xref: /openbmc/linux/net/socket.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 static const char * const pf_family_names[] = {
169 	[PF_UNSPEC]	= "PF_UNSPEC",
170 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
171 	[PF_INET]	= "PF_INET",
172 	[PF_AX25]	= "PF_AX25",
173 	[PF_IPX]	= "PF_IPX",
174 	[PF_APPLETALK]	= "PF_APPLETALK",
175 	[PF_NETROM]	= "PF_NETROM",
176 	[PF_BRIDGE]	= "PF_BRIDGE",
177 	[PF_ATMPVC]	= "PF_ATMPVC",
178 	[PF_X25]	= "PF_X25",
179 	[PF_INET6]	= "PF_INET6",
180 	[PF_ROSE]	= "PF_ROSE",
181 	[PF_DECnet]	= "PF_DECnet",
182 	[PF_NETBEUI]	= "PF_NETBEUI",
183 	[PF_SECURITY]	= "PF_SECURITY",
184 	[PF_KEY]	= "PF_KEY",
185 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
186 	[PF_PACKET]	= "PF_PACKET",
187 	[PF_ASH]	= "PF_ASH",
188 	[PF_ECONET]	= "PF_ECONET",
189 	[PF_ATMSVC]	= "PF_ATMSVC",
190 	[PF_RDS]	= "PF_RDS",
191 	[PF_SNA]	= "PF_SNA",
192 	[PF_IRDA]	= "PF_IRDA",
193 	[PF_PPPOX]	= "PF_PPPOX",
194 	[PF_WANPIPE]	= "PF_WANPIPE",
195 	[PF_LLC]	= "PF_LLC",
196 	[PF_IB]		= "PF_IB",
197 	[PF_MPLS]	= "PF_MPLS",
198 	[PF_CAN]	= "PF_CAN",
199 	[PF_TIPC]	= "PF_TIPC",
200 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
201 	[PF_IUCV]	= "PF_IUCV",
202 	[PF_RXRPC]	= "PF_RXRPC",
203 	[PF_ISDN]	= "PF_ISDN",
204 	[PF_PHONET]	= "PF_PHONET",
205 	[PF_IEEE802154]	= "PF_IEEE802154",
206 	[PF_CAIF]	= "PF_CAIF",
207 	[PF_ALG]	= "PF_ALG",
208 	[PF_NFC]	= "PF_NFC",
209 	[PF_VSOCK]	= "PF_VSOCK",
210 	[PF_KCM]	= "PF_KCM",
211 	[PF_QIPCRTR]	= "PF_QIPCRTR",
212 	[PF_SMC]	= "PF_SMC",
213 	[PF_XDP]	= "PF_XDP",
214 };
215 
216 /*
217  *	The protocol list. Each protocol is registered in here.
218  */
219 
220 static DEFINE_SPINLOCK(net_family_lock);
221 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
222 
223 /*
224  * Support routines.
225  * Move socket addresses back and forth across the kernel/user
226  * divide and look after the messy bits.
227  */
228 
229 /**
230  *	move_addr_to_kernel	-	copy a socket address into kernel space
231  *	@uaddr: Address in user space
232  *	@kaddr: Address in kernel space
233  *	@ulen: Length in user space
234  *
235  *	The address is copied into kernel space. If the provided address is
236  *	too long an error code of -EINVAL is returned. If the copy gives
237  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
238  */
239 
240 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
241 {
242 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
243 		return -EINVAL;
244 	if (ulen == 0)
245 		return 0;
246 	if (copy_from_user(kaddr, uaddr, ulen))
247 		return -EFAULT;
248 	return audit_sockaddr(ulen, kaddr);
249 }
250 
251 /**
252  *	move_addr_to_user	-	copy an address to user space
253  *	@kaddr: kernel space address
254  *	@klen: length of address in kernel
255  *	@uaddr: user space address
256  *	@ulen: pointer to user length field
257  *
258  *	The value pointed to by ulen on entry is the buffer length available.
259  *	This is overwritten with the buffer space used. -EINVAL is returned
260  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
261  *	is returned if either the buffer or the length field are not
262  *	accessible.
263  *	After copying the data up to the limit the user specifies, the true
264  *	length of the data is written over the length limit the user
265  *	specified. Zero is returned for a success.
266  */
267 
268 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
269 			     void __user *uaddr, int __user *ulen)
270 {
271 	int err;
272 	int len;
273 
274 	BUG_ON(klen > sizeof(struct sockaddr_storage));
275 	err = get_user(len, ulen);
276 	if (err)
277 		return err;
278 	if (len > klen)
279 		len = klen;
280 	if (len < 0)
281 		return -EINVAL;
282 	if (len) {
283 		if (audit_sockaddr(klen, kaddr))
284 			return -ENOMEM;
285 		if (copy_to_user(uaddr, kaddr, len))
286 			return -EFAULT;
287 	}
288 	/*
289 	 *      "fromlen shall refer to the value before truncation.."
290 	 *                      1003.1g
291 	 */
292 	return __put_user(klen, ulen);
293 }
294 
295 static struct kmem_cache *sock_inode_cachep __ro_after_init;
296 
297 static struct inode *sock_alloc_inode(struct super_block *sb)
298 {
299 	struct socket_alloc *ei;
300 
301 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
302 	if (!ei)
303 		return NULL;
304 	init_waitqueue_head(&ei->socket.wq.wait);
305 	ei->socket.wq.fasync_list = NULL;
306 	ei->socket.wq.flags = 0;
307 
308 	ei->socket.state = SS_UNCONNECTED;
309 	ei->socket.flags = 0;
310 	ei->socket.ops = NULL;
311 	ei->socket.sk = NULL;
312 	ei->socket.file = NULL;
313 
314 	return &ei->vfs_inode;
315 }
316 
317 static void sock_free_inode(struct inode *inode)
318 {
319 	struct socket_alloc *ei;
320 
321 	ei = container_of(inode, struct socket_alloc, vfs_inode);
322 	kmem_cache_free(sock_inode_cachep, ei);
323 }
324 
325 static void init_once(void *foo)
326 {
327 	struct socket_alloc *ei = (struct socket_alloc *)foo;
328 
329 	inode_init_once(&ei->vfs_inode);
330 }
331 
332 static void init_inodecache(void)
333 {
334 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
335 					      sizeof(struct socket_alloc),
336 					      0,
337 					      (SLAB_HWCACHE_ALIGN |
338 					       SLAB_RECLAIM_ACCOUNT |
339 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
340 					      init_once);
341 	BUG_ON(sock_inode_cachep == NULL);
342 }
343 
344 static const struct super_operations sockfs_ops = {
345 	.alloc_inode	= sock_alloc_inode,
346 	.free_inode	= sock_free_inode,
347 	.statfs		= simple_statfs,
348 };
349 
350 /*
351  * sockfs_dname() is called from d_path().
352  */
353 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
354 {
355 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
356 				d_inode(dentry)->i_ino);
357 }
358 
359 static const struct dentry_operations sockfs_dentry_operations = {
360 	.d_dname  = sockfs_dname,
361 };
362 
363 static int sockfs_xattr_get(const struct xattr_handler *handler,
364 			    struct dentry *dentry, struct inode *inode,
365 			    const char *suffix, void *value, size_t size)
366 {
367 	if (value) {
368 		if (dentry->d_name.len + 1 > size)
369 			return -ERANGE;
370 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
371 	}
372 	return dentry->d_name.len + 1;
373 }
374 
375 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
376 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
377 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
378 
379 static const struct xattr_handler sockfs_xattr_handler = {
380 	.name = XATTR_NAME_SOCKPROTONAME,
381 	.get = sockfs_xattr_get,
382 };
383 
384 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
385 				     struct user_namespace *mnt_userns,
386 				     struct dentry *dentry, struct inode *inode,
387 				     const char *suffix, const void *value,
388 				     size_t size, int flags)
389 {
390 	/* Handled by LSM. */
391 	return -EAGAIN;
392 }
393 
394 static const struct xattr_handler sockfs_security_xattr_handler = {
395 	.prefix = XATTR_SECURITY_PREFIX,
396 	.set = sockfs_security_xattr_set,
397 };
398 
399 static const struct xattr_handler *sockfs_xattr_handlers[] = {
400 	&sockfs_xattr_handler,
401 	&sockfs_security_xattr_handler,
402 	NULL
403 };
404 
405 static int sockfs_init_fs_context(struct fs_context *fc)
406 {
407 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
408 	if (!ctx)
409 		return -ENOMEM;
410 	ctx->ops = &sockfs_ops;
411 	ctx->dops = &sockfs_dentry_operations;
412 	ctx->xattr = sockfs_xattr_handlers;
413 	return 0;
414 }
415 
416 static struct vfsmount *sock_mnt __read_mostly;
417 
418 static struct file_system_type sock_fs_type = {
419 	.name =		"sockfs",
420 	.init_fs_context = sockfs_init_fs_context,
421 	.kill_sb =	kill_anon_super,
422 };
423 
424 /*
425  *	Obtains the first available file descriptor and sets it up for use.
426  *
427  *	These functions create file structures and maps them to fd space
428  *	of the current process. On success it returns file descriptor
429  *	and file struct implicitly stored in sock->file.
430  *	Note that another thread may close file descriptor before we return
431  *	from this function. We use the fact that now we do not refer
432  *	to socket after mapping. If one day we will need it, this
433  *	function will increment ref. count on file by 1.
434  *
435  *	In any case returned fd MAY BE not valid!
436  *	This race condition is unavoidable
437  *	with shared fd spaces, we cannot solve it inside kernel,
438  *	but we take care of internal coherence yet.
439  */
440 
441 /**
442  *	sock_alloc_file - Bind a &socket to a &file
443  *	@sock: socket
444  *	@flags: file status flags
445  *	@dname: protocol name
446  *
447  *	Returns the &file bound with @sock, implicitly storing it
448  *	in sock->file. If dname is %NULL, sets to "".
449  *	On failure the return is a ERR pointer (see linux/err.h).
450  *	This function uses GFP_KERNEL internally.
451  */
452 
453 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
454 {
455 	struct file *file;
456 
457 	if (!dname)
458 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
459 
460 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
461 				O_RDWR | (flags & O_NONBLOCK),
462 				&socket_file_ops);
463 	if (IS_ERR(file)) {
464 		sock_release(sock);
465 		return file;
466 	}
467 
468 	sock->file = file;
469 	file->private_data = sock;
470 	stream_open(SOCK_INODE(sock), file);
471 	return file;
472 }
473 EXPORT_SYMBOL(sock_alloc_file);
474 
475 static int sock_map_fd(struct socket *sock, int flags)
476 {
477 	struct file *newfile;
478 	int fd = get_unused_fd_flags(flags);
479 	if (unlikely(fd < 0)) {
480 		sock_release(sock);
481 		return fd;
482 	}
483 
484 	newfile = sock_alloc_file(sock, flags, NULL);
485 	if (!IS_ERR(newfile)) {
486 		fd_install(fd, newfile);
487 		return fd;
488 	}
489 
490 	put_unused_fd(fd);
491 	return PTR_ERR(newfile);
492 }
493 
494 /**
495  *	sock_from_file - Return the &socket bounded to @file.
496  *	@file: file
497  *
498  *	On failure returns %NULL.
499  */
500 
501 struct socket *sock_from_file(struct file *file)
502 {
503 	if (file->f_op == &socket_file_ops)
504 		return file->private_data;	/* set in sock_map_fd */
505 
506 	return NULL;
507 }
508 EXPORT_SYMBOL(sock_from_file);
509 
510 /**
511  *	sockfd_lookup - Go from a file number to its socket slot
512  *	@fd: file handle
513  *	@err: pointer to an error code return
514  *
515  *	The file handle passed in is locked and the socket it is bound
516  *	to is returned. If an error occurs the err pointer is overwritten
517  *	with a negative errno code and NULL is returned. The function checks
518  *	for both invalid handles and passing a handle which is not a socket.
519  *
520  *	On a success the socket object pointer is returned.
521  */
522 
523 struct socket *sockfd_lookup(int fd, int *err)
524 {
525 	struct file *file;
526 	struct socket *sock;
527 
528 	file = fget(fd);
529 	if (!file) {
530 		*err = -EBADF;
531 		return NULL;
532 	}
533 
534 	sock = sock_from_file(file);
535 	if (!sock) {
536 		*err = -ENOTSOCK;
537 		fput(file);
538 	}
539 	return sock;
540 }
541 EXPORT_SYMBOL(sockfd_lookup);
542 
543 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
544 {
545 	struct fd f = fdget(fd);
546 	struct socket *sock;
547 
548 	*err = -EBADF;
549 	if (f.file) {
550 		sock = sock_from_file(f.file);
551 		if (likely(sock)) {
552 			*fput_needed = f.flags & FDPUT_FPUT;
553 			return sock;
554 		}
555 		*err = -ENOTSOCK;
556 		fdput(f);
557 	}
558 	return NULL;
559 }
560 
561 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
562 				size_t size)
563 {
564 	ssize_t len;
565 	ssize_t used = 0;
566 
567 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
568 	if (len < 0)
569 		return len;
570 	used += len;
571 	if (buffer) {
572 		if (size < used)
573 			return -ERANGE;
574 		buffer += len;
575 	}
576 
577 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
578 	used += len;
579 	if (buffer) {
580 		if (size < used)
581 			return -ERANGE;
582 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
583 		buffer += len;
584 	}
585 
586 	return used;
587 }
588 
589 static int sockfs_setattr(struct user_namespace *mnt_userns,
590 			  struct dentry *dentry, struct iattr *iattr)
591 {
592 	int err = simple_setattr(&init_user_ns, dentry, iattr);
593 
594 	if (!err && (iattr->ia_valid & ATTR_UID)) {
595 		struct socket *sock = SOCKET_I(d_inode(dentry));
596 
597 		if (sock->sk)
598 			sock->sk->sk_uid = iattr->ia_uid;
599 		else
600 			err = -ENOENT;
601 	}
602 
603 	return err;
604 }
605 
606 static const struct inode_operations sockfs_inode_ops = {
607 	.listxattr = sockfs_listxattr,
608 	.setattr = sockfs_setattr,
609 };
610 
611 /**
612  *	sock_alloc - allocate a socket
613  *
614  *	Allocate a new inode and socket object. The two are bound together
615  *	and initialised. The socket is then returned. If we are out of inodes
616  *	NULL is returned. This functions uses GFP_KERNEL internally.
