1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 117 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 118 119 static int sock_close(struct inode *inode, struct file *file); 120 static __poll_t sock_poll(struct file *file, 121 struct poll_table_struct *wait); 122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 123 #ifdef CONFIG_COMPAT 124 static long compat_sock_ioctl(struct file *file, 125 unsigned int cmd, unsigned long arg); 126 #endif 127 static int sock_fasync(int fd, struct file *filp, int on); 128 static ssize_t sock_sendpage(struct file *file, struct page *page, 129 int offset, size_t size, loff_t *ppos, int more); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 134 /* 135 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 136 * in the operation structures but are done directly via the socketcall() multiplexor. 137 */ 138 139 static const struct file_operations socket_file_ops = { 140 .owner = THIS_MODULE, 141 .llseek = no_llseek, 142 .read_iter = sock_read_iter, 143 .write_iter = sock_write_iter, 144 .poll = sock_poll, 145 .unlocked_ioctl = sock_ioctl, 146 #ifdef CONFIG_COMPAT 147 .compat_ioctl = compat_sock_ioctl, 148 #endif 149 .mmap = sock_mmap, 150 .release = sock_close, 151 .fasync = sock_fasync, 152 .sendpage = sock_sendpage, 153 .splice_write = generic_splice_sendpage, 154 .splice_read = sock_splice_read, 155 }; 156 157 /* 158 * The protocol list. Each protocol is registered in here. 159 */ 160 161 static DEFINE_SPINLOCK(net_family_lock); 162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 163 164 /* 165 * Support routines. 166 * Move socket addresses back and forth across the kernel/user 167 * divide and look after the messy bits. 168 */ 169 170 /** 171 * move_addr_to_kernel - copy a socket address into kernel space 172 * @uaddr: Address in user space 173 * @kaddr: Address in kernel space 174 * @ulen: Length in user space 175 * 176 * The address is copied into kernel space. If the provided address is 177 * too long an error code of -EINVAL is returned. If the copy gives 178 * invalid addresses -EFAULT is returned. On a success 0 is returned. 179 */ 180 181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 182 { 183 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 184 return -EINVAL; 185 if (ulen == 0) 186 return 0; 187 if (copy_from_user(kaddr, uaddr, ulen)) 188 return -EFAULT; 189 return audit_sockaddr(ulen, kaddr); 190 } 191 192 /** 193 * move_addr_to_user - copy an address to user space 194 * @kaddr: kernel space address 195 * @klen: length of address in kernel 196 * @uaddr: user space address 197 * @ulen: pointer to user length field 198 * 199 * The value pointed to by ulen on entry is the buffer length available. 200 * This is overwritten with the buffer space used. -EINVAL is returned 201 * if an overlong buffer is specified or a negative buffer size. -EFAULT 202 * is returned if either the buffer or the length field are not 203 * accessible. 204 * After copying the data up to the limit the user specifies, the true 205 * length of the data is written over the length limit the user 206 * specified. Zero is returned for a success. 207 */ 208 209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 210 void __user *uaddr, int __user *ulen) 211 { 212 int err; 213 int len; 214 215 BUG_ON(klen > sizeof(struct sockaddr_storage)); 216 err = get_user(len, ulen); 217 if (err) 218 return err; 219 if (len > klen) 220 len = klen; 221 if (len < 0) 222 return -EINVAL; 223 if (len) { 224 if (audit_sockaddr(klen, kaddr)) 225 return -ENOMEM; 226 if (copy_to_user(uaddr, kaddr, len)) 227 return -EFAULT; 228 } 229 /* 230 * "fromlen shall refer to the value before truncation.." 231 * 1003.1g 232 */ 233 return __put_user(klen, ulen); 234 } 235 236 static struct kmem_cache *sock_inode_cachep __read_mostly; 237 238 static struct inode *sock_alloc_inode(struct super_block *sb) 239 { 240 struct socket_alloc *ei; 241 struct socket_wq *wq; 242 243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 244 if (!ei) 245 return NULL; 246 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 247 if (!wq) { 248 kmem_cache_free(sock_inode_cachep, ei); 249 return NULL; 250 } 251 init_waitqueue_head(&wq->wait); 252 wq->fasync_list = NULL; 253 wq->flags = 0; 254 RCU_INIT_POINTER(ei->socket.wq, wq); 255 256 ei->socket.state = SS_UNCONNECTED; 257 ei->socket.flags = 0; 258 ei->socket.ops = NULL; 259 ei->socket.sk = NULL; 260 ei->socket.file = NULL; 261 262 return &ei->vfs_inode; 263 } 264 265 static void sock_destroy_inode(struct inode *inode) 266 { 267 struct socket_alloc *ei; 268 struct socket_wq *wq; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 wq = rcu_dereference_protected(ei->socket.wq, 1); 272 kfree_rcu(wq, rcu); 273 kmem_cache_free(sock_inode_cachep, ei); 274 } 275 276 static void init_once(void *foo) 277 { 278 struct socket_alloc *ei = (struct socket_alloc *)foo; 279 280 inode_init_once(&ei->vfs_inode); 281 } 282 283 static void init_inodecache(void) 284 { 285 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 286 sizeof(struct socket_alloc), 287 0, 288 (SLAB_HWCACHE_ALIGN | 289 SLAB_RECLAIM_ACCOUNT | 290 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 291 init_once); 292 BUG_ON(sock_inode_cachep == NULL); 293 } 294 295 static const struct super_operations sockfs_ops = { 296 .alloc_inode = sock_alloc_inode, 297 .destroy_inode = sock_destroy_inode, 298 .statfs = simple_statfs, 299 }; 300 301 /* 302 * sockfs_dname() is called from d_path(). 303 */ 304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 305 { 306 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 307 d_inode(dentry)->i_ino); 308 } 309 310 static const struct dentry_operations sockfs_dentry_operations = { 311 .d_dname = sockfs_dname, 312 }; 313 314 static int sockfs_xattr_get(const struct xattr_handler *handler, 315 struct dentry *dentry, struct inode *inode, 316 const char *suffix, void *value, size_t size) 317 { 318 if (value) { 319 if (dentry->d_name.len + 1 > size) 320 return -ERANGE; 321 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 322 } 323 return dentry->d_name.len + 1; 324 } 325 326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 329 330 static const struct xattr_handler sockfs_xattr_handler = { 331 .name = XATTR_NAME_SOCKPROTONAME, 332 .get = sockfs_xattr_get, 333 }; 334 335 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 336 struct dentry *dentry, struct inode *inode, 337 const char *suffix, const void *value, 338 size_t size, int flags) 339 { 340 /* Handled by LSM. */ 341 return -EAGAIN; 342 } 343 344 static const struct xattr_handler sockfs_security_xattr_handler = { 345 .prefix = XATTR_SECURITY_PREFIX, 346 .set = sockfs_security_xattr_set, 347 }; 348 349 static const struct xattr_handler *sockfs_xattr_handlers[] = { 350 &sockfs_xattr_handler, 351 &sockfs_security_xattr_handler, 352 NULL 353 }; 354 355 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 356 int flags, const char *dev_name, void *data) 357 { 358 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 359 sockfs_xattr_handlers, 360 &sockfs_dentry_operations, SOCKFS_MAGIC); 361 } 362 363 static struct vfsmount *sock_mnt __read_mostly; 364 365 static struct file_system_type sock_fs_type = { 366 .name = "sockfs", 367 .mount = sockfs_mount, 368 .kill_sb = kill_anon_super, 369 }; 370 371 /* 372 * Obtains the first available file descriptor and sets it up for use. 373 * 374 * These functions create file structures and maps them to fd space 375 * of the current process. On success it returns file descriptor 376 * and file struct implicitly stored in sock->file. 377 * Note that another thread may close file descriptor before we return 378 * from this function. We use the fact that now we do not refer 379 * to socket after mapping. If one day we will need it, this 380 * function will increment ref. count on file by 1. 381 * 382 * In any case returned fd MAY BE not valid! 383 * This race condition is unavoidable 384 * with shared fd spaces, we cannot solve it inside kernel, 385 * but we take care of internal coherence yet. 386 */ 387 388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 389 { 390 struct qstr name = { .name = "" }; 391 struct path path; 392 struct file *file; 393 394 if (dname) { 395 name.name = dname; 396 name.len = strlen(name.name); 397 } else if (sock->sk) { 398 name.name = sock->sk->sk_prot_creator->name; 399 name.len = strlen(name.name); 400 } 401 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 402 if (unlikely(!path.dentry)) { 403 sock_release(sock); 404 return ERR_PTR(-ENOMEM); 405 } 406 path.mnt = mntget(sock_mnt); 407 408 d_instantiate(path.dentry, SOCK_INODE(sock)); 409 410 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 411 &socket_file_ops); 412 if (IS_ERR(file)) { 413 /* drop dentry, keep inode for a bit */ 414 ihold(d_inode(path.dentry)); 415 path_put(&path); 416 /* ... and now kill it properly */ 417 sock_release(sock); 418 return file; 419 } 420 421 sock->file = file; 422 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 423 file->private_data = sock; 424 return file; 425 } 426 EXPORT_SYMBOL(sock_alloc_file); 427 428 static int sock_map_fd(struct socket *sock, int flags) 429 { 430 struct file *newfile; 431 int fd = get_unused_fd_flags(flags); 432 if (unlikely(fd < 0)) { 433 sock_release(sock); 434 return fd; 435 } 436 437 newfile = sock_alloc_file(sock, flags, NULL); 438 if (likely(!IS_ERR(newfile))) { 439 fd_install(fd, newfile); 440 return fd; 441 } 442 443 put_unused_fd(fd); 444 return PTR_ERR(newfile); 445 } 446 447 struct socket *sock_from_file(struct file *file, int *err) 448 { 449 if (file->f_op == &socket_file_ops) 450 return file->private_data; /* set in sock_map_fd */ 451 452 *err = -ENOTSOCK; 453 return NULL; 454 } 455 EXPORT_SYMBOL(sock_from_file); 456 457 /** 458 * sockfd_lookup - Go from a file number to its socket slot 459 * @fd: file handle 460 * @err: pointer to an error code return 461 * 462 * The file handle passed in is locked and the socket it is bound 463 * to is returned. If an error occurs the err pointer is overwritten 464 * with a negative errno code and NULL is returned. The function checks 465 * for both invalid handles and passing a handle which is not a socket. 466 * 467 * On a success the socket object pointer is returned. 