1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/security.h> 77 #include <linux/syscalls.h> 78 #include <linux/compat.h> 79 #include <linux/kmod.h> 80 #include <linux/audit.h> 81 #include <linux/wireless.h> 82 #include <linux/nsproxy.h> 83 #include <linux/magic.h> 84 #include <linux/slab.h> 85 #include <linux/xattr.h> 86 #include <linux/nospec.h> 87 #include <linux/indirect_call_wrapper.h> 88 89 #include <linux/uaccess.h> 90 #include <asm/unistd.h> 91 92 #include <net/compat.h> 93 #include <net/wext.h> 94 #include <net/cls_cgroup.h> 95 96 #include <net/sock.h> 97 #include <linux/netfilter.h> 98 99 #include <linux/if_tun.h> 100 #include <linux/ipv6_route.h> 101 #include <linux/route.h> 102 #include <linux/sockios.h> 103 #include <net/busy_poll.h> 104 #include <linux/errqueue.h> 105 106 /* proto_ops for ipv4 and ipv6 use the same {recv,send}msg function */ 107 #if IS_ENABLED(CONFIG_INET) 108 #define INDIRECT_CALL_INET4(f, f1, ...) INDIRECT_CALL_1(f, f1, __VA_ARGS__) 109 #else 110 #define INDIRECT_CALL_INET4(f, f1, ...) f(__VA_ARGS__) 111 #endif 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_sendpage(struct file *file, struct page *page, 132 int offset, size_t size, loff_t *ppos, int more); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 137 /* 138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 139 * in the operation structures but are done directly via the socketcall() multiplexor. 140 */ 141 142 static const struct file_operations socket_file_ops = { 143 .owner = THIS_MODULE, 144 .llseek = no_llseek, 145 .read_iter = sock_read_iter, 146 .write_iter = sock_write_iter, 147 .poll = sock_poll, 148 .unlocked_ioctl = sock_ioctl, 149 #ifdef CONFIG_COMPAT 150 .compat_ioctl = compat_sock_ioctl, 151 #endif 152 .mmap = sock_mmap, 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 BUG_ON(klen > sizeof(struct sockaddr_storage)); 219 err = get_user(len, ulen); 220 if (err) 221 return err; 222 if (len > klen) 223 len = klen; 224 if (len < 0) 225 return -EINVAL; 226 if (len) { 227 if (audit_sockaddr(klen, kaddr)) 228 return -ENOMEM; 229 if (copy_to_user(uaddr, kaddr, len)) 230 return -EFAULT; 231 } 232 /* 233 * "fromlen shall refer to the value before truncation.." 234 * 1003.1g 235 */ 236 return __put_user(klen, ulen); 237 } 238 239 static struct kmem_cache *sock_inode_cachep __ro_after_init; 240 241 static struct inode *sock_alloc_inode(struct super_block *sb) 242 { 243 struct socket_alloc *ei; 244 struct socket_wq *wq; 245 246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 247 if (!ei) 248 return NULL; 249 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 250 if (!wq) { 251 kmem_cache_free(sock_inode_cachep, ei); 252 return NULL; 253 } 254 init_waitqueue_head(&wq->wait); 255 wq->fasync_list = NULL; 256 wq->flags = 0; 257 ei->socket.wq = wq; 258 259 ei->socket.state = SS_UNCONNECTED; 260 ei->socket.flags = 0; 261 ei->socket.ops = NULL; 262 ei->socket.sk = NULL; 263 ei->socket.file = NULL; 264 265 return &ei->vfs_inode; 266 } 267 268 static void sock_destroy_inode(struct inode *inode) 269 { 270 struct socket_alloc *ei; 271 272 ei = container_of(inode, struct socket_alloc, vfs_inode); 273 kfree_rcu(ei->socket.wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static void init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 292 init_once); 293 BUG_ON(sock_inode_cachep == NULL); 294 } 295 296 static const struct super_operations sockfs_ops = { 297 .alloc_inode = sock_alloc_inode, 298 .destroy_inode = sock_destroy_inode, 299 .statfs = simple_statfs, 300 }; 301 302 /* 303 * sockfs_dname() is called from d_path(). 304 */ 305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 306 { 307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 308 d_inode(dentry)->i_ino); 309 } 310 311 static const struct dentry_operations sockfs_dentry_operations = { 312 .d_dname = sockfs_dname, 313 }; 314 315 static int sockfs_xattr_get(const struct xattr_handler *handler, 316 struct dentry *dentry, struct inode *inode, 317 const char *suffix, void *value, size_t size) 318 { 319 if (value) { 320 if (dentry->d_name.len + 1 > size) 321 return -ERANGE; 322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 323 } 324 return dentry->d_name.len + 1; 325 } 326 327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 330 331 static const struct xattr_handler sockfs_xattr_handler = { 332 .name = XATTR_NAME_SOCKPROTONAME, 333 .get = sockfs_xattr_get, 334 }; 335 336 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 337 struct dentry *dentry, struct inode *inode, 338 const char *suffix, const void *value, 339 size_t size, int flags) 340 { 341 /* Handled by LSM. */ 342 return -EAGAIN; 343 } 344 345 static const struct xattr_handler sockfs_security_xattr_handler = { 346 .prefix = XATTR_SECURITY_PREFIX, 347 .set = sockfs_security_xattr_set, 348 }; 349 350 static const struct xattr_handler *sockfs_xattr_handlers[] = { 351 &sockfs_xattr_handler, 352 &sockfs_security_xattr_handler, 353 NULL 354 }; 355 356 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 357 int flags, const char *dev_name, void *data) 358 { 359 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 360 sockfs_xattr_handlers, 361 &sockfs_dentry_operations, SOCKFS_MAGIC); 362 } 363 364 static struct vfsmount *sock_mnt __read_mostly; 365 366 static struct file_system_type sock_fs_type = { 367 .name = "sockfs", 368 .mount = sockfs_mount, 369 .kill_sb = kill_anon_super, 370 }; 371 372 /* 373 * Obtains the first available file descriptor and sets it up for use. 374 * 375 * These functions create file structures and maps them to fd space 376 * of the current process. On success it returns file descriptor 377 * and file struct implicitly stored in sock->file. 378 * Note that another thread may close file descriptor before we return 379 * from this function. We use the fact that now we do not refer 380 * to socket after mapping. If one day we will need it, this 381 * function will increment ref. count on file by 1. 382 * 383 * In any case returned fd MAY BE not valid! 384 * This race condition is unavoidable 385 * with shared fd spaces, we cannot solve it inside kernel, 386 * but we take care of internal coherence yet. 387 */ 388 389 /** 390 * sock_alloc_file - Bind a &socket to a &file 391 * @sock: socket 392 * @flags: file status flags 393 * @dname: protocol name 394 * 395 * Returns the &file bound with @sock, implicitly storing it 396 * in sock->file. If dname is %NULL, sets to "". 397 * On failure the return is a ERR pointer (see linux/err.h). 398 * This function uses GFP_KERNEL internally. 399 */ 400 401 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 402 { 403 struct file *file; 404 405 if (!dname) 406 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 407 408 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 409 O_RDWR | (flags & O_NONBLOCK), 410 &socket_file_ops); 411 if (IS_ERR(file)) { 412 sock_release(sock); 413 return file; 414 } 415 416 sock->file = file; 417 file->private_data = sock; 418 return file; 419 } 420 EXPORT_SYMBOL(sock_alloc_file); 421 422 static int sock_map_fd(struct socket *sock, int flags) 423 { 424 struct file *newfile; 425 int fd = get_unused_fd_flags(flags); 426 if (unlikely(fd < 0)) { 427 sock_release(sock); 428 return fd; 429 } 430 431 newfile = sock_alloc_file(sock, flags, NULL); 432 if (likely(!IS_ERR(newfile))) { 433 fd_install(fd, newfile); 434 return fd; 435 } 436 437 put_unused_fd(fd); 438 return PTR_ERR(newfile); 439 } 440 441 /** 442 * sock_from_file - Return the &socket bounded to @file. 443 * @file: file 444 * @err: pointer to an error code return 445 * 446 * On failure returns %NULL and assigns -ENOTSOCK to @err. 447 */ 448 449 struct socket *sock_from_file(struct file *file, int *err) 450 { 451 if (file->f_op == &socket_file_ops) 452 return file->private_data; /* set in sock_map_fd */ 453 454 *err = -ENOTSOCK; 455 return NULL; 456 } 457 EXPORT_SYMBOL(sock_from_file); 458 459 /** 460 * sockfd_lookup - Go from a file number to its socket slot 461 * @fd: file handle 462 * @err: pointer to an error code return 463 * 464 * The file handle passed in is locked and the socket it is bound 465 * to is returned. If an error occurs the err pointer is overwritten 466 * with a negative errno code and NULL is returned. The function checks 467 * for both invalid handles and passing a handle which is not a socket. 468 * 469 * On a success the socket object pointer is returned. 470 */ 471 472 struct socket *sockfd_lookup(int fd, int *err) 473 { 474 struct file *file; 475 struct socket *sock; 476 477 file = fget(fd); 478 if (!file) { 479 *err = -EBADF; 480 return NULL; 481 } 482 483 sock = sock_from_file(file, err); 484 if (!sock) 485 fput(file); 486 return sock; 487 } 488 EXPORT_SYMBOL(sockfd_lookup); 489 490 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 491 { 492 struct fd f = fdget(fd); 493 struct socket *sock; 494 495 *err = -EBADF; 496 if (f.file) { 497 sock = sock_from_file(f.file, err); 498 if (likely(sock)) { 499 *fput_needed = f.flags; 500 return sock; 501 } 502 fdput(f); 503 } 504 return NULL; 505 } 506 507 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 508 size_t size) 509 { 510 ssize_t len; 511 ssize_t used = 0; 512 513 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 514 if (len < 0) 515 return len; 516 used += len; 517 if (buffer) { 518 if (size < used) 519 return -ERANGE; 520 buffer += len; 521 } 522 523 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 524 used += len; 525 if (buffer) { 526 if (size < used) 527 return -ERANGE; 528 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 529 buffer += len; 530 } 531 532 return used; 533 } 534 535 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 536 { 537 int err = simple_setattr(dentry, iattr); 538 539 if (!err && (iattr->ia_valid & ATTR_UID)) { 540 struct socket *sock = SOCKET_I(d_inode(dentry)); 541 542 if (sock->sk) 543 sock->sk->sk_uid = iattr->ia_uid; 544 else 545 err = -ENOENT; 546 } 547 548 return err; 549 } 550 551 static const struct inode_operations sockfs_inode_ops = { 552 .listxattr = sockfs_listxattr, 553 .setattr = sockfs_setattr, 554 }; 555 556 /** 557 * sock_alloc - allocate a socket 558 * 559 * Allocate a new inode and socket object. The two are bound together 560 * and initialised. The socket is then returned. If we are out of inodes 561 * NULL is returned. This functions uses GFP_KERNEL internally. 562 */ 563 564 struct socket *sock_alloc(void) 565 { 566 struct inode *inode; 567 struct socket *sock; 568 569 inode = new_inode_pseudo(sock_mnt->mnt_sb); 570 if (!inode) 571 return NULL; 572 573 sock = SOCKET_I(inode); 574 575 inode->i_ino = get_next_ino(); 576 inode->i_mode = S_IFSOCK | S_IRWXUGO; 577 inode->i_uid = current_fsuid(); 578 inode->i_gid = current_fsgid(); 579 inode->i_op = &sockfs_inode_ops; 580 581 return sock; 582 } 583 EXPORT_SYMBOL(sock_alloc); 584 585 /** 586 * sock_release - close a socket 587 * @sock: socket to close 588 * 589 * The socket is released from the protocol stack if it has a release 590 * callback, and the inode is then released if the socket is bound to 591 * an inode not a file. 592 */ 593 594 static void __sock_release(struct socket *sock, struct inode *inode) 595 { 596 if (sock->ops) { 597 struct module *owner = sock->ops->owner; 598 599 if (inode) 600 inode_lock(inode); 601 sock->ops->release(sock); 602 sock->sk = NULL; 603 if (inode) 604 inode_unlock(inode); 605 sock->ops = NULL; 606 module_put(owner); 607 } 608 609 if (sock->wq->fasync_list) 610 pr_err("%s: fasync list not empty!