338 
3339 	err = sock->ops->accept(sock, *newsock, flags);
3340 	if (err < 0) {
3341 		sock_release(*newsock);
3342 		*newsock = NULL;
3343 		goto done;
3344 	}
3345 
3346 	(*newsock)->ops = sock->ops;
3347 	__module_get((*newsock)->ops->owner);
3348 
3349 done:
3350 	return err;
3351 }
3352 EXPORT_SYMBOL(kernel_accept);
3353 
3354 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3355 		   int flags)
3356 {
3357 	return sock->ops->connect(sock, addr, addrlen, flags);
3358 }
3359 EXPORT_SYMBOL(kernel_connect);
3360 
3361 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3362 			 int *addrlen)
3363 {
3364 	return sock->ops->getname(sock, addr, addrlen, 0);
3365 }
3366 EXPORT_SYMBOL(kernel_getsockname);
3367 
3368 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3369 			 int *addrlen)
3370 {
3371 	return sock->ops->getname(sock, addr, addrlen, 1);
3372 }
3373 EXPORT_SYMBOL(kernel_getpeername);
3374 
3375 int kernel_getsockopt(struct socket *sock, int level, int optname,
3376 			char *optval, int *optlen)
3377 {
3378 	mm_segment_t oldfs = get_fs();
3379 	char __user *uoptval;
3380 	int __user *uoptlen;
3381 	int err;
3382 
3383 	uoptval = (char __user __force *) optval;
3384 	uoptlen = (int __user __force *) optlen;
3385 
3386 	set_fs(KERNEL_DS);
3387 	if (level == SOL_SOCKET)
3388 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3389 	else
3390 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3391 					    uoptlen);
3392 	set_fs(oldfs);
3393 	return err;
3394 }
3395 EXPORT_SYMBOL(kernel_getsockopt);
3396 
3397 int kernel_setsockopt(struct socket *sock, int level, int optname,
3398 			char *optval, unsigned int optlen)
3399 {
3400 	mm_segment_t oldfs = get_fs();
3401 	char __user *uoptval;
3402 	int err;
3403 
3404 	uoptval = (char __user __force *) optval;
3405 
3406 	set_fs(KERNEL_DS);
3407 	if (level == SOL_SOCKET)
3408 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3409 	else
3410 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3411 					    optlen);
3412 	set_fs(oldfs);
3413 	return err;
3414 }
3415 EXPORT_SYMBOL(kernel_setsockopt);
3416 
3417 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3418 		    size_t size, int flags)
3419 {
3420 	if (sock->ops->sendpage)
3421 		return sock->ops->sendpage(sock, page, offset, size, flags);
3422 
3423 	return sock_no_sendpage(sock, page, offset, size, flags);
3424 }
3425 EXPORT_SYMBOL(kernel_sendpage);
3426 
3427 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3428 {
3429 	mm_segment_t oldfs = get_fs();
3430 	int err;
3431 
3432 	set_fs(KERNEL_DS);
3433 	err = sock->ops->ioctl(sock, cmd, arg);
3434 	set_fs(oldfs);
3435 
3436 	return err;
3437 }
3438 EXPORT_SYMBOL(kernel_sock_ioctl);
3439 
3440 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3441 {
3442 	return sock->ops->shutdown(sock, how);
3443 }
3444 EXPORT_SYMBOL(kernel_sock_shutdown);
3445