1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/config.h> 62 #include <linux/mm.h> 63 #include <linux/smp_lock.h> 64 #include <linux/socket.h> 65 #include <linux/file.h> 66 #include <linux/net.h> 67 #include <linux/interrupt.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/divert.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 88 #ifdef CONFIG_NET_RADIO 89 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 90 #endif /* CONFIG_NET_RADIO */ 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 101 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 102 size_t size, loff_t pos); 103 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 104 size_t size, loff_t pos); 105 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 106 107 static int sock_close(struct inode *inode, struct file *file); 108 static unsigned int sock_poll(struct file *file, 109 struct poll_table_struct *wait); 110 static long sock_ioctl(struct file *file, 111 unsigned int cmd, unsigned long arg); 112 static int sock_fasync(int fd, struct file *filp, int on); 113 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 114 unsigned long count, loff_t *ppos); 115 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 116 unsigned long count, loff_t *ppos); 117 static ssize_t sock_sendpage(struct file *file, struct page *page, 118 int offset, size_t size, loff_t *ppos, int more); 119 120 121 /* 122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 123 * in the operation structures but are done directly via the socketcall() multiplexor. 124 */ 125 126 static struct file_operations socket_file_ops = { 127 .owner = THIS_MODULE, 128 .llseek = no_llseek, 129 .aio_read = sock_aio_read, 130 .aio_write = sock_aio_write, 131 .poll = sock_poll, 132 .unlocked_ioctl = sock_ioctl, 133 .mmap = sock_mmap, 134 .open = sock_no_open, /* special open code to disallow open via /proc */ 135 .release = sock_close, 136 .fasync = sock_fasync, 137 .readv = sock_readv, 138 .writev = sock_writev, 139 .sendpage = sock_sendpage 140 }; 141 142 /* 143 * The protocol list. Each protocol is registered in here. 144 */ 145 146 static struct net_proto_family *net_families[NPROTO]; 147 148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 149 static atomic_t net_family_lockct = ATOMIC_INIT(0); 150 static DEFINE_SPINLOCK(net_family_lock); 151 152 /* The strategy is: modifications net_family vector are short, do not 153 sleep and veeery rare, but read access should be free of any exclusive 154 locks. 155 */ 156 157 static void net_family_write_lock(void) 158 { 159 spin_lock(&net_family_lock); 160 while (atomic_read(&net_family_lockct) != 0) { 161 spin_unlock(&net_family_lock); 162 163 yield(); 164 165 spin_lock(&net_family_lock); 166 } 167 } 168 169 static __inline__ void net_family_write_unlock(void) 170 { 171 spin_unlock(&net_family_lock); 172 } 173 174 static __inline__ void net_family_read_lock(void) 175 { 176 atomic_inc(&net_family_lockct); 177 spin_unlock_wait(&net_family_lock); 178 } 179 180 static __inline__ void net_family_read_unlock(void) 181 { 182 atomic_dec(&net_family_lockct); 183 } 184 185 #else 186 #define net_family_write_lock() do { } while(0) 187 #define net_family_write_unlock() do { } while(0) 188 #define net_family_read_lock() do { } while(0) 189 #define net_family_read_unlock() do { } while(0) 190 #endif 191 192 193 /* 194 * Statistics counters of the socket lists 195 */ 196 197 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 198 199 /* 200 * Support routines. Move socket addresses back and forth across the kernel/user 201 * divide and look after the messy bits. 202 */ 203 204 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 205 16 for IP, 16 for IPX, 206 24 for IPv6, 207 about 80 for AX.25 208 must be at least one bigger than 209 the AF_UNIX size (see net/unix/af_unix.c 210 :unix_mkname()). 211 */ 212 213 /** 214 * move_addr_to_kernel - copy a socket address into kernel space 215 * @uaddr: Address in user space 216 * @kaddr: Address in kernel space 217 * @ulen: Length in user space 218 * 219 * The address is copied into kernel space. If the provided address is 220 * too long an error code of -EINVAL is returned. If the copy gives 221 * invalid addresses -EFAULT is returned. On a success 0 is returned. 222 */ 223 224 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 225 { 226 if(ulen<0||ulen>MAX_SOCK_ADDR) 227 return -EINVAL; 228 if(ulen==0) 229 return 0; 230 if(copy_from_user(kaddr,uaddr,ulen)) 231 return -EFAULT; 232 return audit_sockaddr(ulen, kaddr); 233 } 234 235 /** 236 * move_addr_to_user - copy an address to user space 237 * @kaddr: kernel space address 238 * @klen: length of address in kernel 239 * @uaddr: user space address 240 * @ulen: pointer to user length field 241 * 242 * The value pointed to by ulen on entry is the buffer length available. 243 * This is overwritten with the buffer space used. -EINVAL is returned 244 * if an overlong buffer is specified or a negative buffer size. -EFAULT 245 * is returned if either the buffer or the length field are not 246 * accessible. 247 * After copying the data up to the limit the user specifies, the true 248 * length of the data is written over the length limit the user 249 * specified. Zero is returned for a success. 250 */ 251 252 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 253 { 254 int err; 255 int len; 256 257 if((err=get_user(len, ulen))) 258 return err; 259 if(len>klen) 260 len=klen; 261 if(len<0 || len> MAX_SOCK_ADDR) 262 return -EINVAL; 263 if(len) 264 { 265 if(copy_to_user(uaddr,kaddr,len)) 266 return -EFAULT; 267 } 268 /* 269 * "fromlen shall refer to the value before truncation.." 