1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/config.h> 62 #include <linux/mm.h> 63 #include <linux/smp_lock.h> 64 #include <linux/socket.h> 65 #include <linux/file.h> 66 #include <linux/net.h> 67 #include <linux/interrupt.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/divert.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 88 #ifdef CONFIG_NET_RADIO 89 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 90 #endif /* CONFIG_NET_RADIO */ 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 101 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 102 size_t size, loff_t pos); 103 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 104 size_t size, loff_t pos); 105 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 106 107 static int sock_close(struct inode *inode, struct file *file); 108 static unsigned int sock_poll(struct file *file, 109 struct poll_table_struct *wait); 110 static long sock_ioctl(struct file *file, 111 unsigned int cmd, unsigned long arg); 112 static int sock_fasync(int fd, struct file *filp, int on); 113 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 114 unsigned long count, loff_t *ppos); 115 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 116 unsigned long count, loff_t *ppos); 117 static ssize_t sock_sendpage(struct file *file, struct page *page, 118 int offset, size_t size, loff_t *ppos, int more); 119 120 121 /* 122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 123 * in the operation structures but are done directly via the socketcall() multiplexor. 124 */ 125 126 static struct file_operations socket_file_ops = { 127 .owner = THIS_MODULE, 128 .llseek = no_llseek, 129 .aio_read = sock_aio_read, 130 .aio_write = sock_aio_write, 131 .poll = sock_poll, 132 .unlocked_ioctl = sock_ioctl, 133 .mmap = sock_mmap, 134 .open = sock_no_open, /* special open code to disallow open via /proc */ 135 .release = sock_close, 136 .fasync = sock_fasync, 137 .readv = sock_readv, 138 .writev = sock_writev, 139 .sendpage = sock_sendpage 140 }; 141 142 /* 143 * The protocol list. Each protocol is registered in here. 144 */ 145 146 static struct net_proto_family *net_families[NPROTO]; 147 148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 149 static atomic_t net_family_lockct = ATOMIC_INIT(0); 150 static DEFINE_SPINLOCK(net_family_lock); 151 152 /* The strategy is: modifications net_family vector are short, do not 153 sleep and veeery rare, but read access should be free of any exclusive 154 locks. 155 */ 156 157 static void net_family_write_lock(void) 158 { 159 spin_lock(&net_family_lock); 160 while (atomic_read(&net_family_lockct) != 0) { 161 spin_unlock(&net_family_lock); 162 163 yield(); 164 165 spin_lock(&net_family_lock); 166 } 167 } 168 169 static __inline__ void net_family_write_unlock(void) 170 { 171 spin_unlock(&net_family_lock); 172 } 173 174 static __inline__ void net_family_read_lock(void) 175 { 176 atomic_inc(&net_family_lockct); 177 spin_unlock_wait(&net_family_lock); 178 } 179 180 static __inline__ void net_family_read_unlock(void) 181 { 182 atomic_dec(&net_family_lockct); 183 } 184 185 #else 186 #define net_family_write_lock() do { } while(0) 187 #define net_family_write_unlock() do { } while(0) 188 #define net_family_read_lock() do { } while(0) 189 #define net_family_read_unlock() do { } while(0) 190 #endif 191 192 193 /* 194 * Statistics counters of the socket lists 195 */ 196 197 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 198 199 /* 200 * Support routines. Move socket addresses back and forth across the kernel/user 201 * divide and look after the messy bits. 202 */ 203 204 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 205 16 for IP, 16 for IPX, 206 24 for IPv6, 207 about 80 for AX.25 208 must be at least one bigger than 209 the AF_UNIX size (see net/unix/af_unix.c 210 :unix_mkname()). 211 */ 212 213 /** 214 * move_addr_to_kernel - copy a socket address into kernel space 215 * @uaddr: Address in user space 216 * @kaddr: Address in kernel space 217 * @ulen: Length in user space 218 * 219 * The address is copied into kernel space. If the provided address is 220 * too long an error code of -EINVAL is returned. If the copy gives 221 * invalid addresses -EFAULT is returned. On a success 0 is returned. 222 */ 223 224 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 225 { 226 if(ulen<0||ulen>MAX_SOCK_ADDR) 227 return -EINVAL; 228 if(ulen==0) 229 return 0; 230 if(copy_from_user(kaddr,uaddr,ulen)) 231 return -EFAULT; 232 return audit_sockaddr(ulen, kaddr); 233 } 234 235 /** 236 * move_addr_to_user - copy an address to user space 237 * @kaddr: kernel space address 238 * @klen: length of address in kernel 239 * @uaddr: user space address 240 * @ulen: pointer to user length field 241 * 242 * The value pointed to by ulen on entry is the buffer length available. 243 * This is overwritten with the buffer space used. -EINVAL is returned 244 * if an overlong buffer is specified or a negative buffer size. -EFAULT 245 * is returned if either the buffer or the length field are not 246 * accessible. 247 * After copying the data up to the limit the user specifies, the true 248 * length of the data is written over the length limit the user 249 * specified. Zero is returned for a success. 250 */ 251 252 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 253 { 254 int err; 255 int len; 256 257 if((err=get_user(len, ulen))) 258 return err; 259 if(len>klen) 260 len=klen; 261 if(len<0 || len> MAX_SOCK_ADDR) 262 return -EINVAL; 263 if(len) 264 { 265 if(copy_to_user(uaddr,kaddr,len)) 266 return -EFAULT; 267 } 268 /* 269 * "fromlen shall refer to the value before truncation.." 