617  */
618 
619 struct socket *sock_alloc(void)
620 {
621 	struct inode *inode;
622 	struct socket *sock;
623 
624 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
625 	if (!inode)
626 		return NULL;
627 
628 	sock = SOCKET_I(inode);
629 
630 	inode->i_ino = get_next_ino();
631 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
632 	inode->i_uid = current_fsuid();
633 	inode->i_gid = current_fsgid();
634 	inode->i_op = &sockfs_inode_ops;
635 
636 	return sock;
637 }
638 EXPORT_SYMBOL(sock_alloc);
639 
640 static void __sock_release(struct socket *sock, struct inode *inode)
641 {
642 	if (sock->ops) {
643 		struct module *owner = sock->ops->owner;
644 
645 		if (inode)
646 			inode_lock(inode);
647 		sock->ops->release(sock);
648 		sock->sk = NULL;
649 		if (inode)
650 			inode_unlock(inode);
651 		sock->ops = NULL;
652 		module_put(owner);
653 	}
654 
655 	if (sock->wq.fasync_list)
656 		pr_err("%s: fasync list not empty!\n", __func__);
657 
658 	if (!sock->file) {
659 		iput(SOCK_INODE(sock));
660 		return;
661 	}
662 	sock->file = NULL;
663 }
664 
665 /**
666  *	sock_release - close a socket
667  *	@sock: socket to close
668  *
669  *	The socket is released from the protocol stack if it has a release
670  *	callback, and the inode is then released if the socket is bound to
671  *	an inode not a file.
672  */
673 void sock_release(struct socket *sock)
674 {
675 	__sock_release(sock, NULL);
676 }
677 EXPORT_SYMBOL(sock_release);
678 
679 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
680 {
681 	u8 flags = *tx_flags;
682 
683 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
684 		flags |= SKBTX_HW_TSTAMP;
685 
686 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
687 		flags |= SKBTX_SW_TSTAMP;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
690 		flags |= SKBTX_SCHED_TSTAMP;
691 
692 	*tx_flags = flags;
693 }
694 EXPORT_SYMBOL(__sock_tx_timestamp);
695 
696 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
697 					   size_t));
698 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
699 					    size_t));
700 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
701 {
702 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
703 				     inet_sendmsg, sock, msg,
704 				     msg_data_left(msg));
705 	BUG_ON(ret == -EIOCBQUEUED);
706 	return ret;
707 }
708 
709 /**
710  *	sock_sendmsg - send a message through @sock
711  *	@sock: socket
712  *	@msg: message to send
713  *
714  *	Sends @msg through @sock, passing through LSM.
715  *	Returns the number of bytes sent, or an error code.
716  */
717 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
718 {
719 	int err = security_socket_sendmsg(sock, msg,
720 					  msg_data_left(msg));
721 
722 	return err ?: sock_sendmsg_nosec(sock, msg);
723 }
724 EXPORT_SYMBOL(sock_sendmsg);
725 
726 /**
727  *	kernel_sendmsg - send a message through @sock (kernel-space)
728  *	@sock: socket
729  *	@msg: message header
730  *	@vec: kernel vec
731  *	@num: vec array length
732  *	@size: total message data size
733  *
734  *	Builds the message data with @vec and sends it through @sock.
735  *	Returns the number of bytes sent, or an error code.
736  */
737 
738 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
739 		   struct kvec *vec, size_t num, size_t size)
740 {
741 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
742 	return sock_sendmsg(sock, msg);
743 }
744 EXPORT_SYMBOL(kernel_sendmsg);
745 
746 /**
747  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
748  *	@sk: sock
749  *	@msg: message header
750  *	@vec: output s/g array
751  *	@num: output s/g array length
752  *	@size: total message data size
753  *
754  *	Builds the message data with @vec and sends it through @sock.
755  *	Returns the number of bytes sent, or an error code.
756  *	Caller must hold @sk.
757  */
758 
759 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
760 			  struct kvec *vec, size_t num, size_t size)
761 {
762 	struct socket *sock = sk->sk_socket;
763 
764 	if (!sock->ops->sendmsg_locked)
765 		return sock_no_sendmsg_locked(sk, msg, size);
766 
767 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
768 
769 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
770 }
771 EXPORT_SYMBOL(kernel_sendmsg_locked);
772 
773 static bool skb_is_err_queue(const struct sk_buff *skb)
774 {
775 	/* pkt_type of skbs enqueued on the error queue are set to
776 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
777 	 * in recvmsg, since skbs received on a local socket will never
778 	 * have a pkt_type of PACKET_OUTGOING.
779 	 */
780 	return skb->pkt_type == PACKET_OUTGOING;
781 }
782 
783 /* On transmit, software and hardware timestamps are returned independently.
784  * As the two skb clones share the hardware timestamp, which may be updated
785  * before the software timestamp is received, a hardware TX timestamp may be
786  * returned only if there is no software TX timestamp. Ignore false software
787  * timestamps, which may be made in the __sock_recv_timestamp() call when the
788  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
789  * hardware timestamp.
790  */
791 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
792 {
793 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
794 }
795 
796 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
797 {
798 	struct scm_ts_pktinfo ts_pktinfo;
799 	struct net_device *orig_dev;
800 
801 	if (!skb_mac_header_was_set(skb))
802 		return;
803 
804 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
805 
806 	rcu_read_lock();
807 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
808 	if (orig_dev)
809 		ts_pktinfo.if_index = orig_dev->ifindex;
810 	rcu_read_unlock();
811 
812 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
813 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
814 		 sizeof(ts_pktinfo), &ts_pktinfo);
815 }
816 
817 /*
818  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
819  */
820 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
821 	struct sk_buff *skb)
822 {
823 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
824 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
825 	struct scm_timestamping_internal tss;
826 
827 	int empty = 1, false_tstamp = 0;
828 	struct skb_shared_hwtstamps *shhwtstamps =
829 		skb_hwtstamps(skb);
830 
831 	/* Race occurred between timestamp enabling and packet
832 	   receiving.  Fill in the current time for now. */
833 	if (need_software_tstamp && skb->tstamp == 0) {
834 		__net_timestamp(skb);
835 		false_tstamp = 1;
836 	}
837 
838 	if (need_software_tstamp) {
839 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
840 			if (new_tstamp) {
841 				struct __kernel_sock_timeval tv;
842 
843 				skb_get_new_timestamp(skb, &tv);
844 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
845 					 sizeof(tv), &tv);
846 			} else {
847 				struct __kernel_old_timeval tv;
848 
849 				skb_get_timestamp(skb, &tv);
850 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
851 					 sizeof(tv), &tv);
852 			}
853 		} else {
854 			if (new_tstamp) {
855 				struct __kernel_timespec ts;
856 
857 				skb_get_new_timestampns(skb, &ts);
858 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
859 					 sizeof(ts), &ts);
860 			} else {
861 				struct __kernel_old_timespec ts;
862 
863 				skb_get_timestampns(skb, &ts);
864 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
865 					 sizeof(ts), &ts);
866 			}
867 		}
868 	}
869 
870 	memset(&tss, 0, sizeof(tss));
871 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
872 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
873 		empty = 0;
874 	if (shhwtstamps &&
875 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
876 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
877 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
878 		empty = 0;
879 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
880 		    !skb_is_err_queue(skb))
881 			put_ts_pktinfo(msg, skb);
882 	}
883 	if (!empty) {
884 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
885 			put_cmsg_scm_timestamping64(msg, &tss);
886 		else
887 			put_cmsg_scm_timestamping(msg, &tss);
888 
889 		if (skb_is_err_queue(skb) && skb->len &&
890 		    SKB_EXT_ERR(skb)->opt_stats)
891 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
892 				 skb->len, skb->data);
893 	}
894 }
895 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
896 
897 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
898 	struct sk_buff *skb)
899 {
900 	int ack;
901 
902 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
903 		return;
904 	if (!skb->wifi_acked_valid)
905 		return;
906 
907 	ack = skb->wifi_acked;
908 
909 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
910 }
911 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
912 
913 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
914 				   struct sk_buff *skb)
915 {
916 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
917 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
918 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
919 }
920 
921 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
922 	struct sk_buff *skb)
923 {
924 	sock_recv_timestamp(msg, sk, skb);
925 	sock_recv_drops(msg, sk, skb);
926 }
927 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
928 
929 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
930 					   size_t, int));
931 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
932 					    size_t, int));
933 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
934 				     int flags)
935 {
936 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
937 				  inet_recvmsg, sock, msg, msg_data_left(msg),
938 				  flags);
939 }
940 
941 /**
942  *	sock_recvmsg - receive a message from @sock
943  *	@sock: socket
944  *	@msg: message to receive
945  *	@flags: message flags
946  *
947  *	Receives @msg from @sock, passing through LSM. Returns the total number
948  *	of bytes received, or an error.
949  */
950 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
951 {
952 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
953 
954 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
955 }
956 EXPORT_SYMBOL(sock_recvmsg);
957 
958 /**
959  *	kernel_recvmsg - Receive a message from a socket (kernel space)
960  *	@sock: The socket to receive the message from
961  *	@msg: Received message
962  *	@vec: Input s/g array for message data
963  *	@num: Size of input s/g array
964  *	@size: Number of bytes to read
965  *	@flags: Message flags (MSG_DONTWAIT, etc...)
966  *
967  *	On return the msg structure contains the scatter/gather array passed in the
968  *	vec argument. The array is modified so that it consists of the unfilled
969  *	portion of the original array.
970  *
971  *	The returned value is the total number of bytes received, or an error.
972  */
973 
974 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
975 		   struct kvec *vec, size_t num, size_t size, int flags)
976 {
977 	msg->msg_control_is_user = false;
978 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
979 	return sock_recvmsg(sock, msg, flags);
980 }
981 EXPORT_SYMBOL(kernel_recvmsg);
982 
983 static ssize_t sock_sendpage(struct file *file, struct page *page,
984 			     int offset, size_t size, loff_t *ppos, int more)
985 {
986 	struct socket *sock;
987 	int flags;
988 
989 	sock = file->private_data;
990 
991 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
992 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
993 	flags |= more;
994 
995 	return kernel_sendpage(sock, page, offset, size, flags);
996 }
997 
998 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
999 				struct pipe_inode_info *pipe, size_t len,
1000 				unsigned int flags)
1001 {
1002 	struct socket *sock = file->private_data;
1003 
1004 	if (unlikely(!sock->ops->splice_read))
1005 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1006 
1007 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1008 }
1009 
1010 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1011 {
1012 	struct file *file = iocb->ki_filp;
1013 	struct socket *sock = file->private_data;
1014 	struct msghdr msg = {.msg_iter = *to,
1015 			     .msg_iocb = iocb};
1016 	ssize_t res;
1017 
1018 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1019 		msg.msg_flags = MSG_DONTWAIT;
1020 
1021 	if (iocb->ki_pos != 0)
1022 		return -ESPIPE;
1023 
1024 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1025 		return 0;
1026 
1027 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1028 	*to = msg.msg_iter;
1029 	return res;
1030 }
1031 
1032 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1033 {
1034 	struct file *file = iocb->ki_filp;
1035 	struct socket *sock = file->private_data;
1036 	struct msghdr msg = {.msg_iter = *from,
1037 			     .msg_iocb = iocb};
1038 	ssize_t res;
1039 
1040 	if (iocb->ki_pos != 0)
1041 		return -ESPIPE;
1042 
1043 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1044 		msg.msg_flags = MSG_DONTWAIT;
1045 
1046 	if (sock->type == SOCK_SEQPACKET)
1047 		msg.msg_flags |= MSG_EOR;
1048 
1049 	res = sock_sendmsg(sock, &msg);
1050 	*from = msg.msg_iter;
1051 	return res;
1052 }
1053 
1054 /*
1055  * Atomic setting of ioctl hooks to avoid race
1056  * with module unload.
