1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 d_inode(dentry)->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static int sockfs_xattr_get(const struct xattr_handler *handler, 324 struct dentry *dentry, struct inode *inode, 325 const char *suffix, void *value, size_t size) 326 { 327 if (value) { 328 if (dentry->d_name.len + 1 > size) 329 return -ERANGE; 330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 331 } 332 return dentry->d_name.len + 1; 333 } 334 335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 338 339 static const struct xattr_handler sockfs_xattr_handler = { 340 .name = XATTR_NAME_SOCKPROTONAME, 341 .get = sockfs_xattr_get, 342 }; 343 344 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 345 struct dentry *dentry, struct inode *inode, 346 const char *suffix, const void *value, 347 size_t size, int flags) 348 { 349 /* Handled by LSM. */ 350 return -EAGAIN; 351 } 352 353 static const struct xattr_handler sockfs_security_xattr_handler = { 354 .prefix = XATTR_SECURITY_PREFIX, 355 .set = sockfs_security_xattr_set, 356 }; 357 358 static const struct xattr_handler *sockfs_xattr_handlers[] = { 359 &sockfs_xattr_handler, 360 &sockfs_security_xattr_handler, 361 NULL 362 }; 363 364 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 365 int flags, const char *dev_name, void *data) 366 { 367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 368 sockfs_xattr_handlers, 369 &sockfs_dentry_operations, SOCKFS_MAGIC); 370 } 371 372 static struct vfsmount *sock_mnt __read_mostly; 373 374 static struct file_system_type sock_fs_type = { 375 .name = "sockfs", 376 .mount = sockfs_mount, 377 .kill_sb = kill_anon_super, 378 }; 379 380 /* 381 * Obtains the first available file descriptor and sets it up for use. 382 * 383 * These functions create file structures and maps them to fd space 384 * of the current process. On success it returns file descriptor 385 * and file struct implicitly stored in sock->file. 386 * Note that another thread may close file descriptor before we return 387 * from this function. We use the fact that now we do not refer 388 * to socket after mapping. If one day we will need it, this 389 * function will increment ref. count on file by 1. 390 * 391 * In any case returned fd MAY BE not valid! 392 * This race condition is unavoidable 393 * with shared fd spaces, we cannot solve it inside kernel, 394 * but we take care of internal coherence yet. 395 */ 396 397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 398 { 399 struct qstr name = { .name = "" }; 400 struct path path; 401 struct file *file; 402 403 if (dname) { 404 name.name = dname; 405 name.len = strlen(name.name); 406 } else if (sock->sk) { 407 name.name = sock->sk->sk_prot_creator->name; 408 name.len = strlen(name.name); 409 } 410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 411 if (unlikely(!path.dentry)) 412 return ERR_PTR(-ENOMEM); 413 path.mnt = mntget(sock_mnt); 414 415 d_instantiate(path.dentry, SOCK_INODE(sock)); 416 417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 418 &socket_file_ops); 419 if (IS_ERR(file)) { 420 /* drop dentry, keep inode */ 421 ihold(d_inode(path.dentry)); 422 path_put(&path); 423 return file; 424 } 425 426 sock->file = file; 427 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 428 file->private_data = sock; 429 return file; 430 } 431 EXPORT_SYMBOL(sock_alloc_file); 432 433 static int sock_map_fd(struct socket *sock, int flags) 434 { 435 struct file *newfile; 436 int fd = get_unused_fd_flags(flags); 437 if (unlikely(fd < 0)) 438 return fd; 439 440 newfile = sock_alloc_file(sock, flags, NULL); 441 if (likely(!IS_ERR(newfile))) { 442 fd_install(fd, newfile); 443 return fd; 444 } 445 446 put_unused_fd(fd); 447 return PTR_ERR(newfile); 448 } 449 450 struct socket *sock_from_file(struct file *file, int *err) 451 { 452 if (file->f_op == &socket_file_ops) 453 return file->private_data; /* set in sock_map_fd */ 454 455 *err = -ENOTSOCK; 456 return NULL; 457 } 458 EXPORT_SYMBOL(sock_from_file); 459 460 /** 461 * sockfd_lookup - Go from a file number to its socket slot 462 * @fd: file handle 463 * @err: pointer to an error code return 464 * 465 * The file handle passed in is locked and the socket it is bound 466 * too is returned. If an error occurs the err pointer is overwritten 467 * with a negative errno code and NULL is returned. The function checks 468 * for both invalid handles and passing a handle which is not a socket. 469 * 470 * On a success the socket object pointer is returned. 471 */ 472 473 struct socket *sockfd_lookup(int fd, int *err) 474 { 475 struct file *file; 476 struct socket *sock; 477 478 file = fget(fd); 479 if (!file) { 480 *err = -EBADF; 481 return NULL; 482 } 483 484 sock = sock_from_file(file, err); 485 if (!sock) 486 fput(file); 487 return sock; 488 } 489 EXPORT_SYMBOL(sockfd_lookup); 490 491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 492 { 493 struct fd f = fdget(fd); 494 struct socket *sock; 495 496 *err = -EBADF; 497 if (f.file) { 498 sock = sock_from_file(f.file, err); 499 if (likely(sock)) { 500 *fput_needed = f.flags; 501 return sock; 502 } 503 fdput(f); 504 } 505 return NULL; 506 } 507 508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 509 size_t size) 510 { 511 ssize_t len; 512 ssize_t used = 0; 513 514 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 515 if (len < 0) 516 return len; 517 used += len; 518 if (buffer) { 519 if (size < used) 520 return -ERANGE; 521 buffer += len; 522 } 523 524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 525 used += len; 526 if (buffer) { 527 if (size < used) 528 return -ERANGE; 529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 530 buffer += len; 531 } 532 533 return used; 534 } 535 536 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 537 { 538 int err = simple_setattr(dentry, iattr); 539 540 if (!err && (iattr->ia_valid & ATTR_UID)) { 541 struct socket *sock = SOCKET_I(d_inode(dentry)); 542 543 sock->sk->sk_uid = iattr->ia_uid; 544 } 545 546 return err; 547 } 548 549 static const struct inode_operations sockfs_inode_ops = { 550 .listxattr = sockfs_listxattr, 551 .setattr = sockfs_setattr, 552 }; 553 554 /** 555 * sock_alloc - allocate a socket 556 * 557 * Allocate a new inode and socket object. The two are bound together 558 * and initialised. The socket is then returned. If we are out of inodes 559 * NULL is returned. 560 */ 561 562 struct socket *sock_alloc(void) 563 { 564 struct inode *inode; 565 struct socket *sock; 566 567 inode = new_inode_pseudo(sock_mnt->mnt_sb); 568 if (!inode) 569 return NULL; 570 571 sock = SOCKET_I(inode); 572 573 kmemcheck_annotate_bitfield(sock, type); 574 inode->i_ino = get_next_ino(); 575 inode->i_mode = S_IFSOCK | S_IRWXUGO; 576 inode->i_uid = current_fsuid(); 577 inode->i_gid = current_fsgid(); 578 inode->i_op = &sockfs_inode_ops; 579 580 this_cpu_add(sockets_in_use, 1); 581 return sock; 582 } 583 EXPORT_SYMBOL(sock_alloc); 584 585 /** 586 * sock_release - close a socket 587 * @sock: socket to close 588 * 589 * The socket is released from the protocol stack if it has a release 590 * callback, and the inode is then released if the socket is bound to 591 * an inode not a file. 592 */ 593 594 void sock_release(struct socket *sock) 595 { 596 if (sock->ops) { 597 struct module *owner = sock->ops->owner; 598 599 sock->ops->release(sock); 600 sock->ops = NULL; 601 module_put(owner); 602 } 603 604 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 605 pr_err("%s: fasync list not empty!\n", __func__); 606 607 this_cpu_sub(sockets_in_use, 1); 608 if (!sock->file) { 609 iput(SOCK_INODE(sock)); 610 return; 611 } 612 sock->file = NULL; 613 } 614 EXPORT_SYMBOL(sock_release); 615 616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 617 { 618 u8 flags = *tx_flags; 619 620 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 621 flags |= SKBTX_HW_TSTAMP; 622 623 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 624 flags |= SKBTX_SW_TSTAMP; 625 626 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 627 flags |= SKBTX_SCHED_TSTAMP; 628 629 *tx_flags = flags; 630 } 631 EXPORT_SYMBOL(__sock_tx_timestamp); 632 633 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 634 { 635 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 636 BUG_ON(ret == -EIOCBQUEUED); 637 return ret; 638 } 639 640 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 641 { 642 int err = security_socket_sendmsg(sock, msg, 643 msg_data_left(msg)); 644 645 return err ?: sock_sendmsg_nosec(sock, msg); 646 } 647 EXPORT_SYMBOL(sock_sendmsg); 648 649 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 650 struct kvec *vec, size_t num, size_t size) 651 { 652 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 653 return sock_sendmsg(sock, msg); 654 } 655 EXPORT_SYMBOL(kernel_sendmsg); 656 657 /* 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 659 */ 660 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 661 struct sk_buff *skb) 662 { 663 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 664 struct scm_timestamping tss; 665 int empty = 1; 666 struct skb_shared_hwtstamps *shhwtstamps = 667 skb_hwtstamps(skb); 668 669 /* Race occurred between timestamp enabling and packet 670 receiving. Fill in the current time for now. */ 671 if (need_software_tstamp && skb->tstamp == 0) 672 __net_timestamp(skb); 673 674 if (need_software_tstamp) { 675 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 676 struct timeval tv; 677 skb_get_timestamp(skb, &tv); 678 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 679 sizeof(tv), &tv); 680 } else { 681 struct timespec ts; 682 skb_get_timestampns(skb, &ts); 683 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 684 sizeof(ts), &ts); 685 } 686 } 687 688 memset(&tss, 0, sizeof(tss)); 689 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 690 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 691 empty = 0; 692 if (shhwtstamps && 693 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 694 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 695 empty = 0; 696 if (!empty) { 697 put_cmsg(msg, SOL_SOCKET, 698 SCM_TIMESTAMPING, sizeof(tss), &tss); 699 700 