\n", __func__); 611 612 if (!sock->file) { 613 iput(SOCK_INODE(sock)); 614 return; 615 } 616 sock->file = NULL; 617 } 618 619 void sock_release(struct socket *sock) 620 { 621 __sock_release(sock, NULL); 622 } 623 EXPORT_SYMBOL(sock_release); 624 625 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 626 { 627 u8 flags = *tx_flags; 628 629 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 630 flags |= SKBTX_HW_TSTAMP; 631 632 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 633 flags |= SKBTX_SW_TSTAMP; 634 635 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 636 flags |= SKBTX_SCHED_TSTAMP; 637 638 *tx_flags = flags; 639 } 640 EXPORT_SYMBOL(__sock_tx_timestamp); 641 642 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 643 size_t)); 644 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 645 { 646 int ret = INDIRECT_CALL_INET4(sock->ops->sendmsg, inet_sendmsg, sock, 647 msg, msg_data_left(msg)); 648 BUG_ON(ret == -EIOCBQUEUED); 649 return ret; 650 } 651 652 /** 653 * sock_sendmsg - send a message through @sock 654 * @sock: socket 655 * @msg: message to send 656 * 657 * Sends @msg through @sock, passing through LSM. 658 * Returns the number of bytes sent, or an error code. 659 */ 660 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 661 { 662 int err = security_socket_sendmsg(sock, msg, 663 msg_data_left(msg)); 664 665 return err ?: sock_sendmsg_nosec(sock, msg); 666 } 667 EXPORT_SYMBOL(sock_sendmsg); 668 669 /** 670 * kernel_sendmsg - send a message through @sock (kernel-space) 671 * @sock: socket 672 * @msg: message header 673 * @vec: kernel vec 674 * @num: vec array length 675 * @size: total message data size 676 * 677 * Builds the message data with @vec and sends it through @sock. 678 * Returns the number of bytes sent, or an error code. 679 */ 680 681 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 682 struct kvec *vec, size_t num, size_t size) 683 { 684 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 685 return sock_sendmsg(sock, msg); 686 } 687 EXPORT_SYMBOL(kernel_sendmsg); 688 689 /** 690 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 691 * @sk: sock 692 * @msg: message header 693 * @vec: output s/g array 694 * @num: output s/g array length 695 * @size: total message data size 696 * 697 * Builds the message data with @vec and sends it through @sock. 698 * Returns the number of bytes sent, or an error code. 699 * Caller must hold @sk. 700 */ 701 702 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 703 struct kvec *vec, size_t num, size_t size) 704 { 705 struct socket *sock = sk->sk_socket; 706 707 if (!sock->ops->sendmsg_locked) 708 return sock_no_sendmsg_locked(sk, msg, size); 709 710 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 711 712 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 713 } 714 EXPORT_SYMBOL(kernel_sendmsg_locked); 715 716 static bool skb_is_err_queue(const struct sk_buff *skb) 717 { 718 /* pkt_type of skbs enqueued on the error queue are set to 719 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 720 * in recvmsg, since skbs received on a local socket will never 721 * have a pkt_type of PACKET_OUTGOING. 722 */ 723 return skb->pkt_type == PACKET_OUTGOING; 724 } 725 726 /* On transmit, software and hardware timestamps are returned independently. 727 * As the two skb clones share the hardware timestamp, which may be updated 728 * before the software timestamp is received, a hardware TX timestamp may be 729 * returned only if there is no software TX timestamp. Ignore false software 730 * timestamps, which may be made in the __sock_recv_timestamp() call when the 731 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 732 * hardware timestamp. 733 */ 734 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 735 { 736 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 737 } 738 739 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 740 { 741 struct scm_ts_pktinfo ts_pktinfo; 742 struct net_device *orig_dev; 743 744 if (!skb_mac_header_was_set(skb)) 745 return; 746 747 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 748 749 rcu_read_lock(); 750 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 751 if (orig_dev) 752 ts_pktinfo.if_index = orig_dev->ifindex; 753 rcu_read_unlock(); 754 755 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 756 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 757 sizeof(ts_pktinfo), &ts_pktinfo); 758 } 759 760 /* 761 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 762 */ 763 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 764 struct sk_buff *skb) 765 { 766 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 767 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 768 struct scm_timestamping_internal tss; 769 770 int empty = 1, false_tstamp = 0; 771 struct skb_shared_hwtstamps *shhwtstamps = 772 skb_hwtstamps(skb); 773 774 /* Race occurred between timestamp enabling and packet 775 receiving. Fill in the current time for now. */ 776 if (need_software_tstamp && skb->tstamp == 0) { 777 __net_timestamp(skb); 778 false_tstamp = 1; 779 } 780 781 if (need_software_tstamp) { 782 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 783 if (new_tstamp) { 784 struct __kernel_sock_timeval tv; 785 786 skb_get_new_timestamp(skb, &tv); 787 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 788 sizeof(tv), &tv); 789 } else { 790 struct __kernel_old_timeval tv; 791 792 skb_get_timestamp(skb, &tv); 793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 794 sizeof(tv), &tv); 795 } 796 } else { 797 if (new_tstamp) { 798 struct __kernel_timespec ts; 799 800 skb_get_new_timestampns(skb, &ts); 801 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 802 sizeof(ts), &ts); 803 } else { 804 struct timespec ts; 805 806 skb_get_timestampns(skb, &ts); 807 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 808 sizeof(ts), &ts); 809 } 810 } 811 } 812 813 memset(&tss, 0, sizeof(tss)); 814 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 815 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 816 empty = 0; 817 if (shhwtstamps && 818 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 819 !skb_is_swtx_tstamp(skb, false_tstamp) && 820 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 821 empty = 0; 822 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 823 !skb_is_err_queue(skb)) 824 put_ts_pktinfo(msg, skb); 825 } 826 if (!empty) { 827 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 828 put_cmsg_scm_timestamping64(msg, &tss); 829 else 830 put_cmsg_scm_timestamping(msg, &tss); 831 832 if (skb_is_err_queue(skb) && skb->len && 833 SKB_EXT_ERR(skb)->opt_stats) 834 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 835 skb->len, skb->data); 836 } 837 } 838 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 839 840 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 841 struct sk_buff *skb) 842 { 843 int ack; 844 845 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 846 return; 847 if (!skb->wifi_acked_valid) 848 return; 849 850 ack = skb->wifi_acked; 851 852 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 853 } 854 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 855 856 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 857 struct sk_buff *skb) 858 { 859 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 860 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 861 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 862 } 863 864 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 865 struct sk_buff *skb) 866 { 867 sock_recv_timestamp(msg, sk, skb); 868 sock_recv_drops(msg, sk, skb); 869 } 870 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 871 872 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 873 size_t , int )); 874 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 875 int flags) 876 { 877 return INDIRECT_CALL_INET4(sock->ops->recvmsg, inet_recvmsg, sock, msg, 878 msg_data_left(msg), flags); 879 } 880 881 /** 882 * sock_recvmsg - receive a message from @sock 883 * @sock: socket 884 * @msg: message to receive 885 * @flags: message flags 886 * 887 * Receives @msg from @sock, passing through LSM. Returns the total number 888 * of bytes received, or an error. 889 */ 890 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 891 { 892 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 893 894 return err ?: sock_recvmsg_nosec(sock, msg, flags); 895 } 896 EXPORT_SYMBOL(sock_recvmsg); 897 898 /** 899 * kernel_recvmsg - Receive a message from a socket (kernel space) 900 * @sock: The socket to receive the message from 901 * @msg: Received message 902 * @vec: Input s/g array for message data 903 * @num: Size of input s/g array 904 * @size: Number of bytes to read 905 * @flags: Message flags (MSG_DONTWAIT, etc...) 906 * 907 * On return the msg structure contains the scatter/gather array passed in the 908 * vec argument. The array is modified so that it consists of the unfilled 909 * portion of the original array. 910 * 911 * The returned value is the total number of bytes received, or an error. 912 */ 913 914 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 915 struct kvec *vec, size_t num, size_t size, int flags) 916 { 917 mm_segment_t oldfs = get_fs(); 918 int result; 919 920 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 921 set_fs(KERNEL_DS); 922 result = sock_recvmsg(sock, msg, flags); 923 set_fs(oldfs); 924 return result; 925 } 926 EXPORT_SYMBOL(kernel_recvmsg); 927 928 static ssize_t sock_sendpage(struct file *file, struct page *page, 929 int offset, size_t size, loff_t *ppos, int more) 930 { 931 struct socket *sock; 932 int flags; 933 934 sock = file->private_data; 935 936 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 937 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 938 flags |= more; 939 940 return kernel_sendpage(sock, page, offset, size, flags); 941 } 942 943 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 944 struct pipe_inode_info *pipe, size_t len, 945 unsigned int flags) 946 { 947 struct socket *sock = file->private_data; 948 949 if (unlikely(!sock->ops->splice_read)) 950 return generic_file_splice_read(file, ppos, pipe, len, flags); 951 952 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 953 } 954 955 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 956 { 957 struct file *file = iocb->ki_filp; 958 struct socket *sock = file->private_data; 959 struct msghdr msg = {.msg_iter = *to, 960 .msg_iocb = iocb}; 961 ssize_t res; 962 963 if (file->f_flags & O_NONBLOCK) 964 msg.msg_flags = MSG_DONTWAIT; 965 966 if (iocb->ki_pos != 0) 967 return -ESPIPE; 968 969 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 970 return 0; 971 972 res = sock_recvmsg(sock, &msg, msg.msg_flags); 973 *to = msg.msg_iter; 974 return res; 975 } 976 977 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 978 { 979 struct file *file = iocb->ki_filp; 980 struct socket *sock = file->private_data; 981 struct msghdr msg = {.msg_iter = *from, 982 .msg_iocb = iocb}; 983 ssize_t res; 984 985 if (iocb->ki_pos != 0) 986 return -ESPIPE; 987 988 if (file->f_flags & O_NONBLOCK) 989 msg.msg_flags = MSG_DONTWAIT; 990 991 if (sock->type == SOCK_SEQPACKET) 992 msg.msg_flags |= MSG_EOR; 993 994 res = sock_sendmsg(sock, &msg); 995 *from = msg.msg_iter; 996 return res; 997 } 998 999 /* 1000 * Atomic setting of ioctl hooks to avoid race 1001 * with module unload. 1002 */ 1003 1004 static DEFINE_MUTEX(br_ioctl_mutex); 1005 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1006 1007 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1008 { 1009 mutex_lock(&br_ioctl_mutex); 1010 br_ioctl_hook = hook; 1011 mutex_unlock(&br_ioctl_mutex); 1012 } 1013 EXPORT_SYMBOL(brioctl_set); 1014 1015 static DEFINE_MUTEX(vlan_ioctl_mutex); 1016 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1017 1018 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1019 { 1020 mutex_lock(&vlan_ioctl_mutex); 1021 vlan_ioctl_hook = hook; 1022 mutex_unlock(&vlan_ioctl_mutex); 1023 } 1024 EXPORT_SYMBOL(vlan_ioctl_set); 1025 1026 static DEFINE_MUTEX(dlci_ioctl_mutex); 1027 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1028 1029 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1030 { 1031 mutex_lock(&dlci_ioctl_mutex); 1032 dlci_ioctl_hook = hook; 1033 mutex_unlock(&dlci_ioctl_mutex); 1034 } 1035 EXPORT_SYMBOL(dlci_ioctl_set); 1036 1037 static long sock_do_ioctl(struct net *net, struct socket *sock, 1038 unsigned int cmd, unsigned long arg) 1039 { 1040 int err; 1041 void __user *argp = (void __user *)arg; 1042 1043 err = sock->ops->ioctl(sock, cmd, arg); 1044 1045 /* 1046 * If this ioctl is unknown try to hand it down 1047 * to the NIC driver. 