1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 117 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 118 119 static int sock_close(struct inode *inode, struct file *file); 120 static __poll_t sock_poll(struct file *file, 121 struct poll_table_struct *wait); 122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 123 #ifdef CONFIG_COMPAT 124 static long compat_sock_ioctl(struct file *file, 125 unsigned int cmd, unsigned long arg); 126 #endif 127 static int sock_fasync(int fd, struct file *filp, int on); 128 static ssize_t sock_sendpage(struct file *file, struct page *page, 129 int offset, size_t size, loff_t *ppos, int more); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 134 /* 135 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 136 * in the operation structures but are done directly via the socketcall() multiplexor. 137 */ 138 139 static const struct file_operations socket_file_ops = { 140 .owner = THIS_MODULE, 141 .llseek = no_llseek, 142 .read_iter = sock_read_iter, 143 .write_iter = sock_write_iter, 144 .poll = sock_poll, 145 .unlocked_ioctl = sock_ioctl, 146 #ifdef CONFIG_COMPAT 147 .compat_ioctl = compat_sock_ioctl, 148 #endif 149 .mmap = sock_mmap, 150 .release = sock_close, 151 .fasync = sock_fasync, 152 .sendpage = sock_sendpage, 153 .splice_write = generic_splice_sendpage, 154 .splice_read = sock_splice_read, 155 }; 156 157 /* 158 * The protocol list. Each protocol is registered in here. 159 */ 160 161 static DEFINE_SPINLOCK(net_family_lock); 162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 163 164 /* 165 * Support routines. 166 * Move socket addresses back and forth across the kernel/user 167 * divide and look after the messy bits. 168 */ 169 170 /** 171 * move_addr_to_kernel - copy a socket address into kernel space 172 * @uaddr: Address in user space 173 * @kaddr: Address in kernel space 174 * @ulen: Length in user space 175 * 176 * The address is copied into kernel space. If the provided address is 177 * too long an error code of -EINVAL is returned. If the copy gives 178 * invalid addresses -EFAULT is returned. On a success 0 is returned. 179 */ 180 181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 182 { 183 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 184 return -EINVAL; 185 if (ulen == 0) 186 return 0; 187 if (copy_from_user(kaddr, uaddr, ulen)) 188 return -EFAULT; 189 return audit_sockaddr(ulen, kaddr); 190 } 191 192 /** 193 * move_addr_to_user - copy an address to user space 194 * @kaddr: kernel space address 195 * @klen: length of address in kernel 196 * @uaddr: user space address 197 * @ulen: pointer to user length field 198 * 199 * The value pointed to by ulen on entry is the buffer length available. 200 * This is overwritten with the buffer space used. -EINVAL is returned 201 * if an overlong buffer is specified or a negative buffer size. -EFAULT 202 * is returned if either the buffer or the length field are not 203 * accessible. 204 * After copying the data up to the limit the user specifies, the true 205 * length of the data is written over the length limit the user 206 * specified. Zero is returned for a success. 207 */ 208 209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 210 void __user *uaddr, int __user *ulen) 211 { 212 int err; 213 int len; 214 215 BUG_ON(klen > sizeof(struct sockaddr_storage)); 216 err = get_user(len, ulen); 217 if (err) 218 return err; 219 if (len > klen) 220 len = klen; 221 if (len < 0) 222 return -EINVAL; 223 if (len) { 224 if (audit_sockaddr(klen, kaddr)) 225 return -ENOMEM; 226 if (copy_to_user(uaddr, kaddr, len)) 227 return -EFAULT; 228 } 229 /* 230 * "fromlen shall refer to the value before truncation.." 231 * 1003.1g 232 */ 233 return __put_user(klen, ulen); 234 } 235 236 static struct kmem_cache *sock_inode_cachep __ro_after_init; 237 238 static struct inode *sock_alloc_inode(struct super_block *sb) 239 { 240 struct socket_alloc *ei; 241 struct socket_wq *wq; 242 243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 244 if (!ei) 245 return NULL; 246 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 247 if (!wq) { 248 kmem_cache_free(sock_inode_cachep, ei); 249 return NULL; 250 } 251 init_waitqueue_head(&wq->wait); 252 wq->fasync_list = NULL; 253 wq->flags = 0; 254 RCU_INIT_POINTER(ei->socket.wq, wq); 255 256 ei->socket.state = SS_UNCONNECTED; 257 ei->socket.flags = 0; 258 ei->socket.ops = NULL; 259 ei->socket.sk = NULL; 260 ei->socket.file = NULL; 261 262 return &ei->vfs_inode; 263 } 264 265 static void sock_destroy_inode(struct inode *inode) 266 { 267 struct socket_alloc *ei; 268 struct socket_wq *wq; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 wq = rcu_dereference_protected(ei->socket.wq, 1); 272 kfree_rcu(wq, rcu); 273 kmem_cache_free(sock_inode_cachep, ei); 274 } 275 276 static void init_once(void *foo) 277 { 278 struct socket_alloc *ei = (struct socket_alloc *)foo; 279 280 inode_init_once(&ei->vfs_inode); 281 } 282 283 static void init_inodecache(void) 284 { 285 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 286 sizeof(struct socket_alloc), 287 0, 288 (SLAB_HWCACHE_ALIGN | 289 SLAB_RECLAIM_ACCOUNT | 290 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 291 init_once); 292 BUG_ON(sock_inode_cachep == NULL); 293 } 294 295 static const struct super_operations sockfs_ops = { 296 .alloc_inode = sock_alloc_inode, 297 .destroy_inode = sock_destroy_inode, 298 .statfs = simple_statfs, 299 }; 300 301 /* 302 * sockfs_dname() is called from d_path(). 303 */ 304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 305 { 306 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 307 d_inode(dentry)->i_ino); 308 } 309 310 static const struct dentry_operations sockfs_dentry_operations = { 311 .d_dname = sockfs_dname, 312 }; 313 314 static int sockfs_xattr_get(const struct xattr_handler *handler, 315 struct dentry *dentry, struct inode *inode, 316 const char *suffix, void *value, size_t size) 317 { 318 if (value) { 319 if (dentry->d_name.len + 1 > size) 320 return -ERANGE; 321 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 322 } 323 return dentry->d_name.len + 1; 324 } 325 326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 329 330 static const struct xattr_handler sockfs_xattr_handler = { 331 .name = XATTR_NAME_SOCKPROTONAME, 332 .get = sockfs_xattr_get, 333 }; 334 335 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 336 struct dentry *dentry, struct inode *inode, 337 const char *suffix, const void *value, 338 size_t size, int flags) 339 { 340 /* Handled by LSM. */ 341 return -EAGAIN; 342 } 343 344 static const struct xattr_handler sockfs_security_xattr_handler = { 345 .prefix = XATTR_SECURITY_PREFIX, 346 .set = sockfs_security_xattr_set, 347 }; 348 349 static const struct xattr_handler *sockfs_xattr_handlers[] = { 350 &sockfs_xattr_handler, 351 &sockfs_security_xattr_handler, 352 NULL 353 }; 354 355 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 356 int flags, const char *dev_name, void *data) 357 { 358 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 359 sockfs_xattr_handlers, 360 &sockfs_dentry_operations, SOCKFS_MAGIC); 361 } 362 363 static struct vfsmount *sock_mnt __read_mostly; 364 365 static struct file_system_type sock_fs_type = { 366 .name = "sockfs", 367 .mount = sockfs_mount, 368 .kill_sb = kill_anon_super, 369 }; 370 371 /* 372 * Obtains the first available file descriptor and sets it up for use. 373 * 374 * These functions create file structures and maps them to fd space 375 * of the current process. On success it returns file descriptor 376 * and file struct implicitly stored in sock->file. 377 * Note that another thread may close file descriptor before we return 378 * from this function. We use the fact that now we do not refer 379 * to socket after mapping. If one day we will need it, this 380 * function will increment ref. count on file by 1. 381 * 382 * In any case returned fd MAY BE not valid! 383 * This race condition is unavoidable 384 * with shared fd spaces, we cannot solve it inside kernel, 385 * but we take care of internal coherence yet. 386 */ 387 388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 389 { 390 struct qstr name = { .name = "" }; 391 struct path path; 392 struct file *file; 393 394 if (dname) { 395 name.name = dname; 396 name.len = strlen(name.name); 397 } else if (sock->sk) { 398 name.name = sock->sk->sk_prot_creator->name; 399 name.len = strlen(name.name); 400 } 401 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 402 if (unlikely(!path.dentry)) { 403 sock_release(sock); 404 return ERR_PTR(-ENOMEM); 405 } 406 path.mnt = mntget(sock_mnt); 407 408 d_instantiate(path.dentry, SOCK_INODE(sock)); 409 410 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 411 &socket_file_ops); 412 if (IS_ERR(file)) { 413 /* drop dentry, keep inode for a bit */ 414 ihold(d_inode(path.dentry)); 415 path_put(&path); 416 /* ... and now kill it properly */ 417 sock_release(sock); 418 return file; 419 } 420 421 sock->file = file; 422 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 423 file->private_data = sock; 424 return file; 425 } 426 EXPORT_SYMBOL(sock_alloc_file); 427 428 static int sock_map_fd(struct socket *sock, int flags) 429 { 430 struct file *newfile; 431 int fd = get_unused_fd_flags(flags); 432 if (unlikely(fd < 0)) { 433 sock_release(sock); 434 return fd; 435 } 436 437 newfile = sock_alloc_file(sock, flags, NULL); 438 if (likely(!IS_ERR(newfile))) { 439 fd_install(fd, newfile); 440 return fd; 441 } 442 443 put_unused_fd(fd); 444 return PTR_ERR(newfile); 445 } 446 447 struct socket *sock_from_file(struct file *file, int *err) 448 { 449 if (file->f_op == &socket_file_ops) 450 return file->private_data; /* set in sock_map_fd */ 451 452 *err = -ENOTSOCK; 453 return NULL; 454 } 455 EXPORT_SYMBOL(sock_from_file); 456 457 /** 458 * sockfd_lookup - Go from a file number to its socket slot 459 * @fd: file handle 460 * @err: pointer to an error code return 461 * 462 * The file handle passed in is locked and the socket it is bound 463 * to is returned. If an error occurs the err pointer is overwritten 464 * with a negative errno code and NULL is returned. The function checks 465 * for both invalid handles and passing a handle which is not a socket. 466 * 467 * On a success the socket object pointer is returned. 468 */ 469 470 struct socket *sockfd_lookup(int fd, int *err) 471 { 472 struct file *file; 473 struct socket *sock; 474 475 file = fget(fd); 476 if (!file) { 477 *err = -EBADF; 478 return NULL; 479 } 480 481 sock = sock_from_file(file, err); 482 if (!sock) 483 fput(file); 484 return sock; 485 } 486 EXPORT_SYMBOL(sockfd_lookup); 487 488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489 { 490 struct fd f = fdget(fd); 491 struct socket *sock; 492 493 *err = -EBADF; 494 if (f.file) { 495 sock = sock_from_file(f.file, err); 496 if (likely(sock)) { 497 *fput_needed = f.flags; 498 return sock; 499 } 500 fdput(f); 501 } 502 return NULL; 503 } 504 505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 506 size_t size) 507 { 508 ssize_t len; 509 ssize_t used = 0; 510 511 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 512 if (len < 0) 513 return len; 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 buffer += len; 519 } 520 521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 527 buffer += len; 528 } 529 530 return used; 531 } 532 533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 534 { 535 int err = simple_setattr(dentry, iattr); 536 537 if (!err && (iattr->ia_valid & ATTR_UID)) { 538 struct socket *sock = SOCKET_I(d_inode(dentry)); 539 540 if (sock->sk) 541 sock->sk->sk_uid = iattr->ia_uid; 542 else 543 err = -ENOENT; 544 } 545 546 return err; 547 } 548 549 static const struct inode_operations sockfs_inode_ops = { 550 .listxattr = sockfs_listxattr, 551 .setattr = sockfs_setattr, 552 }; 553 554 /** 555 * sock_alloc - allocate a socket 556 * 557 * Allocate a new inode and socket object. The two are bound together 558 * and initialised. The socket is then returned. If we are out of inodes 559 * NULL is returned. 