xref: /openbmc/linux/net/socket.c (revision 88a2a4ac)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/divert.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 
88 #ifdef CONFIG_NET_RADIO
89 #include <linux/wireless.h>		/* Note : will define WIRELESS_EXT */
90 #endif	/* CONFIG_NET_RADIO */
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
102 			 size_t size, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
104 			  size_t size, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
106 
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 			      struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file,
111 		      unsigned int cmd, unsigned long arg);
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
114 			  unsigned long count, loff_t *ppos);
115 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
116 			  unsigned long count, loff_t *ppos);
117 static ssize_t sock_sendpage(struct file *file, struct page *page,
118 			     int offset, size_t size, loff_t *ppos, int more);
119 
120 
121 /*
122  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123  *	in the operation structures but are done directly via the socketcall() multiplexor.
124  */
125 
126 static struct file_operations socket_file_ops = {
127 	.owner =	THIS_MODULE,
128 	.llseek =	no_llseek,
129 	.aio_read =	sock_aio_read,
130 	.aio_write =	sock_aio_write,
131 	.poll =		sock_poll,
132 	.unlocked_ioctl = sock_ioctl,
133 	.mmap =		sock_mmap,
134 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
135 	.release =	sock_close,
136 	.fasync =	sock_fasync,
137 	.readv =	sock_readv,
138 	.writev =	sock_writev,
139 	.sendpage =	sock_sendpage
140 };
141 
142 /*
143  *	The protocol list. Each protocol is registered in here.
144  */
145 
146 static struct net_proto_family *net_families[NPROTO];
147 
148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
149 static atomic_t net_family_lockct = ATOMIC_INIT(0);
150 static DEFINE_SPINLOCK(net_family_lock);
151 
152 /* The strategy is: modifications net_family vector are short, do not
153    sleep and veeery rare, but read access should be free of any exclusive
154    locks.
155  */
156 
157 static void net_family_write_lock(void)
158 {
159 	spin_lock(&net_family_lock);
160 	while (atomic_read(&net_family_lockct) != 0) {
161 		spin_unlock(&net_family_lock);
162 
163 		yield();
164 
165 		spin_lock(&net_family_lock);
166 	}
167 }
168 
169 static __inline__ void net_family_write_unlock(void)
170 {
171 	spin_unlock(&net_family_lock);
172 }
173 
174 static __inline__ void net_family_read_lock(void)
175 {
176 	atomic_inc(&net_family_lockct);
177 	spin_unlock_wait(&net_family_lock);
178 }
179 
180 static __inline__ void net_family_read_unlock(void)
181 {
182 	atomic_dec(&net_family_lockct);
183 }
184 
185 #else
186 #define net_family_write_lock() do { } while(0)
187 #define net_family_write_unlock() do { } while(0)
188 #define net_family_read_lock() do { } while(0)
189 #define net_family_read_unlock() do { } while(0)
190 #endif
191 
192 
193 /*
194  *	Statistics counters of the socket lists
195  */
196 
197 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
198 
199 /*
200  *	Support routines. Move socket addresses back and forth across the kernel/user
201  *	divide and look after the messy bits.
202  */
203 
204 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
205 					   16 for IP, 16 for IPX,
206 					   24 for IPv6,
207 					   about 80 for AX.25
208 					   must be at least one bigger than
209 					   the AF_UNIX size (see net/unix/af_unix.c
210 					   :unix_mkname()).
211 					 */
212 
213 /**
214  *	move_addr_to_kernel	-	copy a socket address into kernel space
215  *	@uaddr: Address in user space
216  *	@kaddr: Address in kernel space
217  *	@ulen: Length in user space
218  *
219  *	The address is copied into kernel space. If the provided address is
220  *	too long an error code of -EINVAL is returned. If the copy gives
221  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
222  */
223 
224 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
225 {
226 	if(ulen<0||ulen>MAX_SOCK_ADDR)
227 		return -EINVAL;
228 	if(ulen==0)
229 		return 0;
230 	if(copy_from_user(kaddr,uaddr,ulen))
231 		return -EFAULT;
232 	return audit_sockaddr(ulen, kaddr);
233 }
234 
235 /**
236  *	move_addr_to_user	-	copy an address to user space
237  *	@kaddr: kernel space address
238  *	@klen: length of address in kernel
239  *	@uaddr: user space address
240  *	@ulen: pointer to user length field
241  *
242  *	The value pointed to by ulen on entry is the buffer length available.
243  *	This is overwritten with the buffer space used. -EINVAL is returned
244  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
245  *	is returned if either the buffer or the length field are not
246  *	accessible.
247  *	After copying the data up to the limit the user specifies, the true
248  *	length of the data is written over the length limit the user
249  *	specified. Zero is returned for a success.
250  */
251 
252 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
253 {
254 	int err;
255 	int len;
256 
257 	if((err=get_user(len, ulen)))
258 		return err;
259 	if(len>klen)
260 		len=klen;
261 	if(len<0 || len> MAX_SOCK_ADDR)
262 		return -EINVAL;
263 	if(len)
264 	{
265 		if(copy_to_user(uaddr,kaddr,len))
266 			return -EFAULT;
267 	}
268 	/*
269 	 *	"fromlen shall refer to the value before truncation.."
270 	 *			1003.1g
271 	 */
272 	return __put_user(klen, ulen);
273 }
274 
275 #define SOCKFS_MAGIC 0x534F434B
276 
277 static kmem_cache_t * sock_inode_cachep __read_mostly;
278 
279 static struct inode *sock_alloc_inode(struct super_block *sb)
280 {
281 	struct socket_alloc *ei;
282 	ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
283 	if (!ei)
284 		return NULL;
285 	init_waitqueue_head(&ei->socket.wait);
286 
287 	ei->socket.fasync_list = NULL;
288 	ei->socket.state = SS_UNCONNECTED;
289 	ei->socket.flags = 0;
290 	ei->socket.ops = NULL;
291 	ei->socket.sk = NULL;
292 	ei->socket.file = NULL;
293 	ei->socket.flags = 0;
294 
295 	return &ei->vfs_inode;
296 }
297 
298 static void sock_destroy_inode(struct inode *inode)
299 {
300 	kmem_cache_free(sock_inode_cachep,
301 			container_of(inode, struct socket_alloc, vfs_inode));
302 }
303 
304 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
305 {
306 	struct socket_alloc *ei = (struct socket_alloc *) foo;
307 
308 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
309 	    SLAB_CTOR_CONSTRUCTOR)
310 		inode_init_once(&ei->vfs_inode);
311 }
312 
313 static int init_inodecache(void)
314 {
315 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
316 				sizeof(struct socket_alloc),
317 				0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
318 				init_once, NULL);
319 	if (sock_inode_cachep == NULL)
320 		return -ENOMEM;
321 	return 0;
322 }
323 
324 static struct super_operations sockfs_ops = {
325 	.alloc_inode =	sock_alloc_inode,
326 	.destroy_inode =sock_destroy_inode,
327 	.statfs =	simple_statfs,
328 };
329 
330 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
331 	int flags, const char *dev_name, void *data)
332 {
333 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
334 }
335 
336 static struct vfsmount *sock_mnt __read_mostly;
337 
338 static struct file_system_type sock_fs_type = {
339 	.name =		"sockfs",
340 	.get_sb =	sockfs_get_sb,
341 	.kill_sb =	kill_anon_super,
342 };
343 static int sockfs_delete_dentry(struct dentry *dentry)
344 {
345 	return 1;
346 }
347 static struct dentry_operations sockfs_dentry_operations = {
348 	.d_delete =	sockfs_delete_dentry,
349 };
350 
351 /*
352  *	Obtains the first available file descriptor and sets it up for use.
