xref: /openbmc/linux/net/socket.c (revision 887feae3)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	ei->socket.wq = wq;
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	kfree_rcu(ei->socket.wq, rcu);
272 	kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
275 static void init_once(void *foo)
276 {
277 	struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279 	inode_init_once(&ei->vfs_inode);
280 }
281 
282 static void init_inodecache(void)
283 {
284 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 					      sizeof(struct socket_alloc),
286 					      0,
287 					      (SLAB_HWCACHE_ALIGN |
288 					       SLAB_RECLAIM_ACCOUNT |
289 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 					      init_once);
291 	BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode	= sock_alloc_inode,
296 	.destroy_inode	= sock_destroy_inode,
297 	.statfs		= simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 				d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310 	.d_dname  = sockfs_dname,
311 };
312 
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 			    struct dentry *dentry, struct inode *inode,
315 			    const char *suffix, void *value, size_t size)
316 {
317 	if (value) {
318 		if (dentry->d_name.len + 1 > size)
319 			return -ERANGE;
320 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 	}
322 	return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330 	.name = XATTR_NAME_SOCKPROTONAME,
331 	.get = sockfs_xattr_get,
332 };
333 
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 				     struct dentry *dentry, struct inode *inode,
336 				     const char *suffix, const void *value,
337 				     size_t size, int flags)
338 {
339 	/* Handled by LSM. */
340 	return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 	.prefix = XATTR_SECURITY_PREFIX,
345 	.set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 	&sockfs_xattr_handler,
350 	&sockfs_security_xattr_handler,
351 	NULL
352 };
353 
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 			 int flags, const char *dev_name, void *data)
356 {
357 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 				  sockfs_xattr_handlers,
359 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365 	.name =		"sockfs",
366 	.mount =	sockfs_mount,
367 	.kill_sb =	kill_anon_super,
368 };
369 
370 /*
371  *	Obtains the first available file descriptor and sets it up for use.
372  *
373  *	These functions create file structures and maps them to fd space
374  *	of the current process. On success it returns file descriptor
375  *	and file struct implicitly stored in sock->file.
376  *	Note that another thread may close file descriptor before we return
377  *	from this function. We use the fact that now we do not refer
378  *	to socket after mapping. If one day we will need it, this
379  *	function will increment ref. count on file by 1.
380  *
381  *	In any case returned fd MAY BE not valid!
382  *	This race condition is unavoidable
383  *	with shared fd spaces, we cannot solve it inside kernel,
384  *	but we take care of internal coherence yet.
385  */
386 
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
388 {
389 	struct file *file;
390 
391 	if (!dname)
392 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
393 
394 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 				O_RDWR | (flags & O_NONBLOCK),
396 				&socket_file_ops);
397 	if (IS_ERR(file)) {
398 		sock_release(sock);
399 		return file;
400 	}
401 
402 	sock->file = file;
403 	file->private_data = sock;
404 	return file;
405 }
406 EXPORT_SYMBOL(sock_alloc_file);
407 
408 static int sock_map_fd(struct socket *sock, int flags)
409 {
410 	struct file *newfile;
411 	int fd = get_unused_fd_flags(flags);
412 	if (unlikely(fd < 0)) {
413 		sock_release(sock);
414 		return fd;
415 	}
416 
417 	newfile = sock_alloc_file(sock, flags, NULL);
418 	if (likely(!IS_ERR(newfile))) {
419 		fd_install(fd, newfile);
420 		return fd;
421 	}
422 
423 	put_unused_fd(fd);
424 	return PTR_ERR(newfile);
425 }
426 
427 struct socket *sock_from_file(struct file *file, int *err)
428 {
429 	if (file->f_op == &socket_file_ops)
430 		return file->private_data;	/* set in sock_map_fd */
431 
432 	*err = -ENOTSOCK;
433 	return NULL;
434 }
435 EXPORT_SYMBOL(sock_from_file);
436 
437 /**
438  *	sockfd_lookup - Go from a file number to its socket slot
439  *	@fd: file handle
440  *	@err: pointer to an error code return
441  *
442  *	The file handle passed in is locked and the socket it is bound
443  *	to is returned. If an error occurs the err pointer is overwritten
444  *	with a negative errno code and NULL is returned. The function checks
445  *	for both invalid handles and passing a handle which is not a socket.
446  *
447  *	On a success the socket object pointer is returned.
448  */
449 
450 struct socket *sockfd_lookup(int fd, int *err)
451 {
452 	struct file *file;
453 	struct socket *sock;
454 
455 	file = fget(fd);
456 	if (!file) {
457 		*err = -EBADF;
458 		return NULL;
459 	}
460 
461 	sock = sock_from_file(file, err);
462 	if (!sock)
463 		fput(file);
464 	return sock;
465 }
466 EXPORT_SYMBOL(sockfd_lookup);
467 
468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
469 {
470 	struct fd f = fdget(fd);
471 	struct socket *sock;
472 
473 	*err = -EBADF;
474 	if (f.file) {
475 		sock = sock_from_file(f.file, err);
476 		if (likely(sock)) {
477 			*fput_needed = f.flags;
478 			return sock;
479 		}
480 		fdput(f);
481 	}
482 	return NULL;
483 }
484 
485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 				size_t size)
487 {
488 	ssize_t len;
489 	ssize_t used = 0;
490 
491 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 	if (len < 0)
493 		return len;
494 	used += len;
495 	if (buffer) {
496 		if (size < used)
497 			return -ERANGE;
498 		buffer += len;
499 	}
500 
501 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 	used += len;
503 	if (buffer) {
504 		if (size < used)
505 			return -ERANGE;
506 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 		buffer += len;
508 	}
509 
510 	return used;
511 }
512 
513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
514 {
515 	int err = simple_setattr(dentry, iattr);
516 
517 	if (!err && (iattr->ia_valid & ATTR_UID)) {
518 		struct socket *sock = SOCKET_I(d_inode(dentry));
519 
520 		if (sock->sk)
521 			sock->sk->sk_uid = iattr->ia_uid;
522 		else
523 			err = -ENOENT;
524 	}
525 
526 	return err;
527 }
528 
529 static const struct inode_operations sockfs_inode_ops = {
530 	.listxattr = sockfs_listxattr,
531 	.setattr = sockfs_setattr,
532 };
533 
534 /**
535  *	sock_alloc	-	allocate a socket
536  *
537  *	Allocate a new inode and socket object. The two are bound together
538  *	and initialised. The socket is then returned. If we are out of inodes
539  *	NULL is returned.
540  */
541 
542 struct socket *sock_alloc(void)
543 {
544 	struct inode *inode;
545 	struct socket *sock;
546 
547 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 	if (!inode)
549 		return NULL;
550 
551 	sock = SOCKET_I(inode);
552 
553 	inode->i_ino = get_next_ino();
554 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 	inode->i_uid = current_fsuid();
556 	inode->i_gid = current_fsgid();
557 	inode->i_op = &sockfs_inode_ops;
558 
559 	return sock;
560 }
561 EXPORT_SYMBOL(sock_alloc);
562 
563 /**
564  *	sock_release	-	close a socket
565  *	@sock: socket to close
566  *
567  *	The socket is released from the protocol stack if it has a release
568  *	callback, and the inode is then released if the socket is bound to
569  *	an inode not a file.
570  */
571 
572 static void __sock_release(struct socket *sock, struct inode *inode)
573 {
574 	if (sock->ops) {
575 		struct module *owner = sock->ops->owner;
576 
577 		if (inode)
578 			inode_lock(inode);
579 		sock->ops->release(sock);
580 		if (inode)
581 			inode_unlock(inode);
582 		sock->ops = NULL;
583 		module_put(owner);
584 	}
585 
586 	if (sock->wq->fasync_list)
587 		pr_err("%s: fasync list not empty!\n", __func__);
588 
589 	if (!sock->file) {
590 		iput(SOCK_INODE(sock));
591 		return;
592 	}
593 	sock->file = NULL;
594 }
595 
596 void sock_release(struct socket *sock)
597 {
598 	__sock_release(sock, NULL);
599 }
600 EXPORT_SYMBOL(sock_release);
601 
602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
603 {
604 	u8 flags = *tx_flags;
605 
606 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 		flags |= SKBTX_HW_TSTAMP;
608 
609 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 		flags |= SKBTX_SW_TSTAMP;
611 
612 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 		flags |= SKBTX_SCHED_TSTAMP;
614 
615 	*tx_flags = flags;
616 }
617 EXPORT_SYMBOL(__sock_tx_timestamp);
618 
619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
620 {
621 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 	BUG_ON(ret == -EIOCBQUEUED);
623 	return ret;
624 }
625 
626 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
627 {
628 	int err = security_socket_sendmsg(sock, msg,
629 					  msg_data_left(msg));
630 
631 	return err ?: sock_sendmsg_nosec(sock, msg);
632 }
633 EXPORT_SYMBOL(sock_sendmsg);
634 
635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 		   struct kvec *vec, size_t num, size_t size)
637 {
638 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
639 	return sock_sendmsg(sock, msg);
640 }
641 EXPORT_SYMBOL(kernel_sendmsg);
642 
643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
644 			  struct kvec *vec, size_t num, size_t size)
645 {
646 	struct socket *sock = sk->sk_socket;
647 
648 	if (!sock->ops->sendmsg_locked)
649 		return sock_no_sendmsg_locked(sk, msg, size);
650 
651 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
652 
653 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
654 }
655 EXPORT_SYMBOL(kernel_sendmsg_locked);
656 
657 static bool skb_is_err_queue(const struct sk_buff *skb)
658 {
659 	/* pkt_type of skbs enqueued on the error queue are set to
660 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 	 * in recvmsg, since skbs received on a local socket will never
662 	 * have a pkt_type of PACKET_OUTGOING.
663 	 */
664 	return skb->pkt_type == PACKET_OUTGOING;
665 }
666 
667 /* On transmit, software and hardware timestamps are returned independently.
668  * As the two skb clones share the hardware timestamp, which may be updated
669  * before the software timestamp is received, a hardware TX timestamp may be
670  * returned only if there is no software TX timestamp. Ignore false software
671  * timestamps, which may be made in the __sock_recv_timestamp() call when the
672  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
673  * hardware timestamp.