468 */ 469 470 struct socket *sockfd_lookup(int fd, int *err) 471 { 472 struct file *file; 473 struct socket *sock; 474 475 file = fget(fd); 476 if (!file) { 477 *err = -EBADF; 478 return NULL; 479 } 480 481 sock = sock_from_file(file, err); 482 if (!sock) 483 fput(file); 484 return sock; 485 } 486 EXPORT_SYMBOL(sockfd_lookup); 487 488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489 { 490 struct fd f = fdget(fd); 491 struct socket *sock; 492 493 *err = -EBADF; 494 if (f.file) { 495 sock = sock_from_file(f.file, err); 496 if (likely(sock)) { 497 *fput_needed = f.flags; 498 return sock; 499 } 500 fdput(f); 501 } 502 return NULL; 503 } 504 505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 506 size_t size) 507 { 508 ssize_t len; 509 ssize_t used = 0; 510 511 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 512 if (len < 0) 513 return len; 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 buffer += len; 519 } 520 521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 527 buffer += len; 528 } 529 530 return used; 531 } 532 533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 534 { 535 int err = simple_setattr(dentry, iattr); 536 537 if (!err && (iattr->ia_valid & ATTR_UID)) { 538 struct socket *sock = SOCKET_I(d_inode(dentry)); 539 540 sock->sk->sk_uid = iattr->ia_uid; 541 } 542 543 return err; 544 } 545 546 static const struct inode_operations sockfs_inode_ops = { 547 .listxattr = sockfs_listxattr, 548 .setattr = sockfs_setattr, 549 }; 550 551 /** 552 * sock_alloc - allocate a socket 553 * 554 * Allocate a new inode and socket object. The two are bound together 555 * and initialised. The socket is then returned. If we are out of inodes 556 * NULL is returned. 557 */ 558 559 struct socket *sock_alloc(void) 560 { 561 struct inode *inode; 562 struct socket *sock; 563 564 inode = new_inode_pseudo(sock_mnt->mnt_sb); 565 if (!inode) 566 return NULL; 567 568 sock = SOCKET_I(inode); 569 570 inode->i_ino = get_next_ino(); 571 inode->i_mode = S_IFSOCK | S_IRWXUGO; 572 inode->i_uid = current_fsuid(); 573 inode->i_gid = current_fsgid(); 574 inode->i_op = &sockfs_inode_ops; 575 576 return sock; 577 } 578 EXPORT_SYMBOL(sock_alloc); 579 580 /** 581 * sock_release - close a socket 582 * @sock: socket to close 583 * 584 * The socket is released from the protocol stack if it has a release 585 * callback, and the inode is then released if the socket is bound to 586 * an inode not a file. 587 */ 588 589 void sock_release(struct socket *sock) 590 { 591 if (sock->ops) { 592 struct module *owner = sock->ops->owner; 593 594 sock->ops->release(sock); 595 sock->ops = NULL; 596 module_put(owner); 597 } 598 599 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 600 pr_err("%s: fasync list not empty!\n", __func__); 601 602 if (!sock->file) { 603 iput(SOCK_INODE(sock)); 604 return; 605 } 606 sock->file = NULL; 607 } 608 EXPORT_SYMBOL(sock_release); 609 610 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 611 { 612 u8 flags = *tx_flags; 613 614 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 615 flags |= SKBTX_HW_TSTAMP; 616 617 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 618 flags |= SKBTX_SW_TSTAMP; 619 620 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 621 flags |= SKBTX_SCHED_TSTAMP; 622 623 *tx_flags = flags; 624 } 625 EXPORT_SYMBOL(__sock_tx_timestamp); 626 627 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 628 { 629 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 630 BUG_ON(ret == -EIOCBQUEUED); 631 return ret; 632 } 633 634 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 635 { 636 int err = security_socket_sendmsg(sock, msg, 637 msg_data_left(msg)); 638 639 return err ?: sock_sendmsg_nosec(sock, msg); 640 } 641 EXPORT_SYMBOL(sock_sendmsg); 642 643 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 644 struct kvec *vec, size_t num, size_t size) 645 { 646 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 647 return sock_sendmsg(sock, msg); 648 } 649 EXPORT_SYMBOL(kernel_sendmsg); 650 651 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 652 struct kvec *vec, size_t num, size_t size) 653 { 654 struct socket *sock = sk->sk_socket; 655 656 if (!sock->ops->sendmsg_locked) 657 return sock_no_sendmsg_locked(sk, msg, size); 658 659 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 660 661 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 662 } 663 EXPORT_SYMBOL(kernel_sendmsg_locked); 664 665 static bool skb_is_err_queue(const struct sk_buff *skb) 666 { 667 /* pkt_type of skbs enqueued on the error queue are set to 668 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 669 * in recvmsg, since skbs received on a local socket will never 670 * have a pkt_type of PACKET_OUTGOING. 671 */ 672 return skb->pkt_type == PACKET_OUTGOING; 673 } 674 675 /* On transmit, software and hardware timestamps are returned independently. 676 * As the two skb clones share the hardware timestamp, which may be updated 677 * before the software timestamp is received, a hardware TX timestamp may be 678 * returned only if there is no software TX timestamp. Ignore false software 679 * timestamps, which may be made in the __sock_recv_timestamp() call when the 680 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 681 * hardware timestamp. 682 */ 683 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 684 { 685 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 686 } 687 688 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 689 { 690 struct scm_ts_pktinfo ts_pktinfo; 691 struct net_device *orig_dev; 692 693 if (!skb_mac_header_was_set(skb)) 694 return; 695 696 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 697 698 rcu_read_lock(); 699 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 700 if (orig_dev) 701 ts_pktinfo.if_index = orig_dev->ifindex; 702 rcu_read_unlock(); 703 704 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 706 sizeof(ts_pktinfo), &ts_pktinfo); 707 } 708 709 /* 710 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 711 */ 712 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 713 struct sk_buff *skb) 714 { 715 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 716 struct scm_timestamping tss; 717 int empty = 1, false_tstamp = 0; 718 struct skb_shared_hwtstamps *shhwtstamps = 719 skb_hwtstamps(skb); 720 721 /* Race occurred between timestamp enabling and packet 722 receiving. Fill in the current time for now. */ 723 if (need_software_tstamp && skb->tstamp == 0) { 724 __net_timestamp(skb); 725 false_tstamp = 1; 726 } 727 728 if (need_software_tstamp) { 729 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 730 struct timeval tv; 731 skb_get_timestamp(skb, &tv); 732 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 733 sizeof(tv), &tv); 734 } else { 735 struct timespec ts; 736 skb_get_timestampns(skb, &ts); 737 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 738 sizeof(ts), &ts); 739 } 740 } 741 742 memset(&tss, 0, sizeof(tss)); 743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 744 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 745 empty = 0; 746 if (shhwtstamps && 747 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 748 !skb_is_swtx_tstamp(skb, false_tstamp) && 749 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 750 empty = 0; 751 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 752 !skb_is_err_queue(skb)) 753 put_ts_pktinfo(msg, skb); 754 } 755 if (!empty) { 756 put_cmsg(msg, SOL_SOCKET, 757 SCM_TIMESTAMPING, sizeof(tss), &tss); 758 759 if (skb_is_err_queue(skb) && skb->len && 760 SKB_EXT_ERR(skb)->opt_stats) 761 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 762 skb->len, skb->data); 763 } 764 } 765 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 766 767 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 768 struct sk_buff *skb) 769 { 770 int ack; 771 772 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 773 return; 774 if (!skb->wifi_acked_valid) 775 return; 776 777 ack = skb->wifi_acked; 778 779 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 780 } 781 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 782 783 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 784 struct sk_buff *skb) 785 { 786 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 787 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 788 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 789 } 790 791 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 792 struct sk_buff *skb) 793 { 794 sock_recv_timestamp(msg, sk, skb); 795 sock_recv_drops(msg, sk, skb); 796 } 797 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 798 799 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 800 int flags) 801 { 802 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 803 } 804 805 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 806 { 807 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 808 809 return err ?: sock_recvmsg_nosec(sock, msg, flags); 810 } 811 EXPORT_SYMBOL(sock_recvmsg); 812 813 /** 814 * kernel_recvmsg - Receive a message from a socket (kernel space) 815 * @sock: The socket to receive the message from 816 * @msg: Received message 817 * @vec: Input s/g array for message data 818 * @num: Size of input s/g array 819 * @size: Number of bytes to read 820 * @flags: Message flags (MSG_DONTWAIT, etc...) 821 * 822 * On return the msg structure contains the scatter/gather array passed in the 823 * vec argument. The array is modified so that it consists of the unfilled 824 * portion of the original array. 825 * 826 * The returned value is the total number of bytes received, or an error. 827 */ 828 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 829 struct kvec *vec, size_t num, size_t size, int flags) 830 { 831 mm_segment_t oldfs = get_fs(); 832 int result; 833 834 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 835 set_fs(KERNEL_DS); 836 result = sock_recvmsg(sock, msg, flags); 837 set_fs(oldfs); 838 return result; 839 } 840 EXPORT_SYMBOL(kernel_recvmsg); 841 842 static ssize_t sock_sendpage(struct file *file, struct page *page, 843 int offset, size_t size, loff_t *ppos, int more) 844 { 845 struct socket *sock; 846 int flags; 847 848 sock = file->private_data; 849 850 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 851 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 852 flags |= more; 853 854 return kernel_sendpage(sock, page, offset, size, flags); 855 } 856 857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 858 struct pipe_inode_info *pipe, size_t len, 859 unsigned int flags) 860 { 861 struct socket *sock = file->private_data; 862 863 if (unlikely(!sock->ops->splice_read)) 864 return -EINVAL; 865 866 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 867 } 868 869 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 870 { 871 struct file *file = iocb->ki_filp; 872 struct socket *sock = file->private_data; 873 struct msghdr msg = {.msg_iter = *to, 874 .msg_iocb = iocb}; 875 ssize_t res; 876 877 if (file->f_flags & O_NONBLOCK) 878 msg.msg_flags = MSG_DONTWAIT; 879 880 if (iocb->ki_pos != 0) 881 return -ESPIPE; 882 883 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 884 return 0; 885 886 res = sock_recvmsg(sock, &msg, msg.msg_flags); 887 *to = msg.msg_iter; 888 return res; 889 } 890 891 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 892 { 893 struct file *file = iocb->ki_filp; 894 struct socket *sock = file->private_data; 895 struct msghdr msg = {.msg_iter = *from, 896 .msg_iocb = iocb}; 897 ssize_t res; 898 899 if (iocb->ki_pos != 0) 900 return -ESPIPE; 901 902 if (file->f_flags & O_NONBLOCK) 903 msg.msg_flags = MSG_DONTWAIT; 904 905 if (sock->type == SOCK_SEQPACKET) 906 msg.msg_flags |= MSG_EOR; 907 908 res = sock_sendmsg(sock, &msg); 909 *from = msg.msg_iter; 910 return res; 911 } 912 913 /* 914 * Atomic setting of ioctl hooks to avoid race 915 * with module unload. 