270 * 1003.1g 271 */ 272 return __put_user(klen, ulen); 273 } 274 275 #define SOCKFS_MAGIC 0x534F434B 276 277 static kmem_cache_t * sock_inode_cachep __read_mostly; 278 279 static struct inode *sock_alloc_inode(struct super_block *sb) 280 { 281 struct socket_alloc *ei; 282 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 283 if (!ei) 284 return NULL; 285 init_waitqueue_head(&ei->socket.wait); 286 287 ei->socket.fasync_list = NULL; 288 ei->socket.state = SS_UNCONNECTED; 289 ei->socket.flags = 0; 290 ei->socket.ops = NULL; 291 ei->socket.sk = NULL; 292 ei->socket.file = NULL; 293 ei->socket.flags = 0; 294 295 return &ei->vfs_inode; 296 } 297 298 static void sock_destroy_inode(struct inode *inode) 299 { 300 kmem_cache_free(sock_inode_cachep, 301 container_of(inode, struct socket_alloc, vfs_inode)); 302 } 303 304 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 305 { 306 struct socket_alloc *ei = (struct socket_alloc *) foo; 307 308 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 309 SLAB_CTOR_CONSTRUCTOR) 310 inode_init_once(&ei->vfs_inode); 311 } 312 313 static int init_inodecache(void) 314 { 315 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 316 sizeof(struct socket_alloc), 317 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 318 init_once, NULL); 319 if (sock_inode_cachep == NULL) 320 return -ENOMEM; 321 return 0; 322 } 323 324 static struct super_operations sockfs_ops = { 325 .alloc_inode = sock_alloc_inode, 326 .destroy_inode =sock_destroy_inode, 327 .statfs = simple_statfs, 328 }; 329 330 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 331 int flags, const char *dev_name, void *data) 332 { 333 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 334 } 335 336 static struct vfsmount *sock_mnt __read_mostly; 337 338 static struct file_system_type sock_fs_type = { 339 .name = "sockfs", 340 .get_sb = sockfs_get_sb, 341 .kill_sb = kill_anon_super, 342 }; 343 static int sockfs_delete_dentry(struct dentry *dentry) 344 { 345 return 1; 346 } 347 static struct dentry_operations sockfs_dentry_operations = { 348 .d_delete = sockfs_delete_dentry, 349 }; 350 351 /* 352 * Obtains the first available file descriptor and sets it up for use. 353 * 354 * This function creates file structure and maps it to fd space 355 * of current process. On success it returns file descriptor 356 * and file struct implicitly stored in sock->file. 357 * Note that another thread may close file descriptor before we return 358 * from this function. We use the fact that now we do not refer 359 * to socket after mapping. If one day we will need it, this 360 * function will increment ref. count on file by 1. 361 * 362 * In any case returned fd MAY BE not valid! 363 * This race condition is unavoidable 364 * with shared fd spaces, we cannot solve it inside kernel, 365 * but we take care of internal coherence yet. 366 */ 367 368 int sock_map_fd(struct socket *sock) 369 { 370 int fd; 371 struct qstr this; 372 char name[32]; 373 374 /* 375 * Find a file descriptor suitable for return to the user. 376 */ 377 378 fd = get_unused_fd(); 379 if (fd >= 0) { 380 struct file *file = get_empty_filp(); 381 382 if (!file) { 383 put_unused_fd(fd); 384 fd = -ENFILE; 385 goto out; 386 } 387 388 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 389 this.name = name; 390 this.hash = SOCK_INODE(sock)->i_ino; 391 392 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 393 if (!file->f_dentry) { 394 put_filp(file); 395 put_unused_fd(fd); 396 fd = -ENOMEM; 397 goto out; 398 } 399 file->f_dentry->d_op = &sockfs_dentry_operations; 400 d_add(file->f_dentry, SOCK_INODE(sock)); 401 file->f_vfsmnt = mntget(sock_mnt); 402 file->f_mapping = file->f_dentry->d_inode->i_mapping; 403 404 sock->file = file; 405 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 406 file->f_mode = FMODE_READ | FMODE_WRITE; 407 file->f_flags = O_RDWR; 408 file->f_pos = 0; 409 file->private_data = sock; 410 fd_install(fd, file); 411 } 412 413 out: 414 return fd; 415 } 416 417 /** 418 * sockfd_lookup - Go from a file number to its socket slot 419 * @fd: file handle 420 * @err: pointer to an error code return 421 * 422 * The file handle passed in is locked and the socket it is bound 423 * too is returned. If an error occurs the err pointer is overwritten 424 * with a negative errno code and NULL is returned. The function checks 425 * for both invalid handles and passing a handle which is not a socket. 426 * 427 * On a success the socket object pointer is returned. 428 */ 429 430 struct socket *sockfd_lookup(int fd, int *err) 431 { 432 struct file *file; 433 struct inode *inode; 434 struct socket *sock; 435 436 if (!(file = fget(fd))) 437 { 438 *err = -EBADF; 439 return NULL; 440 } 441 442 if (file->f_op == &socket_file_ops) 443 return file->private_data; /* set in sock_map_fd */ 444 445 inode = file->f_dentry->d_inode; 446 if (!S_ISSOCK(inode->i_mode)) { 447 *err = -ENOTSOCK; 448 fput(file); 449 return NULL; 450 } 451 452 sock = SOCKET_I(inode); 453 if (sock->file != file) { 454 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 455 sock->file = file; 456 } 457 return sock; 458 } 459 460 /** 461 * sock_alloc - allocate a socket 462 * 463 * Allocate a new inode and socket object. The two are bound together 464 * and initialised. The socket is then returned. If we are out of inodes 465 * NULL is returned. 466 */ 467 468 static struct socket *sock_alloc(void) 469 { 470 struct inode * inode; 471 struct socket * sock; 472 473 inode = new_inode(sock_mnt->mnt_sb); 474 if (!inode) 475 return NULL; 476 477 sock = SOCKET_I(inode); 478 479 inode->i_mode = S_IFSOCK|S_IRWXUGO; 480 inode->i_uid = current->fsuid; 481 inode->i_gid = current->fsgid; 482 483 get_cpu_var(sockets_in_use)++; 484 put_cpu_var(sockets_in_use); 485 return sock; 486 } 487 488 /* 489 * In theory you can't get an open on this inode, but /proc provides 490 * a back door. Remember to keep it shut otherwise you'll let the 491 * creepy crawlies in. 492 */ 493 494 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 495 { 496 return -ENXIO; 497 } 498 499 struct file_operations bad_sock_fops = { 500 .owner = THIS_MODULE, 501 .open = sock_no_open, 502 }; 503 504 /** 505 * sock_release - close a socket 506 * @sock: socket to close 507 * 508 * The socket is released from the protocol stack if it has a release 509 * callback, and the inode is then released if the socket is bound to 510 * an inode not a file. 511 */ 512 513 void sock_release(struct socket *sock) 514 { 515 if (sock->ops) { 516 struct module *owner = sock->ops->owner; 517 518 sock->ops->release(sock); 519 sock->ops = NULL; 520 module_put(owner); 521 } 522 523 if (sock->fasync_list) 524 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 525 526 get_cpu_var(sockets_in_use)--; 527 put_cpu_var(sockets_in_use); 528 if (!sock->file) { 529 iput(SOCK_INODE(sock)); 530 return; 531 } 532 sock->file=NULL; 533 } 534 535 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 536 struct msghdr *msg, size_t size) 537 { 538 struct sock_iocb *si = kiocb_to_siocb(iocb); 539 int err; 540 541 si->sock = sock; 542 si->scm = NULL; 543 si->msg = msg; 544 si->size = size; 545 546 err = security_socket_sendmsg(sock, msg, size); 547 if (err) 548 return err; 549 550 return sock->ops->sendmsg(iocb, sock, msg, size); 551 } 552 553 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 554 { 555 struct kiocb iocb; 556 struct