if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS)) 701 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 702 skb->len, skb->data); 703 } 704 } 705 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 706 707 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 708 struct sk_buff *skb) 709 { 710 int ack; 711 712 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 713 return; 714 if (!skb->wifi_acked_valid) 715 return; 716 717 ack = skb->wifi_acked; 718 719 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 720 } 721 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 722 723 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 724 struct sk_buff *skb) 725 { 726 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 727 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 728 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 729 } 730 731 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 732 struct sk_buff *skb) 733 { 734 sock_recv_timestamp(msg, sk, skb); 735 sock_recv_drops(msg, sk, skb); 736 } 737 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 738 739 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 740 int flags) 741 { 742 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 743 } 744 745 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 746 { 747 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 748 749 return err ?: sock_recvmsg_nosec(sock, msg, flags); 750 } 751 EXPORT_SYMBOL(sock_recvmsg); 752 753 /** 754 * kernel_recvmsg - Receive a message from a socket (kernel space) 755 * @sock: The socket to receive the message from 756 * @msg: Received message 757 * @vec: Input s/g array for message data 758 * @num: Size of input s/g array 759 * @size: Number of bytes to read 760 * @flags: Message flags (MSG_DONTWAIT, etc...) 761 * 762 * On return the msg structure contains the scatter/gather array passed in the 763 * vec argument. The array is modified so that it consists of the unfilled 764 * portion of the original array. 765 * 766 * The returned value is the total number of bytes received, or an error. 767 */ 768 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 769 struct kvec *vec, size_t num, size_t size, int flags) 770 { 771 mm_segment_t oldfs = get_fs(); 772 int result; 773 774 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 775 set_fs(KERNEL_DS); 776 result = sock_recvmsg(sock, msg, flags); 777 set_fs(oldfs); 778 return result; 779 } 780 EXPORT_SYMBOL(kernel_recvmsg); 781 782 static ssize_t sock_sendpage(struct file *file, struct page *page, 783 int offset, size_t size, loff_t *ppos, int more) 784 { 785 struct socket *sock; 786 int flags; 787 788 sock = file->private_data; 789 790 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 791 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 792 flags |= more; 793 794 return kernel_sendpage(sock, page, offset, size, flags); 795 } 796 797 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 798 struct pipe_inode_info *pipe, size_t len, 799 unsigned int flags) 800 { 801 struct socket *sock = file->private_data; 802 803 if (unlikely(!sock->ops->splice_read)) 804 return -EINVAL; 805 806 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 807 } 808 809 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 810 { 811 struct file *file = iocb->ki_filp; 812 struct socket *sock = file->private_data; 813 struct msghdr msg = {.msg_iter = *to, 814 .msg_iocb = iocb}; 815 ssize_t res; 816 817 if (file->f_flags & O_NONBLOCK) 818 msg.msg_flags = MSG_DONTWAIT; 819 820 if (iocb->ki_pos != 0) 821 return -ESPIPE; 822 823 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 824 return 0; 825 826 res = sock_recvmsg(sock, &msg, msg.msg_flags); 827 *to = msg.msg_iter; 828 return res; 829 } 830 831 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 832 { 833 struct file *file = iocb->ki_filp; 834 struct socket *sock = file->private_data; 835 struct msghdr msg = {.msg_iter = *from, 836 .msg_iocb = iocb}; 837 ssize_t res; 838 839 if (iocb->ki_pos != 0) 840 return -ESPIPE; 841 842 if (file->f_flags & O_NONBLOCK) 843 msg.msg_flags = MSG_DONTWAIT; 844 845 if (sock->type == SOCK_SEQPACKET) 846 msg.msg_flags |= MSG_EOR; 847 848 res = sock_sendmsg(sock, &msg); 849 *from = msg.msg_iter; 850 return res; 851 } 852 853 /* 854 * Atomic setting of ioctl hooks to avoid race 855 * with module unload. 856 */ 857 858 static DEFINE_MUTEX(br_ioctl_mutex); 859 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 860 861 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 862 { 863 mutex_lock(&br_ioctl_mutex); 864 br_ioctl_hook = hook; 865 mutex_unlock(&br_ioctl_mutex); 866 } 867 EXPORT_SYMBOL(brioctl_set); 868 869 static DEFINE_MUTEX(vlan_ioctl_mutex); 870 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 871 872 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 873 { 874 mutex_lock(&vlan_ioctl_mutex); 875 vlan_ioctl_hook = hook; 876 mutex_unlock(&vlan_ioctl_mutex); 877 } 878 EXPORT_SYMBOL(vlan_ioctl_set); 879 880 static DEFINE_MUTEX(dlci_ioctl_mutex); 881 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 882 883 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 884 { 885 mutex_lock(&dlci_ioctl_mutex); 886 dlci_ioctl_hook = hook; 887 mutex_unlock(&dlci_ioctl_mutex); 888 } 889 EXPORT_SYMBOL(dlci_ioctl_set); 890 891 static long sock_do_ioctl(struct net *net, struct socket *sock, 892 unsigned int cmd, unsigned long arg) 893 { 894 int err; 895 void __user *argp = (void __user *)arg; 896 897 err = sock->ops->ioctl(sock, cmd, arg); 898 899 /* 900 * If this ioctl is unknown try to hand it down 901 * to the NIC driver. 902 */ 903 if (err == -ENOIOCTLCMD) 904 err = dev_ioctl(net, cmd, argp); 905 906 return err; 907 } 908 909 /* 910 * With an ioctl, arg may well be a user mode pointer, but we don't know 911 * what to do with it - that's up to the protocol still. 912 */ 913 914 static struct ns_common *get_net_ns(struct ns_common *ns) 915 { 916 return &get_net(container_of(ns, struct net, ns))->ns; 917 } 918 919 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 920 { 921 struct socket *sock; 922 struct sock *sk; 923 void __user *argp = (void __user *)arg; 924 int pid, err; 925 struct net *net; 926 927 sock = file->private_data; 928 sk = sock->sk; 929 net = sock_net(sk); 930 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 931 err = dev_ioctl(net, cmd, argp); 932 } else 933 #ifdef CONFIG_WEXT_CORE 934 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 935 err = dev_ioctl(net, cmd, argp); 936 } else 937 #endif 938 switch (cmd) { 939 case FIOSETOWN: 940 case SIOCSPGRP: 941 err = -EFAULT; 942 if (get_user(pid, (int __user *)argp)) 943 break; 944 f_setown(sock->file, pid, 1); 945 err = 0; 946 break; 947 case FIOGETOWN: 948 case SIOCGPGRP: 949 err = put_user(f_getown(sock->file), 950 (int __user *)argp); 951 break; 952 case SIOCGIFBR: 953 case SIOCSIFBR: 954 case SIOCBRADDBR: 955 case SIOCBRDELBR: 956 err = -ENOPKG; 957 if (!br_ioctl_hook) 958 request_module("bridge"); 959 960 mutex_lock(&br_ioctl_mutex); 961 if (br_ioctl_hook) 962 err = br_ioctl_hook(net, cmd, argp); 963 mutex_unlock(&br_ioctl_mutex); 964 break; 965 case SIOCGIFVLAN: 966 case SIOCSIFVLAN: 967 err = -ENOPKG; 968 if (!vlan_ioctl_hook) 969 request_module("8021q"); 970 971 mutex_lock(&vlan_ioctl_mutex); 972 if (vlan_ioctl_hook) 973 err = vlan_ioctl_hook(net, argp); 974 mutex_unlock(&vlan_ioctl_mutex); 975 break; 976 case SIOCADDDLCI: 977 case SIOCDELDLCI: 978 err = -ENOPKG; 979 if (!dlci_ioctl_hook) 980 request_module("dlci"); 981 982 mutex_lock(&dlci_ioctl_mutex); 983 if (dlci_ioctl_hook) 984 err = dlci_ioctl_hook(cmd, argp); 985 mutex_unlock(&dlci_ioctl_mutex); 986 break; 987 case SIOCGSKNS: 988 err = -EPERM; 989 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 990 break; 991 992 err = open_related_ns(&net->ns, get_net_ns); 993 break; 994 default: 995 err = sock_do_ioctl(net, sock, cmd, arg); 996 break; 997 } 998 return err; 999 } 1000 1001 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1002 { 1003 int err; 1004 struct socket *sock = NULL; 1005 1006 err = security_socket_create(family, type, protocol, 1); 1007 if (err) 1008 goto out; 1009 1010 sock = sock_alloc(); 1011 if (!sock) { 1012 err = -ENOMEM; 1013 goto out; 1014 } 1015 1016 sock->type = type; 1017 err = security_socket_post_create(sock, family, type, protocol, 1); 1018 if (err) 1019 goto out_release; 1020 1021 out: 1022 *res = sock; 1023 return err; 1024 out_release: 1025 sock_release(sock); 1026 sock = NULL; 1027 goto out; 1028 } 1029 EXPORT_SYMBOL(sock_create_lite); 1030 1031 /* No kernel lock held - perfect */ 1032 static unsigned int sock_poll(struct file *file, poll_table *wait) 1033 { 1034 unsigned int busy_flag = 0; 1035 struct socket *sock; 1036 1037 /* 1038 * We can't return errors to poll, so it's either yes or no. 1039 */ 1040 sock = file->private_data; 1041 1042 if (sk_can_busy_loop(sock->sk)) { 1043 /* this socket can poll_ll so tell the system call */ 1044 busy_flag = POLL_BUSY_LOOP; 1045 1046 /* once, only if requested by syscall */ 1047 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1048 sk_busy_loop(sock->sk, 1); 1049 } 1050 1051 return busy_flag | sock->ops->poll(file, sock, wait); 1052 } 1053 1054 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1055 { 1056 struct socket *sock = file->private_data; 1057 1058 return sock->ops->mmap(file, sock, vma); 1059 } 1060 1061 static int sock_close(struct inode *inode, struct file *filp) 1062 { 1063 sock_release(SOCKET_I(inode)); 1064 return 0; 1065 } 1066 1067 /* 1068 * Update the socket async list 1069 * 1070 * Fasync_list locking strategy. 1071 * 1072 * 1. fasync_list is modified only under process context socket lock 1073 * i.e. under semaphore. 