1057  */
1058 
1059 static DEFINE_MUTEX(br_ioctl_mutex);
1060 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1061 
1062 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1063 {
1064 	mutex_lock(&br_ioctl_mutex);
1065 	br_ioctl_hook = hook;
1066 	mutex_unlock(&br_ioctl_mutex);
1067 }
1068 EXPORT_SYMBOL(brioctl_set);
1069 
1070 static DEFINE_MUTEX(vlan_ioctl_mutex);
1071 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1072 
1073 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1074 {
1075 	mutex_lock(&vlan_ioctl_mutex);
1076 	vlan_ioctl_hook = hook;
1077 	mutex_unlock(&vlan_ioctl_mutex);
1078 }
1079 EXPORT_SYMBOL(vlan_ioctl_set);
1080 
1081 static long sock_do_ioctl(struct net *net, struct socket *sock,
1082 			  unsigned int cmd, unsigned long arg)
1083 {
1084 	int err;
1085 	void __user *argp = (void __user *)arg;
1086 
1087 	err = sock->ops->ioctl(sock, cmd, arg);
1088 
1089 	/*
1090 	 * If this ioctl is unknown try to hand it down
1091 	 * to the NIC driver.
1092 	 */
1093 	if (err != -ENOIOCTLCMD)
1094 		return err;
1095 
1096 	if (cmd == SIOCGIFCONF) {
1097 		struct ifconf ifc;
1098 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1099 			return -EFAULT;
1100 		rtnl_lock();
1101 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1102 		rtnl_unlock();
1103 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1104 			err = -EFAULT;
1105 	} else {
1106 		struct ifreq ifr;
1107 		bool need_copyout;
1108 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1109 			return -EFAULT;
1110 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1111 		if (!err && need_copyout)
1112 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1113 				return -EFAULT;
1114 	}
1115 	return err;
1116 }
1117 
1118 /*
1119  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1120  *	what to do with it - that's up to the protocol still.
1121  */
1122 
1123 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1124 {
1125 	struct socket *sock;
1126 	struct sock *sk;
1127 	void __user *argp = (void __user *)arg;
1128 	int pid, err;
1129 	struct net *net;
1130 
1131 	sock = file->private_data;
1132 	sk = sock->sk;
1133 	net = sock_net(sk);
1134 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1135 		struct ifreq ifr;
1136 		bool need_copyout;
1137 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1138 			return -EFAULT;
1139 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1140 		if (!err && need_copyout)
1141 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1142 				return -EFAULT;
1143 	} else
1144 #ifdef CONFIG_WEXT_CORE
1145 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1146 		err = wext_handle_ioctl(net, cmd, argp);
1147 	} else
1148 #endif
1149 		switch (cmd) {
1150 		case FIOSETOWN:
1151 		case SIOCSPGRP:
1152 			err = -EFAULT;
1153 			if (get_user(pid, (int __user *)argp))
1154 				break;
1155 			err = f_setown(sock->file, pid, 1);
1156 			break;
1157 		case FIOGETOWN:
1158 		case SIOCGPGRP:
1159 			err = put_user(f_getown(sock->file),
1160 				       (int __user *)argp);
1161 			break;
1162 		case SIOCGIFBR:
1163 		case SIOCSIFBR:
1164 		case SIOCBRADDBR:
1165 		case SIOCBRDELBR:
1166 			err = -ENOPKG;
1167 			if (!br_ioctl_hook)
1168 				request_module("bridge");
1169 
1170 			mutex_lock(&br_ioctl_mutex);
1171 			if (br_ioctl_hook)
1172 				err = br_ioctl_hook(net, cmd, argp);
1173 			mutex_unlock(&br_ioctl_mutex);
1174 			break;
1175 		case SIOCGIFVLAN:
1176 		case SIOCSIFVLAN:
1177 			err = -ENOPKG;
1178 			if (!vlan_ioctl_hook)
1179 				request_module("8021q");
1180 
1181 			mutex_lock(&vlan_ioctl_mutex);
1182 			if (vlan_ioctl_hook)
1183 				err = vlan_ioctl_hook(net, argp);
1184 			mutex_unlock(&vlan_ioctl_mutex);
1185 			break;
1186 		case SIOCGSKNS:
1187 			err = -EPERM;
1188 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1189 				break;
1190 
1191 			err = open_related_ns(&net->ns, get_net_ns);
1192 			break;
1193 		case SIOCGSTAMP_OLD:
1194 		case SIOCGSTAMPNS_OLD:
1195 			if (!sock->ops->gettstamp) {
1196 				err = -ENOIOCTLCMD;
1197 				break;
1198 			}
1199 			err = sock->ops->gettstamp(sock, argp,
1200 						   cmd == SIOCGSTAMP_OLD,
1201 						   !IS_ENABLED(CONFIG_64BIT));
1202 			break;
1203 		case SIOCGSTAMP_NEW:
1204 		case SIOCGSTAMPNS_NEW:
1205 			if (!sock->ops->gettstamp) {
1206 				err = -ENOIOCTLCMD;
1207 				break;
1208 			}
1209 			err = sock->ops->gettstamp(sock, argp,
1210 						   cmd == SIOCGSTAMP_NEW,
1211 						   false);
1212 			break;
1213 		default:
1214 			err = sock_do_ioctl(net, sock, cmd, arg);
1215 			break;
1216 		}
1217 	return err;
1218 }
1219 
1220 /**
1221  *	sock_create_lite - creates a socket
1222  *	@family: protocol family (AF_INET, ...)
1223  *	@type: communication type (SOCK_STREAM, ...)
1224  *	@protocol: protocol (0, ...)
1225  *	@res: new socket
1226  *
1227  *	Creates a new socket and assigns it to @res, passing through LSM.
1228  *	The new socket initialization is not complete, see kernel_accept().
1229  *	Returns 0 or an error. On failure @res is set to %NULL.
1230  *	This function internally uses GFP_KERNEL.
1231  */
1232 
1233 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1234 {
1235 	int err;
1236 	struct socket *sock = NULL;
1237 
1238 	err = security_socket_create(family, type, protocol, 1);
1239 	if (err)
1240 		goto out;
1241 
1242 	sock = sock_alloc();
1243 	if (!sock) {
1244 		err = -ENOMEM;
1245 		goto out;
1246 	}
1247 
1248 	sock->type = type;
1249 	err = security_socket_post_create(sock, family, type, protocol, 1);
1250 	if (err)
1251 		goto out_release;
1252 
1253 out:
1254 	*res = sock;
1255 	return err;
1256 out_release:
1257 	sock_release(sock);
1258 	sock = NULL;
1259 	goto out;
1260 }
1261 EXPORT_SYMBOL(sock_create_lite);
1262 
1263 /* No kernel lock held - perfect */
1264 static __poll_t sock_poll(struct file *file, poll_table *wait)
1265 {
1266 	struct socket *sock = file->private_data;
1267 	__poll_t events = poll_requested_events(wait), flag = 0;
1268 
1269 	if (!sock->ops->poll)
1270 		return 0;
1271 
1272 	if (sk_can_busy_loop(sock->sk)) {
1273 		/* poll once if requested by the syscall */
1274 		if (events & POLL_BUSY_LOOP)
1275 			sk_busy_loop(sock->sk, 1);
1276 
1277 		/* if this socket can poll_ll, tell the system call */
1278 		flag = POLL_BUSY_LOOP;
1279 	}
1280 
1281 	return sock->ops->poll(file, sock, wait) | flag;
1282 }
1283 
1284 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1285 {
1286 	struct socket *sock = file->private_data;
1287 
1288 	return sock->ops->mmap(file, sock, vma);
1289 }
1290 
1291 static int sock_close(struct inode *inode, struct file *filp)
1292 {
1293 	__sock_release(SOCKET_I(inode), inode);
1294 	return 0;
1295 }
1296 
1297 /*
1298  *	Update the socket async list
1299  *
1300  *	Fasync_list locking strategy.
1301  *
1302  *	1. fasync_list is modified only under process context socket lock
1303  *	   i.e. under semaphore.
1304  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1305  *	   or under socket lock
1306  */
1307 
1308 static int sock_fasync(int fd, struct file *filp, int on)
1309 {
1310 	struct socket *sock = filp->private_data;
1311 	struct sock *sk = sock->sk;
1312 	struct socket_wq *wq = &sock->wq;
1313 
1314 	if (sk == NULL)
1315 		return -EINVAL;
1316 
1317 	lock_sock(sk);
1318 	fasync_helper(fd, filp, on, &wq->fasync_list);
1319 
1320 	if (!wq->fasync_list)
1321 		sock_reset_flag(sk, SOCK_FASYNC);
1322 	else
1323 		sock_set_flag(sk, SOCK_FASYNC);
1324 
1325 	release_sock(sk);
1326 	return 0;
1327 }
1328 
1329 /* This function may be called only under rcu_lock */
1330 
1331 int sock_wake_async(struct socket_wq *wq, int how, int band)
1332 {
1333 	if (!wq || !wq->fasync_list)
1334 		return -1;
1335 
1336 	switch (how) {
1337 	case SOCK_WAKE_WAITD:
1338 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1339 			break;
1340 		goto call_kill;
1341 	case SOCK_WAKE_SPACE:
1342 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1343 			break;
1344 		fallthrough;
1345 	case SOCK_WAKE_IO:
1346 call_kill:
1347 		kill_fasync(&wq->fasync_list, SIGIO, band);
1348 		break;
1349 	case SOCK_WAKE_URG:
1350 		kill_fasync(&wq->fasync_list, SIGURG, band);
1351 	}
1352 
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL(sock_wake_async);
1356 
1357 /**
1358  *	__sock_create - creates a socket
1359  *	@net: net namespace
1360  *	@family: protocol family (AF_INET, ...)
1361  *	@type: communication type (SOCK_STREAM, ...)
1362  *	@protocol: protocol (0, ...)
1363  *	@res: new socket
1364  *	@kern: boolean for kernel space sockets
1365  *
1366  *	Creates a new socket and assigns it to @res, passing through LSM.
1367  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1368  *	be set to true if the socket resides in kernel space.
1369  *	This function internally uses GFP_KERNEL.
1370  */
1371 
1372 int __sock_create(struct net *net, int family, int type, int protocol,
1373 			 struct socket **res, int kern)
1374 {
1375 	int err;
1376 	struct socket *sock;
1377 	const struct net_proto_family *pf;
1378 
1379 	/*
1380 	 *      Check protocol is in range
1381 	 */
1382 	if (family < 0 || family >= NPROTO)
1383 		return -EAFNOSUPPORT;
1384 	if (type < 0 || type >= SOCK_MAX)
1385 		return -EINVAL;
1386 
1387 	/* Compatibility.
1388 
1389 	   This uglymoron is moved from INET layer to here to avoid
1390 	   deadlock in module load.
1391 	 */
1392 	if (family == PF_INET && type == SOCK_PACKET) {
1393 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1394 			     current->comm);
1395 		family = PF_PACKET;
1396 	}
1397 
1398 	err = security_socket_create(family, type, protocol, kern);
1399 	if (err)
1400 		return err;
1401 
1402 	/*
1403 	 *	Allocate the socket and allow the family to set things up. if
1404 	 *	the protocol is 0, the family is instructed to select an appropriate
1405 	 *	default.
1406 	 */
1407 	sock = sock_alloc();
1408 	if (!sock) {
1409 		net_warn_ratelimited("socket: no more sockets\n");
1410 		return -ENFILE;	/* Not exactly a match, but its the
1411 				   closest posix thing */
1412 	}
1413 
1414 	sock->type = type;
1415 
1416 #ifdef CONFIG_MODULES
1417 	/* Attempt to load a protocol module if the find failed.
1418 	 *
1419 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1420 	 * requested real, full-featured networking support upon configuration.
1421 	 * Otherwise module support will break!
1422 	 */
1423 	if (rcu_access_pointer(net_families[family]) == NULL)
1424 		request_module("net-pf-%d", family);
1425 #endif
1426 
1427 	rcu_read_lock();
1428 	pf = rcu_dereference(net_families[family]);
1429 	err = -EAFNOSUPPORT;
1430 	if (!pf)
1431 		goto out_release;
1432 
1433 	/*
1434 	 * We will call the ->create function, that possibly is in a loadable
1435 	 * module, so we have to bump that loadable module refcnt first.
1436 	 */
1437 	if (!try_module_get(pf->owner))
1438 		goto out_release;
1439 
1440 	/* Now protected by module ref count */
1441 	rcu_read_unlock();
1442 
1443 	err = pf->create(net, sock, protocol, kern);
1444 	if (err < 0)
1445 		goto out_module_put;
1446 
1447 	/*
1448 	 * Now to bump the refcnt of the [loadable] module that owns this
1449 	 * socket at sock_release time we decrement its refcnt.
1450 	 */
1451 	if (!try_module_get(sock->ops->owner))
1452 		goto out_module_busy;
1453 
1454 	/*
1455 	 * Now that we're done with the ->create function, the [loadable]
1456 	 * module can have its refcnt decremented
1457 	 */
1458 	module_put(pf->owner);
1459 	err = security_socket_post_create(sock, family, type, protocol, kern);
1460 	if (err)
1461 		goto out_sock_release;
1462 	*res = sock;
1463 
1464 	return 0;
1465 
1466 out_module_busy:
1467 	err = -EAFNOSUPPORT;
1468 out_module_put:
1469 	sock->ops = NULL;
1470 	module_put(pf->owner);
1471 out_sock_release:
1472 	sock_release(sock);
1473 	return err;
1474 
1475 out_release:
1476 	rcu_read_unlock();
1477 	goto out_sock_release;
1478 }
1479 EXPORT_SYMBOL(__sock_create);
1480 
1481 /**
1482  *	sock_create - creates a socket
1483  *	@family: protocol family (AF_INET, ...)