270 * 1003.1g 271 */ 272 return __put_user(klen, ulen); 273 } 274 275 #define SOCKFS_MAGIC 0x534F434B 276 277 static kmem_cache_t * sock_inode_cachep __read_mostly; 278 279 static struct inode *sock_alloc_inode(struct super_block *sb) 280 { 281 struct socket_alloc *ei; 282 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 283 if (!ei) 284 return NULL; 285 init_waitqueue_head(&ei->socket.wait); 286 287 ei->socket.fasync_list = NULL; 288 ei->socket.state = SS_UNCONNECTED; 289 ei->socket.flags = 0; 290 ei->socket.ops = NULL; 291 ei->socket.sk = NULL; 292 ei->socket.file = NULL; 293 ei->socket.flags = 0; 294 295 return &ei->vfs_inode; 296 } 297 298 static void sock_destroy_inode(struct inode *inode) 299 { 300 kmem_cache_free(sock_inode_cachep, 301 container_of(inode, struct socket_alloc, vfs_inode)); 302 } 303 304 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 305 { 306 struct socket_alloc *ei = (struct socket_alloc *) foo; 307 308 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 309 SLAB_CTOR_CONSTRUCTOR) 310 inode_init_once(&ei->vfs_inode); 311 } 312 313 static int init_inodecache(void) 314 { 315 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 316 sizeof(struct socket_alloc), 317 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 318 init_once, NULL); 319 if (sock_inode_cachep == NULL) 320 return -ENOMEM; 321 return 0; 322 } 323 324 static struct super_operations sockfs_ops = { 325 .alloc_inode = sock_alloc_inode, 326 .destroy_inode =sock_destroy_inode, 327 .statfs = simple_statfs, 328 }; 329 330 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 331 int flags, const char *dev_name, void *data) 332 { 333 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 334 } 335 336 static struct vfsmount *sock_mnt __read_mostly; 337 338 static struct file_system_type sock_fs_type = { 339 .name = "sockfs", 340 .get_sb = sockfs_get_sb, 341 .kill_sb = kill_anon_super, 342 }; 343 static int sockfs_delete_dentry(struct dentry *dentry) 344 { 345 return 1; 346 } 347 static struct dentry_operations sockfs_dentry_operations = { 348 .d_delete = sockfs_delete_dentry, 349 }; 350 351 /* 352 * Obtains the first available file descriptor and sets it up for use. 353 * 354 * This function creates file structure and maps it to fd space 355 * of current process. On success it returns file descriptor 356 * and file struct implicitly stored in sock->file. 357 * Note that another thread may close file descriptor before we return 358 * from this function. We use the fact that now we do not refer 359 * to socket after mapping. If one day we will need it, this 360 * function will increment ref. count on file by 1. 361 * 362 * In any case returned fd MAY BE not valid! 363 * This race condition is unavoidable 364 * with shared fd spaces, we cannot solve it inside kernel, 365 * but we take care of internal coherence yet. 366 */ 367 368 int sock_map_fd(struct socket *sock) 369 { 370 int fd; 371 struct qstr this; 372 char name[32]; 373 374 /* 375 * Find a file descriptor suitable for return to the user. 376 */ 377 378 fd = get_unused_fd(); 379 if (fd >= 0) { 380 struct file *file = get_empty_filp(); 381 382 if (!file) { 383 put_unused_fd(fd); 384 fd = -ENFILE; 385 goto out; 386 } 387 388 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 389 this.name = name; 390 this.hash = SOCK_INODE(sock)->i_ino; 391 392 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 393 if (!file->f_dentry) { 394 put_filp(file); 395 put_unused_fd(fd); 396 fd = -ENOMEM; 397 goto out; 398 } 399 file->f_dentry->d_op = &sockfs_dentry_operations; 400 d_add(file->f_dentry, SOCK_INODE(sock)); 401 file->f_vfsmnt = mntget(sock_mnt); 402 file->f_mapping = file->f_dentry->d_inode->i_mapping; 403 404 sock->file = file; 405 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 406 file->f_mode = FMODE_READ | FMODE_WRITE; 407 file->f_flags = O_RDWR; 408 file->f_pos = 0; 409 file->private_data = sock; 410 fd_install(fd, file); 411 } 412 413 out: 414 return fd; 415 } 416 417 /** 418 * sockfd_lookup - Go from a file number to its socket slot 419 * @fd: file handle 420 * @err: pointer to an error code return 421 * 422 * The file handle passed in is locked and the socket it is bound 423 * too is returned. If an error occurs the err pointer is overwritten 424 * with a negative errno code and NULL is returned. The function checks 425 * for both invalid handles and passing a handle which is not a socket. 426 * 427 * On a success the socket object pointer is returned. 428 */ 429 430 struct socket *sockfd_lookup(int fd, int *err) 431 { 432 struct file *file; 433 struct inode *inode; 434 struct socket *sock; 435 436 if (!(file = fget(fd))) 437 { 438 *err = -EBADF; 439 return NULL; 440 } 441 442 if (file->f_op == &socket_file_ops) 443 return file->private_data; /* set in sock_map_fd */ 444 445 inode = file->f_dentry->d_inode; 446 if (!S_ISSOCK(inode->i_mode)) { 447 *err = -ENOTSOCK; 448 fput(file); 449 return NULL; 450 } 451 452 sock = SOCKET_I(inode); 453 if (sock->file != file) { 454 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 455 sock->file = file; 456 } 457 return sock; 458 } 459 460 /** 461 * sock_alloc - allocate a socket 462 * 463 * Allocate a new inode and socket object. The two are bound together 464 * and initialised. The socket is then returned. If we are out of inodes 465 * NULL is returned. 466 */ 467 468 static struct socket *sock_alloc(void) 469 { 470 struct inode * inode; 471 struct socket * sock; 472 473 inode = new_inode(sock_mnt->mnt_sb); 474 if (!inode) 475 return NULL; 476 477 sock = SOCKET_I(inode); 478 479 inode->i_mode = S_IFSOCK|S_IRWXUGO; 480 inode->i_uid = current->fsuid; 481 inode->i_gid = current->fsgid; 482 483 get_cpu_var(sockets_in_use)++; 484 put_cpu_var(sockets_in_use); 485 return sock; 486 } 487 488 /* 489 * In theory you can't get an open on this inode, but /proc provides 490 * a back door. Remember to keep it shut otherwise you'll let the 491 * creepy crawlies in. 492 */ 493 494 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 495 { 496 return -ENXIO; 497 } 498 499 struct file_operations bad_sock_fops = { 500 .owner = THIS_MODULE, 501 .open = sock_no_open, 502 }; 503 504 /** 505 * sock_release - close a socket 506 * @sock: socket to close 507 * 508 * The socket is released from the protocol stack if it has a release 509 * callback, and the inode is then released if the socket is bound to 510 * an inode not a file. 511 */ 512 513 void sock_release(struct socket *sock) 514 { 515 if (sock->ops) { 516 struct module *owner = sock->ops->owner; 517 518 sock->ops->release(sock); 519 sock->ops = NULL; 520 module_put(owner); 521 } 522 523 if (sock->fasync_list) 524 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 525 526 get_cpu_var(sockets_in_use)--; 527 put_cpu_var(sockets_in_use); 528 if (!sock->file) { 529 iput(SOCK_INODE(sock)); 530 return; 531 } 532 sock->file=NULL; 533 } 534 535 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 536 struct msghdr *msg, size_t size) 537 { 538 struct sock_iocb *si = kiocb_to_siocb(iocb); 539 int err; 540 541 si->sock = sock; 542 si->scm = NULL; 543 si->msg = msg; 544 si->size = size; 545 546 err = security_socket_sendmsg(sock, msg, size); 547 if (err) 548 return err; 549 550 return sock->ops->sendmsg(iocb, sock, msg, size); 551 } 552 553 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 554 { 555 struct kiocb iocb; 556 struct sock_iocb siocb; 557 int ret; 