674  */
675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
676 {
677 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
678 }
679 
680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
681 {
682 	struct scm_ts_pktinfo ts_pktinfo;
683 	struct net_device *orig_dev;
684 
685 	if (!skb_mac_header_was_set(skb))
686 		return;
687 
688 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
689 
690 	rcu_read_lock();
691 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
692 	if (orig_dev)
693 		ts_pktinfo.if_index = orig_dev->ifindex;
694 	rcu_read_unlock();
695 
696 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
697 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
698 		 sizeof(ts_pktinfo), &ts_pktinfo);
699 }
700 
701 /*
702  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
703  */
704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
705 	struct sk_buff *skb)
706 {
707 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
708 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
709 	struct scm_timestamping tss;
710 	int empty = 1, false_tstamp = 0;
711 	struct skb_shared_hwtstamps *shhwtstamps =
712 		skb_hwtstamps(skb);
713 
714 	/* Race occurred between timestamp enabling and packet
715 	   receiving.  Fill in the current time for now. */
716 	if (need_software_tstamp && skb->tstamp == 0) {
717 		__net_timestamp(skb);
718 		false_tstamp = 1;
719 	}
720 
721 	if (need_software_tstamp) {
722 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
723 			if (new_tstamp) {
724 				struct __kernel_sock_timeval tv;
725 
726 				skb_get_new_timestamp(skb, &tv);
727 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
728 					 sizeof(tv), &tv);
729 			} else {
730 				struct __kernel_old_timeval tv;
731 
732 				skb_get_timestamp(skb, &tv);
733 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
734 					 sizeof(tv), &tv);
735 			}
736 		} else {
737 			if (new_tstamp) {
738 				struct __kernel_timespec ts;
739 
740 				skb_get_new_timestampns(skb, &ts);
741 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
742 					 sizeof(ts), &ts);
743 			} else {
744 				struct timespec ts;
745 
746 				skb_get_timestampns(skb, &ts);
747 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
748 					 sizeof(ts), &ts);
749 			}
750 		}
751 	}
752 
753 	memset(&tss, 0, sizeof(tss));
754 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
755 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
756 		empty = 0;
757 	if (shhwtstamps &&
758 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
759 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
760 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
761 		empty = 0;
762 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
763 		    !skb_is_err_queue(skb))
764 			put_ts_pktinfo(msg, skb);
765 	}
766 	if (!empty) {
767 		put_cmsg(msg, SOL_SOCKET,
768 			 SO_TIMESTAMPING_OLD, sizeof(tss), &tss);
769 
770 		if (skb_is_err_queue(skb) && skb->len &&
771 		    SKB_EXT_ERR(skb)->opt_stats)
772 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
773 				 skb->len, skb->data);
774 	}
775 }
776 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
777 
778 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
779 	struct sk_buff *skb)
780 {
781 	int ack;
782 
783 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
784 		return;
785 	if (!skb->wifi_acked_valid)
786 		return;
787 
788 	ack = skb->wifi_acked;
789 
790 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
791 }
792 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
793 
794 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
795 				   struct sk_buff *skb)
796 {
797 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
798 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
799 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
800 }
801 
802 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
803 	struct sk_buff *skb)
804 {
805 	sock_recv_timestamp(msg, sk, skb);
806 	sock_recv_drops(msg, sk, skb);
807 }
808 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
809 
810 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
811 				     int flags)
812 {
813 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
814 }
815 
816 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
817 {
818 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
819 
820 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
821 }
822 EXPORT_SYMBOL(sock_recvmsg);
823 
824 /**
825  * kernel_recvmsg - Receive a message from a socket (kernel space)
826  * @sock:       The socket to receive the message from
827  * @msg:        Received message
828  * @vec:        Input s/g array for message data
829  * @num:        Size of input s/g array
830  * @size:       Number of bytes to read
831  * @flags:      Message flags (MSG_DONTWAIT, etc...)
832  *
833  * On return the msg structure contains the scatter/gather array passed in the
834  * vec argument. The array is modified so that it consists of the unfilled
835  * portion of the original array.
836  *
837  * The returned value is the total number of bytes received, or an error.
838  */
839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
840 		   struct kvec *vec, size_t num, size_t size, int flags)
841 {
842 	mm_segment_t oldfs = get_fs();
843 	int result;
844 
845 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
846 	set_fs(KERNEL_DS);
847 	result = sock_recvmsg(sock, msg, flags);
848 	set_fs(oldfs);
849 	return result;
850 }
851 EXPORT_SYMBOL(kernel_recvmsg);
852 
853 static ssize_t sock_sendpage(struct file *file, struct page *page,
854 			     int offset, size_t size, loff_t *ppos, int more)
855 {
856 	struct socket *sock;
857 	int flags;
858 
859 	sock = file->private_data;
860 
861 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
862 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
863 	flags |= more;
864 
865 	return kernel_sendpage(sock, page, offset, size, flags);
866 }
867 
868 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
869 				struct pipe_inode_info *pipe, size_t len,
870 				unsigned int flags)
871 {
872 	struct socket *sock = file->private_data;
873 
874 	if (unlikely(!sock->ops->splice_read))
875 		return generic_file_splice_read(file, ppos, pipe, len, flags);
876 
877 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
878 }
879 
880 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
881 {
882 	struct file *file = iocb->ki_filp;
883 	struct socket *sock = file->private_data;
884 	struct msghdr msg = {.msg_iter = *to,
885 			     .msg_iocb = iocb};
886 	ssize_t res;
887 
888 	if (file->f_flags & O_NONBLOCK)
889 		msg.msg_flags = MSG_DONTWAIT;
890 
891 	if (iocb->ki_pos != 0)
892 		return -ESPIPE;
893 
894 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
895 		return 0;
896 
897 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
898 	*to = msg.msg_iter;
899 	return res;
900 }
901 
902 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
903 {
904 	struct file *file = iocb->ki_filp;
905 	struct socket *sock = file->private_data;
906 	struct msghdr msg = {.msg_iter = *from,
907 			     .msg_iocb = iocb};
908 	ssize_t res;
909 
910 	if (iocb->ki_pos != 0)
911 		return -ESPIPE;
912 
913 	if (file->f_flags & O_NONBLOCK)
914 		msg.msg_flags = MSG_DONTWAIT;
915 
916 	if (sock->type == SOCK_SEQPACKET)
917 		msg.msg_flags |= MSG_EOR;
918 
919 	res = sock_sendmsg(sock, &msg);
920 	*from = msg.msg_iter;
921 	return res;
922 }
923 
924 /*
925  * Atomic setting of ioctl hooks to avoid race
926  * with module unload.
927  */
928 
929 static DEFINE_MUTEX(br_ioctl_mutex);
930 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
931 
932 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
933 {
934 	mutex_lock(&br_ioctl_mutex);
935 	br_ioctl_hook = hook;
936 	mutex_unlock(&br_ioctl_mutex);
937 }
938 EXPORT_SYMBOL(brioctl_set);
939 
940 static DEFINE_MUTEX(vlan_ioctl_mutex);
941 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
942 
943 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
944 {
945 	mutex_lock(&vlan_ioctl_mutex);
946 	vlan_ioctl_hook = hook;
947 	mutex_unlock(&vlan_ioctl_mutex);
948 }
949 EXPORT_SYMBOL(vlan_ioctl_set);
950 
951 static DEFINE_MUTEX(dlci_ioctl_mutex);
952 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
953 
954 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
955 {
956 	mutex_lock(&dlci_ioctl_mutex);
957 	dlci_ioctl_hook = hook;
958 	mutex_unlock(&dlci_ioctl_mutex);
959 }
960 EXPORT_SYMBOL(dlci_ioctl_set);
961 
962 static long sock_do_ioctl(struct net *net, struct socket *sock,
963 			  unsigned int cmd, unsigned long arg,
964 			  unsigned int ifreq_size)
965 {
966 	int err;
967 	void __user *argp = (void __user *)arg;
968 
969 	err = sock->ops->ioctl(sock, cmd, arg);
970 
971 	/*
972 	 * If this ioctl is unknown try to hand it down
973 	 * to the NIC driver.
974 	 */
975 	if (err != -ENOIOCTLCMD)
976 		return err;
977 
978 	if (cmd == SIOCGIFCONF) {
979 		struct ifconf ifc;
980 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
981 			return -EFAULT;
982 		rtnl_lock();
983 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
984 		rtnl_unlock();
985 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
986 			err = -EFAULT;
987 	} else {
988 		struct ifreq ifr;
989 		bool need_copyout;
990 		if (copy_from_user(&ifr, argp, ifreq_size))
991 			return -EFAULT;
992 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
993 		if (!err && need_copyout)
994 			if (copy_to_user(argp, &ifr, ifreq_size))
995 				return -EFAULT;
996 	}
997 	return err;
998 }
999 
1000 /*
1001  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1002  *	what to do with it - that's up to the protocol still.
1003  */
1004 
1005 struct ns_common *get_net_ns(struct ns_common *ns)
1006 {
1007 	return &get_net(container_of(ns, struct net, ns))->ns;
1008 }
1009 EXPORT_SYMBOL_GPL(get_net_ns);
1010 
1011 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1012 {
1013 	struct socket *sock;
1014 	struct sock *sk;
1015 	void __user *argp = (void __user *)arg;
1016 	int pid, err;
1017 	struct net *net;
1018 
1019 	sock = file->private_data;
1020 	sk = sock->sk;
1021 	net = sock_net(sk);
1022 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1023 		struct ifreq ifr;
1024 		bool need_copyout;
1025 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1026 			return -EFAULT;
1027 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1028 		if (!err && need_copyout)
1029 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1030 				return -EFAULT;
1031 	} else
1032 #ifdef CONFIG_WEXT_CORE
1033 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1034 		err = wext_handle_ioctl(net, cmd, argp);
1035 	} else
1036 #endif
1037 		switch (cmd) {
1038 		case FIOSETOWN:
1039 		case SIOCSPGRP:
1040 			err = -EFAULT;
1041 			if (get_user(pid, (int __user *)argp))
1042 				break;
1043 			err = f_setown(sock->file, pid, 1);
1044 			break;
1045 		case FIOGETOWN:
1046 		case SIOCGPGRP:
1047 			err = put_user(f_getown(sock->file),
1048 				       (int __user *)argp);
1049 			break;
1050 		case SIOCGIFBR:
1051 		case SIOCSIFBR:
1052 		case SIOCBRADDBR:
1053 		case SIOCBRDELBR:
1054 			err = -ENOPKG;
1055 			if (!br_ioctl_hook)
1056 				request_module("bridge");
1057 
1058 			mutex_lock(&br_ioctl_mutex);
1059 			if (br_ioctl_hook)
1060 				err = br_ioctl_hook(net, cmd, argp);
1061 			mutex_unlock(&br_ioctl_mutex);
1062 			break;
1063 		case SIOCGIFVLAN:
1064 		case SIOCSIFVLAN:
1065 			err = -ENOPKG;
1066 			if (!vlan_ioctl_hook)
1067 				request_module("8021q");
1068 
1069 			mutex_lock(&vlan_ioctl_mutex);
1070 			if (vlan_ioctl_hook)
1071 				err = vlan_ioctl_hook(net, argp);
1072 			mutex_unlock(&vlan_ioctl_mutex);
1073 			break;
1074 		case SIOCADDDLCI:
1075 		case SIOCDELDLCI:
1076 			err = -ENOPKG;
1077 			if (!dlci_ioctl_hook)
1078 				request_module("dlci");
1079 
1080 			mutex_lock(&dlci_ioctl_mutex);
1081 			if (dlci_ioctl_hook)
1082 				err = dlci_ioctl_hook(cmd, argp);
1083 			mutex_unlock(&dlci_ioctl_mutex);
1084 			break;
1085 		case SIOCGSKNS:
1086 			err = -EPERM;
1087 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1088 				break;
1089 
1090 			err = open_related_ns(&net->ns, get_net_ns);
1091 			break;
1092 		default:
1093 			err = sock_do_ioctl(net, sock, cmd, arg,
1094 					    sizeof(struct ifreq));
1095 			break;
1096 		}
1097 	return err;
1098 }
1099 
1100 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1101 {
1102 	int err;
1103 	struct socket *sock = NULL;
1104 
1105 	err = security_socket_create(family, type, protocol, 1);
1106 	if (err)
1107 		goto out;
1108 
1109 	sock = sock_alloc();
1110 	if (!sock) {
1111 		err = -ENOMEM;
1112 		goto out;
1113 	}
1114 
1115 	sock->type = type;
1116 	err = security_socket_post_create(sock, family, type, protocol, 1);
1117 	if (err)
1118 		goto out_release;
1119 
1120 out:
1121 	*res = sock;
1122 	return err;
1123 out_release:
1124 	sock_release(sock);
1125 	sock = NULL;
1126 	goto out;
1127 }
1128 EXPORT_SYMBOL(sock_create_lite);
1129 
1130 /* No kernel lock held - perfect */
1131 static __poll_t sock_poll(struct file *file, poll_table *wait)
1132 {
1133 	struct socket *sock = file->private_data;
1134 	__poll_t events = poll_requested_events(wait), flag = 0;
1135 
1136 	if (!sock->ops->poll)
1137 		return 0;
1138 
1139 	if (sk_can_busy_loop(sock->sk)) {
1140 		/* poll once if requested by the syscall */
1141 		if (events & POLL_BUSY_LOOP)
1142 			sk_busy_loop(sock->sk, 1);
1143 
1144 		/* if this socket can poll_ll, tell the system call */
1145 		flag = POLL_BUSY_LOOP;
1146 	}
1147 
1148 	return sock->ops->poll(file, sock, wait) | flag;
1149 }
1150 
1151 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1152 {
1153 	struct socket *sock = file->private_data;
1154 
1155 	return sock->ops->mmap(file, sock, vma);
1156 }
1157 
1158 static int sock_close(struct inode *inode, struct file *filp)
1159 {
1160 	__sock_release(SOCKET_I(inode), inode);
1161 	return 0;
1162 }
1163 
1164 /*
1165  *	Update the socket async list
1166  *
1167  *	Fasync_list locking strategy.