560 */ 561 562 struct socket *sock_alloc(void) 563 { 564 struct inode *inode; 565 struct socket *sock; 566 567 inode = new_inode_pseudo(sock_mnt->mnt_sb); 568 if (!inode) 569 return NULL; 570 571 sock = SOCKET_I(inode); 572 573 inode->i_ino = get_next_ino(); 574 inode->i_mode = S_IFSOCK | S_IRWXUGO; 575 inode->i_uid = current_fsuid(); 576 inode->i_gid = current_fsgid(); 577 inode->i_op = &sockfs_inode_ops; 578 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 static void __sock_release(struct socket *sock, struct inode *inode) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 if (inode) 598 inode_lock(inode); 599 sock->ops->release(sock); 600 if (inode) 601 inode_unlock(inode); 602 sock->ops = NULL; 603 module_put(owner); 604 } 605 606 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 607 pr_err("%s: fasync list not empty!\n", __func__); 608 609 if (!sock->file) { 610 iput(SOCK_INODE(sock)); 611 return; 612 } 613 sock->file = NULL; 614 } 615 616 void sock_release(struct socket *sock) 617 { 618 __sock_release(sock, NULL); 619 } 620 EXPORT_SYMBOL(sock_release); 621 622 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 623 { 624 u8 flags = *tx_flags; 625 626 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 627 flags |= SKBTX_HW_TSTAMP; 628 629 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 630 flags |= SKBTX_SW_TSTAMP; 631 632 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 633 flags |= SKBTX_SCHED_TSTAMP; 634 635 *tx_flags = flags; 636 } 637 EXPORT_SYMBOL(__sock_tx_timestamp); 638 639 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 640 { 641 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 642 BUG_ON(ret == -EIOCBQUEUED); 643 return ret; 644 } 645 646 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 647 { 648 int err = security_socket_sendmsg(sock, msg, 649 msg_data_left(msg)); 650 651 return err ?: sock_sendmsg_nosec(sock, msg); 652 } 653 EXPORT_SYMBOL(sock_sendmsg); 654 655 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 656 struct kvec *vec, size_t num, size_t size) 657 { 658 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 659 return sock_sendmsg(sock, msg); 660 } 661 EXPORT_SYMBOL(kernel_sendmsg); 662 663 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 664 struct kvec *vec, size_t num, size_t size) 665 { 666 struct socket *sock = sk->sk_socket; 667 668 if (!sock->ops->sendmsg_locked) 669 return sock_no_sendmsg_locked(sk, msg, size); 670 671 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 672 673 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 674 } 675 EXPORT_SYMBOL(kernel_sendmsg_locked); 676 677 static bool skb_is_err_queue(const struct sk_buff *skb) 678 { 679 /* pkt_type of skbs enqueued on the error queue are set to 680 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 681 * in recvmsg, since skbs received on a local socket will never 682 * have a pkt_type of PACKET_OUTGOING. 683 */ 684 return skb->pkt_type == PACKET_OUTGOING; 685 } 686 687 /* On transmit, software and hardware timestamps are returned independently. 688 * As the two skb clones share the hardware timestamp, which may be updated 689 * before the software timestamp is received, a hardware TX timestamp may be 690 * returned only if there is no software TX timestamp. Ignore false software 691 * timestamps, which may be made in the __sock_recv_timestamp() call when the 692 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 693 * hardware timestamp. 694 */ 695 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 696 { 697 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 698 } 699 700 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 701 { 702 struct scm_ts_pktinfo ts_pktinfo; 703 struct net_device *orig_dev; 704 705 if (!skb_mac_header_was_set(skb)) 706 return; 707 708 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 709 710 rcu_read_lock(); 711 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 712 if (orig_dev) 713 ts_pktinfo.if_index = orig_dev->ifindex; 714 rcu_read_unlock(); 715 716 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 717 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 718 sizeof(ts_pktinfo), &ts_pktinfo); 719 } 720 721 /* 722 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 723 */ 724 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 725 struct sk_buff *skb) 726 { 727 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 728 struct scm_timestamping tss; 729 int empty = 1, false_tstamp = 0; 730 struct skb_shared_hwtstamps *shhwtstamps = 731 skb_hwtstamps(skb); 732 733 /* Race occurred between timestamp enabling and packet 734 receiving. Fill in the current time for now. */ 735 if (need_software_tstamp && skb->tstamp == 0) { 736 __net_timestamp(skb); 737 false_tstamp = 1; 738 } 739 740 if (need_software_tstamp) { 741 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 742 struct timeval tv; 743 skb_get_timestamp(skb, &tv); 744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 745 sizeof(tv), &tv); 746 } else { 747 struct timespec ts; 748 skb_get_timestampns(skb, &ts); 749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 750 sizeof(ts), &ts); 751 } 752 } 753 754 memset(&tss, 0, sizeof(tss)); 755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 756 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 757 empty = 0; 758 if (shhwtstamps && 759 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 760 !skb_is_swtx_tstamp(skb, false_tstamp) && 761 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 762 empty = 0; 763 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 764 !skb_is_err_queue(skb)) 765 put_ts_pktinfo(msg, skb); 766 } 767 if (!empty) { 768 put_cmsg(msg, SOL_SOCKET, 769 SCM_TIMESTAMPING, sizeof(tss), &tss); 770 771 if (skb_is_err_queue(skb) && skb->len && 772 SKB_EXT_ERR(skb)->opt_stats) 773 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 774 skb->len, skb->data); 775 } 776 } 777 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 778 779 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 780 struct sk_buff *skb) 781 { 782 int ack; 783 784 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 785 return; 786 if (!skb->wifi_acked_valid) 787 return; 788 789 ack = skb->wifi_acked; 790 791 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 792 } 793 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 794 795 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 796 struct sk_buff *skb) 797 { 798 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 799 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 800 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 801 } 802 803 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 804 struct sk_buff *skb) 805 { 806 sock_recv_timestamp(msg, sk, skb); 807 sock_recv_drops(msg, sk, skb); 808 } 809 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 810 811 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 812 int flags) 813 { 814 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 815 } 816 817 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 818 { 819 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 820 821 return err ?: sock_recvmsg_nosec(sock, msg, flags); 822 } 823 EXPORT_SYMBOL(sock_recvmsg); 824 825 /** 826 * kernel_recvmsg - Receive a message from a socket (kernel space) 827 * @sock: The socket to receive the message from 828 * @msg: Received message 829 * @vec: Input s/g array for message data 830 * @num: Size of input s/g array 831 * @size: Number of bytes to read 832 * @flags: Message flags (MSG_DONTWAIT, etc...) 833 * 834 * On return the msg structure contains the scatter/gather array passed in the 835 * vec argument. The array is modified so that it consists of the unfilled 836 * portion of the original array. 837 * 838 * The returned value is the total number of bytes received, or an error. 839 */ 840 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 841 struct kvec *vec, size_t num, size_t size, int flags) 842 { 843 mm_segment_t oldfs = get_fs(); 844 int result; 845 846 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 847 set_fs(KERNEL_DS); 848 result = sock_recvmsg(sock, msg, flags); 849 set_fs(oldfs); 850 return result; 851 } 852 EXPORT_SYMBOL(kernel_recvmsg); 853 854 static ssize_t sock_sendpage(struct file *file, struct page *page, 855 int offset, size_t size, loff_t *ppos, int more) 856 { 857 struct socket *sock; 858 int flags; 859 860 sock = file->private_data; 861 862 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 863 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 864 flags |= more; 865 866 return kernel_sendpage(sock, page, offset, size, flags); 867 } 868 869 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 870 struct pipe_inode_info *pipe, size_t len, 871 unsigned int flags) 872 { 873 struct socket *sock = file->private_data; 874 875 if (unlikely(!sock->ops->splice_read)) 876 return -EINVAL; 877 878 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 879 } 880 881 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 882 { 883 struct file *file = iocb->ki_filp; 884 struct socket *sock = file->private_data; 885 struct msghdr msg = {.msg_iter = *to, 886 .msg_iocb = iocb}; 887 ssize_t res; 888 889 if (file->f_flags & O_NONBLOCK) 890 msg.msg_flags = MSG_DONTWAIT; 891 892 if (iocb->ki_pos != 0) 893 return -ESPIPE; 894 895 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 896 return 0; 897 898 res = sock_recvmsg(sock, &msg, msg.msg_flags); 899 *to = msg.msg_iter; 900 return res; 901 } 902 903 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 904 { 905 struct file *file = iocb->ki_filp; 906 struct socket *sock = file->private_data; 907 struct msghdr msg = {.msg_iter = *from, 908 .msg_iocb = iocb}; 909 ssize_t res; 910 911 if (iocb->ki_pos != 0) 912 return -ESPIPE; 913 914 if (file->f_flags & O_NONBLOCK) 915 msg.msg_flags = MSG_DONTWAIT; 916 917 if (sock->type == SOCK_SEQPACKET) 918 msg.msg_flags |= MSG_EOR; 919 920 res = sock_sendmsg(sock, &msg); 921 *from = msg.msg_iter; 922 return res; 923 } 924 925 /* 926 * Atomic setting of ioctl hooks to avoid race 927 * with module unload. 