1484  *	@type: communication type (SOCK_STREAM, ...)
1485  *	@protocol: protocol (0, ...)
1486  *	@res: new socket
1487  *
1488  *	A wrapper around __sock_create().
1489  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1490  */
1491 
1492 int sock_create(int family, int type, int protocol, struct socket **res)
1493 {
1494 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1495 }
1496 EXPORT_SYMBOL(sock_create);
1497 
1498 /**
1499  *	sock_create_kern - creates a socket (kernel space)
1500  *	@net: net namespace
1501  *	@family: protocol family (AF_INET, ...)
1502  *	@type: communication type (SOCK_STREAM, ...)
1503  *	@protocol: protocol (0, ...)
1504  *	@res: new socket
1505  *
1506  *	A wrapper around __sock_create().
1507  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1508  */
1509 
1510 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1511 {
1512 	return __sock_create(net, family, type, protocol, res, 1);
1513 }
1514 EXPORT_SYMBOL(sock_create_kern);
1515 
1516 int __sys_socket(int family, int type, int protocol)
1517 {
1518 	int retval;
1519 	struct socket *sock;
1520 	int flags;
1521 
1522 	/* Check the SOCK_* constants for consistency.  */
1523 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1524 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1525 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1526 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1527 
1528 	flags = type & ~SOCK_TYPE_MASK;
1529 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1530 		return -EINVAL;
1531 	type &= SOCK_TYPE_MASK;
1532 
1533 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1534 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1535 
1536 	retval = sock_create(family, type, protocol, &sock);
1537 	if (retval < 0)
1538 		return retval;
1539 
1540 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1541 }
1542 
1543 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1544 {
1545 	return __sys_socket(family, type, protocol);
1546 }
1547 
1548 /*
1549  *	Create a pair of connected sockets.
1550  */
1551 
1552 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1553 {
1554 	struct socket *sock1, *sock2;
1555 	int fd1, fd2, err;
1556 	struct file *newfile1, *newfile2;
1557 	int flags;
1558 
1559 	flags = type & ~SOCK_TYPE_MASK;
1560 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1561 		return -EINVAL;
1562 	type &= SOCK_TYPE_MASK;
1563 
1564 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1565 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1566 
1567 	/*
1568 	 * reserve descriptors and make sure we won't fail
1569 	 * to return them to userland.
1570 	 */
1571 	fd1 = get_unused_fd_flags(flags);
1572 	if (unlikely(fd1 < 0))
1573 		return fd1;
1574 
1575 	fd2 = get_unused_fd_flags(flags);
1576 	if (unlikely(fd2 < 0)) {
1577 		put_unused_fd(fd1);
1578 		return fd2;
1579 	}
1580 
1581 	err = put_user(fd1, &usockvec[0]);
1582 	if (err)
1583 		goto out;
1584 
1585 	err = put_user(fd2, &usockvec[1]);
1586 	if (err)
1587 		goto out;
1588 
1589 	/*
1590 	 * Obtain the first socket and check if the underlying protocol
1591 	 * supports the socketpair call.
1592 	 */
1593 
1594 	err = sock_create(family, type, protocol, &sock1);
1595 	if (unlikely(err < 0))
1596 		goto out;
1597 
1598 	err = sock_create(family, type, protocol, &sock2);
1599 	if (unlikely(err < 0)) {
1600 		sock_release(sock1);
1601 		goto out;
1602 	}
1603 
1604 	err = security_socket_socketpair(sock1, sock2);
1605 	if (unlikely(err)) {
1606 		sock_release(sock2);
1607 		sock_release(sock1);
1608 		goto out;
1609 	}
1610 
1611 	err = sock1->ops->socketpair(sock1, sock2);
1612 	if (unlikely(err < 0)) {
1613 		sock_release(sock2);
1614 		sock_release(sock1);
1615 		goto out;
1616 	}
1617 
1618 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1619 	if (IS_ERR(newfile1)) {
1620 		err = PTR_ERR(newfile1);
1621 		sock_release(sock2);
1622 		goto out;
1623 	}
1624 
1625 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1626 	if (IS_ERR(newfile2)) {
1627 		err = PTR_ERR(newfile2);
1628 		fput(newfile1);
1629 		goto out;
1630 	}
1631 
1632 	audit_fd_pair(fd1, fd2);
1633 
1634 	fd_install(fd1, newfile1);
1635 	fd_install(fd2, newfile2);
1636 	return 0;
1637 
1638 out:
1639 	put_unused_fd(fd2);
1640 	put_unused_fd(fd1);
1641 	return err;
1642 }
1643 
1644 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1645 		int __user *, usockvec)
1646 {
1647 	return __sys_socketpair(family, type, protocol, usockvec);
1648 }
1649 
1650 /*
1651  *	Bind a name to a socket. Nothing much to do here since it's
1652  *	the protocol's responsibility to handle the local address.
1653  *
1654  *	We move the socket address to kernel space before we call
1655  *	the protocol layer (having also checked the address is ok).
1656  */
1657 
1658 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1659 {
1660 	struct socket *sock;
1661 	struct sockaddr_storage address;
1662 	int err, fput_needed;
1663 
1664 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1665 	if (sock) {
1666 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1667 		if (!err) {
1668 			err = security_socket_bind(sock,
1669 						   (struct sockaddr *)&address,
1670 						   addrlen);
1671 			if (!err)
1672 				err = sock->ops->bind(sock,
1673 						      (struct sockaddr *)
1674 						      &address, addrlen);
1675 		}
1676 		fput_light(sock->file, fput_needed);
1677 	}
1678 	return err;
1679 }
1680 
1681 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1682 {
1683 	return __sys_bind(fd, umyaddr, addrlen);
1684 }
1685 
1686 /*
1687  *	Perform a listen. Basically, we allow the protocol to do anything
1688  *	necessary for a listen, and if that works, we mark the socket as
1689  *	ready for listening.
1690  */
1691 
1692 int __sys_listen(int fd, int backlog)
1693 {
1694 	struct socket *sock;
1695 	int err, fput_needed;
1696 	int somaxconn;
1697 
1698 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1699 	if (sock) {
1700 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1701 		if ((unsigned int)backlog > somaxconn)
1702 			backlog = somaxconn;
1703 
1704 		err = security_socket_listen(sock, backlog);
1705 		if (!err)
1706 			err = sock->ops->listen(sock, backlog);
1707 
1708 		fput_light(sock->file, fput_needed);
1709 	}
1710 	return err;
1711 }
1712 
1713 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1714 {
1715 	return __sys_listen(fd, backlog);
1716 }
1717 
1718 int __sys_accept4_file(struct file *file, unsigned file_flags,
1719 		       struct sockaddr __user *upeer_sockaddr,
1720 		       int __user *upeer_addrlen, int flags,
1721 		       unsigned long nofile)
1722 {
1723 	struct socket *sock, *newsock;
1724 	struct file *newfile;
1725 	int err, len, newfd;
1726 	struct sockaddr_storage address;
1727 
1728 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1729 		return -EINVAL;
1730 
1731 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1732 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1733 
1734 	sock = sock_from_file(file);
1735 	if (!sock) {
1736 		err = -ENOTSOCK;
1737 		goto out;
1738 	}
1739 
1740 	err = -ENFILE;
1741 	newsock = sock_alloc();
1742 	if (!newsock)
1743 		goto out;
1744 
1745 	newsock->type = sock->type;
1746 	newsock->ops = sock->ops;
1747 
1748 	/*
1749 	 * We don't need try_module_get here, as the listening socket (sock)
1750 	 * has the protocol module (sock->ops->owner) held.
1751 	 */
1752 	__module_get(newsock->ops->owner);
1753 
1754 	newfd = __get_unused_fd_flags(flags, nofile);
1755 	if (unlikely(newfd < 0)) {
1756 		err = newfd;
1757 		sock_release(newsock);
1758 		goto out;
1759 	}
1760 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1761 	if (IS_ERR(newfile)) {
1762 		err = PTR_ERR(newfile);
1763 		put_unused_fd(newfd);
1764 		goto out;
1765 	}
1766 
1767 	err = security_socket_accept(sock, newsock);
1768 	if (err)
1769 		goto out_fd;
1770 
1771 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1772 					false);
1773 	if (err < 0)
1774 		goto out_fd;
1775 
1776 	if (upeer_sockaddr) {
1777 		len = newsock->ops->getname(newsock,
1778 					(struct sockaddr *)&address, 2);
1779 		if (len < 0) {
1780 			err = -ECONNABORTED;
1781 			goto out_fd;
1782 		}
1783 		err = move_addr_to_user(&address,
1784 					len, upeer_sockaddr, upeer_addrlen);
1785 		if (err < 0)
1786 			goto out_fd;
1787 	}
1788 
1789 	/* File flags are not inherited via accept() unlike another OSes. */
1790 
1791 	fd_install(newfd, newfile);
1792 	err = newfd;
1793 out:
1794 	return err;
1795 out_fd:
1796 	fput(newfile);
1797 	put_unused_fd(newfd);
1798 	goto out;
1799 
1800 }
1801 
1802 /*
1803  *	For accept, we attempt to create a new socket, set up the link
1804  *	with the client, wake up the client, then return the new
1805  *	connected fd. We collect the address of the connector in kernel
1806  *	space and move it to user at the very end. This is unclean because
1807  *	we open the socket then return an error.
1808  *
1809  *	1003.1g adds the ability to recvmsg() to query connection pending
1810  *	status to recvmsg. We need to add that support in a way thats
1811  *	clean when we restructure accept also.
1812  */
1813 
1814 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1815 		  int __user *upeer_addrlen, int flags)
1816 {
1817 	int ret = -EBADF;
1818 	struct fd f;
1819 
1820 	f = fdget(fd);
1821 	if (f.file) {
1822 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1823 						upeer_addrlen, flags,
1824 						rlimit(RLIMIT_NOFILE));
1825 		fdput(f);
1826 	}
1827 
1828 	return ret;
1829 }
1830 
1831 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1832 		int __user *, upeer_addrlen, int, flags)
1833 {
1834 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1835 }
1836 
1837 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1838 		int __user *, upeer_addrlen)
1839 {
1840 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1841 }
1842 
1843 /*
1844  *	Attempt to connect to a socket with the server address.  The address
1845  *	is in user space so we verify it is OK and move it to kernel space.
1846  *
1847  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1848  *	break bindings
1849  *
1850  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1851  *	other SEQPACKET protocols that take time to connect() as it doesn't
1852  *	include the -EINPROGRESS status for such sockets.
1853  */
1854 
1855 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1856 		       int addrlen, int file_flags)
1857 {
1858 	struct socket *sock;
1859 	int err;
1860 
1861 	sock = sock_from_file(file);
1862 	if (!sock) {
1863 		err = -ENOTSOCK;
1864 		goto out;
1865 	}
1866 
1867 	err =
1868 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1869 	if (err)
1870 		goto out;
1871 
1872 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1873 				 sock->file->f_flags | file_flags);
1874 out:
1875 	return err;
1876 }
1877 
1878 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1879 {
1880 	int ret = -EBADF;
1881 	struct fd f;
1882 
1883 	f = fdget(fd);
1884 	if (f.file) {
1885 		struct sockaddr_storage address;
1886 
1887 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1888 		if (!ret)
1889 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1890 		fdput(f);
1891 	}
1892 
1893 	return ret;
1894 }
1895 
1896 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1897 		int, addrlen)
1898 {
1899 	return __sys_connect(fd, uservaddr, addrlen);
1900 }
1901 
1902 /*
1903  *	Get the local address ('name') of a socket object. Move the obtained
1904  *	name to user space.
1905  */
1906 
1907 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1908 		      int __user *usockaddr_len)
1909 {
1910 	struct socket *sock;
1911 	struct sockaddr_storage address;
1912 	int err, fput_needed;
1913 
1914 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1915 	if (!sock)
1916 		goto out;
1917 
1918 	err = security_socket_getsockname(sock);
1919 	if (err)
1920 		goto out_put;
1921 
1922 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1923 	if (err < 0)
1924 		goto out_put;
1925         /* "err" is actually length in this case */
1926 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1927 
1928 out_put:
1929 	fput_light(sock->file, fput_needed);
1930 out:
1931 	return err;
1932 }
1933 
1934 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1935 		int __user *, usockaddr_len)
1936 {
1937 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1938 }
1939 
1940 /*
1941  *	Get the remote address ('name') of a socket object. Move the obtained
1942  *	name to user space.
1943  */
1944 
1945 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1946 		      int __user *usockaddr_len)
1947 {
1948 	struct socket *sock;
1949 	struct sockaddr_storage address;
1950 	int err, fput_needed;
1951 
1952 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1953 	if (sock != NULL) {
1954 		err = security_socket_getpeername(sock);
1955 		if (err) {
1956 			fput_light(sock->file, fput_needed);
1957 			return err;
1958 		}
1959 
1960 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1961 		if (err >= 0)
1962 			/* "err" is actually length in this case */
1963 			err = move_addr_to_user(&address, err, usockaddr,
1964 						usockaddr_len);
1965 		fput_light(sock->file, fput_needed);
1966 	}
1967 	return err;
1968 }
1969 
1970 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1971 		int __user *, usockaddr_len)
1972 {
1973 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1974 }
1975 
1976 /*
1977  *	Send a datagram to a given address. We move the address into kernel
1978  *	space and check the user space data area is readable before invoking
1979  *	the protocol.