1168  *
1169  *	1. fasync_list is modified only under process context socket lock
1170  *	   i.e. under semaphore.
1171  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1172  *	   or under socket lock
1173  */
1174 
1175 static int sock_fasync(int fd, struct file *filp, int on)
1176 {
1177 	struct socket *sock = filp->private_data;
1178 	struct sock *sk = sock->sk;
1179 	struct socket_wq *wq;
1180 
1181 	if (sk == NULL)
1182 		return -EINVAL;
1183 
1184 	lock_sock(sk);
1185 	wq = sock->wq;
1186 	fasync_helper(fd, filp, on, &wq->fasync_list);
1187 
1188 	if (!wq->fasync_list)
1189 		sock_reset_flag(sk, SOCK_FASYNC);
1190 	else
1191 		sock_set_flag(sk, SOCK_FASYNC);
1192 
1193 	release_sock(sk);
1194 	return 0;
1195 }
1196 
1197 /* This function may be called only under rcu_lock */
1198 
1199 int sock_wake_async(struct socket_wq *wq, int how, int band)
1200 {
1201 	if (!wq || !wq->fasync_list)
1202 		return -1;
1203 
1204 	switch (how) {
1205 	case SOCK_WAKE_WAITD:
1206 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1207 			break;
1208 		goto call_kill;
1209 	case SOCK_WAKE_SPACE:
1210 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1211 			break;
1212 		/* fall through */
1213 	case SOCK_WAKE_IO:
1214 call_kill:
1215 		kill_fasync(&wq->fasync_list, SIGIO, band);
1216 		break;
1217 	case SOCK_WAKE_URG:
1218 		kill_fasync(&wq->fasync_list, SIGURG, band);
1219 	}
1220 
1221 	return 0;
1222 }
1223 EXPORT_SYMBOL(sock_wake_async);
1224 
1225 int __sock_create(struct net *net, int family, int type, int protocol,
1226 			 struct socket **res, int kern)
1227 {
1228 	int err;
1229 	struct socket *sock;
1230 	const struct net_proto_family *pf;
1231 
1232 	/*
1233 	 *      Check protocol is in range
1234 	 */
1235 	if (family < 0 || family >= NPROTO)
1236 		return -EAFNOSUPPORT;
1237 	if (type < 0 || type >= SOCK_MAX)
1238 		return -EINVAL;
1239 
1240 	/* Compatibility.
1241 
1242 	   This uglymoron is moved from INET layer to here to avoid
1243 	   deadlock in module load.
1244 	 */
1245 	if (family == PF_INET && type == SOCK_PACKET) {
1246 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1247 			     current->comm);
1248 		family = PF_PACKET;
1249 	}
1250 
1251 	err = security_socket_create(family, type, protocol, kern);
1252 	if (err)
1253 		return err;
1254 
1255 	/*
1256 	 *	Allocate the socket and allow the family to set things up. if
1257 	 *	the protocol is 0, the family is instructed to select an appropriate
1258 	 *	default.
1259 	 */
1260 	sock = sock_alloc();
1261 	if (!sock) {
1262 		net_warn_ratelimited("socket: no more sockets\n");
1263 		return -ENFILE;	/* Not exactly a match, but its the
1264 				   closest posix thing */
1265 	}
1266 
1267 	sock->type = type;
1268 
1269 #ifdef CONFIG_MODULES
1270 	/* Attempt to load a protocol module if the find failed.
1271 	 *
1272 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1273 	 * requested real, full-featured networking support upon configuration.
1274 	 * Otherwise module support will break!
1275 	 */
1276 	if (rcu_access_pointer(net_families[family]) == NULL)
1277 		request_module("net-pf-%d", family);
1278 #endif
1279 
1280 	rcu_read_lock();
1281 	pf = rcu_dereference(net_families[family]);
1282 	err = -EAFNOSUPPORT;
1283 	if (!pf)
1284 		goto out_release;
1285 
1286 	/*
1287 	 * We will call the ->create function, that possibly is in a loadable
1288 	 * module, so we have to bump that loadable module refcnt first.
1289 	 */
1290 	if (!try_module_get(pf->owner))
1291 		goto out_release;
1292 
1293 	/* Now protected by module ref count */
1294 	rcu_read_unlock();
1295 
1296 	err = pf->create(net, sock, protocol, kern);
1297 	if (err < 0)
1298 		goto out_module_put;
1299 
1300 	/*
1301 	 * Now to bump the refcnt of the [loadable] module that owns this
1302 	 * socket at sock_release time we decrement its refcnt.
1303 	 */
1304 	if (!try_module_get(sock->ops->owner))
1305 		goto out_module_busy;
1306 
1307 	/*
1308 	 * Now that we're done with the ->create function, the [loadable]
1309 	 * module can have its refcnt decremented
1310 	 */
1311 	module_put(pf->owner);
1312 	err = security_socket_post_create(sock, family, type, protocol, kern);
1313 	if (err)
1314 		goto out_sock_release;
1315 	*res = sock;
1316 
1317 	return 0;
1318 
1319 out_module_busy:
1320 	err = -EAFNOSUPPORT;
1321 out_module_put:
1322 	sock->ops = NULL;
1323 	module_put(pf->owner);
1324 out_sock_release:
1325 	sock_release(sock);
1326 	return err;
1327 
1328 out_release:
1329 	rcu_read_unlock();
1330 	goto out_sock_release;
1331 }
1332 EXPORT_SYMBOL(__sock_create);
1333 
1334 int sock_create(int family, int type, int protocol, struct socket **res)
1335 {
1336 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1337 }
1338 EXPORT_SYMBOL(sock_create);
1339 
1340 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1341 {
1342 	return __sock_create(net, family, type, protocol, res, 1);
1343 }
1344 EXPORT_SYMBOL(sock_create_kern);
1345 
1346 int __sys_socket(int family, int type, int protocol)
1347 {
1348 	int retval;
1349 	struct socket *sock;
1350 	int flags;
1351 
1352 	/* Check the SOCK_* constants for consistency.  */
1353 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1354 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1355 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1356 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1357 
1358 	flags = type & ~SOCK_TYPE_MASK;
1359 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1360 		return -EINVAL;
1361 	type &= SOCK_TYPE_MASK;
1362 
1363 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1364 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1365 
1366 	retval = sock_create(family, type, protocol, &sock);
1367 	if (retval < 0)
1368 		return retval;
1369 
1370 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1371 }
1372 
1373 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1374 {
1375 	return __sys_socket(family, type, protocol);
1376 }
1377 
1378 /*
1379  *	Create a pair of connected sockets.
1380  */
1381 
1382 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1383 {
1384 	struct socket *sock1, *sock2;
1385 	int fd1, fd2, err;
1386 	struct file *newfile1, *newfile2;
1387 	int flags;
1388 
1389 	flags = type & ~SOCK_TYPE_MASK;
1390 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1391 		return -EINVAL;
1392 	type &= SOCK_TYPE_MASK;
1393 
1394 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1395 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1396 
1397 	/*
1398 	 * reserve descriptors and make sure we won't fail
1399 	 * to return them to userland.
1400 	 */
1401 	fd1 = get_unused_fd_flags(flags);
1402 	if (unlikely(fd1 < 0))
1403 		return fd1;
1404 
1405 	fd2 = get_unused_fd_flags(flags);
1406 	if (unlikely(fd2 < 0)) {
1407 		put_unused_fd(fd1);
1408 		return fd2;
1409 	}
1410 
1411 	err = put_user(fd1, &usockvec[0]);
1412 	if (err)
1413 		goto out;
1414 
1415 	err = put_user(fd2, &usockvec[1]);
1416 	if (err)
1417 		goto out;
1418 
1419 	/*
1420 	 * Obtain the first socket and check if the underlying protocol
1421 	 * supports the socketpair call.
1422 	 */
1423 
1424 	err = sock_create(family, type, protocol, &sock1);
1425 	if (unlikely(err < 0))
1426 		goto out;
1427 
1428 	err = sock_create(family, type, protocol, &sock2);
1429 	if (unlikely(err < 0)) {
1430 		sock_release(sock1);
1431 		goto out;
1432 	}
1433 
1434 	err = security_socket_socketpair(sock1, sock2);
1435 	if (unlikely(err)) {
1436 		sock_release(sock2);
1437 		sock_release(sock1);
1438 		goto out;
1439 	}
1440 
1441 	err = sock1->ops->socketpair(sock1, sock2);
1442 	if (unlikely(err < 0)) {
1443 		sock_release(sock2);
1444 		sock_release(sock1);
1445 		goto out;
1446 	}
1447 
1448 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1449 	if (IS_ERR(newfile1)) {
1450 		err = PTR_ERR(newfile1);
1451 		sock_release(sock2);
1452 		goto out;
1453 	}
1454 
1455 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1456 	if (IS_ERR(newfile2)) {
1457 		err = PTR_ERR(newfile2);
1458 		fput(newfile1);
1459 		goto out;
1460 	}
1461 
1462 	audit_fd_pair(fd1, fd2);
1463 
1464 	fd_install(fd1, newfile1);
1465 	fd_install(fd2, newfile2);
1466 	return 0;
1467 
1468 out:
1469 	put_unused_fd(fd2);
1470 	put_unused_fd(fd1);
1471 	return err;
1472 }
1473 
1474 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1475 		int __user *, usockvec)
1476 {
1477 	return __sys_socketpair(family, type, protocol, usockvec);
1478 }
1479 
1480 /*
1481  *	Bind a name to a socket. Nothing much to do here since it's
1482  *	the protocol's responsibility to handle the local address.
1483  *
1484  *	We move the socket address to kernel space before we call
1485  *	the protocol layer (having also checked the address is ok).
1486  */
1487 
1488 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1489 {
1490 	struct socket *sock;
1491 	struct sockaddr_storage address;
1492 	int err, fput_needed;
1493 
1494 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1495 	if (sock) {
1496 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1497 		if (!err) {
1498 			err = security_socket_bind(sock,
1499 						   (struct sockaddr *)&address,
1500 						   addrlen);
1501 			if (!err)
1502 				err = sock->ops->bind(sock,
1503 						      (struct sockaddr *)
1504 						      &address, addrlen);
1505 		}
1506 		fput_light(sock->file, fput_needed);
1507 	}
1508 	return err;
1509 }
1510 
1511 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1512 {
1513 	return __sys_bind(fd, umyaddr, addrlen);
1514 }
1515 
1516 /*
1517  *	Perform a listen. Basically, we allow the protocol to do anything
1518  *	necessary for a listen, and if that works, we mark the socket as
1519  *	ready for listening.