353  *
354  *	This function creates file structure and maps it to fd space
355  *	of current process. On success it returns file descriptor
356  *	and file struct implicitly stored in sock->file.
357  *	Note that another thread may close file descriptor before we return
358  *	from this function. We use the fact that now we do not refer
359  *	to socket after mapping. If one day we will need it, this
360  *	function will increment ref. count on file by 1.
361  *
362  *	In any case returned fd MAY BE not valid!
363  *	This race condition is unavoidable
364  *	with shared fd spaces, we cannot solve it inside kernel,
365  *	but we take care of internal coherence yet.
366  */
367 
368 int sock_map_fd(struct socket *sock)
369 {
370 	int fd;
371 	struct qstr this;
372 	char name[32];
373 
374 	/*
375 	 *	Find a file descriptor suitable for return to the user.
376 	 */
377 
378 	fd = get_unused_fd();
379 	if (fd >= 0) {
380 		struct file *file = get_empty_filp();
381 
382 		if (!file) {
383 			put_unused_fd(fd);
384 			fd = -ENFILE;
385 			goto out;
386 		}
387 
388 		this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
389 		this.name = name;
390 		this.hash = SOCK_INODE(sock)->i_ino;
391 
392 		file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
393 		if (!file->f_dentry) {
394 			put_filp(file);
395 			put_unused_fd(fd);
396 			fd = -ENOMEM;
397 			goto out;
398 		}
399 		file->f_dentry->d_op = &sockfs_dentry_operations;
400 		d_add(file->f_dentry, SOCK_INODE(sock));
401 		file->f_vfsmnt = mntget(sock_mnt);
402 		file->f_mapping = file->f_dentry->d_inode->i_mapping;
403 
404 		sock->file = file;
405 		file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
406 		file->f_mode = FMODE_READ | FMODE_WRITE;
407 		file->f_flags = O_RDWR;
408 		file->f_pos = 0;
409 		file->private_data = sock;
410 		fd_install(fd, file);
411 	}
412 
413 out:
414 	return fd;
415 }
416 
417 /**
418  *	sockfd_lookup	- 	Go from a file number to its socket slot
419  *	@fd: file handle
420  *	@err: pointer to an error code return
421  *
422  *	The file handle passed in is locked and the socket it is bound
423  *	too is returned. If an error occurs the err pointer is overwritten
424  *	with a negative errno code and NULL is returned. The function checks
425  *	for both invalid handles and passing a handle which is not a socket.
426  *
427  *	On a success the socket object pointer is returned.
428  */
429 
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 	struct file *file;
433 	struct inode *inode;
434 	struct socket *sock;
435 
436 	if (!(file = fget(fd)))
437 	{
438 		*err = -EBADF;
439 		return NULL;
440 	}
441 
442 	if (file->f_op == &socket_file_ops)
443 		return file->private_data;	/* set in sock_map_fd */
444 
445 	inode = file->f_dentry->d_inode;
446 	if (!S_ISSOCK(inode->i_mode)) {
447 		*err = -ENOTSOCK;
448 		fput(file);
449 		return NULL;
450 	}
451 
452 	sock = SOCKET_I(inode);
453 	if (sock->file != file) {
454 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
455 		sock->file = file;
456 	}
457 	return sock;
458 }
459 
460 /**
461  *	sock_alloc	-	allocate a socket
462  *
463  *	Allocate a new inode and socket object. The two are bound together
464  *	and initialised. The socket is then returned. If we are out of inodes
465  *	NULL is returned.
466  */
467 
468 static struct socket *sock_alloc(void)
469 {
470 	struct inode * inode;
471 	struct socket * sock;
472 
473 	inode = new_inode(sock_mnt->mnt_sb);
474 	if (!inode)
475 		return NULL;
476 
477 	sock = SOCKET_I(inode);
478 
479 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
480 	inode->i_uid = current->fsuid;
481 	inode->i_gid = current->fsgid;
482 
483 	get_cpu_var(sockets_in_use)++;
484 	put_cpu_var(sockets_in_use);
485 	return sock;
486 }
487 
488 /*
489  *	In theory you can't get an open on this inode, but /proc provides
490  *	a back door. Remember to keep it shut otherwise you'll let the
491  *	creepy crawlies in.
492  */
493 
494 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
495 {
496 	return -ENXIO;
497 }
498 
499 struct file_operations bad_sock_fops = {
500 	.owner = THIS_MODULE,
501 	.open = sock_no_open,
502 };
503 
504 /**
505  *	sock_release	-	close a socket
506  *	@sock: socket to close
507  *
508  *	The socket is released from the protocol stack if it has a release
509  *	callback, and the inode is then released if the socket is bound to
510  *	an inode not a file.
511  */
512 
513 void sock_release(struct socket *sock)
514 {
515 	if (sock->ops) {
516 		struct module *owner = sock->ops->owner;
517 
518 		sock->ops->release(sock);
519 		sock->ops = NULL;
520 		module_put(owner);
521 	}
522 
523 	if (sock->fasync_list)
524 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
525 
526 	get_cpu_var(sockets_in_use)--;
527 	put_cpu_var(sockets_in_use);
528 	if (!sock->file) {
529 		iput(SOCK_INODE(sock));
530 		return;
531 	}
532 	sock->file=NULL;
533 }
534 
535 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
536 				 struct msghdr *msg, size_t size)
537 {
538 	struct sock_iocb *si = kiocb_to_siocb(iocb);
539 	int err;
540 
541 	si->sock = sock;
542 	si->scm = NULL;
543 	si->msg = msg;
544 	si->size = size;
545 
546 	err = security_socket_sendmsg(sock, msg, size);
547 	if (err)
548 		return err;
549 
550 	return sock->ops->sendmsg(iocb, sock, msg, size);
551 }
552 
553 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
554 {
555 	struct kiocb iocb;
556 	struct sock_iocb siocb;
557 	int ret;
558 
559 	init_sync_kiocb(&iocb, NULL);
560 	iocb.private = &siocb;
561 	ret = __sock_sendmsg(&iocb, sock, msg, size);
562 	if (-EIOCBQUEUED == ret)
563 		ret = wait_on_sync_kiocb(&iocb);
564 	return ret;
565 }
566 
567 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
568 		   struct kvec *vec, size_t num, size_t size)
569 {
570 	mm_segment_t oldfs = get_fs();
571 	int result;
572 
573 	set_fs(KERNEL_DS);
574 	/*
575 	 * the following is safe, since for compiler definitions of kvec and
576 	 * iovec are identical, yielding the same in-core layout and alignment
577 	 */
578 	msg->msg_iov = (struct iovec *)vec,
579 	msg->msg_iovlen = num;
580 	result = sock_sendmsg(sock, msg, size);
581 	set_fs(oldfs);
582 	return result;
583 }
584 
585 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
586 				 struct msghdr *msg, size_t size, int flags)
587 {
588 	int err;
589 	struct sock_iocb *si = kiocb_to_siocb(iocb);
590 