558 559 init_sync_kiocb(&iocb, NULL); 560 iocb.private = &siocb; 561 ret = __sock_sendmsg(&iocb, sock, msg, size); 562 if (-EIOCBQUEUED == ret) 563 ret = wait_on_sync_kiocb(&iocb); 564 return ret; 565 } 566 567 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 568 struct kvec *vec, size_t num, size_t size) 569 { 570 mm_segment_t oldfs = get_fs(); 571 int result; 572 573 set_fs(KERNEL_DS); 574 /* 575 * the following is safe, since for compiler definitions of kvec and 576 * iovec are identical, yielding the same in-core layout and alignment 577 */ 578 msg->msg_iov = (struct iovec *)vec, 579 msg->msg_iovlen = num; 580 result = sock_sendmsg(sock, msg, size); 581 set_fs(oldfs); 582 return result; 583 } 584 585 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 586 struct msghdr *msg, size_t size, int flags) 587 { 588 int err; 589 struct sock_iocb *si = kiocb_to_siocb(iocb); 590 591 si->sock = sock; 592 si->scm = NULL; 593 si->msg = msg; 594 si->size = size; 595 si->flags = flags; 596 597 err = security_socket_recvmsg(sock, msg, size, flags); 598 if (err) 599 return err; 600 601 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 602 } 603 604 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 605 size_t size, int flags) 606 { 607 struct kiocb iocb; 608 struct sock_iocb siocb; 609 int ret; 610 611 init_sync_kiocb(&iocb, NULL); 612 iocb.private = &siocb; 613 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 614 if (-EIOCBQUEUED == ret) 615 ret = wait_on_sync_kiocb(&iocb); 616 return ret; 617 } 618 619 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 620 struct kvec *vec, size_t num, 621 size_t size, int flags) 622 { 623 mm_segment_t oldfs = get_fs(); 624 int result; 625 626 set_fs(KERNEL_DS); 627 /* 628 * the following is safe, since for compiler definitions of kvec and 629 * iovec are identical, yielding the same in-core layout and alignment 630 */ 631 msg->msg_iov = (struct iovec *)vec, 632 msg->msg_iovlen = num; 633 result = sock_recvmsg(sock, msg, size, flags); 634 set_fs(oldfs); 635 return result; 636 } 637 638 static void sock_aio_dtor(struct kiocb *iocb) 639 { 640 kfree(iocb->private); 641 } 642 643 static ssize_t sock_sendpage(struct file *file, struct page *page, 644 int offset, size_t size, loff_t *ppos, int more) 645 { 646 struct socket *sock; 647 int flags; 648 649 sock = file->private_data; 650 651 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 652 if (more) 653 flags |= MSG_MORE; 654 655 return sock->ops->sendpage(sock, page, offset, size, flags); 656 } 657 658 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 659 char __user *ubuf, size_t size, struct sock_iocb *siocb) 660 { 661 if (!is_sync_kiocb(iocb)) { 662 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 663 if (!siocb) 664 return NULL; 665 iocb->ki_dtor = sock_aio_dtor; 666 } 667 668 siocb->kiocb = iocb; 669 siocb->async_iov.iov_base = ubuf; 670 siocb->async_iov.iov_len = size; 671 672 iocb->private = siocb; 673 return siocb; 674 } 675 676 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 677 struct file *file, struct iovec *iov, unsigned long nr_segs) 678 { 679 struct socket *sock = file->private_data; 680 size_t size = 0; 681 int i; 682 683 for (i = 0 ; i < nr_segs ; i++) 684 size += iov[i].iov_len; 685 686 msg->msg_name = NULL; 687 msg->msg_namelen = 0; 688 msg->msg_control = NULL; 689 msg->msg_controllen = 0; 690 msg->msg_iov = (struct iovec *) iov; 691 msg->msg_iovlen = nr_segs; 692 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 693 694 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 695 } 696 697 static ssize_t sock_readv(struct file *file, const struct iovec *iov, 698 unsigned long nr_segs, loff_t *ppos) 699 { 700 struct kiocb iocb; 701 struct sock_iocb siocb; 702 struct msghdr msg; 703 int ret; 704 705 init_sync_kiocb(&iocb, NULL); 706 iocb.private = &siocb; 707 708 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 709 if (-EIOCBQUEUED == ret) 710 ret = wait_on_sync_kiocb(&iocb); 711 return ret; 712 } 713 714 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 715 size_t count, loff_t pos) 716 { 717 struct sock_iocb siocb, *x; 718 719 if (pos != 0) 720 return -ESPIPE; 721 if (count == 0) /* Match SYS5 behaviour */ 722 return 0; 723 724 x = alloc_sock_iocb(iocb, ubuf, count, &siocb); 725 if (!x) 726 return -ENOMEM; 727 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, 728 &x->async_iov, 1); 729 } 730 731 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 732 struct file *file, struct iovec *iov, unsigned long nr_segs) 733 { 734 struct socket *sock = file->private_data; 735 size_t size = 0; 736 int i; 737 738 for (i = 0 ; i < nr_segs ; i++) 739 size += iov[i].iov_len; 740 741 msg->msg_name = NULL; 742 msg->msg_namelen = 0; 743 msg->msg_control = NULL; 744 msg->msg_controllen = 0; 745 msg->msg_iov = (struct iovec *) iov; 746 msg->msg_iovlen = nr_segs; 747 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 748 if (sock->type == SOCK_SEQPACKET) 749 msg->msg_flags |= MSG_EOR; 750 751 return __sock_sendmsg(iocb, sock, msg, size); 752 } 753 754 static ssize_t sock_writev(struct file *file, const struct iovec *iov, 755 unsigned long nr_segs, loff_t *ppos) 756 { 757 struct msghdr msg; 758 struct kiocb iocb; 759 struct sock_iocb siocb; 760 int ret; 761 762 init_sync_kiocb(&iocb, NULL); 763 iocb.private = &siocb; 764 765 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 766 if (-EIOCBQUEUED == ret) 767 ret = wait_on_sync_kiocb(&iocb); 768 return ret; 769 } 770 771 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 772 size_t count, loff_t pos) 773 { 774 struct sock_iocb siocb, *x; 775 776 if (pos != 0) 777 return -ESPIPE; 778 if (count == 0) /* Match SYS5 behaviour */ 779 return 0; 780 781 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb); 782 if (!x) 783 return -ENOMEM; 784 785 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, 786 &x->async_iov, 1); 787 } 788 789 790 /* 791 * Atomic setting of ioctl hooks to avoid race 792 * with module unload. 793 */ 794 795 static DECLARE_MUTEX(br_ioctl_mutex); 796 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 797 798 void brioctl_set(int (*hook)(unsigned int, void __user *)) 799 { 800 down(&br_ioctl_mutex); 801 br_ioctl_hook = hook; 802 up(&br_ioctl_mutex); 803 } 804 EXPORT_SYMBOL(brioctl_set); 805 806 static DECLARE_MUTEX(vlan_ioctl_mutex); 807 static int (*vlan_ioctl_hook)(void __user *arg); 808 809 void vlan_ioctl_set(int (*hook)(void __user *)) 810 { 811 down(&vlan_ioctl_mutex); 812 vlan_ioctl_hook = hook; 813 up(&vlan_ioctl_mutex); 814 } 815 EXPORT_SYMBOL(vlan_ioctl_set); 816 817 static DECLARE_MUTEX(dlci_ioctl_mutex); 818 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 819 820 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 821 { 822 down(&dlci_ioctl_mutex); 823 dlci_ioctl_hook = hook; 824 up(&dlci_ioctl_mutex); 825 } 826 EXPORT_SYMBOL(dlci_ioctl_set); 827 828 /* 829 * With an ioctl, arg may well be a user mode pointer, but we don't know 830 * what to do with it - that's up to the protocol still. 