1520  */
1521 
1522 int __sys_listen(int fd, int backlog)
1523 {
1524 	struct socket *sock;
1525 	int err, fput_needed;
1526 	int somaxconn;
1527 
1528 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529 	if (sock) {
1530 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1531 		if ((unsigned int)backlog > somaxconn)
1532 			backlog = somaxconn;
1533 
1534 		err = security_socket_listen(sock, backlog);
1535 		if (!err)
1536 			err = sock->ops->listen(sock, backlog);
1537 
1538 		fput_light(sock->file, fput_needed);
1539 	}
1540 	return err;
1541 }
1542 
1543 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1544 {
1545 	return __sys_listen(fd, backlog);
1546 }
1547 
1548 /*
1549  *	For accept, we attempt to create a new socket, set up the link
1550  *	with the client, wake up the client, then return the new
1551  *	connected fd. We collect the address of the connector in kernel
1552  *	space and move it to user at the very end. This is unclean because
1553  *	we open the socket then return an error.
1554  *
1555  *	1003.1g adds the ability to recvmsg() to query connection pending
1556  *	status to recvmsg. We need to add that support in a way thats
1557  *	clean when we restructure accept also.
1558  */
1559 
1560 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1561 		  int __user *upeer_addrlen, int flags)
1562 {
1563 	struct socket *sock, *newsock;
1564 	struct file *newfile;
1565 	int err, len, newfd, fput_needed;
1566 	struct sockaddr_storage address;
1567 
1568 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1569 		return -EINVAL;
1570 
1571 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1572 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1573 
1574 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1575 	if (!sock)
1576 		goto out;
1577 
1578 	err = -ENFILE;
1579 	newsock = sock_alloc();
1580 	if (!newsock)
1581 		goto out_put;
1582 
1583 	newsock->type = sock->type;
1584 	newsock->ops = sock->ops;
1585 
1586 	/*
1587 	 * We don't need try_module_get here, as the listening socket (sock)
1588 	 * has the protocol module (sock->ops->owner) held.
1589 	 */
1590 	__module_get(newsock->ops->owner);
1591 
1592 	newfd = get_unused_fd_flags(flags);
1593 	if (unlikely(newfd < 0)) {
1594 		err = newfd;
1595 		sock_release(newsock);
1596 		goto out_put;
1597 	}
1598 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1599 	if (IS_ERR(newfile)) {
1600 		err = PTR_ERR(newfile);
1601 		put_unused_fd(newfd);
1602 		goto out_put;
1603 	}
1604 
1605 	err = security_socket_accept(sock, newsock);
1606 	if (err)
1607 		goto out_fd;
1608 
1609 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1610 	if (err < 0)
1611 		goto out_fd;
1612 
1613 	if (upeer_sockaddr) {
1614 		len = newsock->ops->getname(newsock,
1615 					(struct sockaddr *)&address, 2);
1616 		if (len < 0) {
1617 			err = -ECONNABORTED;
1618 			goto out_fd;
1619 		}
1620 		err = move_addr_to_user(&address,
1621 					len, upeer_sockaddr, upeer_addrlen);
1622 		if (err < 0)
1623 			goto out_fd;
1624 	}
1625 
1626 	/* File flags are not inherited via accept() unlike another OSes. */
1627 
1628 	fd_install(newfd, newfile);
1629 	err = newfd;
1630 
1631 out_put:
1632 	fput_light(sock->file, fput_needed);
1633 out:
1634 	return err;
1635 out_fd:
1636 	fput(newfile);
1637 	put_unused_fd(newfd);
1638 	goto out_put;
1639 }
1640 
1641 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1642 		int __user *, upeer_addrlen, int, flags)
1643 {
1644 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1645 }
1646 
1647 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1648 		int __user *, upeer_addrlen)
1649 {
1650 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1651 }
1652 
1653 /*
1654  *	Attempt to connect to a socket with the server address.  The address
1655  *	is in user space so we verify it is OK and move it to kernel space.
1656  *
1657  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1658  *	break bindings
1659  *
1660  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1661  *	other SEQPACKET protocols that take time to connect() as it doesn't
1662  *	include the -EINPROGRESS status for such sockets.
1663  */
1664 
1665 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1666 {
1667 	struct socket *sock;
1668 	struct sockaddr_storage address;
1669 	int err, fput_needed;
1670 
1671 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1672 	if (!sock)
1673 		goto out;
1674 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1675 	if (err < 0)
1676 		goto out_put;
1677 
1678 	err =
1679 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1680 	if (err)
1681 		goto out_put;
1682 
1683 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1684 				 sock->file->f_flags);
1685 out_put:
1686 	fput_light(sock->file, fput_needed);
1687 out:
1688 	return err;
1689 }
1690 
1691 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1692 		int, addrlen)
1693 {
1694 	return __sys_connect(fd, uservaddr, addrlen);
1695 }
1696 
1697 /*
1698  *	Get the local address ('name') of a socket object. Move the obtained
1699  *	name to user space.
1700  */
1701 
1702 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1703 		      int __user *usockaddr_len)
1704 {
1705 	struct socket *sock;
1706 	struct sockaddr_storage address;
1707 	int err, fput_needed;
1708 
1709 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1710 	if (!sock)
1711 		goto out;
1712 
1713 	err = security_socket_getsockname(sock);
1714 	if (err)
1715 		goto out_put;
1716 
1717 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1718 	if (err < 0)
1719 		goto out_put;
1720         /* "err" is actually length in this case */
1721 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1722 
1723 out_put:
1724 	fput_light(sock->file, fput_needed);
1725 out:
1726 	return err;
1727 }
1728 
1729 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1730 		int __user *, usockaddr_len)
1731 {
1732 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1733 }
1734 
1735 /*
1736  *	Get the remote address ('name') of a socket object. Move the obtained
1737  *	name to user space.
1738  */
1739 
1740 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1741 		      int __user *usockaddr_len)
1742 {
1743 	struct socket *sock;
1744 	struct sockaddr_storage address;
1745 	int err, fput_needed;
1746 
1747 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1748 	if (sock != NULL) {
1749 		err = security_socket_getpeername(sock);
1750 		if (err) {
1751 			fput_light(sock->file, fput_needed);
1752 			return err;
1753 		}
1754 
1755 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1756 		if (err >= 0)
1757 			/* "err" is actually length in this case */
1758 			err = move_addr_to_user(&address, err, usockaddr,
1759 						usockaddr_len);
1760 		fput_light(sock->file, fput_needed);
1761 	}
1762 	return err;
1763 }
1764 
1765 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1766 		int __user *, usockaddr_len)
1767 {
1768 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1769 }
1770 
1771 /*
1772  *	Send a datagram to a given address. We move the address into kernel
1773  *	space and check the user space data area is readable before invoking
1774  *	the protocol.
1775  */
1776 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1777 		 struct sockaddr __user *addr,  int addr_len)
1778 {
1779 	struct socket *sock;
1780 	struct sockaddr_storage address;
1781 	int err;
1782 	struct msghdr msg;
1783 	struct iovec iov;
1784 	int fput_needed;
1785 
1786 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1787 	if (unlikely(err))
1788 		return err;
1789 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1790 	if (!sock)
1791 		goto out;
1792 
1793 	msg.msg_name = NULL;
1794 	msg.msg_control = NULL;
1795 	msg.msg_controllen = 0;
1796 	msg.msg_namelen = 0;
1797 	if (addr) {
1798 		err = move_addr_to_kernel(addr, addr_len, &address);
1799 		if (err < 0)
1800 			goto out_put;
1801 		msg.msg_name = (struct sockaddr *)&address;
1802 		msg.msg_namelen = addr_len;
1803 	}
1804 	if (sock->file->f_flags & O_NONBLOCK)
1805 		flags |= MSG_DONTWAIT;
1806 	msg.msg_flags = flags;
1807 	err = sock_sendmsg(sock, &msg);
1808 
1809 out_put:
1810 	fput_light(sock->file, fput_needed);
1811 out:
1812 	return err;
1813 }
1814 
1815 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1816 		unsigned int, flags, struct sockaddr __user *, addr,
1817 		int, addr_len)
1818 {
1819 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1820 }
1821 
1822 /*
1823  *	Send a datagram down a socket.
1824  */
1825 
1826 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1827 		unsigned int, flags)
1828 {
1829 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1830 }
1831 
1832 /*
1833  *	Receive a frame from the socket and optionally record the address of the
1834  *	sender. We verify the buffers are writable and if needed move the
1835  *	sender address from kernel to user space.
1836  */
1837 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1838 		   struct sockaddr __user *addr, int __user *addr_len)
1839 {
1840 	struct socket *sock;
1841 	struct iovec iov;
1842 	struct msghdr msg;
1843 	struct sockaddr_storage address;
1844 	int err, err2;
1845 	int fput_needed;
1846 
1847 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1848 	if (unlikely(err))
1849 		return err;
1850 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1851 	if (!sock)
1852 		goto out;
1853 
1854 	msg.msg_control = NULL;
1855 	msg.msg_controllen = 0;
1856 	/* Save some cycles and don't copy the address if not needed */
1857 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1858 	/* We assume all kernel code knows the size of sockaddr_storage */
1859 	msg.msg_namelen = 0;
1860 	msg.msg_iocb = NULL;
1861 	msg.msg_flags = 0;
1862 	if (sock->file->f_flags & O_NONBLOCK)
1863 		flags |= MSG_DONTWAIT;
1864 	err = sock_recvmsg(sock, &msg, flags);
1865 
1866 	if (err >= 0 && addr != NULL) {
1867 		err2 = move_addr_to_user(&address,
1868 					 msg.msg_namelen, addr, addr_len);
1869 		if (err2 < 0)
1870 			err = err2;
1871 	}
1872 
1873 	fput_light(sock->file, fput_needed);
1874 out:
1875 	return err;
1876 }
1877 
1878 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1879 		unsigned int, flags, struct sockaddr __user *, addr,
1880 		int __user *, addr_len)
1881 {
1882 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1883 }
1884 
1885 /*
1886  *	Receive a datagram from a socket.
1887  */
1888 
1889 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1890 		unsigned int, flags)
1891 {
1892 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1893 }
1894 
1895 /*
1896  *	Set a socket option. Because we don't know the option lengths we have
1897  *	to pass the user mode parameter for the protocols to sort out.
1898  */
1899 
1900 static int __sys_setsockopt(int fd, int level, int optname,
1901 			    char __user *optval, int optlen)
1902 {
1903 	int err, fput_needed;
1904 	struct socket *sock;
1905 
1906 	if (optlen < 0)
1907 		return -EINVAL;
1908 
1909 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910 	if (sock != NULL) {
1911 		err = security_socket_setsockopt(sock, level, optname);
1912 		if (err)
1913 			goto out_put;
1914 
1915 		if (level == SOL_SOCKET)
1916 			err =
1917 			    sock_setsockopt(sock, level, optname, optval,
1918 					    optlen);
1919 		else
1920 			err =
1921 			    sock->ops->setsockopt(sock, level, optname, optval,
1922 						  optlen);
1923 out_put:
1924 		fput_light(sock->file, fput_needed);
1925 	}
1926 	return err;
1927 }
1928 
1929 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1930 		char __user *, optval, int, optlen)
1931 {
1932 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1933 }
1934 
1935 /*
1936  *	Get a socket option. Because we don't know the option lengths we have
1937  *	to pass a user mode parameter for the protocols to sort out.