1074 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1075 * or under socket lock 1076 */ 1077 1078 static int sock_fasync(int fd, struct file *filp, int on) 1079 { 1080 struct socket *sock = filp->private_data; 1081 struct sock *sk = sock->sk; 1082 struct socket_wq *wq; 1083 1084 if (sk == NULL) 1085 return -EINVAL; 1086 1087 lock_sock(sk); 1088 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1089 fasync_helper(fd, filp, on, &wq->fasync_list); 1090 1091 if (!wq->fasync_list) 1092 sock_reset_flag(sk, SOCK_FASYNC); 1093 else 1094 sock_set_flag(sk, SOCK_FASYNC); 1095 1096 release_sock(sk); 1097 return 0; 1098 } 1099 1100 /* This function may be called only under rcu_lock */ 1101 1102 int sock_wake_async(struct socket_wq *wq, int how, int band) 1103 { 1104 if (!wq || !wq->fasync_list) 1105 return -1; 1106 1107 switch (how) { 1108 case SOCK_WAKE_WAITD: 1109 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1110 break; 1111 goto call_kill; 1112 case SOCK_WAKE_SPACE: 1113 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1114 break; 1115 /* fall through */ 1116 case SOCK_WAKE_IO: 1117 call_kill: 1118 kill_fasync(&wq->fasync_list, SIGIO, band); 1119 break; 1120 case SOCK_WAKE_URG: 1121 kill_fasync(&wq->fasync_list, SIGURG, band); 1122 } 1123 1124 return 0; 1125 } 1126 EXPORT_SYMBOL(sock_wake_async); 1127 1128 int __sock_create(struct net *net, int family, int type, int protocol, 1129 struct socket **res, int kern) 1130 { 1131 int err; 1132 struct socket *sock; 1133 const struct net_proto_family *pf; 1134 1135 /* 1136 * Check protocol is in range 1137 */ 1138 if (family < 0 || family >= NPROTO) 1139 return -EAFNOSUPPORT; 1140 if (type < 0 || type >= SOCK_MAX) 1141 return -EINVAL; 1142 1143 /* Compatibility. 1144 1145 This uglymoron is moved from INET layer to here to avoid 1146 deadlock in module load. 1147 */ 1148 if (family == PF_INET && type == SOCK_PACKET) { 1149 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1150 current->comm); 1151 family = PF_PACKET; 1152 } 1153 1154 err = security_socket_create(family, type, protocol, kern); 1155 if (err) 1156 return err; 1157 1158 /* 1159 * Allocate the socket and allow the family to set things up. if 1160 * the protocol is 0, the family is instructed to select an appropriate 1161 * default. 1162 */ 1163 sock = sock_alloc(); 1164 if (!sock) { 1165 net_warn_ratelimited("socket: no more sockets\n"); 1166 return -ENFILE; /* Not exactly a match, but its the 1167 closest posix thing */ 1168 } 1169 1170 sock->type = type; 1171 1172 #ifdef CONFIG_MODULES 1173 /* Attempt to load a protocol module if the find failed. 1174 * 1175 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1176 * requested real, full-featured networking support upon configuration. 1177 * Otherwise module support will break! 1178 */ 1179 if (rcu_access_pointer(net_families[family]) == NULL) 1180 request_module("net-pf-%d", family); 1181 #endif 1182 1183 rcu_read_lock(); 1184 pf = rcu_dereference(net_families[family]); 1185 err = -EAFNOSUPPORT; 1186 if (!pf) 1187 goto out_release; 1188 1189 /* 1190 * We will call the ->create function, that possibly is in a loadable 1191 * module, so we have to bump that loadable module refcnt first. 1192 */ 1193 if (!try_module_get(pf->owner)) 1194 goto out_release; 1195 1196 /* Now protected by module ref count */ 1197 rcu_read_unlock(); 1198 1199 err = pf->create(net, sock, protocol, kern); 1200 if (err < 0) 1201 goto out_module_put; 1202 1203 /* 1204 * Now to bump the refcnt of the [loadable] module that owns this 1205 * socket at sock_release time we decrement its refcnt. 1206 */ 1207 if (!try_module_get(sock->ops->owner)) 1208 goto out_module_busy; 1209 1210 /* 1211 * Now that we're done with the ->create function, the [loadable] 1212 * module can have its refcnt decremented 1213 */ 1214 module_put(pf->owner); 1215 err = security_socket_post_create(sock, family, type, protocol, kern); 1216 if (err) 1217 goto out_sock_release; 1218 *res = sock; 1219 1220 return 0; 1221 1222 out_module_busy: 1223 err = -EAFNOSUPPORT; 1224 out_module_put: 1225 sock->ops = NULL; 1226 module_put(pf->owner); 1227 out_sock_release: 1228 sock_release(sock); 1229 return err; 1230 1231 out_release: 1232 rcu_read_unlock(); 1233 goto out_sock_release; 1234 } 1235 EXPORT_SYMBOL(__sock_create); 1236 1237 int sock_create(int family, int type, int protocol, struct socket **res) 1238 { 1239 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1240 } 1241 EXPORT_SYMBOL(sock_create); 1242 1243 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1244 { 1245 return __sock_create(net, family, type, protocol, res, 1); 1246 } 1247 EXPORT_SYMBOL(sock_create_kern); 1248 1249 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1250 { 1251 int retval; 1252 struct socket *sock; 1253 int flags; 1254 1255 /* Check the SOCK_* constants for consistency. */ 1256 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1257 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1258 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1259 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1260 1261 flags = type & ~SOCK_TYPE_MASK; 1262 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1263 return -EINVAL; 1264 type &= SOCK_TYPE_MASK; 1265 1266 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1267 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1268 1269 retval = sock_create(family, type, protocol, &sock); 1270 if (retval < 0) 1271 goto out; 1272 1273 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1274 if (retval < 0) 1275 goto out_release; 1276 1277 out: 1278 /* It may be already another descriptor 8) Not kernel problem. */ 1279 return retval; 1280 1281 out_release: 1282 sock_release(sock); 1283 return retval; 1284 } 1285 1286 /* 1287 * Create a pair of connected sockets. 1288 */ 1289 1290 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1291 int __user *, usockvec) 1292 { 1293 struct socket *sock1, *sock2; 1294 int fd1, fd2, err; 1295 struct file *newfile1, *newfile2; 1296 int flags; 1297 1298 flags = type & ~SOCK_TYPE_MASK; 1299 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1300 return -EINVAL; 1301 type &= SOCK_TYPE_MASK; 1302 1303 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1304 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1305 1306 /* 1307 * Obtain the first socket and check if the underlying protocol 1308 * supports the socketpair call. 1309 */ 1310 1311 err = sock_create(family, type, protocol, &sock1); 1312 if (err < 0) 1313 goto out; 1314 1315 err = sock_create(family, type, protocol, &sock2); 1316 if (err < 0) 1317 goto out_release_1; 1318 1319 err = sock1->ops->socketpair(sock1, sock2); 1320 if (err < 0) 1321 goto out_release_both; 1322 1323 fd1 = get_unused_fd_flags(flags); 1324 if (unlikely(fd1 < 0)) { 1325 err = fd1; 1326 goto out_release_both; 1327 } 1328 1329 fd2 = get_unused_fd_flags(flags); 1330 if (unlikely(fd2 < 0)) { 1331 err = fd2; 1332 goto out_put_unused_1; 1333 } 1334 1335 newfile1 = sock_alloc_file(sock1, flags, NULL); 1336 if (IS_ERR(newfile1)) { 1337 err = PTR_ERR(newfile1); 1338 goto out_put_unused_both; 1339 } 1340 1341 newfile2 = sock_alloc_file(sock2, flags, NULL); 1342 if (IS_ERR(newfile2)) { 1343 err = PTR_ERR(newfile2); 1344 goto out_fput_1; 1345 } 1346 1347 err = put_user(fd1, &usockvec[0]); 1348 if (err) 1349 goto out_fput_both; 1350 1351 err = put_user(fd2, &usockvec[1]); 1352 if (err) 1353 goto out_fput_both; 1354 1355 audit_fd_pair(fd1, fd2); 1356 1357 fd_install(fd1, newfile1); 1358 fd_install(fd2, newfile2); 1359 /* fd1 and fd2 may be already another descriptors. 1360 * Not kernel problem. 1361 */ 1362 1363 return 0; 1364 1365 out_fput_both: 1366 fput(newfile2); 1367 fput(newfile1); 1368 put_unused_fd(fd2); 1369 put_unused_fd(fd1); 1370 goto out; 1371 1372 out_fput_1: 1373 fput(newfile1); 1374 put_unused_fd(fd2); 1375 put_unused_fd(fd1); 1376 sock_release(sock2); 1377 goto out; 1378 1379 out_put_unused_both: 1380 put_unused_fd(fd2); 1381 out_put_unused_1: 1382 put_unused_fd(fd1); 1383 out_release_both: 1384 sock_release(sock2); 1385 out_release_1: 1386 sock_release(sock1); 1387 out: 1388 return err; 1389 } 1390 1391 /* 1392 * Bind a name to a socket. Nothing much to do here since it's 1393 * the protocol's responsibility to handle the local address. 1394 * 1395 * We move the socket address to kernel space before we call 1396 * the protocol layer (having also checked the address is ok). 1397 */ 1398 1399 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1400 { 1401 struct socket *sock; 1402 struct sockaddr_storage address; 1403 int err, fput_needed; 1404 1405 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1406 if (sock) { 1407 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1408 if (err >= 0) { 1409 err = security_socket_bind(sock, 1410 (struct sockaddr *)&address, 1411 addrlen); 1412 if (!err) 1413 err = sock->ops->bind(sock, 1414 (struct sockaddr *) 1415 &address, addrlen); 1416 } 1417 fput_light(sock->file, fput_needed); 1418 } 1419 return err; 1420 } 1421 1422 /* 1423 * Perform a listen. Basically, we allow the protocol to do anything 1424 * necessary for a listen, and if that works, we mark the socket as 1425 * ready for listening. 1426 */ 1427 1428 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1429 { 1430 struct socket *sock; 1431 int err, fput_needed; 1432 int somaxconn; 1433 1434 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1435 if (sock) { 1436 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1437 if ((unsigned int)backlog > somaxconn) 1438 backlog = somaxconn; 1439 1440 err = security_socket_listen(sock, backlog); 1441 if (!err) 1442 err = sock->ops->listen(sock, backlog); 1443 1444 fput_light(sock->file, fput_needed); 1445 } 1446 return err; 1447 } 1448 1449 /* 1450 * For accept, we attempt to create a new socket, set up the link 1451 * with the client, wake up the client, then return the new 1452 * connected fd. We collect the address of the connector in kernel 1453 * space and move it to user at the very end. This is unclean because 1454 * we open the socket then return an error. 