928 */ 929 930 static DEFINE_MUTEX(br_ioctl_mutex); 931 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 932 933 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 934 { 935 mutex_lock(&br_ioctl_mutex); 936 br_ioctl_hook = hook; 937 mutex_unlock(&br_ioctl_mutex); 938 } 939 EXPORT_SYMBOL(brioctl_set); 940 941 static DEFINE_MUTEX(vlan_ioctl_mutex); 942 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 943 944 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 945 { 946 mutex_lock(&vlan_ioctl_mutex); 947 vlan_ioctl_hook = hook; 948 mutex_unlock(&vlan_ioctl_mutex); 949 } 950 EXPORT_SYMBOL(vlan_ioctl_set); 951 952 static DEFINE_MUTEX(dlci_ioctl_mutex); 953 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 954 955 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 956 { 957 mutex_lock(&dlci_ioctl_mutex); 958 dlci_ioctl_hook = hook; 959 mutex_unlock(&dlci_ioctl_mutex); 960 } 961 EXPORT_SYMBOL(dlci_ioctl_set); 962 963 static long sock_do_ioctl(struct net *net, struct socket *sock, 964 unsigned int cmd, unsigned long arg) 965 { 966 int err; 967 void __user *argp = (void __user *)arg; 968 969 err = sock->ops->ioctl(sock, cmd, arg); 970 971 /* 972 * If this ioctl is unknown try to hand it down 973 * to the NIC driver. 974 */ 975 if (err != -ENOIOCTLCMD) 976 return err; 977 978 if (cmd == SIOCGIFCONF) { 979 struct ifconf ifc; 980 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 981 return -EFAULT; 982 rtnl_lock(); 983 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 984 rtnl_unlock(); 985 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 986 err = -EFAULT; 987 } else { 988 struct ifreq ifr; 989 bool need_copyout; 990 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 991 return -EFAULT; 992 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 993 if (!err && need_copyout) 994 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 995 return -EFAULT; 996 } 997 return err; 998 } 999 1000 /* 1001 * With an ioctl, arg may well be a user mode pointer, but we don't know 1002 * what to do with it - that's up to the protocol still. 1003 */ 1004 1005 struct ns_common *get_net_ns(struct ns_common *ns) 1006 { 1007 return &get_net(container_of(ns, struct net, ns))->ns; 1008 } 1009 EXPORT_SYMBOL_GPL(get_net_ns); 1010 1011 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1012 { 1013 struct socket *sock; 1014 struct sock *sk; 1015 void __user *argp = (void __user *)arg; 1016 int pid, err; 1017 struct net *net; 1018 1019 sock = file->private_data; 1020 sk = sock->sk; 1021 net = sock_net(sk); 1022 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1023 struct ifreq ifr; 1024 bool need_copyout; 1025 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1026 return -EFAULT; 1027 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1028 if (!err && need_copyout) 1029 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1030 return -EFAULT; 1031 } else 1032 #ifdef CONFIG_WEXT_CORE 1033 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1034 err = wext_handle_ioctl(net, cmd, argp); 1035 } else 1036 #endif 1037 switch (cmd) { 1038 case FIOSETOWN: 1039 case SIOCSPGRP: 1040 err = -EFAULT; 1041 if (get_user(pid, (int __user *)argp)) 1042 break; 1043 err = f_setown(sock->file, pid, 1); 1044 break; 1045 case FIOGETOWN: 1046 case SIOCGPGRP: 1047 err = put_user(f_getown(sock->file), 1048 (int __user *)argp); 1049 break; 1050 case SIOCGIFBR: 1051 case SIOCSIFBR: 1052 case SIOCBRADDBR: 1053 case SIOCBRDELBR: 1054 err = -ENOPKG; 1055 if (!br_ioctl_hook) 1056 request_module("bridge"); 1057 1058 mutex_lock(&br_ioctl_mutex); 1059 if (br_ioctl_hook) 1060 err = br_ioctl_hook(net, cmd, argp); 1061 mutex_unlock(&br_ioctl_mutex); 1062 break; 1063 case SIOCGIFVLAN: 1064 case SIOCSIFVLAN: 1065 err = -ENOPKG; 1066 if (!vlan_ioctl_hook) 1067 request_module("8021q"); 1068 1069 mutex_lock(&vlan_ioctl_mutex); 1070 if (vlan_ioctl_hook) 1071 err = vlan_ioctl_hook(net, argp); 1072 mutex_unlock(&vlan_ioctl_mutex); 1073 break; 1074 case SIOCADDDLCI: 1075 case SIOCDELDLCI: 1076 err = -ENOPKG; 1077 if (!dlci_ioctl_hook) 1078 request_module("dlci"); 1079 1080 mutex_lock(&dlci_ioctl_mutex); 1081 if (dlci_ioctl_hook) 1082 err = dlci_ioctl_hook(cmd, argp); 1083 mutex_unlock(&dlci_ioctl_mutex); 1084 break; 1085 case SIOCGSKNS: 1086 err = -EPERM; 1087 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1088 break; 1089 1090 err = open_related_ns(&net->ns, get_net_ns); 1091 break; 1092 default: 1093 err = sock_do_ioctl(net, sock, cmd, arg); 1094 break; 1095 } 1096 return err; 1097 } 1098 1099 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1100 { 1101 int err; 1102 struct socket *sock = NULL; 1103 1104 err = security_socket_create(family, type, protocol, 1); 1105 if (err) 1106 goto out; 1107 1108 sock = sock_alloc(); 1109 if (!sock) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 1114 sock->type = type; 1115 err = security_socket_post_create(sock, family, type, protocol, 1); 1116 if (err) 1117 goto out_release; 1118 1119 out: 1120 *res = sock; 1121 return err; 1122 out_release: 1123 sock_release(sock); 1124 sock = NULL; 1125 goto out; 1126 } 1127 EXPORT_SYMBOL(sock_create_lite); 1128 1129 /* No kernel lock held - perfect */ 1130 static __poll_t sock_poll(struct file *file, poll_table *wait) 1131 { 1132 struct socket *sock = file->private_data; 1133 __poll_t events = poll_requested_events(wait); 1134 1135 sock_poll_busy_loop(sock, events); 1136 if (!sock->ops->poll) 1137 return 0; 1138 return sock->ops->poll(file, sock, wait) | sock_poll_busy_flag(sock); 1139 } 1140 1141 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1142 { 1143 struct socket *sock = file->private_data; 1144 1145 return sock->ops->mmap(file, sock, vma); 1146 } 1147 1148 static int sock_close(struct inode *inode, struct file *filp) 1149 { 1150 __sock_release(SOCKET_I(inode), inode); 1151 return 0; 1152 } 1153 1154 /* 1155 * Update the socket async list 1156 * 1157 * Fasync_list locking strategy. 1158 * 1159 * 1. fasync_list is modified only under process context socket lock 1160 * i.e. under semaphore. 1161 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1162 * or under socket lock 1163 */ 1164 1165 static int sock_fasync(int fd, struct file *filp, int on) 1166 { 1167 struct socket *sock = filp->private_data; 1168 struct sock *sk = sock->sk; 1169 struct socket_wq *wq; 1170 1171 if (sk == NULL) 1172 return -EINVAL; 1173 1174 lock_sock(sk); 1175 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1176 fasync_helper(fd, filp, on, &wq->fasync_list); 1177 1178 if (!wq->fasync_list) 1179 sock_reset_flag(sk, SOCK_FASYNC); 1180 else 1181 sock_set_flag(sk, SOCK_FASYNC); 1182 1183 release_sock(sk); 1184 return 0; 1185 } 1186 1187 /* This function may be called only under rcu_lock */ 1188 1189 int sock_wake_async(struct socket_wq *wq, int how, int band) 1190 { 1191 if (!wq || !wq->fasync_list) 1192 return -1; 1193 1194 switch (how) { 1195 case SOCK_WAKE_WAITD: 1196 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1197 break; 1198 goto call_kill; 1199 case SOCK_WAKE_SPACE: 1200 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1201 break; 1202 /* fall through */ 1203 case SOCK_WAKE_IO: 1204 call_kill: 1205 kill_fasync(&wq->fasync_list, SIGIO, band); 1206 break; 1207 case SOCK_WAKE_URG: 1208 kill_fasync(&wq->fasync_list, SIGURG, band); 1209 } 1210 1211 return 0; 1212 } 1213 EXPORT_SYMBOL(sock_wake_async); 1214 1215 int __sock_create(struct net *net, int family, int type, int protocol, 1216 struct socket **res, int kern) 1217 { 1218 int err; 1219 struct socket *sock; 1220 const struct net_proto_family *pf; 1221 1222 /* 1223 * Check protocol is in range 1224 */ 1225 if (family < 0 || family >= NPROTO) 1226 return -EAFNOSUPPORT; 1227 if (type < 0 || type >= SOCK_MAX) 1228 return -EINVAL; 1229 1230 /* Compatibility. 1231 1232 This uglymoron is moved from INET layer to here to avoid 1233 deadlock in module load. 1234 */ 1235 if (family == PF_INET && type == SOCK_PACKET) { 1236 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1237 current->comm); 1238 family = PF_PACKET; 1239 } 1240 1241 err = security_socket_create(family, type, protocol, kern); 1242 if (err) 1243 return err; 1244 1245 /* 1246 * Allocate the socket and allow the family to set things up. if 1247 * the protocol is 0, the family is instructed to select an appropriate 1248 * default. 1249 */ 1250 sock = sock_alloc(); 1251 if (!sock) { 1252 net_warn_ratelimited("socket: no more sockets\n"); 1253 return -ENFILE; /* Not exactly a match, but its the 1254 closest posix thing */ 1255 } 1256 1257 sock->type = type; 1258 1259 #ifdef CONFIG_MODULES 1260 /* Attempt to load a protocol module if the find failed. 1261 * 1262 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1263 * requested real, full-featured networking support upon configuration. 1264 * Otherwise module support will break! 1265 */ 1266 if (rcu_access_pointer(net_families[family]) == NULL) 1267 request_module("net-pf-%d", family); 1268 #endif 1269 1270 rcu_read_lock(); 1271 pf = rcu_dereference(net_families[family]); 1272 err = -EAFNOSUPPORT; 1273 if (!pf) 1274 goto out_release; 1275 1276 /* 1277 * We will call the ->create function, that possibly is in a loadable 1278 * module, so we have to bump that loadable module refcnt first. 1279 */ 1280 if (!try_module_get(pf->owner)) 1281 goto out_release; 1282 1283 /* Now protected by module ref count */ 1284 rcu_read_unlock(); 1285 1286 err = pf->create(net, sock, protocol, kern); 1287 if (err < 0) 1288 goto out_module_put; 1289 1290 /* 1291 * Now to bump the refcnt of the [loadable] module that owns this 1292 * socket at sock_release time we decrement its refcnt. 1293 */ 1294 if (!try_module_get(sock->ops->owner)) 1295 goto out_module_busy; 1296 1297 /* 1298 * Now that we're done with the ->create function, the [loadable] 1299 * module can have its refcnt decremented 1300 */ 1301 module_put(pf->owner); 1302 err = security_socket_post_create(sock, family, type, protocol, kern); 1303 if (err) 1304 goto out_sock_release; 1305 *res = sock; 1306 1307 return 0; 1308 1309 out_module_busy: 1310 err = -EAFNOSUPPORT; 1311 out_module_put: 1312 sock->ops = NULL; 1313 module_put(pf->owner); 1314 out_sock_release: 1315 sock_release(sock); 1316 return err; 1317 1318 out_release: 1319 rcu_read_unlock(); 1320 goto out_sock_release; 1321 } 1322 EXPORT_SYMBOL(__sock_create); 1323 1324 int sock_create(int family, int type, int protocol, struct socket **res) 1325 { 1326 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1327 } 1328 EXPORT_SYMBOL(sock_create); 1329 1330 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1331 { 1332 return __sock_create(net, family, type, protocol, res, 1); 1333 } 1334 EXPORT_SYMBOL(sock_create_kern); 1335 1336 int __sys_socket(int family, int type, int protocol) 1337 { 1338 int retval; 1339 struct socket *sock; 1340 int flags; 1341 1342 /* Check the SOCK_* constants for consistency. */ 1343 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1344 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1345 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1346 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1347 1348 flags = type & ~SOCK_TYPE_MASK; 1349 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1350 return -EINVAL; 1351 type &= SOCK_TYPE_MASK; 1352 1353 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1354 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1355 1356 retval = sock_create(family, type, protocol, &sock); 1357 if (retval < 0) 1358 return retval; 1359 1360 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1361 } 1362 1363 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1364 { 1365 return __sys_socket(family, type, protocol); 1366 } 1367 1368 /* 1369 * Create a pair of connected sockets. 