1938  */
1939 
1940 static int __sys_getsockopt(int fd, int level, int optname,
1941 			    char __user *optval, int __user *optlen)
1942 {
1943 	int err, fput_needed;
1944 	struct socket *sock;
1945 
1946 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947 	if (sock != NULL) {
1948 		err = security_socket_getsockopt(sock, level, optname);
1949 		if (err)
1950 			goto out_put;
1951 
1952 		if (level == SOL_SOCKET)
1953 			err =
1954 			    sock_getsockopt(sock, level, optname, optval,
1955 					    optlen);
1956 		else
1957 			err =
1958 			    sock->ops->getsockopt(sock, level, optname, optval,
1959 						  optlen);
1960 out_put:
1961 		fput_light(sock->file, fput_needed);
1962 	}
1963 	return err;
1964 }
1965 
1966 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1967 		char __user *, optval, int __user *, optlen)
1968 {
1969 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1970 }
1971 
1972 /*
1973  *	Shutdown a socket.
1974  */
1975 
1976 int __sys_shutdown(int fd, int how)
1977 {
1978 	int err, fput_needed;
1979 	struct socket *sock;
1980 
1981 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1982 	if (sock != NULL) {
1983 		err = security_socket_shutdown(sock, how);
1984 		if (!err)
1985 			err = sock->ops->shutdown(sock, how);
1986 		fput_light(sock->file, fput_needed);
1987 	}
1988 	return err;
1989 }
1990 
1991 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1992 {
1993 	return __sys_shutdown(fd, how);
1994 }
1995 
1996 /* A couple of helpful macros for getting the address of the 32/64 bit
1997  * fields which are the same type (int / unsigned) on our platforms.
1998  */
1999 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2000 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2001 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2002 
2003 struct used_address {
2004 	struct sockaddr_storage name;
2005 	unsigned int name_len;
2006 };
2007 
2008 static int copy_msghdr_from_user(struct msghdr *kmsg,
2009 				 struct user_msghdr __user *umsg,
2010 				 struct sockaddr __user **save_addr,
2011 				 struct iovec **iov)
2012 {
2013 	struct user_msghdr msg;
2014 	ssize_t err;
2015 
2016 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2017 		return -EFAULT;
2018 
2019 	kmsg->msg_control = (void __force *)msg.msg_control;
2020 	kmsg->msg_controllen = msg.msg_controllen;
2021 	kmsg->msg_flags = msg.msg_flags;
2022 
2023 	kmsg->msg_namelen = msg.msg_namelen;
2024 	if (!msg.msg_name)
2025 		kmsg->msg_namelen = 0;
2026 
2027 	if (kmsg->msg_namelen < 0)
2028 		return -EINVAL;
2029 
2030 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2031 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2032 
2033 	if (save_addr)
2034 		*save_addr = msg.msg_name;
2035 
2036 	if (msg.msg_name && kmsg->msg_namelen) {
2037 		if (!save_addr) {
2038 			err = move_addr_to_kernel(msg.msg_name,
2039 						  kmsg->msg_namelen,
2040 						  kmsg->msg_name);
2041 			if (err < 0)
2042 				return err;
2043 		}
2044 	} else {
2045 		kmsg->msg_name = NULL;
2046 		kmsg->msg_namelen = 0;
2047 	}
2048 
2049 	if (msg.msg_iovlen > UIO_MAXIOV)
2050 		return -EMSGSIZE;
2051 
2052 	kmsg->msg_iocb = NULL;
2053 
2054 	return import_iovec(save_addr ? READ : WRITE,
2055 			    msg.msg_iov, msg.msg_iovlen,
2056 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2057 }
2058 
2059 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2060 			 struct msghdr *msg_sys, unsigned int flags,
2061 			 struct used_address *used_address,
2062 			 unsigned int allowed_msghdr_flags)
2063 {
2064 	struct compat_msghdr __user *msg_compat =
2065 	    (struct compat_msghdr __user *)msg;
2066 	struct sockaddr_storage address;
2067 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2068 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2069 				__aligned(sizeof(__kernel_size_t));
2070 	/* 20 is size of ipv6_pktinfo */
2071 	unsigned char *ctl_buf = ctl;
2072 	int ctl_len;
2073 	ssize_t err;
2074 
2075 	msg_sys->msg_name = &address;
2076 
2077 	if (MSG_CMSG_COMPAT & flags)
2078 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2079 	else
2080 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2081 	if (err < 0)
2082 		return err;
2083 
2084 	err = -ENOBUFS;
2085 
2086 	if (msg_sys->msg_controllen > INT_MAX)
2087 		goto out_freeiov;
2088 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2089 	ctl_len = msg_sys->msg_controllen;
2090 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2091 		err =
2092 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2093 						     sizeof(ctl));
2094 		if (err)
2095 			goto out_freeiov;
2096 		ctl_buf = msg_sys->msg_control;
2097 		ctl_len = msg_sys->msg_controllen;
2098 	} else if (ctl_len) {
2099 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2100 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2101 		if (ctl_len > sizeof(ctl)) {
2102 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2103 			if (ctl_buf == NULL)
2104 				goto out_freeiov;
2105 		}
2106 		err = -EFAULT;
2107 		/*
2108 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2109 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2110 		 * checking falls down on this.
2111 		 */
2112 		if (copy_from_user(ctl_buf,
2113 				   (void __user __force *)msg_sys->msg_control,
2114 				   ctl_len))
2115 			goto out_freectl;
2116 		msg_sys->msg_control = ctl_buf;
2117 	}
2118 	msg_sys->msg_flags = flags;
2119 
2120 	if (sock->file->f_flags & O_NONBLOCK)
2121 		msg_sys->msg_flags |= MSG_DONTWAIT;
2122 	/*
2123 	 * If this is sendmmsg() and current destination address is same as
2124 	 * previously succeeded address, omit asking LSM's decision.
2125 	 * used_address->name_len is initialized to UINT_MAX so that the first
2126 	 * destination address never matches.
2127 	 */
2128 	if (used_address && msg_sys->msg_name &&
2129 	    used_address->name_len == msg_sys->msg_namelen &&
2130 	    !memcmp(&used_address->name, msg_sys->msg_name,
2131 		    used_address->name_len)) {
2132 		err = sock_sendmsg_nosec(sock, msg_sys);
2133 		goto out_freectl;
2134 	}
2135 	err = sock_sendmsg(sock, msg_sys);
2136 	/*
2137 	 * If this is sendmmsg() and sending to current destination address was
2138 	 * successful, remember it.
2139 	 */
2140 	if (used_address && err >= 0) {
2141 		used_address->name_len = msg_sys->msg_namelen;
2142 		if (msg_sys->msg_name)
2143 			memcpy(&used_address->name, msg_sys->msg_name,
2144 			       used_address->name_len);
2145 	}
2146 
2147 out_freectl:
2148 	if (ctl_buf != ctl)
2149 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2150 out_freeiov:
2151 	kfree(iov);
2152 	return err;
2153 }
2154 
2155 /*
2156  *	BSD sendmsg interface
2157  */
2158 
2159 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2160 		   bool forbid_cmsg_compat)
2161 {
2162 	int fput_needed, err;
2163 	struct msghdr msg_sys;
2164 	struct socket *sock;
2165 
2166 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2167 		return -EINVAL;
2168 
2169 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2170 	if (!sock)
2171 		goto out;
2172 
2173 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2174 
2175 	fput_light(sock->file, fput_needed);
2176 out:
2177 	return err;
2178 }
2179 
2180 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2181 {
2182 	return __sys_sendmsg(fd, msg, flags, true);
2183 }
2184 
2185 /*
2186  *	Linux sendmmsg interface
2187  */
2188 
2189 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2190 		   unsigned int flags, bool forbid_cmsg_compat)
2191 {
2192 	int fput_needed, err, datagrams;
2193 	struct socket *sock;
2194 	struct mmsghdr __user *entry;
2195 	struct compat_mmsghdr __user *compat_entry;
2196 	struct msghdr msg_sys;
2197 	struct used_address used_address;
2198 	unsigned int oflags = flags;
2199 
2200 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2201 		return -EINVAL;
2202 
2203 	if (vlen > UIO_MAXIOV)
2204 		vlen = UIO_MAXIOV;
2205 
2206 	datagrams = 0;
2207 
2208 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2209 	if (!sock)
2210 		return err;
2211 
2212 	used_address.name_len = UINT_MAX;
2213 	entry = mmsg;
2214 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2215 	err = 0;
2216 	flags |= MSG_BATCH;
2217 
2218 	while (datagrams < vlen) {
2219 		if (datagrams == vlen - 1)
2220 			flags = oflags;
2221 
2222 		if (MSG_CMSG_COMPAT & flags) {
2223 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2224 					     &msg_sys, flags, &used_address, MSG_EOR);
2225 			if (err < 0)
2226 				break;
2227 			err = __put_user(err, &compat_entry->msg_len);
2228 			++compat_entry;
2229 		} else {
2230 			err = ___sys_sendmsg(sock,
2231 					     (struct user_msghdr __user *)entry,
2232 					     &msg_sys, flags, &used_address, MSG_EOR);
2233 			if (err < 0)
2234 				break;
2235 			err = put_user(err, &entry->msg_len);
2236 			++entry;
2237 		}
2238 
2239 		if (err)
2240 			break;
2241 		++datagrams;
2242 		if (msg_data_left(&msg_sys))
2243 			break;
2244 		cond_resched();
2245 	}
2246 
2247 	fput_light(sock->file, fput_needed);
2248 
2249 	/* We only return an error if no datagrams were able to be sent */
2250 	if (datagrams != 0)
2251 		return datagrams;
2252 
2253 	return err;
2254 }
2255 
2256 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2257 		unsigned int, vlen, unsigned int, flags)
2258 {
2259 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2260 }
2261 
2262 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2263 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2264 {
2265 	struct compat_msghdr __user *msg_compat =
2266 	    (struct compat_msghdr __user *)msg;
2267 	struct iovec iovstack[UIO_FASTIOV];
2268 	struct iovec *iov = iovstack;
2269 	unsigned long cmsg_ptr;
2270 	int len;
2271 	ssize_t err;
2272 
2273 	/* kernel mode address */
2274 	struct sockaddr_storage addr;
2275 
2276 	/* user mode address pointers */
2277 	struct sockaddr __user *uaddr;
2278 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2279 
2280 	msg_sys->msg_name = &addr;
2281 
2282 	if (MSG_CMSG_COMPAT & flags)
2283 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2284 	else
2285 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2286 	if (err < 0)
2287 		return err;
2288 
2289 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2290 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2291 
2292 	/* We assume all kernel code knows the size of sockaddr_storage */
2293 	msg_sys->msg_namelen = 0;
2294 
2295 	if (sock->file->f_flags & O_NONBLOCK)
2296 		flags |= MSG_DONTWAIT;
2297 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2298 	if (err < 0)
2299 		goto out_freeiov;
2300 	len = err;
2301 
2302 	if (uaddr != NULL) {
2303 		err = move_addr_to_user(&addr,
2304 					msg_sys->msg_namelen, uaddr,
2305 					uaddr_len);
2306 		if (err < 0)
2307 			goto out_freeiov;
2308 	}
2309 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2310 			 COMPAT_FLAGS(msg));
2311 	if (err)
2312 		goto out_freeiov;
2313 	if (MSG_CMSG_COMPAT & flags)
2314 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2315 				 &msg_compat->msg_controllen);
2316 	else
2317 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2318 				 &msg->msg_controllen);
2319 	if (err)
2320 		goto out_freeiov;
2321 	err = len;
2322 
2323 out_freeiov:
2324 	kfree(iov);
2325 	return err;
2326 }
2327 
2328 /*
2329  *	BSD recvmsg interface
2330  */
2331 
2332 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2333 		   bool forbid_cmsg_compat)
2334 {
2335 	int fput_needed, err;
2336 	struct msghdr msg_sys;
2337 	struct socket *sock;
2338 
2339 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2340 		return -EINVAL;
2341 
2342 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2343 	if (!sock)
2344 		goto out;
2345 
2346 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2347 
2348 	fput_light(sock->file, fput_needed);
2349 out:
2350 	return err;
2351 }
2352 
2353 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2354 		unsigned int, flags)
2355 {
2356 	return __sys_recvmsg(fd, msg, flags, true);
2357 }
2358 
2359 /*
2360  *     Linux recvmmsg interface
2361  */
2362 
2363 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2364 			  unsigned int vlen, unsigned int flags,
2365 			  struct timespec64 *timeout)
2366 {
2367 	int fput_needed, err, datagrams;
2368 	struct socket *sock;
2369 	struct mmsghdr __user *entry;
2370 	struct compat_mmsghdr __user *compat_entry;
2371 	struct msghdr msg_sys;
2372 	struct timespec64 end_time;
2373 	struct timespec64 timeout64;
2374 
2375 	if (timeout &&
2376 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2377 				    timeout->tv_nsec))
2378 		return -EINVAL;
2379 
2380 	datagrams = 0;
2381 
2382 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2383 	if (!sock)
2384 		return err;
2385 
2386 	if (likely(!(flags & MSG_ERRQUEUE))) {
2387 		err = sock_error(sock->sk);
2388 		if (err) {
2389 			datagrams = err;
2390 			goto out_put;
2391 		}
2392 	}
2393 
2394 	entry = mmsg;
2395 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2396 
2397 	while (datagrams < vlen) {
2398 		/*
2399 		 * No need to ask LSM for more than the first datagram.