916 */ 917 918 static DEFINE_MUTEX(br_ioctl_mutex); 919 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 920 921 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 922 { 923 mutex_lock(&br_ioctl_mutex); 924 br_ioctl_hook = hook; 925 mutex_unlock(&br_ioctl_mutex); 926 } 927 EXPORT_SYMBOL(brioctl_set); 928 929 static DEFINE_MUTEX(vlan_ioctl_mutex); 930 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 931 932 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 933 { 934 mutex_lock(&vlan_ioctl_mutex); 935 vlan_ioctl_hook = hook; 936 mutex_unlock(&vlan_ioctl_mutex); 937 } 938 EXPORT_SYMBOL(vlan_ioctl_set); 939 940 static DEFINE_MUTEX(dlci_ioctl_mutex); 941 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 942 943 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 944 { 945 mutex_lock(&dlci_ioctl_mutex); 946 dlci_ioctl_hook = hook; 947 mutex_unlock(&dlci_ioctl_mutex); 948 } 949 EXPORT_SYMBOL(dlci_ioctl_set); 950 951 static long sock_do_ioctl(struct net *net, struct socket *sock, 952 unsigned int cmd, unsigned long arg) 953 { 954 int err; 955 void __user *argp = (void __user *)arg; 956 957 err = sock->ops->ioctl(sock, cmd, arg); 958 959 /* 960 * If this ioctl is unknown try to hand it down 961 * to the NIC driver. 962 */ 963 if (err != -ENOIOCTLCMD) 964 return err; 965 966 if (cmd == SIOCGIFCONF) { 967 struct ifconf ifc; 968 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 969 return -EFAULT; 970 rtnl_lock(); 971 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 972 rtnl_unlock(); 973 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 974 err = -EFAULT; 975 } else { 976 struct ifreq ifr; 977 bool need_copyout; 978 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 979 return -EFAULT; 980 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 981 if (!err && need_copyout) 982 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 983 return -EFAULT; 984 } 985 return err; 986 } 987 988 /* 989 * With an ioctl, arg may well be a user mode pointer, but we don't know 990 * what to do with it - that's up to the protocol still. 991 */ 992 993 struct ns_common *get_net_ns(struct ns_common *ns) 994 { 995 return &get_net(container_of(ns, struct net, ns))->ns; 996 } 997 EXPORT_SYMBOL_GPL(get_net_ns); 998 999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1000 { 1001 struct socket *sock; 1002 struct sock *sk; 1003 void __user *argp = (void __user *)arg; 1004 int pid, err; 1005 struct net *net; 1006 1007 sock = file->private_data; 1008 sk = sock->sk; 1009 net = sock_net(sk); 1010 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1011 struct ifreq ifr; 1012 bool need_copyout; 1013 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1014 return -EFAULT; 1015 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1016 if (!err && need_copyout) 1017 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1018 return -EFAULT; 1019 } else 1020 #ifdef CONFIG_WEXT_CORE 1021 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1022 err = wext_handle_ioctl(net, cmd, argp); 1023 } else 1024 #endif 1025 switch (cmd) { 1026 case FIOSETOWN: 1027 case SIOCSPGRP: 1028 err = -EFAULT; 1029 if (get_user(pid, (int __user *)argp)) 1030 break; 1031 err = f_setown(sock->file, pid, 1); 1032 break; 1033 case FIOGETOWN: 1034 case SIOCGPGRP: 1035 err = put_user(f_getown(sock->file), 1036 (int __user *)argp); 1037 break; 1038 case SIOCGIFBR: 1039 case SIOCSIFBR: 1040 case SIOCBRADDBR: 1041 case SIOCBRDELBR: 1042 err = -ENOPKG; 1043 if (!br_ioctl_hook) 1044 request_module("bridge"); 1045 1046 mutex_lock(&br_ioctl_mutex); 1047 if (br_ioctl_hook) 1048 err = br_ioctl_hook(net, cmd, argp); 1049 mutex_unlock(&br_ioctl_mutex); 1050 break; 1051 case SIOCGIFVLAN: 1052 case SIOCSIFVLAN: 1053 err = -ENOPKG; 1054 if (!vlan_ioctl_hook) 1055 request_module("8021q"); 1056 1057 mutex_lock(&vlan_ioctl_mutex); 1058 if (vlan_ioctl_hook) 1059 err = vlan_ioctl_hook(net, argp); 1060 mutex_unlock(&vlan_ioctl_mutex); 1061 break; 1062 case SIOCADDDLCI: 1063 case SIOCDELDLCI: 1064 err = -ENOPKG; 1065 if (!dlci_ioctl_hook) 1066 request_module("dlci"); 1067 1068 mutex_lock(&dlci_ioctl_mutex); 1069 if (dlci_ioctl_hook) 1070 err = dlci_ioctl_hook(cmd, argp); 1071 mutex_unlock(&dlci_ioctl_mutex); 1072 break; 1073 case SIOCGSKNS: 1074 err = -EPERM; 1075 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1076 break; 1077 1078 err = open_related_ns(&net->ns, get_net_ns); 1079 break; 1080 default: 1081 err = sock_do_ioctl(net, sock, cmd, arg); 1082 break; 1083 } 1084 return err; 1085 } 1086 1087 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1088 { 1089 int err; 1090 struct socket *sock = NULL; 1091 1092 err = security_socket_create(family, type, protocol, 1); 1093 if (err) 1094 goto out; 1095 1096 sock = sock_alloc(); 1097 if (!sock) { 1098 err = -ENOMEM; 1099 goto out; 1100 } 1101 1102 sock->type = type; 1103 err = security_socket_post_create(sock, family, type, protocol, 1); 1104 if (err) 1105 goto out_release; 1106 1107 out: 1108 *res = sock; 1109 return err; 1110 out_release: 1111 sock_release(sock); 1112 sock = NULL; 1113 goto out; 1114 } 1115 EXPORT_SYMBOL(sock_create_lite); 1116 1117 /* No kernel lock held - perfect */ 1118 static __poll_t sock_poll(struct file *file, poll_table *wait) 1119 { 1120 __poll_t busy_flag = 0; 1121 struct socket *sock; 1122 1123 /* 1124 * We can't return errors to poll, so it's either yes or no. 1125 */ 1126 sock = file->private_data; 1127 1128 if (sk_can_busy_loop(sock->sk)) { 1129 /* this socket can poll_ll so tell the system call */ 1130 busy_flag = POLL_BUSY_LOOP; 1131 1132 /* once, only if requested by syscall */ 1133 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1134 sk_busy_loop(sock->sk, 1); 1135 } 1136 1137 return busy_flag | sock->ops->poll(file, sock, wait); 1138 } 1139 1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1141 { 1142 struct socket *sock = file->private_data; 1143 1144 return sock->ops->mmap(file, sock, vma); 1145 } 1146 1147 static int sock_close(struct inode *inode, struct file *filp) 1148 { 1149 sock_release(SOCKET_I(inode)); 1150 return 0; 1151 } 1152 1153 /* 1154 * Update the socket async list 1155 * 1156 * Fasync_list locking strategy. 1157 * 1158 * 1. fasync_list is modified only under process context socket lock 1159 * i.e. under semaphore. 1160 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1161 * or under socket lock 1162 */ 1163 1164 static int sock_fasync(int fd, struct file *filp, int on) 1165 { 1166 struct socket *sock = filp->private_data; 1167 struct sock *sk = sock->sk; 1168 struct socket_wq *wq; 1169 1170 if (sk == NULL) 1171 return -EINVAL; 1172 1173 lock_sock(sk); 1174 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1175 fasync_helper(fd, filp, on, &wq->fasync_list); 1176 1177 if (!wq->fasync_list) 1178 sock_reset_flag(sk, SOCK_FASYNC); 1179 else 1180 sock_set_flag(sk, SOCK_FASYNC); 1181 1182 release_sock(sk); 1183 return 0; 1184 } 1185 1186 /* This function may be called only under rcu_lock */ 1187 1188 int sock_wake_async(struct socket_wq *wq, int how, int band) 1189 { 1190 if (!wq || !wq->fasync_list) 1191 return -1; 1192 1193 switch (how) { 1194 case SOCK_WAKE_WAITD: 1195 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1196 break; 1197 goto call_kill; 1198 case SOCK_WAKE_SPACE: 1199 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1200 break; 1201 /* fall through */ 1202 case SOCK_WAKE_IO: 1203 call_kill: 1204 kill_fasync(&wq->fasync_list, SIGIO, band); 1205 break; 1206 case SOCK_WAKE_URG: 1207 kill_fasync(&wq->fasync_list, SIGURG, band); 1208 } 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL(sock_wake_async); 1213 1214 int __sock_create(struct net *net, int family, int type, int protocol, 1215 struct socket **res, int kern) 1216 { 1217 int err; 1218 struct socket *sock; 1219 const struct net_proto_family *pf; 1220 1221 /* 1222 * Check protocol is in range 1223 */ 1224 if (family < 0 || family >= NPROTO) 1225 return -EAFNOSUPPORT; 1226 if (type < 0 || type >= SOCK_MAX) 1227 return -EINVAL; 1228 1229 /* Compatibility. 1230 1231 This uglymoron is moved from INET layer to here to avoid 1232 deadlock in module load. 1233 */ 1234 if (family == PF_INET && type == SOCK_PACKET) { 1235 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1236 current->comm); 1237 family = PF_PACKET; 1238 } 1239 1240 err = security_socket_create(family, type, protocol, kern); 1241 if (err) 1242 return err; 1243 1244 /* 1245 * Allocate the socket and allow the family to set things up. if 1246 * the protocol is 0, the family is instructed to select an appropriate 1247 * default. 1248 */ 1249 sock = sock_alloc(); 1250 if (!sock) { 1251 net_warn_ratelimited("socket: no more sockets\n"); 1252 return -ENFILE; /* Not exactly a match, but its the 1253 closest posix thing */ 1254 } 1255 1256 sock->type = type; 1257 1258 #ifdef CONFIG_MODULES 1259 /* Attempt to load a protocol module if the find failed. 1260 * 1261 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1262 * requested real, full-featured networking support upon configuration. 1263 * Otherwise module support will break! 1264 */ 1265 if (rcu_access_pointer(net_families[family]) == NULL) 1266 request_module("net-pf-%d", family); 1267 #endif 1268 1269 rcu_read_lock(); 1270 pf = rcu_dereference(net_families[family]); 1271 err = -EAFNOSUPPORT; 1272 if (!pf) 1273 goto out_release; 1274 1275 /* 1276 * We will call the ->create function, that possibly is in a loadable 1277 * module, so we have to bump that loadable module refcnt first. 1278 */ 1279 if (!try_module_get(pf->owner)) 1280 goto out_release; 1281 1282 /* Now protected by module ref count */ 1283 rcu_read_unlock(); 1284 1285 err = pf->create(net, sock, protocol, kern); 1286 if (err < 0) 1287 goto out_module_put; 1288 1289 /* 1290 * Now to bump the refcnt of the [loadable] module that owns this 1291 * socket at sock_release time we decrement its refcnt. 