1048 */ 1049 if (err != -ENOIOCTLCMD) 1050 return err; 1051 1052 if (cmd == SIOCGIFCONF) { 1053 struct ifconf ifc; 1054 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1055 return -EFAULT; 1056 rtnl_lock(); 1057 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1058 rtnl_unlock(); 1059 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1060 err = -EFAULT; 1061 } else { 1062 struct ifreq ifr; 1063 bool need_copyout; 1064 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1065 return -EFAULT; 1066 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1067 if (!err && need_copyout) 1068 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1069 return -EFAULT; 1070 } 1071 return err; 1072 } 1073 1074 /* 1075 * With an ioctl, arg may well be a user mode pointer, but we don't know 1076 * what to do with it - that's up to the protocol still. 1077 */ 1078 1079 /** 1080 * get_net_ns - increment the refcount of the network namespace 1081 * @ns: common namespace (net) 1082 * 1083 * Returns the net's common namespace. 1084 */ 1085 1086 struct ns_common *get_net_ns(struct ns_common *ns) 1087 { 1088 return &get_net(container_of(ns, struct net, ns))->ns; 1089 } 1090 EXPORT_SYMBOL_GPL(get_net_ns); 1091 1092 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1093 { 1094 struct socket *sock; 1095 struct sock *sk; 1096 void __user *argp = (void __user *)arg; 1097 int pid, err; 1098 struct net *net; 1099 1100 sock = file->private_data; 1101 sk = sock->sk; 1102 net = sock_net(sk); 1103 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1104 struct ifreq ifr; 1105 bool need_copyout; 1106 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1107 return -EFAULT; 1108 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1109 if (!err && need_copyout) 1110 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1111 return -EFAULT; 1112 } else 1113 #ifdef CONFIG_WEXT_CORE 1114 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1115 err = wext_handle_ioctl(net, cmd, argp); 1116 } else 1117 #endif 1118 switch (cmd) { 1119 case FIOSETOWN: 1120 case SIOCSPGRP: 1121 err = -EFAULT; 1122 if (get_user(pid, (int __user *)argp)) 1123 break; 1124 err = f_setown(sock->file, pid, 1); 1125 break; 1126 case FIOGETOWN: 1127 case SIOCGPGRP: 1128 err = put_user(f_getown(sock->file), 1129 (int __user *)argp); 1130 break; 1131 case SIOCGIFBR: 1132 case SIOCSIFBR: 1133 case SIOCBRADDBR: 1134 case SIOCBRDELBR: 1135 err = -ENOPKG; 1136 if (!br_ioctl_hook) 1137 request_module("bridge"); 1138 1139 mutex_lock(&br_ioctl_mutex); 1140 if (br_ioctl_hook) 1141 err = br_ioctl_hook(net, cmd, argp); 1142 mutex_unlock(&br_ioctl_mutex); 1143 break; 1144 case SIOCGIFVLAN: 1145 case SIOCSIFVLAN: 1146 err = -ENOPKG; 1147 if (!vlan_ioctl_hook) 1148 request_module("8021q"); 1149 1150 mutex_lock(&vlan_ioctl_mutex); 1151 if (vlan_ioctl_hook) 1152 err = vlan_ioctl_hook(net, argp); 1153 mutex_unlock(&vlan_ioctl_mutex); 1154 break; 1155 case SIOCADDDLCI: 1156 case SIOCDELDLCI: 1157 err = -ENOPKG; 1158 if (!dlci_ioctl_hook) 1159 request_module("dlci"); 1160 1161 mutex_lock(&dlci_ioctl_mutex); 1162 if (dlci_ioctl_hook) 1163 err = dlci_ioctl_hook(cmd, argp); 1164 mutex_unlock(&dlci_ioctl_mutex); 1165 break; 1166 case SIOCGSKNS: 1167 err = -EPERM; 1168 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1169 break; 1170 1171 err = open_related_ns(&net->ns, get_net_ns); 1172 break; 1173 case SIOCGSTAMP_OLD: 1174 case SIOCGSTAMPNS_OLD: 1175 if (!sock->ops->gettstamp) { 1176 err = -ENOIOCTLCMD; 1177 break; 1178 } 1179 err = sock->ops->gettstamp(sock, argp, 1180 cmd == SIOCGSTAMP_OLD, 1181 !IS_ENABLED(CONFIG_64BIT)); 1182 break; 1183 case SIOCGSTAMP_NEW: 1184 case SIOCGSTAMPNS_NEW: 1185 if (!sock->ops->gettstamp) { 1186 err = -ENOIOCTLCMD; 1187 break; 1188 } 1189 err = sock->ops->gettstamp(sock, argp, 1190 cmd == SIOCGSTAMP_NEW, 1191 false); 1192 break; 1193 default: 1194 err = sock_do_ioctl(net, sock, cmd, arg); 1195 break; 1196 } 1197 return err; 1198 } 1199 1200 /** 1201 * sock_create_lite - creates a socket 1202 * @family: protocol family (AF_INET, ...) 1203 * @type: communication type (SOCK_STREAM, ...) 1204 * @protocol: protocol (0, ...) 1205 * @res: new socket 1206 * 1207 * Creates a new socket and assigns it to @res, passing through LSM. 1208 * The new socket initialization is not complete, see kernel_accept(). 1209 * Returns 0 or an error. On failure @res is set to %NULL. 1210 * This function internally uses GFP_KERNEL. 1211 */ 1212 1213 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1214 { 1215 int err; 1216 struct socket *sock = NULL; 1217 1218 err = security_socket_create(family, type, protocol, 1); 1219 if (err) 1220 goto out; 1221 1222 sock = sock_alloc(); 1223 if (!sock) { 1224 err = -ENOMEM; 1225 goto out; 1226 } 1227 1228 sock->type = type; 1229 err = security_socket_post_create(sock, family, type, protocol, 1); 1230 if (err) 1231 goto out_release; 1232 1233 out: 1234 *res = sock; 1235 return err; 1236 out_release: 1237 sock_release(sock); 1238 sock = NULL; 1239 goto out; 1240 } 1241 EXPORT_SYMBOL(sock_create_lite); 1242 1243 /* No kernel lock held - perfect */ 1244 static __poll_t sock_poll(struct file *file, poll_table *wait) 1245 { 1246 struct socket *sock = file->private_data; 1247 __poll_t events = poll_requested_events(wait), flag = 0; 1248 1249 if (!sock->ops->poll) 1250 return 0; 1251 1252 if (sk_can_busy_loop(sock->sk)) { 1253 /* poll once if requested by the syscall */ 1254 if (events & POLL_BUSY_LOOP) 1255 sk_busy_loop(sock->sk, 1); 1256 1257 /* if this socket can poll_ll, tell the system call */ 1258 flag = POLL_BUSY_LOOP; 1259 } 1260 1261 return sock->ops->poll(file, sock, wait) | flag; 1262 } 1263 1264 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1265 { 1266 struct socket *sock = file->private_data; 1267 1268 return sock->ops->mmap(file, sock, vma); 1269 } 1270 1271 static int sock_close(struct inode *inode, struct file *filp) 1272 { 1273 __sock_release(SOCKET_I(inode), inode); 1274 return 0; 1275 } 1276 1277 /* 1278 * Update the socket async list 1279 * 1280 * Fasync_list locking strategy. 1281 * 1282 * 1. fasync_list is modified only under process context socket lock 1283 * i.e. under semaphore. 1284 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1285 * or under socket lock 1286 */ 1287 1288 static int sock_fasync(int fd, struct file *filp, int on) 1289 { 1290 struct socket *sock = filp->private_data; 1291 struct sock *sk = sock->sk; 1292 struct socket_wq *wq; 1293 1294 if (sk == NULL) 1295 return -EINVAL; 1296 1297 lock_sock(sk); 1298 wq = sock->wq; 1299 fasync_helper(fd, filp, on, &wq->fasync_list); 1300 1301 if (!wq->fasync_list) 1302 sock_reset_flag(sk, SOCK_FASYNC); 1303 else 1304 sock_set_flag(sk, SOCK_FASYNC); 1305 1306 release_sock(sk); 1307 return 0; 1308 } 1309 1310 /* This function may be called only under rcu_lock */ 1311 1312 int sock_wake_async(struct socket_wq *wq, int how, int band) 1313 { 1314 if (!wq || !wq->fasync_list) 1315 return -1; 1316 1317 switch (how) { 1318 case SOCK_WAKE_WAITD: 1319 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1320 break; 1321 goto call_kill; 1322 case SOCK_WAKE_SPACE: 1323 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1324 break; 1325 /* fall through */ 1326 case SOCK_WAKE_IO: 1327 call_kill: 1328 kill_fasync(&wq->fasync_list, SIGIO, band); 1329 break; 1330 case SOCK_WAKE_URG: 1331 kill_fasync(&wq->fasync_list, SIGURG, band); 1332 } 1333 1334 return 0; 1335 } 1336 EXPORT_SYMBOL(sock_wake_async); 1337 1338 /** 1339 * __sock_create - creates a socket 1340 * @net: net namespace 1341 * @family: protocol family (AF_INET, ...) 1342 * @type: communication type (SOCK_STREAM, ...) 1343 * @protocol: protocol (0, ...) 1344 * @res: new socket 1345 * @kern: boolean for kernel space sockets 1346 * 1347 * Creates a new socket and assigns it to @res, passing through LSM. 1348 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1349 * be set to true if the socket resides in kernel space. 1350 * This function internally uses GFP_KERNEL. 1351 */ 1352 1353 int __sock_create(struct net *net, int family, int type, int protocol, 1354 struct socket **res, int kern) 1355 { 1356 int err; 1357 struct socket *sock; 1358 const struct net_proto_family *pf; 1359 1360 /* 1361 * Check protocol is in range 1362 */ 1363 if (family < 0 || family >= NPROTO) 1364 return -EAFNOSUPPORT; 1365 if (type < 0 || type >= SOCK_MAX) 1366 return -EINVAL; 1367 1368 /* Compatibility. 1369 1370 This uglymoron is moved from INET layer to here to avoid 1371 deadlock in module load. 1372 */ 1373 if (family == PF_INET && type == SOCK_PACKET) { 1374 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1375 current->comm); 1376 family = PF_PACKET; 1377 } 1378 1379 err = security_socket_create(family, type, protocol, kern); 1380 if (err) 1381 return err; 1382 1383 /* 1384 * Allocate the socket and allow the family to set things up. if 1385 * the protocol is 0, the family is instructed to select an appropriate 1386 * default. 1387 */ 1388 sock = sock_alloc(); 1389 if (!sock) { 1390 net_warn_ratelimited("socket: no more sockets\n"); 1391 return -ENFILE; /* Not exactly a match, but its the 1392 closest posix thing */ 1393 } 1394 1395 sock->type = type; 1396 1397 #ifdef CONFIG_MODULES 1398 /* Attempt to load a protocol module if the find failed. 1399 * 1400 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1401 * requested real, full-featured networking support upon configuration. 1402 * Otherwise module support will break! 1403 */ 1404 if (rcu_access_pointer(net_families[family]) == NULL) 1405 request_module("net-pf-%d", family); 1406 #endif 1407 1408 rcu_read_lock(); 1409 pf = rcu_dereference(net_families[family]); 1410 err = -EAFNOSUPPORT; 1411 if (!pf) 1412 goto out_release; 1413 1414 /* 1415 * We will call the ->create function, that possibly is in a loadable 1416 * module, so we have to bump that loadable module refcnt first. 1417 */ 1418 if (!try_module_get(pf->owner)) 1419 goto out_release; 1420 1421 /* Now protected by module ref count */ 1422 rcu_read_unlock(); 1423 1424 err = pf->create(net, sock, protocol, kern); 1425 if (err < 0) 1426 goto out_module_put; 1427 1428 /* 1429 * Now to bump the refcnt of the [loadable] module that owns this 1430 * socket at sock_release time we decrement its refcnt. 1431 */ 1432 if (!try_module_get(sock->ops->owner)) 1433 goto out_module_busy; 1434 1435 /* 1436 * Now that we're done with the ->create function, the [loadable] 1437 * module can have its refcnt decremented 1438 */ 1439 module_put(pf->owner); 1440 err = security_socket_post_create(sock, family, type, protocol, kern); 1441 if (err) 1442 goto out_sock_release; 1443 *res = sock; 1444 1445 return 0; 1446 1447 out_module_busy: 1448 err = -EAFNOSUPPORT; 1449 out_module_put: 1450 sock->ops = NULL; 1451 module_put(pf->owner); 1452 out_sock_release: 1453 sock_release(sock); 1454 return err; 1455 1456 out_release: 1457 rcu_read_unlock(); 1458 goto out_sock_release; 1459 } 1460 EXPORT_SYMBOL(__sock_create); 1461 1462 /** 1463 * sock_create - creates a socket 1464 * @family: protocol family (AF_INET, ...) 1465 * @type: communication type (SOCK_STREAM, ...) 1466 * @protocol: protocol (0, ...) 1467 * @res: new socket 1468 * 1469 * A wrapper around __sock_create(). 1470 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1471 */ 1472 1473 int sock_create(int family, int type, int protocol, struct socket **res) 1474 { 1475 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1476 } 1477 EXPORT_SYMBOL(sock_create); 1478 1479 /** 1480 * sock_create_kern - creates a socket (kernel space) 1481 * @net: net namespace 1482 * @family: protocol family (AF_INET, ...) 1483 * @type: communication type (SOCK_STREAM, ...) 1484 * @protocol: protocol (0, ...) 1485 * @res: new socket 1486 * 1487 * A wrapper around __sock_create(). 1488 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1489 */ 1490 1491 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1492 { 1493 return __sock_create(net, family, type, protocol, res, 1); 1494 } 1495 EXPORT_SYMBOL(sock_create_kern); 1496 1497 int __sys_socket(int family, int type, int protocol) 1498 { 1499 int retval; 1500 struct socket *sock; 1501 int flags; 1502 1503 /* Check the SOCK_* constants for consistency. */ 1504 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1505 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1506 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1507 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1508 1509 flags = type & ~SOCK_TYPE_MASK; 1510 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1511 return -EINVAL; 1512 type &= SOCK_TYPE_MASK; 1513 1514 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1515 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1516 1517 retval = sock_create(family, type, protocol, &sock); 1518 if (retval < 0) 1519 return retval; 1520 1521 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1522 } 1523 1524 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1525 { 1526 return __sys_socket(family, type, protocol); 1527 } 1528 1529 /* 1530 * Create a pair of connected sockets. 