2400 		 */
2401 		if (MSG_CMSG_COMPAT & flags) {
2402 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2403 					     &msg_sys, flags & ~MSG_WAITFORONE,
2404 					     datagrams);
2405 			if (err < 0)
2406 				break;
2407 			err = __put_user(err, &compat_entry->msg_len);
2408 			++compat_entry;
2409 		} else {
2410 			err = ___sys_recvmsg(sock,
2411 					     (struct user_msghdr __user *)entry,
2412 					     &msg_sys, flags & ~MSG_WAITFORONE,
2413 					     datagrams);
2414 			if (err < 0)
2415 				break;
2416 			err = put_user(err, &entry->msg_len);
2417 			++entry;
2418 		}
2419 
2420 		if (err)
2421 			break;
2422 		++datagrams;
2423 
2424 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2425 		if (flags & MSG_WAITFORONE)
2426 			flags |= MSG_DONTWAIT;
2427 
2428 		if (timeout) {
2429 			ktime_get_ts64(&timeout64);
2430 			*timeout = timespec64_sub(end_time, timeout64);
2431 			if (timeout->tv_sec < 0) {
2432 				timeout->tv_sec = timeout->tv_nsec = 0;
2433 				break;
2434 			}
2435 
2436 			/* Timeout, return less than vlen datagrams */
2437 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2438 				break;
2439 		}
2440 
2441 		/* Out of band data, return right away */
2442 		if (msg_sys.msg_flags & MSG_OOB)
2443 			break;
2444 		cond_resched();
2445 	}
2446 
2447 	if (err == 0)
2448 		goto out_put;
2449 
2450 	if (datagrams == 0) {
2451 		datagrams = err;
2452 		goto out_put;
2453 	}
2454 
2455 	/*
2456 	 * We may return less entries than requested (vlen) if the
2457 	 * sock is non block and there aren't enough datagrams...
2458 	 */
2459 	if (err != -EAGAIN) {
2460 		/*
2461 		 * ... or  if recvmsg returns an error after we
2462 		 * received some datagrams, where we record the
2463 		 * error to return on the next call or if the
2464 		 * app asks about it using getsockopt(SO_ERROR).
2465 		 */
2466 		sock->sk->sk_err = -err;
2467 	}
2468 out_put:
2469 	fput_light(sock->file, fput_needed);
2470 
2471 	return datagrams;
2472 }
2473 
2474 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2475 		   unsigned int vlen, unsigned int flags,
2476 		   struct __kernel_timespec __user *timeout,
2477 		   struct old_timespec32 __user *timeout32)
2478 {
2479 	int datagrams;
2480 	struct timespec64 timeout_sys;
2481 
2482 	if (timeout && get_timespec64(&timeout_sys, timeout))
2483 		return -EFAULT;
2484 
2485 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2486 		return -EFAULT;
2487 
2488 	if (!timeout && !timeout32)
2489 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2490 
2491 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2492 
2493 	if (datagrams <= 0)
2494 		return datagrams;
2495 
2496 	if (timeout && put_timespec64(&timeout_sys, timeout))
2497 		datagrams = -EFAULT;
2498 
2499 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2500 		datagrams = -EFAULT;
2501 
2502 	return datagrams;
2503 }
2504 
2505 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2506 		unsigned int, vlen, unsigned int, flags,
2507 		struct __kernel_timespec __user *, timeout)
2508 {
2509 	if (flags & MSG_CMSG_COMPAT)
2510 		return -EINVAL;
2511 
2512 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2513 }
2514 
2515 #ifdef CONFIG_COMPAT_32BIT_TIME
2516 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2517 		unsigned int, vlen, unsigned int, flags,
2518 		struct old_timespec32 __user *, timeout)
2519 {
2520 	if (flags & MSG_CMSG_COMPAT)
2521 		return -EINVAL;
2522 
2523 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2524 }
2525 #endif
2526 
2527 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2528 /* Argument list sizes for sys_socketcall */
2529 #define AL(x) ((x) * sizeof(unsigned long))
2530 static const unsigned char nargs[21] = {
2531 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2532 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2533 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2534 	AL(4), AL(5), AL(4)
2535 };
2536 
2537 #undef AL
2538 
2539 /*
2540  *	System call vectors.
2541  *
2542  *	Argument checking cleaned up. Saved 20% in size.
2543  *  This function doesn't need to set the kernel lock because
2544  *  it is set by the callees.
2545  */
2546 
2547 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2548 {
2549 	unsigned long a[AUDITSC_ARGS];
2550 	unsigned long a0, a1;
2551 	int err;
2552 	unsigned int len;
2553 
2554 	if (call < 1 || call > SYS_SENDMMSG)
2555 		return -EINVAL;
2556 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2557 
2558 	len = nargs[call];
2559 	if (len > sizeof(a))
2560 		return -EINVAL;
2561 
2562 	/* copy_from_user should be SMP safe. */
2563 	if (copy_from_user(a, args, len))
2564 		return -EFAULT;
2565 
2566 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2567 	if (err)
2568 		return err;
2569 
2570 	a0 = a[0];
2571 	a1 = a[1];
2572 
2573 	switch (call) {
2574 	case SYS_SOCKET:
2575 		err = __sys_socket(a0, a1, a[2]);
2576 		break;
2577 	case SYS_BIND:
2578 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2579 		break;
2580 	case SYS_CONNECT:
2581 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2582 		break;
2583 	case SYS_LISTEN:
2584 		err = __sys_listen(a0, a1);
2585 		break;
2586 	case SYS_ACCEPT:
2587 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2588 				    (int __user *)a[2], 0);
2589 		break;
2590 	case SYS_GETSOCKNAME:
2591 		err =
2592 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2593 				      (int __user *)a[2]);
2594 		break;
2595 	case SYS_GETPEERNAME:
2596 		err =
2597 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2598 				      (int __user *)a[2]);
2599 		break;
2600 	case SYS_SOCKETPAIR:
2601 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2602 		break;
2603 	case SYS_SEND:
2604 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2605 				   NULL, 0);
2606 		break;
2607 	case SYS_SENDTO:
2608 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2609 				   (struct sockaddr __user *)a[4], a[5]);
2610 		break;
2611 	case SYS_RECV:
2612 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2613 				     NULL, NULL);
2614 		break;
2615 	case SYS_RECVFROM:
2616 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2617 				     (struct sockaddr __user *)a[4],
2618 				     (int __user *)a[5]);
2619 		break;
2620 	case SYS_SHUTDOWN:
2621 		err = __sys_shutdown(a0, a1);
2622 		break;
2623 	case SYS_SETSOCKOPT:
2624 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2625 				       a[4]);
2626 		break;
2627 	case SYS_GETSOCKOPT:
2628 		err =
2629 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2630 				     (int __user *)a[4]);
2631 		break;
2632 	case SYS_SENDMSG:
2633 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2634 				    a[2], true);
2635 		break;
2636 	case SYS_SENDMMSG:
2637 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2638 				     a[3], true);
2639 		break;
2640 	case SYS_RECVMSG:
2641 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2642 				    a[2], true);
2643 		break;
2644 	case SYS_RECVMMSG:
2645 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2646 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2647 					     a[2], a[3],
2648 					     (struct __kernel_timespec __user *)a[4],
2649 					     NULL);
2650 		else
2651 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2652 					     a[2], a[3], NULL,
2653 					     (struct old_timespec32 __user *)a[4]);
2654 		break;
2655 	case SYS_ACCEPT4:
2656 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2657 				    (int __user *)a[2], a[3]);
2658 		break;
2659 	default:
2660 		err = -EINVAL;
2661 		break;
2662 	}
2663 	return err;
2664 }
2665 
2666 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2667 
2668 /**
2669  *	sock_register - add a socket protocol handler
2670  *	@ops: description of protocol
2671  *
2672  *	This function is called by a protocol handler that wants to
2673  *	advertise its address family, and have it linked into the
2674  *	socket interface. The value ops->family corresponds to the
2675  *	socket system call protocol family.
2676  */
2677 int sock_register(const struct net_proto_family *ops)
2678 {
2679 	int err;
2680 
2681 	if (ops->family >= NPROTO) {
2682 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2683 		return -ENOBUFS;
2684 	}
2685 
2686 	spin_lock(&net_family_lock);
2687 	if (rcu_dereference_protected(net_families[ops->family],
2688 				      lockdep_is_held(&net_family_lock)))
2689 		err = -EEXIST;
2690 	else {
2691 		rcu_assign_pointer(net_families[ops->family], ops);
2692 		err = 0;
2693 	}
2694 	spin_unlock(&net_family_lock);
2695 
2696 	pr_info("NET: Registered protocol family %d\n", ops->family);
2697 	return err;
2698 }
2699 EXPORT_SYMBOL(sock_register);
2700 
2701 /**
2702  *	sock_unregister - remove a protocol handler
2703  *	@family: protocol family to remove
2704  *
2705  *	This function is called by a protocol handler that wants to
2706  *	remove its address family, and have it unlinked from the
2707  *	new socket creation.
2708  *
2709  *	If protocol handler is a module, then it can use module reference
2710  *	counts to protect against new references. If protocol handler is not
2711  *	a module then it needs to provide its own protection in
2712  *	the ops->create routine.