1980  */
1981 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1982 		 struct sockaddr __user *addr,  int addr_len)
1983 {
1984 	struct socket *sock;
1985 	struct sockaddr_storage address;
1986 	int err;
1987 	struct msghdr msg;
1988 	struct iovec iov;
1989 	int fput_needed;
1990 
1991 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1992 	if (unlikely(err))
1993 		return err;
1994 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1995 	if (!sock)
1996 		goto out;
1997 
1998 	msg.msg_name = NULL;
1999 	msg.msg_control = NULL;
2000 	msg.msg_controllen = 0;
2001 	msg.msg_namelen = 0;
2002 	if (addr) {
2003 		err = move_addr_to_kernel(addr, addr_len, &address);
2004 		if (err < 0)
2005 			goto out_put;
2006 		msg.msg_name = (struct sockaddr *)&address;
2007 		msg.msg_namelen = addr_len;
2008 	}
2009 	if (sock->file->f_flags & O_NONBLOCK)
2010 		flags |= MSG_DONTWAIT;
2011 	msg.msg_flags = flags;
2012 	err = sock_sendmsg(sock, &msg);
2013 
2014 out_put:
2015 	fput_light(sock->file, fput_needed);
2016 out:
2017 	return err;
2018 }
2019 
2020 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2021 		unsigned int, flags, struct sockaddr __user *, addr,
2022 		int, addr_len)
2023 {
2024 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2025 }
2026 
2027 /*
2028  *	Send a datagram down a socket.
2029  */
2030 
2031 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2032 		unsigned int, flags)
2033 {
2034 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2035 }
2036 
2037 /*
2038  *	Receive a frame from the socket and optionally record the address of the
2039  *	sender. We verify the buffers are writable and if needed move the
2040  *	sender address from kernel to user space.
2041  */
2042 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2043 		   struct sockaddr __user *addr, int __user *addr_len)
2044 {
2045 	struct socket *sock;
2046 	struct iovec iov;
2047 	struct msghdr msg;
2048 	struct sockaddr_storage address;
2049 	int err, err2;
2050 	int fput_needed;
2051 
2052 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2053 	if (unlikely(err))
2054 		return err;
2055 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2056 	if (!sock)
2057 		goto out;
2058 
2059 	msg.msg_control = NULL;
2060 	msg.msg_controllen = 0;
2061 	/* Save some cycles and don't copy the address if not needed */
2062 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2063 	/* We assume all kernel code knows the size of sockaddr_storage */
2064 	msg.msg_namelen = 0;
2065 	msg.msg_iocb = NULL;
2066 	msg.msg_flags = 0;
2067 	if (sock->file->f_flags & O_NONBLOCK)
2068 		flags |= MSG_DONTWAIT;
2069 	err = sock_recvmsg(sock, &msg, flags);
2070 
2071 	if (err >= 0 && addr != NULL) {
2072 		err2 = move_addr_to_user(&address,
2073 					 msg.msg_namelen, addr, addr_len);
2074 		if (err2 < 0)
2075 			err = err2;
2076 	}
2077 
2078 	fput_light(sock->file, fput_needed);
2079 out:
2080 	return err;
2081 }
2082 
2083 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2084 		unsigned int, flags, struct sockaddr __user *, addr,
2085 		int __user *, addr_len)
2086 {
2087 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2088 }
2089 
2090 /*
2091  *	Receive a datagram from a socket.
2092  */
2093 
2094 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2095 		unsigned int, flags)
2096 {
2097 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2098 }
2099 
2100 static bool sock_use_custom_sol_socket(const struct socket *sock)
2101 {
2102 	const struct sock *sk = sock->sk;
2103 
2104 	/* Use sock->ops->setsockopt() for MPTCP */
2105 	return IS_ENABLED(CONFIG_MPTCP) &&
2106 	       sk->sk_protocol == IPPROTO_MPTCP &&
2107 	       sk->sk_type == SOCK_STREAM &&
2108 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2109 }
2110 
2111 /*
2112  *	Set a socket option. Because we don't know the option lengths we have
2113  *	to pass the user mode parameter for the protocols to sort out.
2114  */
2115 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2116 		int optlen)
2117 {
2118 	sockptr_t optval = USER_SOCKPTR(user_optval);
2119 	char *kernel_optval = NULL;
2120 	int err, fput_needed;
2121 	struct socket *sock;
2122 
2123 	if (optlen < 0)
2124 		return -EINVAL;
2125 
2126 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 	if (!sock)
2128 		return err;
2129 
2130 	err = security_socket_setsockopt(sock, level, optname);
2131 	if (err)
2132 		goto out_put;
2133 
2134 	if (!in_compat_syscall())
2135 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2136 						     user_optval, &optlen,
2137 						     &kernel_optval);
2138 	if (err < 0)
2139 		goto out_put;
2140 	if (err > 0) {
2141 		err = 0;
2142 		goto out_put;
2143 	}
2144 
2145 	if (kernel_optval)
2146 		optval = KERNEL_SOCKPTR(kernel_optval);
2147 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2148 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2149 	else if (unlikely(!sock->ops->setsockopt))
2150 		err = -EOPNOTSUPP;
2151 	else
2152 		err = sock->ops->setsockopt(sock, level, optname, optval,
2153 					    optlen);
2154 	kfree(kernel_optval);
2155 out_put:
2156 	fput_light(sock->file, fput_needed);
2157 	return err;
2158 }
2159 
2160 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2161 		char __user *, optval, int, optlen)
2162 {
2163 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2164 }
2165 
2166 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2167 							 int optname));
2168 
2169 /*
2170  *	Get a socket option. Because we don't know the option lengths we have
2171  *	to pass a user mode parameter for the protocols to sort out.
2172  */
2173 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2174 		int __user *optlen)
2175 {
2176 	int err, fput_needed;
2177 	struct socket *sock;
2178 	int max_optlen;
2179 
2180 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2181 	if (!sock)
2182 		return err;
2183 
2184 	err = security_socket_getsockopt(sock, level, optname);
2185 	if (err)
2186 		goto out_put;
2187 
2188 	if (!in_compat_syscall())
2189 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2190 
2191 	if (level == SOL_SOCKET)
2192 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2193 	else if (unlikely(!sock->ops->getsockopt))
2194 		err = -EOPNOTSUPP;
2195 	else
2196 		err = sock->ops->getsockopt(sock, level, optname, optval,
2197 					    optlen);
2198 
2199 	if (!in_compat_syscall())
2200 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2201 						     optval, optlen, max_optlen,
2202 						     err);
2203 out_put:
2204 	fput_light(sock->file, fput_needed);
2205 	return err;
2206 }
2207 
2208 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2209 		char __user *, optval, int __user *, optlen)
2210 {
2211 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2212 }
2213 
2214 /*
2215  *	Shutdown a socket.
2216  */
2217 
2218 int __sys_shutdown_sock(struct socket *sock, int how)
2219 {
2220 	int err;
2221 
2222 	err = security_socket_shutdown(sock, how);
2223 	if (!err)
2224 		err = sock->ops->shutdown(sock, how);
2225 
2226 	return err;
2227 }
2228 
2229 int __sys_shutdown(int fd, int how)
2230 {
2231 	int err, fput_needed;
2232 	struct socket *sock;
2233 
2234 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2235 	if (sock != NULL) {
2236 		err = __sys_shutdown_sock(sock, how);
2237 		fput_light(sock->file, fput_needed);
2238 	}
2239 	return err;
2240 }
2241 
2242 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2243 {
2244 	return __sys_shutdown(fd, how);
2245 }
2246 
2247 /* A couple of helpful macros for getting the address of the 32/64 bit
2248  * fields which are the same type (int / unsigned) on our platforms.
2249  */
2250 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2251 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2252 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2253 
2254 struct used_address {
2255 	struct sockaddr_storage name;
2256 	unsigned int name_len;
2257 };
2258 
2259 int __copy_msghdr_from_user(struct msghdr *kmsg,
2260 			    struct user_msghdr __user *umsg,
2261 			    struct sockaddr __user **save_addr,
2262 			    struct iovec __user **uiov, size_t *nsegs)
2263 {
2264 	struct user_msghdr msg;
2265 	ssize_t err;
2266 
2267 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2268 		return -EFAULT;
2269 
2270 	kmsg->msg_control_is_user = true;
2271 	kmsg->msg_control_user = msg.msg_control;
2272 	kmsg->msg_controllen = msg.msg_controllen;
2273 	kmsg->msg_flags = msg.msg_flags;
2274 
2275 	kmsg->msg_namelen = msg.msg_namelen;
2276 	if (!msg.msg_name)
2277 		kmsg->msg_namelen = 0;
2278 
2279 	if (kmsg->msg_namelen < 0)
2280 		return -EINVAL;
2281 
2282 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2283 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2284 
2285 	if (save_addr)
2286 		*save_addr = msg.msg_name;
2287 
2288 	if (msg.msg_name && kmsg->msg_namelen) {
2289 		if (!save_addr) {
2290 			err = move_addr_to_kernel(msg.msg_name,
2291 						  kmsg->msg_namelen,
2292 						  kmsg->msg_name);
2293 			if (err < 0)
2294 				return err;
2295 		}
2296 	} else {
2297 		kmsg->msg_name = NULL;
2298 		kmsg->msg_namelen = 0;
2299 	}
2300 
2301 	if (msg.msg_iovlen > UIO_MAXIOV)
2302 		return -EMSGSIZE;
2303 
2304 	kmsg->msg_iocb = NULL;
2305 	*uiov = msg.msg_iov;
2306 	*nsegs = msg.msg_iovlen;
2307 	return 0;
2308 }
2309 
2310 static int copy_msghdr_from_user(struct msghdr *kmsg,
2311 				 struct user_msghdr __user *umsg,
2312 				 struct sockaddr __user **save_addr,
2313 				 struct iovec **iov)
2314 {
2315 	struct user_msghdr msg;
2316 	ssize_t err;
2317 
2318 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2319 					&msg.msg_iovlen);
2320 	if (err)
2321 		return err;
2322 
2323 	err = import_iovec(save_addr ? READ : WRITE,
2324 			    msg.msg_iov, msg.msg_iovlen,
2325 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2326 	return err < 0 ? err : 0;
2327 }
2328 
2329 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2330 			   unsigned int flags, struct used_address *used_address,
2331 			   unsigned int allowed_msghdr_flags)
2332 {
2333 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2334 				__aligned(sizeof(__kernel_size_t));
2335 	/* 20 is size of ipv6_pktinfo */
2336 	unsigned char *ctl_buf = ctl;
2337 	int ctl_len;
2338 	ssize_t err;
2339 
2340 	err = -ENOBUFS;
2341 
2342 	if (msg_sys->msg_controllen > INT_MAX)
2343 		goto out;
2344 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2345 	ctl_len = msg_sys->msg_controllen;
2346 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2347 		err =
2348 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2349 						     sizeof(ctl));
2350 		if (err)
2351 			goto out;
2352 		ctl_buf = msg_sys->msg_control;
2353 		ctl_len = msg_sys->msg_controllen;
2354 	} else if (ctl_len) {
2355 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2356 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2357 		if (ctl_len > sizeof(ctl)) {
2358 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2359 			if (ctl_buf == NULL)
2360 				goto out;
2361 		}
2362 		err = -EFAULT;
2363 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2364 			goto out_freectl;
2365 		msg_sys->msg_control = ctl_buf;
2366 		msg_sys->msg_control_is_user = false;
2367 	}
2368 	msg_sys->msg_flags = flags;
2369 
2370 	if (sock->file->f_flags & O_NONBLOCK)
2371 		msg_sys->msg_flags |= MSG_DONTWAIT;
2372 	/*
2373 	 * If this is sendmmsg() and current destination address is same as
2374 	 * previously succeeded address, omit asking LSM's decision.
2375 	 * used_address->name_len is initialized to UINT_MAX so that the first
2376 	 * destination address never matches.
2377 	 */
2378 	if (used_address && msg_sys->msg_name &&
2379 	    used_address->name_len == msg_sys->msg_namelen &&
2380 	    !memcmp(&used_address->name, msg_sys->msg_name,
2381 		    used_address->name_len)) {
2382 		err = sock_sendmsg_nosec(sock, msg_sys);
2383 		goto out_freectl;
2384 	}
2385 	err = sock_sendmsg(sock, msg_sys);
2386 	/*
2387 	 * If this is sendmmsg() and sending to current destination address was
2388 	 * successful, remember it.