591 	si->sock = sock;
592 	si->scm = NULL;
593 	si->msg = msg;
594 	si->size = size;
595 	si->flags = flags;
596 
597 	err = security_socket_recvmsg(sock, msg, size, flags);
598 	if (err)
599 		return err;
600 
601 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
602 }
603 
604 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
605 		 size_t size, int flags)
606 {
607 	struct kiocb iocb;
608 	struct sock_iocb siocb;
609 	int ret;
610 
611         init_sync_kiocb(&iocb, NULL);
612 	iocb.private = &siocb;
613 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
614 	if (-EIOCBQUEUED == ret)
615 		ret = wait_on_sync_kiocb(&iocb);
616 	return ret;
617 }
618 
619 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
620 		   struct kvec *vec, size_t num,
621 		   size_t size, int flags)
622 {
623 	mm_segment_t oldfs = get_fs();
624 	int result;
625 
626 	set_fs(KERNEL_DS);
627 	/*
628 	 * the following is safe, since for compiler definitions of kvec and
629 	 * iovec are identical, yielding the same in-core layout and alignment
630 	 */
631 	msg->msg_iov = (struct iovec *)vec,
632 	msg->msg_iovlen = num;
633 	result = sock_recvmsg(sock, msg, size, flags);
634 	set_fs(oldfs);
635 	return result;
636 }
637 
638 static void sock_aio_dtor(struct kiocb *iocb)
639 {
640 	kfree(iocb->private);
641 }
642 
643 static ssize_t sock_sendpage(struct file *file, struct page *page,
644 			     int offset, size_t size, loff_t *ppos, int more)
645 {
646 	struct socket *sock;
647 	int flags;
648 
649 	sock = file->private_data;
650 
651 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
652 	if (more)
653 		flags |= MSG_MORE;
654 
655 	return sock->ops->sendpage(sock, page, offset, size, flags);
656 }
657 
658 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
659 		char __user *ubuf, size_t size, struct sock_iocb *siocb)
660 {
661 	if (!is_sync_kiocb(iocb)) {
662 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
663 		if (!siocb)
664 			return NULL;
665 		iocb->ki_dtor = sock_aio_dtor;
666 	}
667 
668 	siocb->kiocb = iocb;
669 	siocb->async_iov.iov_base = ubuf;
670 	siocb->async_iov.iov_len = size;
671 
672 	iocb->private = siocb;
673 	return siocb;
674 }
675 
676 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
677 		struct file *file, struct iovec *iov, unsigned long nr_segs)
678 {
679 	struct socket *sock = file->private_data;
680 	size_t size = 0;
681 	int i;
682 
683         for (i = 0 ; i < nr_segs ; i++)
684                 size += iov[i].iov_len;
685 
686 	msg->msg_name = NULL;
687 	msg->msg_namelen = 0;
688 	msg->msg_control = NULL;
689 	msg->msg_controllen = 0;
690 	msg->msg_iov = (struct iovec *) iov;
691 	msg->msg_iovlen = nr_segs;
692 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
693 
694 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
695 }
696 
697 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
698 			  unsigned long nr_segs, loff_t *ppos)
699 {
700 	struct kiocb iocb;
701 	struct sock_iocb siocb;
702 	struct msghdr msg;
703 	int ret;
704 
705         init_sync_kiocb(&iocb, NULL);
706 	iocb.private = &siocb;
707 
708 	ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
709 	if (-EIOCBQUEUED == ret)
710 		ret = wait_on_sync_kiocb(&iocb);
711 	return ret;
712 }
713 
714 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
715 			 size_t count, loff_t pos)
716 {
717 	struct sock_iocb siocb, *x;
718 
719 	if (pos != 0)
720 		return -ESPIPE;
721 	if (count == 0)		/* Match SYS5 behaviour */
722 		return 0;
723 
724 	x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
725 	if (!x)
726 		return -ENOMEM;
727 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
728 			&x->async_iov, 1);
729 }
730 
731 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
732 		struct file *file, struct iovec *iov, unsigned long nr_segs)
733 {
734 	struct socket *sock = file->private_data;
735 	size_t size = 0;
736 	int i;
737 
738         for (i = 0 ; i < nr_segs ; i++)
739                 size += iov[i].iov_len;
740 
741 	msg->msg_name = NULL;
742 	msg->msg_namelen = 0;
743 	msg->msg_control = NULL;
744 	msg->msg_controllen = 0;
745 	msg->msg_iov = (struct iovec *) iov;
746 	msg->msg_iovlen = nr_segs;
747 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
748 	if (sock->type == SOCK_SEQPACKET)
749 		msg->msg_flags |= MSG_EOR;
750 
751 	return __sock_sendmsg(iocb, sock, msg, size);
752 }
753 
754 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
755 			   unsigned long nr_segs, loff_t *ppos)
756 {
757 	struct msghdr msg;
758 	struct kiocb iocb;
759 	struct sock_iocb siocb;
760 	int ret;
761 
762 	init_sync_kiocb(&iocb, NULL);
763 	iocb.private = &siocb;
764 
765 	ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
766 	if (-EIOCBQUEUED == ret)
767 		ret = wait_on_sync_kiocb(&iocb);
768 	return ret;
769 }
770 
771 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
772 			  size_t count, loff_t pos)
773 {
774 	struct sock_iocb siocb, *x;
775 
776 	if (pos != 0)
777 		return -ESPIPE;
778 	if (count == 0)		/* Match SYS5 behaviour */
779 		return 0;
780 
781 	x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
782 	if (!x)
783 		return -ENOMEM;
784 
785 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
786 			&x->async_iov, 1);
787 }
788 
789 
790 /*
791  * Atomic setting of ioctl hooks to avoid race
792  * with module unload.
793  */
794 
795 static DECLARE_MUTEX(br_ioctl_mutex);
796 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
797 
798 void brioctl_set(int (*hook)(unsigned int, void __user *))
799 {
800 	down(&br_ioctl_mutex);
801 	br_ioctl_hook = hook;
802 	up(&br_ioctl_mutex);
803 }
804 EXPORT_SYMBOL(brioctl_set);
805 
806 static DECLARE_MUTEX(vlan_ioctl_mutex);
807 static int (*vlan_ioctl_hook)(void __user *arg);
808 
809 void vlan_ioctl_set(int (*hook)(void __user *))
810 {
811 	down(&vlan_ioctl_mutex);
812 	vlan_ioctl_hook = hook;
813 	up(&vlan_ioctl_mutex);
814 }
815 EXPORT_SYMBOL(vlan_ioctl_set);
816 
817 static DECLARE_MUTEX(dlci_ioctl_mutex);
818 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
819 
820 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
821 {
822 	down(&dlci_ioctl_mutex);
823 	dlci_ioctl_hook = hook;
824 	up(&dlci_ioctl_mutex);
825 }
826 EXPORT_SYMBOL(dlci_ioctl_set);
827 
828 /*
829  *	With an ioctl, arg may well be a user mode pointer, but we don't know
830  *	what to do with it - that's up to the protocol still.
