xref: /openbmc/linux/net/socket.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	ei->socket.wq = wq;
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	kfree_rcu(ei->socket.wq, rcu);
272 	kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
275 static void init_once(void *foo)
276 {
277 	struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279 	inode_init_once(&ei->vfs_inode);
280 }
281 
282 static void init_inodecache(void)
283 {
284 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 					      sizeof(struct socket_alloc),
286 					      0,
287 					      (SLAB_HWCACHE_ALIGN |
288 					       SLAB_RECLAIM_ACCOUNT |
289 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 					      init_once);
291 	BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode	= sock_alloc_inode,
296 	.destroy_inode	= sock_destroy_inode,
297 	.statfs		= simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 				d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310 	.d_dname  = sockfs_dname,
311 };
312 
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 			    struct dentry *dentry, struct inode *inode,
315 			    const char *suffix, void *value, size_t size)
316 {
317 	if (value) {
318 		if (dentry->d_name.len + 1 > size)
319 			return -ERANGE;
320 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 	}
322 	return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330 	.name = XATTR_NAME_SOCKPROTONAME,
331 	.get = sockfs_xattr_get,
332 };
333 
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 				     struct dentry *dentry, struct inode *inode,
336 				     const char *suffix, const void *value,
337 				     size_t size, int flags)
338 {
339 	/* Handled by LSM. */
340 	return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 	.prefix = XATTR_SECURITY_PREFIX,
345 	.set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 	&sockfs_xattr_handler,
350 	&sockfs_security_xattr_handler,
351 	NULL
352 };
353 
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 			 int flags, const char *dev_name, void *data)
356 {
357 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 				  sockfs_xattr_handlers,
359 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365 	.name =		"sockfs",
366 	.mount =	sockfs_mount,
367 	.kill_sb =	kill_anon_super,
368 };
369 
370 /*
371  *	Obtains the first available file descriptor and sets it up for use.
372  *
373  *	These functions create file structures and maps them to fd space
374  *	of the current process. On success it returns file descriptor
375  *	and file struct implicitly stored in sock->file.
376  *	Note that another thread may close file descriptor before we return
377  *	from this function. We use the fact that now we do not refer
378  *	to socket after mapping. If one day we will need it, this
379  *	function will increment ref. count on file by 1.
380  *
381  *	In any case returned fd MAY BE not valid!
382  *	This race condition is unavoidable
383  *	with shared fd spaces, we cannot solve it inside kernel,
384  *	but we take care of internal coherence yet.
385  */
386 
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
388 {
389 	struct file *file;
390 
391 	if (!dname)
392 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
393 
394 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 				O_RDWR | (flags & O_NONBLOCK),
396 				&socket_file_ops);
397 	if (IS_ERR(file)) {
398 		sock_release(sock);
399 		return file;
400 	}
401 
402 	sock->file = file;
403 	file->private_data = sock;
404 	return file;
405 }
406 EXPORT_SYMBOL(sock_alloc_file);
407 
408 static int sock_map_fd(struct socket *sock, int flags)
409 {
410 	struct file *newfile;
411 	int fd = get_unused_fd_flags(flags);
412 	if (unlikely(fd < 0)) {
413 		sock_release(sock);
414 		return fd;
415 	}
416 
417 	newfile = sock_alloc_file(sock, flags, NULL);
418 	if (likely(!IS_ERR(newfile))) {
419 		fd_install(fd, newfile);
420 		return fd;
421 	}
422 
423 	put_unused_fd(fd);
424 	return PTR_ERR(newfile);
425 }
426 
427 struct socket *sock_from_file(struct file *file, int *err)
428 {
429 	if (file->f_op == &socket_file_ops)
430 		return file->private_data;	/* set in sock_map_fd */
431 
432 	*err = -ENOTSOCK;
433 	return NULL;
434 }
435 EXPORT_SYMBOL(sock_from_file);
436 
437 /**
438  *	sockfd_lookup - Go from a file number to its socket slot
439  *	@fd: file handle
440  *	@err: pointer to an error code return
441  *
442  *	The file handle passed in is locked and the socket it is bound
443  *	to is returned. If an error occurs the err pointer is overwritten
444  *	with a negative errno code and NULL is returned. The function checks
445  *	for both invalid handles and passing a handle which is not a socket.
446  *
447  *	On a success the socket object pointer is returned.