1531 */ 1532 1533 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1534 { 1535 struct socket *sock1, *sock2; 1536 int fd1, fd2, err; 1537 struct file *newfile1, *newfile2; 1538 int flags; 1539 1540 flags = type & ~SOCK_TYPE_MASK; 1541 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1542 return -EINVAL; 1543 type &= SOCK_TYPE_MASK; 1544 1545 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1546 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1547 1548 /* 1549 * reserve descriptors and make sure we won't fail 1550 * to return them to userland. 1551 */ 1552 fd1 = get_unused_fd_flags(flags); 1553 if (unlikely(fd1 < 0)) 1554 return fd1; 1555 1556 fd2 = get_unused_fd_flags(flags); 1557 if (unlikely(fd2 < 0)) { 1558 put_unused_fd(fd1); 1559 return fd2; 1560 } 1561 1562 err = put_user(fd1, &usockvec[0]); 1563 if (err) 1564 goto out; 1565 1566 err = put_user(fd2, &usockvec[1]); 1567 if (err) 1568 goto out; 1569 1570 /* 1571 * Obtain the first socket and check if the underlying protocol 1572 * supports the socketpair call. 1573 */ 1574 1575 err = sock_create(family, type, protocol, &sock1); 1576 if (unlikely(err < 0)) 1577 goto out; 1578 1579 err = sock_create(family, type, protocol, &sock2); 1580 if (unlikely(err < 0)) { 1581 sock_release(sock1); 1582 goto out; 1583 } 1584 1585 err = security_socket_socketpair(sock1, sock2); 1586 if (unlikely(err)) { 1587 sock_release(sock2); 1588 sock_release(sock1); 1589 goto out; 1590 } 1591 1592 err = sock1->ops->socketpair(sock1, sock2); 1593 if (unlikely(err < 0)) { 1594 sock_release(sock2); 1595 sock_release(sock1); 1596 goto out; 1597 } 1598 1599 newfile1 = sock_alloc_file(sock1, flags, NULL); 1600 if (IS_ERR(newfile1)) { 1601 err = PTR_ERR(newfile1); 1602 sock_release(sock2); 1603 goto out; 1604 } 1605 1606 newfile2 = sock_alloc_file(sock2, flags, NULL); 1607 if (IS_ERR(newfile2)) { 1608 err = PTR_ERR(newfile2); 1609 fput(newfile1); 1610 goto out; 1611 } 1612 1613 audit_fd_pair(fd1, fd2); 1614 1615 fd_install(fd1, newfile1); 1616 fd_install(fd2, newfile2); 1617 return 0; 1618 1619 out: 1620 put_unused_fd(fd2); 1621 put_unused_fd(fd1); 1622 return err; 1623 } 1624 1625 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1626 int __user *, usockvec) 1627 { 1628 return __sys_socketpair(family, type, protocol, usockvec); 1629 } 1630 1631 /* 1632 * Bind a name to a socket. Nothing much to do here since it's 1633 * the protocol's responsibility to handle the local address. 1634 * 1635 * We move the socket address to kernel space before we call 1636 * the protocol layer (having also checked the address is ok). 1637 */ 1638 1639 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1640 { 1641 struct socket *sock; 1642 struct sockaddr_storage address; 1643 int err, fput_needed; 1644 1645 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1646 if (sock) { 1647 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1648 if (!err) { 1649 err = security_socket_bind(sock, 1650 (struct sockaddr *)&address, 1651 addrlen); 1652 if (!err) 1653 err = sock->ops->bind(sock, 1654 (struct sockaddr *) 1655 &address, addrlen); 1656 } 1657 fput_light(sock->file, fput_needed); 1658 } 1659 return err; 1660 } 1661 1662 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1663 { 1664 return __sys_bind(fd, umyaddr, addrlen); 1665 } 1666 1667 /* 1668 * Perform a listen. Basically, we allow the protocol to do anything 1669 * necessary for a listen, and if that works, we mark the socket as 1670 * ready for listening. 1671 */ 1672 1673 int __sys_listen(int fd, int backlog) 1674 { 1675 struct socket *sock; 1676 int err, fput_needed; 1677 int somaxconn; 1678 1679 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1680 if (sock) { 1681 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1682 if ((unsigned int)backlog > somaxconn) 1683 backlog = somaxconn; 1684 1685 err = security_socket_listen(sock, backlog); 1686 if (!err) 1687 err = sock->ops->listen(sock, backlog); 1688 1689 fput_light(sock->file, fput_needed); 1690 } 1691 return err; 1692 } 1693 1694 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1695 { 1696 return __sys_listen(fd, backlog); 1697 } 1698 1699 /* 1700 * For accept, we attempt to create a new socket, set up the link 1701 * with the client, wake up the client, then return the new 1702 * connected fd. We collect the address of the connector in kernel 1703 * space and move it to user at the very end. This is unclean because 1704 * we open the socket then return an error. 1705 * 1706 * 1003.1g adds the ability to recvmsg() to query connection pending 1707 * status to recvmsg. We need to add that support in a way thats 1708 * clean when we restructure accept also. 1709 */ 1710 1711 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1712 int __user *upeer_addrlen, int flags) 1713 { 1714 struct socket *sock, *newsock; 1715 struct file *newfile; 1716 int err, len, newfd, fput_needed; 1717 struct sockaddr_storage address; 1718 1719 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1720 return -EINVAL; 1721 1722 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1723 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1724 1725 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1726 if (!sock) 1727 goto out; 1728 1729 err = -ENFILE; 1730 newsock = sock_alloc(); 1731 if (!newsock) 1732 goto out_put; 1733 1734 newsock->type = sock->type; 1735 newsock->ops = sock->ops; 1736 1737 /* 1738 * We don't need try_module_get here, as the listening socket (sock) 1739 * has the protocol module (sock->ops->owner) held. 1740 */ 1741 __module_get(newsock->ops->owner); 1742 1743 newfd = get_unused_fd_flags(flags); 1744 if (unlikely(newfd < 0)) { 1745 err = newfd; 1746 sock_release(newsock); 1747 goto out_put; 1748 } 1749 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1750 if (IS_ERR(newfile)) { 1751 err = PTR_ERR(newfile); 1752 put_unused_fd(newfd); 1753 goto out_put; 1754 } 1755 1756 err = security_socket_accept(sock, newsock); 1757 if (err) 1758 goto out_fd; 1759 1760 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1761 if (err < 0) 1762 goto out_fd; 1763 1764 if (upeer_sockaddr) { 1765 len = newsock->ops->getname(newsock, 1766 (struct sockaddr *)&address, 2); 1767 if (len < 0) { 1768 err = -ECONNABORTED; 1769 goto out_fd; 1770 } 1771 err = move_addr_to_user(&address, 1772 len, upeer_sockaddr, upeer_addrlen); 1773 if (err < 0) 1774 goto out_fd; 1775 } 1776 1777 /* File flags are not inherited via accept() unlike another OSes. */ 1778 1779 fd_install(newfd, newfile); 1780 err = newfd; 1781 1782 out_put: 1783 fput_light(sock->file, fput_needed); 1784 out: 1785 return err; 1786 out_fd: 1787 fput(newfile); 1788 put_unused_fd(newfd); 1789 goto out_put; 1790 } 1791 1792 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1793 int __user *, upeer_addrlen, int, flags) 1794 { 1795 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1796 } 1797 1798 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1799 int __user *, upeer_addrlen) 1800 { 1801 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1802 } 1803 1804 /* 1805 * Attempt to connect to a socket with the server address. The address 1806 * is in user space so we verify it is OK and move it to kernel space. 1807 * 1808 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1809 * break bindings 1810 * 1811 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1812 * other SEQPACKET protocols that take time to connect() as it doesn't 1813 * include the -EINPROGRESS status for such sockets. 1814 */ 1815 1816 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1817 { 1818 struct socket *sock; 1819 struct sockaddr_storage address; 1820 int err, fput_needed; 1821 1822 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1823 if (!sock) 1824 goto out; 1825 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1826 if (err < 0) 1827 goto out_put; 1828 1829 err = 1830 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1831 if (err) 1832 goto out_put; 1833 1834 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1835 sock->file->f_flags); 1836 out_put: 1837 fput_light(sock->file, fput_needed); 1838 out: 1839 return err; 1840 } 1841 1842 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1843 int, addrlen) 1844 { 1845 return __sys_connect(fd, uservaddr, addrlen); 1846 } 1847 1848 /* 1849 * Get the local address ('name') of a socket object. Move the obtained 1850 * name to user space. 1851 */ 1852 1853 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1854 int __user *usockaddr_len) 1855 { 1856 struct socket *sock; 1857 struct sockaddr_storage address; 1858 int err, fput_needed; 1859 1860 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1861 if (!sock) 1862 goto out; 1863 1864 err = security_socket_getsockname(sock); 1865 if (err) 1866 goto out_put; 1867 1868 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1869 if (err < 0) 1870 goto out_put; 1871 /* "err" is actually length in this case */ 1872 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1873 1874 out_put: 1875 fput_light(sock->file, fput_needed); 1876 out: 1877 return err; 1878 } 1879 1880 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1881 int __user *, usockaddr_len) 1882 { 1883 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1884 } 1885 1886 /* 1887 * Get the remote address ('name') of a socket object. Move the obtained 1888 * name to user space. 1889 */ 1890 1891 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1892 int __user *usockaddr_len) 1893 { 1894 struct socket *sock; 1895 struct sockaddr_storage address; 1896 int err, fput_needed; 1897 1898 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1899 if (sock != NULL) { 1900 err = security_socket_getpeername(sock); 1901 if (err) { 1902 fput_light(sock->file, fput_needed); 1903 return err; 1904 } 1905 1906 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1907 if (err >= 0) 1908 /* "err" is actually length in this case */ 1909 err = move_addr_to_user(&address, err, usockaddr, 1910 usockaddr_len); 1911 fput_light(sock->file, fput_needed); 1912 } 1913 return err; 1914 } 1915 1916 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1917 int __user *, usockaddr_len) 1918 { 1919 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1920 } 1921 1922 /* 1923 * Send a datagram to a given address. We move the address into kernel 1924 * space and check the user space data area is readable before invoking 1925 * the protocol. 1926 */ 1927 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1928 struct sockaddr __user *addr, int addr_len) 1929 { 1930 struct socket *sock; 1931 struct sockaddr_storage address; 1932 int err; 1933 struct msghdr msg; 1934 struct iovec iov; 1935 int fput_needed; 1936 1937 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1938 if (unlikely(err)) 1939 return err; 1940 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1941 if (!sock) 1942 goto out; 1943 1944 msg.msg_name = NULL; 1945 msg.msg_control = NULL; 1946 msg.msg_controllen = 0; 1947 msg.msg_namelen = 0; 1948 if (addr) { 1949 err = move_addr_to_kernel(addr, addr_len, &address); 1950 if (err < 0) 1951 goto out_put; 1952 msg.msg_name = (struct sockaddr *)&address; 1953 msg.msg_namelen = addr_len; 1954 } 1955 if (sock->file->f_flags & O_NONBLOCK) 1956 flags |= MSG_DONTWAIT; 1957 msg.msg_flags = flags; 1958 err = sock_sendmsg(sock, &msg); 1959 1960 out_put: 1961 fput_light(sock->file, fput_needed); 1962 out: 1963 return err; 1964 } 1965 1966 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1967 unsigned int, flags, struct sockaddr __user *, addr, 1968 int, addr_len) 1969 { 1970 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1971 } 1972 1973 /* 1974 * Send a datagram down a socket. 