831  */
832 
833 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
834 {
835 	struct socket *sock;
836 	void __user *argp = (void __user *)arg;
837 	int pid, err;
838 
839 	sock = file->private_data;
840 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
841 		err = dev_ioctl(cmd, argp);
842 	} else
843 #ifdef WIRELESS_EXT
844 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
845 		err = dev_ioctl(cmd, argp);
846 	} else
847 #endif	/* WIRELESS_EXT */
848 	switch (cmd) {
849 		case FIOSETOWN:
850 		case SIOCSPGRP:
851 			err = -EFAULT;
852 			if (get_user(pid, (int __user *)argp))
853 				break;
854 			err = f_setown(sock->file, pid, 1);
855 			break;
856 		case FIOGETOWN:
857 		case SIOCGPGRP:
858 			err = put_user(sock->file->f_owner.pid, (int __user *)argp);
859 			break;
860 		case SIOCGIFBR:
861 		case SIOCSIFBR:
862 		case SIOCBRADDBR:
863 		case SIOCBRDELBR:
864 			err = -ENOPKG;
865 			if (!br_ioctl_hook)
866 				request_module("bridge");
867 
868 			down(&br_ioctl_mutex);
869 			if (br_ioctl_hook)
870 				err = br_ioctl_hook(cmd, argp);
871 			up(&br_ioctl_mutex);
872 			break;
873 		case SIOCGIFVLAN:
874 		case SIOCSIFVLAN:
875 			err = -ENOPKG;
876 			if (!vlan_ioctl_hook)
877 				request_module("8021q");
878 
879 			down(&vlan_ioctl_mutex);
880 			if (vlan_ioctl_hook)
881 				err = vlan_ioctl_hook(argp);
882 			up(&vlan_ioctl_mutex);
883 			break;
884 		case SIOCGIFDIVERT:
885 		case SIOCSIFDIVERT:
886 		/* Convert this to call through a hook */
887 			err = divert_ioctl(cmd, argp);
888 			break;
889 		case SIOCADDDLCI:
890 		case SIOCDELDLCI:
891 			err = -ENOPKG;
892 			if (!dlci_ioctl_hook)
893 				request_module("dlci");
894 
895 			if (dlci_ioctl_hook) {
896 				down(&dlci_ioctl_mutex);
897 				err = dlci_ioctl_hook(cmd, argp);
898 				up(&dlci_ioctl_mutex);
899 			}
900 			break;
901 		default:
902 			err = sock->ops->ioctl(sock, cmd, arg);
903 
904 			/*
905 			 * If this ioctl is unknown try to hand it down
906 			 * to the NIC driver.
907 			 */
908 			if (err == -ENOIOCTLCMD)
909 				err = dev_ioctl(cmd, argp);
910 			break;
911 	}
912 	return err;
913 }
914 
915 int sock_create_lite(int family, int type, int protocol, struct socket **res)
916 {
917 	int err;
918 	struct socket *sock = NULL;
919 
920 	err = security_socket_create(family, type, protocol, 1);
921 	if (err)
922 		goto out;
923 
924 	sock = sock_alloc();
925 	if (!sock) {
926 		err = -ENOMEM;
927 		goto out;
928 	}
929 
930 	security_socket_post_create(sock, family, type, protocol, 1);
931 	sock->type = type;
932 out:
933 	*res = sock;
934 	return err;
935 }
936 
937 /* No kernel lock held - perfect */
938 static unsigned int sock_poll(struct file *file, poll_table * wait)
939 {
940 	struct socket *sock;
941 
942 	/*
943 	 *	We can't return errors to poll, so it's either yes or no.
944 	 */
945 	sock = file->private_data;
946 	return sock->ops->poll(file, sock, wait);
947 }
948 
949 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
950 {
951 	struct socket *sock = file->private_data;
952 
953 	return sock->ops->mmap(file, sock, vma);
954 }
955 
956 static int sock_close(struct inode *inode, struct file *filp)
957 {
958 	/*
959 	 *	It was possible the inode is NULL we were
960 	 *	closing an unfinished socket.
961 	 */
962 
963 	if (!inode)
964 	{
965 		printk(KERN_DEBUG "sock_close: NULL inode\n");
966 		return 0;
967 	}
968 	sock_fasync(-1, filp, 0);
969 	sock_release(SOCKET_I(inode));
970 	return 0;
971 }
972 
973 /*
974  *	Update the socket async list
975  *
976  *	Fasync_list locking strategy.
977  *
978  *	1. fasync_list is modified only under process context socket lock
979  *	   i.e. under semaphore.
980  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
981  *	   or under socket lock.
982  *	3. fasync_list can be used from softirq context, so that
983  *	   modification under socket lock have to be enhanced with
984  *	   write_lock_bh(&sk->sk_callback_lock).
985  *							--ANK (990710)
986  */
987 
988 static int sock_fasync(int fd, struct file *filp, int on)
989 {
990 	struct fasync_struct *fa, *fna=NULL, **prev;
991 	struct socket *sock;
992 	struct sock *sk;
993 
994 	if (on)
995 	{
996 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
997 		if(fna==NULL)
998 			return -ENOMEM;
999 	}
1000 
1001 	sock = filp->private_data;
1002 
1003 	if ((sk=sock->sk) == NULL) {
1004 		kfree(fna);
1005 		return -EINVAL;
1006 	}
1007 
1008 	lock_sock(sk);
1009 
1010 	prev=&(sock->fasync_list);
1011 
1012 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1013 		if (fa->fa_file==filp)
1014 			break;
1015 
1016 	if(on)
1017 	{
1018 		if(fa!=NULL)
1019 		{
1020 			write_lock_bh(&sk->sk_callback_lock);
1021 			fa->fa_fd=fd;
1022 			write_unlock_bh(&sk->sk_callback_lock);
1023 
1024 			kfree(fna);
1025 			goto out;
1026 		}
1027 		fna->fa_file=filp;
1028 		fna->fa_fd=fd;
1029 		fna->magic=FASYNC_MAGIC;
1030 		fna->fa_next=sock->fasync_list;
1031 		write_lock_bh(&sk->sk_callback_lock);
1032 		sock->fasync_list=fna;
1033 		write_unlock_bh(&sk->sk_callback_lock);
1034 	}
1035 	else
1036 	{
1037 		if (fa!=NULL)
1038 		{
1039 			write_lock_bh(&sk->sk_callback_lock);
1040 			*prev=fa->fa_next;
1041 			write_unlock_bh(&sk->sk_callback_lock);
1042 			kfree(fa);
1043 		}
1044 	}
1045 
1046 out:
1047 	release_sock(sock->sk);
1048 	return 0;
1049 }
1050 
1051 /* This function may be called only under socket lock or callback_lock */
1052 
1053 int sock_wake_async(struct socket *sock, int how, int band)
1054 {
1055 	if (!sock || !sock->fasync_list)
1056 		return -1;
1057 	switch (how)
1058 	{
1059 	case 1:
1060 
1061 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1062 			break;
1063 		goto call_kill;
1064 	case 2:
1065 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1066 			break;
1067 		/* fall through */
1068 	case 0:
1069 	call_kill:
1070 		__kill_fasync(sock->fasync_list, SIGIO, band);
1071 		break;
1072 	case 3:
1073 		__kill_fasync(sock->fasync_list, SIGURG, band);
1074 	}
1075 	return 0;
1076 }
1077 
1078 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1079 {
1080 	int err;
1081 	struct socket *sock;
1082 
1083 	/*
1084 	 *	Check protocol is in range
1085 	 */
1086 	if (family < 0 || family >= NPROTO)
1087 		return -EAFNOSUPPORT;
1088 	if (type < 0 || type >= SOCK_MAX)
1089 		return -EINVAL;
1090 
1091 	/* Compatibility.