sock_iocb siocb; 557 int ret; 558 559 init_sync_kiocb(&iocb, NULL); 560 iocb.private = &siocb; 561 ret = __sock_sendmsg(&iocb, sock, msg, size); 562 if (-EIOCBQUEUED == ret) 563 ret = wait_on_sync_kiocb(&iocb); 564 return ret; 565 } 566 567 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 568 struct kvec *vec, size_t num, size_t size) 569 { 570 mm_segment_t oldfs = get_fs(); 571 int result; 572 573 set_fs(KERNEL_DS); 574 /* 575 * the following is safe, since for compiler definitions of kvec and 576 * iovec are identical, yielding the same in-core layout and alignment 577 */ 578 msg->msg_iov = (struct iovec *)vec, 579 msg->msg_iovlen = num; 580 result = sock_sendmsg(sock, msg, size); 581 set_fs(oldfs); 582 return result; 583 } 584 585 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 586 struct msghdr *msg, size_t size, int flags) 587 { 588 int err; 589 struct sock_iocb *si = kiocb_to_siocb(iocb); 590 591 si->sock = sock; 592 si->scm = NULL; 593 si->msg = msg; 594 si->size = size; 595 si->flags = flags; 596 597 err = security_socket_recvmsg(sock, msg, size, flags); 598 if (err) 599 return err; 600 601 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 602 } 603 604 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 605 size_t size, int flags) 606 { 607 struct kiocb iocb; 608 struct sock_iocb siocb; 609 int ret; 610 611 init_sync_kiocb(&iocb, NULL); 612 iocb.private = &siocb; 613 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 614 if (-EIOCBQUEUED == ret) 615 ret = wait_on_sync_kiocb(&iocb); 616 return ret; 617 } 618 619 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 620 struct kvec *vec, size_t num, 621 size_t size, int flags) 622 { 623 mm_segment_t oldfs = get_fs(); 624 int result; 625 626 set_fs(KERNEL_DS); 627 /* 628 * the following is safe, since for compiler definitions of kvec and 629 * iovec are identical, yielding the same in-core layout and alignment 630 */ 631 msg->msg_iov = (struct iovec *)vec, 632 msg->msg_iovlen = num; 633 result = sock_recvmsg(sock, msg, size, flags); 634 set_fs(oldfs); 635 return result; 636 } 637 638 static void sock_aio_dtor(struct kiocb *iocb) 639 { 640 kfree(iocb->private); 641 } 642 643 /* 644 * Read data from a socket. ubuf is a user mode pointer. We make sure the user 645 * area ubuf...ubuf+size-1 is writable before asking the protocol. 646 */ 647 648 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 649 size_t size, loff_t pos) 650 { 651 struct sock_iocb *x, siocb; 652 struct socket *sock; 653 int flags; 654 655 if (pos != 0) 656 return -ESPIPE; 657 if (size==0) /* Match SYS5 behaviour */ 658 return 0; 659 660 if (is_sync_kiocb(iocb)) 661 x = &siocb; 662 else { 663 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 664 if (!x) 665 return -ENOMEM; 666 iocb->ki_dtor = sock_aio_dtor; 667 } 668 iocb->private = x; 669 x->kiocb = iocb; 670 sock = iocb->ki_filp->private_data; 671 672 x->async_msg.msg_name = NULL; 673 x->async_msg.msg_namelen = 0; 674 x->async_msg.msg_iov = &x->async_iov; 675 x->async_msg.msg_iovlen = 1; 676 x->async_msg.msg_control = NULL; 677 x->async_msg.msg_controllen = 0; 678 x->async_iov.iov_base = ubuf; 679 x->async_iov.iov_len = size; 680 flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 681 682 return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags); 683 } 684 685 686 /* 687 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1 688 * is readable by the user process. 689 */ 690 691 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 692 size_t size, loff_t pos) 693 { 694 struct sock_iocb *x, siocb; 695 struct socket *sock; 696 697 if (pos != 0) 698 return -ESPIPE; 699 if(size==0) /* Match SYS5 behaviour */ 700 return 0; 701 702 if (is_sync_kiocb(iocb)) 703 x = &siocb; 704 else { 705 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 706 if (!x) 707 return -ENOMEM; 708 iocb->ki_dtor = sock_aio_dtor; 709 } 710 iocb->private = x; 711 x->kiocb = iocb; 712 sock = iocb->ki_filp->private_data; 713 714 x->async_msg.msg_name = NULL; 715 x->async_msg.msg_namelen = 0; 716 x->async_msg.msg_iov = &x->async_iov; 717 x->async_msg.msg_iovlen = 1; 718 x->async_msg.msg_control = NULL; 719 x->async_msg.msg_controllen = 0; 720 x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 721 if (sock->type == SOCK_SEQPACKET) 722 x->async_msg.msg_flags |= MSG_EOR; 723 x->async_iov.iov_base = (void __user *)ubuf; 724 x->async_iov.iov_len = size; 725 726 return __sock_sendmsg(iocb, sock, &x->async_msg, size); 727 } 728 729 static ssize_t sock_sendpage(struct file *file, struct page *page, 730 int offset, size_t size, loff_t *ppos, int more) 731 { 732 struct socket *sock; 733 int flags; 734 735 sock = file->private_data; 736 737 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 738 if (more) 739 flags |= MSG_MORE; 740 741 return sock->ops->sendpage(sock, page, offset, size, flags); 742 } 743 744 static int sock_readv_writev(int type, 745 struct file * file, const struct iovec * iov, 746 long count, size_t size) 747 { 748 struct msghdr msg; 749 struct socket *sock; 750 751 sock = file->private_data; 752 753 msg.msg_name = NULL; 754 msg.msg_namelen = 0; 755 msg.msg_control = NULL; 756 msg.msg_controllen = 0; 757 msg.msg_iov = (struct iovec *) iov; 758 msg.msg_iovlen = count; 759 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 760 761 /* read() does a VERIFY_WRITE */ 762 if (type == VERIFY_WRITE) 763 return sock_recvmsg(sock, &msg, size, msg.msg_flags); 764 765 if (sock->type == SOCK_SEQPACKET) 766 msg.msg_flags |= MSG_EOR; 767 768 return sock_sendmsg(sock, &msg, size); 769 } 770 771 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 772 unsigned long count, loff_t *ppos) 773 { 774 size_t tot_len = 0; 775 int i; 776 for (i = 0 ; i < count ; i++) 777 tot_len += vector[i].iov_len; 778 return sock_readv_writev(VERIFY_WRITE, 779 file, vector, count, tot_len); 780 } 781 782 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 783 unsigned long count, loff_t *ppos) 784 { 785 size_t tot_len = 0; 786 int i; 787 for (i = 0 ; i < count ; i++) 788 tot_len += vector[i].iov_len; 789 return sock_readv_writev(VERIFY_READ, 790 file, vector, count, tot_len); 791 } 792 793 794 /* 795 * Atomic setting of ioctl hooks to avoid race 796 * with module unload. 