1370 */ 1371 1372 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1373 { 1374 struct socket *sock1, *sock2; 1375 int fd1, fd2, err; 1376 struct file *newfile1, *newfile2; 1377 int flags; 1378 1379 flags = type & ~SOCK_TYPE_MASK; 1380 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1381 return -EINVAL; 1382 type &= SOCK_TYPE_MASK; 1383 1384 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1385 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1386 1387 /* 1388 * reserve descriptors and make sure we won't fail 1389 * to return them to userland. 1390 */ 1391 fd1 = get_unused_fd_flags(flags); 1392 if (unlikely(fd1 < 0)) 1393 return fd1; 1394 1395 fd2 = get_unused_fd_flags(flags); 1396 if (unlikely(fd2 < 0)) { 1397 put_unused_fd(fd1); 1398 return fd2; 1399 } 1400 1401 err = put_user(fd1, &usockvec[0]); 1402 if (err) 1403 goto out; 1404 1405 err = put_user(fd2, &usockvec[1]); 1406 if (err) 1407 goto out; 1408 1409 /* 1410 * Obtain the first socket and check if the underlying protocol 1411 * supports the socketpair call. 1412 */ 1413 1414 err = sock_create(family, type, protocol, &sock1); 1415 if (unlikely(err < 0)) 1416 goto out; 1417 1418 err = sock_create(family, type, protocol, &sock2); 1419 if (unlikely(err < 0)) { 1420 sock_release(sock1); 1421 goto out; 1422 } 1423 1424 err = security_socket_socketpair(sock1, sock2); 1425 if (unlikely(err)) { 1426 sock_release(sock2); 1427 sock_release(sock1); 1428 goto out; 1429 } 1430 1431 err = sock1->ops->socketpair(sock1, sock2); 1432 if (unlikely(err < 0)) { 1433 sock_release(sock2); 1434 sock_release(sock1); 1435 goto out; 1436 } 1437 1438 newfile1 = sock_alloc_file(sock1, flags, NULL); 1439 if (IS_ERR(newfile1)) { 1440 err = PTR_ERR(newfile1); 1441 sock_release(sock2); 1442 goto out; 1443 } 1444 1445 newfile2 = sock_alloc_file(sock2, flags, NULL); 1446 if (IS_ERR(newfile2)) { 1447 err = PTR_ERR(newfile2); 1448 fput(newfile1); 1449 goto out; 1450 } 1451 1452 audit_fd_pair(fd1, fd2); 1453 1454 fd_install(fd1, newfile1); 1455 fd_install(fd2, newfile2); 1456 return 0; 1457 1458 out: 1459 put_unused_fd(fd2); 1460 put_unused_fd(fd1); 1461 return err; 1462 } 1463 1464 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1465 int __user *, usockvec) 1466 { 1467 return __sys_socketpair(family, type, protocol, usockvec); 1468 } 1469 1470 /* 1471 * Bind a name to a socket. Nothing much to do here since it's 1472 * the protocol's responsibility to handle the local address. 1473 * 1474 * We move the socket address to kernel space before we call 1475 * the protocol layer (having also checked the address is ok). 1476 */ 1477 1478 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1479 { 1480 struct socket *sock; 1481 struct sockaddr_storage address; 1482 int err, fput_needed; 1483 1484 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1485 if (sock) { 1486 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1487 if (err >= 0) { 1488 err = security_socket_bind(sock, 1489 (struct sockaddr *)&address, 1490 addrlen); 1491 if (!err) 1492 err = sock->ops->bind(sock, 1493 (struct sockaddr *) 1494 &address, addrlen); 1495 } 1496 fput_light(sock->file, fput_needed); 1497 } 1498 return err; 1499 } 1500 1501 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1502 { 1503 return __sys_bind(fd, umyaddr, addrlen); 1504 } 1505 1506 /* 1507 * Perform a listen. Basically, we allow the protocol to do anything 1508 * necessary for a listen, and if that works, we mark the socket as 1509 * ready for listening. 1510 */ 1511 1512 int __sys_listen(int fd, int backlog) 1513 { 1514 struct socket *sock; 1515 int err, fput_needed; 1516 int somaxconn; 1517 1518 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1519 if (sock) { 1520 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1521 if ((unsigned int)backlog > somaxconn) 1522 backlog = somaxconn; 1523 1524 err = security_socket_listen(sock, backlog); 1525 if (!err) 1526 err = sock->ops->listen(sock, backlog); 1527 1528 fput_light(sock->file, fput_needed); 1529 } 1530 return err; 1531 } 1532 1533 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1534 { 1535 return __sys_listen(fd, backlog); 1536 } 1537 1538 /* 1539 * For accept, we attempt to create a new socket, set up the link 1540 * with the client, wake up the client, then return the new 1541 * connected fd. We collect the address of the connector in kernel 1542 * space and move it to user at the very end. This is unclean because 1543 * we open the socket then return an error. 1544 * 1545 * 1003.1g adds the ability to recvmsg() to query connection pending 1546 * status to recvmsg. We need to add that support in a way thats 1547 * clean when we restructure accept also. 1548 */ 1549 1550 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1551 int __user *upeer_addrlen, int flags) 1552 { 1553 struct socket *sock, *newsock; 1554 struct file *newfile; 1555 int err, len, newfd, fput_needed; 1556 struct sockaddr_storage address; 1557 1558 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1559 return -EINVAL; 1560 1561 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1562 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1563 1564 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1565 if (!sock) 1566 goto out; 1567 1568 err = -ENFILE; 1569 newsock = sock_alloc(); 1570 if (!newsock) 1571 goto out_put; 1572 1573 newsock->type = sock->type; 1574 newsock->ops = sock->ops; 1575 1576 /* 1577 * We don't need try_module_get here, as the listening socket (sock) 1578 * has the protocol module (sock->ops->owner) held. 1579 */ 1580 __module_get(newsock->ops->owner); 1581 1582 newfd = get_unused_fd_flags(flags); 1583 if (unlikely(newfd < 0)) { 1584 err = newfd; 1585 sock_release(newsock); 1586 goto out_put; 1587 } 1588 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1589 if (IS_ERR(newfile)) { 1590 err = PTR_ERR(newfile); 1591 put_unused_fd(newfd); 1592 goto out_put; 1593 } 1594 1595 err = security_socket_accept(sock, newsock); 1596 if (err) 1597 goto out_fd; 1598 1599 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1600 if (err < 0) 1601 goto out_fd; 1602 1603 if (upeer_sockaddr) { 1604 len = newsock->ops->getname(newsock, 1605 (struct sockaddr *)&address, 2); 1606 if (len < 0) { 1607 err = -ECONNABORTED; 1608 goto out_fd; 1609 } 1610 err = move_addr_to_user(&address, 1611 len, upeer_sockaddr, upeer_addrlen); 1612 if (err < 0) 1613 goto out_fd; 1614 } 1615 1616 /* File flags are not inherited via accept() unlike another OSes. */ 1617 1618 fd_install(newfd, newfile); 1619 err = newfd; 1620 1621 out_put: 1622 fput_light(sock->file, fput_needed); 1623 out: 1624 return err; 1625 out_fd: 1626 fput(newfile); 1627 put_unused_fd(newfd); 1628 goto out_put; 1629 } 1630 1631 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1632 int __user *, upeer_addrlen, int, flags) 1633 { 1634 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1635 } 1636 1637 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1638 int __user *, upeer_addrlen) 1639 { 1640 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1641 } 1642 1643 /* 1644 * Attempt to connect to a socket with the server address. The address 1645 * is in user space so we verify it is OK and move it to kernel space. 1646 * 1647 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1648 * break bindings 1649 * 1650 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1651 * other SEQPACKET protocols that take time to connect() as it doesn't 1652 * include the -EINPROGRESS status for such sockets. 1653 */ 1654 1655 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1656 { 1657 struct socket *sock; 1658 struct sockaddr_storage address; 1659 int err, fput_needed; 1660 1661 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1662 if (!sock) 1663 goto out; 1664 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1665 if (err < 0) 1666 goto out_put; 1667 1668 err = 1669 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1670 if (err) 1671 goto out_put; 1672 1673 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1674 sock->file->f_flags); 1675 out_put: 1676 fput_light(sock->file, fput_needed); 1677 out: 1678 return err; 1679 } 1680 1681 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1682 int, addrlen) 1683 { 1684 return __sys_connect(fd, uservaddr, addrlen); 1685 } 1686 1687 /* 1688 * Get the local address ('name') of a socket object. Move the obtained 1689 * name to user space. 1690 */ 1691 1692 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1693 int __user *usockaddr_len) 1694 { 1695 struct socket *sock; 1696 struct sockaddr_storage address; 1697 int err, fput_needed; 1698 1699 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1700 if (!sock) 1701 goto out; 1702 1703 err = security_socket_getsockname(sock); 1704 if (err) 1705 goto out_put; 1706 1707 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1708 if (err < 0) 1709 goto out_put; 1710 /* "err" is actually length in this case */ 1711 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1712 1713 out_put: 1714 fput_light(sock->file, fput_needed); 1715 out: 1716 return err; 1717 } 1718 1719 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1720 int __user *, usockaddr_len) 1721 { 1722 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1723 } 1724 1725 /* 1726 * Get the remote address ('name') of a socket object. Move the obtained 1727 * name to user space. 1728 */ 1729 1730 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1731 int __user *usockaddr_len) 1732 { 1733 struct socket *sock; 1734 struct sockaddr_storage address; 1735 int err, fput_needed; 1736 1737 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1738 if (sock != NULL) { 1739 err = security_socket_getpeername(sock); 1740 if (err) { 1741 fput_light(sock->file, fput_needed); 1742 return err; 1743 } 1744 1745 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1746 if (err >= 0) 1747 /* "err" is actually length in this case */ 1748 err = move_addr_to_user(&address, err, usockaddr, 1749 usockaddr_len); 1750 fput_light(sock->file, fput_needed); 1751 } 1752 return err; 1753 } 1754 1755 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1756 int __user *, usockaddr_len) 1757 { 1758 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1759 } 1760 1761 /* 1762 * Send a datagram to a given address. We move the address into kernel 1763 * space and check the user space data area is readable before invoking 1764 * the protocol. 