2713  */
2714 void sock_unregister(int family)
2715 {
2716 	BUG_ON(family < 0 || family >= NPROTO);
2717 
2718 	spin_lock(&net_family_lock);
2719 	RCU_INIT_POINTER(net_families[family], NULL);
2720 	spin_unlock(&net_family_lock);
2721 
2722 	synchronize_rcu();
2723 
2724 	pr_info("NET: Unregistered protocol family %d\n", family);
2725 }
2726 EXPORT_SYMBOL(sock_unregister);
2727 
2728 bool sock_is_registered(int family)
2729 {
2730 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2731 }
2732 
2733 static int __init sock_init(void)
2734 {
2735 	int err;
2736 	/*
2737 	 *      Initialize the network sysctl infrastructure.
2738 	 */
2739 	err = net_sysctl_init();
2740 	if (err)
2741 		goto out;
2742 
2743 	/*
2744 	 *      Initialize skbuff SLAB cache
2745 	 */
2746 	skb_init();
2747 
2748 	/*
2749 	 *      Initialize the protocols module.
2750 	 */
2751 
2752 	init_inodecache();
2753 
2754 	err = register_filesystem(&sock_fs_type);
2755 	if (err)
2756 		goto out_fs;
2757 	sock_mnt = kern_mount(&sock_fs_type);
2758 	if (IS_ERR(sock_mnt)) {
2759 		err = PTR_ERR(sock_mnt);
2760 		goto out_mount;
2761 	}
2762 
2763 	/* The real protocol initialization is performed in later initcalls.
2764 	 */
2765 
2766 #ifdef CONFIG_NETFILTER
2767 	err = netfilter_init();
2768 	if (err)
2769 		goto out;
2770 #endif
2771 
2772 	ptp_classifier_init();
2773 
2774 out:
2775 	return err;
2776 
2777 out_mount:
2778 	unregister_filesystem(&sock_fs_type);
2779 out_fs:
2780 	goto out;
2781 }
2782 
2783 core_initcall(sock_init);	/* early initcall */
2784 
2785 #ifdef CONFIG_PROC_FS
2786 void socket_seq_show(struct seq_file *seq)
2787 {
2788 	seq_printf(seq, "sockets: used %d\n",
2789 		   sock_inuse_get(seq->private));
2790 }
2791 #endif				/* CONFIG_PROC_FS */
2792 
2793 #ifdef CONFIG_COMPAT
2794 static int do_siocgstamp(struct net *net, struct socket *sock,
2795 			 unsigned int cmd, void __user *up)
2796 {
2797 	mm_segment_t old_fs = get_fs();
2798 	struct timeval ktv;
2799 	int err;
2800 
2801 	set_fs(KERNEL_DS);
2802 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv,
2803 			    sizeof(struct compat_ifreq));
2804 	set_fs(old_fs);
2805 	if (!err)
2806 		err = compat_put_timeval(&ktv, up);
2807 
2808 	return err;
2809 }
2810 
2811 static int do_siocgstampns(struct net *net, struct socket *sock,
2812 			   unsigned int cmd, void __user *up)
2813 {
2814 	mm_segment_t old_fs = get_fs();
2815 	struct timespec kts;
2816 	int err;
2817 
2818 	set_fs(KERNEL_DS);
2819 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts,
2820 			    sizeof(struct compat_ifreq));
2821 	set_fs(old_fs);
2822 	if (!err)
2823 		err = compat_put_timespec(&kts, up);
2824 
2825 	return err;
2826 }
2827 
2828 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2829 {
2830 	struct compat_ifconf ifc32;
2831 	struct ifconf ifc;
2832 	int err;
2833 
2834 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2835 		return -EFAULT;
2836 
2837 	ifc.ifc_len = ifc32.ifc_len;
2838 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2839 
2840 	rtnl_lock();
2841 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2842 	rtnl_unlock();
2843 	if (err)
2844 		return err;
2845 
2846 	ifc32.ifc_len = ifc.ifc_len;
2847 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2848 		return -EFAULT;
2849 
2850 	return 0;
2851 }
2852 
2853 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2854 {
2855 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2856 	bool convert_in = false, convert_out = false;
2857 	size_t buf_size = 0;
2858 	struct ethtool_rxnfc __user *rxnfc = NULL;
2859 	struct ifreq ifr;
2860 	u32 rule_cnt = 0, actual_rule_cnt;
2861 	u32 ethcmd;
2862 	u32 data;
2863 	int ret;
2864 
2865 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2866 		return -EFAULT;
2867 
2868 	compat_rxnfc = compat_ptr(data);
2869 
2870 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2871 		return -EFAULT;
2872 
2873 	/* Most ethtool structures are defined without padding.
2874 	 * Unfortunately struct ethtool_rxnfc is an exception.
2875 	 */
2876 	switch (ethcmd) {
2877 	default:
2878 		break;
2879 	case ETHTOOL_GRXCLSRLALL:
2880 		/* Buffer size is variable */
2881 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2882 			return -EFAULT;
2883 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2884 			return -ENOMEM;
2885 		buf_size += rule_cnt * sizeof(u32);
2886 		/* fall through */
2887 	case ETHTOOL_GRXRINGS:
2888 	case ETHTOOL_GRXCLSRLCNT:
2889 	case ETHTOOL_GRXCLSRULE:
2890 	case ETHTOOL_SRXCLSRLINS:
2891 		convert_out = true;
2892 		/* fall through */
2893 	case ETHTOOL_SRXCLSRLDEL:
2894 		buf_size += sizeof(struct ethtool_rxnfc);
2895 		convert_in = true;
2896 		rxnfc = compat_alloc_user_space(buf_size);
2897 		break;
2898 	}
2899 
2900 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2901 		return -EFAULT;
2902 
2903 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2904 
2905 	if (convert_in) {
2906 		/* We expect there to be holes between fs.m_ext and
2907 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2908 		 */
2909 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2910 			     sizeof(compat_rxnfc->fs.m_ext) !=
2911 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2912 			     sizeof(rxnfc->fs.m_ext));
2913 		BUILD_BUG_ON(
2914 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2915 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2916 			offsetof(struct ethtool_rxnfc, fs.location) -
2917 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2918 
2919 		if (copy_in_user(rxnfc, compat_rxnfc,
2920 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2921 				 (void __user *)rxnfc) ||
2922 		    copy_in_user(&rxnfc->fs.ring_cookie,
2923 				 &compat_rxnfc->fs.ring_cookie,
2924 				 (void __user *)(&rxnfc->fs.location + 1) -
2925 				 (void __user *)&rxnfc->fs.ring_cookie))
2926 			return -EFAULT;
2927 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2928 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
2929 				return -EFAULT;
2930 		} else if (copy_in_user(&rxnfc->rule_cnt,
2931 					&compat_rxnfc->rule_cnt,
2932 					sizeof(rxnfc->rule_cnt)))
2933 			return -EFAULT;
2934 	}
2935 
2936 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2937 	if (ret)
2938 		return ret;
2939 
2940 	if (convert_out) {
2941 		if (copy_in_user(compat_rxnfc, rxnfc,
2942 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2943 				 (const void __user *)rxnfc) ||
2944 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2945 				 &rxnfc->fs.ring_cookie,
2946 				 (const void __user *)(&rxnfc->fs.location + 1) -
2947 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2948 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2949 				 sizeof(rxnfc->rule_cnt)))
2950 			return -EFAULT;
2951 
2952 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2953 			/* As an optimisation, we only copy the actual
2954 			 * number of rules that the underlying
2955 			 * function returned.  Since Mallory might
2956 			 * change the rule count in user memory, we
2957 			 * check that it is less than the rule count
2958 			 * originally given (as the user buffer size),
2959 			 * which has been range-checked.
2960 			 */
2961 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2962 				return -EFAULT;
2963 			if (actual_rule_cnt < rule_cnt)
2964 				rule_cnt = actual_rule_cnt;
2965 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2966 					 &rxnfc->rule_locs[0],
2967 					 rule_cnt * sizeof(u32)))
2968 				return -EFAULT;
2969 		}
2970 	}
2971 
2972 	return 0;
2973 }
2974 
2975 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2976 {
2977 	compat_uptr_t uptr32;
2978 	struct ifreq ifr;
2979 	void __user *saved;
2980 	int err;
2981 
2982 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2983 		return -EFAULT;
2984 
2985 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2986 		return -EFAULT;
2987 
2988 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2989 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2990 
2991 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2992 	if (!err) {
2993 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2994 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2995 			err = -EFAULT;
2996 	}
2997 	return err;
2998 }
2999 
3000 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3001 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3002 				 struct compat_ifreq __user *u_ifreq32)
3003 {
3004 	struct ifreq ifreq;
3005 	u32 data32;
3006 
3007 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3008 		return -EFAULT;
3009 	if (get_user(data32, &u_ifreq32->ifr_data))
3010 		return -EFAULT;
3011 	ifreq.ifr_data = compat_ptr(data32);
3012 
3013 	return dev_ioctl(net, cmd, &ifreq, NULL);
3014 }
3015 
3016 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3017 			struct compat_ifreq __user *uifr32)
3018 {
3019 	struct ifreq ifr;
3020 	struct compat_ifmap __user *uifmap32;
3021 	int err;
3022 
3023 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3024 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3025 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3026 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3027 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3028 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3029 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3030 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3031 	if (err)
3032 		return -EFAULT;
3033 
3034 	err = dev_ioctl(net, cmd, &ifr, NULL);
3035 
3036 	if (cmd == SIOCGIFMAP && !err) {
3037 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3038 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3039 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3040 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3041 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3042 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3043 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3044 		if (err)
3045 			err = -EFAULT;
3046 	}
3047 	return err;
3048 }
3049 
3050 struct rtentry32 {
3051 	u32		rt_pad1;
3052 	struct sockaddr rt_dst;         /* target address               */
3053 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3054 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3055 	unsigned short	rt_flags;
3056 	short		rt_pad2;
3057 	u32		rt_pad3;
3058 	unsigned char	rt_tos;
3059 	unsigned char	rt_class;
3060 	short		rt_pad4;
3061 	short		rt_metric;      /* +1 for binary compatibility! */
3062 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3063 	u32		rt_mtu;         /* per route MTU/Window         */
3064 	u32		rt_window;      /* Window clamping              */
3065 	unsigned short  rt_irtt;        /* Initial RTT                  */
3066 };
3067 
3068 struct in6_rtmsg32 {
3069 	struct in6_addr		rtmsg_dst;
3070 	struct in6_addr		rtmsg_src;
3071 	struct in6_addr		rtmsg_gateway;