797 */ 798 799 static DECLARE_MUTEX(br_ioctl_mutex); 800 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 801 802 void brioctl_set(int (*hook)(unsigned int, void __user *)) 803 { 804 down(&br_ioctl_mutex); 805 br_ioctl_hook = hook; 806 up(&br_ioctl_mutex); 807 } 808 EXPORT_SYMBOL(brioctl_set); 809 810 static DECLARE_MUTEX(vlan_ioctl_mutex); 811 static int (*vlan_ioctl_hook)(void __user *arg); 812 813 void vlan_ioctl_set(int (*hook)(void __user *)) 814 { 815 down(&vlan_ioctl_mutex); 816 vlan_ioctl_hook = hook; 817 up(&vlan_ioctl_mutex); 818 } 819 EXPORT_SYMBOL(vlan_ioctl_set); 820 821 static DECLARE_MUTEX(dlci_ioctl_mutex); 822 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 823 824 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 825 { 826 down(&dlci_ioctl_mutex); 827 dlci_ioctl_hook = hook; 828 up(&dlci_ioctl_mutex); 829 } 830 EXPORT_SYMBOL(dlci_ioctl_set); 831 832 /* 833 * With an ioctl, arg may well be a user mode pointer, but we don't know 834 * what to do with it - that's up to the protocol still. 835 */ 836 837 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 838 { 839 struct socket *sock; 840 void __user *argp = (void __user *)arg; 841 int pid, err; 842 843 sock = file->private_data; 844 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 845 err = dev_ioctl(cmd, argp); 846 } else 847 #ifdef WIRELESS_EXT 848 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 849 err = dev_ioctl(cmd, argp); 850 } else 851 #endif /* WIRELESS_EXT */ 852 switch (cmd) { 853 case FIOSETOWN: 854 case SIOCSPGRP: 855 err = -EFAULT; 856 if (get_user(pid, (int __user *)argp)) 857 break; 858 err = f_setown(sock->file, pid, 1); 859 break; 860 case FIOGETOWN: 861 case SIOCGPGRP: 862 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 863 break; 864 case SIOCGIFBR: 865 case SIOCSIFBR: 866 case SIOCBRADDBR: 867 case SIOCBRDELBR: 868 err = -ENOPKG; 869 if (!br_ioctl_hook) 870 request_module("bridge"); 871 872 down(&br_ioctl_mutex); 873 if (br_ioctl_hook) 874 err = br_ioctl_hook(cmd, argp); 875 up(&br_ioctl_mutex); 876 break; 877 case SIOCGIFVLAN: 878 case SIOCSIFVLAN: 879 err = -ENOPKG; 880 if (!vlan_ioctl_hook) 881 request_module("8021q"); 882 883 down(&vlan_ioctl_mutex); 884 if (vlan_ioctl_hook) 885 err = vlan_ioctl_hook(argp); 886 up(&vlan_ioctl_mutex); 887 break; 888 case SIOCGIFDIVERT: 889 case SIOCSIFDIVERT: 890 /* Convert this to call through a hook */ 891 err = divert_ioctl(cmd, argp); 892 break; 893 case SIOCADDDLCI: 894 case SIOCDELDLCI: 895 err = -ENOPKG; 896 if (!dlci_ioctl_hook) 897 request_module("dlci"); 898 899 if (dlci_ioctl_hook) { 900 down(&dlci_ioctl_mutex); 901 err = dlci_ioctl_hook(cmd, argp); 902 up(&dlci_ioctl_mutex); 903 } 904 break; 905 default: 906 err = sock->ops->ioctl(sock, cmd, arg); 907 break; 908 } 909 return err; 910 } 911 912 int sock_create_lite(int family, int type, int protocol, struct socket **res) 913 { 914 int err; 915 struct socket *sock = NULL; 916 917 err = security_socket_create(family, type, protocol, 1); 918 if (err) 919 goto out; 920 921 sock = sock_alloc(); 922 if (!sock) { 923 err = -ENOMEM; 924 goto out; 925 } 926 927 security_socket_post_create(sock, family, type, protocol, 1); 928 sock->type = type; 929 out: 930 *res = sock; 931 return err; 932 } 933 934 /* No kernel lock held - perfect */ 935 static unsigned int sock_poll(struct file *file, poll_table * wait) 936 { 937 struct socket *sock; 938 939 /* 940 * We can't return errors to poll, so it's either yes or no. 941 */ 942 sock = file->private_data; 943 return sock->ops->poll(file, sock, wait); 944 } 945 946 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 947 { 948 struct socket *sock = file->private_data; 949 950 return sock->ops->mmap(file, sock, vma); 951 } 952 953 static int sock_close(struct inode *inode, struct file *filp) 954 { 955 /* 956 * It was possible the inode is NULL we were 957 * closing an unfinished socket. 958 */ 959 960 if (!inode) 961 { 962 printk(KERN_DEBUG "sock_close: NULL inode\n"); 963 return 0; 964 } 965 sock_fasync(-1, filp, 0); 966 sock_release(SOCKET_I(inode)); 967 return 0; 968 } 969 970 /* 971 * Update the socket async list 972 * 973 * Fasync_list locking strategy. 974 * 975 * 1. fasync_list is modified only under process context socket lock 976 * i.e. under semaphore. 977 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 978 * or under socket lock. 979 * 3. fasync_list can be used from softirq context, so that 980 * modification under socket lock have to be enhanced with 981 * write_lock_bh(&sk->sk_callback_lock). 982 * --ANK (990710) 983 */ 984 985 static int sock_fasync(int fd, struct file *filp, int on) 986 { 987 struct fasync_struct *fa, *fna=NULL, **prev; 988 struct socket *sock; 989 struct sock *sk; 990 991 if (on) 992 { 993 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 994 if(fna==NULL) 995 return -ENOMEM; 996 } 997 998 sock = filp->private_data; 999 1000 if ((sk=sock->sk) == NULL) { 1001 kfree(fna); 1002 return -EINVAL; 1003 } 1004 1005 lock_sock(sk); 1006 1007 prev=&(sock->fasync_list); 1008 1009 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1010 if (fa->fa_file==filp) 1011 break; 1012 1013 if(on) 1014 { 1015 if(fa!=NULL) 1016 { 1017 write_lock_bh(&sk->sk_callback_lock); 1018 fa->fa_fd=fd; 1019 write_unlock_bh(&sk->sk_callback_lock); 1020 1021 kfree(fna); 1022 goto out; 1023 } 1024 fna->fa_file=filp; 1025 fna->fa_fd=fd; 1026 fna->magic=FASYNC_MAGIC; 1027 fna->fa_next=sock->fasync_list; 1028 write_lock_bh(&sk->sk_callback_lock); 1029 sock->fasync_list=fna; 1030 write_unlock_bh(&sk->sk_callback_lock); 1031 } 1032 else 1033 { 1034 if (fa!=NULL) 1035 { 1036 write_lock_bh(&sk->sk_callback_lock); 1037 *prev=fa->fa_next; 1038 write_unlock_bh(&sk->sk_callback_lock); 1039 kfree(fa); 1040 } 1041 } 1042 1043 out: 1044 release_sock(sock->sk); 1045 return 0; 1046 } 1047 1048 /* This function may be called only under socket lock or callback_lock */ 1049 1050 int sock_wake_async(struct socket *sock, int how, int band) 1051 { 1052 if (!sock || !sock->fasync_list) 1053 return -1; 1054 switch (how) 1055 { 1056 case 1: 1057 1058 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1059 break; 1060 goto call_kill; 1061 case 2: 1062 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1063 break; 1064 /* fall through */ 1065 case 0: 1066 call_kill: 1067 __kill_fasync(sock->fasync_list, SIGIO, band); 1068 break; 1069 case 3: 1070 __kill_fasync(sock->fasync_list, SIGURG, band); 1071 } 1072 return 0; 1073 } 1074 1075 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1076 { 1077 int err; 1078 struct socket *sock; 1079 1080 /* 1081 * Check protocol is in range 1082 */ 1083 if (family < 0 || family >= NPROTO) 1084 return -EAFNOSUPPORT; 1085 if (type < 0 || type >= SOCK_MAX) 1086 return -EINVAL; 1087 1088 /* Compatibility. 