1765 */ 1766 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1767 struct sockaddr __user *addr, int addr_len) 1768 { 1769 struct socket *sock; 1770 struct sockaddr_storage address; 1771 int err; 1772 struct msghdr msg; 1773 struct iovec iov; 1774 int fput_needed; 1775 1776 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1777 if (unlikely(err)) 1778 return err; 1779 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1780 if (!sock) 1781 goto out; 1782 1783 msg.msg_name = NULL; 1784 msg.msg_control = NULL; 1785 msg.msg_controllen = 0; 1786 msg.msg_namelen = 0; 1787 if (addr) { 1788 err = move_addr_to_kernel(addr, addr_len, &address); 1789 if (err < 0) 1790 goto out_put; 1791 msg.msg_name = (struct sockaddr *)&address; 1792 msg.msg_namelen = addr_len; 1793 } 1794 if (sock->file->f_flags & O_NONBLOCK) 1795 flags |= MSG_DONTWAIT; 1796 msg.msg_flags = flags; 1797 err = sock_sendmsg(sock, &msg); 1798 1799 out_put: 1800 fput_light(sock->file, fput_needed); 1801 out: 1802 return err; 1803 } 1804 1805 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1806 unsigned int, flags, struct sockaddr __user *, addr, 1807 int, addr_len) 1808 { 1809 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1810 } 1811 1812 /* 1813 * Send a datagram down a socket. 1814 */ 1815 1816 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1817 unsigned int, flags) 1818 { 1819 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1820 } 1821 1822 /* 1823 * Receive a frame from the socket and optionally record the address of the 1824 * sender. We verify the buffers are writable and if needed move the 1825 * sender address from kernel to user space. 1826 */ 1827 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1828 struct sockaddr __user *addr, int __user *addr_len) 1829 { 1830 struct socket *sock; 1831 struct iovec iov; 1832 struct msghdr msg; 1833 struct sockaddr_storage address; 1834 int err, err2; 1835 int fput_needed; 1836 1837 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1838 if (unlikely(err)) 1839 return err; 1840 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1841 if (!sock) 1842 goto out; 1843 1844 msg.msg_control = NULL; 1845 msg.msg_controllen = 0; 1846 /* Save some cycles and don't copy the address if not needed */ 1847 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1848 /* We assume all kernel code knows the size of sockaddr_storage */ 1849 msg.msg_namelen = 0; 1850 msg.msg_iocb = NULL; 1851 msg.msg_flags = 0; 1852 if (sock->file->f_flags & O_NONBLOCK) 1853 flags |= MSG_DONTWAIT; 1854 err = sock_recvmsg(sock, &msg, flags); 1855 1856 if (err >= 0 && addr != NULL) { 1857 err2 = move_addr_to_user(&address, 1858 msg.msg_namelen, addr, addr_len); 1859 if (err2 < 0) 1860 err = err2; 1861 } 1862 1863 fput_light(sock->file, fput_needed); 1864 out: 1865 return err; 1866 } 1867 1868 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1869 unsigned int, flags, struct sockaddr __user *, addr, 1870 int __user *, addr_len) 1871 { 1872 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1873 } 1874 1875 /* 1876 * Receive a datagram from a socket. 1877 */ 1878 1879 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1880 unsigned int, flags) 1881 { 1882 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1883 } 1884 1885 /* 1886 * Set a socket option. Because we don't know the option lengths we have 1887 * to pass the user mode parameter for the protocols to sort out. 1888 */ 1889 1890 static int __sys_setsockopt(int fd, int level, int optname, 1891 char __user *optval, int optlen) 1892 { 1893 int err, fput_needed; 1894 struct socket *sock; 1895 1896 if (optlen < 0) 1897 return -EINVAL; 1898 1899 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1900 if (sock != NULL) { 1901 err = security_socket_setsockopt(sock, level, optname); 1902 if (err) 1903 goto out_put; 1904 1905 if (level == SOL_SOCKET) 1906 err = 1907 sock_setsockopt(sock, level, optname, optval, 1908 optlen); 1909 else 1910 err = 1911 sock->ops->setsockopt(sock, level, optname, optval, 1912 optlen); 1913 out_put: 1914 fput_light(sock->file, fput_needed); 1915 } 1916 return err; 1917 } 1918 1919 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1920 char __user *, optval, int, optlen) 1921 { 1922 return __sys_setsockopt(fd, level, optname, optval, optlen); 1923 } 1924 1925 /* 1926 * Get a socket option. Because we don't know the option lengths we have 1927 * to pass a user mode parameter for the protocols to sort out. 1928 */ 1929 1930 static int __sys_getsockopt(int fd, int level, int optname, 1931 char __user *optval, int __user *optlen) 1932 { 1933 int err, fput_needed; 1934 struct socket *sock; 1935 1936 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1937 if (sock != NULL) { 1938 err = security_socket_getsockopt(sock, level, optname); 1939 if (err) 1940 goto out_put; 1941 1942 if (level == SOL_SOCKET) 1943 err = 1944 sock_getsockopt(sock, level, optname, optval, 1945 optlen); 1946 else 1947 err = 1948 sock->ops->getsockopt(sock, level, optname, optval, 1949 optlen); 1950 out_put: 1951 fput_light(sock->file, fput_needed); 1952 } 1953 return err; 1954 } 1955 1956 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1957 char __user *, optval, int __user *, optlen) 1958 { 1959 return __sys_getsockopt(fd, level, optname, optval, optlen); 1960 } 1961 1962 /* 1963 * Shutdown a socket. 1964 */ 1965 1966 int __sys_shutdown(int fd, int how) 1967 { 1968 int err, fput_needed; 1969 struct socket *sock; 1970 1971 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1972 if (sock != NULL) { 1973 err = security_socket_shutdown(sock, how); 1974 if (!err) 1975 err = sock->ops->shutdown(sock, how); 1976 fput_light(sock->file, fput_needed); 1977 } 1978 return err; 1979 } 1980 1981 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1982 { 1983 return __sys_shutdown(fd, how); 1984 } 1985 1986 /* A couple of helpful macros for getting the address of the 32/64 bit 1987 * fields which are the same type (int / unsigned) on our platforms. 1988 */ 1989 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1990 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1991 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1992 1993 struct used_address { 1994 struct sockaddr_storage name; 1995 unsigned int name_len; 1996 }; 1997 1998 static int copy_msghdr_from_user(struct msghdr *kmsg, 1999 struct user_msghdr __user *umsg, 2000 struct sockaddr __user **save_addr, 2001 struct iovec **iov) 2002 { 2003 struct user_msghdr msg; 2004 ssize_t err; 2005 2006 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2007 return -EFAULT; 2008 2009 kmsg->msg_control = (void __force *)msg.msg_control; 2010 kmsg->msg_controllen = msg.msg_controllen; 2011 kmsg->msg_flags = msg.msg_flags; 2012 2013 kmsg->msg_namelen = msg.msg_namelen; 2014 if (!msg.msg_name) 2015 kmsg->msg_namelen = 0; 2016 2017 if (kmsg->msg_namelen < 0) 2018 return -EINVAL; 2019 2020 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2021 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2022 2023 if (save_addr) 2024 *save_addr = msg.msg_name; 2025 2026 if (msg.msg_name && kmsg->msg_namelen) { 2027 if (!save_addr) { 2028 err = move_addr_to_kernel(msg.msg_name, 2029 kmsg->msg_namelen, 2030 kmsg->msg_name); 2031 if (err < 0) 2032 return err; 2033 } 2034 } else { 2035 kmsg->msg_name = NULL; 2036 kmsg->msg_namelen = 0; 2037 } 2038 2039 if (msg.msg_iovlen > UIO_MAXIOV) 2040 return -EMSGSIZE; 2041 2042 kmsg->msg_iocb = NULL; 2043 2044 return import_iovec(save_addr ? READ : WRITE, 2045 msg.msg_iov, msg.msg_iovlen, 2046 UIO_FASTIOV, iov, &kmsg->msg_iter); 2047 } 2048 2049 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2050 struct msghdr *msg_sys, unsigned int flags, 2051 struct used_address *used_address, 2052 unsigned int allowed_msghdr_flags) 2053 { 2054 struct compat_msghdr __user *msg_compat = 2055 (struct compat_msghdr __user *)msg; 2056 struct sockaddr_storage address; 2057 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2058 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2059 __aligned(sizeof(__kernel_size_t)); 2060 /* 20 is size of ipv6_pktinfo */ 2061 unsigned char *ctl_buf = ctl; 2062 int ctl_len; 2063 ssize_t err; 2064 2065 msg_sys->msg_name = &address; 2066 2067 if (MSG_CMSG_COMPAT & flags) 2068 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2069 else 2070 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2071 if (err < 0) 2072 return err; 2073 2074 err = -ENOBUFS; 2075 2076 if (msg_sys->msg_controllen > INT_MAX) 2077 goto out_freeiov; 2078 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2079 ctl_len = msg_sys->msg_controllen; 2080 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2081 err = 2082 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2083 sizeof(ctl)); 2084 if (err) 2085 goto out_freeiov; 2086 ctl_buf = msg_sys->msg_control; 2087 ctl_len = msg_sys->msg_controllen; 2088 } else if (ctl_len) { 2089 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2090 CMSG_ALIGN(sizeof(struct cmsghdr))); 2091 if (ctl_len > sizeof(ctl)) { 2092 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2093 if (ctl_buf == NULL) 2094 goto out_freeiov; 2095 } 2096 err = -EFAULT; 2097 /* 2098 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2099 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2100 * checking falls down on this. 2101 */ 2102 if (copy_from_user(ctl_buf, 2103 (void __user __force *)msg_sys->msg_control, 2104 ctl_len)) 2105 goto out_freectl; 2106 msg_sys->msg_control = ctl_buf; 2107 } 2108 msg_sys->msg_flags = flags; 2109 2110 if (sock->file->f_flags & O_NONBLOCK) 2111 msg_sys->msg_flags |= MSG_DONTWAIT; 2112 /* 2113 * If this is sendmmsg() and current destination address is same as 2114 * previously succeeded address, omit asking LSM's decision. 2115 * used_address->name_len is initialized to UINT_MAX so that the first 2116 * destination address never matches. 