1455 * 1456 * 1003.1g adds the ability to recvmsg() to query connection pending 1457 * status to recvmsg. We need to add that support in a way thats 1458 * clean when we restucture accept also. 1459 */ 1460 1461 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1462 int __user *, upeer_addrlen, int, flags) 1463 { 1464 struct socket *sock, *newsock; 1465 struct file *newfile; 1466 int err, len, newfd, fput_needed; 1467 struct sockaddr_storage address; 1468 1469 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1470 return -EINVAL; 1471 1472 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1473 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1474 1475 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1476 if (!sock) 1477 goto out; 1478 1479 err = -ENFILE; 1480 newsock = sock_alloc(); 1481 if (!newsock) 1482 goto out_put; 1483 1484 newsock->type = sock->type; 1485 newsock->ops = sock->ops; 1486 1487 /* 1488 * We don't need try_module_get here, as the listening socket (sock) 1489 * has the protocol module (sock->ops->owner) held. 1490 */ 1491 __module_get(newsock->ops->owner); 1492 1493 newfd = get_unused_fd_flags(flags); 1494 if (unlikely(newfd < 0)) { 1495 err = newfd; 1496 sock_release(newsock); 1497 goto out_put; 1498 } 1499 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1500 if (IS_ERR(newfile)) { 1501 err = PTR_ERR(newfile); 1502 put_unused_fd(newfd); 1503 sock_release(newsock); 1504 goto out_put; 1505 } 1506 1507 err = security_socket_accept(sock, newsock); 1508 if (err) 1509 goto out_fd; 1510 1511 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1512 if (err < 0) 1513 goto out_fd; 1514 1515 if (upeer_sockaddr) { 1516 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1517 &len, 2) < 0) { 1518 err = -ECONNABORTED; 1519 goto out_fd; 1520 } 1521 err = move_addr_to_user(&address, 1522 len, upeer_sockaddr, upeer_addrlen); 1523 if (err < 0) 1524 goto out_fd; 1525 } 1526 1527 /* File flags are not inherited via accept() unlike another OSes. */ 1528 1529 fd_install(newfd, newfile); 1530 err = newfd; 1531 1532 out_put: 1533 fput_light(sock->file, fput_needed); 1534 out: 1535 return err; 1536 out_fd: 1537 fput(newfile); 1538 put_unused_fd(newfd); 1539 goto out_put; 1540 } 1541 1542 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1543 int __user *, upeer_addrlen) 1544 { 1545 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1546 } 1547 1548 /* 1549 * Attempt to connect to a socket with the server address. The address 1550 * is in user space so we verify it is OK and move it to kernel space. 1551 * 1552 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1553 * break bindings 1554 * 1555 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1556 * other SEQPACKET protocols that take time to connect() as it doesn't 1557 * include the -EINPROGRESS status for such sockets. 1558 */ 1559 1560 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1561 int, addrlen) 1562 { 1563 struct socket *sock; 1564 struct sockaddr_storage address; 1565 int err, fput_needed; 1566 1567 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1568 if (!sock) 1569 goto out; 1570 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1571 if (err < 0) 1572 goto out_put; 1573 1574 err = 1575 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1576 if (err) 1577 goto out_put; 1578 1579 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1580 sock->file->f_flags); 1581 out_put: 1582 fput_light(sock->file, fput_needed); 1583 out: 1584 return err; 1585 } 1586 1587 /* 1588 * Get the local address ('name') of a socket object. Move the obtained 1589 * name to user space. 1590 */ 1591 1592 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1593 int __user *, usockaddr_len) 1594 { 1595 struct socket *sock; 1596 struct sockaddr_storage address; 1597 int len, err, fput_needed; 1598 1599 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1600 if (!sock) 1601 goto out; 1602 1603 err = security_socket_getsockname(sock); 1604 if (err) 1605 goto out_put; 1606 1607 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1608 if (err) 1609 goto out_put; 1610 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1611 1612 out_put: 1613 fput_light(sock->file, fput_needed); 1614 out: 1615 return err; 1616 } 1617 1618 /* 1619 * Get the remote address ('name') of a socket object. Move the obtained 1620 * name to user space. 1621 */ 1622 1623 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1624 int __user *, usockaddr_len) 1625 { 1626 struct socket *sock; 1627 struct sockaddr_storage address; 1628 int len, err, fput_needed; 1629 1630 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1631 if (sock != NULL) { 1632 err = security_socket_getpeername(sock); 1633 if (err) { 1634 fput_light(sock->file, fput_needed); 1635 return err; 1636 } 1637 1638 err = 1639 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1640 1); 1641 if (!err) 1642 err = move_addr_to_user(&address, len, usockaddr, 1643 usockaddr_len); 1644 fput_light(sock->file, fput_needed); 1645 } 1646 return err; 1647 } 1648 1649 /* 1650 * Send a datagram to a given address. We move the address into kernel 1651 * space and check the user space data area is readable before invoking 1652 * the protocol. 1653 */ 1654 1655 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1656 unsigned int, flags, struct sockaddr __user *, addr, 1657 int, addr_len) 1658 { 1659 struct socket *sock; 1660 struct sockaddr_storage address; 1661 int err; 1662 struct msghdr msg; 1663 struct iovec iov; 1664 int fput_needed; 1665 1666 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1667 if (unlikely(err)) 1668 return err; 1669 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1670 if (!sock) 1671 goto out; 1672 1673 msg.msg_name = NULL; 1674 msg.msg_control = NULL; 1675 msg.msg_controllen = 0; 1676 msg.msg_namelen = 0; 1677 if (addr) { 1678 err = move_addr_to_kernel(addr, addr_len, &address); 1679 if (err < 0) 1680 goto out_put; 1681 msg.msg_name = (struct sockaddr *)&address; 1682 msg.msg_namelen = addr_len; 1683 } 1684 if (sock->file->f_flags & O_NONBLOCK) 1685 flags |= MSG_DONTWAIT; 1686 msg.msg_flags = flags; 1687 err = sock_sendmsg(sock, &msg); 1688 1689 out_put: 1690 fput_light(sock->file, fput_needed); 1691 out: 1692 return err; 1693 } 1694 1695 /* 1696 * Send a datagram down a socket. 1697 */ 1698 1699 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1700 unsigned int, flags) 1701 { 1702 return sys_sendto(fd, buff, len, flags, NULL, 0); 1703 } 1704 1705 /* 1706 * Receive a frame from the socket and optionally record the address of the 1707 * sender. We verify the buffers are writable and if needed move the 1708 * sender address from kernel to user space. 1709 */ 1710 1711 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1712 unsigned int, flags, struct sockaddr __user *, addr, 1713 int __user *, addr_len) 1714 { 1715 struct socket *sock; 1716 struct iovec iov; 1717 struct msghdr msg; 1718 struct sockaddr_storage address; 1719 int err, err2; 1720 int fput_needed; 1721 1722 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1723 if (unlikely(err)) 1724 return err; 1725 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1726 if (!sock) 1727 goto out; 1728 1729 msg.msg_control = NULL; 1730 msg.msg_controllen = 0; 1731 /* Save some cycles and don't copy the address if not needed */ 1732 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1733 /* We assume all kernel code knows the size of sockaddr_storage */ 1734 msg.msg_namelen = 0; 1735 msg.msg_iocb = NULL; 1736 if (sock->file->f_flags & O_NONBLOCK) 1737 flags |= MSG_DONTWAIT; 1738 err = sock_recvmsg(sock, &msg, flags); 1739 1740 if (err >= 0 && addr != NULL) { 1741 err2 = move_addr_to_user(&address, 1742 msg.msg_namelen, addr, addr_len); 1743 if (err2 < 0) 1744 err = err2; 1745 } 1746 1747 fput_light(sock->file, fput_needed); 1748 out: 1749 return err; 1750 } 1751 1752 /* 1753 * Receive a datagram from a socket. 1754 */ 1755 1756 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1757 unsigned int, flags) 1758 { 1759 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1760 } 1761 1762 /* 1763 * Set a socket option. Because we don't know the option lengths we have 1764 * to pass the user mode parameter for the protocols to sort out. 1765 */ 1766 1767 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1768 char __user *, optval, int, optlen) 1769 { 1770 int err, fput_needed; 1771 struct socket *sock; 1772 1773 if (optlen < 0) 1774 return -EINVAL; 1775 1776 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1777 if (sock != NULL) { 1778 err = security_socket_setsockopt(sock, level, optname); 1779 if (err) 1780 goto out_put; 1781 1782 if (level == SOL_SOCKET) 1783 err = 1784 sock_setsockopt(sock, level, optname, optval, 1785 optlen); 1786 else 1787 err = 1788 sock->ops->setsockopt(sock, level, optname, optval, 1789 optlen); 1790 out_put: 1791 fput_light(sock->file, fput_needed); 1792 } 1793 return err; 1794 } 1795 1796 /* 1797 * Get a socket option. Because we don't know the option lengths we have 1798 * to pass a user mode parameter for the protocols to sort out. 1799 */ 1800 1801 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1802 char __user *, optval, int __user *, optlen) 1803 { 1804 int err, fput_needed; 1805 struct socket *sock; 1806 1807 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1808 if (sock != NULL) { 1809 err = security_socket_getsockopt(sock, level, optname); 1810 if (err) 1811 goto out_put; 1812 1813 if (level == SOL_SOCKET) 1814 err = 1815 sock_getsockopt(sock, level, optname, optval, 1816 optlen); 1817 else 1818 err = 1819 sock->ops->getsockopt(sock, level, optname, optval, 1820 optlen); 1821 out_put: 1822 fput_light(sock->file, fput_needed); 1823 } 1824 return err; 1825 } 1826 1827 /* 1828 * Shutdown a socket. 1829 */ 1830 1831 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1832 { 1833 int err, fput_needed; 1834 struct socket *sock; 1835 1836 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1837 if (sock != NULL) { 1838 err = security_socket_shutdown(sock, how); 1839 if (!err) 1840 err = sock->ops->shutdown(sock, how); 1841 fput_light(sock->file, fput_needed); 1842 } 1843 return err; 1844 } 1845 1846 /* A couple of helpful macros for getting the address of the 32/64 bit 1847 * fields which are the same type (int / unsigned) on our platforms. 