1092 
1093 	   This uglymoron is moved from INET layer to here to avoid
1094 	   deadlock in module load.
1095 	 */
1096 	if (family == PF_INET && type == SOCK_PACKET) {
1097 		static int warned;
1098 		if (!warned) {
1099 			warned = 1;
1100 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1101 		}
1102 		family = PF_PACKET;
1103 	}
1104 
1105 	err = security_socket_create(family, type, protocol, kern);
1106 	if (err)
1107 		return err;
1108 
1109 #if defined(CONFIG_KMOD)
1110 	/* Attempt to load a protocol module if the find failed.
1111 	 *
1112 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1113 	 * requested real, full-featured networking support upon configuration.
1114 	 * Otherwise module support will break!
1115 	 */
1116 	if (net_families[family]==NULL)
1117 	{
1118 		request_module("net-pf-%d",family);
1119 	}
1120 #endif
1121 
1122 	net_family_read_lock();
1123 	if (net_families[family] == NULL) {
1124 		err = -EAFNOSUPPORT;
1125 		goto out;
1126 	}
1127 
1128 /*
1129  *	Allocate the socket and allow the family to set things up. if
1130  *	the protocol is 0, the family is instructed to select an appropriate
1131  *	default.
1132  */
1133 
1134 	if (!(sock = sock_alloc())) {
1135 		printk(KERN_WARNING "socket: no more sockets\n");
1136 		err = -ENFILE;		/* Not exactly a match, but its the
1137 					   closest posix thing */
1138 		goto out;
1139 	}
1140 
1141 	sock->type  = type;
1142 
1143 	/*
1144 	 * We will call the ->create function, that possibly is in a loadable
1145 	 * module, so we have to bump that loadable module refcnt first.
1146 	 */
1147 	err = -EAFNOSUPPORT;
1148 	if (!try_module_get(net_families[family]->owner))
1149 		goto out_release;
1150 
1151 	if ((err = net_families[family]->create(sock, protocol)) < 0) {
1152 		sock->ops = NULL;
1153 		goto out_module_put;
1154 	}
1155 
1156 	/*
1157 	 * Now to bump the refcnt of the [loadable] module that owns this
1158 	 * socket at sock_release time we decrement its refcnt.
1159 	 */
1160 	if (!try_module_get(sock->ops->owner)) {
1161 		sock->ops = NULL;
1162 		goto out_module_put;
1163 	}
1164 	/*
1165 	 * Now that we're done with the ->create function, the [loadable]
1166 	 * module can have its refcnt decremented
1167 	 */
1168 	module_put(net_families[family]->owner);
1169 	*res = sock;
1170 	security_socket_post_create(sock, family, type, protocol, kern);
1171 
1172 out:
1173 	net_family_read_unlock();
1174 	return err;
1175 out_module_put:
1176 	module_put(net_families[family]->owner);
1177 out_release:
1178 	sock_release(sock);
1179 	goto out;
1180 }
1181 
1182 int sock_create(int family, int type, int protocol, struct socket **res)
1183 {
1184 	return __sock_create(family, type, protocol, res, 0);
1185 }
1186 
1187 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1188 {
1189 	return __sock_create(family, type, protocol, res, 1);
1190 }
1191 
1192 asmlinkage long sys_socket(int family, int type, int protocol)
1193 {
1194 	int retval;
1195 	struct socket *sock;
1196 
1197 	retval = sock_create(family, type, protocol, &sock);
1198 	if (retval < 0)
1199 		goto out;
1200 
1201 	retval = sock_map_fd(sock);
1202 	if (retval < 0)
1203 		goto out_release;
1204 
1205 out:
1206 	/* It may be already another descriptor 8) Not kernel problem. */
1207 	return retval;
1208 
1209 out_release:
1210 	sock_release(sock);
1211 	return retval;
1212 }
1213 
1214 /*
1215  *	Create a pair of connected sockets.
1216  */
1217 
1218 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1219 {
1220 	struct socket *sock1, *sock2;
1221 	int fd1, fd2, err;
1222 
1223 	/*
1224 	 * Obtain the first socket and check if the underlying protocol
1225 	 * supports the socketpair call.
1226 	 */
1227 
1228 	err = sock_create(family, type, protocol, &sock1);
1229 	if (err < 0)
1230 		goto out;
1231 
1232 	err = sock_create(family, type, protocol, &sock2);
1233 	if (err < 0)
1234 		goto out_release_1;
1235 
1236 	err = sock1->ops->socketpair(sock1, sock2);
1237 	if (err < 0)
1238 		goto out_release_both;
1239 
1240 	fd1 = fd2 = -1;
1241 
1242 	err = sock_map_fd(sock1);
1243 	if (err < 0)
1244 		goto out_release_both;
1245 	fd1 = err;
1246 
1247 	err = sock_map_fd(sock2);
1248 	if (err < 0)
1249 		goto out_close_1;
1250 	fd2 = err;
1251 
1252 	/* fd1 and fd2 may be already another descriptors.
1253 	 * Not kernel problem.
1254 	 */
1255 
1256 	err = put_user(fd1, &usockvec[0]);
1257 	if (!err)
1258 		err = put_user(fd2, &usockvec[1]);
1259 	if (!err)
1260 		return 0;
1261 
1262 	sys_close(fd2);
1263 	sys_close(fd1);
1264 	return err;
1265 
1266 out_close_1:
1267         sock_release(sock2);
1268 	sys_close(fd1);
1269 	return err;
1270 
1271 out_release_both:
1272         sock_release(sock2);
1273 out_release_1:
1274         sock_release(sock1);
1275 out:
1276 	return err;
1277 }
1278 
1279 
1280 /*
1281  *	Bind a name to a socket. Nothing much to do here since it's
1282  *	the protocol's responsibility to handle the local address.
1283  *
1284  *	We move the socket address to kernel space before we call
1285  *	the protocol layer (having also checked the address is ok).
1286  */
1287 
1288 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1289 {
1290 	struct socket *sock;
1291 	char address[MAX_SOCK_ADDR];
1292 	int err;
1293 
1294 	if((sock = sockfd_lookup(fd,&err))!=NULL)
1295 	{
1296 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1297 			err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1298 			if (err) {
1299 				sockfd_put(sock);
1300 				return err;
1301 			}
1302 			err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1303 		}
1304 		sockfd_put(sock);
1305 	}
1306 	return err;
1307 }
1308 
1309 
1310 /*
1311  *	Perform a listen. Basically, we allow the protocol to do anything
1312  *	necessary for a listen, and if that works, we mark the socket as
1313  *	ready for listening.
1314  */
1315 
1316 int sysctl_somaxconn = SOMAXCONN;
1317 
1318 asmlinkage long sys_listen(int fd, int backlog)
1319 {
1320 	struct socket *sock;
1321 	int err;
1322 
1323 	if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1324 		if ((unsigned) backlog > sysctl_somaxconn)
1325 			backlog = sysctl_somaxconn;
1326 
1327 		err = security_socket_listen(sock, backlog);
1328 		if (err) {
1329 			sockfd_put(sock);
1330 			return err;
1331 		}
1332 
1333 		err=sock->ops->listen(sock, backlog);
1334 		sockfd_put(sock);
1335 	}
1336 	return err;
1337 }
1338 
1339 
1340 /*
1341  *	For accept, we attempt to create a new socket, set up the link
1342  *	with the client, wake up the client, then return the new
1343  *	connected fd. We collect the address of the connector in kernel
1344  *	space and move it to user at the very end. This is unclean because
1345  *	we open the socket then return an error.