2117 */ 2118 if (used_address && msg_sys->msg_name && 2119 used_address->name_len == msg_sys->msg_namelen && 2120 !memcmp(&used_address->name, msg_sys->msg_name, 2121 used_address->name_len)) { 2122 err = sock_sendmsg_nosec(sock, msg_sys); 2123 goto out_freectl; 2124 } 2125 err = sock_sendmsg(sock, msg_sys); 2126 /* 2127 * If this is sendmmsg() and sending to current destination address was 2128 * successful, remember it. 2129 */ 2130 if (used_address && err >= 0) { 2131 used_address->name_len = msg_sys->msg_namelen; 2132 if (msg_sys->msg_name) 2133 memcpy(&used_address->name, msg_sys->msg_name, 2134 used_address->name_len); 2135 } 2136 2137 out_freectl: 2138 if (ctl_buf != ctl) 2139 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2140 out_freeiov: 2141 kfree(iov); 2142 return err; 2143 } 2144 2145 /* 2146 * BSD sendmsg interface 2147 */ 2148 2149 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2150 bool forbid_cmsg_compat) 2151 { 2152 int fput_needed, err; 2153 struct msghdr msg_sys; 2154 struct socket *sock; 2155 2156 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2157 return -EINVAL; 2158 2159 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2160 if (!sock) 2161 goto out; 2162 2163 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2164 2165 fput_light(sock->file, fput_needed); 2166 out: 2167 return err; 2168 } 2169 2170 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2171 { 2172 return __sys_sendmsg(fd, msg, flags, true); 2173 } 2174 2175 /* 2176 * Linux sendmmsg interface 2177 */ 2178 2179 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2180 unsigned int flags, bool forbid_cmsg_compat) 2181 { 2182 int fput_needed, err, datagrams; 2183 struct socket *sock; 2184 struct mmsghdr __user *entry; 2185 struct compat_mmsghdr __user *compat_entry; 2186 struct msghdr msg_sys; 2187 struct used_address used_address; 2188 unsigned int oflags = flags; 2189 2190 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2191 return -EINVAL; 2192 2193 if (vlen > UIO_MAXIOV) 2194 vlen = UIO_MAXIOV; 2195 2196 datagrams = 0; 2197 2198 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2199 if (!sock) 2200 return err; 2201 2202 used_address.name_len = UINT_MAX; 2203 entry = mmsg; 2204 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2205 err = 0; 2206 flags |= MSG_BATCH; 2207 2208 while (datagrams < vlen) { 2209 if (datagrams == vlen - 1) 2210 flags = oflags; 2211 2212 if (MSG_CMSG_COMPAT & flags) { 2213 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2214 &msg_sys, flags, &used_address, MSG_EOR); 2215 if (err < 0) 2216 break; 2217 err = __put_user(err, &compat_entry->msg_len); 2218 ++compat_entry; 2219 } else { 2220 err = ___sys_sendmsg(sock, 2221 (struct user_msghdr __user *)entry, 2222 &msg_sys, flags, &used_address, MSG_EOR); 2223 if (err < 0) 2224 break; 2225 err = put_user(err, &entry->msg_len); 2226 ++entry; 2227 } 2228 2229 if (err) 2230 break; 2231 ++datagrams; 2232 if (msg_data_left(&msg_sys)) 2233 break; 2234 cond_resched(); 2235 } 2236 2237 fput_light(sock->file, fput_needed); 2238 2239 /* We only return an error if no datagrams were able to be sent */ 2240 if (datagrams != 0) 2241 return datagrams; 2242 2243 return err; 2244 } 2245 2246 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2247 unsigned int, vlen, unsigned int, flags) 2248 { 2249 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2250 } 2251 2252 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2253 struct msghdr *msg_sys, unsigned int flags, int nosec) 2254 { 2255 struct compat_msghdr __user *msg_compat = 2256 (struct compat_msghdr __user *)msg; 2257 struct iovec iovstack[UIO_FASTIOV]; 2258 struct iovec *iov = iovstack; 2259 unsigned long cmsg_ptr; 2260 int len; 2261 ssize_t err; 2262 2263 /* kernel mode address */ 2264 struct sockaddr_storage addr; 2265 2266 /* user mode address pointers */ 2267 struct sockaddr __user *uaddr; 2268 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2269 2270 msg_sys->msg_name = &addr; 2271 2272 if (MSG_CMSG_COMPAT & flags) 2273 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2274 else 2275 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2276 if (err < 0) 2277 return err; 2278 2279 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2280 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2281 2282 /* We assume all kernel code knows the size of sockaddr_storage */ 2283 msg_sys->msg_namelen = 0; 2284 2285 if (sock->file->f_flags & O_NONBLOCK) 2286 flags |= MSG_DONTWAIT; 2287 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2288 if (err < 0) 2289 goto out_freeiov; 2290 len = err; 2291 2292 if (uaddr != NULL) { 2293 err = move_addr_to_user(&addr, 2294 msg_sys->msg_namelen, uaddr, 2295 uaddr_len); 2296 if (err < 0) 2297 goto out_freeiov; 2298 } 2299 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2300 COMPAT_FLAGS(msg)); 2301 if (err) 2302 goto out_freeiov; 2303 if (MSG_CMSG_COMPAT & flags) 2304 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2305 &msg_compat->msg_controllen); 2306 else 2307 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2308 &msg->msg_controllen); 2309 if (err) 2310 goto out_freeiov; 2311 err = len; 2312 2313 out_freeiov: 2314 kfree(iov); 2315 return err; 2316 } 2317 2318 /* 2319 * BSD recvmsg interface 2320 */ 2321 2322 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2323 bool forbid_cmsg_compat) 2324 { 2325 int fput_needed, err; 2326 struct msghdr msg_sys; 2327 struct socket *sock; 2328 2329 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2330 return -EINVAL; 2331 2332 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2333 if (!sock) 2334 goto out; 2335 2336 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2337 2338 fput_light(sock->file, fput_needed); 2339 out: 2340 return err; 2341 } 2342 2343 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2344 unsigned int, flags) 2345 { 2346 return __sys_recvmsg(fd, msg, flags, true); 2347 } 2348 2349 /* 2350 * Linux recvmmsg interface 2351 */ 2352 2353 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2354 unsigned int flags, struct timespec *timeout) 2355 { 2356 int fput_needed, err, datagrams; 2357 struct socket *sock; 2358 struct mmsghdr __user *entry; 2359 struct compat_mmsghdr __user *compat_entry; 2360 struct msghdr msg_sys; 2361 struct timespec64 end_time; 2362 struct timespec64 timeout64; 2363 2364 if (timeout && 2365 poll_select_set_timeout(&end_time, timeout->tv_sec, 2366 timeout->tv_nsec)) 2367 return -EINVAL; 2368 2369 datagrams = 0; 2370 2371 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2372 if (!sock) 2373 return err; 2374 2375 if (likely(!(flags & MSG_ERRQUEUE))) { 2376 err = sock_error(sock->sk); 2377 if (err) { 2378 datagrams = err; 2379 goto out_put; 2380 } 2381 } 2382 2383 entry = mmsg; 2384 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2385 2386 while (datagrams < vlen) { 2387 /* 2388 * No need to ask LSM for more than the first datagram. 2389 */ 2390 if (MSG_CMSG_COMPAT & flags) { 2391 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2392 &msg_sys, flags & ~MSG_WAITFORONE, 2393 datagrams); 2394 if (err < 0) 2395 break; 2396 err = __put_user(err, &compat_entry->msg_len); 2397 ++compat_entry; 2398 } else { 2399 err = ___sys_recvmsg(sock, 2400 (struct user_msghdr __user *)entry, 2401 &msg_sys, flags & ~MSG_WAITFORONE, 2402 datagrams); 2403 if (err < 0) 2404 break; 2405 err = put_user(err, &entry->msg_len); 2406 ++entry; 2407 } 2408 2409 if (err) 2410 break; 2411 ++datagrams; 2412 2413 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2414 if (flags & MSG_WAITFORONE) 2415 flags |= MSG_DONTWAIT; 2416 2417 if (timeout) { 2418 ktime_get_ts64(&timeout64); 2419 *timeout = timespec64_to_timespec( 2420 timespec64_sub(end_time, timeout64)); 2421 if (timeout->tv_sec < 0) { 2422 timeout->tv_sec = timeout->tv_nsec = 0; 2423 break; 2424 } 2425 2426 /* Timeout, return less than vlen datagrams */ 2427 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2428 break; 2429 } 2430 2431 /* Out of band data, return right away */ 2432 if (msg_sys.msg_flags & MSG_OOB) 2433 break; 2434 cond_resched(); 2435 } 2436 2437 if (err == 0) 2438 goto out_put; 2439 2440 if (datagrams == 0) { 2441 datagrams = err; 2442 goto out_put; 2443 } 2444 2445 /* 2446 * We may return less entries than requested (vlen) if the 2447 * sock is non block and there aren't enough datagrams... 2448 */ 2449 if (err != -EAGAIN) { 2450 /* 2451 * ... or if recvmsg returns an error after we 2452 * received some datagrams, where we record the 2453 * error to return on the next call or if the 2454 * app asks about it using getsockopt(SO_ERROR). 2455 */ 2456 sock->sk->sk_err = -err; 2457 } 2458 out_put: 2459 fput_light(sock->file, fput_needed); 2460 2461 return datagrams; 2462 } 2463 2464 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2465 unsigned int vlen, unsigned int flags, 2466 struct timespec __user *timeout) 2467 { 2468 int datagrams; 2469 struct timespec timeout_sys; 2470 2471 if (flags & MSG_CMSG_COMPAT) 2472 return -EINVAL; 2473 2474 if (!timeout) 2475 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2476 2477 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2478 return -EFAULT; 2479 2480 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2481 2482 if (datagrams > 0 && 2483 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2484 datagrams = -EFAULT; 2485 2486 return datagrams; 2487 } 2488 2489 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2490 unsigned int, vlen, unsigned int, flags, 2491 struct timespec __user *, timeout) 2492 { 2493 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2494 } 2495 2496 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2497 /* Argument list sizes for sys_socketcall */ 2498 #define AL(x) ((x) * sizeof(unsigned long)) 2499 static const unsigned char nargs[21] = { 2500 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2501 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2502 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2503 AL(4), AL(5), AL(4) 2504 }; 2505 2506 #undef AL 2507 2508 /* 2509 * System call vectors. 2510 * 2511 * Argument checking cleaned up. Saved 20% in size. 2512 * This function doesn't need to set the kernel lock because 2513 * it is set by the callees. 2514 */ 2515 2516 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2517 { 2518 unsigned long a[AUDITSC_ARGS]; 2519 unsigned long a0, a1; 2520 int err; 2521 unsigned int len; 2522 2523 if (call < 1 || call > SYS_SENDMMSG) 2524 return -EINVAL; 2525 2526 len = nargs[call]; 2527 if (len > sizeof(a)) 2528 return -EINVAL; 2529 2530 /* copy_from_user should be SMP safe. */ 2531 if (copy_from_user(a, args, len)) 2532 return -EFAULT; 2533 2534 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2535 if (err) 2536 return err; 2537 2538 a0 = a[0]; 2539 a1 = a[1]; 2540 2541 switch (call) { 2542 case SYS_SOCKET: 2543 err = __sys_socket(a0, a1, a[2]); 2544 break; 2545 case SYS_BIND: 2546 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2547 break; 2548 case SYS_CONNECT: 2549 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2550 break; 2551 case SYS_LISTEN: 2552 err = __sys_listen(a0, a1); 2553 break; 2554 case SYS_ACCEPT: 2555 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2556 (int __user *)a[2], 0); 2557 break; 2558 case SYS_GETSOCKNAME: 2559 err = 2560 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2561 (int __user *)a[2]); 2562 break; 2563 case SYS_GETPEERNAME: 2564 err = 2565 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2566 (int __user *)a[2]); 2567 break; 2568 case SYS_SOCKETPAIR: 2569 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2570 break; 2571 case SYS_SEND: 2572 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2573 NULL, 0); 2574 break; 2575 case SYS_SENDTO: 2576 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2577 (struct sockaddr __user *)a[4], a[5]); 2578 break; 2579 case SYS_RECV: 2580 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2581 NULL, NULL); 2582 break; 2583 case SYS_RECVFROM: 2584 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2585 (struct sockaddr __user *)a[4], 2586 (int __user *)a[5]); 2587 break; 2588 case SYS_SHUTDOWN: 2589 err = __sys_shutdown(a0, a1); 2590 break; 2591 case SYS_SETSOCKOPT: 2592 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2593 a[4]); 2594 break; 2595 case SYS_GETSOCKOPT: 2596 err = 2597 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2598 (int __user *)a[4]); 2599 break; 2600 case SYS_SENDMSG: 2601 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2602 a[2], true); 2603 break; 2604 case SYS_SENDMMSG: 2605 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2606 a[3], true); 2607 break; 2608 case SYS_RECVMSG: 2609 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2610 a[2], true); 2611 break; 2612 case SYS_RECVMMSG: 2613 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2614 a[3], (struct timespec __user *)a[4]); 2615 break; 2616 case SYS_ACCEPT4: 2617 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2618 (int __user *)a[2], a[3]); 2619 break; 2620 default: 2621 err = -EINVAL; 2622 break; 2623 } 2624 return err; 2625 } 2626 2627 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2628 2629 /** 2630 * sock_register - add a socket protocol handler 2631 * @ops: description of protocol 2632 * 2633 * This function is called by a protocol handler that wants to 2634 * advertise its address family, and have it linked into the 2635 * socket interface. The value ops->family corresponds to the 2636 * socket system call protocol family. 