1848 */ 1849 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1850 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1851 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1852 1853 struct used_address { 1854 struct sockaddr_storage name; 1855 unsigned int name_len; 1856 }; 1857 1858 static int copy_msghdr_from_user(struct msghdr *kmsg, 1859 struct user_msghdr __user *umsg, 1860 struct sockaddr __user **save_addr, 1861 struct iovec **iov) 1862 { 1863 struct sockaddr __user *uaddr; 1864 struct iovec __user *uiov; 1865 size_t nr_segs; 1866 ssize_t err; 1867 1868 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1869 __get_user(uaddr, &umsg->msg_name) || 1870 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1871 __get_user(uiov, &umsg->msg_iov) || 1872 __get_user(nr_segs, &umsg->msg_iovlen) || 1873 __get_user(kmsg->msg_control, &umsg->msg_control) || 1874 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1875 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1876 return -EFAULT; 1877 1878 if (!uaddr) 1879 kmsg->msg_namelen = 0; 1880 1881 if (kmsg->msg_namelen < 0) 1882 return -EINVAL; 1883 1884 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1885 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1886 1887 if (save_addr) 1888 *save_addr = uaddr; 1889 1890 if (uaddr && kmsg->msg_namelen) { 1891 if (!save_addr) { 1892 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1893 kmsg->msg_name); 1894 if (err < 0) 1895 return err; 1896 } 1897 } else { 1898 kmsg->msg_name = NULL; 1899 kmsg->msg_namelen = 0; 1900 } 1901 1902 if (nr_segs > UIO_MAXIOV) 1903 return -EMSGSIZE; 1904 1905 kmsg->msg_iocb = NULL; 1906 1907 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1908 UIO_FASTIOV, iov, &kmsg->msg_iter); 1909 } 1910 1911 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1912 struct msghdr *msg_sys, unsigned int flags, 1913 struct used_address *used_address, 1914 unsigned int allowed_msghdr_flags) 1915 { 1916 struct compat_msghdr __user *msg_compat = 1917 (struct compat_msghdr __user *)msg; 1918 struct sockaddr_storage address; 1919 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1920 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1921 __aligned(sizeof(__kernel_size_t)); 1922 /* 20 is size of ipv6_pktinfo */ 1923 unsigned char *ctl_buf = ctl; 1924 int ctl_len; 1925 ssize_t err; 1926 1927 msg_sys->msg_name = &address; 1928 1929 if (MSG_CMSG_COMPAT & flags) 1930 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1931 else 1932 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1933 if (err < 0) 1934 return err; 1935 1936 err = -ENOBUFS; 1937 1938 if (msg_sys->msg_controllen > INT_MAX) 1939 goto out_freeiov; 1940 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1941 ctl_len = msg_sys->msg_controllen; 1942 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1943 err = 1944 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1945 sizeof(ctl)); 1946 if (err) 1947 goto out_freeiov; 1948 ctl_buf = msg_sys->msg_control; 1949 ctl_len = msg_sys->msg_controllen; 1950 } else if (ctl_len) { 1951 if (ctl_len > sizeof(ctl)) { 1952 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1953 if (ctl_buf == NULL) 1954 goto out_freeiov; 1955 } 1956 err = -EFAULT; 1957 /* 1958 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1960 * checking falls down on this. 1961 */ 1962 if (copy_from_user(ctl_buf, 1963 (void __user __force *)msg_sys->msg_control, 1964 ctl_len)) 1965 goto out_freectl; 1966 msg_sys->msg_control = ctl_buf; 1967 } 1968 msg_sys->msg_flags = flags; 1969 1970 if (sock->file->f_flags & O_NONBLOCK) 1971 msg_sys->msg_flags |= MSG_DONTWAIT; 1972 /* 1973 * If this is sendmmsg() and current destination address is same as 1974 * previously succeeded address, omit asking LSM's decision. 1975 * used_address->name_len is initialized to UINT_MAX so that the first 1976 * destination address never matches. 1977 */ 1978 if (used_address && msg_sys->msg_name && 1979 used_address->name_len == msg_sys->msg_namelen && 1980 !memcmp(&used_address->name, msg_sys->msg_name, 1981 used_address->name_len)) { 1982 err = sock_sendmsg_nosec(sock, msg_sys); 1983 goto out_freectl; 1984 } 1985 err = sock_sendmsg(sock, msg_sys); 1986 /* 1987 * If this is sendmmsg() and sending to current destination address was 1988 * successful, remember it. 1989 */ 1990 if (used_address && err >= 0) { 1991 used_address->name_len = msg_sys->msg_namelen; 1992 if (msg_sys->msg_name) 1993 memcpy(&used_address->name, msg_sys->msg_name, 1994 used_address->name_len); 1995 } 1996 1997 out_freectl: 1998 if (ctl_buf != ctl) 1999 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2000 out_freeiov: 2001 kfree(iov); 2002 return err; 2003 } 2004 2005 /* 2006 * BSD sendmsg interface 2007 */ 2008 2009 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2010 { 2011 int fput_needed, err; 2012 struct msghdr msg_sys; 2013 struct socket *sock; 2014 2015 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2016 if (!sock) 2017 goto out; 2018 2019 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2020 2021 fput_light(sock->file, fput_needed); 2022 out: 2023 return err; 2024 } 2025 2026 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2027 { 2028 if (flags & MSG_CMSG_COMPAT) 2029 return -EINVAL; 2030 return __sys_sendmsg(fd, msg, flags); 2031 } 2032 2033 /* 2034 * Linux sendmmsg interface 2035 */ 2036 2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2038 unsigned int flags) 2039 { 2040 int fput_needed, err, datagrams; 2041 struct socket *sock; 2042 struct mmsghdr __user *entry; 2043 struct compat_mmsghdr __user *compat_entry; 2044 struct msghdr msg_sys; 2045 struct used_address used_address; 2046 unsigned int oflags = flags; 2047 2048 if (vlen > UIO_MAXIOV) 2049 vlen = UIO_MAXIOV; 2050 2051 datagrams = 0; 2052 2053 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2054 if (!sock) 2055 return err; 2056 2057 used_address.name_len = UINT_MAX; 2058 entry = mmsg; 2059 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2060 err = 0; 2061 flags |= MSG_BATCH; 2062 2063 while (datagrams < vlen) { 2064 if (datagrams == vlen - 1) 2065 flags = oflags; 2066 2067 if (MSG_CMSG_COMPAT & flags) { 2068 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2069 &msg_sys, flags, &used_address, MSG_EOR); 2070 if (err < 0) 2071 break; 2072 err = __put_user(err, &compat_entry->msg_len); 2073 ++compat_entry; 2074 } else { 2075 err = ___sys_sendmsg(sock, 2076 (struct user_msghdr __user *)entry, 2077 &msg_sys, flags, &used_address, MSG_EOR); 2078 if (err < 0) 2079 break; 2080 err = put_user(err, &entry->msg_len); 2081 ++entry; 2082 } 2083 2084 if (err) 2085 break; 2086 ++datagrams; 2087 if (msg_data_left(&msg_sys)) 2088 break; 2089 cond_resched(); 2090 } 2091 2092 fput_light(sock->file, fput_needed); 2093 2094 /* We only return an error if no datagrams were able to be sent */ 2095 if (datagrams != 0) 2096 return datagrams; 2097 2098 return err; 2099 } 2100 2101 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2102 unsigned int, vlen, unsigned int, flags) 2103 { 2104 if (flags & MSG_CMSG_COMPAT) 2105 return -EINVAL; 2106 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2107 } 2108 2109 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2110 struct msghdr *msg_sys, unsigned int flags, int nosec) 2111 { 2112 struct compat_msghdr __user *msg_compat = 2113 (struct compat_msghdr __user *)msg; 2114 struct iovec iovstack[UIO_FASTIOV]; 2115 struct iovec *iov = iovstack; 2116 unsigned long cmsg_ptr; 2117 int len; 2118 ssize_t err; 2119 2120 /* kernel mode address */ 2121 struct sockaddr_storage addr; 2122 2123 /* user mode address pointers */ 2124 struct sockaddr __user *uaddr; 2125 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2126 2127 msg_sys->msg_name = &addr; 2128 2129 if (MSG_CMSG_COMPAT & flags) 2130 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2131 else 2132 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2133 if (err < 0) 2134 return err; 2135 2136 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2137 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2138 2139 /* We assume all kernel code knows the size of sockaddr_storage */ 2140 msg_sys->msg_namelen = 0; 2141 2142 if (sock->file->f_flags & O_NONBLOCK) 2143 flags |= MSG_DONTWAIT; 2144 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2145 if (err < 0) 2146 goto out_freeiov; 2147 len = err; 2148 2149 if (uaddr != NULL) { 2150 err = move_addr_to_user(&addr, 2151 msg_sys->msg_namelen, uaddr, 2152 uaddr_len); 2153 if (err < 0) 2154 goto out_freeiov; 2155 } 2156 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2157 COMPAT_FLAGS(msg)); 2158 if (err) 2159 goto out_freeiov; 2160 if (MSG_CMSG_COMPAT & flags) 2161 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2162 &msg_compat->msg_controllen); 2163 else 2164 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2165 &msg->msg_controllen); 2166 if (err) 2167 goto out_freeiov; 2168 err = len; 2169 2170 out_freeiov: 2171 kfree(iov); 2172 return err; 2173 } 2174 2175 /* 2176 * BSD recvmsg interface 2177 */ 2178 2179 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2180 { 2181 int fput_needed, err; 2182 struct msghdr msg_sys; 2183 struct socket *sock; 2184 2185 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2186 if (!sock) 2187 goto out; 2188 2189 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2190 2191 fput_light(sock->file, fput_needed); 2192 out: 2193 return err; 2194 } 2195 2196 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2197 unsigned int, flags) 2198 { 2199 if (flags & MSG_CMSG_COMPAT) 2200 return -EINVAL; 2201 return __sys_recvmsg(fd, msg, flags); 2202 } 2203 2204 /* 2205 * Linux recvmmsg interface 2206 */ 2207 2208 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2209 unsigned int flags, struct timespec *timeout) 2210 { 2211 int fput_needed, err, datagrams; 2212 struct socket *sock; 2213 struct mmsghdr __user *entry; 2214 struct compat_mmsghdr __user *compat_entry; 2215 struct msghdr msg_sys; 2216 struct timespec64 end_time; 2217 struct timespec64 timeout64; 2218 2219 if (timeout && 2220 poll_select_set_timeout(&end_time, timeout->tv_sec, 2221 timeout->tv_nsec)) 2222 return -EINVAL; 2223 2224 datagrams = 0; 2225 2226 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2227 if (!sock) 2228 return err; 2229 2230 err = sock_error(sock->sk); 2231 if (err) 2232 goto out_put; 2233 2234 entry = mmsg; 2235 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2236 2237 while (datagrams < vlen) { 2238 /* 2239 * No need to ask LSM for more than the first datagram. 