448  */
449 
450 struct socket *sockfd_lookup(int fd, int *err)
451 {
452 	struct file *file;
453 	struct socket *sock;
454 
455 	file = fget(fd);
456 	if (!file) {
457 		*err = -EBADF;
458 		return NULL;
459 	}
460 
461 	sock = sock_from_file(file, err);
462 	if (!sock)
463 		fput(file);
464 	return sock;
465 }
466 EXPORT_SYMBOL(sockfd_lookup);
467 
468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
469 {
470 	struct fd f = fdget(fd);
471 	struct socket *sock;
472 
473 	*err = -EBADF;
474 	if (f.file) {
475 		sock = sock_from_file(f.file, err);
476 		if (likely(sock)) {
477 			*fput_needed = f.flags;
478 			return sock;
479 		}
480 		fdput(f);
481 	}
482 	return NULL;
483 }
484 
485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 				size_t size)
487 {
488 	ssize_t len;
489 	ssize_t used = 0;
490 
491 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 	if (len < 0)
493 		return len;
494 	used += len;
495 	if (buffer) {
496 		if (size < used)
497 			return -ERANGE;
498 		buffer += len;
499 	}
500 
501 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 	used += len;
503 	if (buffer) {
504 		if (size < used)
505 			return -ERANGE;
506 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 		buffer += len;
508 	}
509 
510 	return used;
511 }
512 
513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
514 {
515 	int err = simple_setattr(dentry, iattr);
516 
517 	if (!err && (iattr->ia_valid & ATTR_UID)) {
518 		struct socket *sock = SOCKET_I(d_inode(dentry));
519 
520 		if (sock->sk)
521 			sock->sk->sk_uid = iattr->ia_uid;
522 		else
523 			err = -ENOENT;
524 	}
525 
526 	return err;
527 }
528 
529 static const struct inode_operations sockfs_inode_ops = {
530 	.listxattr = sockfs_listxattr,
531 	.setattr = sockfs_setattr,
532 };
533 
534 /**
535  *	sock_alloc	-	allocate a socket
536  *
537  *	Allocate a new inode and socket object. The two are bound together
538  *	and initialised. The socket is then returned. If we are out of inodes
539  *	NULL is returned.
540  */
541 
542 struct socket *sock_alloc(void)
543 {
544 	struct inode *inode;
545 	struct socket *sock;
546 
547 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 	if (!inode)
549 		return NULL;
550 
551 	sock = SOCKET_I(inode);
552 
553 	inode->i_ino = get_next_ino();
554 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 	inode->i_uid = current_fsuid();
556 	inode->i_gid = current_fsgid();
557 	inode->i_op = &sockfs_inode_ops;
558 
559 	return sock;
560 }
561 EXPORT_SYMBOL(sock_alloc);
562 
563 /**
564  *	sock_release	-	close a socket
565  *	@sock: socket to close
566  *
567  *	The socket is released from the protocol stack if it has a release
568  *	callback, and the inode is then released if the socket is bound to
569  *	an inode not a file.
570  */
571 
572 static void __sock_release(struct socket *sock, struct inode *inode)
573 {
574 	if (sock->ops) {
575 		struct module *owner = sock->ops->owner;
576 
577 		if (inode)
578 			inode_lock(inode);
579 		sock->ops->release(sock);
580 		if (inode)
581 			inode_unlock(inode);
582 		sock->ops = NULL;
583 		module_put(owner);
584 	}
585 
586 	if (sock->wq->fasync_list)
587 		pr_err("%s: fasync list not empty!\n", __func__);
588 
589 	if (!sock->file) {
590 		iput(SOCK_INODE(sock));
591 		return;
592 	}
593 	sock->file = NULL;
594 }
595 
596 void sock_release(struct socket *sock)
597 {
598 	__sock_release(sock, NULL);
599 }
600 EXPORT_SYMBOL(sock_release);
601 
602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
603 {
604 	u8 flags = *tx_flags;
605 
606 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 		flags |= SKBTX_HW_TSTAMP;
608 
609 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 		flags |= SKBTX_SW_TSTAMP;
611 
612 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 		flags |= SKBTX_SCHED_TSTAMP;
614 
615 	*tx_flags = flags;
616 }
617 EXPORT_SYMBOL(__sock_tx_timestamp);
618 
619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
620 {
621 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 	BUG_ON(ret == -EIOCBQUEUED);
623 	return ret;
624 }
625 
626 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
627 {
628 	int err = security_socket_sendmsg(sock, msg,
629 					  msg_data_left(msg));
630 
631 	return err ?: sock_sendmsg_nosec(sock, msg);
632 }
633 EXPORT_SYMBOL(sock_sendmsg);
634 
635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 		   struct kvec *vec, size_t num, size_t size)
637 {
638 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
639 	return sock_sendmsg(sock, msg);
640 }
641 EXPORT_SYMBOL(kernel_sendmsg);
642 
643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
644 			  struct kvec *vec, size_t num, size_t size)
645 {
646 	struct socket *sock = sk->sk_socket;
647 
648 	if (!sock->ops->sendmsg_locked)
649 		return sock_no_sendmsg_locked(sk, msg, size);
650 
651 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
652 
653 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
654 }
655 EXPORT_SYMBOL(kernel_sendmsg_locked);
656 
657 static bool skb_is_err_queue(const struct sk_buff *skb)
658 {
659 	/* pkt_type of skbs enqueued on the error queue are set to
660 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 	 * in recvmsg, since skbs received on a local socket will never
662 	 * have a pkt_type of PACKET_OUTGOING.