2389 	 */
2390 	if (used_address && err >= 0) {
2391 		used_address->name_len = msg_sys->msg_namelen;
2392 		if (msg_sys->msg_name)
2393 			memcpy(&used_address->name, msg_sys->msg_name,
2394 			       used_address->name_len);
2395 	}
2396 
2397 out_freectl:
2398 	if (ctl_buf != ctl)
2399 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2400 out:
2401 	return err;
2402 }
2403 
2404 int sendmsg_copy_msghdr(struct msghdr *msg,
2405 			struct user_msghdr __user *umsg, unsigned flags,
2406 			struct iovec **iov)
2407 {
2408 	int err;
2409 
2410 	if (flags & MSG_CMSG_COMPAT) {
2411 		struct compat_msghdr __user *msg_compat;
2412 
2413 		msg_compat = (struct compat_msghdr __user *) umsg;
2414 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2415 	} else {
2416 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2417 	}
2418 	if (err < 0)
2419 		return err;
2420 
2421 	return 0;
2422 }
2423 
2424 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2425 			 struct msghdr *msg_sys, unsigned int flags,
2426 			 struct used_address *used_address,
2427 			 unsigned int allowed_msghdr_flags)
2428 {
2429 	struct sockaddr_storage address;
2430 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2431 	ssize_t err;
2432 
2433 	msg_sys->msg_name = &address;
2434 
2435 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2436 	if (err < 0)
2437 		return err;
2438 
2439 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2440 				allowed_msghdr_flags);
2441 	kfree(iov);
2442 	return err;
2443 }
2444 
2445 /*
2446  *	BSD sendmsg interface
2447  */
2448 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2449 			unsigned int flags)
2450 {
2451 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2452 }
2453 
2454 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2455 		   bool forbid_cmsg_compat)
2456 {
2457 	int fput_needed, err;
2458 	struct msghdr msg_sys;
2459 	struct socket *sock;
2460 
2461 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2462 		return -EINVAL;
2463 
2464 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2465 	if (!sock)
2466 		goto out;
2467 
2468 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2469 
2470 	fput_light(sock->file, fput_needed);
2471 out:
2472 	return err;
2473 }
2474 
2475 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2476 {
2477 	return __sys_sendmsg(fd, msg, flags, true);
2478 }
2479 
2480 /*
2481  *	Linux sendmmsg interface
2482  */
2483 
2484 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2485 		   unsigned int flags, bool forbid_cmsg_compat)
2486 {
2487 	int fput_needed, err, datagrams;
2488 	struct socket *sock;
2489 	struct mmsghdr __user *entry;
2490 	struct compat_mmsghdr __user *compat_entry;
2491 	struct msghdr msg_sys;
2492 	struct used_address used_address;
2493 	unsigned int oflags = flags;
2494 
2495 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2496 		return -EINVAL;
2497 
2498 	if (vlen > UIO_MAXIOV)
2499 		vlen = UIO_MAXIOV;
2500 
2501 	datagrams = 0;
2502 
2503 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2504 	if (!sock)
2505 		return err;
2506 
2507 	used_address.name_len = UINT_MAX;
2508 	entry = mmsg;
2509 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2510 	err = 0;
2511 	flags |= MSG_BATCH;
2512 
2513 	while (datagrams < vlen) {
2514 		if (datagrams == vlen - 1)
2515 			flags = oflags;
2516 
2517 		if (MSG_CMSG_COMPAT & flags) {
2518 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2519 					     &msg_sys, flags, &used_address, MSG_EOR);
2520 			if (err < 0)
2521 				break;
2522 			err = __put_user(err, &compat_entry->msg_len);
2523 			++compat_entry;
2524 		} else {
2525 			err = ___sys_sendmsg(sock,
2526 					     (struct user_msghdr __user *)entry,
2527 					     &msg_sys, flags, &used_address, MSG_EOR);
2528 			if (err < 0)
2529 				break;
2530 			err = put_user(err, &entry->msg_len);
2531 			++entry;
2532 		}
2533 
2534 		if (err)
2535 			break;
2536 		++datagrams;
2537 		if (msg_data_left(&msg_sys))
2538 			break;
2539 		cond_resched();
2540 	}
2541 
2542 	fput_light(sock->file, fput_needed);
2543 
2544 	/* We only return an error if no datagrams were able to be sent */
2545 	if (datagrams != 0)
2546 		return datagrams;
2547 
2548 	return err;
2549 }
2550 
2551 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2552 		unsigned int, vlen, unsigned int, flags)
2553 {
2554 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2555 }
2556 
2557 int recvmsg_copy_msghdr(struct msghdr *msg,
2558 			struct user_msghdr __user *umsg, unsigned flags,
2559 			struct sockaddr __user **uaddr,
2560 			struct iovec **iov)
2561 {
2562 	ssize_t err;
2563 
2564 	if (MSG_CMSG_COMPAT & flags) {
2565 		struct compat_msghdr __user *msg_compat;
2566 
2567 		msg_compat = (struct compat_msghdr __user *) umsg;
2568 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2569 	} else {
2570 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2571 	}
2572 	if (err < 0)
2573 		return err;
2574 
2575 	return 0;
2576 }
2577 
2578 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2579 			   struct user_msghdr __user *msg,
2580 			   struct sockaddr __user *uaddr,
2581 			   unsigned int flags, int nosec)
2582 {
2583 	struct compat_msghdr __user *msg_compat =
2584 					(struct compat_msghdr __user *) msg;
2585 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2586 	struct sockaddr_storage addr;
2587 	unsigned long cmsg_ptr;
2588 	int len;
2589 	ssize_t err;
2590 
2591 	msg_sys->msg_name = &addr;
2592 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2593 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2594 
2595 	/* We assume all kernel code knows the size of sockaddr_storage */
2596 	msg_sys->msg_namelen = 0;
2597 
2598 	if (sock->file->f_flags & O_NONBLOCK)
2599 		flags |= MSG_DONTWAIT;
2600 
2601 	if (unlikely(nosec))
2602 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2603 	else
2604 		err = sock_recvmsg(sock, msg_sys, flags);
2605 
2606 	if (err < 0)
2607 		goto out;
2608 	len = err;
2609 
2610 	if (uaddr != NULL) {
2611 		err = move_addr_to_user(&addr,
2612 					msg_sys->msg_namelen, uaddr,
2613 					uaddr_len);
2614 		if (err < 0)
2615 			goto out;
2616 	}
2617 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2618 			 COMPAT_FLAGS(msg));
2619 	if (err)
2620 		goto out;
2621 	if (MSG_CMSG_COMPAT & flags)
2622 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2623 				 &msg_compat->msg_controllen);
2624 	else
2625 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2626 				 &msg->msg_controllen);
2627 	if (err)
2628 		goto out;
2629 	err = len;
2630 out:
2631 	return err;
2632 }
2633 
2634 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2635 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2636 {
2637 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2638 	/* user mode address pointers */
2639 	struct sockaddr __user *uaddr;
2640 	ssize_t err;
2641 
2642 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2643 	if (err < 0)
2644 		return err;
2645 
2646 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2647 	kfree(iov);
2648 	return err;
2649 }
2650 
2651 /*
2652  *	BSD recvmsg interface
2653  */
2654 
2655 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2656 			struct user_msghdr __user *umsg,
2657 			struct sockaddr __user *uaddr, unsigned int flags)
2658 {
2659 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2660 }
2661 
2662 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2663 		   bool forbid_cmsg_compat)
2664 {
2665 	int fput_needed, err;
2666 	struct msghdr msg_sys;
2667 	struct socket *sock;
2668 
2669 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2670 		return -EINVAL;
2671 
2672 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2673 	if (!sock)
2674 		goto out;
2675 
2676 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2677 
2678 	fput_light(sock->file, fput_needed);
2679 out:
2680 	return err;
2681 }
2682 
2683 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2684 		unsigned int, flags)
2685 {
2686 	return __sys_recvmsg(fd, msg, flags, true);
2687 }
2688 
2689 /*
2690  *     Linux recvmmsg interface
2691  */
2692 
2693 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2694 			  unsigned int vlen, unsigned int flags,
2695 			  struct timespec64 *timeout)
2696 {
2697 	int fput_needed, err, datagrams;
2698 	struct socket *sock;
2699 	struct mmsghdr __user *entry;
2700 	struct compat_mmsghdr __user *compat_entry;
2701 	struct msghdr msg_sys;
2702 	struct timespec64 end_time;
2703 	struct timespec64 timeout64;
2704 
2705 	if (timeout &&
2706 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2707 				    timeout->tv_nsec))
2708 		return -EINVAL;
2709 
2710 	datagrams = 0;
2711 
2712 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2713 	if (!sock)
2714 		return err;
2715 
2716 	if (likely(!(flags & MSG_ERRQUEUE))) {
2717 		err = sock_error(sock->sk);
2718 		if (err) {
2719 			datagrams = err;
2720 			goto out_put;
2721 		}
2722 	}
2723 
2724 	entry = mmsg;
2725 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2726 
2727 	while (datagrams < vlen) {
2728 		/*
2729 		 * No need to ask LSM for more than the first datagram.
2730 		 */
2731 		if (MSG_CMSG_COMPAT & flags) {
2732 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2733 					     &msg_sys, flags & ~MSG_WAITFORONE,
2734 					     datagrams);
2735 			if (err < 0)
2736 				break;
2737 			err = __put_user(err, &compat_entry->msg_len);
2738 			++compat_entry;
2739 		} else {
2740 			err = ___sys_recvmsg(sock,
2741 					     (struct user_msghdr __user *)entry,
2742 					     &msg_sys, flags & ~MSG_WAITFORONE,
2743 					     datagrams);
2744 			if (err < 0)
2745 				break;
2746 			err = put_user(err, &entry->msg_len);
2747 			++entry;
2748 		}
2749 
2750 		if (err)
2751 			break;
2752 		++datagrams;
2753 
2754 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2755 		if (flags & MSG_WAITFORONE)
2756 			flags |= MSG_DONTWAIT;
2757 
2758 		if (timeout) {
2759 			ktime_get_ts64(&timeout64);
2760 			*timeout = timespec64_sub(end_time, timeout64);
2761 			if (timeout->tv_sec < 0) {
2762 				timeout->tv_sec = timeout->tv_nsec = 0;
2763 				break;
2764 			}
2765 
2766 			/* Timeout, return less than vlen datagrams */
2767 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2768 				break;
2769 		}
2770 
2771 		/* Out of band data, return right away */
2772 		if (msg_sys.msg_flags & MSG_OOB)
2773 			break;
2774 		cond_resched();
2775 	}
2776 
2777 	if (err == 0)
2778 		goto out_put;
2779 
2780 	if (datagrams == 0) {
2781 		datagrams = err;
2782 		goto out_put;
2783 	}
2784 
2785 	/*
2786 	 * We may return less entries than requested (vlen) if the
2787 	 * sock is non block and there aren't enough datagrams...
2788 	 */
2789 	if (err != -EAGAIN) {
2790 		/*
2791 		 * ... or  if recvmsg returns an error after we
2792 		 * received some datagrams, where we record the
2793 		 * error to return on the next call or if the
2794 		 * app asks about it using getsockopt(SO_ERROR).
2795 		 */
2796 		sock->sk->sk_err = -err;
2797 	}
2798 out_put:
2799 	fput_light(sock->file, fput_needed);
2800 
2801 	return datagrams;
2802 }
2803 
2804 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2805 		   unsigned int vlen, unsigned int flags,
2806 		   struct __kernel_timespec __user *timeout,
2807 		   struct old_timespec32 __user *timeout32)
2808 {
2809 	int datagrams;
2810 	struct timespec64 timeout_sys;
2811 
2812 	if (timeout && get_timespec64(&timeout_sys, timeout))
2813 		return -EFAULT;
2814 
2815 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2816 		return -EFAULT;
2817 
2818 	if (!timeout && !timeout32)
2819 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2820 
2821 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2822 
2823 	if (datagrams <= 0)
2824 		return datagrams;
2825 
2826 	if (timeout && put_timespec64(&timeout_sys, timeout))
2827 		datagrams = -EFAULT;
2828 
2829 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2830 		datagrams = -EFAULT;
2831 
2832 	return datagrams;
2833 }
2834 
2835 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2836 		unsigned int, vlen, unsigned int, flags,
2837 		struct __kernel_timespec __user *, timeout)
2838 {
2839 	if (flags & MSG_CMSG_COMPAT)
2840 		return -EINVAL;
2841 
2842 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2843 }
2844 
2845 #ifdef CONFIG_COMPAT_32BIT_TIME
2846 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2847 		unsigned int, vlen, unsigned int, flags,
2848 		struct old_timespec32 __user *, timeout)
2849 {
2850 	if (flags & MSG_CMSG_COMPAT)
2851 		return -EINVAL;
2852 
2853 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2854 }
2855 #endif
2856 
2857 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2858 /* Argument list sizes for sys_socketcall */
2859 #define AL(x) ((x) * sizeof(unsigned long))
2860 static const unsigned char nargs[21] = {
2861 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2862 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2863 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2864 	AL(4), AL(5), AL(4)
2865 };
2866 
2867 #undef AL
2868 
2869 /*
2870  *	System call vectors.
2871  *
2872  *	Argument checking cleaned up. Saved 20% in size.
2873  *  This function doesn't need to set the kernel lock because
2874  *  it is set by the callees.