2240 */ 2241 if (MSG_CMSG_COMPAT & flags) { 2242 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2243 &msg_sys, flags & ~MSG_WAITFORONE, 2244 datagrams); 2245 if (err < 0) 2246 break; 2247 err = __put_user(err, &compat_entry->msg_len); 2248 ++compat_entry; 2249 } else { 2250 err = ___sys_recvmsg(sock, 2251 (struct user_msghdr __user *)entry, 2252 &msg_sys, flags & ~MSG_WAITFORONE, 2253 datagrams); 2254 if (err < 0) 2255 break; 2256 err = put_user(err, &entry->msg_len); 2257 ++entry; 2258 } 2259 2260 if (err) 2261 break; 2262 ++datagrams; 2263 2264 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2265 if (flags & MSG_WAITFORONE) 2266 flags |= MSG_DONTWAIT; 2267 2268 if (timeout) { 2269 ktime_get_ts64(&timeout64); 2270 *timeout = timespec64_to_timespec( 2271 timespec64_sub(end_time, timeout64)); 2272 if (timeout->tv_sec < 0) { 2273 timeout->tv_sec = timeout->tv_nsec = 0; 2274 break; 2275 } 2276 2277 /* Timeout, return less than vlen datagrams */ 2278 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2279 break; 2280 } 2281 2282 /* Out of band data, return right away */ 2283 if (msg_sys.msg_flags & MSG_OOB) 2284 break; 2285 cond_resched(); 2286 } 2287 2288 if (err == 0) 2289 goto out_put; 2290 2291 if (datagrams == 0) { 2292 datagrams = err; 2293 goto out_put; 2294 } 2295 2296 /* 2297 * We may return less entries than requested (vlen) if the 2298 * sock is non block and there aren't enough datagrams... 2299 */ 2300 if (err != -EAGAIN) { 2301 /* 2302 * ... or if recvmsg returns an error after we 2303 * received some datagrams, where we record the 2304 * error to return on the next call or if the 2305 * app asks about it using getsockopt(SO_ERROR). 2306 */ 2307 sock->sk->sk_err = -err; 2308 } 2309 out_put: 2310 fput_light(sock->file, fput_needed); 2311 2312 return datagrams; 2313 } 2314 2315 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2316 unsigned int, vlen, unsigned int, flags, 2317 struct timespec __user *, timeout) 2318 { 2319 int datagrams; 2320 struct timespec timeout_sys; 2321 2322 if (flags & MSG_CMSG_COMPAT) 2323 return -EINVAL; 2324 2325 if (!timeout) 2326 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2327 2328 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2329 return -EFAULT; 2330 2331 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2332 2333 if (datagrams > 0 && 2334 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2335 datagrams = -EFAULT; 2336 2337 return datagrams; 2338 } 2339 2340 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2341 /* Argument list sizes for sys_socketcall */ 2342 #define AL(x) ((x) * sizeof(unsigned long)) 2343 static const unsigned char nargs[21] = { 2344 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2345 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2346 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2347 AL(4), AL(5), AL(4) 2348 }; 2349 2350 #undef AL 2351 2352 /* 2353 * System call vectors. 2354 * 2355 * Argument checking cleaned up. Saved 20% in size. 2356 * This function doesn't need to set the kernel lock because 2357 * it is set by the callees. 2358 */ 2359 2360 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2361 { 2362 unsigned long a[AUDITSC_ARGS]; 2363 unsigned long a0, a1; 2364 int err; 2365 unsigned int len; 2366 2367 if (call < 1 || call > SYS_SENDMMSG) 2368 return -EINVAL; 2369 2370 len = nargs[call]; 2371 if (len > sizeof(a)) 2372 return -EINVAL; 2373 2374 /* copy_from_user should be SMP safe. */ 2375 if (copy_from_user(a, args, len)) 2376 return -EFAULT; 2377 2378 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2379 if (err) 2380 return err; 2381 2382 a0 = a[0]; 2383 a1 = a[1]; 2384 2385 switch (call) { 2386 case SYS_SOCKET: 2387 err = sys_socket(a0, a1, a[2]); 2388 break; 2389 case SYS_BIND: 2390 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2391 break; 2392 case SYS_CONNECT: 2393 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2394 break; 2395 case SYS_LISTEN: 2396 err = sys_listen(a0, a1); 2397 break; 2398 case SYS_ACCEPT: 2399 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2400 (int __user *)a[2], 0); 2401 break; 2402 case SYS_GETSOCKNAME: 2403 err = 2404 sys_getsockname(a0, (struct sockaddr __user *)a1, 2405 (int __user *)a[2]); 2406 break; 2407 case SYS_GETPEERNAME: 2408 err = 2409 sys_getpeername(a0, (struct sockaddr __user *)a1, 2410 (int __user *)a[2]); 2411 break; 2412 case SYS_SOCKETPAIR: 2413 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2414 break; 2415 case SYS_SEND: 2416 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2417 break; 2418 case SYS_SENDTO: 2419 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2420 (struct sockaddr __user *)a[4], a[5]); 2421 break; 2422 case SYS_RECV: 2423 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2424 break; 2425 case SYS_RECVFROM: 2426 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2427 (struct sockaddr __user *)a[4], 2428 (int __user *)a[5]); 2429 break; 2430 case SYS_SHUTDOWN: 2431 err = sys_shutdown(a0, a1); 2432 break; 2433 case SYS_SETSOCKOPT: 2434 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2435 break; 2436 case SYS_GETSOCKOPT: 2437 err = 2438 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2439 (int __user *)a[4]); 2440 break; 2441 case SYS_SENDMSG: 2442 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2443 break; 2444 case SYS_SENDMMSG: 2445 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2446 break; 2447 case SYS_RECVMSG: 2448 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2449 break; 2450 case SYS_RECVMMSG: 2451 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2452 (struct timespec __user *)a[4]); 2453 break; 2454 case SYS_ACCEPT4: 2455 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2456 (int __user *)a[2], a[3]); 2457 break; 2458 default: 2459 err = -EINVAL; 2460 break; 2461 } 2462 return err; 2463 } 2464 2465 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2466 2467 /** 2468 * sock_register - add a socket protocol handler 2469 * @ops: description of protocol 2470 * 2471 * This function is called by a protocol handler that wants to 2472 * advertise its address family, and have it linked into the 2473 * socket interface. The value ops->family corresponds to the 2474 * socket system call protocol family. 2475 */ 2476 int sock_register(const struct net_proto_family *ops) 2477 { 2478 int err; 2479 2480 if (ops->family >= NPROTO) { 2481 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2482 return -ENOBUFS; 2483 } 2484 2485 spin_lock(&net_family_lock); 2486 if (rcu_dereference_protected(net_families[ops->family], 2487 lockdep_is_held(&net_family_lock))) 2488 err = -EEXIST; 2489 else { 2490 rcu_assign_pointer(net_families[ops->family], ops); 2491 err = 0; 2492 } 2493 spin_unlock(&net_family_lock); 2494 2495 pr_info("NET: Registered protocol family %d\n", ops->family); 2496 return err; 2497 } 2498 EXPORT_SYMBOL(sock_register); 2499 2500 /** 2501 * sock_unregister - remove a protocol handler 2502 * @family: protocol family to remove 2503 * 2504 * This function is called by a protocol handler that wants to 2505 * remove its address family, and have it unlinked from the 2506 * new socket creation. 2507 * 2508 * If protocol handler is a module, then it can use module reference 2509 * counts to protect against new references. If protocol handler is not 2510 * a module then it needs to provide its own protection in 2511 * the ops->create routine. 2512 */ 2513 void sock_unregister(int family) 2514 { 2515 BUG_ON(family < 0 || family >= NPROTO); 2516 2517 spin_lock(&net_family_lock); 2518 RCU_INIT_POINTER(net_families[family], NULL); 2519 spin_unlock(&net_family_lock); 2520 2521 synchronize_rcu(); 2522 2523 pr_info("NET: Unregistered protocol family %d\n", family); 2524 } 2525 EXPORT_SYMBOL(sock_unregister); 2526 2527 static int __init sock_init(void) 2528 { 2529 int err; 2530 /* 2531 * Initialize the network sysctl infrastructure. 2532 */ 2533 err = net_sysctl_init(); 2534 if (err) 2535 goto out; 2536 2537 /* 2538 * Initialize skbuff SLAB cache 2539 */ 2540 skb_init(); 2541 2542 /* 2543 * Initialize the protocols module. 2544 */ 2545 2546 init_inodecache(); 2547 2548 err = register_filesystem(&sock_fs_type); 2549 if (err) 2550 goto out_fs; 2551 sock_mnt = kern_mount(&sock_fs_type); 2552 if (IS_ERR(sock_mnt)) { 2553 err = PTR_ERR(sock_mnt); 2554 goto out_mount; 2555 } 2556 2557 /* The real protocol initialization is performed in later initcalls. 2558 */ 2559 2560 #ifdef CONFIG_NETFILTER 2561 err = netfilter_init(); 2562 if (err) 2563 goto out; 2564 #endif 2565 2566 ptp_classifier_init(); 2567 2568 out: 2569 return err; 2570 2571 out_mount: 2572 unregister_filesystem(&sock_fs_type); 2573 out_fs: 2574 goto out; 2575 } 2576 2577 core_initcall(sock_init); /* early initcall */ 2578 2579 #ifdef CONFIG_PROC_FS 2580 void socket_seq_show(struct seq_file *seq) 2581 { 2582 int cpu; 2583 int counter = 0; 2584 2585 for_each_possible_cpu(cpu) 2586 counter += per_cpu(sockets_in_use, cpu); 2587 2588 /* It can be negative, by the way. 8) */ 2589 if (counter < 0) 2590 counter = 0; 2591 2592 seq_printf(seq, "sockets: used %d\n", counter); 2593 } 2594 #endif /* CONFIG_PROC_FS */ 2595 2596 #ifdef CONFIG_COMPAT 2597 static int do_siocgstamp(struct net *net, struct socket *sock, 2598 unsigned int cmd, void __user *up) 2599 { 2600 mm_segment_t old_fs = get_fs(); 2601 struct timeval ktv; 2602 int err; 2603 2604 set_fs(KERNEL_DS); 2605 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2606 set_fs(old_fs); 2607 if (!err) 2608 err = compat_put_timeval(&ktv, up); 2609 2610 return err; 2611 } 2612 2613 static int do_siocgstampns(struct net *net, struct socket *sock, 2614 unsigned int cmd, void __user *up) 2615 { 2616 mm_segment_t old_fs = get_fs(); 2617 struct timespec kts; 2618 int err; 2619 2620 set_fs(KERNEL_DS); 2621 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2622 set_fs(old_fs); 2623 if (!err) 2624 err = compat_put_timespec(&kts, up); 2625 2626 return err; 2627 } 2628 2629 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2630 { 2631 struct ifreq __user *uifr; 2632 int err; 2633 2634 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2635 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2636 return -EFAULT; 2637 2638 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2639 if (err) 2640 return err; 2641 2642 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2643 return -EFAULT; 2644 2645 return 0; 2646 } 2647 2648 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2649 { 2650 struct compat_ifconf ifc32; 2651 struct ifconf ifc; 2652 struct ifconf __user *uifc; 2653 struct compat_ifreq __user *ifr32; 2654 struct ifreq __user *ifr; 2655 unsigned int i, j; 2656 int err; 2657 2658 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2659 return -EFAULT; 2660 2661 memset(&ifc, 0, sizeof(ifc)); 2662 if (ifc32.ifcbuf == 0) { 2663 ifc32.ifc_len = 0; 2664 ifc.ifc_len = 0; 2665 ifc.ifc_req = NULL; 2666 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2667 } else { 2668 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2669 sizeof(struct ifreq); 2670 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2671 ifc.ifc_len = len; 2672 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2673 ifr32 = compat_ptr(ifc32.ifcbuf); 2674 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2675 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2676 return -EFAULT; 2677 ifr++; 2678 ifr32++; 2679 } 2680 } 2681 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2682 return -EFAULT; 2683 2684 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2685 if (err) 2686 return err; 2687 2688 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2689 return -EFAULT; 2690 2691 ifr = ifc.ifc_req; 2692 ifr32 = compat_ptr(ifc32.ifcbuf); 2693 for (i = 0, j = 0; 2694 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2695 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2696 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2697 return -EFAULT; 2698 ifr32++; 2699 ifr++; 2700 } 2701 2702 if (ifc32.ifcbuf == 0) { 2703 /* Translate from 64-bit structure multiple to 2704 * a 32-bit one. 2705 */ 2706 i = ifc.ifc_len; 2707 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2708 ifc32.ifc_len = i; 2709 } else { 2710 ifc32.ifc_len = i; 2711 } 2712 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2713 return -EFAULT; 2714 2715 return 0; 2716 } 2717 2718 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2719 { 2720 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2721 bool convert_in = false, convert_out = false; 2722 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2723 struct ethtool_rxnfc __user *rxnfc; 2724 struct ifreq __user *ifr; 2725 u32 rule_cnt = 0, actual_rule_cnt; 2726 u32 ethcmd; 2727 u32 data; 2728 int ret; 2729 2730 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2731 return -EFAULT; 2732 2733 compat_rxnfc = compat_ptr(data); 2734 2735 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2736 return -EFAULT; 2737 2738 /* Most ethtool structures are defined without padding. 2739 * Unfortunately struct ethtool_rxnfc is an exception. 2740 */ 2741 switch (ethcmd) { 2742 default: 2743 break; 2744 case ETHTOOL_GRXCLSRLALL: 2745 /* Buffer size is variable */ 2746 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2747 return -EFAULT; 2748 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2749 return -ENOMEM; 2750 buf_size += rule_cnt * sizeof(u32); 2751 /* fall through */ 2752 case ETHTOOL_GRXRINGS: 2753 case ETHTOOL_GRXCLSRLCNT: 2754 case ETHTOOL_GRXCLSRULE: 2755 case ETHTOOL_SRXCLSRLINS: 2756 convert_out = true; 2757 /* fall through */ 2758 case ETHTOOL_SRXCLSRLDEL: 2759 buf_size += sizeof(struct ethtool_rxnfc); 2760 convert_in = true; 2761 break; 2762 } 2763 2764 ifr = compat_alloc_user_space(buf_size); 2765 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2766 2767 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2768 return -EFAULT; 2769 2770 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2771 &ifr->ifr_ifru.ifru_data)) 2772 return -EFAULT; 2773 2774 if (convert_in) { 2775 /* We expect there to be holes between fs.m_ext and 2776 * fs.ring_cookie and at the end of fs, but nowhere else. 2777 */ 2778 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2779 sizeof(compat_rxnfc->fs.m_ext) != 2780 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2781 sizeof(rxnfc->fs.m_ext)); 2782 BUILD_BUG_ON( 2783 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2784 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2785 offsetof(struct ethtool_rxnfc, fs.location) - 2786 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2787 2788 if (copy_in_user(rxnfc, compat_rxnfc, 2789 (void __user *)(&rxnfc->fs.m_ext + 1) - 2790 (void __user *)rxnfc) || 2791 copy_in_user(&rxnfc->fs.ring_cookie, 2792 &compat_rxnfc->fs.ring_cookie, 2793 (void __user *)(&rxnfc->fs.location + 1) - 2794 (void __user *)&rxnfc->fs.ring_cookie) || 2795 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2796 sizeof(rxnfc->rule_cnt))) 2797 return -EFAULT; 2798 } 2799 2800 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2801 if (ret) 2802 return ret; 2803 2804 if (convert_out) { 2805 if (copy_in_user(compat_rxnfc, rxnfc, 2806 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2807 (const void __user *)rxnfc) || 2808 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2809 &rxnfc->fs.ring_cookie, 2810 (const void __user *)(&rxnfc->fs.location + 1) - 2811 (const void __user *)&rxnfc->fs.ring_cookie) || 2812 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2813 sizeof(rxnfc->rule_cnt))) 2814 return -EFAULT; 2815 2816 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2817 /* As an optimisation, we only copy the actual 2818 * number of rules that the underlying 2819 * function returned. Since Mallory might 2820 * change the rule count in user memory, we 2821 * check that it is less than the rule count 2822 * originally given (as the user buffer size), 2823 * which has been range-checked. 2824 */ 2825 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2826 return -EFAULT; 2827 if (actual_rule_cnt < rule_cnt) 2828 rule_cnt = actual_rule_cnt; 2829 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2830 &rxnfc->rule_locs[0], 2831 rule_cnt * sizeof(u32))) 2832 return -EFAULT; 2833 } 2834 } 2835 2836 return 0; 2837 } 2838 2839 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2840 { 2841 void __user *uptr; 2842 compat_uptr_t uptr32; 2843 struct ifreq __user *uifr; 2844 2845 uifr = compat_alloc_user_space(sizeof(*uifr)); 2846 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2847 return -EFAULT; 2848 2849 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2850 return -EFAULT; 2851 2852 uptr = compat_ptr(uptr32); 2853 2854 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2855 return -EFAULT; 2856 2857 return dev_ioctl(net, SIOCWANDEV, uifr); 2858 } 2859 2860 static int bond_ioctl(struct net *net, unsigned int cmd, 2861 struct compat_ifreq __user *ifr32) 2862 { 2863 struct ifreq kifr; 2864 mm_segment_t old_fs; 2865 int err; 2866 2867 switch (cmd) { 2868 case SIOCBONDENSLAVE: 2869 case SIOCBONDRELEASE: 2870 case SIOCBONDSETHWADDR: 2871 case SIOCBONDCHANGEACTIVE: 2872 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2873 return -EFAULT; 2874 2875 old_fs = get_fs(); 2876 set_fs(KERNEL_DS); 2877 err = dev_ioctl(net, cmd, 2878 (struct ifreq __user __force *) &kifr); 2879 set_fs(old_fs); 2880 2881 return err; 2882 default: 2883 return -ENOIOCTLCMD; 2884 } 2885 } 2886 2887 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2888 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2889 struct compat_ifreq __user *u_ifreq32) 2890 { 2891 struct ifreq __user *u_ifreq64; 2892 char tmp_buf[IFNAMSIZ]; 2893 void __user *data64; 2894 u32 data32; 2895 2896 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2897 IFNAMSIZ)) 2898 return -EFAULT; 2899 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2900 return -EFAULT; 2901 data64 = compat_ptr(data32); 2902 2903 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2904 2905 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2906 IFNAMSIZ)) 2907 return -EFAULT; 2908 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2909 return -EFAULT; 2910 2911 return dev_ioctl(net, cmd, u_ifreq64); 2912 } 2913 2914 static int dev_ifsioc(struct net *net, struct socket *sock, 2915 unsigned int cmd, struct compat_ifreq __user *uifr32) 2916 { 2917 struct ifreq __user *uifr; 2918 int err; 2919 2920 uifr = compat_alloc_user_space(sizeof(*uifr)); 2921 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2922 return -EFAULT; 2923 2924 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2925 2926 if (!err) { 2927 switch (cmd) { 2928 case SIOCGIFFLAGS: 2929 case SIOCGIFMETRIC: 2930 case SIOCGIFMTU: 2931 case SIOCGIFMEM: 2932 case SIOCGIFHWADDR: 2933 case SIOCGIFINDEX: 2934 case SIOCGIFADDR: 2935 case SIOCGIFBRDADDR: 2936 case SIOCGIFDSTADDR: 2937 case SIOCGIFNETMASK: 2938 case SIOCGIFPFLAGS: 2939 case SIOCGIFTXQLEN: 2940 case SIOCGMIIPHY: 2941 case SIOCGMIIREG: 2942 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2943 err = -EFAULT; 2944 break; 2945 } 2946 } 2947 return err; 2948 } 2949 2950 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2951 struct compat_ifreq __user *uifr32) 2952 { 2953 struct ifreq ifr; 2954 struct compat_ifmap __user *uifmap32; 2955 mm_segment_t old_fs; 2956 int err; 2957 2958 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2959 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2960 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2961 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2962 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2963 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2964 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2965 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2966 if (err) 2967 return -EFAULT; 2968 2969 old_fs = get_fs(); 2970 set_fs(KERNEL_DS); 2971 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2972 set_fs(old_fs); 2973 2974 if (cmd == SIOCGIFMAP && !err) { 2975 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2976 