1089 1090 This uglymoron is moved from INET layer to here to avoid 1091 deadlock in module load. 1092 */ 1093 if (family == PF_INET && type == SOCK_PACKET) { 1094 static int warned; 1095 if (!warned) { 1096 warned = 1; 1097 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1098 } 1099 family = PF_PACKET; 1100 } 1101 1102 err = security_socket_create(family, type, protocol, kern); 1103 if (err) 1104 return err; 1105 1106 #if defined(CONFIG_KMOD) 1107 /* Attempt to load a protocol module if the find failed. 1108 * 1109 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1110 * requested real, full-featured networking support upon configuration. 1111 * Otherwise module support will break! 1112 */ 1113 if (net_families[family]==NULL) 1114 { 1115 request_module("net-pf-%d",family); 1116 } 1117 #endif 1118 1119 net_family_read_lock(); 1120 if (net_families[family] == NULL) { 1121 err = -EAFNOSUPPORT; 1122 goto out; 1123 } 1124 1125 /* 1126 * Allocate the socket and allow the family to set things up. if 1127 * the protocol is 0, the family is instructed to select an appropriate 1128 * default. 1129 */ 1130 1131 if (!(sock = sock_alloc())) { 1132 printk(KERN_WARNING "socket: no more sockets\n"); 1133 err = -ENFILE; /* Not exactly a match, but its the 1134 closest posix thing */ 1135 goto out; 1136 } 1137 1138 sock->type = type; 1139 1140 /* 1141 * We will call the ->create function, that possibly is in a loadable 1142 * module, so we have to bump that loadable module refcnt first. 1143 */ 1144 err = -EAFNOSUPPORT; 1145 if (!try_module_get(net_families[family]->owner)) 1146 goto out_release; 1147 1148 if ((err = net_families[family]->create(sock, protocol)) < 0) 1149 goto out_module_put; 1150 /* 1151 * Now to bump the refcnt of the [loadable] module that owns this 1152 * socket at sock_release time we decrement its refcnt. 1153 */ 1154 if (!try_module_get(sock->ops->owner)) { 1155 sock->ops = NULL; 1156 goto out_module_put; 1157 } 1158 /* 1159 * Now that we're done with the ->create function, the [loadable] 1160 * module can have its refcnt decremented 1161 */ 1162 module_put(net_families[family]->owner); 1163 *res = sock; 1164 security_socket_post_create(sock, family, type, protocol, kern); 1165 1166 out: 1167 net_family_read_unlock(); 1168 return err; 1169 out_module_put: 1170 module_put(net_families[family]->owner); 1171 out_release: 1172 sock_release(sock); 1173 goto out; 1174 } 1175 1176 int sock_create(int family, int type, int protocol, struct socket **res) 1177 { 1178 return __sock_create(family, type, protocol, res, 0); 1179 } 1180 1181 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1182 { 1183 return __sock_create(family, type, protocol, res, 1); 1184 } 1185 1186 asmlinkage long sys_socket(int family, int type, int protocol) 1187 { 1188 int retval; 1189 struct socket *sock; 1190 1191 retval = sock_create(family, type, protocol, &sock); 1192 if (retval < 0) 1193 goto out; 1194 1195 retval = sock_map_fd(sock); 1196 if (retval < 0) 1197 goto out_release; 1198 1199 out: 1200 /* It may be already another descriptor 8) Not kernel problem. */ 1201 return retval; 1202 1203 out_release: 1204 sock_release(sock); 1205 return retval; 1206 } 1207 1208 /* 1209 * Create a pair of connected sockets. 1210 */ 1211 1212 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1213 { 1214 struct socket *sock1, *sock2; 1215 int fd1, fd2, err; 1216 1217 /* 1218 * Obtain the first socket and check if the underlying protocol 1219 * supports the socketpair call. 1220 */ 1221 1222 err = sock_create(family, type, protocol, &sock1); 1223 if (err < 0) 1224 goto out; 1225 1226 err = sock_create(family, type, protocol, &sock2); 1227 if (err < 0) 1228 goto out_release_1; 1229 1230 err = sock1->ops->socketpair(sock1, sock2); 1231 if (err < 0) 1232 goto out_release_both; 1233 1234 fd1 = fd2 = -1; 1235 1236 err = sock_map_fd(sock1); 1237 if (err < 0) 1238 goto out_release_both; 1239 fd1 = err; 1240 1241 err = sock_map_fd(sock2); 1242 if (err < 0) 1243 goto out_close_1; 1244 fd2 = err; 1245 1246 /* fd1 and fd2 may be already another descriptors. 1247 * Not kernel problem. 1248 */ 1249 1250 err = put_user(fd1, &usockvec[0]); 1251 if (!err) 1252 err = put_user(fd2, &usockvec[1]); 1253 if (!err) 1254 return 0; 1255 1256 sys_close(fd2); 1257 sys_close(fd1); 1258 return err; 1259 1260 out_close_1: 1261 sock_release(sock2); 1262 sys_close(fd1); 1263 return err; 1264 1265 out_release_both: 1266 sock_release(sock2); 1267 out_release_1: 1268 sock_release(sock1); 1269 out: 1270 return err; 1271 } 1272 1273 1274 /* 1275 * Bind a name to a socket. Nothing much to do here since it's 1276 * the protocol's responsibility to handle the local address. 1277 * 1278 * We move the socket address to kernel space before we call 1279 * the protocol layer (having also checked the address is ok). 1280 */ 1281 1282 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1283 { 1284 struct socket *sock; 1285 char address[MAX_SOCK_ADDR]; 1286 int err; 1287 1288 if((sock = sockfd_lookup(fd,&err))!=NULL) 1289 { 1290 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1291 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1292 if (err) { 1293 sockfd_put(sock); 1294 return err; 1295 } 1296 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen); 1297 } 1298 sockfd_put(sock); 1299 } 1300 return err; 1301 } 1302 1303 1304 /* 1305 * Perform a listen. Basically, we allow the protocol to do anything 1306 * necessary for a listen, and if that works, we mark the socket as 1307 * ready for listening. 1308 */ 1309 1310 int sysctl_somaxconn = SOMAXCONN; 1311 1312 asmlinkage long sys_listen(int fd, int backlog) 1313 { 1314 struct socket *sock; 1315 int err; 1316 1317 if ((sock = sockfd_lookup(fd, &err)) != NULL) { 1318 if ((unsigned) backlog > sysctl_somaxconn) 1319 backlog = sysctl_somaxconn; 1320 1321 err = security_socket_listen(sock, backlog); 1322 if (err) { 1323 sockfd_put(sock); 1324 return err; 1325 } 1326 1327 err=sock->ops->listen(sock, backlog); 1328 sockfd_put(sock); 1329 } 1330 return err; 1331 } 1332 1333 1334 /* 1335 * For accept, we attempt to create a new socket, set up the link 1336 * with the client, wake up the client, then return the new 1337 * connected fd. We collect the address of the connector in kernel 1338 * space and move it to user at the very end. This is unclean because 1339 * we open the socket then return an error. 