831 */ 832 833 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 834 { 835 struct socket *sock; 836 void __user *argp = (void __user *)arg; 837 int pid, err; 838 839 sock = file->private_data; 840 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 841 err = dev_ioctl(cmd, argp); 842 } else 843 #ifdef WIRELESS_EXT 844 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 845 err = dev_ioctl(cmd, argp); 846 } else 847 #endif /* WIRELESS_EXT */ 848 switch (cmd) { 849 case FIOSETOWN: 850 case SIOCSPGRP: 851 err = -EFAULT; 852 if (get_user(pid, (int __user *)argp)) 853 break; 854 err = f_setown(sock->file, pid, 1); 855 break; 856 case FIOGETOWN: 857 case SIOCGPGRP: 858 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 859 break; 860 case SIOCGIFBR: 861 case SIOCSIFBR: 862 case SIOCBRADDBR: 863 case SIOCBRDELBR: 864 err = -ENOPKG; 865 if (!br_ioctl_hook) 866 request_module("bridge"); 867 868 down(&br_ioctl_mutex); 869 if (br_ioctl_hook) 870 err = br_ioctl_hook(cmd, argp); 871 up(&br_ioctl_mutex); 872 break; 873 case SIOCGIFVLAN: 874 case SIOCSIFVLAN: 875 err = -ENOPKG; 876 if (!vlan_ioctl_hook) 877 request_module("8021q"); 878 879 down(&vlan_ioctl_mutex); 880 if (vlan_ioctl_hook) 881 err = vlan_ioctl_hook(argp); 882 up(&vlan_ioctl_mutex); 883 break; 884 case SIOCGIFDIVERT: 885 case SIOCSIFDIVERT: 886 /* Convert this to call through a hook */ 887 err = divert_ioctl(cmd, argp); 888 break; 889 case SIOCADDDLCI: 890 case SIOCDELDLCI: 891 err = -ENOPKG; 892 if (!dlci_ioctl_hook) 893 request_module("dlci"); 894 895 if (dlci_ioctl_hook) { 896 down(&dlci_ioctl_mutex); 897 err = dlci_ioctl_hook(cmd, argp); 898 up(&dlci_ioctl_mutex); 899 } 900 break; 901 default: 902 err = sock->ops->ioctl(sock, cmd, arg); 903 904 /* 905 * If this ioctl is unknown try to hand it down 906 * to the NIC driver. 907 */ 908 if (err == -ENOIOCTLCMD) 909 err = dev_ioctl(cmd, argp); 910 break; 911 } 912 return err; 913 } 914 915 int sock_create_lite(int family, int type, int protocol, struct socket **res) 916 { 917 int err; 918 struct socket *sock = NULL; 919 920 err = security_socket_create(family, type, protocol, 1); 921 if (err) 922 goto out; 923 924 sock = sock_alloc(); 925 if (!sock) { 926 err = -ENOMEM; 927 goto out; 928 } 929 930 security_socket_post_create(sock, family, type, protocol, 1); 931 sock->type = type; 932 out: 933 *res = sock; 934 return err; 935 } 936 937 /* No kernel lock held - perfect */ 938 static unsigned int sock_poll(struct file *file, poll_table * wait) 939 { 940 struct socket *sock; 941 942 /* 943 * We can't return errors to poll, so it's either yes or no. 944 */ 945 sock = file->private_data; 946 return sock->ops->poll(file, sock, wait); 947 } 948 949 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 950 { 951 struct socket *sock = file->private_data; 952 953 return sock->ops->mmap(file, sock, vma); 954 } 955 956 static int sock_close(struct inode *inode, struct file *filp) 957 { 958 /* 959 * It was possible the inode is NULL we were 960 * closing an unfinished socket. 961 */ 962 963 if (!inode) 964 { 965 printk(KERN_DEBUG "sock_close: NULL inode\n"); 966 return 0; 967 } 968 sock_fasync(-1, filp, 0); 969 sock_release(SOCKET_I(inode)); 970 return 0; 971 } 972 973 /* 974 * Update the socket async list 975 * 976 * Fasync_list locking strategy. 977 * 978 * 1. fasync_list is modified only under process context socket lock 979 * i.e. under semaphore. 980 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 981 * or under socket lock. 982 * 3. fasync_list can be used from softirq context, so that 983 * modification under socket lock have to be enhanced with 984 * write_lock_bh(&sk->sk_callback_lock). 985 * --ANK (990710) 986 */ 987 988 static int sock_fasync(int fd, struct file *filp, int on) 989 { 990 struct fasync_struct *fa, *fna=NULL, **prev; 991 struct socket *sock; 992 struct sock *sk; 993 994 if (on) 995 { 996 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 997 if(fna==NULL) 998 return -ENOMEM; 999 } 1000 1001 sock = filp->private_data; 1002 1003 if ((sk=sock->sk) == NULL) { 1004 kfree(fna); 1005 return -EINVAL; 1006 } 1007 1008 lock_sock(sk); 1009 1010 prev=&(sock->fasync_list); 1011 1012 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1013 if (fa->fa_file==filp) 1014 break; 1015 1016 if(on) 1017 { 1018 if(fa!=NULL) 1019 { 1020 write_lock_bh(&sk->sk_callback_lock); 1021 fa->fa_fd=fd; 1022 write_unlock_bh(&sk->sk_callback_lock); 1023 1024 kfree(fna); 1025 goto out; 1026 } 1027 fna->fa_file=filp; 1028 fna->fa_fd=fd; 1029 fna->magic=FASYNC_MAGIC; 1030 fna->fa_next=sock->fasync_list; 1031 write_lock_bh(&sk->sk_callback_lock); 1032 sock->fasync_list=fna; 1033 write_unlock_bh(&sk->sk_callback_lock); 1034 } 1035 else 1036 { 1037 if (fa!=NULL) 1038 { 1039 write_lock_bh(&sk->sk_callback_lock); 1040 *prev=fa->fa_next; 1041 write_unlock_bh(&sk->sk_callback_lock); 1042 kfree(fa); 1043 } 1044 } 1045 1046 out: 1047 release_sock(sock->sk); 1048 return 0; 1049 } 1050 1051 /* This function may be called only under socket lock or callback_lock */ 1052 1053 int sock_wake_async(struct socket *sock, int how, int band) 1054 { 1055 if (!sock || !sock->fasync_list) 1056 return -1; 1057 switch (how) 1058 { 1059 case 1: 1060 1061 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1062 break; 1063 goto call_kill; 1064 case 2: 1065 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1066 break; 1067 /* fall through */ 1068 case 0: 1069 call_kill: 1070 __kill_fasync(sock->fasync_list, SIGIO, band); 1071 break; 1072 case 3: 1073 __kill_fasync(sock->fasync_list, SIGURG, band); 1074 } 1075 return 0; 1076 } 1077 1078 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1079 { 1080 int err; 1081 struct socket *sock; 1082 1083 /* 1084 * Check protocol is in range 1085 */ 1086 if (family < 0 || family >= NPROTO) 1087 return -EAFNOSUPPORT; 1088 if (type < 0 || type >= SOCK_MAX) 1089 return -EINVAL; 1090 1091 /* Compatibility. 