1292 */ 1293 if (!try_module_get(sock->ops->owner)) 1294 goto out_module_busy; 1295 1296 /* 1297 * Now that we're done with the ->create function, the [loadable] 1298 * module can have its refcnt decremented 1299 */ 1300 module_put(pf->owner); 1301 err = security_socket_post_create(sock, family, type, protocol, kern); 1302 if (err) 1303 goto out_sock_release; 1304 *res = sock; 1305 1306 return 0; 1307 1308 out_module_busy: 1309 err = -EAFNOSUPPORT; 1310 out_module_put: 1311 sock->ops = NULL; 1312 module_put(pf->owner); 1313 out_sock_release: 1314 sock_release(sock); 1315 return err; 1316 1317 out_release: 1318 rcu_read_unlock(); 1319 goto out_sock_release; 1320 } 1321 EXPORT_SYMBOL(__sock_create); 1322 1323 int sock_create(int family, int type, int protocol, struct socket **res) 1324 { 1325 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1326 } 1327 EXPORT_SYMBOL(sock_create); 1328 1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1330 { 1331 return __sock_create(net, family, type, protocol, res, 1); 1332 } 1333 EXPORT_SYMBOL(sock_create_kern); 1334 1335 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1336 { 1337 int retval; 1338 struct socket *sock; 1339 int flags; 1340 1341 /* Check the SOCK_* constants for consistency. */ 1342 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1343 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1344 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1345 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1346 1347 flags = type & ~SOCK_TYPE_MASK; 1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1349 return -EINVAL; 1350 type &= SOCK_TYPE_MASK; 1351 1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1354 1355 retval = sock_create(family, type, protocol, &sock); 1356 if (retval < 0) 1357 return retval; 1358 1359 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1360 } 1361 1362 /* 1363 * Create a pair of connected sockets. 1364 */ 1365 1366 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1367 int __user *, usockvec) 1368 { 1369 struct socket *sock1, *sock2; 1370 int fd1, fd2, err; 1371 struct file *newfile1, *newfile2; 1372 int flags; 1373 1374 flags = type & ~SOCK_TYPE_MASK; 1375 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1376 return -EINVAL; 1377 type &= SOCK_TYPE_MASK; 1378 1379 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1380 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1381 1382 /* 1383 * reserve descriptors and make sure we won't fail 1384 * to return them to userland. 1385 */ 1386 fd1 = get_unused_fd_flags(flags); 1387 if (unlikely(fd1 < 0)) 1388 return fd1; 1389 1390 fd2 = get_unused_fd_flags(flags); 1391 if (unlikely(fd2 < 0)) { 1392 put_unused_fd(fd1); 1393 return fd2; 1394 } 1395 1396 err = put_user(fd1, &usockvec[0]); 1397 if (err) 1398 goto out; 1399 1400 err = put_user(fd2, &usockvec[1]); 1401 if (err) 1402 goto out; 1403 1404 /* 1405 * Obtain the first socket and check if the underlying protocol 1406 * supports the socketpair call. 1407 */ 1408 1409 err = sock_create(family, type, protocol, &sock1); 1410 if (unlikely(err < 0)) 1411 goto out; 1412 1413 err = sock_create(family, type, protocol, &sock2); 1414 if (unlikely(err < 0)) { 1415 sock_release(sock1); 1416 goto out; 1417 } 1418 1419 err = sock1->ops->socketpair(sock1, sock2); 1420 if (unlikely(err < 0)) { 1421 sock_release(sock2); 1422 sock_release(sock1); 1423 goto out; 1424 } 1425 1426 newfile1 = sock_alloc_file(sock1, flags, NULL); 1427 if (IS_ERR(newfile1)) { 1428 err = PTR_ERR(newfile1); 1429 sock_release(sock2); 1430 goto out; 1431 } 1432 1433 newfile2 = sock_alloc_file(sock2, flags, NULL); 1434 if (IS_ERR(newfile2)) { 1435 err = PTR_ERR(newfile2); 1436 fput(newfile1); 1437 goto out; 1438 } 1439 1440 audit_fd_pair(fd1, fd2); 1441 1442 fd_install(fd1, newfile1); 1443 fd_install(fd2, newfile2); 1444 return 0; 1445 1446 out: 1447 put_unused_fd(fd2); 1448 put_unused_fd(fd1); 1449 return err; 1450 } 1451 1452 /* 1453 * Bind a name to a socket. Nothing much to do here since it's 1454 * the protocol's responsibility to handle the local address. 1455 * 1456 * We move the socket address to kernel space before we call 1457 * the protocol layer (having also checked the address is ok). 1458 */ 1459 1460 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1461 { 1462 struct socket *sock; 1463 struct sockaddr_storage address; 1464 int err, fput_needed; 1465 1466 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1467 if (sock) { 1468 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1469 if (err >= 0) { 1470 err = security_socket_bind(sock, 1471 (struct sockaddr *)&address, 1472 addrlen); 1473 if (!err) 1474 err = sock->ops->bind(sock, 1475 (struct sockaddr *) 1476 &address, addrlen); 1477 } 1478 fput_light(sock->file, fput_needed); 1479 } 1480 return err; 1481 } 1482 1483 /* 1484 * Perform a listen. Basically, we allow the protocol to do anything 1485 * necessary for a listen, and if that works, we mark the socket as 1486 * ready for listening. 1487 */ 1488 1489 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1490 { 1491 struct socket *sock; 1492 int err, fput_needed; 1493 int somaxconn; 1494 1495 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1496 if (sock) { 1497 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1498 if ((unsigned int)backlog > somaxconn) 1499 backlog = somaxconn; 1500 1501 err = security_socket_listen(sock, backlog); 1502 if (!err) 1503 err = sock->ops->listen(sock, backlog); 1504 1505 fput_light(sock->file, fput_needed); 1506 } 1507 return err; 1508 } 1509 1510 /* 1511 * For accept, we attempt to create a new socket, set up the link 1512 * with the client, wake up the client, then return the new 1513 * connected fd. We collect the address of the connector in kernel 1514 * space and move it to user at the very end. This is unclean because 1515 * we open the socket then return an error. 1516 * 1517 * 1003.1g adds the ability to recvmsg() to query connection pending 1518 * status to recvmsg. We need to add that support in a way thats 1519 * clean when we restucture accept also. 1520 */ 1521 1522 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1523 int __user *, upeer_addrlen, int, flags) 1524 { 1525 struct socket *sock, *newsock; 1526 struct file *newfile; 1527 int err, len, newfd, fput_needed; 1528 struct sockaddr_storage address; 1529 1530 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1531 return -EINVAL; 1532 1533 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1534 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1535 1536 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1537 if (!sock) 1538 goto out; 1539 1540 err = -ENFILE; 1541 newsock = sock_alloc(); 1542 if (!newsock) 1543 goto out_put; 1544 1545 newsock->type = sock->type; 1546 newsock->ops = sock->ops; 1547 1548 /* 1549 * We don't need try_module_get here, as the listening socket (sock) 1550 * has the protocol module (sock->ops->owner) held. 1551 */ 1552 __module_get(newsock->ops->owner); 1553 1554 newfd = get_unused_fd_flags(flags); 1555 if (unlikely(newfd < 0)) { 1556 err = newfd; 1557 sock_release(newsock); 1558 goto out_put; 1559 } 1560 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1561 if (IS_ERR(newfile)) { 1562 err = PTR_ERR(newfile); 1563 put_unused_fd(newfd); 1564 goto out_put; 1565 } 1566 1567 err = security_socket_accept(sock, newsock); 1568 if (err) 1569 goto out_fd; 1570 1571 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1572 if (err < 0) 1573 goto out_fd; 1574 1575 if (upeer_sockaddr) { 1576 len = newsock->ops->getname(newsock, 1577 (struct sockaddr *)&address, 2); 1578 if (len < 0) { 1579 err = -ECONNABORTED; 1580 goto out_fd; 1581 } 1582 err = move_addr_to_user(&address, 1583 len, upeer_sockaddr, upeer_addrlen); 1584 if (err < 0) 1585 goto out_fd; 1586 } 1587 1588 /* File flags are not inherited via accept() unlike another OSes. */ 1589 1590 fd_install(newfd, newfile); 1591 err = newfd; 1592 1593 out_put: 1594 fput_light(sock->file, fput_needed); 1595 out: 1596 return err; 1597 out_fd: 1598 fput(newfile); 1599 put_unused_fd(newfd); 1600 goto out_put; 1601 } 1602 1603 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1604 int __user *, upeer_addrlen) 1605 { 1606 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1607 } 1608 1609 /* 1610 * Attempt to connect to a socket with the server address. The address 1611 * is in user space so we verify it is OK and move it to kernel space. 1612 * 1613 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1614 * break bindings 1615 * 1616 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1617 * other SEQPACKET protocols that take time to connect() as it doesn't 1618 * include the -EINPROGRESS status for such sockets. 1619 */ 1620 1621 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1622 int, addrlen) 1623 { 1624 struct socket *sock; 1625 struct sockaddr_storage address; 1626 int err, fput_needed; 1627 1628 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1629 if (!sock) 1630 goto out; 1631 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1632 if (err < 0) 1633 goto out_put; 1634 1635 err = 1636 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1637 if (err) 1638 goto out_put; 1639 1640 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1641 sock->file->f_flags); 1642 out_put: 1643 fput_light(sock->file, fput_needed); 1644 out: 1645 return err; 1646 } 1647 1648 /* 1649 * Get the local address ('name') of a socket object. Move the obtained 1650 * name to user space. 1651 */ 1652 1653 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1654 int __user *, usockaddr_len) 1655 { 1656 struct socket *sock; 1657 struct sockaddr_storage address; 1658 int err, fput_needed; 1659 1660 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1661 if (!sock) 1662 goto out; 1663 1664 err = security_socket_getsockname(sock); 1665 if (err) 1666 goto out_put; 1667 1668 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1669 if (err < 0) 1670 goto out_put; 1671 /* "err" is actually length in this case */ 1672 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1673 1674 out_put: 1675 fput_light(sock->file, fput_needed); 1676 out: 1677 return err; 1678 } 1679 1680 /* 1681 * Get the remote address ('name') of a socket object. Move the obtained 1682 * name to user space. 1683 */ 1684 1685 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1686 int __user *, usockaddr_len) 1687 { 1688 struct socket *sock; 1689 struct sockaddr_storage address; 1690 int err, fput_needed; 1691 1692 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1693 if (sock != NULL) { 1694 err = security_socket_getpeername(sock); 1695 if (err) { 1696 fput_light(sock->file, fput_needed); 1697 return err; 1698 } 1699 1700 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1701 if (err >= 0) 1702 /* "err" is actually length in this case */ 1703 err = move_addr_to_user(&address, err, usockaddr, 1704 usockaddr_len); 1705 fput_light(sock->file, fput_needed); 1706 } 1707 return err; 1708 } 1709 1710 /* 1711 * Send a datagram to a given address. We move the address into kernel 1712 * space and check the user space data area is readable before invoking 1713 * the protocol. 