1346  *
1347  *	1003.1g adds the ability to recvmsg() to query connection pending
1348  *	status to recvmsg. We need to add that support in a way thats
1349  *	clean when we restucture accept also.
1350  */
1351 
1352 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1353 {
1354 	struct socket *sock, *newsock;
1355 	int err, len;
1356 	char address[MAX_SOCK_ADDR];
1357 
1358 	sock = sockfd_lookup(fd, &err);
1359 	if (!sock)
1360 		goto out;
1361 
1362 	err = -ENFILE;
1363 	if (!(newsock = sock_alloc()))
1364 		goto out_put;
1365 
1366 	newsock->type = sock->type;
1367 	newsock->ops = sock->ops;
1368 
1369 	/*
1370 	 * We don't need try_module_get here, as the listening socket (sock)
1371 	 * has the protocol module (sock->ops->owner) held.
1372 	 */
1373 	__module_get(newsock->ops->owner);
1374 
1375 	err = security_socket_accept(sock, newsock);
1376 	if (err)
1377 		goto out_release;
1378 
1379 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1380 	if (err < 0)
1381 		goto out_release;
1382 
1383 	if (upeer_sockaddr) {
1384 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1385 			err = -ECONNABORTED;
1386 			goto out_release;
1387 		}
1388 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1389 		if (err < 0)
1390 			goto out_release;
1391 	}
1392 
1393 	/* File flags are not inherited via accept() unlike another OSes. */
1394 
1395 	if ((err = sock_map_fd(newsock)) < 0)
1396 		goto out_release;
1397 
1398 	security_socket_post_accept(sock, newsock);
1399 
1400 out_put:
1401 	sockfd_put(sock);
1402 out:
1403 	return err;
1404 out_release:
1405 	sock_release(newsock);
1406 	goto out_put;
1407 }
1408 
1409 
1410 /*
1411  *	Attempt to connect to a socket with the server address.  The address
1412  *	is in user space so we verify it is OK and move it to kernel space.
1413  *
1414  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1415  *	break bindings
1416  *
1417  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1418  *	other SEQPACKET protocols that take time to connect() as it doesn't
1419  *	include the -EINPROGRESS status for such sockets.
1420  */
1421 
1422 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1423 {
1424 	struct socket *sock;
1425 	char address[MAX_SOCK_ADDR];
1426 	int err;
1427 
1428 	sock = sockfd_lookup(fd, &err);
1429 	if (!sock)
1430 		goto out;
1431 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1432 	if (err < 0)
1433 		goto out_put;
1434 
1435 	err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1436 	if (err)
1437 		goto out_put;
1438 
1439 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1440 				 sock->file->f_flags);
1441 out_put:
1442 	sockfd_put(sock);
1443 out:
1444 	return err;
1445 }
1446 
1447 /*
1448  *	Get the local address ('name') of a socket object. Move the obtained
1449  *	name to user space.
1450  */
1451 
1452 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1453 {
1454 	struct socket *sock;
1455 	char address[MAX_SOCK_ADDR];
1456 	int len, err;
1457 
1458 	sock = sockfd_lookup(fd, &err);
1459 	if (!sock)
1460 		goto out;
1461 
1462 	err = security_socket_getsockname(sock);
1463 	if (err)
1464 		goto out_put;
1465 
1466 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1467 	if (err)
1468 		goto out_put;
1469 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1470 
1471 out_put:
1472 	sockfd_put(sock);
1473 out:
1474 	return err;
1475 }
1476 
1477 /*
1478  *	Get the remote address ('name') of a socket object. Move the obtained
1479  *	name to user space.
1480  */
1481 
1482 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1483 {
1484 	struct socket *sock;
1485 	char address[MAX_SOCK_ADDR];
1486 	int len, err;
1487 
1488 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1489 	{
1490 		err = security_socket_getpeername(sock);
1491 		if (err) {
1492 			sockfd_put(sock);
1493 			return err;
1494 		}
1495 
1496 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1497 		if (!err)
1498 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1499 		sockfd_put(sock);
1500 	}
1501 	return err;
1502 }
1503 
1504 /*
1505  *	Send a datagram to a given address. We move the address into kernel
1506  *	space and check the user space data area is readable before invoking
1507  *	the protocol.
1508  */
1509 
1510 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1511 			   struct sockaddr __user *addr, int addr_len)
1512 {
1513 	struct socket *sock;
1514 	char address[MAX_SOCK_ADDR];
1515 	int err;
1516 	struct msghdr msg;
1517 	struct iovec iov;
1518 
1519 	sock = sockfd_lookup(fd, &err);
1520 	if (!sock)
1521 		goto out;
1522 	iov.iov_base=buff;
1523 	iov.iov_len=len;
1524 	msg.msg_name=NULL;
1525 	msg.msg_iov=&iov;
1526 	msg.msg_iovlen=1;
1527 	msg.msg_control=NULL;
1528 	msg.msg_controllen=0;
1529 	msg.msg_namelen=0;
1530 	if(addr)
1531 	{
1532 		err = move_addr_to_kernel(addr, addr_len, address);
1533 		if (err < 0)
1534 			goto out_put;
1535 		msg.msg_name=address;
1536 		msg.msg_namelen=addr_len;
1537 	}
1538 	if (sock->file->f_flags & O_NONBLOCK)
1539 		flags |= MSG_DONTWAIT;
1540 	msg.msg_flags = flags;
1541 	err = sock_sendmsg(sock, &msg, len);
1542 
1543 out_put:
1544 	sockfd_put(sock);
1545 out:
1546 	return err;
1547 }
1548 
1549 /*
1550  *	Send a datagram down a socket.
1551  */
1552 
1553 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1554 {
1555 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1556 }
1557 
1558 /*
1559  *	Receive a frame from the socket and optionally record the address of the
1560  *	sender. We verify the buffers are writable and if needed move the
1561  *	sender address from kernel to user space.
1562  */
1563 
1564 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1565 			     struct sockaddr __user *addr, int __user *addr_len)
1566 {
1567 	struct socket *sock;
1568 	struct iovec iov;
1569 	struct msghdr msg;
1570 	char address[MAX_SOCK_ADDR];
1571 	int err,err2;
1572 
1573 	sock = sockfd_lookup(fd, &err);
1574 	if (!sock)
1575 		goto out;
1576 
1577 	msg.msg_control=NULL;
1578 	msg.msg_controllen=0;
1579 	msg.msg_iovlen=1;
1580 	msg.msg_iov=&iov;
1581 	iov.iov_len=size;
1582 	iov.iov_base=ubuf;
1583 	msg.msg_name=address;
1584 	msg.msg_namelen=MAX_SOCK_ADDR;
1585 	if (sock->file->f_flags & O_NONBLOCK)
1586 		flags |= MSG_DONTWAIT;
1587 	err=sock_recvmsg(sock, &msg, size, flags);
1588 
1589 	if(err >= 0 && addr != NULL)
1590 	{
1591 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1592 		if(err2<0)
1593 			err=err2;
1594 	}
1595 	sockfd_put(sock);
1596 out:
1597 	return err;
1598 }
1599 
1600 /*
1601  *	Receive a datagram from a socket.