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2977 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2978 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2979 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2980 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2981 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2982 if (err) 2983 err = -EFAULT; 2984 } 2985 return err; 2986 } 2987 2988 struct rtentry32 { 2989 u32 rt_pad1; 2990 struct sockaddr rt_dst; /* target address */ 2991 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2992 struct sockaddr rt_genmask; /* target network mask (IP) */ 2993 unsigned short rt_flags; 2994 short rt_pad2; 2995 u32 rt_pad3; 2996 unsigned char rt_tos; 2997 unsigned char rt_class; 2998 short rt_pad4; 2999 short rt_metric; /* +1 for binary compatibility! */ 3000 /* char * */ u32 rt_dev; /* forcing the device at add */ 3001 u32 rt_mtu; /* per route MTU/Window */ 3002 u32 rt_window; /* Window clamping */ 3003 unsigned short rt_irtt; /* Initial RTT */ 3004 }; 3005 3006 struct in6_rtmsg32 { 3007 struct in6_addr rtmsg_dst; 3008 struct in6_addr rtmsg_src; 3009 struct in6_addr rtmsg_gateway; 3010 u32 rtmsg_type; 3011 u16 rtmsg_dst_len; 3012 u16 rtmsg_src_len; 3013 u32 rtmsg_metric; 3014 u32 rtmsg_info; 3015 u32 rtmsg_flags; 3016 s32 rtmsg_ifindex; 3017 }; 3018 3019 static int routing_ioctl(struct net *net, struct socket *sock, 3020 unsigned int cmd, void __user *argp) 3021 { 3022 int ret; 3023 void *r = NULL; 3024 struct in6_rtmsg r6; 3025 struct rtentry r4; 3026 char devname[16]; 3027 u32 rtdev; 3028 mm_segment_t old_fs = get_fs(); 3029 3030 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3031 struct in6_rtmsg32 __user *ur6 = argp; 3032 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3033 3 * sizeof(struct in6_addr)); 3034 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3035 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3036 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3037 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3038 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3039 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3040 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3041 3042 r = (void *) &r6; 3043 } else { /* ipv4 */ 3044 struct rtentry32 __user *ur4 = argp; 3045 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3046 3 * sizeof(struct sockaddr)); 3047 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3048 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3049 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3050 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3051 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3052 ret |= get_user(rtdev, &(ur4->rt_dev)); 3053 if (rtdev) { 3054 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3055 r4.rt_dev = (char __user __force *)devname; 3056 devname[15] = 0; 3057 } else 3058 r4.rt_dev = NULL; 3059 3060 r = (void *) &r4; 3061 } 3062 3063 if (ret) { 3064 ret = -EFAULT; 3065 goto out; 3066 } 3067 3068 set_fs(KERNEL_DS); 3069 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3070 set_fs(old_fs); 3071 3072 out: 3073 return ret; 3074 } 3075 3076 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3077 * for some operations; this forces use of the newer bridge-utils that 3078 * use compatible ioctls 3079 */ 3080 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3081 { 3082 compat_ulong_t tmp; 3083 3084 if (get_user(tmp, argp)) 3085 return -EFAULT; 3086 if (tmp == BRCTL_GET_VERSION) 3087 return BRCTL_VERSION + 1; 3088 return -EINVAL; 3089 } 3090 3091 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3092 unsigned int cmd, unsigned long arg) 3093 { 3094 void __user *argp = compat_ptr(arg); 3095 struct sock *sk = sock->sk; 3096 struct net *net = sock_net(sk); 3097 3098 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3099 return compat_ifr_data_ioctl(net, cmd, argp); 3100 3101 switch (cmd) { 3102 case SIOCSIFBR: 3103 case SIOCGIFBR: 3104 return old_bridge_ioctl(argp); 3105 case SIOCGIFNAME: 3106 return dev_ifname32(net, argp); 3107 case SIOCGIFCONF: 3108 return dev_ifconf(net, argp); 3109 case SIOCETHTOOL: 3110 return ethtool_ioctl(net, argp); 3111 case SIOCWANDEV: 3112 return compat_siocwandev(net, argp); 3113 case SIOCGIFMAP: 3114 case SIOCSIFMAP: 3115 return compat_sioc_ifmap(net, cmd, argp); 3116 case SIOCBONDENSLAVE: 3117 case SIOCBONDRELEASE: 3118 case SIOCBONDSETHWADDR: 3119 case SIOCBONDCHANGEACTIVE: 3120 return bond_ioctl(net, cmd, argp); 3121 case SIOCADDRT: 3122 case SIOCDELRT: 3123 return routing_ioctl(net, sock, cmd, argp); 3124 case SIOCGSTAMP: 3125 return do_siocgstamp(net, sock, cmd, argp); 3126 case SIOCGSTAMPNS: 3127 return do_siocgstampns(net, sock, cmd, argp); 3128 case SIOCBONDSLAVEINFOQUERY: 3129 case SIOCBONDINFOQUERY: 3130 case SIOCSHWTSTAMP: 3131 case SIOCGHWTSTAMP: 3132 return compat_ifr_data_ioctl(net, cmd, argp); 3133 3134 case FIOSETOWN: 3135 case SIOCSPGRP: 3136 case FIOGETOWN: 3137 case SIOCGPGRP: 3138 case SIOCBRADDBR: 3139 case SIOCBRDELBR: 3140 case SIOCGIFVLAN: 3141 case SIOCSIFVLAN: 3142 case SIOCADDDLCI: 3143 case SIOCDELDLCI: 3144 case SIOCGSKNS: 3145 return sock_ioctl(file, cmd, arg); 3146 3147 case SIOCGIFFLAGS: 3148 case SIOCSIFFLAGS: 3149 case SIOCGIFMETRIC: 3150 case SIOCSIFMETRIC: 3151 case SIOCGIFMTU: 3152 case SIOCSIFMTU: 3153 case SIOCGIFMEM: 3154 case SIOCSIFMEM: 3155 case SIOCGIFHWADDR: 3156 case SIOCSIFHWADDR: 3157 case SIOCADDMULTI: 3158 case SIOCDELMULTI: 3159 case SIOCGIFINDEX: 3160 case SIOCGIFADDR: 3161 case SIOCSIFADDR: 3162 case SIOCSIFHWBROADCAST: 3163 case SIOCDIFADDR: 3164 case SIOCGIFBRDADDR: 3165 case SIOCSIFBRDADDR: 3166 case SIOCGIFDSTADDR: 3167 case SIOCSIFDSTADDR: 3168 case SIOCGIFNETMASK: 3169 case SIOCSIFNETMASK: 3170 case SIOCSIFPFLAGS: 3171 case SIOCGIFPFLAGS: 3172 case SIOCGIFTXQLEN: 3173 case SIOCSIFTXQLEN: 3174 case SIOCBRADDIF: 3175 case SIOCBRDELIF: 3176 case SIOCSIFNAME: 3177 case SIOCGMIIPHY: 3178 case SIOCGMIIREG: 3179 case SIOCSMIIREG: 3180 return dev_ifsioc(net, sock, cmd, argp); 3181 3182 case SIOCSARP: 3183 case SIOCGARP: 3184 case SIOCDARP: 3185 case SIOCATMARK: 3186 return sock_do_ioctl(net, sock, cmd, arg); 3187 } 3188 3189 return -ENOIOCTLCMD; 3190 } 3191 3192 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3193 unsigned long arg) 3194 { 3195 struct socket *sock = file->private_data; 3196 int ret = -ENOIOCTLCMD; 3197 struct sock *sk; 3198 struct net *net; 3199 3200 sk = sock->sk; 3201 net = sock_net(sk); 3202 3203 if (sock->ops->compat_ioctl) 3204 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3205 3206 if (ret == -ENOIOCTLCMD && 3207 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3208 ret = compat_wext_handle_ioctl(net, cmd, arg); 3209 3210 if (ret == -ENOIOCTLCMD) 3211 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3212 3213 return ret; 3214 } 3215 #endif 3216 3217 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3218 { 3219 return sock->ops->bind(sock, addr, addrlen); 3220 } 3221 EXPORT_SYMBOL(kernel_bind); 3222 3223 int kernel_listen(struct socket *sock, int backlog) 3224 { 3225 return sock->ops->listen(sock, backlog); 3226 } 3227 EXPORT_SYMBOL(kernel_listen); 3228 3229 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3230 { 3231 struct sock *sk = sock->sk; 3232 int err; 3233 3234 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3235 newsock); 3236 if (err < 0) 3237 goto done; 3238 3239 err = sock->ops->accept(sock, *newsock, flags); 3240 if (err < 0) { 3241 sock_release(*newsock); 3242 *newsock = NULL; 3243 goto done; 3244 } 3245 3246 (*newsock)->ops = sock->ops; 3247 __module_get((*newsock)->ops->owner); 3248 3249 done: 3250 return err; 3251 } 3252 EXPORT_SYMBOL(kernel_accept); 3253 3254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3255 int flags) 3256 { 3257 return sock->ops->connect(sock, addr, addrlen, flags); 3258 } 3259 EXPORT_SYMBOL(kernel_connect); 3260 3261 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3262 int *addrlen) 3263 { 3264 return sock->ops->getname(sock, addr, addrlen, 0); 3265 } 3266 EXPORT_SYMBOL(kernel_getsockname); 3267 3268 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3269 int *addrlen) 3270 { 3271 return sock->ops->getname(sock, addr, addrlen, 1); 3272 } 3273 EXPORT_SYMBOL(kernel_getpeername); 3274 3275 int kernel_getsockopt(struct socket *sock, int level, int optname, 3276 char *optval, int *optlen) 3277 { 3278 mm_segment_t oldfs = get_fs(); 3279 char __user *uoptval; 3280 int __user *uoptlen; 3281 int err; 3282 3283 uoptval = (char __user __force *) optval; 3284 uoptlen = (int __user __force *) optlen; 3285 3286 set_fs(KERNEL_DS); 3287 if (level == SOL_SOCKET) 3288 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3289 else 3290 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3291 uoptlen); 3292 set_fs(oldfs); 3293 return err; 3294 } 3295 EXPORT_SYMBOL(kernel_getsockopt); 3296 3297 int kernel_setsockopt(struct socket *sock, int level, int optname, 3298 char *optval, unsigned int optlen) 3299 { 3300 mm_segment_t oldfs = get_fs(); 3301 char __user *uoptval; 3302 int err; 3303 3304 uoptval = (char __user __force *) optval; 3305 3306 set_fs(KERNEL_DS); 3307 if (level == SOL_SOCKET) 3308 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3309 else 3310 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3311 optlen); 3312 set_fs(oldfs); 3313 return err; 3314 } 3315 EXPORT_SYMBOL(kernel_setsockopt); 3316 3317 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3318 size_t size, int flags) 3319 { 3320 if (sock->ops->sendpage) 3321 return sock->ops->sendpage(sock, page, offset, size, flags); 3322 3323 return sock_no_sendpage(sock, page, offset, size, flags); 3324 } 3325 EXPORT_SYMBOL(kernel_sendpage); 3326 3327 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3328 { 3329 mm_segment_t oldfs = get_fs(); 3330 int err; 3331 3332 set_fs(KERNEL_DS); 3333 err = sock->ops->ioctl(sock, cmd, arg); 3334 set_fs(oldfs); 3335 3336 return err; 3337 } 3338 EXPORT_SYMBOL(kernel_sock_ioctl); 3339 3340 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3341 { 3342 return sock->ops->shutdown(sock, how); 3343 } 3344 EXPORT_SYMBOL(kernel_sock_shutdown); 3345