1714 */ 1715 1716 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1717 unsigned int, flags, struct sockaddr __user *, addr, 1718 int, addr_len) 1719 { 1720 struct socket *sock; 1721 struct sockaddr_storage address; 1722 int err; 1723 struct msghdr msg; 1724 struct iovec iov; 1725 int fput_needed; 1726 1727 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1728 if (unlikely(err)) 1729 return err; 1730 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1731 if (!sock) 1732 goto out; 1733 1734 msg.msg_name = NULL; 1735 msg.msg_control = NULL; 1736 msg.msg_controllen = 0; 1737 msg.msg_namelen = 0; 1738 if (addr) { 1739 err = move_addr_to_kernel(addr, addr_len, &address); 1740 if (err < 0) 1741 goto out_put; 1742 msg.msg_name = (struct sockaddr *)&address; 1743 msg.msg_namelen = addr_len; 1744 } 1745 if (sock->file->f_flags & O_NONBLOCK) 1746 flags |= MSG_DONTWAIT; 1747 msg.msg_flags = flags; 1748 err = sock_sendmsg(sock, &msg); 1749 1750 out_put: 1751 fput_light(sock->file, fput_needed); 1752 out: 1753 return err; 1754 } 1755 1756 /* 1757 * Send a datagram down a socket. 1758 */ 1759 1760 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1761 unsigned int, flags) 1762 { 1763 return sys_sendto(fd, buff, len, flags, NULL, 0); 1764 } 1765 1766 /* 1767 * Receive a frame from the socket and optionally record the address of the 1768 * sender. We verify the buffers are writable and if needed move the 1769 * sender address from kernel to user space. 1770 */ 1771 1772 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1773 unsigned int, flags, struct sockaddr __user *, addr, 1774 int __user *, addr_len) 1775 { 1776 struct socket *sock; 1777 struct iovec iov; 1778 struct msghdr msg; 1779 struct sockaddr_storage address; 1780 int err, err2; 1781 int fput_needed; 1782 1783 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1784 if (unlikely(err)) 1785 return err; 1786 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1787 if (!sock) 1788 goto out; 1789 1790 msg.msg_control = NULL; 1791 msg.msg_controllen = 0; 1792 /* Save some cycles and don't copy the address if not needed */ 1793 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1794 /* We assume all kernel code knows the size of sockaddr_storage */ 1795 msg.msg_namelen = 0; 1796 msg.msg_iocb = NULL; 1797 msg.msg_flags = 0; 1798 if (sock->file->f_flags & O_NONBLOCK) 1799 flags |= MSG_DONTWAIT; 1800 err = sock_recvmsg(sock, &msg, flags); 1801 1802 if (err >= 0 && addr != NULL) { 1803 err2 = move_addr_to_user(&address, 1804 msg.msg_namelen, addr, addr_len); 1805 if (err2 < 0) 1806 err = err2; 1807 } 1808 1809 fput_light(sock->file, fput_needed); 1810 out: 1811 return err; 1812 } 1813 1814 /* 1815 * Receive a datagram from a socket. 1816 */ 1817 1818 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1819 unsigned int, flags) 1820 { 1821 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1822 } 1823 1824 /* 1825 * Set a socket option. Because we don't know the option lengths we have 1826 * to pass the user mode parameter for the protocols to sort out. 1827 */ 1828 1829 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1830 char __user *, optval, int, optlen) 1831 { 1832 int err, fput_needed; 1833 struct socket *sock; 1834 1835 if (optlen < 0) 1836 return -EINVAL; 1837 1838 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1839 if (sock != NULL) { 1840 err = security_socket_setsockopt(sock, level, optname); 1841 if (err) 1842 goto out_put; 1843 1844 if (level == SOL_SOCKET) 1845 err = 1846 sock_setsockopt(sock, level, optname, optval, 1847 optlen); 1848 else 1849 err = 1850 sock->ops->setsockopt(sock, level, optname, optval, 1851 optlen); 1852 out_put: 1853 fput_light(sock->file, fput_needed); 1854 } 1855 return err; 1856 } 1857 1858 /* 1859 * Get a socket option. Because we don't know the option lengths we have 1860 * to pass a user mode parameter for the protocols to sort out. 1861 */ 1862 1863 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1864 char __user *, optval, int __user *, optlen) 1865 { 1866 int err, fput_needed; 1867 struct socket *sock; 1868 1869 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1870 if (sock != NULL) { 1871 err = security_socket_getsockopt(sock, level, optname); 1872 if (err) 1873 goto out_put; 1874 1875 if (level == SOL_SOCKET) 1876 err = 1877 sock_getsockopt(sock, level, optname, optval, 1878 optlen); 1879 else 1880 err = 1881 sock->ops->getsockopt(sock, level, optname, optval, 1882 optlen); 1883 out_put: 1884 fput_light(sock->file, fput_needed); 1885 } 1886 return err; 1887 } 1888 1889 /* 1890 * Shutdown a socket. 1891 */ 1892 1893 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1894 { 1895 int err, fput_needed; 1896 struct socket *sock; 1897 1898 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1899 if (sock != NULL) { 1900 err = security_socket_shutdown(sock, how); 1901 if (!err) 1902 err = sock->ops->shutdown(sock, how); 1903 fput_light(sock->file, fput_needed); 1904 } 1905 return err; 1906 } 1907 1908 /* A couple of helpful macros for getting the address of the 32/64 bit 1909 * fields which are the same type (int / unsigned) on our platforms. 1910 */ 1911 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1912 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1913 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1914 1915 struct used_address { 1916 struct sockaddr_storage name; 1917 unsigned int name_len; 1918 }; 1919 1920 static int copy_msghdr_from_user(struct msghdr *kmsg, 1921 struct user_msghdr __user *umsg, 1922 struct sockaddr __user **save_addr, 1923 struct iovec **iov) 1924 { 1925 struct user_msghdr msg; 1926 ssize_t err; 1927 1928 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1929 return -EFAULT; 1930 1931 kmsg->msg_control = (void __force *)msg.msg_control; 1932 kmsg->msg_controllen = msg.msg_controllen; 1933 kmsg->msg_flags = msg.msg_flags; 1934 1935 kmsg->msg_namelen = msg.msg_namelen; 1936 if (!msg.msg_name) 1937 kmsg->msg_namelen = 0; 1938 1939 if (kmsg->msg_namelen < 0) 1940 return -EINVAL; 1941 1942 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1943 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1944 1945 if (save_addr) 1946 *save_addr = msg.msg_name; 1947 1948 if (msg.msg_name && kmsg->msg_namelen) { 1949 if (!save_addr) { 1950 err = move_addr_to_kernel(msg.msg_name, 1951 kmsg->msg_namelen, 1952 kmsg->msg_name); 1953 if (err < 0) 1954 return err; 1955 } 1956 } else { 1957 kmsg->msg_name = NULL; 1958 kmsg->msg_namelen = 0; 1959 } 1960 1961 if (msg.msg_iovlen > UIO_MAXIOV) 1962 return -EMSGSIZE; 1963 1964 kmsg->msg_iocb = NULL; 1965 1966 return import_iovec(save_addr ? READ : WRITE, 1967 msg.msg_iov, msg.msg_iovlen, 1968 UIO_FASTIOV, iov, &kmsg->msg_iter); 1969 } 1970 1971 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1972 struct msghdr *msg_sys, unsigned int flags, 1973 struct used_address *used_address, 1974 unsigned int allowed_msghdr_flags) 1975 { 1976 struct compat_msghdr __user *msg_compat = 1977 (struct compat_msghdr __user *)msg; 1978 struct sockaddr_storage address; 1979 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1980 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1981 __aligned(sizeof(__kernel_size_t)); 1982 /* 20 is size of ipv6_pktinfo */ 1983 unsigned char *ctl_buf = ctl; 1984 int ctl_len; 1985 ssize_t err; 1986 1987 msg_sys->msg_name = &address; 1988 1989 if (MSG_CMSG_COMPAT & flags) 1990 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1991 else 1992 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1993 if (err < 0) 1994 return err; 1995 1996 err = -ENOBUFS; 1997 1998 if (msg_sys->msg_controllen > INT_MAX) 1999 goto out_freeiov; 2000 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2001 ctl_len = msg_sys->msg_controllen; 2002 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2003 err = 2004 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2005 sizeof(ctl)); 2006 if (err) 2007 goto out_freeiov; 2008 ctl_buf = msg_sys->msg_control; 2009 ctl_len = msg_sys->msg_controllen; 2010 } else if (ctl_len) { 2011 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2012 CMSG_ALIGN(sizeof(struct cmsghdr))); 2013 if (ctl_len > sizeof(ctl)) { 2014 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2015 if (ctl_buf == NULL) 2016 goto out_freeiov; 2017 } 2018 err = -EFAULT; 2019 /* 2020 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2021 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2022 * checking falls down on this. 2023 */ 2024 if (copy_from_user(ctl_buf, 2025 (void __user __force *)msg_sys->msg_control, 2026 ctl_len)) 2027 goto out_freectl; 2028 msg_sys->msg_control = ctl_buf; 2029 } 2030 msg_sys->msg_flags = flags; 2031 2032 if (sock->file->f_flags & O_NONBLOCK) 2033 msg_sys->msg_flags |= MSG_DONTWAIT; 2034 /* 2035 * If this is sendmmsg() and current destination address is same as 2036 * previously succeeded address, omit asking LSM's decision. 2037 * used_address->name_len is initialized to UINT_MAX so that the first 2038 * destination address never matches. 2039 */ 2040 if (used_address && msg_sys->msg_name && 2041 used_address->name_len == msg_sys->msg_namelen && 2042 !memcmp(&used_address->name, msg_sys->msg_name, 2043 used_address->name_len)) { 2044 err = sock_sendmsg_nosec(sock, msg_sys); 2045 goto out_freectl; 2046 } 2047 err = sock_sendmsg(sock, msg_sys); 2048 /* 2049 * If this is sendmmsg() and sending to current destination address was 2050 * successful, remember it. 2051 */ 2052 if (used_address && err >= 0) { 2053 used_address->name_len = msg_sys->msg_namelen; 2054 if (msg_sys->msg_name) 2055 memcpy(&used_address->name, msg_sys->msg_name, 2056 used_address->name_len); 2057 } 2058 2059 out_freectl: 2060 if (ctl_buf != ctl) 2061 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2062 out_freeiov: 2063 kfree(iov); 2064 return err; 2065 } 2066 2067 /* 2068 * BSD sendmsg interface 2069 */ 2070 2071 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2072 { 2073 int fput_needed, err; 2074 struct msghdr msg_sys; 2075 struct socket *sock; 2076 2077 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2078 if (!sock) 2079 goto out; 2080 2081 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2082 2083 fput_light(sock->file, fput_needed); 2084 out: 2085 return err; 2086 } 2087 2088 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2089 { 2090 if (flags & MSG_CMSG_COMPAT) 2091 return -EINVAL; 2092 return __sys_sendmsg(fd, msg, flags); 2093 } 2094 2095 /* 2096 * Linux sendmmsg interface 2097 */ 2098 2099 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2100 unsigned int flags) 2101 { 2102 int fput_needed, err, datagrams; 2103 struct socket *sock; 2104 struct mmsghdr __user *entry; 2105 struct compat_mmsghdr __user *compat_entry; 2106 struct msghdr msg_sys; 2107 struct used_address used_address; 2108 unsigned int oflags = flags; 2109 2110 if (vlen > UIO_MAXIOV) 2111 vlen = UIO_MAXIOV; 2112 2113 datagrams = 0; 2114 2115 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2116 