1340 * 1341 * 1003.1g adds the ability to recvmsg() to query connection pending 1342 * status to recvmsg. We need to add that support in a way thats 1343 * clean when we restucture accept also. 1344 */ 1345 1346 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1347 { 1348 struct socket *sock, *newsock; 1349 int err, len; 1350 char address[MAX_SOCK_ADDR]; 1351 1352 sock = sockfd_lookup(fd, &err); 1353 if (!sock) 1354 goto out; 1355 1356 err = -ENFILE; 1357 if (!(newsock = sock_alloc())) 1358 goto out_put; 1359 1360 newsock->type = sock->type; 1361 newsock->ops = sock->ops; 1362 1363 err = security_socket_accept(sock, newsock); 1364 if (err) 1365 goto out_release; 1366 1367 /* 1368 * We don't need try_module_get here, as the listening socket (sock) 1369 * has the protocol module (sock->ops->owner) held. 1370 */ 1371 __module_get(newsock->ops->owner); 1372 1373 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1374 if (err < 0) 1375 goto out_release; 1376 1377 if (upeer_sockaddr) { 1378 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1379 err = -ECONNABORTED; 1380 goto out_release; 1381 } 1382 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1383 if (err < 0) 1384 goto out_release; 1385 } 1386 1387 /* File flags are not inherited via accept() unlike another OSes. */ 1388 1389 if ((err = sock_map_fd(newsock)) < 0) 1390 goto out_release; 1391 1392 security_socket_post_accept(sock, newsock); 1393 1394 out_put: 1395 sockfd_put(sock); 1396 out: 1397 return err; 1398 out_release: 1399 sock_release(newsock); 1400 goto out_put; 1401 } 1402 1403 1404 /* 1405 * Attempt to connect to a socket with the server address. The address 1406 * is in user space so we verify it is OK and move it to kernel space. 1407 * 1408 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1409 * break bindings 1410 * 1411 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1412 * other SEQPACKET protocols that take time to connect() as it doesn't 1413 * include the -EINPROGRESS status for such sockets. 1414 */ 1415 1416 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1417 { 1418 struct socket *sock; 1419 char address[MAX_SOCK_ADDR]; 1420 int err; 1421 1422 sock = sockfd_lookup(fd, &err); 1423 if (!sock) 1424 goto out; 1425 err = move_addr_to_kernel(uservaddr, addrlen, address); 1426 if (err < 0) 1427 goto out_put; 1428 1429 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1430 if (err) 1431 goto out_put; 1432 1433 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1434 sock->file->f_flags); 1435 out_put: 1436 sockfd_put(sock); 1437 out: 1438 return err; 1439 } 1440 1441 /* 1442 * Get the local address ('name') of a socket object. Move the obtained 1443 * name to user space. 1444 */ 1445 1446 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1447 { 1448 struct socket *sock; 1449 char address[MAX_SOCK_ADDR]; 1450 int len, err; 1451 1452 sock = sockfd_lookup(fd, &err); 1453 if (!sock) 1454 goto out; 1455 1456 err = security_socket_getsockname(sock); 1457 if (err) 1458 goto out_put; 1459 1460 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1461 if (err) 1462 goto out_put; 1463 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1464 1465 out_put: 1466 sockfd_put(sock); 1467 out: 1468 return err; 1469 } 1470 1471 /* 1472 * Get the remote address ('name') of a socket object. Move the obtained 1473 * name to user space. 1474 */ 1475 1476 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1477 { 1478 struct socket *sock; 1479 char address[MAX_SOCK_ADDR]; 1480 int len, err; 1481 1482 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1483 { 1484 err = security_socket_getpeername(sock); 1485 if (err) { 1486 sockfd_put(sock); 1487 return err; 1488 } 1489 1490 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1491 if (!err) 1492 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1493 sockfd_put(sock); 1494 } 1495 return err; 1496 } 1497 1498 /* 1499 * Send a datagram to a given address. We move the address into kernel 1500 * space and check the user space data area is readable before invoking 1501 * the protocol. 1502 */ 1503 1504 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1505 struct sockaddr __user *addr, int addr_len) 1506 { 1507 struct socket *sock; 1508 char address[MAX_SOCK_ADDR]; 1509 int err; 1510 struct msghdr msg; 1511 struct iovec iov; 1512 1513 sock = sockfd_lookup(fd, &err); 1514 if (!sock) 1515 goto out; 1516 iov.iov_base=buff; 1517 iov.iov_len=len; 1518 msg.msg_name=NULL; 1519 msg.msg_iov=&iov; 1520 msg.msg_iovlen=1; 1521 msg.msg_control=NULL; 1522 msg.msg_controllen=0; 1523 msg.msg_namelen=0; 1524 if(addr) 1525 { 1526 err = move_addr_to_kernel(addr, addr_len, address); 1527 if (err < 0) 1528 goto out_put; 1529 msg.msg_name=address; 1530 msg.msg_namelen=addr_len; 1531 } 1532 if (sock->file->f_flags & O_NONBLOCK) 1533 flags |= MSG_DONTWAIT; 1534 msg.msg_flags = flags; 1535 err = sock_sendmsg(sock, &msg, len); 1536 1537 out_put: 1538 sockfd_put(sock); 1539 out: 1540 return err; 1541 } 1542 1543 /* 1544 * Send a datagram down a socket. 1545 */ 1546 1547 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1548 { 1549 return sys_sendto(fd, buff, len, flags, NULL, 0); 1550 } 1551 1552 /* 1553 * Receive a frame from the socket and optionally record the address of the 1554 * sender. We verify the buffers are writable and if needed move the 1555 * sender address from kernel to user space. 1556 */ 1557 1558 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1559 struct sockaddr __user *addr, int __user *addr_len) 1560 { 1561 struct socket *sock; 1562 struct iovec iov; 1563 struct msghdr msg; 1564 char address[MAX_SOCK_ADDR]; 1565 int err,err2; 1566 1567 sock = sockfd_lookup(fd, &err); 1568 if (!sock) 1569 goto out; 1570 1571 msg.msg_control=NULL; 1572 msg.msg_controllen=0; 1573 msg.msg_iovlen=1; 1574 msg.msg_iov=&iov; 1575 iov.iov_len=size; 1576 iov.iov_base=ubuf; 1577 msg.msg_name=address; 1578 msg.msg_namelen=MAX_SOCK_ADDR; 1579 if (sock->file->f_flags & O_NONBLOCK) 1580 flags |= MSG_DONTWAIT; 1581 err=sock_recvmsg(sock, &msg, size, flags); 1582 1583 if(err >= 0 && addr != NULL) 1584 { 1585 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1586 if(err2<0) 1587 err=err2; 1588 } 1589 sockfd_put(sock); 1590 out: 1591 return err; 1592 } 1593 1594 /* 1595 * Receive a datagram from a socket. 