1975 */ 1976 1977 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1978 unsigned int, flags) 1979 { 1980 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1981 } 1982 1983 /* 1984 * Receive a frame from the socket and optionally record the address of the 1985 * sender. We verify the buffers are writable and if needed move the 1986 * sender address from kernel to user space. 1987 */ 1988 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1989 struct sockaddr __user *addr, int __user *addr_len) 1990 { 1991 struct socket *sock; 1992 struct iovec iov; 1993 struct msghdr msg; 1994 struct sockaddr_storage address; 1995 int err, err2; 1996 int fput_needed; 1997 1998 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1999 if (unlikely(err)) 2000 return err; 2001 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2002 if (!sock) 2003 goto out; 2004 2005 msg.msg_control = NULL; 2006 msg.msg_controllen = 0; 2007 /* Save some cycles and don't copy the address if not needed */ 2008 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2009 /* We assume all kernel code knows the size of sockaddr_storage */ 2010 msg.msg_namelen = 0; 2011 msg.msg_iocb = NULL; 2012 msg.msg_flags = 0; 2013 if (sock->file->f_flags & O_NONBLOCK) 2014 flags |= MSG_DONTWAIT; 2015 err = sock_recvmsg(sock, &msg, flags); 2016 2017 if (err >= 0 && addr != NULL) { 2018 err2 = move_addr_to_user(&address, 2019 msg.msg_namelen, addr, addr_len); 2020 if (err2 < 0) 2021 err = err2; 2022 } 2023 2024 fput_light(sock->file, fput_needed); 2025 out: 2026 return err; 2027 } 2028 2029 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2030 unsigned int, flags, struct sockaddr __user *, addr, 2031 int __user *, addr_len) 2032 { 2033 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2034 } 2035 2036 /* 2037 * Receive a datagram from a socket. 2038 */ 2039 2040 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2041 unsigned int, flags) 2042 { 2043 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2044 } 2045 2046 /* 2047 * Set a socket option. Because we don't know the option lengths we have 2048 * to pass the user mode parameter for the protocols to sort out. 2049 */ 2050 2051 static int __sys_setsockopt(int fd, int level, int optname, 2052 char __user *optval, int optlen) 2053 { 2054 int err, fput_needed; 2055 struct socket *sock; 2056 2057 if (optlen < 0) 2058 return -EINVAL; 2059 2060 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2061 if (sock != NULL) { 2062 err = security_socket_setsockopt(sock, level, optname); 2063 if (err) 2064 goto out_put; 2065 2066 if (level == SOL_SOCKET) 2067 err = 2068 sock_setsockopt(sock, level, optname, optval, 2069 optlen); 2070 else 2071 err = 2072 sock->ops->setsockopt(sock, level, optname, optval, 2073 optlen); 2074 out_put: 2075 fput_light(sock->file, fput_needed); 2076 } 2077 return err; 2078 } 2079 2080 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2081 char __user *, optval, int, optlen) 2082 { 2083 return __sys_setsockopt(fd, level, optname, optval, optlen); 2084 } 2085 2086 /* 2087 * Get a socket option. Because we don't know the option lengths we have 2088 * to pass a user mode parameter for the protocols to sort out. 2089 */ 2090 2091 static int __sys_getsockopt(int fd, int level, int optname, 2092 char __user *optval, int __user *optlen) 2093 { 2094 int err, fput_needed; 2095 struct socket *sock; 2096 2097 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2098 if (sock != NULL) { 2099 err = security_socket_getsockopt(sock, level, optname); 2100 if (err) 2101 goto out_put; 2102 2103 if (level == SOL_SOCKET) 2104 err = 2105 sock_getsockopt(sock, level, optname, optval, 2106 optlen); 2107 else 2108 err = 2109 sock->ops->getsockopt(sock, level, optname, optval, 2110 optlen); 2111 out_put: 2112 fput_light(sock->file, fput_needed); 2113 } 2114 return err; 2115 } 2116 2117 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2118 char __user *, optval, int __user *, optlen) 2119 { 2120 return __sys_getsockopt(fd, level, optname, optval, optlen); 2121 } 2122 2123 /* 2124 * Shutdown a socket. 2125 */ 2126 2127 int __sys_shutdown(int fd, int how) 2128 { 2129 int err, fput_needed; 2130 struct socket *sock; 2131 2132 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2133 if (sock != NULL) { 2134 err = security_socket_shutdown(sock, how); 2135 if (!err) 2136 err = sock->ops->shutdown(sock, how); 2137 fput_light(sock->file, fput_needed); 2138 } 2139 return err; 2140 } 2141 2142 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2143 { 2144 return __sys_shutdown(fd, how); 2145 } 2146 2147 /* A couple of helpful macros for getting the address of the 32/64 bit 2148 * fields which are the same type (int / unsigned) on our platforms. 2149 */ 2150 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2151 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2152 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2153 2154 struct used_address { 2155 struct sockaddr_storage name; 2156 unsigned int name_len; 2157 }; 2158 2159 static int copy_msghdr_from_user(struct msghdr *kmsg, 2160 struct user_msghdr __user *umsg, 2161 struct sockaddr __user **save_addr, 2162 struct iovec **iov) 2163 { 2164 struct user_msghdr msg; 2165 ssize_t err; 2166 2167 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2168 return -EFAULT; 2169 2170 kmsg->msg_control = (void __force *)msg.msg_control; 2171 kmsg->msg_controllen = msg.msg_controllen; 2172 kmsg->msg_flags = msg.msg_flags; 2173 2174 kmsg->msg_namelen = msg.msg_namelen; 2175 if (!msg.msg_name) 2176 kmsg->msg_namelen = 0; 2177 2178 if (kmsg->msg_namelen < 0) 2179 return -EINVAL; 2180 2181 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2182 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2183 2184 if (save_addr) 2185 *save_addr = msg.msg_name; 2186 2187 if (msg.msg_name && kmsg->msg_namelen) { 2188 if (!save_addr) { 2189 err = move_addr_to_kernel(msg.msg_name, 2190 kmsg->msg_namelen, 2191 kmsg->msg_name); 2192 if (err < 0) 2193 return err; 2194 } 2195 } else { 2196 kmsg->msg_name = NULL; 2197 kmsg->msg_namelen = 0; 2198 } 2199 2200 if (msg.msg_iovlen > UIO_MAXIOV) 2201 return -EMSGSIZE; 2202 2203 kmsg->msg_iocb = NULL; 2204 2205 return import_iovec(save_addr ? READ : WRITE, 2206 msg.msg_iov, msg.msg_iovlen, 2207 UIO_FASTIOV, iov, &kmsg->msg_iter); 2208 } 2209 2210 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2211 struct msghdr *msg_sys, unsigned int flags, 2212 struct used_address *used_address, 2213 unsigned int allowed_msghdr_flags) 2214 { 2215 struct compat_msghdr __user *msg_compat = 2216 (struct compat_msghdr __user *)msg; 2217 struct sockaddr_storage address; 2218 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2219 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2220 __aligned(sizeof(__kernel_size_t)); 2221 /* 20 is size of ipv6_pktinfo */ 2222 unsigned char *ctl_buf = ctl; 2223 int ctl_len; 2224 ssize_t err; 2225 2226 msg_sys->msg_name = &address; 2227 2228 if (MSG_CMSG_COMPAT & flags) 2229 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2230 else 2231 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2232 if (err < 0) 2233 return err; 2234 2235 err = -ENOBUFS; 2236 2237 if (msg_sys->msg_controllen > INT_MAX) 2238 goto out_freeiov; 2239 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2240 ctl_len = msg_sys->msg_controllen; 2241 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2242 err = 2243 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2244 sizeof(ctl)); 2245 if (err) 2246 goto out_freeiov; 2247 ctl_buf = msg_sys->msg_control; 2248 ctl_len = msg_sys->msg_controllen; 2249 } else if (ctl_len) { 2250 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2251 CMSG_ALIGN(sizeof(struct cmsghdr))); 2252 if (ctl_len > sizeof(ctl)) { 2253 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2254 if (ctl_buf == NULL) 2255 goto out_freeiov; 2256 } 2257 err = -EFAULT; 2258 /* 2259 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2260 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2261 * checking falls down on this. 2262 */ 2263 if (copy_from_user(ctl_buf, 2264 (void __user __force *)msg_sys->msg_control, 2265 ctl_len)) 2266 goto out_freectl; 2267 msg_sys->msg_control = ctl_buf; 2268 } 2269 msg_sys->msg_flags = flags; 2270 2271 if (sock->file->f_flags & O_NONBLOCK) 2272 msg_sys->msg_flags |= MSG_DONTWAIT; 2273 /* 2274 * If this is sendmmsg() and current destination address is same as 2275 * previously succeeded address, omit asking LSM's decision. 2276 * used_address->name_len is initialized to UINT_MAX so that the first 2277 * destination address never matches. 2278 */ 2279 if (used_address && msg_sys->msg_name && 2280 used_address->name_len == msg_sys->msg_namelen && 2281 !memcmp(&used_address->name, msg_sys->msg_name, 2282 used_address->name_len)) { 2283 err = sock_sendmsg_nosec(sock, msg_sys); 2284 goto out_freectl; 2285 } 2286 err = sock_sendmsg(sock, msg_sys); 2287 /* 2288 * If this is sendmmsg() and sending to current destination address was 2289 * successful, remember it. 2290 */ 2291 if (used_address && err >= 0) { 2292 used_address->name_len = msg_sys->msg_namelen; 2293 if (msg_sys->msg_name) 2294 memcpy(&used_address->name, msg_sys->msg_name, 2295 used_address->name_len); 2296 } 2297 2298 out_freectl: 2299 if (ctl_buf != ctl) 2300 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2301 out_freeiov: 2302 kfree(iov); 2303 return err; 2304 } 2305 2306 /* 2307 * BSD sendmsg interface 2308 */ 2309 2310 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2311 bool forbid_cmsg_compat) 2312 { 2313 int fput_needed, err; 2314 struct msghdr msg_sys; 2315 struct socket *sock; 2316 2317 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2318 return -EINVAL; 2319 2320 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2321 if (!sock) 2322 goto out; 2323 2324 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2325 2326 fput_light(sock->file, fput_needed); 2327 out: 2328 return err; 2329 } 2330 2331 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2332 { 2333 return __sys_sendmsg(fd, msg, flags, true); 2334 } 2335 2336 /* 2337 * Linux sendmmsg interface 2338 */ 2339 2340 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2341 unsigned int flags, bool forbid_cmsg_compat) 2342 { 2343 int fput_needed, err, datagrams; 2344 struct socket *sock; 2345 struct mmsghdr __user *entry; 2346 struct compat_mmsghdr __user *compat_entry; 2347 struct msghdr msg_sys; 2348 struct used_address used_address; 2349 unsigned int oflags = flags; 2350 2351 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2352 return -EINVAL; 2353 2354 if (vlen > UIO_MAXIOV) 2355 vlen = UIO_MAXIOV; 2356 2357 datagrams = 0; 2358 2359 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2360 if (!sock) 2361 return err; 2362 2363 used_address.name_len = UINT_MAX; 2364 entry = mmsg; 2365 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2366 err = 0; 2367 flags |= MSG_BATCH; 2368 2369 while (datagrams < vlen) { 2370 if (datagrams == vlen - 1) 2371 flags = oflags; 2372 2373 if (MSG_CMSG_COMPAT & flags) { 2374 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2375 &msg_sys, flags, &used_address, MSG_EOR); 2376 if (err < 0) 2377 break; 2378 err = __put_user(err, &compat_entry->msg_len); 2379 ++compat_entry; 2380 } else { 2381 err = ___sys_sendmsg(sock, 2382 (struct user_msghdr __user *)entry, 2383 &msg_sys, flags, &used_address, MSG_EOR); 2384 if (err < 0) 2385 break; 2386 err = put_user(err, &entry->msg_len); 2387 ++entry; 2388 } 2389 2390 if (err) 2391 break; 2392 ++datagrams; 2393 if (msg_data_left(&msg_sys)) 2394 break; 2395 cond_resched(); 2396 } 2397 2398 fput_light(sock->file, fput_needed); 2399 2400 /* We only return an error if no datagrams were able to be sent */ 2401 if (datagrams != 0) 2402 return datagrams; 2403 2404 return err; 2405 } 2406 2407 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2408 unsigned int, vlen, unsigned int, flags) 2409 { 2410 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2411 } 2412 2413 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2414 struct msghdr *msg_sys, unsigned int flags, int nosec) 2415 { 2416 struct compat_msghdr __user *msg_compat = 2417 (struct compat_msghdr __user *)msg; 2418 struct iovec iovstack[UIO_FASTIOV]; 2419 struct iovec *iov = iovstack; 2420 unsigned long cmsg_ptr; 2421 int len; 2422 ssize_t err; 2423 2424 /* kernel mode address */ 2425 struct sockaddr_storage addr; 2426 2427 /* user mode address pointers */ 2428 struct sockaddr __user *uaddr; 2429 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2430 2431 msg_sys->msg_name = &addr; 2432 2433 if (MSG_CMSG_COMPAT & flags) 2434 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2435 else 2436 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2437 if (err < 0) 2438 return err; 2439 2440 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2441 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2442 2443 /* We assume all kernel code knows the size of sockaddr_storage */ 2444 msg_sys->msg_namelen = 0; 2445 2446 if (sock->file->f_flags & O_NONBLOCK) 2447 flags |= MSG_DONTWAIT; 2448 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2449 if (err < 0) 2450 goto out_freeiov; 2451 len = err; 2452 2453 if (uaddr != NULL) { 2454 err = move_addr_to_user(&addr, 2455 msg_sys->msg_namelen, uaddr, 2456 uaddr_len); 2457 if (err < 0) 2458 goto out_freeiov; 2459 } 2460 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2461 COMPAT_FLAGS(msg)); 2462 if (err) 2463 goto out_freeiov; 2464 if (MSG_CMSG_COMPAT & flags) 2465 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2466 &msg_compat->msg_controllen); 2467 else 2468 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2469 &msg->msg_controllen); 2470 if (err) 2471 goto out_freeiov; 2472 err = len; 2473 2474 out_freeiov: 2475 kfree(iov); 2476 return err; 2477 } 2478 2479 /* 2480 * BSD recvmsg interface 2481 */ 2482 2483 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2484 bool forbid_cmsg_compat) 2485 { 2486 int fput_needed, err; 2487 struct msghdr msg_sys; 2488 struct socket *sock; 2489 2490 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2491 return -EINVAL; 2492 2493 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2494 if (!sock) 2495 goto out; 2496 2497 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2498 2499 fput_light(sock->file, fput_needed); 2500 out: 2501 return err; 2502 } 2503 2504 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2505 unsigned int, flags) 2506 { 2507 return __sys_recvmsg(fd, msg, flags, true); 2508 } 2509 2510 /* 2511 * Linux recvmmsg interface 2512 */ 2513 2514 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2515 unsigned int vlen, unsigned int flags, 2516 struct timespec64 *timeout) 2517 { 2518 int fput_needed, err, datagrams; 2519 struct socket *sock; 2520 struct mmsghdr __user *entry; 2521 struct compat_mmsghdr __user *compat_entry; 2522 struct msghdr msg_sys; 2523 struct timespec64 end_time; 2524 struct timespec64 timeout64; 2525 2526 if (timeout && 2527 poll_select_set_timeout(&end_time, timeout->tv_sec, 2528 timeout->tv_nsec)) 2529 return -EINVAL; 2530 2531 datagrams = 0; 2532 2533 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2534 if (!sock) 2535 return err; 2536 2537 if (likely(!(flags & MSG_ERRQUEUE))) { 2538 err = sock_error(sock->sk); 2539 if (err) { 2540 datagrams = err; 2541 goto out_put; 2542 } 2543 } 2544 2545 entry = mmsg; 2546 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2547 2548 while (datagrams < vlen) { 2549 /* 2550 * No need to ask LSM for more than the first datagram. 2551 */ 2552 if (MSG_CMSG_COMPAT & flags) { 2553 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2554 &msg_sys, flags & ~MSG_WAITFORONE, 2555 datagrams); 2556 if (err < 0) 2557 break; 2558 err = __put_user(err, &compat_entry->msg_len); 2559 ++compat_entry; 2560 } else { 2561 err = ___sys_recvmsg(sock, 2562 (struct user_msghdr __user *)entry, 2563 &msg_sys, flags & ~MSG_WAITFORONE, 2564 datagrams); 2565 if (err < 0) 2566 break; 2567 err = put_user(err, &entry->msg_len); 2568 ++entry; 2569 } 2570 2571 if (err) 2572 break; 2573 ++datagrams; 2574 2575 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2576 if (flags & MSG_WAITFORONE) 2577 flags |= MSG_DONTWAIT; 2578 2579 if (timeout) { 2580 ktime_get_ts64(&timeout64); 2581 *timeout = timespec64_sub(end_time, timeout64); 2582 if (timeout->tv_sec < 0) { 2583 timeout->tv_sec = timeout->tv_nsec = 0; 2584 break; 2585 } 2586 2587 /* Timeout, return less than vlen datagrams */ 2588 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2589 break; 2590 } 2591 2592 /* Out of band data, return right away */ 2593 if (msg_sys.msg_flags & MSG_OOB) 2594 break; 2595 cond_resched(); 2596 } 2597 2598 if (err == 0) 2599 goto out_put; 2600 2601 if (datagrams == 0) { 2602 datagrams = err; 2603 goto out_put; 2604 } 2605 2606 /* 2607 * We may return less entries than requested (vlen) if the 2608 * sock is non block and there aren't enough datagrams... 2609 */ 2610 if (err != -EAGAIN) { 2611 /* 2612 * ... or if recvmsg returns an error after we 2613 * received some datagrams, where we record the 2614 * error to return on the next call or if the 2615 * app asks about it using getsockopt(SO_ERROR). 2616 */ 2617 sock->sk->sk_err = -err; 2618 } 2619 out_put: 2620 fput_light(sock->file, fput_needed); 2621 2622 return datagrams; 2623 } 2624 2625 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2626 unsigned int vlen, unsigned int flags, 2627 struct __kernel_timespec __user *timeout, 2628 struct old_timespec32 __user *timeout32) 2629 { 2630 int datagrams; 2631 struct timespec64 timeout_sys; 2632 2633 if (timeout && get_timespec64(&timeout_sys, timeout)) 2634 return -EFAULT; 2635 2636 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2637 return -EFAULT; 2638 2639 if (!timeout && !timeout32) 2640 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2641 2642 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2643 2644 if (datagrams <= 0) 2645 return datagrams; 2646 2647 if (timeout && put_timespec64(&timeout_sys, timeout)) 2648 datagrams = -EFAULT; 2649 2650 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2651 datagrams = -EFAULT; 2652 2653 return datagrams; 2654 } 2655 2656 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2657 unsigned int, vlen, unsigned int, flags, 2658 struct __kernel_timespec __user *, timeout) 2659 { 2660 if (flags & MSG_CMSG_COMPAT) 2661 return -EINVAL; 2662 2663 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2664 } 2665 2666 #ifdef CONFIG_COMPAT_32BIT_TIME 2667 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2668 unsigned int, vlen, unsigned int, flags, 2669 struct old_timespec32 __user *, timeout) 2670 { 2671 if (flags & MSG_CMSG_COMPAT) 2672 return -EINVAL; 2673 2674 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2675 } 2676 #endif 2677 2678 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2679 /* Argument list sizes for sys_socketcall */ 2680 #define AL(x) ((x) * sizeof(unsigned long)) 2681 static const unsigned char nargs[21] = { 2682 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2683 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2684 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2685 AL(4), AL(5), AL(4) 2686 }; 2687 2688 #undef AL 2689 2690 /* 2691 * System call vectors. 2692 * 2693 * Argument checking cleaned up. Saved 20% in size. 2694 * This function doesn't need to set the kernel lock because 2695 * it is set by the callees. 2696 */ 2697 2698 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2699 { 2700 unsigned long a[AUDITSC_ARGS]; 2701 unsigned long a0, a1; 2702 int err; 2703 unsigned int len; 2704 2705 if (call < 1 || call > SYS_SENDMMSG) 2706 return -EINVAL; 2707 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2708 2709 len = nargs[call]; 2710 if (len > sizeof(a)) 2711 return -EINVAL; 2712 2713 /* copy_from_user should be SMP safe. */ 2714 if (copy_from_user(a, args, len)) 2715 return -EFAULT; 2716 2717 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2718 if (err) 2719 return err; 2720 2721 a0 = a[0]; 2722 a1 = a[1]; 2723 2724 switch (call) { 2725 case SYS_SOCKET: 2726 err = __sys_socket(a0, a1, a[2]); 2727 break; 2728 case SYS_BIND: 2729 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2730 break; 2731 case SYS_CONNECT: 2732 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2733 break; 2734 case SYS_LISTEN: 2735 err = __sys_listen(a0, a1); 2736 break; 2737 case SYS_ACCEPT: 2738 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2739 (int __user *)a[2], 0); 2740 break; 2741 case SYS_GETSOCKNAME: 2742 err = 2743 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2744 (int __user *)a[2]); 2745 break; 2746 case SYS_GETPEERNAME: 2747 err = 2748 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2749 (int __user *)a[2]); 2750 break; 2751 case SYS_SOCKETPAIR: 2752 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2753 break; 2754 case SYS_SEND: 2755 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2756 NULL, 0); 2757 break; 2758 case SYS_SENDTO: 2759 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2760 (struct sockaddr __user *)a[4], a[5]); 2761 break; 2762 case SYS_RECV: 2763 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2764 NULL, NULL); 2765 break; 2766 case SYS_RECVFROM: 2767 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2768 (struct sockaddr __user *)a[4], 2769 (int __user *)a[5]); 2770 break; 2771 case SYS_SHUTDOWN: 2772 err = __sys_shutdown(a0, a1); 2773 break; 2774 case SYS_SETSOCKOPT: 2775 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2776 a[4]); 2777 break; 2778 case SYS_GETSOCKOPT: 2779 err = 2780 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2781 (int __user *)a[4]); 2782 break; 2783 case SYS_SENDMSG: 2784 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2785 a[2], true); 2786 break; 2787 case SYS_SENDMMSG: 2788 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2789 a[3], true); 2790 break; 2791 case SYS_RECVMSG: 2792 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2793 a[2], true); 2794 break; 2795 case SYS_RECVMMSG: 2796 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2797 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2798 a[2], a[3], 2799 (struct __kernel_timespec __user *)a[4], 2800 NULL); 2801 else 2802 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2803 a[2], a[3], NULL, 2804 (struct old_timespec32 __user *)a[4]); 2805 break; 2806 case SYS_ACCEPT4: 2807 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2808 (int __user *)a[2], a[3]); 2809 break; 2810 default: 2811 err = -EINVAL; 2812 break; 2813 } 2814 return err; 2815 } 2816 2817 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2818 2819 /** 2820 * sock_register - add a socket protocol handler 2821 * @ops: description of protocol 2822 * 2823 * This function is called by a protocol handler that wants to 2824 * advertise its address family, and have it linked into the 2825 * socket interface. The value ops->family corresponds to the 2826 * socket system call protocol family. 2827 */ 2828 int sock_register(const struct net_proto_family *ops) 2829 { 2830 int err; 2831 2832 if (ops->family >= NPROTO) { 2833 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2834 return -ENOBUFS; 2835 } 2836 2837 spin_lock(&net_family_lock); 2838 if (rcu_dereference_protected(net_families[ops->family], 2839 lockdep_is_held(&net_family_lock))) 2840 err = -EEXIST; 2841 else { 2842 rcu_assign_pointer(net_families[ops->family], ops); 2843 err = 0; 2844 } 2845 spin_unlock(&net_family_lock); 2846 2847 pr_info("NET: Registered protocol family %d\n", ops->family); 2848 return err; 2849 } 2850 EXPORT_SYMBOL(sock_register); 2851 2852 /** 2853 * sock_unregister - remove a protocol handler 2854 * @family: protocol family to remove 2855 * 2856 * This function is called by a protocol handler that wants to 2857 * remove its address family, and have it unlinked from the 2858 * new socket creation. 2859 * 2860 * If protocol handler is a module, then it can use module reference 2861 * counts to protect against new references. If protocol handler is not 2862 * a module then it needs to provide its own protection in 2863 * the ops->create routine. 