2875  */
2876 
2877 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2878 {
2879 	unsigned long a[AUDITSC_ARGS];
2880 	unsigned long a0, a1;
2881 	int err;
2882 	unsigned int len;
2883 
2884 	if (call < 1 || call > SYS_SENDMMSG)
2885 		return -EINVAL;
2886 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2887 
2888 	len = nargs[call];
2889 	if (len > sizeof(a))
2890 		return -EINVAL;
2891 
2892 	/* copy_from_user should be SMP safe. */
2893 	if (copy_from_user(a, args, len))
2894 		return -EFAULT;
2895 
2896 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2897 	if (err)
2898 		return err;
2899 
2900 	a0 = a[0];
2901 	a1 = a[1];
2902 
2903 	switch (call) {
2904 	case SYS_SOCKET:
2905 		err = __sys_socket(a0, a1, a[2]);
2906 		break;
2907 	case SYS_BIND:
2908 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2909 		break;
2910 	case SYS_CONNECT:
2911 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2912 		break;
2913 	case SYS_LISTEN:
2914 		err = __sys_listen(a0, a1);
2915 		break;
2916 	case SYS_ACCEPT:
2917 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2918 				    (int __user *)a[2], 0);
2919 		break;
2920 	case SYS_GETSOCKNAME:
2921 		err =
2922 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2923 				      (int __user *)a[2]);
2924 		break;
2925 	case SYS_GETPEERNAME:
2926 		err =
2927 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2928 				      (int __user *)a[2]);
2929 		break;
2930 	case SYS_SOCKETPAIR:
2931 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2932 		break;
2933 	case SYS_SEND:
2934 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2935 				   NULL, 0);
2936 		break;
2937 	case SYS_SENDTO:
2938 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2939 				   (struct sockaddr __user *)a[4], a[5]);
2940 		break;
2941 	case SYS_RECV:
2942 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2943 				     NULL, NULL);
2944 		break;
2945 	case SYS_RECVFROM:
2946 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2947 				     (struct sockaddr __user *)a[4],
2948 				     (int __user *)a[5]);
2949 		break;
2950 	case SYS_SHUTDOWN:
2951 		err = __sys_shutdown(a0, a1);
2952 		break;
2953 	case SYS_SETSOCKOPT:
2954 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2955 				       a[4]);
2956 		break;
2957 	case SYS_GETSOCKOPT:
2958 		err =
2959 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2960 				     (int __user *)a[4]);
2961 		break;
2962 	case SYS_SENDMSG:
2963 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2964 				    a[2], true);
2965 		break;
2966 	case SYS_SENDMMSG:
2967 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2968 				     a[3], true);
2969 		break;
2970 	case SYS_RECVMSG:
2971 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2972 				    a[2], true);
2973 		break;
2974 	case SYS_RECVMMSG:
2975 		if (IS_ENABLED(CONFIG_64BIT))
2976 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2977 					     a[2], a[3],
2978 					     (struct __kernel_timespec __user *)a[4],
2979 					     NULL);
2980 		else
2981 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2982 					     a[2], a[3], NULL,
2983 					     (struct old_timespec32 __user *)a[4]);
2984 		break;
2985 	case SYS_ACCEPT4:
2986 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2987 				    (int __user *)a[2], a[3]);
2988 		break;
2989 	default:
2990 		err = -EINVAL;
2991 		break;
2992 	}
2993 	return err;
2994 }
2995 
2996 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2997 
2998 /**
2999  *	sock_register - add a socket protocol handler
3000  *	@ops: description of protocol
3001  *
3002  *	This function is called by a protocol handler that wants to
3003  *	advertise its address family, and have it linked into the
3004  *	socket interface. The value ops->family corresponds to the
3005  *	socket system call protocol family.
3006  */
3007 int sock_register(const struct net_proto_family *ops)
3008 {
3009 	int err;
3010 
3011 	if (ops->family >= NPROTO) {
3012 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3013 		return -ENOBUFS;
3014 	}
3015 
3016 	spin_lock(&net_family_lock);
3017 	if (rcu_dereference_protected(net_families[ops->family],
3018 				      lockdep_is_held(&net_family_lock)))
3019 		err = -EEXIST;
3020 	else {
3021 		rcu_assign_pointer(net_families[ops->family], ops);
3022 		err = 0;
3023 	}
3024 	spin_unlock(&net_family_lock);
3025 
3026 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3027 	return err;
3028 }
3029 EXPORT_SYMBOL(sock_register);
3030 
3031 /**
3032  *	sock_unregister - remove a protocol handler
3033  *	@family: protocol family to remove
3034  *
3035  *	This function is called by a protocol handler that wants to
3036  *	remove its address family, and have it unlinked from the
3037  *	new socket creation.
3038  *
3039  *	If protocol handler is a module, then it can use module reference
3040  *	counts to protect against new references. If protocol handler is not
3041  *	a module then it needs to provide its own protection in
3042  *	the ops->create routine.
3043  */
3044 void sock_unregister(int family)
3045 {
3046 	BUG_ON(family < 0 || family >= NPROTO);
3047 
3048 	spin_lock(&net_family_lock);
3049 	RCU_INIT_POINTER(net_families[family], NULL);
3050 	spin_unlock(&net_family_lock);
3051 
3052 	synchronize_rcu();
3053 
3054 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3055 }
3056 EXPORT_SYMBOL(sock_unregister);
3057 
3058 bool sock_is_registered(int family)
3059 {
3060 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3061 }
3062 
3063 static int __init sock_init(void)
3064 {
3065 	int err;
3066 	/*
3067 	 *      Initialize the network sysctl infrastructure.
3068 	 */
3069 	err = net_sysctl_init();
3070 	if (err)
3071 		goto out;
3072 
3073 	/*
3074 	 *      Initialize skbuff SLAB cache
3075 	 */
3076 	skb_init();
3077 
3078 	/*
3079 	 *      Initialize the protocols module.
3080 	 */
3081 
3082 	init_inodecache();
3083 
3084 	err = register_filesystem(&sock_fs_type);
3085 	if (err)
3086 		goto out;
3087 	sock_mnt = kern_mount(&sock_fs_type);
3088 	if (IS_ERR(sock_mnt)) {
3089 		err = PTR_ERR(sock_mnt);
3090 		goto out_mount;
3091 	}
3092 
3093 	/* The real protocol initialization is performed in later initcalls.
3094 	 */
3095 
3096 #ifdef CONFIG_NETFILTER
3097 	err = netfilter_init();
3098 	if (err)
3099 		goto out;
3100 #endif
3101 
3102 	ptp_classifier_init();
3103 
3104 out:
3105 	return err;
3106 
3107 out_mount:
3108 	unregister_filesystem(&sock_fs_type);
3109 	goto out;
3110 }
3111 
3112 core_initcall(sock_init);	/* early initcall */
3113 
3114 #ifdef CONFIG_PROC_FS
3115 void socket_seq_show(struct seq_file *seq)
3116 {
3117 	seq_printf(seq, "sockets: used %d\n",
3118 		   sock_inuse_get(seq->private));
3119 }
3120 #endif				/* CONFIG_PROC_FS */
3121 
3122 #ifdef CONFIG_COMPAT
3123 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3124 {
3125 	struct compat_ifconf ifc32;
3126 	struct ifconf ifc;
3127 	int err;
3128 
3129 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3130 		return -EFAULT;
3131 
3132 	ifc.ifc_len = ifc32.ifc_len;
3133 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3134 
3135 	rtnl_lock();
3136 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3137 	rtnl_unlock();
3138 	if (err)
3139 		return err;
3140 
3141 	ifc32.ifc_len = ifc.ifc_len;
3142 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3143 		return -EFAULT;
3144 
3145 	return 0;
3146 }
3147 
3148 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3149 {
3150 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3151 	bool convert_in = false, convert_out = false;
3152 	size_t buf_size = 0;
3153 	struct ethtool_rxnfc __user *rxnfc = NULL;
3154 	struct ifreq ifr;
3155 	u32 rule_cnt = 0, actual_rule_cnt;
3156 	u32 ethcmd;
3157 	u32 data;
3158 	int ret;
3159 
3160 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3161 		return -EFAULT;
3162 
3163 	compat_rxnfc = compat_ptr(data);
3164 
3165 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3166 		return -EFAULT;
3167 
3168 	/* Most ethtool structures are defined without padding.
3169 	 * Unfortunately struct ethtool_rxnfc is an exception.
3170 	 */
3171 	switch (ethcmd) {
3172 	default:
3173 		break;
3174 	case ETHTOOL_GRXCLSRLALL:
3175 		/* Buffer size is variable */
3176 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3177 			return -EFAULT;
3178 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3179 			return -ENOMEM;
3180 		buf_size += rule_cnt * sizeof(u32);
3181 		fallthrough;
3182 	case ETHTOOL_GRXRINGS:
3183 	case ETHTOOL_GRXCLSRLCNT:
3184 	case ETHTOOL_GRXCLSRULE:
3185 	case ETHTOOL_SRXCLSRLINS:
3186 		convert_out = true;
3187 		fallthrough;
3188 	case ETHTOOL_SRXCLSRLDEL:
3189 		buf_size += sizeof(struct ethtool_rxnfc);
3190 		convert_in = true;
3191 		rxnfc = compat_alloc_user_space(buf_size);
3192 		break;
3193 	}
3194 
3195 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3196 		return -EFAULT;
3197 
3198 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3199 
3200 	if (convert_in) {
3201 		/* We expect there to be holes between fs.m_ext and
3202 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3203 		 */
3204 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3205 			     sizeof(compat_rxnfc->fs.m_ext) !=
3206 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3207 			     sizeof(rxnfc->fs.m_ext));
3208 		BUILD_BUG_ON(
3209 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3210 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3211 			offsetof(struct ethtool_rxnfc, fs.location) -
3212 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3213 
3214 		if (copy_in_user(rxnfc, compat_rxnfc,
3215 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3216 				 (void __user *)rxnfc) ||
3217 		    copy_in_user(&rxnfc->fs.ring_cookie,
3218 				 &compat_rxnfc->fs.ring_cookie,
3219 				 (void __user *)(&rxnfc->fs.location + 1) -
3220 				 (void __user *)&rxnfc->fs.ring_cookie))
3221 			return -EFAULT;
3222 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3223 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3224 				return -EFAULT;
3225 		} else if (copy_in_user(&rxnfc->rule_cnt,
3226 					&compat_rxnfc->rule_cnt,
3227 					sizeof(rxnfc->rule_cnt)))
3228 			return -EFAULT;
3229 	}
3230 
3231 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3232 	if (ret)
3233 		return ret;
3234 
3235 	if (convert_out) {
3236 		if (copy_in_user(compat_rxnfc, rxnfc,
3237 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3238 				 (const void __user *)rxnfc) ||
3239 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3240 				 &rxnfc->fs.ring_cookie,
3241 				 (const void __user *)(&rxnfc->fs.location + 1) -
3242 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3243 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3244 				 sizeof(rxnfc->rule_cnt)))
3245 			return -EFAULT;
3246 
3247 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3248 			/* As an optimisation, we only copy the actual
3249 			 * number of rules that the underlying
3250 			 * function returned.  Since Mallory might
3251 			 * change the rule count in user memory, we
3252 			 * check that it is less than the rule count
3253 			 * originally given (as the user buffer size),
3254 			 * which has been range-checked.
3255 			 */
3256 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3257 				return -EFAULT;
3258 			if (actual_rule_cnt < rule_cnt)
3259 				rule_cnt = actual_rule_cnt;
3260 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3261 					 &rxnfc->rule_locs[0],
3262 					 rule_cnt * sizeof(u32)))
3263 				return -EFAULT;
3264 		}
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3271 {
3272 	compat_uptr_t uptr32;
3273 	struct ifreq ifr;
3274 	void __user *saved;
3275 	int err;
3276 
3277 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3278 		return -EFAULT;
3279 
3280 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3281 		return -EFAULT;
3282 
3283 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3284 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3285 
3286 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3287 	if (!err) {
3288 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3289 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3290 			err = -EFAULT;
3291 	}
3292 	return err;
3293 }
3294 
3295 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3296 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3297 				 struct compat_ifreq __user *u_ifreq32)
3298 {
3299 	struct ifreq ifreq;
3300 	u32 data32;
3301 
3302 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3303 		return -EFAULT;
3304 	if (get_user(data32, &u_ifreq32->ifr_data))
3305 		return -EFAULT;
3306 	ifreq.ifr_data = compat_ptr(data32);
3307 
3308 	return dev_ioctl(net, cmd, &ifreq, NULL);
3309 }
3310 
3311 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3312 			      unsigned int cmd,
3313 			      struct compat_ifreq __user *uifr32)
3314 {
3315 	struct ifreq __user *uifr;
3316 	int err;
3317 
3318 	/* Handle the fact that while struct ifreq has the same *layout* on
3319 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3320 	 * which are handled elsewhere, it still has different *size* due to
3321 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3322 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3323 	 * As a result, if the struct happens to be at the end of a page and
3324 	 * the next page isn't readable/writable, we get a fault. To prevent
3325 	 * that, copy back and forth to the full size.