1596 */ 1597 1598 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1599 { 1600 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1601 } 1602 1603 /* 1604 * Set a socket option. Because we don't know the option lengths we have 1605 * to pass the user mode parameter for the protocols to sort out. 1606 */ 1607 1608 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1609 { 1610 int err; 1611 struct socket *sock; 1612 1613 if (optlen < 0) 1614 return -EINVAL; 1615 1616 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1617 { 1618 err = security_socket_setsockopt(sock,level,optname); 1619 if (err) { 1620 sockfd_put(sock); 1621 return err; 1622 } 1623 1624 if (level == SOL_SOCKET) 1625 err=sock_setsockopt(sock,level,optname,optval,optlen); 1626 else 1627 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1628 sockfd_put(sock); 1629 } 1630 return err; 1631 } 1632 1633 /* 1634 * Get a socket option. Because we don't know the option lengths we have 1635 * to pass a user mode parameter for the protocols to sort out. 1636 */ 1637 1638 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1639 { 1640 int err; 1641 struct socket *sock; 1642 1643 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1644 { 1645 err = security_socket_getsockopt(sock, level, 1646 optname); 1647 if (err) { 1648 sockfd_put(sock); 1649 return err; 1650 } 1651 1652 if (level == SOL_SOCKET) 1653 err=sock_getsockopt(sock,level,optname,optval,optlen); 1654 else 1655 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1656 sockfd_put(sock); 1657 } 1658 return err; 1659 } 1660 1661 1662 /* 1663 * Shutdown a socket. 1664 */ 1665 1666 asmlinkage long sys_shutdown(int fd, int how) 1667 { 1668 int err; 1669 struct socket *sock; 1670 1671 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1672 { 1673 err = security_socket_shutdown(sock, how); 1674 if (err) { 1675 sockfd_put(sock); 1676 return err; 1677 } 1678 1679 err=sock->ops->shutdown(sock, how); 1680 sockfd_put(sock); 1681 } 1682 return err; 1683 } 1684 1685 /* A couple of helpful macros for getting the address of the 32/64 bit 1686 * fields which are the same type (int / unsigned) on our platforms. 1687 */ 1688 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1689 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1690 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1691 1692 1693 /* 1694 * BSD sendmsg interface 1695 */ 1696 1697 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1698 { 1699 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1700 struct socket *sock; 1701 char address[MAX_SOCK_ADDR]; 1702 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1703 unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ 1704 unsigned char *ctl_buf = ctl; 1705 struct msghdr msg_sys; 1706 int err, ctl_len, iov_size, total_len; 1707 1708 err = -EFAULT; 1709 if (MSG_CMSG_COMPAT & flags) { 1710 if (get_compat_msghdr(&msg_sys, msg_compat)) 1711 return -EFAULT; 1712 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1713 return -EFAULT; 1714 1715 sock = sockfd_lookup(fd, &err); 1716 if (!sock) 1717 goto out; 1718 1719 /* do not move before msg_sys is valid */ 1720 err = -EMSGSIZE; 1721 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1722 goto out_put; 1723 1724 /* Check whether to allocate the iovec area*/ 1725 err = -ENOMEM; 1726 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1727 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1728 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1729 if (!iov) 1730 goto out_put; 1731 } 1732 1733 /* This will also move the address data into kernel space */ 1734 if (MSG_CMSG_COMPAT & flags) { 1735 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1736 } else 1737 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1738 if (err < 0) 1739 goto out_freeiov; 1740 total_len = err; 1741 1742 err = -ENOBUFS; 1743 1744 if (msg_sys.msg_controllen > INT_MAX) 1745 goto out_freeiov; 1746 ctl_len = msg_sys.msg_controllen; 1747 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1748 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl)); 1749 if (err) 1750 goto out_freeiov; 1751 ctl_buf = msg_sys.msg_control; 1752 ctl_len = msg_sys.msg_controllen; 1753 } else if (ctl_len) { 1754 if (ctl_len > sizeof(ctl)) 1755 { 1756 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1757 if (ctl_buf == NULL) 1758 goto out_freeiov; 1759 } 1760 err = -EFAULT; 1761 /* 1762 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1763 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1764 * checking falls down on this. 1765 */ 1766 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1767 goto out_freectl; 1768 msg_sys.msg_control = ctl_buf; 1769 } 1770 msg_sys.msg_flags = flags; 1771 1772 if (sock->file->f_flags & O_NONBLOCK) 1773 msg_sys.msg_flags |= MSG_DONTWAIT; 1774 err = sock_sendmsg(sock, &msg_sys, total_len); 1775 1776 out_freectl: 1777 if (ctl_buf != ctl) 1778 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1779 out_freeiov: 1780 if (iov != iovstack) 1781 sock_kfree_s(sock->sk, iov, iov_size); 1782 out_put: 1783 sockfd_put(sock); 1784 out: 1785 return err; 1786 } 1787 1788 /* 1789 * BSD recvmsg interface 1790 */ 1791 1792 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1793 { 1794 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1795 struct socket *sock; 1796 struct iovec iovstack[UIO_FASTIOV]; 1797 struct iovec *iov=iovstack; 1798 struct msghdr msg_sys; 1799 unsigned long cmsg_ptr; 1800 int err, iov_size, total_len, len; 1801 1802 /* kernel mode address */ 1803 char addr[MAX_SOCK_ADDR]; 1804 1805 /* user mode address pointers */ 1806 struct sockaddr __user *uaddr; 1807 int __user *uaddr_len; 1808 1809 if (MSG_CMSG_COMPAT & flags) { 1810 if (get_compat_msghdr(&msg_sys, msg_compat)) 1811 return -EFAULT; 1812 } else 1813 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1814 return -EFAULT; 1815 1816 sock = sockfd_lookup(fd, &err); 1817 if (!sock) 1818 goto out; 1819 1820 err = -EMSGSIZE; 1821 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1822 goto out_put; 1823 1824 /* Check whether to allocate the iovec area*/ 1825 err = -ENOMEM; 1826 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1827 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1828 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1829 if (!iov) 1830 goto out_put; 1831 } 1832 1833 /* 1834 * Save the user-mode address (verify_iovec will change the 1835 * kernel msghdr to use the kernel address space) 1836 */ 1837 1838 uaddr = (void __user *) msg_sys.msg_name; 1839 uaddr_len = COMPAT_NAMELEN(msg); 1840 if (MSG_CMSG_COMPAT & flags) { 1841 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1842 } else 1843 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1844 if (err < 0) 1845 goto out_freeiov; 1846 total_len=err; 1847 1848 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1849 