1092 1093 This uglymoron is moved from INET layer to here to avoid 1094 deadlock in module load. 1095 */ 1096 if (family == PF_INET && type == SOCK_PACKET) { 1097 static int warned; 1098 if (!warned) { 1099 warned = 1; 1100 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1101 } 1102 family = PF_PACKET; 1103 } 1104 1105 err = security_socket_create(family, type, protocol, kern); 1106 if (err) 1107 return err; 1108 1109 #if defined(CONFIG_KMOD) 1110 /* Attempt to load a protocol module if the find failed. 1111 * 1112 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1113 * requested real, full-featured networking support upon configuration. 1114 * Otherwise module support will break! 1115 */ 1116 if (net_families[family]==NULL) 1117 { 1118 request_module("net-pf-%d",family); 1119 } 1120 #endif 1121 1122 net_family_read_lock(); 1123 if (net_families[family] == NULL) { 1124 err = -EAFNOSUPPORT; 1125 goto out; 1126 } 1127 1128 /* 1129 * Allocate the socket and allow the family to set things up. if 1130 * the protocol is 0, the family is instructed to select an appropriate 1131 * default. 1132 */ 1133 1134 if (!(sock = sock_alloc())) { 1135 printk(KERN_WARNING "socket: no more sockets\n"); 1136 err = -ENFILE; /* Not exactly a match, but its the 1137 closest posix thing */ 1138 goto out; 1139 } 1140 1141 sock->type = type; 1142 1143 /* 1144 * We will call the ->create function, that possibly is in a loadable 1145 * module, so we have to bump that loadable module refcnt first. 1146 */ 1147 err = -EAFNOSUPPORT; 1148 if (!try_module_get(net_families[family]->owner)) 1149 goto out_release; 1150 1151 if ((err = net_families[family]->create(sock, protocol)) < 0) { 1152 sock->ops = NULL; 1153 goto out_module_put; 1154 } 1155 1156 /* 1157 * Now to bump the refcnt of the [loadable] module that owns this 1158 * socket at sock_release time we decrement its refcnt. 1159 */ 1160 if (!try_module_get(sock->ops->owner)) { 1161 sock->ops = NULL; 1162 goto out_module_put; 1163 } 1164 /* 1165 * Now that we're done with the ->create function, the [loadable] 1166 * module can have its refcnt decremented 1167 */ 1168 module_put(net_families[family]->owner); 1169 *res = sock; 1170 security_socket_post_create(sock, family, type, protocol, kern); 1171 1172 out: 1173 net_family_read_unlock(); 1174 return err; 1175 out_module_put: 1176 module_put(net_families[family]->owner); 1177 out_release: 1178 sock_release(sock); 1179 goto out; 1180 } 1181 1182 int sock_create(int family, int type, int protocol, struct socket **res) 1183 { 1184 return __sock_create(family, type, protocol, res, 0); 1185 } 1186 1187 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1188 { 1189 return __sock_create(family, type, protocol, res, 1); 1190 } 1191 1192 asmlinkage long sys_socket(int family, int type, int protocol) 1193 { 1194 int retval; 1195 struct socket *sock; 1196 1197 retval = sock_create(family, type, protocol, &sock); 1198 if (retval < 0) 1199 goto out; 1200 1201 retval = sock_map_fd(sock); 1202 if (retval < 0) 1203 goto out_release; 1204 1205 out: 1206 /* It may be already another descriptor 8) Not kernel problem. */ 1207 return retval; 1208 1209 out_release: 1210 sock_release(sock); 1211 return retval; 1212 } 1213 1214 /* 1215 * Create a pair of connected sockets. 1216 */ 1217 1218 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1219 { 1220 struct socket *sock1, *sock2; 1221 int fd1, fd2, err; 1222 1223 /* 1224 * Obtain the first socket and check if the underlying protocol 1225 * supports the socketpair call. 1226 */ 1227 1228 err = sock_create(family, type, protocol, &sock1); 1229 if (err < 0) 1230 goto out; 1231 1232 err = sock_create(family, type, protocol, &sock2); 1233 if (err < 0) 1234 goto out_release_1; 1235 1236 err = sock1->ops->socketpair(sock1, sock2); 1237 if (err < 0) 1238 goto out_release_both; 1239 1240 fd1 = fd2 = -1; 1241 1242 err = sock_map_fd(sock1); 1243 if (err < 0) 1244 goto out_release_both; 1245 fd1 = err; 1246 1247 err = sock_map_fd(sock2); 1248 if (err < 0) 1249 goto out_close_1; 1250 fd2 = err; 1251 1252 /* fd1 and fd2 may be already another descriptors. 1253 * Not kernel problem. 1254 */ 1255 1256 err = put_user(fd1, &usockvec[0]); 1257 if (!err) 1258 err = put_user(fd2, &usockvec[1]); 1259 if (!err) 1260 return 0; 1261 1262 sys_close(fd2); 1263 sys_close(fd1); 1264 return err; 1265 1266 out_close_1: 1267 sock_release(sock2); 1268 sys_close(fd1); 1269 return err; 1270 1271 out_release_both: 1272 sock_release(sock2); 1273 out_release_1: 1274 sock_release(sock1); 1275 out: 1276 return err; 1277 } 1278 1279 1280 /* 1281 * Bind a name to a socket. Nothing much to do here since it's 1282 * the protocol's responsibility to handle the local address. 1283 * 1284 * We move the socket address to kernel space before we call 1285 * the protocol layer (having also checked the address is ok). 1286 */ 1287 1288 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1289 { 1290 struct socket *sock; 1291 char address[MAX_SOCK_ADDR]; 1292 int err; 1293 1294 if((sock = sockfd_lookup(fd,&err))!=NULL) 1295 { 1296 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1297 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1298 if (err) { 1299 sockfd_put(sock); 1300 return err; 1301 } 1302 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen); 1303 } 1304 sockfd_put(sock); 1305 } 1306 return err; 1307 } 1308 1309 1310 /* 1311 * Perform a listen. Basically, we allow the protocol to do anything 1312 * necessary for a listen, and if that works, we mark the socket as 1313 * ready for listening. 1314 */ 1315 1316 int sysctl_somaxconn = SOMAXCONN; 1317 1318 asmlinkage long sys_listen(int fd, int backlog) 1319 { 1320 struct socket *sock; 1321 int err; 1322 1323 if ((sock = sockfd_lookup(fd, &err)) != NULL) { 1324 if ((unsigned) backlog > sysctl_somaxconn) 1325 backlog = sysctl_somaxconn; 1326 1327 err = security_socket_listen(sock, backlog); 1328 if (err) { 1329 sockfd_put(sock); 1330 return err; 1331 } 1332 1333 err=sock->ops->listen(sock, backlog); 1334 sockfd_put(sock); 1335 } 1336 return err; 1337 } 1338 1339 1340 /* 1341 * For accept, we attempt to create a new socket, set up the link 1342 * with the client, wake up the client, then return the new 1343 * connected fd. We collect the address of the connector in kernel 1344 * space and move it to user at the very end. This is unclean because 1345 * we open the socket then return an error. 