663 	 */
664 	return skb->pkt_type == PACKET_OUTGOING;
665 }
666 
667 /* On transmit, software and hardware timestamps are returned independently.
668  * As the two skb clones share the hardware timestamp, which may be updated
669  * before the software timestamp is received, a hardware TX timestamp may be
670  * returned only if there is no software TX timestamp. Ignore false software
671  * timestamps, which may be made in the __sock_recv_timestamp() call when the
672  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
673  * hardware timestamp.
674  */
675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
676 {
677 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
678 }
679 
680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
681 {
682 	struct scm_ts_pktinfo ts_pktinfo;
683 	struct net_device *orig_dev;
684 
685 	if (!skb_mac_header_was_set(skb))
686 		return;
687 
688 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
689 
690 	rcu_read_lock();
691 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
692 	if (orig_dev)
693 		ts_pktinfo.if_index = orig_dev->ifindex;
694 	rcu_read_unlock();
695 
696 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
697 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
698 		 sizeof(ts_pktinfo), &ts_pktinfo);
699 }
700 
701 /*
702  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
703  */
704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
705 	struct sk_buff *skb)
706 {
707 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
708 	struct scm_timestamping tss;
709 	int empty = 1, false_tstamp = 0;
710 	struct skb_shared_hwtstamps *shhwtstamps =
711 		skb_hwtstamps(skb);
712 
713 	/* Race occurred between timestamp enabling and packet
714 	   receiving.  Fill in the current time for now. */
715 	if (need_software_tstamp && skb->tstamp == 0) {
716 		__net_timestamp(skb);
717 		false_tstamp = 1;
718 	}
719 
720 	if (need_software_tstamp) {
721 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
722 			struct timeval tv;
723 			skb_get_timestamp(skb, &tv);
724 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
725 				 sizeof(tv), &tv);
726 		} else {
727 			struct timespec ts;
728 			skb_get_timestampns(skb, &ts);
729 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
730 				 sizeof(ts), &ts);
731 		}
732 	}
733 
734 	memset(&tss, 0, sizeof(tss));
735 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
736 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
737 		empty = 0;
738 	if (shhwtstamps &&
739 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
740 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
741 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
742 		empty = 0;
743 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
744 		    !skb_is_err_queue(skb))
745 			put_ts_pktinfo(msg, skb);
746 	}
747 	if (!empty) {
748 		put_cmsg(msg, SOL_SOCKET,
749 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
750 
751 		if (skb_is_err_queue(skb) && skb->len &&
752 		    SKB_EXT_ERR(skb)->opt_stats)
753 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
754 				 skb->len, skb->data);
755 	}
756 }
757 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
758 
759 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
760 	struct sk_buff *skb)
761 {
762 	int ack;
763 
764 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
765 		return;
766 	if (!skb->wifi_acked_valid)
767 		return;
768 
769 	ack = skb->wifi_acked;
770 
771 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
772 }
773 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
774 
775 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
776 				   struct sk_buff *skb)
777 {
778 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
779 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
780 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
781 }
782 
783 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
784 	struct sk_buff *skb)
785 {
786 	sock_recv_timestamp(msg, sk, skb);
787 	sock_recv_drops(msg, sk, skb);
788 }
789 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
790 
791 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
792 				     int flags)
793 {
794 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
795 }
796 
797 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
798 {
799 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
800 
801 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
802 }
803 EXPORT_SYMBOL(sock_recvmsg);
804 
805 /**
806  * kernel_recvmsg - Receive a message from a socket (kernel space)
807  * @sock:       The socket to receive the message from
808  * @msg:        Received message
809  * @vec:        Input s/g array for message data
810  * @num:        Size of input s/g array
811  * @size:       Number of bytes to read
812  * @flags:      Message flags (MSG_DONTWAIT, etc...)
813  *
814  * On return the msg structure contains the scatter/gather array passed in the
815  * vec argument. The array is modified so that it consists of the unfilled
816  * portion of the original array.
817  *
818  * The returned value is the total number of bytes received, or an error.