3072 	u32			rtmsg_type;
3073 	u16			rtmsg_dst_len;
3074 	u16			rtmsg_src_len;
3075 	u32			rtmsg_metric;
3076 	u32			rtmsg_info;
3077 	u32			rtmsg_flags;
3078 	s32			rtmsg_ifindex;
3079 };
3080 
3081 static int routing_ioctl(struct net *net, struct socket *sock,
3082 			 unsigned int cmd, void __user *argp)
3083 {
3084 	int ret;
3085 	void *r = NULL;
3086 	struct in6_rtmsg r6;
3087 	struct rtentry r4;
3088 	char devname[16];
3089 	u32 rtdev;
3090 	mm_segment_t old_fs = get_fs();
3091 
3092 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3093 		struct in6_rtmsg32 __user *ur6 = argp;
3094 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3095 			3 * sizeof(struct in6_addr));
3096 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3097 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3098 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3099 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3100 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3101 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3102 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3103 
3104 		r = (void *) &r6;
3105 	} else { /* ipv4 */
3106 		struct rtentry32 __user *ur4 = argp;
3107 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3108 					3 * sizeof(struct sockaddr));
3109 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3110 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3111 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3112 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3113 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3114 		ret |= get_user(rtdev, &(ur4->rt_dev));
3115 		if (rtdev) {
3116 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3117 			r4.rt_dev = (char __user __force *)devname;
3118 			devname[15] = 0;
3119 		} else
3120 			r4.rt_dev = NULL;
3121 
3122 		r = (void *) &r4;
3123 	}
3124 
3125 	if (ret) {
3126 		ret = -EFAULT;
3127 		goto out;
3128 	}
3129 
3130 	set_fs(KERNEL_DS);
3131 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r,
3132 			    sizeof(struct compat_ifreq));
3133 	set_fs(old_fs);
3134 
3135 out:
3136 	return ret;
3137 }
3138 
3139 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3140  * for some operations; this forces use of the newer bridge-utils that
3141  * use compatible ioctls
3142  */
3143 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3144 {
3145 	compat_ulong_t tmp;
3146 
3147 	if (get_user(tmp, argp))
3148 		return -EFAULT;
3149 	if (tmp == BRCTL_GET_VERSION)
3150 		return BRCTL_VERSION + 1;
3151 	return -EINVAL;
3152 }
3153 
3154 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3155 			 unsigned int cmd, unsigned long arg)
3156 {
3157 	void __user *argp = compat_ptr(arg);
3158 	struct sock *sk = sock->sk;
3159 	struct net *net = sock_net(sk);
3160 
3161 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3162 		return compat_ifr_data_ioctl(net, cmd, argp);
3163 
3164 	switch (cmd) {
3165 	case SIOCSIFBR:
3166 	case SIOCGIFBR:
3167 		return old_bridge_ioctl(argp);
3168 	case SIOCGIFCONF:
3169 		return compat_dev_ifconf(net, argp);
3170 	case SIOCETHTOOL:
3171 		return ethtool_ioctl(net, argp);
3172 	case SIOCWANDEV:
3173 		return compat_siocwandev(net, argp);
3174 	case SIOCGIFMAP:
3175 	case SIOCSIFMAP:
3176 		return compat_sioc_ifmap(net, cmd, argp);
3177 	case SIOCADDRT:
3178 	case SIOCDELRT:
3179 		return routing_ioctl(net, sock, cmd, argp);
3180 	case SIOCGSTAMP:
3181 		return do_siocgstamp(net, sock, cmd, argp);
3182 	case SIOCGSTAMPNS:
3183 		return do_siocgstampns(net, sock, cmd, argp);
3184 	case SIOCBONDSLAVEINFOQUERY:
3185 	case SIOCBONDINFOQUERY:
3186 	case SIOCSHWTSTAMP:
3187 	case SIOCGHWTSTAMP:
3188 		return compat_ifr_data_ioctl(net, cmd, argp);
3189 
3190 	case FIOSETOWN:
3191 	case SIOCSPGRP:
3192 	case FIOGETOWN:
3193 	case SIOCGPGRP:
3194 	case SIOCBRADDBR:
3195 	case SIOCBRDELBR:
3196 	case SIOCGIFVLAN:
3197 	case SIOCSIFVLAN:
3198 	case SIOCADDDLCI:
3199 	case SIOCDELDLCI:
3200 	case SIOCGSKNS:
3201 		return sock_ioctl(file, cmd, arg);
3202 
3203 	case SIOCGIFFLAGS:
3204 	case SIOCSIFFLAGS:
3205 	case SIOCGIFMETRIC:
3206 	case SIOCSIFMETRIC:
3207 	case SIOCGIFMTU:
3208 	case SIOCSIFMTU:
3209 	case SIOCGIFMEM:
3210 	case SIOCSIFMEM:
3211 	case SIOCGIFHWADDR:
3212 	case SIOCSIFHWADDR:
3213 	case SIOCADDMULTI:
3214 	case SIOCDELMULTI:
3215 	case SIOCGIFINDEX:
3216 	case SIOCGIFADDR:
3217 	case SIOCSIFADDR:
3218 	case SIOCSIFHWBROADCAST:
3219 	case SIOCDIFADDR:
3220 	case SIOCGIFBRDADDR:
3221 	case SIOCSIFBRDADDR:
3222 	case SIOCGIFDSTADDR:
3223 	case SIOCSIFDSTADDR:
3224 	case SIOCGIFNETMASK:
3225 	case SIOCSIFNETMASK:
3226 	case SIOCSIFPFLAGS:
3227 	case SIOCGIFPFLAGS:
3228 	case SIOCGIFTXQLEN:
3229 	case SIOCSIFTXQLEN:
3230 	case SIOCBRADDIF:
3231 	case SIOCBRDELIF:
3232 	case SIOCSIFNAME:
3233 	case SIOCGMIIPHY:
3234 	case SIOCGMIIREG:
3235 	case SIOCSMIIREG:
3236 	case SIOCSARP:
3237 	case SIOCGARP:
3238 	case SIOCDARP:
3239 	case SIOCATMARK:
3240 	case SIOCBONDENSLAVE:
3241 	case SIOCBONDRELEASE:
3242 	case SIOCBONDSETHWADDR:
3243 	case SIOCBONDCHANGEACTIVE:
3244 	case SIOCGIFNAME:
3245 		return sock_do_ioctl(net, sock, cmd, arg,
3246 				     sizeof(struct compat_ifreq));
3247 	}
3248 
3249 	return -ENOIOCTLCMD;
3250 }
3251 
3252 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3253 			      unsigned long arg)
3254 {
3255 	struct socket *sock = file->private_data;
3256 	int ret = -ENOIOCTLCMD;
3257 	struct sock *sk;
3258 	struct net *net;
3259 
3260 	sk = sock->sk;
3261 	net = sock_net(sk);
3262 
3263 	if (sock->ops->compat_ioctl)
3264 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3265 
3266 	if (ret == -ENOIOCTLCMD &&
3267 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3268 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3269 
3270 	if (ret == -ENOIOCTLCMD)
3271 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3272 
3273 	return ret;
3274 }
3275 #endif
3276 
3277 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3278 {
3279 	return sock->ops->bind(sock, addr, addrlen);
3280 }
3281 EXPORT_SYMBOL(kernel_bind);
3282 
3283 int kernel_listen(struct socket *sock, int backlog)
3284 {
3285 	return sock->ops->listen(sock, backlog);
3286 }
3287 EXPORT_SYMBOL(kernel_listen);
3288 
3289 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3290 {
3291 	struct sock *sk = sock->sk;
3292 	int err;
3293 
3294 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3295 			       newsock);
3296 	if (err < 0)
3297 		goto done;
3298 
3299 	err = sock->ops->accept(sock, *newsock, flags, true);
3300 	if (err < 0) {
3301 		sock_release(*newsock);
3302 		*newsock = NULL;
3303 		goto done;
3304 	}
3305 
3306 	(*newsock)->ops = sock->ops;
3307 	__module_get((*newsock)->ops->owner);
3308 
3309 done:
3310 	return err;
3311 }
3312 EXPORT_SYMBOL(kernel_accept);
3313 
3314 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3315 		   int flags)
3316 {
3317 	return sock->ops->connect(sock, addr, addrlen, flags);
3318 }
3319 EXPORT_SYMBOL(kernel_connect);
3320 
3321 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3322 {
3323 	return sock->ops->getname(sock, addr, 0);
3324 }
3325 EXPORT_SYMBOL(kernel_getsockname);
3326 
3327 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3328 {
3329 	return sock->ops->getname(sock, addr, 1);
3330 }
3331 EXPORT_SYMBOL(kernel_getpeername);
3332 
3333 int kernel_getsockopt(struct socket *sock, int level, int optname,
3334 			char *optval, int *optlen)
3335 {
3336 	mm_segment_t oldfs = get_fs();
3337 	char __user *uoptval;
3338 	int __user *uoptlen;
3339 	int err;
3340 
3341 	uoptval = (char __user __force *) optval;
3342 	uoptlen = (int __user __force *) optlen;
3343 
3344 	set_fs(KERNEL_DS);
3345 	if (level == SOL_SOCKET)
3346 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3347 	else
3348 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3349 					    uoptlen);
3350 	set_fs(oldfs);
3351 	return err;
3352 }
3353 EXPORT_SYMBOL(kernel_getsockopt);
3354 
3355 int kernel_setsockopt(struct socket *sock, int level, int optname,
3356 			char *optval, unsigned int optlen)
3357 {
3358 	mm_segment_t oldfs = get_fs();
3359 	char __user *uoptval;
3360 	int err;
3361 
3362 	uoptval = (char __user __force *) optval;
3363 
3364 	set_fs(KERNEL_DS);
3365 	if (level == SOL_SOCKET)
3366 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3367 	else
3368 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3369 					    optlen);
3370 	set_fs(oldfs);
3371 	return err;
3372 }
3373 EXPORT_SYMBOL(kernel_setsockopt);
3374 
3375 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3376 		    size_t size, int flags)
3377 {
3378 	if (sock->ops->sendpage)
3379 		return sock->ops->sendpage(sock, page, offset, size, flags);
3380 
3381 	return sock_no_sendpage(sock, page, offset, size, flags);
3382 }
3383 EXPORT_SYMBOL(kernel_sendpage);
3384 
3385 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3386 			   size_t size, int flags)
3387 {
3388 	struct socket *sock = sk->sk_socket;
3389 
3390 	if (sock->ops->sendpage_locked)
3391 		return sock->ops->sendpage_locked(sk, page, offset, size,
3392 						  flags);
3393 
3394 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3395 }
3396 EXPORT_SYMBOL(kernel_sendpage_locked);
3397 
3398 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3399 {
3400 	return sock->ops->shutdown(sock, how);
3401 }
3402 EXPORT_SYMBOL(kernel_sock_shutdown);
3403 
3404 /* This routine returns the IP overhead imposed by a socket i.e.
3405  * the length of the underlying IP header, depending on whether
3406  * this is an IPv4 or IPv6 socket and the length from IP options turned
3407  * on at the socket. Assumes that the caller has a lock on the socket.
3408  */
3409 u32 kernel_sock_ip_overhead(struct sock *sk)
3410 {
3411 	struct inet_sock *inet;
3412 	struct ip_options_rcu *opt;
3413 	u32 overhead = 0;
3414 #if IS_ENABLED(CONFIG_IPV6)
3415 	struct ipv6_pinfo *np;
3416 	struct ipv6_txoptions *optv6 = NULL;
3417 #endif /* IS_ENABLED(CONFIG_IPV6) */
3418 
3419 	if (!sk)
3420 		return overhead;
3421 
3422 	switch (sk->sk_family) {
3423 	case AF_INET:
3424 		inet = inet_sk(sk);
3425 		overhead += sizeof(struct iphdr);
3426 		opt = rcu_dereference_protected(inet->inet_opt,
3427 						sock_owned_by_user(sk));
3428 		if (opt)
3429 			overhead += opt->opt.optlen;
3430 		return overhead;
3431 #if IS_ENABLED(CONFIG_IPV6)
3432 	case AF_INET6:
3433 		np = inet6_sk(sk);
3434 		overhead += sizeof(struct ipv6hdr);
3435 		if (np)
3436 			optv6 = rcu_dereference_protected(np->opt,
3437 							  sock_owned_by_user(sk));
3438 		if (optv6)
3439 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3440 		return overhead;
3441 #endif /* IS_ENABLED(CONFIG_IPV6) */
3442 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3443 		return overhead;
3444 	}
3445 }
3446 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3447