1346 * 1347 * 1003.1g adds the ability to recvmsg() to query connection pending 1348 * status to recvmsg. We need to add that support in a way thats 1349 * clean when we restucture accept also. 1350 */ 1351 1352 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1353 { 1354 struct socket *sock, *newsock; 1355 int err, len; 1356 char address[MAX_SOCK_ADDR]; 1357 1358 sock = sockfd_lookup(fd, &err); 1359 if (!sock) 1360 goto out; 1361 1362 err = -ENFILE; 1363 if (!(newsock = sock_alloc())) 1364 goto out_put; 1365 1366 newsock->type = sock->type; 1367 newsock->ops = sock->ops; 1368 1369 /* 1370 * We don't need try_module_get here, as the listening socket (sock) 1371 * has the protocol module (sock->ops->owner) held. 1372 */ 1373 __module_get(newsock->ops->owner); 1374 1375 err = security_socket_accept(sock, newsock); 1376 if (err) 1377 goto out_release; 1378 1379 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1380 if (err < 0) 1381 goto out_release; 1382 1383 if (upeer_sockaddr) { 1384 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1385 err = -ECONNABORTED; 1386 goto out_release; 1387 } 1388 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1389 if (err < 0) 1390 goto out_release; 1391 } 1392 1393 /* File flags are not inherited via accept() unlike another OSes. */ 1394 1395 if ((err = sock_map_fd(newsock)) < 0) 1396 goto out_release; 1397 1398 security_socket_post_accept(sock, newsock); 1399 1400 out_put: 1401 sockfd_put(sock); 1402 out: 1403 return err; 1404 out_release: 1405 sock_release(newsock); 1406 goto out_put; 1407 } 1408 1409 1410 /* 1411 * Attempt to connect to a socket with the server address. The address 1412 * is in user space so we verify it is OK and move it to kernel space. 1413 * 1414 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1415 * break bindings 1416 * 1417 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1418 * other SEQPACKET protocols that take time to connect() as it doesn't 1419 * include the -EINPROGRESS status for such sockets. 1420 */ 1421 1422 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1423 { 1424 struct socket *sock; 1425 char address[MAX_SOCK_ADDR]; 1426 int err; 1427 1428 sock = sockfd_lookup(fd, &err); 1429 if (!sock) 1430 goto out; 1431 err = move_addr_to_kernel(uservaddr, addrlen, address); 1432 if (err < 0) 1433 goto out_put; 1434 1435 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1436 if (err) 1437 goto out_put; 1438 1439 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1440 sock->file->f_flags); 1441 out_put: 1442 sockfd_put(sock); 1443 out: 1444 return err; 1445 } 1446 1447 /* 1448 * Get the local address ('name') of a socket object. Move the obtained 1449 * name to user space. 1450 */ 1451 1452 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1453 { 1454 struct socket *sock; 1455 char address[MAX_SOCK_ADDR]; 1456 int len, err; 1457 1458 sock = sockfd_lookup(fd, &err); 1459 if (!sock) 1460 goto out; 1461 1462 err = security_socket_getsockname(sock); 1463 if (err) 1464 goto out_put; 1465 1466 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1467 if (err) 1468 goto out_put; 1469 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1470 1471 out_put: 1472 sockfd_put(sock); 1473 out: 1474 return err; 1475 } 1476 1477 /* 1478 * Get the remote address ('name') of a socket object. Move the obtained 1479 * name to user space. 1480 */ 1481 1482 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1483 { 1484 struct socket *sock; 1485 char address[MAX_SOCK_ADDR]; 1486 int len, err; 1487 1488 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1489 { 1490 err = security_socket_getpeername(sock); 1491 if (err) { 1492 sockfd_put(sock); 1493 return err; 1494 } 1495 1496 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1497 if (!err) 1498 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1499 sockfd_put(sock); 1500 } 1501 return err; 1502 } 1503 1504 /* 1505 * Send a datagram to a given address. We move the address into kernel 1506 * space and check the user space data area is readable before invoking 1507 * the protocol. 1508 */ 1509 1510 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1511 struct sockaddr __user *addr, int addr_len) 1512 { 1513 struct socket *sock; 1514 char address[MAX_SOCK_ADDR]; 1515 int err; 1516 struct msghdr msg; 1517 struct iovec iov; 1518 1519 sock = sockfd_lookup(fd, &err); 1520 if (!sock) 1521 goto out; 1522 iov.iov_base=buff; 1523 iov.iov_len=len; 1524 msg.msg_name=NULL; 1525 msg.msg_iov=&iov; 1526 msg.msg_iovlen=1; 1527 msg.msg_control=NULL; 1528 msg.msg_controllen=0; 1529 msg.msg_namelen=0; 1530 if(addr) 1531 { 1532 err = move_addr_to_kernel(addr, addr_len, address); 1533 if (err < 0) 1534 goto out_put; 1535 msg.msg_name=address; 1536 msg.msg_namelen=addr_len; 1537 } 1538 if (sock->file->f_flags & O_NONBLOCK) 1539 flags |= MSG_DONTWAIT; 1540 msg.msg_flags = flags; 1541 err = sock_sendmsg(sock, &msg, len); 1542 1543 out_put: 1544 sockfd_put(sock); 1545 out: 1546 return err; 1547 } 1548 1549 /* 1550 * Send a datagram down a socket. 1551 */ 1552 1553 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1554 { 1555 return sys_sendto(fd, buff, len, flags, NULL, 0); 1556 } 1557 1558 /* 1559 * Receive a frame from the socket and optionally record the address of the 1560 * sender. We verify the buffers are writable and if needed move the 1561 * sender address from kernel to user space. 1562 */ 1563 1564 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1565 struct sockaddr __user *addr, int __user *addr_len) 1566 { 1567 struct socket *sock; 1568 struct iovec iov; 1569 struct msghdr msg; 1570 char address[MAX_SOCK_ADDR]; 1571 int err,err2; 1572 1573 sock = sockfd_lookup(fd, &err); 1574 if (!sock) 1575 goto out; 1576 1577 msg.msg_control=NULL; 1578 msg.msg_controllen=0; 1579 msg.msg_iovlen=1; 1580 msg.msg_iov=&iov; 1581 iov.iov_len=size; 1582 iov.iov_base=ubuf; 1583 msg.msg_name=address; 1584 msg.msg_namelen=MAX_SOCK_ADDR; 1585 if (sock->file->f_flags & O_NONBLOCK) 1586 flags |= MSG_DONTWAIT; 1587 err=sock_recvmsg(sock, &msg, size, flags); 1588 1589 if(err >= 0 && addr != NULL) 1590 { 1591 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1592 if(err2<0) 1593 err=err2; 1594 } 1595 sockfd_put(sock); 1596 out: 1597 return err; 1598 } 1599 1600 /* 1601 * Receive a datagram from a socket. 