3326 	 */
3327 
3328 	uifr = compat_alloc_user_space(sizeof(*uifr));
3329 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3330 		return -EFAULT;
3331 
3332 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3333 
3334 	if (!err) {
3335 		switch (cmd) {
3336 		case SIOCGIFFLAGS:
3337 		case SIOCGIFMETRIC:
3338 		case SIOCGIFMTU:
3339 		case SIOCGIFMEM:
3340 		case SIOCGIFHWADDR:
3341 		case SIOCGIFINDEX:
3342 		case SIOCGIFADDR:
3343 		case SIOCGIFBRDADDR:
3344 		case SIOCGIFDSTADDR:
3345 		case SIOCGIFNETMASK:
3346 		case SIOCGIFPFLAGS:
3347 		case SIOCGIFTXQLEN:
3348 		case SIOCGMIIPHY:
3349 		case SIOCGMIIREG:
3350 		case SIOCGIFNAME:
3351 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3352 				err = -EFAULT;
3353 			break;
3354 		}
3355 	}
3356 	return err;
3357 }
3358 
3359 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3360 			struct compat_ifreq __user *uifr32)
3361 {
3362 	struct ifreq ifr;
3363 	struct compat_ifmap __user *uifmap32;
3364 	int err;
3365 
3366 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3367 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3368 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3369 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3370 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3371 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3372 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3373 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3374 	if (err)
3375 		return -EFAULT;
3376 
3377 	err = dev_ioctl(net, cmd, &ifr, NULL);
3378 
3379 	if (cmd == SIOCGIFMAP && !err) {
3380 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3381 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3382 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3383 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3384 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3385 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3386 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3387 		if (err)
3388 			err = -EFAULT;
3389 	}
3390 	return err;
3391 }
3392 
3393 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3394  * for some operations; this forces use of the newer bridge-utils that
3395  * use compatible ioctls
3396  */
3397 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3398 {
3399 	compat_ulong_t tmp;
3400 
3401 	if (get_user(tmp, argp))
3402 		return -EFAULT;
3403 	if (tmp == BRCTL_GET_VERSION)
3404 		return BRCTL_VERSION + 1;
3405 	return -EINVAL;
3406 }
3407 
3408 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3409 			 unsigned int cmd, unsigned long arg)
3410 {
3411 	void __user *argp = compat_ptr(arg);
3412 	struct sock *sk = sock->sk;
3413 	struct net *net = sock_net(sk);
3414 
3415 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3416 		return compat_ifr_data_ioctl(net, cmd, argp);
3417 
3418 	switch (cmd) {
3419 	case SIOCSIFBR:
3420 	case SIOCGIFBR:
3421 		return old_bridge_ioctl(argp);
3422 	case SIOCGIFCONF:
3423 		return compat_dev_ifconf(net, argp);
3424 	case SIOCETHTOOL:
3425 		return ethtool_ioctl(net, argp);
3426 	case SIOCWANDEV:
3427 		return compat_siocwandev(net, argp);
3428 	case SIOCGIFMAP:
3429 	case SIOCSIFMAP:
3430 		return compat_sioc_ifmap(net, cmd, argp);
3431 	case SIOCGSTAMP_OLD:
3432 	case SIOCGSTAMPNS_OLD:
3433 		if (!sock->ops->gettstamp)
3434 			return -ENOIOCTLCMD;
3435 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3436 					    !COMPAT_USE_64BIT_TIME);
3437 
3438 	case SIOCBONDSLAVEINFOQUERY:
3439 	case SIOCBONDINFOQUERY:
3440 	case SIOCSHWTSTAMP:
3441 	case SIOCGHWTSTAMP:
3442 		return compat_ifr_data_ioctl(net, cmd, argp);
3443 
3444 	case FIOSETOWN:
3445 	case SIOCSPGRP:
3446 	case FIOGETOWN:
3447 	case SIOCGPGRP:
3448 	case SIOCBRADDBR:
3449 	case SIOCBRDELBR:
3450 	case SIOCGIFVLAN:
3451 	case SIOCSIFVLAN:
3452 	case SIOCGSKNS:
3453 	case SIOCGSTAMP_NEW:
3454 	case SIOCGSTAMPNS_NEW:
3455 		return sock_ioctl(file, cmd, arg);
3456 
3457 	case SIOCGIFFLAGS:
3458 	case SIOCSIFFLAGS:
3459 	case SIOCGIFMETRIC:
3460 	case SIOCSIFMETRIC:
3461 	case SIOCGIFMTU:
3462 	case SIOCSIFMTU:
3463 	case SIOCGIFMEM:
3464 	case SIOCSIFMEM:
3465 	case SIOCGIFHWADDR:
3466 	case SIOCSIFHWADDR:
3467 	case SIOCADDMULTI:
3468 	case SIOCDELMULTI:
3469 	case SIOCGIFINDEX:
3470 	case SIOCGIFADDR:
3471 	case SIOCSIFADDR:
3472 	case SIOCSIFHWBROADCAST:
3473 	case SIOCDIFADDR:
3474 	case SIOCGIFBRDADDR:
3475 	case SIOCSIFBRDADDR:
3476 	case SIOCGIFDSTADDR:
3477 	case SIOCSIFDSTADDR:
3478 	case SIOCGIFNETMASK:
3479 	case SIOCSIFNETMASK:
3480 	case SIOCSIFPFLAGS:
3481 	case SIOCGIFPFLAGS:
3482 	case SIOCGIFTXQLEN:
3483 	case SIOCSIFTXQLEN:
3484 	case SIOCBRADDIF:
3485 	case SIOCBRDELIF:
3486 	case SIOCGIFNAME:
3487 	case SIOCSIFNAME:
3488 	case SIOCGMIIPHY:
3489 	case SIOCGMIIREG:
3490 	case SIOCSMIIREG:
3491 	case SIOCBONDENSLAVE:
3492 	case SIOCBONDRELEASE:
3493 	case SIOCBONDSETHWADDR:
3494 	case SIOCBONDCHANGEACTIVE:
3495 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3496 
3497 	case SIOCSARP:
3498 	case SIOCGARP:
3499 	case SIOCDARP:
3500 	case SIOCOUTQ:
3501 	case SIOCOUTQNSD:
3502 	case SIOCATMARK:
3503 		return sock_do_ioctl(net, sock, cmd, arg);
3504 	}
3505 
3506 	return -ENOIOCTLCMD;
3507 }
3508 
3509 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3510 			      unsigned long arg)
3511 {
3512 	struct socket *sock = file->private_data;
3513 	int ret = -ENOIOCTLCMD;
3514 	struct sock *sk;
3515 	struct net *net;
3516 
3517 	sk = sock->sk;
3518 	net = sock_net(sk);
3519 
3520 	if (sock->ops->compat_ioctl)
3521 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3522 
3523 	if (ret == -ENOIOCTLCMD &&
3524 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3525 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3526 
3527 	if (ret == -ENOIOCTLCMD)
3528 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3529 
3530 	return ret;
3531 }
3532 #endif
3533 
3534 /**
3535  *	kernel_bind - bind an address to a socket (kernel space)
3536  *	@sock: socket
3537  *	@addr: address
3538  *	@addrlen: length of address
3539  *
3540  *	Returns 0 or an error.
3541  */
3542 
3543 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3544 {
3545 	return sock->ops->bind(sock, addr, addrlen);
3546 }
3547 EXPORT_SYMBOL(kernel_bind);
3548 
3549 /**
3550  *	kernel_listen - move socket to listening state (kernel space)
3551  *	@sock: socket
3552  *	@backlog: pending connections queue size
3553  *
3554  *	Returns 0 or an error.
3555  */
3556 
3557 int kernel_listen(struct socket *sock, int backlog)
3558 {
3559 	return sock->ops->listen(sock, backlog);
3560 }
3561 EXPORT_SYMBOL(kernel_listen);
3562 
3563 /**
3564  *	kernel_accept - accept a connection (kernel space)
3565  *	@sock: listening socket
3566  *	@newsock: new connected socket
3567  *	@flags: flags
3568  *
3569  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3570  *	If it fails, @newsock is guaranteed to be %NULL.
3571  *	Returns 0 or an error.
3572  */
3573 
3574 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3575 {
3576 	struct sock *sk = sock->sk;
3577 	int err;
3578 
3579 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3580 			       newsock);
3581 	if (err < 0)
3582 		goto done;
3583 
3584 	err = sock->ops->accept(sock, *newsock, flags, true);
3585 	if (err < 0) {
3586 		sock_release(*newsock);
3587 		*newsock = NULL;
3588 		goto done;
3589 	}
3590 
3591 	(*newsock)->ops = sock->ops;
3592 	__module_get((*newsock)->ops->owner);
3593 
3594 done:
3595 	return err;
3596 }
3597 EXPORT_SYMBOL(kernel_accept);
3598 
3599 /**
3600  *	kernel_connect - connect a socket (kernel space)
3601  *	@sock: socket
3602  *	@addr: address
3603  *	@addrlen: address length
3604  *	@flags: flags (O_NONBLOCK, ...)
3605  *
3606  *	For datagram sockets, @addr is the address to which datagrams are sent
3607  *	by default, and the only address from which datagrams are received.
3608  *	For stream sockets, attempts to connect to @addr.
3609  *	Returns 0 or an error code.
3610  */
3611 
3612 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3613 		   int flags)
3614 {
3615 	return sock->ops->connect(sock, addr, addrlen, flags);
3616 }
3617 EXPORT_SYMBOL(kernel_connect);
3618 
3619 /**
3620  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3621  *	@sock: socket
3622  *	@addr: address holder
3623  *
3624  * 	Fills the @addr pointer with the address which the socket is bound.
3625  *	Returns 0 or an error code.
3626  */
3627 
3628 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3629 {
3630 	return sock->ops->getname(sock, addr, 0);
3631 }
3632 EXPORT_SYMBOL(kernel_getsockname);
3633 
3634 /**
3635  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3636  *	@sock: socket
3637  *	@addr: address holder
3638  *
3639  * 	Fills the @addr pointer with the address which the socket is connected.
3640  *	Returns 0 or an error code.
3641  */
3642 
3643 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3644 {
3645 	return sock->ops->getname(sock, addr, 1);
3646 }
3647 EXPORT_SYMBOL(kernel_getpeername);
3648 
3649 /**
3650  *	kernel_sendpage - send a &page through a socket (kernel space)
3651  *	@sock: socket
3652  *	@page: page
3653  *	@offset: page offset
3654  *	@size: total size in bytes
3655  *	@flags: flags (MSG_DONTWAIT, ...)
3656  *
3657  *	Returns the total amount sent in bytes or an error.
3658  */
3659 
3660 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3661 		    size_t size, int flags)
3662 {
3663 	if (sock->ops->sendpage) {
3664 		/* Warn in case the improper page to zero-copy send */
3665 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3666 		return sock->ops->sendpage(sock, page, offset, size, flags);
3667 	}
3668 	return sock_no_sendpage(sock, page, offset, size, flags);
3669 }
3670 EXPORT_SYMBOL(kernel_sendpage);
3671 
3672 /**
3673  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3674  *	@sk: sock
3675  *	@page: page
3676  *	@offset: page offset
3677  *	@size: total size in bytes
3678  *	@flags: flags (MSG_DONTWAIT, ...)
3679  *
3680  *	Returns the total amount sent in bytes or an error.
3681  *	Caller must hold @sk.
3682  */
3683 
3684 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3685 			   size_t size, int flags)
3686 {
3687 	struct socket *sock = sk->sk_socket;
3688 
3689 	if (sock->ops->sendpage_locked)
3690 		return sock->ops->sendpage_locked(sk, page, offset, size,
3691 						  flags);
3692 
3693 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3694 }
3695 EXPORT_SYMBOL(kernel_sendpage_locked);
3696 
3697 /**
3698  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3699  *	@sock: socket
3700  *	@how: connection part
3701  *
3702  *	Returns 0 or an error.
3703  */
3704 
3705 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3706 {
3707 	return sock->ops->shutdown(sock, how);
3708 }
3709 EXPORT_SYMBOL(kernel_sock_shutdown);
3710 
3711 /**
3712  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3713  *	@sk: socket
3714  *
3715  *	This routine returns the IP overhead imposed by a socket i.e.
3716  *	the length of the underlying IP header, depending on whether
3717  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3718  *	on at the socket. Assumes that the caller has a lock on the socket.
3719  */
3720 
3721 u32 kernel_sock_ip_overhead(struct sock *sk)
3722 {
3723 	struct inet_sock *inet;
3724 	struct ip_options_rcu *opt;
3725 	u32 overhead = 0;
3726 #if IS_ENABLED(CONFIG_IPV6)
3727 	struct ipv6_pinfo *np;
3728 	struct ipv6_txoptions *optv6 = NULL;
3729 #endif /* IS_ENABLED(CONFIG_IPV6) */
3730 
3731 	if (!sk)
3732 		return overhead;
3733 
3734 	switch (sk->sk_family) {
3735 	case AF_INET:
3736 		inet = inet_sk(sk);
3737 		overhead += sizeof(struct iphdr);
3738 		opt = rcu_dereference_protected(inet->inet_opt,
3739 						sock_owned_by_user(sk));
3740 		if (opt)
3741 			overhead += opt->opt.optlen;
3742 		return overhead;
3743 #if IS_ENABLED(CONFIG_IPV6)
3744 	case AF_INET6:
3745 		np = inet6_sk(sk);
3746 		overhead += sizeof(struct ipv6hdr);
3747 		if (np)
3748 			optv6 = rcu_dereference_protected(np->opt,
3749 							  sock_owned_by_user(sk));
3750 		if (optv6)
3751 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3752 		return overhead;
3753 #endif /* IS_ENABLED(CONFIG_IPV6) */
3754 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3755 		return overhead;
3756 	}
3757 }
3758 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3759