2864 */ 2865 void sock_unregister(int family) 2866 { 2867 BUG_ON(family < 0 || family >= NPROTO); 2868 2869 spin_lock(&net_family_lock); 2870 RCU_INIT_POINTER(net_families[family], NULL); 2871 spin_unlock(&net_family_lock); 2872 2873 synchronize_rcu(); 2874 2875 pr_info("NET: Unregistered protocol family %d\n", family); 2876 } 2877 EXPORT_SYMBOL(sock_unregister); 2878 2879 bool sock_is_registered(int family) 2880 { 2881 return family < NPROTO && rcu_access_pointer(net_families[family]); 2882 } 2883 2884 static int __init sock_init(void) 2885 { 2886 int err; 2887 /* 2888 * Initialize the network sysctl infrastructure. 2889 */ 2890 err = net_sysctl_init(); 2891 if (err) 2892 goto out; 2893 2894 /* 2895 * Initialize skbuff SLAB cache 2896 */ 2897 skb_init(); 2898 2899 /* 2900 * Initialize the protocols module. 2901 */ 2902 2903 init_inodecache(); 2904 2905 err = register_filesystem(&sock_fs_type); 2906 if (err) 2907 goto out_fs; 2908 sock_mnt = kern_mount(&sock_fs_type); 2909 if (IS_ERR(sock_mnt)) { 2910 err = PTR_ERR(sock_mnt); 2911 goto out_mount; 2912 } 2913 2914 /* The real protocol initialization is performed in later initcalls. 2915 */ 2916 2917 #ifdef CONFIG_NETFILTER 2918 err = netfilter_init(); 2919 if (err) 2920 goto out; 2921 #endif 2922 2923 ptp_classifier_init(); 2924 2925 out: 2926 return err; 2927 2928 out_mount: 2929 unregister_filesystem(&sock_fs_type); 2930 out_fs: 2931 goto out; 2932 } 2933 2934 core_initcall(sock_init); /* early initcall */ 2935 2936 #ifdef CONFIG_PROC_FS 2937 void socket_seq_show(struct seq_file *seq) 2938 { 2939 seq_printf(seq, "sockets: used %d\n", 2940 sock_inuse_get(seq->private)); 2941 } 2942 #endif /* CONFIG_PROC_FS */ 2943 2944 #ifdef CONFIG_COMPAT 2945 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2946 { 2947 struct compat_ifconf ifc32; 2948 struct ifconf ifc; 2949 int err; 2950 2951 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2952 return -EFAULT; 2953 2954 ifc.ifc_len = ifc32.ifc_len; 2955 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2956 2957 rtnl_lock(); 2958 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2959 rtnl_unlock(); 2960 if (err) 2961 return err; 2962 2963 ifc32.ifc_len = ifc.ifc_len; 2964 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2965 return -EFAULT; 2966 2967 return 0; 2968 } 2969 2970 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2971 { 2972 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2973 bool convert_in = false, convert_out = false; 2974 size_t buf_size = 0; 2975 struct ethtool_rxnfc __user *rxnfc = NULL; 2976 struct ifreq ifr; 2977 u32 rule_cnt = 0, actual_rule_cnt; 2978 u32 ethcmd; 2979 u32 data; 2980 int ret; 2981 2982 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2983 return -EFAULT; 2984 2985 compat_rxnfc = compat_ptr(data); 2986 2987 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2988 return -EFAULT; 2989 2990 /* Most ethtool structures are defined without padding. 2991 * Unfortunately struct ethtool_rxnfc is an exception. 2992 */ 2993 switch (ethcmd) { 2994 default: 2995 break; 2996 case ETHTOOL_GRXCLSRLALL: 2997 /* Buffer size is variable */ 2998 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2999 return -EFAULT; 3000 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3001 return -ENOMEM; 3002 buf_size += rule_cnt * sizeof(u32); 3003 /* fall through */ 3004 case ETHTOOL_GRXRINGS: 3005 case ETHTOOL_GRXCLSRLCNT: 3006 case ETHTOOL_GRXCLSRULE: 3007 case ETHTOOL_SRXCLSRLINS: 3008 convert_out = true; 3009 /* fall through */ 3010 case ETHTOOL_SRXCLSRLDEL: 3011 buf_size += sizeof(struct ethtool_rxnfc); 3012 convert_in = true; 3013 rxnfc = compat_alloc_user_space(buf_size); 3014 break; 3015 } 3016 3017 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3018 return -EFAULT; 3019 3020 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3021 3022 if (convert_in) { 3023 /* We expect there to be holes between fs.m_ext and 3024 * fs.ring_cookie and at the end of fs, but nowhere else. 3025 */ 3026 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3027 sizeof(compat_rxnfc->fs.m_ext) != 3028 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3029 sizeof(rxnfc->fs.m_ext)); 3030 BUILD_BUG_ON( 3031 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3032 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3033 offsetof(struct ethtool_rxnfc, fs.location) - 3034 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3035 3036 if (copy_in_user(rxnfc, compat_rxnfc, 3037 (void __user *)(&rxnfc->fs.m_ext + 1) - 3038 (void __user *)rxnfc) || 3039 copy_in_user(&rxnfc->fs.ring_cookie, 3040 &compat_rxnfc->fs.ring_cookie, 3041 (void __user *)(&rxnfc->fs.location + 1) - 3042 (void __user *)&rxnfc->fs.ring_cookie)) 3043 return -EFAULT; 3044 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3045 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3046 return -EFAULT; 3047 } else if (copy_in_user(&rxnfc->rule_cnt, 3048 &compat_rxnfc->rule_cnt, 3049 sizeof(rxnfc->rule_cnt))) 3050 return -EFAULT; 3051 } 3052 3053 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3054 if (ret) 3055 return ret; 3056 3057 if (convert_out) { 3058 if (copy_in_user(compat_rxnfc, rxnfc, 3059 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3060 (const void __user *)rxnfc) || 3061 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3062 &rxnfc->fs.ring_cookie, 3063 (const void __user *)(&rxnfc->fs.location + 1) - 3064 (const void __user *)&rxnfc->fs.ring_cookie) || 3065 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3066 sizeof(rxnfc->rule_cnt))) 3067 return -EFAULT; 3068 3069 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3070 /* As an optimisation, we only copy the actual 3071 * number of rules that the underlying 3072 * function returned. Since Mallory might 3073 * change the rule count in user memory, we 3074 * check that it is less than the rule count 3075 * originally given (as the user buffer size), 3076 * which has been range-checked. 3077 */ 3078 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3079 return -EFAULT; 3080 if (actual_rule_cnt < rule_cnt) 3081 rule_cnt = actual_rule_cnt; 3082 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3083 &rxnfc->rule_locs[0], 3084 rule_cnt * sizeof(u32))) 3085 return -EFAULT; 3086 } 3087 } 3088 3089 return 0; 3090 } 3091 3092 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3093 { 3094 compat_uptr_t uptr32; 3095 struct ifreq ifr; 3096 void __user *saved; 3097 int err; 3098 3099 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3100 return -EFAULT; 3101 3102 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3103 return -EFAULT; 3104 3105 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3106 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3107 3108 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3109 if (!err) { 3110 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3111 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3112 err = -EFAULT; 3113 } 3114 return err; 3115 } 3116 3117 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3118 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3119 struct compat_ifreq __user *u_ifreq32) 3120 { 3121 struct ifreq ifreq; 3122 u32 data32; 3123 3124 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3125 return -EFAULT; 3126 if (get_user(data32, &u_ifreq32->ifr_data)) 3127 return -EFAULT; 3128 ifreq.ifr_data = compat_ptr(data32); 3129 3130 return dev_ioctl(net, cmd, &ifreq, NULL); 3131 } 3132 3133 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3134 unsigned int cmd, 3135 struct compat_ifreq __user *uifr32) 3136 { 3137 struct ifreq __user *uifr; 3138 int err; 3139 3140 /* Handle the fact that while struct ifreq has the same *layout* on 3141 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3142 * which are handled elsewhere, it still has different *size* due to 3143 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3144 * resulting in struct ifreq being 32 and 40 bytes respectively). 3145 * As a result, if the struct happens to be at the end of a page and 3146 * the next page isn't readable/writable, we get a fault. To prevent 3147 * that, copy back and forth to the full size. 3148 */ 3149 3150 uifr = compat_alloc_user_space(sizeof(*uifr)); 3151 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3152 return -EFAULT; 3153 3154 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3155 3156 if (!err) { 3157 switch (cmd) { 3158 case SIOCGIFFLAGS: 3159 case SIOCGIFMETRIC: 3160 case SIOCGIFMTU: 3161 case SIOCGIFMEM: 3162 case SIOCGIFHWADDR: 3163 case SIOCGIFINDEX: 3164 case SIOCGIFADDR: 3165 case SIOCGIFBRDADDR: 3166 case SIOCGIFDSTADDR: 3167 case SIOCGIFNETMASK: 3168 case SIOCGIFPFLAGS: 3169 case SIOCGIFTXQLEN: 3170 case SIOCGMIIPHY: 3171 case SIOCGMIIREG: 3172 case SIOCGIFNAME: 3173 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3174 err = -EFAULT; 3175 break; 3176 } 3177 } 3178 return err; 3179 } 3180 3181 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3182 struct compat_ifreq __user *uifr32) 3183 { 3184 struct ifreq ifr; 3185 struct compat_ifmap __user *uifmap32; 3186 int err; 3187 3188 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3189 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3190 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3191 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3192 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3193 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3194 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3195 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3196 if (err) 3197 return -EFAULT; 3198 3199 err = dev_ioctl(net, cmd, &ifr, NULL); 3200 3201 if (cmd == SIOCGIFMAP && !err) { 3202 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3203 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3204 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3205 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3206 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3207 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3208 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3209 if (err) 3210 err = -EFAULT; 3211 } 3212 return err; 3213 } 3214 3215 struct rtentry32 { 3216 u32 rt_pad1; 3217 struct sockaddr rt_dst; /* target address */ 3218 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3219 struct sockaddr rt_genmask; /* target network mask (IP) */ 3220 unsigned short rt_flags; 3221 short rt_pad2; 3222 u32 rt_pad3; 3223 unsigned char rt_tos; 3224 unsigned char rt_class; 3225 short rt_pad4; 3226 short rt_metric; /* +1 for binary compatibility! */ 3227 /* char * */ u32 rt_dev; /* forcing the device at add */ 3228 u32 rt_mtu; /* per route MTU/Window */ 3229 u32 rt_window; /* Window clamping */ 3230 unsigned short rt_irtt; /* Initial RTT */ 3231 }; 3232 3233 struct in6_rtmsg32 { 3234 struct in6_addr rtmsg_dst; 3235 struct in6_addr rtmsg_src; 3236 struct in6_addr rtmsg_gateway; 3237 u32 rtmsg_type; 3238 u16 rtmsg_dst_len; 3239 u16 rtmsg_src_len; 3240 u32 rtmsg_metric; 3241 u32 rtmsg_info; 3242 u32 rtmsg_flags; 3243 s32 rtmsg_ifindex; 3244 }; 3245 3246 static int routing_ioctl(struct net *net, struct socket *sock, 3247 unsigned int cmd, void __user *argp) 3248 { 3249 int ret; 3250 void *r = NULL; 3251 struct in6_rtmsg r6; 3252 struct rtentry r4; 3253 char devname[16]; 3254 u32 rtdev; 3255 mm_segment_t old_fs = get_fs(); 3256 3257 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3258 struct in6_rtmsg32 __user *ur6 = argp; 3259 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3260 3 * sizeof(struct in6_addr)); 3261 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3262 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3263 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3264 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3265 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3266 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3267 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3268 3269 r = (void *) &r6; 3270 } else { /* ipv4 */ 3271 struct rtentry32 __user *ur4 = argp; 3272 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3273 3 * sizeof(struct sockaddr)); 3274 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3275 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3276 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3277 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3278 