1602 */ 1603 1604 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1605 { 1606 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1607 } 1608 1609 /* 1610 * Set a socket option. Because we don't know the option lengths we have 1611 * to pass the user mode parameter for the protocols to sort out. 1612 */ 1613 1614 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1615 { 1616 int err; 1617 struct socket *sock; 1618 1619 if (optlen < 0) 1620 return -EINVAL; 1621 1622 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1623 { 1624 err = security_socket_setsockopt(sock,level,optname); 1625 if (err) { 1626 sockfd_put(sock); 1627 return err; 1628 } 1629 1630 if (level == SOL_SOCKET) 1631 err=sock_setsockopt(sock,level,optname,optval,optlen); 1632 else 1633 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1634 sockfd_put(sock); 1635 } 1636 return err; 1637 } 1638 1639 /* 1640 * Get a socket option. Because we don't know the option lengths we have 1641 * to pass a user mode parameter for the protocols to sort out. 1642 */ 1643 1644 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1645 { 1646 int err; 1647 struct socket *sock; 1648 1649 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1650 { 1651 err = security_socket_getsockopt(sock, level, 1652 optname); 1653 if (err) { 1654 sockfd_put(sock); 1655 return err; 1656 } 1657 1658 if (level == SOL_SOCKET) 1659 err=sock_getsockopt(sock,level,optname,optval,optlen); 1660 else 1661 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1662 sockfd_put(sock); 1663 } 1664 return err; 1665 } 1666 1667 1668 /* 1669 * Shutdown a socket. 1670 */ 1671 1672 asmlinkage long sys_shutdown(int fd, int how) 1673 { 1674 int err; 1675 struct socket *sock; 1676 1677 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1678 { 1679 err = security_socket_shutdown(sock, how); 1680 if (err) { 1681 sockfd_put(sock); 1682 return err; 1683 } 1684 1685 err=sock->ops->shutdown(sock, how); 1686 sockfd_put(sock); 1687 } 1688 return err; 1689 } 1690 1691 /* A couple of helpful macros for getting the address of the 32/64 bit 1692 * fields which are the same type (int / unsigned) on our platforms. 1693 */ 1694 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1695 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1696 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1697 1698 1699 /* 1700 * BSD sendmsg interface 1701 */ 1702 1703 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1704 { 1705 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1706 struct socket *sock; 1707 char address[MAX_SOCK_ADDR]; 1708 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1709 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1710 __attribute__ ((aligned (sizeof(__kernel_size_t)))); 1711 /* 20 is size of ipv6_pktinfo */ 1712 unsigned char *ctl_buf = ctl; 1713 struct msghdr msg_sys; 1714 int err, ctl_len, iov_size, total_len; 1715 1716 err = -EFAULT; 1717 if (MSG_CMSG_COMPAT & flags) { 1718 if (get_compat_msghdr(&msg_sys, msg_compat)) 1719 return -EFAULT; 1720 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1721 return -EFAULT; 1722 1723 sock = sockfd_lookup(fd, &err); 1724 if (!sock) 1725 goto out; 1726 1727 /* do not move before msg_sys is valid */ 1728 err = -EMSGSIZE; 1729 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1730 goto out_put; 1731 1732 /* Check whether to allocate the iovec area*/ 1733 err = -ENOMEM; 1734 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1735 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1736 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1737 if (!iov) 1738 goto out_put; 1739 } 1740 1741 /* This will also move the address data into kernel space */ 1742 if (MSG_CMSG_COMPAT & flags) { 1743 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1744 } else 1745 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1746 if (err < 0) 1747 goto out_freeiov; 1748 total_len = err; 1749 1750 err = -ENOBUFS; 1751 1752 if (msg_sys.msg_controllen > INT_MAX) 1753 goto out_freeiov; 1754 ctl_len = msg_sys.msg_controllen; 1755 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1756 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl)); 1757 if (err) 1758 goto out_freeiov; 1759 ctl_buf = msg_sys.msg_control; 1760 ctl_len = msg_sys.msg_controllen; 1761 } else if (ctl_len) { 1762 if (ctl_len > sizeof(ctl)) 1763 { 1764 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1765 if (ctl_buf == NULL) 1766 goto out_freeiov; 1767 } 1768 err = -EFAULT; 1769 /* 1770 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1771 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1772 * checking falls down on this. 1773 */ 1774 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1775 goto out_freectl; 1776 msg_sys.msg_control = ctl_buf; 1777 } 1778 msg_sys.msg_flags = flags; 1779 1780 if (sock->file->f_flags & O_NONBLOCK) 1781 msg_sys.msg_flags |= MSG_DONTWAIT; 1782 err = sock_sendmsg(sock, &msg_sys, total_len); 1783 1784 out_freectl: 1785 if (ctl_buf != ctl) 1786 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1787 out_freeiov: 1788 if (iov != iovstack) 1789 sock_kfree_s(sock->sk, iov, iov_size); 1790 out_put: 1791 sockfd_put(sock); 1792 out: 1793 return err; 1794 } 1795 1796 /* 1797 * BSD recvmsg interface 1798 */ 1799 1800 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1801 { 1802 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1803 struct socket *sock; 1804 struct iovec iovstack[UIO_FASTIOV]; 1805 struct iovec *iov=iovstack; 1806 struct msghdr msg_sys; 1807 unsigned long cmsg_ptr; 1808 int err, iov_size, total_len, len; 1809 1810 /* kernel mode address */ 1811 char addr[MAX_SOCK_ADDR]; 1812 1813 /* user mode address pointers */ 1814 struct sockaddr __user *uaddr; 1815 int __user *uaddr_len; 1816 1817 if (MSG_CMSG_COMPAT & flags) { 1818 if (get_compat_msghdr(&msg_sys, msg_compat)) 1819 return -EFAULT; 1820 } else 1821 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1822 return -EFAULT; 1823 1824 sock = sockfd_lookup(fd, &err); 1825 if (!sock) 1826 goto out; 1827 1828 err = -EMSGSIZE; 1829 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1830 goto out_put; 1831 1832 /* Check whether to allocate the iovec area*/ 1833 err = -ENOMEM; 1834 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1835 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1836 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1837 if (!iov) 1838 goto out_put; 1839 } 1840 1841 /* 1842 * Save the user-mode address (verify_iovec will change the 1843 * kernel msghdr to use the kernel address space) 1844 */ 1845 1846 uaddr = (void __user *) msg_sys.msg_name; 1847 uaddr_len = COMPAT_NAMELEN(msg); 1848 if (MSG_CMSG_COMPAT & flags) { 1849 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1850 } else 1851 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1852 if (err < 0) 1853 goto out_freeiov; 1854 total_len=err; 1855 1856 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1857 