msg_sys.msg_flags = 0; 1850 if (MSG_CMSG_COMPAT & flags) 1851 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1852 1853 if (sock->file->f_flags & O_NONBLOCK) 1854 flags |= MSG_DONTWAIT; 1855 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1856 if (err < 0) 1857 goto out_freeiov; 1858 len = err; 1859 1860 if (uaddr != NULL) { 1861 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1862 if (err < 0) 1863 goto out_freeiov; 1864 } 1865 err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg)); 1866 if (err) 1867 goto out_freeiov; 1868 if (MSG_CMSG_COMPAT & flags) 1869 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1870 &msg_compat->msg_controllen); 1871 else 1872 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1873 &msg->msg_controllen); 1874 if (err) 1875 goto out_freeiov; 1876 err = len; 1877 1878 out_freeiov: 1879 if (iov != iovstack) 1880 sock_kfree_s(sock->sk, iov, iov_size); 1881 out_put: 1882 sockfd_put(sock); 1883 out: 1884 return err; 1885 } 1886 1887 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1888 1889 /* Argument list sizes for sys_socketcall */ 1890 #define AL(x) ((x) * sizeof(unsigned long)) 1891 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1892 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1893 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1894 #undef AL 1895 1896 /* 1897 * System call vectors. 1898 * 1899 * Argument checking cleaned up. Saved 20% in size. 1900 * This function doesn't need to set the kernel lock because 1901 * it is set by the callees. 1902 */ 1903 1904 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1905 { 1906 unsigned long a[6]; 1907 unsigned long a0,a1; 1908 int err; 1909 1910 if(call<1||call>SYS_RECVMSG) 1911 return -EINVAL; 1912 1913 /* copy_from_user should be SMP safe. */ 1914 if (copy_from_user(a, args, nargs[call])) 1915 return -EFAULT; 1916 1917 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1918 if (err) 1919 return err; 1920 1921 a0=a[0]; 1922 a1=a[1]; 1923 1924 switch(call) 1925 { 1926 case SYS_SOCKET: 1927 err = sys_socket(a0,a1,a[2]); 1928 break; 1929 case SYS_BIND: 1930 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1931 break; 1932 case SYS_CONNECT: 1933 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1934 break; 1935 case SYS_LISTEN: 1936 err = sys_listen(a0,a1); 1937 break; 1938 case SYS_ACCEPT: 1939 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1940 break; 1941 case SYS_GETSOCKNAME: 1942 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1943 break; 1944 case SYS_GETPEERNAME: 1945 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 1946 break; 1947 case SYS_SOCKETPAIR: 1948 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 1949 break; 1950 case SYS_SEND: 1951 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1952 break; 1953 case SYS_SENDTO: 1954 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 1955 (struct sockaddr __user *)a[4], a[5]); 1956 break; 1957 case SYS_RECV: 1958 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 1959 break; 1960 case SYS_RECVFROM: 1961 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 1962 (struct sockaddr __user *)a[4], (int __user *)a[5]); 1963 break; 1964 case SYS_SHUTDOWN: 1965 err = sys_shutdown(a0,a1); 1966 break; 1967 case SYS_SETSOCKOPT: 1968 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 1969 break; 1970 case SYS_GETSOCKOPT: 1971 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 1972 break; 1973 case SYS_SENDMSG: 1974 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 1975 break; 1976 case SYS_RECVMSG: 1977 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 1978 break; 1979 default: 1980 err = -EINVAL; 1981 break; 1982 } 1983 return err; 1984 } 1985 1986 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 1987 1988 /* 1989 * This function is called by a protocol handler that wants to 1990 * advertise its address family, and have it linked into the 1991 * SOCKET module. 1992 */ 1993 1994 int sock_register(struct net_proto_family *ops) 1995 { 1996 int err; 1997 1998 if (ops->family >= NPROTO) { 1999 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2000 return -ENOBUFS; 2001 } 2002 net_family_write_lock(); 2003 err = -EEXIST; 2004 if (net_families[ops->family] == NULL) { 2005 net_families[ops->family]=ops; 2006 err = 0; 2007 } 2008 net_family_write_unlock(); 2009 printk(KERN_INFO "NET: Registered protocol family %d\n", 2010 ops->family); 2011 return err; 2012 } 2013 2014 /* 2015 * This function is called by a protocol handler that wants to 2016 * remove its address family, and have it unlinked from the 2017 * SOCKET module. 2018 */ 2019 2020 int sock_unregister(int family) 2021 { 2022 if (family < 0 || family >= NPROTO) 2023 return -1; 2024 2025 net_family_write_lock(); 2026 net_families[family]=NULL; 2027 net_family_write_unlock(); 2028 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2029 family); 2030 return 0; 2031 } 2032 2033 void __init sock_init(void) 2034 { 2035 /* 2036 * Initialize sock SLAB cache. 2037 */ 2038 2039 sk_init(); 2040 2041 #ifdef SLAB_SKB 2042 /* 2043 * Initialize skbuff SLAB cache 2044 */ 2045 skb_init(); 2046 #endif 2047 2048 /* 2049 * Initialize the protocols module. 2050 */ 2051 2052 init_inodecache(); 2053 register_filesystem(&sock_fs_type); 2054 sock_mnt = kern_mount(&sock_fs_type); 2055 /* The real protocol initialization is performed when 2056 * do_initcalls is run. 2057 */ 2058 2059 #ifdef CONFIG_NETFILTER 2060 netfilter_init(); 2061 #endif 2062 } 2063 2064 #ifdef CONFIG_PROC_FS 2065 void socket_seq_show(struct seq_file *seq) 2066 { 2067 int cpu; 2068 int counter = 0; 2069 2070 for (cpu = 0; cpu < NR_CPUS; cpu++) 2071 counter += per_cpu(sockets_in_use, cpu); 2072 2073 /* It can be negative, by the way. 8) */ 2074 if (counter < 0) 2075 counter = 0; 2076 2077 seq_printf(seq, "sockets: used %d\n", counter); 2078 } 2079 #endif /* CONFIG_PROC_FS */ 2080 2081 /* ABI emulation layers need these two */ 2082 EXPORT_SYMBOL(move_addr_to_kernel); 2083 EXPORT_SYMBOL(move_addr_to_user); 2084 EXPORT_SYMBOL(sock_create); 2085 EXPORT_SYMBOL(sock_create_kern); 2086 EXPORT_SYMBOL(sock_create_lite); 2087 EXPORT_SYMBOL(sock_map_fd); 2088 EXPORT_SYMBOL(sock_recvmsg); 2089 EXPORT_SYMBOL(sock_register); 2090 EXPORT_SYMBOL(sock_release); 2091 EXPORT_SYMBOL(sock_sendmsg); 2092 EXPORT_SYMBOL(sock_unregister); 2093 EXPORT_SYMBOL(sock_wake_async); 2094 EXPORT_SYMBOL(sockfd_lookup); 2095 EXPORT_SYMBOL(kernel_sendmsg); 2096 EXPORT_SYMBOL(kernel_recvmsg); 2097