2637 */ 2638 int sock_register(const struct net_proto_family *ops) 2639 { 2640 int err; 2641 2642 if (ops->family >= NPROTO) { 2643 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2644 return -ENOBUFS; 2645 } 2646 2647 spin_lock(&net_family_lock); 2648 if (rcu_dereference_protected(net_families[ops->family], 2649 lockdep_is_held(&net_family_lock))) 2650 err = -EEXIST; 2651 else { 2652 rcu_assign_pointer(net_families[ops->family], ops); 2653 err = 0; 2654 } 2655 spin_unlock(&net_family_lock); 2656 2657 pr_info("NET: Registered protocol family %d\n", ops->family); 2658 return err; 2659 } 2660 EXPORT_SYMBOL(sock_register); 2661 2662 /** 2663 * sock_unregister - remove a protocol handler 2664 * @family: protocol family to remove 2665 * 2666 * This function is called by a protocol handler that wants to 2667 * remove its address family, and have it unlinked from the 2668 * new socket creation. 2669 * 2670 * If protocol handler is a module, then it can use module reference 2671 * counts to protect against new references. If protocol handler is not 2672 * a module then it needs to provide its own protection in 2673 * the ops->create routine. 2674 */ 2675 void sock_unregister(int family) 2676 { 2677 BUG_ON(family < 0 || family >= NPROTO); 2678 2679 spin_lock(&net_family_lock); 2680 RCU_INIT_POINTER(net_families[family], NULL); 2681 spin_unlock(&net_family_lock); 2682 2683 synchronize_rcu(); 2684 2685 pr_info("NET: Unregistered protocol family %d\n", family); 2686 } 2687 EXPORT_SYMBOL(sock_unregister); 2688 2689 bool sock_is_registered(int family) 2690 { 2691 return family < NPROTO && rcu_access_pointer(net_families[family]); 2692 } 2693 2694 static int __init sock_init(void) 2695 { 2696 int err; 2697 /* 2698 * Initialize the network sysctl infrastructure. 2699 */ 2700 err = net_sysctl_init(); 2701 if (err) 2702 goto out; 2703 2704 /* 2705 * Initialize skbuff SLAB cache 2706 */ 2707 skb_init(); 2708 2709 /* 2710 * Initialize the protocols module. 2711 */ 2712 2713 init_inodecache(); 2714 2715 err = register_filesystem(&sock_fs_type); 2716 if (err) 2717 goto out_fs; 2718 sock_mnt = kern_mount(&sock_fs_type); 2719 if (IS_ERR(sock_mnt)) { 2720 err = PTR_ERR(sock_mnt); 2721 goto out_mount; 2722 } 2723 2724 /* The real protocol initialization is performed in later initcalls. 2725 */ 2726 2727 #ifdef CONFIG_NETFILTER 2728 err = netfilter_init(); 2729 if (err) 2730 goto out; 2731 #endif 2732 2733 ptp_classifier_init(); 2734 2735 out: 2736 return err; 2737 2738 out_mount: 2739 unregister_filesystem(&sock_fs_type); 2740 out_fs: 2741 goto out; 2742 } 2743 2744 core_initcall(sock_init); /* early initcall */ 2745 2746 #ifdef CONFIG_PROC_FS 2747 void socket_seq_show(struct seq_file *seq) 2748 { 2749 seq_printf(seq, "sockets: used %d\n", 2750 sock_inuse_get(seq->private)); 2751 } 2752 #endif /* CONFIG_PROC_FS */ 2753 2754 #ifdef CONFIG_COMPAT 2755 static int do_siocgstamp(struct net *net, struct socket *sock, 2756 unsigned int cmd, void __user *up) 2757 { 2758 mm_segment_t old_fs = get_fs(); 2759 struct timeval ktv; 2760 int err; 2761 2762 set_fs(KERNEL_DS); 2763 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2764 set_fs(old_fs); 2765 if (!err) 2766 err = compat_put_timeval(&ktv, up); 2767 2768 return err; 2769 } 2770 2771 static int do_siocgstampns(struct net *net, struct socket *sock, 2772 unsigned int cmd, void __user *up) 2773 { 2774 mm_segment_t old_fs = get_fs(); 2775 struct timespec kts; 2776 int err; 2777 2778 set_fs(KERNEL_DS); 2779 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2780 set_fs(old_fs); 2781 if (!err) 2782 err = compat_put_timespec(&kts, up); 2783 2784 return err; 2785 } 2786 2787 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2788 { 2789 struct compat_ifconf ifc32; 2790 struct ifconf ifc; 2791 int err; 2792 2793 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2794 return -EFAULT; 2795 2796 ifc.ifc_len = ifc32.ifc_len; 2797 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2798 2799 rtnl_lock(); 2800 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2801 rtnl_unlock(); 2802 if (err) 2803 return err; 2804 2805 ifc32.ifc_len = ifc.ifc_len; 2806 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2807 return -EFAULT; 2808 2809 return 0; 2810 } 2811 2812 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2813 { 2814 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2815 bool convert_in = false, convert_out = false; 2816 size_t buf_size = 0; 2817 struct ethtool_rxnfc __user *rxnfc = NULL; 2818 struct ifreq ifr; 2819 u32 rule_cnt = 0, actual_rule_cnt; 2820 u32 ethcmd; 2821 u32 data; 2822 int ret; 2823 2824 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2825 return -EFAULT; 2826 2827 compat_rxnfc = compat_ptr(data); 2828 2829 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2830 return -EFAULT; 2831 2832 /* Most ethtool structures are defined without padding. 2833 * Unfortunately struct ethtool_rxnfc is an exception. 2834 */ 2835 switch (ethcmd) { 2836 default: 2837 break; 2838 case ETHTOOL_GRXCLSRLALL: 2839 /* Buffer size is variable */ 2840 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2841 return -EFAULT; 2842 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2843 return -ENOMEM; 2844 buf_size += rule_cnt * sizeof(u32); 2845 /* fall through */ 2846 case ETHTOOL_GRXRINGS: 2847 case ETHTOOL_GRXCLSRLCNT: 2848 case ETHTOOL_GRXCLSRULE: 2849 case ETHTOOL_SRXCLSRLINS: 2850 convert_out = true; 2851 /* fall through */ 2852 case ETHTOOL_SRXCLSRLDEL: 2853 buf_size += sizeof(struct ethtool_rxnfc); 2854 convert_in = true; 2855 rxnfc = compat_alloc_user_space(buf_size); 2856 break; 2857 } 2858 2859 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2860 return -EFAULT; 2861 2862 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2863 2864 if (convert_in) { 2865 /* We expect there to be holes between fs.m_ext and 2866 * fs.ring_cookie and at the end of fs, but nowhere else. 2867 */ 2868 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2869 sizeof(compat_rxnfc->fs.m_ext) != 2870 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2871 sizeof(rxnfc->fs.m_ext)); 2872 BUILD_BUG_ON( 2873 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2874 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2875 offsetof(struct ethtool_rxnfc, fs.location) - 2876 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2877 2878 if (copy_in_user(rxnfc, compat_rxnfc, 2879 (void __user *)(&rxnfc->fs.m_ext + 1) - 2880 (void __user *)rxnfc) || 2881 copy_in_user(&rxnfc->fs.ring_cookie, 2882 &compat_rxnfc->fs.ring_cookie, 2883 (void __user *)(&rxnfc->fs.location + 1) - 2884 (void __user *)&rxnfc->fs.ring_cookie) || 2885 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2886 sizeof(rxnfc->rule_cnt))) 2887 return -EFAULT; 2888 } 2889 2890 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2891 if (ret) 2892 return ret; 2893 2894 if (convert_out) { 2895 if (copy_in_user(compat_rxnfc, rxnfc, 2896 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2897 (const void __user *)rxnfc) || 2898 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2899 &rxnfc->fs.ring_cookie, 2900 (const void __user *)(&rxnfc->fs.location + 1) - 2901 (const void __user *)&rxnfc->fs.ring_cookie) || 2902 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2903 sizeof(rxnfc->rule_cnt))) 2904 return -EFAULT; 2905 2906 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2907 /* As an optimisation, we only copy the actual 2908 * number of rules that the underlying 2909 * function returned. Since Mallory might 2910 * change the rule count in user memory, we 2911 * check that it is less than the rule count 2912 * originally given (as the user buffer size), 2913 * which has been range-checked. 2914 */ 2915 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2916 return -EFAULT; 2917 if (actual_rule_cnt < rule_cnt) 2918 rule_cnt = actual_rule_cnt; 2919 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2920 &rxnfc->rule_locs[0], 2921 rule_cnt * sizeof(u32))) 2922 return -EFAULT; 2923 } 2924 } 2925 2926 return 0; 2927 } 2928 2929 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2930 { 2931 compat_uptr_t uptr32; 2932 struct ifreq ifr; 2933 void __user *saved; 2934 int err; 2935 2936 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2937 return -EFAULT; 2938 2939 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2940 return -EFAULT; 2941 2942 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2943 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2944 2945 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2946 if (!err) { 2947 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2948 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2949 err = -EFAULT; 2950 } 2951 return err; 2952 } 2953 2954 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2955 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2956 struct compat_ifreq __user *u_ifreq32) 2957 { 2958 struct ifreq ifreq; 2959 u32 data32; 2960 2961 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2962 return -EFAULT; 2963 if (get_user(data32, &u_ifreq32->ifr_data)) 2964 return -EFAULT; 2965 ifreq.ifr_data = compat_ptr(data32); 2966 2967 return dev_ioctl(net, cmd, &ifreq, NULL); 2968 } 2969 2970 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2971 struct compat_ifreq __user *uifr32) 2972 { 2973 struct ifreq ifr; 2974 struct compat_ifmap __user *uifmap32; 2975 int err; 2976 2977 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2978 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2979 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2980 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2981 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2982 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2983 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2984 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2985 if (err) 2986 return -EFAULT; 2987 2988 err = dev_ioctl(net, cmd, &ifr, NULL); 2989 2990 if (cmd == SIOCGIFMAP && !err) { 2991 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2992 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2993 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2994 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2995 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2996 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2997 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2998 if (err) 2999 err = -EFAULT; 3000 } 3001 return err; 3002 } 3003 3004 struct rtentry32 { 3005 u32 rt_pad1; 3006 struct sockaddr rt_dst; /* target address */ 3007 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3008 struct sockaddr rt_genmask; /* target network mask (IP) */ 3009 unsigned short rt_flags; 3010 short rt_pad2; 3011 u32 rt_pad3; 3012 unsigned char rt_tos; 3013 unsigned char rt_class; 3014 short rt_pad4; 3015 short rt_metric; /* +1 for binary compatibility! */ 3016 /* char * */ u32 rt_dev; /* forcing the device at add */ 3017 u32 rt_mtu; /* per route MTU/Window */ 3018 u32 rt_window; /* Window clamping */ 3019 unsigned short rt_irtt; /* Initial RTT */ 3020 }; 3021 3022 struct in6_rtmsg32 { 3023 struct in6_addr rtmsg_dst; 3024 struct in6_addr rtmsg_src; 3025 struct in6_addr rtmsg_gateway; 3026 u32 rtmsg_type; 3027 u16 rtmsg_dst_len; 3028 u16 rtmsg_src_len; 3029 u32 rtmsg_metric; 3030 u32 rtmsg_info; 3031 u32 rtmsg_flags; 3032 s32 rtmsg_ifindex; 3033 }; 3034 3035 static int routing_ioctl(struct net *net, struct socket *sock, 3036 unsigned int cmd, void __user *argp) 3037 { 3038 int ret; 3039 void *r = NULL; 3040 struct in6_rtmsg r6; 3041 struct rtentry r4; 3042 char devname[16]; 3043 u32 rtdev; 3044 mm_segment_t old_fs = get_fs(); 3045 3046 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3047 struct in6_rtmsg32 __user *ur6 = argp; 3048 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3049 3 * sizeof(struct in6_addr)); 3050 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3051 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3052 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3053 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3054 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3055 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3056 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3057 3058 r = (void *) &r6; 3059 } else { /* ipv4 */ 3060 struct rtentry32 __user *ur4 = argp; 3061 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3062 3 * sizeof(struct sockaddr)); 3063 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3064 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3065 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3066 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3067 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3068 ret |= get_user(rtdev, &(ur4->rt_dev)); 3069 if (rtdev) { 3070 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3071 r4.rt_dev = (char __user __force *)devname; 3072 devname[15] = 0; 3073 } else 3074 r4.rt_dev = NULL; 3075 3076 r = (void *) &r4; 3077 } 3078 3079 if (ret) { 3080 ret = -EFAULT; 3081 goto out; 3082 } 3083 3084 set_fs(KERNEL_DS); 3085 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3086 set_fs(old_fs); 3087 3088 out: 3089 return ret; 3090 } 3091 3092 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3093 * for some operations; this forces use of the newer bridge-utils that 3094 * use compatible ioctls 3095 */ 3096 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3097 { 3098 compat_ulong_t tmp; 3099 3100 if (get_user(tmp, argp)) 3101 return -EFAULT; 3102 if (tmp == BRCTL_GET_VERSION) 3103 return BRCTL_VERSION + 1; 3104 return -EINVAL; 3105 } 3106 3107 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3108 unsigned int cmd, unsigned long arg) 3109 { 3110 void __user *argp = compat_ptr(arg); 3111 struct sock *sk = sock->sk; 3112 struct net *net = sock_net(sk); 3113 3114 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3115 return compat_ifr_data_ioctl(net, cmd, argp); 3116 3117 switch (cmd) { 3118 case SIOCSIFBR: 3119 case SIOCGIFBR: 3120 return old_bridge_ioctl(argp); 3121 case SIOCGIFCONF: 3122 return compat_dev_ifconf(net, argp); 3123 case SIOCETHTOOL: 3124 return ethtool_ioctl(net, argp); 3125 case SIOCWANDEV: 3126 return compat_siocwandev(net, argp); 3127 case SIOCGIFMAP: 3128 case SIOCSIFMAP: 3129 return compat_sioc_ifmap(net, cmd, argp); 3130 case SIOCADDRT: 3131 case SIOCDELRT: 3132 return routing_ioctl(net, sock, cmd, argp); 3133 case SIOCGSTAMP: 3134 return do_siocgstamp(net, sock, cmd, argp); 3135 case SIOCGSTAMPNS: 3136 return do_siocgstampns(net, sock, cmd, argp); 3137 case SIOCBONDSLAVEINFOQUERY: 3138 case SIOCBONDINFOQUERY: 3139 case SIOCSHWTSTAMP: 3140 case SIOCGHWTSTAMP: 3141 return compat_ifr_data_ioctl(net, cmd, argp); 3142 3143 case FIOSETOWN: 3144 case SIOCSPGRP: 3145 case FIOGETOWN: 3146 case SIOCGPGRP: 3147 case SIOCBRADDBR: 3148 case SIOCBRDELBR: 3149 case SIOCGIFVLAN: 3150 case SIOCSIFVLAN: 3151 case SIOCADDDLCI: 3152 case SIOCDELDLCI: 3153 case SIOCGSKNS: 3154 return sock_ioctl(file, cmd, arg); 3155 3156 case SIOCGIFFLAGS: 3157 case SIOCSIFFLAGS: 3158 case SIOCGIFMETRIC: 3159 case SIOCSIFMETRIC: 3160 case SIOCGIFMTU: 3161 case SIOCSIFMTU: 3162 case SIOCGIFMEM: 3163 case SIOCSIFMEM: 3164 case SIOCGIFHWADDR: 3165 case SIOCSIFHWADDR: 3166 case SIOCADDMULTI: 3167 case SIOCDELMULTI: 3168 case SIOCGIFINDEX: 3169 case SIOCGIFADDR: 3170 case SIOCSIFADDR: 3171 case SIOCSIFHWBROADCAST: 3172 case SIOCDIFADDR: 3173 case SIOCGIFBRDADDR: 3174 case SIOCSIFBRDADDR: 3175 case SIOCGIFDSTADDR: 3176 case SIOCSIFDSTADDR: 3177 case SIOCGIFNETMASK: 3178 case SIOCSIFNETMASK: 3179 case SIOCSIFPFLAGS: 3180 case SIOCGIFPFLAGS: 3181 case SIOCGIFTXQLEN: 3182 case SIOCSIFTXQLEN: 3183 case SIOCBRADDIF: 3184 case SIOCBRDELIF: 3185 case SIOCSIFNAME: 3186 case SIOCGMIIPHY: 3187 case SIOCGMIIREG: 3188 case SIOCSMIIREG: 3189 case SIOCSARP: 3190 case SIOCGARP: 3191 case SIOCDARP: 3192 case SIOCATMARK: 3193 case SIOCBONDENSLAVE: 3194 case SIOCBONDRELEASE: 3195 case SIOCBONDSETHWADDR: 3196 case SIOCBONDCHANGEACTIVE: 3197 case SIOCGIFNAME: 3198 return sock_do_ioctl(net, sock, cmd, arg); 3199 } 3200 3201 return -ENOIOCTLCMD; 3202 } 3203 3204 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3205 unsigned long arg) 3206 { 3207 struct socket *sock = file->private_data; 3208 int ret = -ENOIOCTLCMD; 3209 struct sock *sk; 3210 struct net *net; 3211 3212 sk = sock->sk; 3213 net = sock_net(sk); 3214 3215 if (sock->ops->compat_ioctl) 3216 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3217 3218 if (ret == -ENOIOCTLCMD && 3219 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3220 ret = compat_wext_handle_ioctl(net, cmd, arg); 3221 3222 if (ret == -ENOIOCTLCMD) 3223 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3224 3225 return ret; 3226 } 3227 #endif 3228 3229 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3230 { 3231 return sock->ops->bind(sock, addr, addrlen); 3232 } 3233 EXPORT_SYMBOL(kernel_bind); 3234 3235 int kernel_listen(struct socket *sock, int backlog) 3236 { 3237 return sock->ops->listen(sock, backlog); 3238 } 3239 EXPORT_SYMBOL(kernel_listen); 3240 3241 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3242 { 3243 struct sock *sk = sock->sk; 3244 int err; 3245 3246 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3247 newsock); 3248 if (err < 0) 3249 goto done; 3250 3251 err = sock->ops->accept(sock, *newsock, flags, true); 3252 if (err < 0) { 3253 sock_release(*newsock); 3254 *newsock = NULL; 3255 goto done; 3256 } 3257 3258 (*newsock)->ops = sock->ops; 3259 __module_get((*newsock)->ops->owner); 3260 3261 done: 3262 return err; 3263 } 3264 EXPORT_SYMBOL(kernel_accept); 3265 3266 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3267 int flags) 3268 { 3269 return sock->ops->connect(sock, addr, addrlen, flags); 3270 } 3271 EXPORT_SYMBOL(kernel_connect); 3272 3273 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3274 { 3275 return sock->ops->getname(sock, addr, 0); 3276 } 3277 EXPORT_SYMBOL(kernel_getsockname); 3278 3279 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3280 { 3281 return sock->ops->getname(sock, addr, 1); 3282 } 3283 EXPORT_SYMBOL(kernel_getpeername); 3284 3285 int kernel_getsockopt(struct socket *sock, int level, int optname, 3286 char *optval, int *optlen) 3287 { 3288 mm_segment_t oldfs = get_fs(); 3289 char __user *uoptval; 3290 int __user *uoptlen; 3291 int err; 3292 3293 uoptval = (char __user __force *) optval; 3294 uoptlen = (int __user __force *) optlen; 3295 3296 set_fs(KERNEL_DS); 3297 if (level == SOL_SOCKET) 3298 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3299 else 3300 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3301 uoptlen); 3302 set_fs(oldfs); 3303 return err; 3304 } 3305 EXPORT_SYMBOL(kernel_getsockopt); 3306 3307 int kernel_setsockopt(struct socket *sock, int level, int optname, 3308 char *optval, unsigned int optlen) 3309 { 3310 mm_segment_t oldfs = get_fs(); 3311 char __user *uoptval; 3312 int err; 3313 3314 uoptval = (char __user __force *) optval; 3315 3316 set_fs(KERNEL_DS); 3317 if (level == SOL_SOCKET) 3318 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3319 else 3320 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3321 optlen); 3322 set_fs(oldfs); 3323 return err; 3324 } 3325 EXPORT_SYMBOL(kernel_setsockopt); 3326 3327 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3328 size_t size, int flags) 3329 { 3330 if (sock->ops->sendpage) 3331 return sock->ops->sendpage(sock, page, offset, size, flags); 3332 3333 return sock_no_sendpage(sock, page, offset, size, flags); 3334 } 3335 EXPORT_SYMBOL(kernel_sendpage); 3336 3337 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3338 size_t size, int flags) 3339 { 3340 struct socket *sock = sk->sk_socket; 3341 3342 if (sock->ops->sendpage_locked) 3343 return sock->ops->sendpage_locked(sk, page, offset, size, 3344 flags); 3345 3346 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3347 } 3348 EXPORT_SYMBOL(kernel_sendpage_locked); 3349 3350 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3351 { 3352 return sock->ops->shutdown(sock, how); 3353 } 3354 EXPORT_SYMBOL(kernel_sock_shutdown); 3355 3356 /* This routine returns the IP overhead imposed by a socket i.e. 3357 * the length of the underlying IP header, depending on whether 3358 * this is an IPv4 or IPv6 socket and the length from IP options turned 3359 * on at the socket. Assumes that the caller has a lock on the socket. 3360 */ 3361 u32 kernel_sock_ip_overhead(struct sock *sk) 3362 { 3363 struct inet_sock *inet; 3364 struct ip_options_rcu *opt; 3365 u32 overhead = 0; 3366 #if IS_ENABLED(CONFIG_IPV6) 3367 struct ipv6_pinfo *np; 3368 struct ipv6_txoptions *optv6 = NULL; 3369 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3370 3371 if (!sk) 3372 return overhead; 3373 3374 switch (sk->sk_family) { 3375 case AF_INET: 3376 inet = inet_sk(sk); 3377 overhead += sizeof(struct iphdr); 3378 opt = rcu_dereference_protected(inet->inet_opt, 3379 sock_owned_by_user(sk)); 3380 if (opt) 3381 overhead += opt->opt.optlen; 3382 return overhead; 3383 #if IS_ENABLED(CONFIG_IPV6) 3384 case AF_INET6: 3385 np = inet6_sk(sk); 3386 overhead += sizeof(struct ipv6hdr); 3387 if (np) 3388 optv6 = rcu_dereference_protected(np->opt, 3389 sock_owned_by_user(sk)); 3390 if (optv6) 3391 overhead += (optv6->opt_flen + optv6->opt_nflen); 3392 return overhead; 3393 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3394 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3395 return overhead; 3396 } 3397 } 3398 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3399