if (!sock) 2117 return err; 2118 2119 used_address.name_len = UINT_MAX; 2120 entry = mmsg; 2121 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2122 err = 0; 2123 flags |= MSG_BATCH; 2124 2125 while (datagrams < vlen) { 2126 if (datagrams == vlen - 1) 2127 flags = oflags; 2128 2129 if (MSG_CMSG_COMPAT & flags) { 2130 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2131 &msg_sys, flags, &used_address, MSG_EOR); 2132 if (err < 0) 2133 break; 2134 err = __put_user(err, &compat_entry->msg_len); 2135 ++compat_entry; 2136 } else { 2137 err = ___sys_sendmsg(sock, 2138 (struct user_msghdr __user *)entry, 2139 &msg_sys, flags, &used_address, MSG_EOR); 2140 if (err < 0) 2141 break; 2142 err = put_user(err, &entry->msg_len); 2143 ++entry; 2144 } 2145 2146 if (err) 2147 break; 2148 ++datagrams; 2149 if (msg_data_left(&msg_sys)) 2150 break; 2151 cond_resched(); 2152 } 2153 2154 fput_light(sock->file, fput_needed); 2155 2156 /* We only return an error if no datagrams were able to be sent */ 2157 if (datagrams != 0) 2158 return datagrams; 2159 2160 return err; 2161 } 2162 2163 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2164 unsigned int, vlen, unsigned int, flags) 2165 { 2166 if (flags & MSG_CMSG_COMPAT) 2167 return -EINVAL; 2168 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2169 } 2170 2171 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2172 struct msghdr *msg_sys, unsigned int flags, int nosec) 2173 { 2174 struct compat_msghdr __user *msg_compat = 2175 (struct compat_msghdr __user *)msg; 2176 struct iovec iovstack[UIO_FASTIOV]; 2177 struct iovec *iov = iovstack; 2178 unsigned long cmsg_ptr; 2179 int len; 2180 ssize_t err; 2181 2182 /* kernel mode address */ 2183 struct sockaddr_storage addr; 2184 2185 /* user mode address pointers */ 2186 struct sockaddr __user *uaddr; 2187 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2188 2189 msg_sys->msg_name = &addr; 2190 2191 if (MSG_CMSG_COMPAT & flags) 2192 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2193 else 2194 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2195 if (err < 0) 2196 return err; 2197 2198 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2199 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2200 2201 /* We assume all kernel code knows the size of sockaddr_storage */ 2202 msg_sys->msg_namelen = 0; 2203 2204 if (sock->file->f_flags & O_NONBLOCK) 2205 flags |= MSG_DONTWAIT; 2206 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2207 if (err < 0) 2208 goto out_freeiov; 2209 len = err; 2210 2211 if (uaddr != NULL) { 2212 err = move_addr_to_user(&addr, 2213 msg_sys->msg_namelen, uaddr, 2214 uaddr_len); 2215 if (err < 0) 2216 goto out_freeiov; 2217 } 2218 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2219 COMPAT_FLAGS(msg)); 2220 if (err) 2221 goto out_freeiov; 2222 if (MSG_CMSG_COMPAT & flags) 2223 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2224 &msg_compat->msg_controllen); 2225 else 2226 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2227 &msg->msg_controllen); 2228 if (err) 2229 goto out_freeiov; 2230 err = len; 2231 2232 out_freeiov: 2233 kfree(iov); 2234 return err; 2235 } 2236 2237 /* 2238 * BSD recvmsg interface 2239 */ 2240 2241 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2242 { 2243 int fput_needed, err; 2244 struct msghdr msg_sys; 2245 struct socket *sock; 2246 2247 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2248 if (!sock) 2249 goto out; 2250 2251 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2252 2253 fput_light(sock->file, fput_needed); 2254 out: 2255 return err; 2256 } 2257 2258 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2259 unsigned int, flags) 2260 { 2261 if (flags & MSG_CMSG_COMPAT) 2262 return -EINVAL; 2263 return __sys_recvmsg(fd, msg, flags); 2264 } 2265 2266 /* 2267 * Linux recvmmsg interface 2268 */ 2269 2270 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2271 unsigned int flags, struct timespec *timeout) 2272 { 2273 int fput_needed, err, datagrams; 2274 struct socket *sock; 2275 struct mmsghdr __user *entry; 2276 struct compat_mmsghdr __user *compat_entry; 2277 struct msghdr msg_sys; 2278 struct timespec64 end_time; 2279 struct timespec64 timeout64; 2280 2281 if (timeout && 2282 poll_select_set_timeout(&end_time, timeout->tv_sec, 2283 timeout->tv_nsec)) 2284 return -EINVAL; 2285 2286 datagrams = 0; 2287 2288 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2289 if (!sock) 2290 return err; 2291 2292 err = sock_error(sock->sk); 2293 if (err) { 2294 datagrams = err; 2295 goto out_put; 2296 } 2297 2298 entry = mmsg; 2299 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2300 2301 while (datagrams < vlen) { 2302 /* 2303 * No need to ask LSM for more than the first datagram. 2304 */ 2305 if (MSG_CMSG_COMPAT & flags) { 2306 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2307 &msg_sys, flags & ~MSG_WAITFORONE, 2308 datagrams); 2309 if (err < 0) 2310 break; 2311 err = __put_user(err, &compat_entry->msg_len); 2312 ++compat_entry; 2313 } else { 2314 err = ___sys_recvmsg(sock, 2315 (struct user_msghdr __user *)entry, 2316 &msg_sys, flags & ~MSG_WAITFORONE, 2317 datagrams); 2318 if (err < 0) 2319 break; 2320 err = put_user(err, &entry->msg_len); 2321 ++entry; 2322 } 2323 2324 if (err) 2325 break; 2326 ++datagrams; 2327 2328 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2329 if (flags & MSG_WAITFORONE) 2330 flags |= MSG_DONTWAIT; 2331 2332 if (timeout) { 2333 ktime_get_ts64(&timeout64); 2334 *timeout = timespec64_to_timespec( 2335 timespec64_sub(end_time, timeout64)); 2336 if (timeout->tv_sec < 0) { 2337 timeout->tv_sec = timeout->tv_nsec = 0; 2338 break; 2339 } 2340 2341 /* Timeout, return less than vlen datagrams */ 2342 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2343 break; 2344 } 2345 2346 /* Out of band data, return right away */ 2347 if (msg_sys.msg_flags & MSG_OOB) 2348 break; 2349 cond_resched(); 2350 } 2351 2352 if (err == 0) 2353 goto out_put; 2354 2355 if (datagrams == 0) { 2356 datagrams = err; 2357 goto out_put; 2358 } 2359 2360 /* 2361 * We may return less entries than requested (vlen) if the 2362 * sock is non block and there aren't enough datagrams... 2363 */ 2364 if (err != -EAGAIN) { 2365 /* 2366 * ... or if recvmsg returns an error after we 2367 * received some datagrams, where we record the 2368 * error to return on the next call or if the 2369 * app asks about it using getsockopt(SO_ERROR). 2370 */ 2371 sock->sk->sk_err = -err; 2372 } 2373 out_put: 2374 fput_light(sock->file, fput_needed); 2375 2376 return datagrams; 2377 } 2378 2379 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2380 unsigned int, vlen, unsigned int, flags, 2381 struct timespec __user *, timeout) 2382 { 2383 int datagrams; 2384 struct timespec timeout_sys; 2385 2386 if (flags & MSG_CMSG_COMPAT) 2387 return -EINVAL; 2388 2389 if (!timeout) 2390 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2391 2392 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2393 return -EFAULT; 2394 2395 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2396 2397 if (datagrams > 0 && 2398 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2399 datagrams = -EFAULT; 2400 2401 return datagrams; 2402 } 2403 2404 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2405 /* Argument list sizes for sys_socketcall */ 2406 #define AL(x) ((x) * sizeof(unsigned long)) 2407 static const unsigned char nargs[21] = { 2408 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2409 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2410 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2411 AL(4), AL(5), AL(4) 2412 }; 2413 2414 #undef AL 2415 2416 /* 2417 * System call vectors. 2418 * 2419 * Argument checking cleaned up. Saved 20% in size. 2420 * This function doesn't need to set the kernel lock because 2421 * it is set by the callees. 2422 */ 2423 2424 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2425 { 2426 unsigned long a[AUDITSC_ARGS]; 2427 unsigned long a0, a1; 2428 int err; 2429 unsigned int len; 2430 2431 if (call < 1 || call > SYS_SENDMMSG) 2432 return -EINVAL; 2433 2434 len = nargs[call]; 2435 if (len > sizeof(a)) 2436 return -EINVAL; 2437 2438 /* copy_from_user should be SMP safe. */ 2439 if (copy_from_user(a, args, len)) 2440 return -EFAULT; 2441 2442 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2443 if (err) 2444 return err; 2445 2446 a0 = a[0]; 2447 a1 = a[1]; 2448 2449 switch (call) { 2450 case SYS_SOCKET: 2451 err = sys_socket(a0, a1, a[2]); 2452 break; 2453 case SYS_BIND: 2454 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2455 break; 2456 case SYS_CONNECT: 2457 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2458 break; 2459 case SYS_LISTEN: 2460 err = sys_listen(a0, a1); 2461 break; 2462 case SYS_ACCEPT: 2463 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2464 (int __user *)a[2], 0); 2465 break; 2466 case SYS_GETSOCKNAME: 2467 err = 2468 sys_getsockname(a0, (struct sockaddr __user *)a1, 2469 (int __user *)a[2]); 2470 break; 2471 case SYS_GETPEERNAME: 2472 err = 2473 sys_getpeername(a0, (struct sockaddr __user *)a1, 2474 (int __user *)a[2]); 2475 break; 2476 case SYS_SOCKETPAIR: 2477 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2478 break; 2479 case SYS_SEND: 2480 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2481 break; 2482 case SYS_SENDTO: 2483 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2484 (struct sockaddr __user *)a[4], a[5]); 2485 break; 2486 case SYS_RECV: 2487 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2488 break; 2489 case SYS_RECVFROM: 2490 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2491 (struct sockaddr __user *)a[4], 2492 (int __user *)a[5]); 2493 break; 2494 case SYS_SHUTDOWN: 2495 err = sys_shutdown(a0, a1); 2496 break; 2497 case SYS_SETSOCKOPT: 2498 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2499 break; 2500 case SYS_GETSOCKOPT: 2501 err = 2502 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2503 (int __user *)a[4]); 2504 break; 2505 case SYS_SENDMSG: 2506 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2507 break; 2508 case SYS_SENDMMSG: 2509 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2510 break; 2511 case SYS_RECVMSG: 2512 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2513 break; 2514 case SYS_RECVMMSG: 2515 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2516 (struct timespec __user *)a[4]); 2517 break; 2518 case SYS_ACCEPT4: 2519 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2520 (int __user *)a[2], a[3]); 2521 break; 2522 default: 2523 err = -EINVAL; 2524 break; 2525 } 2526 return err; 2527 } 2528 2529 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2530 2531 /** 2532 * sock_register - add a socket protocol handler 2533 * @ops: description of protocol 2534 * 2535 * This function is called by a protocol handler that wants to 2536 * advertise its address family, and have it linked into the 2537 * socket interface. The value ops->family corresponds to the 2538 * socket system call protocol family. 