msg_sys.msg_flags = 0; 1858 if (MSG_CMSG_COMPAT & flags) 1859 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1860 1861 if (sock->file->f_flags & O_NONBLOCK) 1862 flags |= MSG_DONTWAIT; 1863 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1864 if (err < 0) 1865 goto out_freeiov; 1866 len = err; 1867 1868 if (uaddr != NULL) { 1869 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1870 if (err < 0) 1871 goto out_freeiov; 1872 } 1873 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1874 COMPAT_FLAGS(msg)); 1875 if (err) 1876 goto out_freeiov; 1877 if (MSG_CMSG_COMPAT & flags) 1878 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1879 &msg_compat->msg_controllen); 1880 else 1881 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1882 &msg->msg_controllen); 1883 if (err) 1884 goto out_freeiov; 1885 err = len; 1886 1887 out_freeiov: 1888 if (iov != iovstack) 1889 sock_kfree_s(sock->sk, iov, iov_size); 1890 out_put: 1891 sockfd_put(sock); 1892 out: 1893 return err; 1894 } 1895 1896 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1897 1898 /* Argument list sizes for sys_socketcall */ 1899 #define AL(x) ((x) * sizeof(unsigned long)) 1900 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1901 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1902 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1903 #undef AL 1904 1905 /* 1906 * System call vectors. 1907 * 1908 * Argument checking cleaned up. Saved 20% in size. 1909 * This function doesn't need to set the kernel lock because 1910 * it is set by the callees. 1911 */ 1912 1913 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1914 { 1915 unsigned long a[6]; 1916 unsigned long a0,a1; 1917 int err; 1918 1919 if(call<1||call>SYS_RECVMSG) 1920 return -EINVAL; 1921 1922 /* copy_from_user should be SMP safe. */ 1923 if (copy_from_user(a, args, nargs[call])) 1924 return -EFAULT; 1925 1926 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1927 if (err) 1928 return err; 1929 1930 a0=a[0]; 1931 a1=a[1]; 1932 1933 switch(call) 1934 { 1935 case SYS_SOCKET: 1936 err = sys_socket(a0,a1,a[2]); 1937 break; 1938 case SYS_BIND: 1939 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1940 break; 1941 case SYS_CONNECT: 1942 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1943 break; 1944 case SYS_LISTEN: 1945 err = sys_listen(a0,a1); 1946 break; 1947 case SYS_ACCEPT: 1948 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1949 break; 1950 case SYS_GETSOCKNAME: 1951 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1952 break; 1953 case SYS_GETPEERNAME: 1954 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 1955 break; 1956 case SYS_SOCKETPAIR: 1957 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 1958 break; 1959 case SYS_SEND: 1960 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1961 break; 1962 case SYS_SENDTO: 1963 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 1964 (struct sockaddr __user *)a[4], a[5]); 1965 break; 1966 case SYS_RECV: 1967 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 1968 break; 1969 case SYS_RECVFROM: 1970 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 1971 (struct sockaddr __user *)a[4], (int __user *)a[5]); 1972 break; 1973 case SYS_SHUTDOWN: 1974 err = sys_shutdown(a0,a1); 1975 break; 1976 case SYS_SETSOCKOPT: 1977 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 1978 break; 1979 case SYS_GETSOCKOPT: 1980 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 1981 break; 1982 case SYS_SENDMSG: 1983 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 1984 break; 1985 case SYS_RECVMSG: 1986 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 1987 break; 1988 default: 1989 err = -EINVAL; 1990 break; 1991 } 1992 return err; 1993 } 1994 1995 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 1996 1997 /* 1998 * This function is called by a protocol handler that wants to 1999 * advertise its address family, and have it linked into the 2000 * SOCKET module. 2001 */ 2002 2003 int sock_register(struct net_proto_family *ops) 2004 { 2005 int err; 2006 2007 if (ops->family >= NPROTO) { 2008 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2009 return -ENOBUFS; 2010 } 2011 net_family_write_lock(); 2012 err = -EEXIST; 2013 if (net_families[ops->family] == NULL) { 2014 net_families[ops->family]=ops; 2015 err = 0; 2016 } 2017 net_family_write_unlock(); 2018 printk(KERN_INFO "NET: Registered protocol family %d\n", 2019 ops->family); 2020 return err; 2021 } 2022 2023 /* 2024 * This function is called by a protocol handler that wants to 2025 * remove its address family, and have it unlinked from the 2026 * SOCKET module. 2027 */ 2028 2029 int sock_unregister(int family) 2030 { 2031 if (family < 0 || family >= NPROTO) 2032 return -1; 2033 2034 net_family_write_lock(); 2035 net_families[family]=NULL; 2036 net_family_write_unlock(); 2037 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2038 family); 2039 return 0; 2040 } 2041 2042 static int __init sock_init(void) 2043 { 2044 /* 2045 * Initialize sock SLAB cache. 2046 */ 2047 2048 sk_init(); 2049 2050 /* 2051 * Initialize skbuff SLAB cache 2052 */ 2053 skb_init(); 2054 2055 /* 2056 * Initialize the protocols module. 2057 */ 2058 2059 init_inodecache(); 2060 register_filesystem(&sock_fs_type); 2061 sock_mnt = kern_mount(&sock_fs_type); 2062 2063 /* The real protocol initialization is performed in later initcalls. 2064 */ 2065 2066 #ifdef CONFIG_NETFILTER 2067 netfilter_init(); 2068 #endif 2069 2070 return 0; 2071 } 2072 2073 core_initcall(sock_init); /* early initcall */ 2074 2075 #ifdef CONFIG_PROC_FS 2076 void socket_seq_show(struct seq_file *seq) 2077 { 2078 int cpu; 2079 int counter = 0; 2080 2081 for_each_cpu(cpu) 2082 counter += per_cpu(sockets_in_use, cpu); 2083 2084 /* It can be negative, by the way. 8) */ 2085 if (counter < 0) 2086 counter = 0; 2087 2088 seq_printf(seq, "sockets: used %d\n", counter); 2089 } 2090 #endif /* CONFIG_PROC_FS */ 2091 2092 /* ABI emulation layers need these two */ 2093 EXPORT_SYMBOL(move_addr_to_kernel); 2094 EXPORT_SYMBOL(move_addr_to_user); 2095 EXPORT_SYMBOL(sock_create); 2096 EXPORT_SYMBOL(sock_create_kern); 2097 EXPORT_SYMBOL(sock_create_lite); 2098 EXPORT_SYMBOL(sock_map_fd); 2099 EXPORT_SYMBOL(sock_recvmsg); 2100 EXPORT_SYMBOL(sock_register); 2101 EXPORT_SYMBOL(sock_release); 2102 EXPORT_SYMBOL(sock_sendmsg); 2103 EXPORT_SYMBOL(sock_unregister); 2104 EXPORT_SYMBOL(sock_wake_async); 2105 EXPORT_SYMBOL(sockfd_lookup); 2106 EXPORT_SYMBOL(kernel_sendmsg); 2107 EXPORT_SYMBOL(kernel_recvmsg); 2108