1602  */
1603 
1604 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1605 {
1606 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1607 }
1608 
1609 /*
1610  *	Set a socket option. Because we don't know the option lengths we have
1611  *	to pass the user mode parameter for the protocols to sort out.
1612  */
1613 
1614 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1615 {
1616 	int err;
1617 	struct socket *sock;
1618 
1619 	if (optlen < 0)
1620 		return -EINVAL;
1621 
1622 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1623 	{
1624 		err = security_socket_setsockopt(sock,level,optname);
1625 		if (err) {
1626 			sockfd_put(sock);
1627 			return err;
1628 		}
1629 
1630 		if (level == SOL_SOCKET)
1631 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1632 		else
1633 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1634 		sockfd_put(sock);
1635 	}
1636 	return err;
1637 }
1638 
1639 /*
1640  *	Get a socket option. Because we don't know the option lengths we have
1641  *	to pass a user mode parameter for the protocols to sort out.
1642  */
1643 
1644 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1645 {
1646 	int err;
1647 	struct socket *sock;
1648 
1649 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1650 	{
1651 		err = security_socket_getsockopt(sock, level,
1652 							   optname);
1653 		if (err) {
1654 			sockfd_put(sock);
1655 			return err;
1656 		}
1657 
1658 		if (level == SOL_SOCKET)
1659 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1660 		else
1661 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1662 		sockfd_put(sock);
1663 	}
1664 	return err;
1665 }
1666 
1667 
1668 /*
1669  *	Shutdown a socket.
1670  */
1671 
1672 asmlinkage long sys_shutdown(int fd, int how)
1673 {
1674 	int err;
1675 	struct socket *sock;
1676 
1677 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1678 	{
1679 		err = security_socket_shutdown(sock, how);
1680 		if (err) {
1681 			sockfd_put(sock);
1682 			return err;
1683 		}
1684 
1685 		err=sock->ops->shutdown(sock, how);
1686 		sockfd_put(sock);
1687 	}
1688 	return err;
1689 }
1690 
1691 /* A couple of helpful macros for getting the address of the 32/64 bit
1692  * fields which are the same type (int / unsigned) on our platforms.
1693  */
1694 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1695 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1696 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1697 
1698 
1699 /*
1700  *	BSD sendmsg interface
1701  */
1702 
1703 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1704 {
1705 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1706 	struct socket *sock;
1707 	char address[MAX_SOCK_ADDR];
1708 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1709 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1710 			__attribute__ ((aligned (sizeof(__kernel_size_t))));
1711 			/* 20 is size of ipv6_pktinfo */
1712 	unsigned char *ctl_buf = ctl;
1713 	struct msghdr msg_sys;
1714 	int err, ctl_len, iov_size, total_len;
1715 
1716 	err = -EFAULT;
1717 	if (MSG_CMSG_COMPAT & flags) {
1718 		if (get_compat_msghdr(&msg_sys, msg_compat))
1719 			return -EFAULT;
1720 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1721 		return -EFAULT;
1722 
1723 	sock = sockfd_lookup(fd, &err);
1724 	if (!sock)
1725 		goto out;
1726 
1727 	/* do not move before msg_sys is valid */
1728 	err = -EMSGSIZE;
1729 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1730 		goto out_put;
1731 
1732 	/* Check whether to allocate the iovec area*/
1733 	err = -ENOMEM;
1734 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1735 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1736 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1737 		if (!iov)
1738 			goto out_put;
1739 	}
1740 
1741 	/* This will also move the address data into kernel space */
1742 	if (MSG_CMSG_COMPAT & flags) {
1743 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1744 	} else
1745 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1746 	if (err < 0)
1747 		goto out_freeiov;
1748 	total_len = err;
1749 
1750 	err = -ENOBUFS;
1751 
1752 	if (msg_sys.msg_controllen > INT_MAX)
1753 		goto out_freeiov;
1754 	ctl_len = msg_sys.msg_controllen;
1755 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1756 		err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1757 		if (err)
1758 			goto out_freeiov;
1759 		ctl_buf = msg_sys.msg_control;
1760 		ctl_len = msg_sys.msg_controllen;
1761 	} else if (ctl_len) {
1762 		if (ctl_len > sizeof(ctl))
1763 		{
1764 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1765 			if (ctl_buf == NULL)
1766 				goto out_freeiov;
1767 		}
1768 		err = -EFAULT;
1769 		/*
1770 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1771 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1772 		 * checking falls down on this.
1773 		 */
1774 		if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1775 			goto out_freectl;
1776 		msg_sys.msg_control = ctl_buf;
1777 	}
1778 	msg_sys.msg_flags = flags;
1779 
1780 	if (sock->file->f_flags & O_NONBLOCK)
1781 		msg_sys.msg_flags |= MSG_DONTWAIT;
1782 	err = sock_sendmsg(sock, &msg_sys, total_len);
1783 
1784 out_freectl:
1785 	if (ctl_buf != ctl)
1786 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1787 out_freeiov:
1788 	if (iov != iovstack)
1789 		sock_kfree_s(sock->sk, iov, iov_size);
1790 out_put:
1791 	sockfd_put(sock);
1792 out:
1793 	return err;
1794 }
1795 
1796 /*
1797  *	BSD recvmsg interface
1798  */
1799 
1800 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1801 {
1802 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1803 	struct socket *sock;
1804 	struct iovec iovstack[UIO_FASTIOV];
1805 	struct iovec *iov=iovstack;
1806 	struct msghdr msg_sys;
1807 	unsigned long cmsg_ptr;
1808 	int err, iov_size, total_len, len;
1809 
1810 	/* kernel mode address */
1811 	char addr[MAX_SOCK_ADDR];
1812 
1813 	/* user mode address pointers */
1814 	struct sockaddr __user *uaddr;
1815 	int __user *uaddr_len;
1816 
1817 	if (MSG_CMSG_COMPAT & flags) {
1818 		if (get_compat_msghdr(&msg_sys, msg_compat))
1819 			return -EFAULT;
1820 	} else
1821 		if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1822 			return -EFAULT;
1823 
1824 	sock = sockfd_lookup(fd, &err);
1825 	if (!sock)
1826 		goto out;
1827 
1828 	err = -EMSGSIZE;
1829 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1830 		goto out_put;
1831 
1832 	/* Check whether to allocate the iovec area*/
1833 	err = -ENOMEM;
1834 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1835 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1836 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1837 		if (!iov)
1838 			goto out_put;
1839 	}
1840 
1841 	/*
1842 	 *	Save the user-mode address (verify_iovec will change the
1843 	 *	kernel msghdr to use the kernel address space)
1844 	 */
1845 
1846 	uaddr = (void __user *) msg_sys.msg_name;
1847 	uaddr_len = COMPAT_NAMELEN(msg);
1848 	if (MSG_CMSG_COMPAT & flags) {
1849 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1850 	} else
1851 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1852 	if (err < 0)
1853 		goto out_freeiov;
1854 	total_len=err;
1855 
1856 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1857 	msg_sys.msg_flags = 0;
1858 	if (MSG_CMSG_COMPAT & flags)
1859 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1860 
1861 	if (sock->file->f_flags & O_NONBLOCK)
1862 		flags |= MSG_DONTWAIT;
1863 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1864 	if (err < 0)
1865 		goto out_freeiov;
1866 	len = err;
1867 
1868 	if (uaddr != NULL) {
1869 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1870 		if (err < 0)
1871 			goto out_freeiov;
1872 	}
1873 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1874 			 COMPAT_FLAGS(msg));
1875 	if (err)
1876 		goto out_freeiov;
1877 	if (MSG_CMSG_COMPAT & flags)
1878 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1879 				 &msg_compat->msg_controllen);
1880 	else
1881 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1882 				 &msg->msg_controllen);
1883 	if (err)
1884 		goto out_freeiov;
1885 	err = len;
1886 
1887 out_freeiov:
1888 	if (iov != iovstack)
1889 		sock_kfree_s(sock->sk, iov, iov_size);
1890 out_put:
1891 	sockfd_put(sock);
1892 out:
1893 	return err;
1894 }
1895 
1896 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1897 
1898 /* Argument list sizes for sys_socketcall */
1899 #define AL(x) ((x) * sizeof(unsigned long))
1900 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1901 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1902 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1903 #undef AL
1904 
1905 /*
1906  *	System call vectors.