2539 */ 2540 int sock_register(const struct net_proto_family *ops) 2541 { 2542 int err; 2543 2544 if (ops->family >= NPROTO) { 2545 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2546 return -ENOBUFS; 2547 } 2548 2549 spin_lock(&net_family_lock); 2550 if (rcu_dereference_protected(net_families[ops->family], 2551 lockdep_is_held(&net_family_lock))) 2552 err = -EEXIST; 2553 else { 2554 rcu_assign_pointer(net_families[ops->family], ops); 2555 err = 0; 2556 } 2557 spin_unlock(&net_family_lock); 2558 2559 pr_info("NET: Registered protocol family %d\n", ops->family); 2560 return err; 2561 } 2562 EXPORT_SYMBOL(sock_register); 2563 2564 /** 2565 * sock_unregister - remove a protocol handler 2566 * @family: protocol family to remove 2567 * 2568 * This function is called by a protocol handler that wants to 2569 * remove its address family, and have it unlinked from the 2570 * new socket creation. 2571 * 2572 * If protocol handler is a module, then it can use module reference 2573 * counts to protect against new references. If protocol handler is not 2574 * a module then it needs to provide its own protection in 2575 * the ops->create routine. 2576 */ 2577 void sock_unregister(int family) 2578 { 2579 BUG_ON(family < 0 || family >= NPROTO); 2580 2581 spin_lock(&net_family_lock); 2582 RCU_INIT_POINTER(net_families[family], NULL); 2583 spin_unlock(&net_family_lock); 2584 2585 synchronize_rcu(); 2586 2587 pr_info("NET: Unregistered protocol family %d\n", family); 2588 } 2589 EXPORT_SYMBOL(sock_unregister); 2590 2591 static int __init sock_init(void) 2592 { 2593 int err; 2594 /* 2595 * Initialize the network sysctl infrastructure. 2596 */ 2597 err = net_sysctl_init(); 2598 if (err) 2599 goto out; 2600 2601 /* 2602 * Initialize skbuff SLAB cache 2603 */ 2604 skb_init(); 2605 2606 /* 2607 * Initialize the protocols module. 2608 */ 2609 2610 init_inodecache(); 2611 2612 err = register_filesystem(&sock_fs_type); 2613 if (err) 2614 goto out_fs; 2615 sock_mnt = kern_mount(&sock_fs_type); 2616 if (IS_ERR(sock_mnt)) { 2617 err = PTR_ERR(sock_mnt); 2618 goto out_mount; 2619 } 2620 2621 /* The real protocol initialization is performed in later initcalls. 2622 */ 2623 2624 #ifdef CONFIG_NETFILTER 2625 err = netfilter_init(); 2626 if (err) 2627 goto out; 2628 #endif 2629 2630 ptp_classifier_init(); 2631 2632 out: 2633 return err; 2634 2635 out_mount: 2636 unregister_filesystem(&sock_fs_type); 2637 out_fs: 2638 goto out; 2639 } 2640 2641 core_initcall(sock_init); /* early initcall */ 2642 2643 #ifdef CONFIG_PROC_FS 2644 void socket_seq_show(struct seq_file *seq) 2645 { 2646 seq_printf(seq, "sockets: used %d\n", 2647 sock_inuse_get(seq->private)); 2648 } 2649 #endif /* CONFIG_PROC_FS */ 2650 2651 #ifdef CONFIG_COMPAT 2652 static int do_siocgstamp(struct net *net, struct socket *sock, 2653 unsigned int cmd, void __user *up) 2654 { 2655 mm_segment_t old_fs = get_fs(); 2656 struct timeval ktv; 2657 int err; 2658 2659 set_fs(KERNEL_DS); 2660 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2661 set_fs(old_fs); 2662 if (!err) 2663 err = compat_put_timeval(&ktv, up); 2664 2665 return err; 2666 } 2667 2668 static int do_siocgstampns(struct net *net, struct socket *sock, 2669 unsigned int cmd, void __user *up) 2670 { 2671 mm_segment_t old_fs = get_fs(); 2672 struct timespec kts; 2673 int err; 2674 2675 set_fs(KERNEL_DS); 2676 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2677 set_fs(old_fs); 2678 if (!err) 2679 err = compat_put_timespec(&kts, up); 2680 2681 return err; 2682 } 2683 2684 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2685 { 2686 struct compat_ifconf ifc32; 2687 struct ifconf ifc; 2688 int err; 2689 2690 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2691 return -EFAULT; 2692 2693 ifc.ifc_len = ifc32.ifc_len; 2694 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2695 2696 rtnl_lock(); 2697 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2698 rtnl_unlock(); 2699 if (err) 2700 return err; 2701 2702 ifc32.ifc_len = ifc.ifc_len; 2703 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2704 return -EFAULT; 2705 2706 return 0; 2707 } 2708 2709 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2710 { 2711 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2712 bool convert_in = false, convert_out = false; 2713 size_t buf_size = 0; 2714 struct ethtool_rxnfc __user *rxnfc = NULL; 2715 struct ifreq ifr; 2716 u32 rule_cnt = 0, actual_rule_cnt; 2717 u32 ethcmd; 2718 u32 data; 2719 int ret; 2720 2721 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2722 return -EFAULT; 2723 2724 compat_rxnfc = compat_ptr(data); 2725 2726 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2727 return -EFAULT; 2728 2729 /* Most ethtool structures are defined without padding. 2730 * Unfortunately struct ethtool_rxnfc is an exception. 2731 */ 2732 switch (ethcmd) { 2733 default: 2734 break; 2735 case ETHTOOL_GRXCLSRLALL: 2736 /* Buffer size is variable */ 2737 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2738 return -EFAULT; 2739 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2740 return -ENOMEM; 2741 buf_size += rule_cnt * sizeof(u32); 2742 /* fall through */ 2743 case ETHTOOL_GRXRINGS: 2744 case ETHTOOL_GRXCLSRLCNT: 2745 case ETHTOOL_GRXCLSRULE: 2746 case ETHTOOL_SRXCLSRLINS: 2747 convert_out = true; 2748 /* fall through */ 2749 case ETHTOOL_SRXCLSRLDEL: 2750 buf_size += sizeof(struct ethtool_rxnfc); 2751 convert_in = true; 2752 rxnfc = compat_alloc_user_space(buf_size); 2753 break; 2754 } 2755 2756 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2757 return -EFAULT; 2758 2759 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2760 2761 if (convert_in) { 2762 /* We expect there to be holes between fs.m_ext and 2763 * fs.ring_cookie and at the end of fs, but nowhere else. 2764 */ 2765 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2766 sizeof(compat_rxnfc->fs.m_ext) != 2767 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2768 sizeof(rxnfc->fs.m_ext)); 2769 BUILD_BUG_ON( 2770 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2771 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2772 offsetof(struct ethtool_rxnfc, fs.location) - 2773 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2774 2775 if (copy_in_user(rxnfc, compat_rxnfc, 2776 (void __user *)(&rxnfc->fs.m_ext + 1) - 2777 (void __user *)rxnfc) || 2778 copy_in_user(&rxnfc->fs.ring_cookie, 2779 &compat_rxnfc->fs.ring_cookie, 2780 (void __user *)(&rxnfc->fs.location + 1) - 2781 (void __user *)&rxnfc->fs.ring_cookie) || 2782 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2783 sizeof(rxnfc->rule_cnt))) 2784 return -EFAULT; 2785 } 2786 2787 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2788 if (ret) 2789 return ret; 2790 2791 if (convert_out) { 2792 if (copy_in_user(compat_rxnfc, rxnfc, 2793 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2794 (const void __user *)rxnfc) || 2795 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2796 &rxnfc->fs.ring_cookie, 2797 (const void __user *)(&rxnfc->fs.location + 1) - 2798 (const void __user *)&rxnfc->fs.ring_cookie) || 2799 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2800 sizeof(rxnfc->rule_cnt))) 2801 return -EFAULT; 2802 2803 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2804 /* As an optimisation, we only copy the actual 2805 * number of rules that the underlying 2806 * function returned. Since Mallory might 2807 * change the rule count in user memory, we 2808 * check that it is less than the rule count 2809 * originally given (as the user buffer size), 2810 * which has been range-checked. 2811 */ 2812 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2813 return -EFAULT; 2814 if (actual_rule_cnt < rule_cnt) 2815 rule_cnt = actual_rule_cnt; 2816 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2817 &rxnfc->rule_locs[0], 2818 rule_cnt * sizeof(u32))) 2819 return -EFAULT; 2820 } 2821 } 2822 2823 return 0; 2824 } 2825 2826 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2827 { 2828 compat_uptr_t uptr32; 2829 struct ifreq ifr; 2830 void __user *saved; 2831 int err; 2832 2833 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2834 return -EFAULT; 2835 2836 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2837 return -EFAULT; 2838 2839 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2840 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2841 2842 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2843 if (!err) { 2844 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2845 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2846 err = -EFAULT; 2847 } 2848 return err; 2849 } 2850 2851 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2852 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2853 struct compat_ifreq __user *u_ifreq32) 2854 { 2855 struct ifreq ifreq; 2856 u32 data32; 2857 2858 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2859 return -EFAULT; 2860 if (get_user(data32, &u_ifreq32->ifr_data)) 2861 return -EFAULT; 2862 ifreq.ifr_data = compat_ptr(data32); 2863 2864 return dev_ioctl(net, cmd, &ifreq, NULL); 2865 } 2866 2867 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2868 struct compat_ifreq __user *uifr32) 2869 { 2870 struct ifreq ifr; 2871 struct compat_ifmap __user *uifmap32; 2872 int err; 2873 2874 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2875 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2876 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2877 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2878 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2879 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2880 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2881 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2882 if (err) 2883 return -EFAULT; 2884 2885 err = dev_ioctl(net, cmd, &ifr, NULL); 2886 2887 if (cmd == SIOCGIFMAP && !err) { 2888 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2889 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2890 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2891 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2892 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2893 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2894 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2895 if (err) 2896 err = -EFAULT; 2897 } 2898 return err; 2899 } 2900 2901 struct rtentry32 { 2902 u32 rt_pad1; 2903 struct sockaddr rt_dst; /* target address */ 2904 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2905 struct sockaddr rt_genmask; /* target network mask (IP) */ 2906 unsigned short rt_flags; 2907 short rt_pad2; 2908 u32 