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3279 ret |= get_user(rtdev, &(ur4->rt_dev)); 3280 if (rtdev) { 3281 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3282 r4.rt_dev = (char __user __force *)devname; 3283 devname[15] = 0; 3284 } else 3285 r4.rt_dev = NULL; 3286 3287 r = (void *) &r4; 3288 } 3289 3290 if (ret) { 3291 ret = -EFAULT; 3292 goto out; 3293 } 3294 3295 set_fs(KERNEL_DS); 3296 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3297 set_fs(old_fs); 3298 3299 out: 3300 return ret; 3301 } 3302 3303 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3304 * for some operations; this forces use of the newer bridge-utils that 3305 * use compatible ioctls 3306 */ 3307 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3308 { 3309 compat_ulong_t tmp; 3310 3311 if (get_user(tmp, argp)) 3312 return -EFAULT; 3313 if (tmp == BRCTL_GET_VERSION) 3314 return BRCTL_VERSION + 1; 3315 return -EINVAL; 3316 } 3317 3318 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3319 unsigned int cmd, unsigned long arg) 3320 { 3321 void __user *argp = compat_ptr(arg); 3322 struct sock *sk = sock->sk; 3323 struct net *net = sock_net(sk); 3324 3325 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3326 return compat_ifr_data_ioctl(net, cmd, argp); 3327 3328 switch (cmd) { 3329 case SIOCSIFBR: 3330 case SIOCGIFBR: 3331 return old_bridge_ioctl(argp); 3332 case SIOCGIFCONF: 3333 return compat_dev_ifconf(net, argp); 3334 case SIOCETHTOOL: 3335 return ethtool_ioctl(net, argp); 3336 case SIOCWANDEV: 3337 return compat_siocwandev(net, argp); 3338 case SIOCGIFMAP: 3339 case SIOCSIFMAP: 3340 return compat_sioc_ifmap(net, cmd, argp); 3341 case SIOCADDRT: 3342 case SIOCDELRT: 3343 return routing_ioctl(net, sock, cmd, argp); 3344 case SIOCGSTAMP_OLD: 3345 case SIOCGSTAMPNS_OLD: 3346 if (!sock->ops->gettstamp) 3347 return -ENOIOCTLCMD; 3348 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3349 !COMPAT_USE_64BIT_TIME); 3350 3351 case SIOCBONDSLAVEINFOQUERY: 3352 case SIOCBONDINFOQUERY: 3353 case SIOCSHWTSTAMP: 3354 case SIOCGHWTSTAMP: 3355 return compat_ifr_data_ioctl(net, cmd, argp); 3356 3357 case FIOSETOWN: 3358 case SIOCSPGRP: 3359 case FIOGETOWN: 3360 case SIOCGPGRP: 3361 case SIOCBRADDBR: 3362 case SIOCBRDELBR: 3363 case SIOCGIFVLAN: 3364 case SIOCSIFVLAN: 3365 case SIOCADDDLCI: 3366 case SIOCDELDLCI: 3367 case SIOCGSKNS: 3368 case SIOCGSTAMP_NEW: 3369 case SIOCGSTAMPNS_NEW: 3370 return sock_ioctl(file, cmd, arg); 3371 3372 case SIOCGIFFLAGS: 3373 case SIOCSIFFLAGS: 3374 case SIOCGIFMETRIC: 3375 case SIOCSIFMETRIC: 3376 case SIOCGIFMTU: 3377 case SIOCSIFMTU: 3378 case SIOCGIFMEM: 3379 case SIOCSIFMEM: 3380 case SIOCGIFHWADDR: 3381 case SIOCSIFHWADDR: 3382 case SIOCADDMULTI: 3383 case SIOCDELMULTI: 3384 case SIOCGIFINDEX: 3385 case SIOCGIFADDR: 3386 case SIOCSIFADDR: 3387 case SIOCSIFHWBROADCAST: 3388 case SIOCDIFADDR: 3389 case SIOCGIFBRDADDR: 3390 case SIOCSIFBRDADDR: 3391 case SIOCGIFDSTADDR: 3392 case SIOCSIFDSTADDR: 3393 case SIOCGIFNETMASK: 3394 case SIOCSIFNETMASK: 3395 case SIOCSIFPFLAGS: 3396 case SIOCGIFPFLAGS: 3397 case SIOCGIFTXQLEN: 3398 case SIOCSIFTXQLEN: 3399 case SIOCBRADDIF: 3400 case SIOCBRDELIF: 3401 case SIOCGIFNAME: 3402 case SIOCSIFNAME: 3403 case SIOCGMIIPHY: 3404 case SIOCGMIIREG: 3405 case SIOCSMIIREG: 3406 case SIOCBONDENSLAVE: 3407 case SIOCBONDRELEASE: 3408 case SIOCBONDSETHWADDR: 3409 case SIOCBONDCHANGEACTIVE: 3410 return compat_ifreq_ioctl(net, sock, cmd, argp); 3411 3412 case SIOCSARP: 3413 case SIOCGARP: 3414 case SIOCDARP: 3415 case SIOCATMARK: 3416 return sock_do_ioctl(net, sock, cmd, arg); 3417 } 3418 3419 return -ENOIOCTLCMD; 3420 } 3421 3422 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3423 unsigned long arg) 3424 { 3425 struct socket *sock = file->private_data; 3426 int ret = -ENOIOCTLCMD; 3427 struct sock *sk; 3428 struct net *net; 3429 3430 sk = sock->sk; 3431 net = sock_net(sk); 3432 3433 if (sock->ops->compat_ioctl) 3434 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3435 3436 if (ret == -ENOIOCTLCMD && 3437 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3438 ret = compat_wext_handle_ioctl(net, cmd, arg); 3439 3440 if (ret == -ENOIOCTLCMD) 3441 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3442 3443 return ret; 3444 } 3445 #endif 3446 3447 /** 3448 * kernel_bind - bind an address to a socket (kernel space) 3449 * @sock: socket 3450 * @addr: address 3451 * @addrlen: length of address 3452 * 3453 * Returns 0 or an error. 3454 */ 3455 3456 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3457 { 3458 return sock->ops->bind(sock, addr, addrlen); 3459 } 3460 EXPORT_SYMBOL(kernel_bind); 3461 3462 /** 3463 * kernel_listen - move socket to listening state (kernel space) 3464 * @sock: socket 3465 * @backlog: pending connections queue size 3466 * 3467 * Returns 0 or an error. 3468 */ 3469 3470 int kernel_listen(struct socket *sock, int backlog) 3471 { 3472 return sock->ops->listen(sock, backlog); 3473 } 3474 EXPORT_SYMBOL(kernel_listen); 3475 3476 /** 3477 * kernel_accept - accept a connection (kernel space) 3478 * @sock: listening socket 3479 * @newsock: new connected socket 3480 * @flags: flags 3481 * 3482 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3483 * If it fails, @newsock is guaranteed to be %NULL. 3484 * Returns 0 or an error. 3485 */ 3486 3487 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3488 { 3489 struct sock *sk = sock->sk; 3490 int err; 3491 3492 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3493 newsock); 3494 if (err < 0) 3495 goto done; 3496 3497 err = sock->ops->accept(sock, *newsock, flags, true); 3498 if (err < 0) { 3499 sock_release(*newsock); 3500 *newsock = NULL; 3501 goto done; 3502 } 3503 3504 (*newsock)->ops = sock->ops; 3505 __module_get((*newsock)->ops->owner); 3506 3507 done: 3508 return err; 3509 } 3510 EXPORT_SYMBOL(kernel_accept); 3511 3512 /** 3513 * kernel_connect - connect a socket (kernel space) 3514 * @sock: socket 3515 * @addr: address 3516 * @addrlen: address length 3517 * @flags: flags (O_NONBLOCK, ...) 3518 * 3519 * For datagram sockets, @addr is the addres to which datagrams are sent 3520 * by default, and the only address from which datagrams are received. 3521 * For stream sockets, attempts to connect to @addr. 3522 * Returns 0 or an error code. 3523 */ 3524 3525 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3526 int flags) 3527 { 3528 return sock->ops->connect(sock, addr, addrlen, flags); 3529 } 3530 EXPORT_SYMBOL(kernel_connect); 3531 3532 /** 3533 * kernel_getsockname - get the address which the socket is bound (kernel space) 3534 * @sock: socket 3535 * @addr: address holder 3536 * 3537 * Fills the @addr pointer with the address which the socket is bound. 3538 * Returns 0 or an error code. 3539 */ 3540 3541 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3542 { 3543 return sock->ops->getname(sock, addr, 0); 3544 } 3545 EXPORT_SYMBOL(kernel_getsockname); 3546 3547 /** 3548 * kernel_peername - get the address which the socket is connected (kernel space) 3549 * @sock: socket 3550 * @addr: address holder 3551 * 3552 * Fills the @addr pointer with the address which the socket is connected. 3553 * Returns 0 or an error code. 3554 */ 3555 3556 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3557 { 3558 return sock->ops->getname(sock, addr, 1); 3559 } 3560 EXPORT_SYMBOL(kernel_getpeername); 3561 3562 /** 3563 * kernel_getsockopt - get a socket option (kernel space) 3564 * @sock: socket 3565 * @level: API level (SOL_SOCKET, ...) 3566 * @optname: option tag 3567 * @optval: option value 3568 * @optlen: option length 3569 * 3570 * Assigns the option length to @optlen. 3571 * Returns 0 or an error. 3572 */ 3573 3574 int kernel_getsockopt(struct socket *sock, int level, int optname, 3575 char *optval, int *optlen) 3576 { 3577 mm_segment_t oldfs = get_fs(); 3578 char __user *uoptval; 3579 int __user *uoptlen; 3580 int err; 3581 3582 uoptval = (char __user __force *) optval; 3583 uoptlen = (int __user __force *) optlen; 3584 3585 set_fs(KERNEL_DS); 3586 if (level == SOL_SOCKET) 3587 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3588 else 3589 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3590 uoptlen); 3591 set_fs(oldfs); 3592 return err; 3593 } 3594 EXPORT_SYMBOL(kernel_getsockopt); 3595 3596 /** 3597 * kernel_setsockopt - set a socket option (kernel space) 3598 * @sock: socket 3599 * @level: API level (SOL_SOCKET, ...) 3600 * @optname: option tag 3601 * @optval: option value 3602 * @optlen: option length 3603 * 3604 * Returns 0 or an error. 3605 */ 3606 3607 int kernel_setsockopt(struct socket *sock, int level, int optname, 3608 char *optval, unsigned int optlen) 3609 { 3610 mm_segment_t oldfs = get_fs(); 3611 char __user *uoptval; 3612 int err; 3613 3614 uoptval = (char __user __force *) optval; 3615 3616 set_fs(KERNEL_DS); 3617 if (level == SOL_SOCKET) 3618 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3619 else 3620 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3621 optlen); 3622 set_fs(oldfs); 3623 return err; 3624 } 3625 EXPORT_SYMBOL(kernel_setsockopt); 3626 3627 /** 3628 * kernel_sendpage - send a &page through a socket (kernel space) 3629 * @sock: socket 3630 * @page: page 3631 * @offset: page offset 3632 * @size: total size in bytes 3633 * @flags: flags (MSG_DONTWAIT, ...) 3634 * 3635 * Returns the total amount sent in bytes or an error. 3636 */ 3637 3638 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3639 size_t size, int flags) 3640 { 3641 if (sock->ops->sendpage) 3642 return sock->ops->sendpage(sock, page, offset, size, flags); 3643 3644 return sock_no_sendpage(sock, page, offset, size, flags); 3645 } 3646 EXPORT_SYMBOL(kernel_sendpage); 3647 3648 /** 3649 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3650 * @sk: sock 3651 * @page: page 3652 * @offset: page offset 3653 * @size: total size in bytes 3654 * @flags: flags (MSG_DONTWAIT, ...) 3655 * 3656 * Returns the total amount sent in bytes or an error. 3657 * Caller must hold @sk. 3658 */ 3659 3660 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3661 size_t size, int flags) 3662 { 3663 struct socket *sock = sk->sk_socket; 3664 3665 if (sock->ops->sendpage_locked) 3666 return sock->ops->sendpage_locked(sk, page, offset, size, 3667 flags); 3668 3669 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3670 } 3671 EXPORT_SYMBOL(kernel_sendpage_locked); 3672 3673 /** 3674 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3675 * @sock: socket 3676 * @how: connection part 3677 * 3678 * Returns 0 or an error. 3679 */ 3680 3681 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3682 { 3683 return sock->ops->shutdown(sock, how); 3684 } 3685 EXPORT_SYMBOL(kernel_sock_shutdown); 3686 3687 /** 3688 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3689 * @sk: socket 3690 * 3691 * This routine returns the IP overhead imposed by a socket i.e. 3692 * the length of the underlying IP header, depending on whether 3693 * this is an IPv4 or IPv6 socket and the length from IP options turned 3694 * on at the socket. Assumes that the caller has a lock on the socket. 3695 */ 3696 3697 u32 kernel_sock_ip_overhead(struct sock *sk) 3698 { 3699 struct inet_sock *inet; 3700 struct ip_options_rcu *opt; 3701 u32 overhead = 0; 3702 #if IS_ENABLED(CONFIG_IPV6) 3703 struct ipv6_pinfo *np; 3704 struct ipv6_txoptions *optv6 = NULL; 3705 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3706 3707 if (!sk) 3708 return overhead; 3709 3710 switch (sk->sk_family) { 3711 case AF_INET: 3712 inet = inet_sk(sk); 3713 overhead += sizeof(struct iphdr); 3714 opt = rcu_dereference_protected(inet->inet_opt, 3715 sock_owned_by_user(sk)); 3716 if (opt) 3717 overhead += opt->opt.optlen; 3718 return overhead; 3719 #if IS_ENABLED(CONFIG_IPV6) 3720 case AF_INET6: 3721 np = inet6_sk(sk); 3722 overhead += sizeof(struct ipv6hdr); 3723 if (np) 3724 optv6 = rcu_dereference_protected(np->opt, 3725 sock_owned_by_user(sk)); 3726 if (optv6) 3727 overhead += (optv6->opt_flen + optv6->opt_nflen); 3728 return overhead; 3729 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3730 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3731 return overhead; 3732 } 3733 } 3734 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3735