1907  *
1908  *	Argument checking cleaned up. Saved 20% in size.
1909  *  This function doesn't need to set the kernel lock because
1910  *  it is set by the callees.
1911  */
1912 
1913 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1914 {
1915 	unsigned long a[6];
1916 	unsigned long a0,a1;
1917 	int err;
1918 
1919 	if(call<1||call>SYS_RECVMSG)
1920 		return -EINVAL;
1921 
1922 	/* copy_from_user should be SMP safe. */
1923 	if (copy_from_user(a, args, nargs[call]))
1924 		return -EFAULT;
1925 
1926 	err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1927 	if (err)
1928 		return err;
1929 
1930 	a0=a[0];
1931 	a1=a[1];
1932 
1933 	switch(call)
1934 	{
1935 		case SYS_SOCKET:
1936 			err = sys_socket(a0,a1,a[2]);
1937 			break;
1938 		case SYS_BIND:
1939 			err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1940 			break;
1941 		case SYS_CONNECT:
1942 			err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1943 			break;
1944 		case SYS_LISTEN:
1945 			err = sys_listen(a0,a1);
1946 			break;
1947 		case SYS_ACCEPT:
1948 			err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1949 			break;
1950 		case SYS_GETSOCKNAME:
1951 			err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1952 			break;
1953 		case SYS_GETPEERNAME:
1954 			err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1955 			break;
1956 		case SYS_SOCKETPAIR:
1957 			err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1958 			break;
1959 		case SYS_SEND:
1960 			err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1961 			break;
1962 		case SYS_SENDTO:
1963 			err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1964 					 (struct sockaddr __user *)a[4], a[5]);
1965 			break;
1966 		case SYS_RECV:
1967 			err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1968 			break;
1969 		case SYS_RECVFROM:
1970 			err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1971 					   (struct sockaddr __user *)a[4], (int __user *)a[5]);
1972 			break;
1973 		case SYS_SHUTDOWN:
1974 			err = sys_shutdown(a0,a1);
1975 			break;
1976 		case SYS_SETSOCKOPT:
1977 			err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
1978 			break;
1979 		case SYS_GETSOCKOPT:
1980 			err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
1981 			break;
1982 		case SYS_SENDMSG:
1983 			err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
1984 			break;
1985 		case SYS_RECVMSG:
1986 			err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
1987 			break;
1988 		default:
1989 			err = -EINVAL;
1990 			break;
1991 	}
1992 	return err;
1993 }
1994 
1995 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
1996 
1997 /*
1998  *	This function is called by a protocol handler that wants to
1999  *	advertise its address family, and have it linked into the
2000  *	SOCKET module.
2001  */
2002 
2003 int sock_register(struct net_proto_family *ops)
2004 {
2005 	int err;
2006 
2007 	if (ops->family >= NPROTO) {
2008 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2009 		return -ENOBUFS;
2010 	}
2011 	net_family_write_lock();
2012 	err = -EEXIST;
2013 	if (net_families[ops->family] == NULL) {
2014 		net_families[ops->family]=ops;
2015 		err = 0;
2016 	}
2017 	net_family_write_unlock();
2018 	printk(KERN_INFO "NET: Registered protocol family %d\n",
2019 	       ops->family);
2020 	return err;
2021 }
2022 
2023 /*
2024  *	This function is called by a protocol handler that wants to
2025  *	remove its address family, and have it unlinked from the
2026  *	SOCKET module.
2027  */
2028 
2029 int sock_unregister(int family)
2030 {
2031 	if (family < 0 || family >= NPROTO)
2032 		return -1;
2033 
2034 	net_family_write_lock();
2035 	net_families[family]=NULL;
2036 	net_family_write_unlock();
2037 	printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2038 	       family);
2039 	return 0;
2040 }
2041 
2042 static int __init sock_init(void)
2043 {
2044 	/*
2045 	 *	Initialize sock SLAB cache.
2046 	 */
2047 
2048 	sk_init();
2049 
2050 	/*
2051 	 *	Initialize skbuff SLAB cache
2052 	 */
2053 	skb_init();
2054 
2055 	/*
2056 	 *	Initialize the protocols module.
2057 	 */
2058 
2059 	init_inodecache();
2060 	register_filesystem(&sock_fs_type);
2061 	sock_mnt = kern_mount(&sock_fs_type);
2062 
2063 	/* The real protocol initialization is performed in later initcalls.
2064 	 */
2065 
2066 #ifdef CONFIG_NETFILTER
2067 	netfilter_init();
2068 #endif
2069 
2070 	return 0;
2071 }
2072 
2073 core_initcall(sock_init);	/* early initcall */
2074 
2075 #ifdef CONFIG_PROC_FS
2076 void socket_seq_show(struct seq_file *seq)
2077 {
2078 	int cpu;
2079 	int counter = 0;
2080 
2081 	for_each_cpu(cpu)
2082 		counter += per_cpu(sockets_in_use, cpu);
2083 
2084 	/* It can be negative, by the way. 8) */
2085 	if (counter < 0)
2086 		counter = 0;
2087 
2088 	seq_printf(seq, "sockets: used %d\n", counter);
2089 }
2090 #endif /* CONFIG_PROC_FS */
2091 
2092 /* ABI emulation layers need these two */
2093 EXPORT_SYMBOL(move_addr_to_kernel);
2094 EXPORT_SYMBOL(move_addr_to_user);
2095 EXPORT_SYMBOL(sock_create);
2096 EXPORT_SYMBOL(sock_create_kern);
2097 EXPORT_SYMBOL(sock_create_lite);
2098 EXPORT_SYMBOL(sock_map_fd);
2099 EXPORT_SYMBOL(sock_recvmsg);
2100 EXPORT_SYMBOL(sock_register);
2101 EXPORT_SYMBOL(sock_release);
2102 EXPORT_SYMBOL(sock_sendmsg);
2103 EXPORT_SYMBOL(sock_unregister);
2104 EXPORT_SYMBOL(sock_wake_async);
2105 EXPORT_SYMBOL(sockfd_lookup);
2106 EXPORT_SYMBOL(kernel_sendmsg);
2107 EXPORT_SYMBOL(kernel_recvmsg);
2108