rt_pad3; 2909 unsigned char rt_tos; 2910 unsigned char rt_class; 2911 short rt_pad4; 2912 short rt_metric; /* +1 for binary compatibility! */ 2913 /* char * */ u32 rt_dev; /* forcing the device at add */ 2914 u32 rt_mtu; /* per route MTU/Window */ 2915 u32 rt_window; /* Window clamping */ 2916 unsigned short rt_irtt; /* Initial RTT */ 2917 }; 2918 2919 struct in6_rtmsg32 { 2920 struct in6_addr rtmsg_dst; 2921 struct in6_addr rtmsg_src; 2922 struct in6_addr rtmsg_gateway; 2923 u32 rtmsg_type; 2924 u16 rtmsg_dst_len; 2925 u16 rtmsg_src_len; 2926 u32 rtmsg_metric; 2927 u32 rtmsg_info; 2928 u32 rtmsg_flags; 2929 s32 rtmsg_ifindex; 2930 }; 2931 2932 static int routing_ioctl(struct net *net, struct socket *sock, 2933 unsigned int cmd, void __user *argp) 2934 { 2935 int ret; 2936 void *r = NULL; 2937 struct in6_rtmsg r6; 2938 struct rtentry r4; 2939 char devname[16]; 2940 u32 rtdev; 2941 mm_segment_t old_fs = get_fs(); 2942 2943 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2944 struct in6_rtmsg32 __user *ur6 = argp; 2945 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2946 3 * sizeof(struct in6_addr)); 2947 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2948 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2949 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2950 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2951 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2952 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2953 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2954 2955 r = (void *) &r6; 2956 } else { /* ipv4 */ 2957 struct rtentry32 __user *ur4 = argp; 2958 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2959 3 * sizeof(struct sockaddr)); 2960 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 2961 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 2962 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2963 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 2964 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2965 ret |= get_user(rtdev, &(ur4->rt_dev)); 2966 if (rtdev) { 2967 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2968 r4.rt_dev = (char __user __force *)devname; 2969 devname[15] = 0; 2970 } else 2971 r4.rt_dev = NULL; 2972 2973 r = (void *) &r4; 2974 } 2975 2976 if (ret) { 2977 ret = -EFAULT; 2978 goto out; 2979 } 2980 2981 set_fs(KERNEL_DS); 2982 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2983 set_fs(old_fs); 2984 2985 out: 2986 return ret; 2987 } 2988 2989 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2990 * for some operations; this forces use of the newer bridge-utils that 2991 * use compatible ioctls 2992 */ 2993 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2994 { 2995 compat_ulong_t tmp; 2996 2997 if (get_user(tmp, argp)) 2998 return -EFAULT; 2999 if (tmp == BRCTL_GET_VERSION) 3000 return BRCTL_VERSION + 1; 3001 return -EINVAL; 3002 } 3003 3004 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3005 unsigned int cmd, unsigned long arg) 3006 { 3007 void __user *argp = compat_ptr(arg); 3008 struct sock *sk = sock->sk; 3009 struct net *net = sock_net(sk); 3010 3011 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3012 return compat_ifr_data_ioctl(net, cmd, argp); 3013 3014 switch (cmd) { 3015 case SIOCSIFBR: 3016 case SIOCGIFBR: 3017 return old_bridge_ioctl(argp); 3018 case SIOCGIFCONF: 3019 return compat_dev_ifconf(net, argp); 3020 case SIOCETHTOOL: 3021 return ethtool_ioctl(net, argp); 3022 case SIOCWANDEV: 3023 return compat_siocwandev(net, argp); 3024 case SIOCGIFMAP: 3025 case SIOCSIFMAP: 3026 return compat_sioc_ifmap(net, cmd, argp); 3027 case SIOCADDRT: 3028 case SIOCDELRT: 3029 return routing_ioctl(net, sock, cmd, argp); 3030 case SIOCGSTAMP: 3031 return do_siocgstamp(net, sock, cmd, argp); 3032 case SIOCGSTAMPNS: 3033 return do_siocgstampns(net, sock, cmd, argp); 3034 case SIOCBONDSLAVEINFOQUERY: 3035 case SIOCBONDINFOQUERY: 3036 case SIOCSHWTSTAMP: 3037 case SIOCGHWTSTAMP: 3038 return compat_ifr_data_ioctl(net, cmd, argp); 3039 3040 case FIOSETOWN: 3041 case SIOCSPGRP: 3042 case FIOGETOWN: 3043 case SIOCGPGRP: 3044 case SIOCBRADDBR: 3045 case SIOCBRDELBR: 3046 case SIOCGIFVLAN: 3047 case SIOCSIFVLAN: 3048 case SIOCADDDLCI: 3049 case SIOCDELDLCI: 3050 case SIOCGSKNS: 3051 return sock_ioctl(file, cmd, arg); 3052 3053 case SIOCGIFFLAGS: 3054 case SIOCSIFFLAGS: 3055 case SIOCGIFMETRIC: 3056 case SIOCSIFMETRIC: 3057 case SIOCGIFMTU: 3058 case SIOCSIFMTU: 3059 case SIOCGIFMEM: 3060 case SIOCSIFMEM: 3061 case SIOCGIFHWADDR: 3062 case SIOCSIFHWADDR: 3063 case SIOCADDMULTI: 3064 case SIOCDELMULTI: 3065 case SIOCGIFINDEX: 3066 case SIOCGIFADDR: 3067 case SIOCSIFADDR: 3068 case SIOCSIFHWBROADCAST: 3069 case SIOCDIFADDR: 3070 case SIOCGIFBRDADDR: 3071 case SIOCSIFBRDADDR: 3072 case SIOCGIFDSTADDR: 3073 case SIOCSIFDSTADDR: 3074 case SIOCGIFNETMASK: 3075 case SIOCSIFNETMASK: 3076 case SIOCSIFPFLAGS: 3077 case SIOCGIFPFLAGS: 3078 case SIOCGIFTXQLEN: 3079 case SIOCSIFTXQLEN: 3080 case SIOCBRADDIF: 3081 case SIOCBRDELIF: 3082 case SIOCSIFNAME: 3083 case SIOCGMIIPHY: 3084 case SIOCGMIIREG: 3085 case SIOCSMIIREG: 3086 case SIOCSARP: 3087 case SIOCGARP: 3088 case SIOCDARP: 3089 case SIOCATMARK: 3090 case SIOCBONDENSLAVE: 3091 case SIOCBONDRELEASE: 3092 case SIOCBONDSETHWADDR: 3093 case SIOCBONDCHANGEACTIVE: 3094 case SIOCGIFNAME: 3095 return sock_do_ioctl(net, sock, cmd, arg); 3096 } 3097 3098 return -ENOIOCTLCMD; 3099 } 3100 3101 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3102 unsigned long arg) 3103 { 3104 struct socket *sock = file->private_data; 3105 int ret = -ENOIOCTLCMD; 3106 struct sock *sk; 3107 struct net *net; 3108 3109 sk = sock->sk; 3110 net = sock_net(sk); 3111 3112 if (sock->ops->compat_ioctl) 3113 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3114 3115 if (ret == -ENOIOCTLCMD && 3116 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3117 ret = compat_wext_handle_ioctl(net, cmd, arg); 3118 3119 if (ret == -ENOIOCTLCMD) 3120 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3121 3122 return ret; 3123 } 3124 #endif 3125 3126 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3127 { 3128 return sock->ops->bind(sock, addr, addrlen); 3129 } 3130 EXPORT_SYMBOL(kernel_bind); 3131 3132 int kernel_listen(struct socket *sock, int backlog) 3133 { 3134 return sock->ops->listen(sock, backlog); 3135 } 3136 EXPORT_SYMBOL(kernel_listen); 3137 3138 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3139 { 3140 struct sock *sk = sock->sk; 3141 int err; 3142 3143 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3144 newsock); 3145 if (err < 0) 3146 goto done; 3147 3148 err = sock->ops->accept(sock, *newsock, flags, true); 3149 if (err < 0) { 3150 sock_release(*newsock); 3151 *newsock = NULL; 3152 goto done; 3153 } 3154 3155 (*newsock)->ops = sock->ops; 3156 __module_get((*newsock)->ops->owner); 3157 3158 done: 3159 return err; 3160 } 3161 EXPORT_SYMBOL(kernel_accept); 3162 3163 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3164 int flags) 3165 { 3166 return sock->ops->connect(sock, addr, addrlen, flags); 3167 } 3168 EXPORT_SYMBOL(kernel_connect); 3169 3170 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3171 { 3172 return sock->ops->getname(sock, addr, 0); 3173 } 3174 EXPORT_SYMBOL(kernel_getsockname); 3175 3176 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3177 { 3178 return sock->ops->getname(sock, addr, 1); 3179 } 3180 EXPORT_SYMBOL(kernel_getpeername); 3181 3182 int kernel_getsockopt(struct socket *sock, int level, int optname, 3183 char *optval, int *optlen) 3184 { 3185 mm_segment_t oldfs = get_fs(); 3186 char __user *uoptval; 3187 int __user *uoptlen; 3188 int err; 3189 3190 uoptval = (char __user __force *) optval; 3191 uoptlen = (int __user __force *) optlen; 3192 3193 set_fs(KERNEL_DS); 3194 if (level == SOL_SOCKET) 3195 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3196 else 3197 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3198 uoptlen); 3199 set_fs(oldfs); 3200 return err; 3201 } 3202 EXPORT_SYMBOL(kernel_getsockopt); 3203 3204 int kernel_setsockopt(struct socket *sock, int level, int optname, 3205 char *optval, unsigned int optlen) 3206 { 3207 mm_segment_t oldfs = get_fs(); 3208 char __user *uoptval; 3209 int err; 3210 3211 uoptval = (char __user __force *) optval; 3212 3213 set_fs(KERNEL_DS); 3214 if (level == SOL_SOCKET) 3215 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3216 else 3217 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3218 optlen); 3219 set_fs(oldfs); 3220 return err; 3221 } 3222 EXPORT_SYMBOL(kernel_setsockopt); 3223 3224 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3225 size_t size, int flags) 3226 { 3227 if (sock->ops->sendpage) 3228 return sock->ops->sendpage(sock, page, offset, size, flags); 3229 3230 return sock_no_sendpage(sock, page, offset, size, flags); 3231 } 3232 EXPORT_SYMBOL(kernel_sendpage); 3233 3234 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3235 size_t size, int flags) 3236 { 3237 struct socket *sock = sk->sk_socket; 3238 3239 if (sock->ops->sendpage_locked) 3240 return sock->ops->sendpage_locked(sk, page, offset, size, 3241 flags); 3242 3243 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3244 } 3245 EXPORT_SYMBOL(kernel_sendpage_locked); 3246 3247 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3248 { 3249 return sock->ops->shutdown(sock, how); 3250 } 3251 EXPORT_SYMBOL(kernel_sock_shutdown); 3252 3253 /* This routine returns the IP overhead imposed by a socket i.e. 3254 * the length of the underlying IP header, depending on whether 3255 * this is an IPv4 or IPv6 socket and the length from IP options turned 3256 * on at the socket. Assumes that the caller has a lock on the socket. 3257 */ 3258 u32 kernel_sock_ip_overhead(struct sock *sk) 3259 { 3260 struct inet_sock *inet; 3261 struct ip_options_rcu *opt; 3262 u32 overhead = 0; 3263 #if IS_ENABLED(CONFIG_IPV6) 3264 struct ipv6_pinfo *np; 3265 struct ipv6_txoptions *optv6 = NULL; 3266 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3267 3268 if (!sk) 3269 return overhead; 3270 3271 switch (sk->sk_family) { 3272 case AF_INET: 3273 inet = inet_sk(sk); 3274 overhead += sizeof(struct iphdr); 3275 opt = rcu_dereference_protected(inet->inet_opt, 3276 sock_owned_by_user(sk)); 3277 if (opt) 3278 overhead += opt->opt.optlen; 3279 return overhead; 3280 #if IS_ENABLED(CONFIG_IPV6) 3281 case AF_INET6: 3282 np = inet6_sk(sk); 3283 overhead += sizeof(struct ipv6hdr); 3284 if (np) 3285 optv6 = rcu_dereference_protected(np->opt, 3286 sock_owned_by_user(sk)); 3287 if (optv6) 3288 overhead += (optv6->opt_flen + optv6->opt_nflen); 3289 return overhead; 3290 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3291 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3292 return overhead; 3293 } 3294 } 3295 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3296