819  */
820 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
821 		   struct kvec *vec, size_t num, size_t size, int flags)
822 {
823 	mm_segment_t oldfs = get_fs();
824 	int result;
825 
826 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
827 	set_fs(KERNEL_DS);
828 	result = sock_recvmsg(sock, msg, flags);
829 	set_fs(oldfs);
830 	return result;
831 }
832 EXPORT_SYMBOL(kernel_recvmsg);
833 
834 static ssize_t sock_sendpage(struct file *file, struct page *page,
835 			     int offset, size_t size, loff_t *ppos, int more)
836 {
837 	struct socket *sock;
838 	int flags;
839 
840 	sock = file->private_data;
841 
842 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
843 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
844 	flags |= more;
845 
846 	return kernel_sendpage(sock, page, offset, size, flags);
847 }
848 
849 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
850 				struct pipe_inode_info *pipe, size_t len,
851 				unsigned int flags)
852 {
853 	struct socket *sock = file->private_data;
854 
855 	if (unlikely(!sock->ops->splice_read))
856 		return generic_file_splice_read(file, ppos, pipe, len, flags);
857 
858 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
859 }
860 
861 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
862 {
863 	struct file *file = iocb->ki_filp;
864 	struct socket *sock = file->private_data;
865 	struct msghdr msg = {.msg_iter = *to,
866 			     .msg_iocb = iocb};
867 	ssize_t res;
868 
869 	if (file->f_flags & O_NONBLOCK)
870 		msg.msg_flags = MSG_DONTWAIT;
871 
872 	if (iocb->ki_pos != 0)
873 		return -ESPIPE;
874 
875 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
876 		return 0;
877 
878 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
879 	*to = msg.msg_iter;
880 	return res;
881 }
882 
883 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
884 {
885 	struct file *file = iocb->ki_filp;
886 	struct socket *sock = file->private_data;
887 	struct msghdr msg = {.msg_iter = *from,
888 			     .msg_iocb = iocb};
889 	ssize_t res;
890 
891 	if (iocb->ki_pos != 0)
892 		return -ESPIPE;
893 
894 	if (file->f_flags & O_NONBLOCK)
895 		msg.msg_flags = MSG_DONTWAIT;
896 
897 	if (sock->type == SOCK_SEQPACKET)
898 		msg.msg_flags |= MSG_EOR;
899 
900 	res = sock_sendmsg(sock, &msg);
901 	*from = msg.msg_iter;
902 	return res;
903 }
904 
905 /*
906  * Atomic setting of ioctl hooks to avoid race
907  * with module unload.
908  */
909 
910 static DEFINE_MUTEX(br_ioctl_mutex);
911 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
912 
913 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
914 {
915 	mutex_lock(&br_ioctl_mutex);
916 	br_ioctl_hook = hook;
917 	mutex_unlock(&br_ioctl_mutex);
918 }
919 EXPORT_SYMBOL(brioctl_set);
920 
921 static DEFINE_MUTEX(vlan_ioctl_mutex);
922 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
923 
924 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
925 {
926 	mutex_lock(&vlan_ioctl_mutex);
927 	vlan_ioctl_hook = hook;
928 	mutex_unlock(&vlan_ioctl_mutex);
929 }
930 EXPORT_SYMBOL(vlan_ioctl_set);
931 
932 static DEFINE_MUTEX(dlci_ioctl_mutex);
933 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
934 
935 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
936 {
937 	mutex_lock(&dlci_ioctl_mutex);
938 	dlci_ioctl_hook = hook;
939 	mutex_unlock(&dlci_ioctl_mutex);
940 }
941 EXPORT_SYMBOL(dlci_ioctl_set);
942 
943 static long sock_do_ioctl(struct net *net, struct socket *sock,
944 			  unsigned int cmd, unsigned long arg,
945 			  unsigned int ifreq_size)
946 {
947 	int err;
948 	void __user *argp = (void __user *)arg;
949 
950 	err = sock->ops->ioctl(sock, cmd, arg);
951 
952 	/*
953 	 * If this ioctl is unknown try to hand it down
954 	 * to the NIC driver.
955 	 */
956 	if (err != -ENOIOCTLCMD)
957 		return err;
958 
959 	if (cmd == SIOCGIFCONF) {
960 		struct ifconf ifc;
961 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
962 			return -EFAULT;
963 		rtnl_lock();
964 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
965 		rtnl_unlock();
966 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
967 			err = -EFAULT;
968 	} else {
969 		struct ifreq ifr;
970 		bool need_copyout;
971 		if (copy_from_user(&ifr, argp, ifreq_size))
972 			return -EFAULT;
973 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
974 		if (!err && need_copyout)
975 			if (copy_to_user(argp, &ifr, ifreq_size))
976 				return -EFAULT;
977 	}
978 	return err;
979 }
980 
981 /*
982  *	With an ioctl, arg may well be a user mode pointer, but we don't know
983  *	what to do with it - that's up to the protocol still.
984  */
985 
986 struct ns_common *get_net_ns(struct ns_common *ns)
987 {
988 	return &get_net(container_of(ns, struct net, ns))->ns;
989 }
990 EXPORT_SYMBOL_GPL(get_net_ns);
991 
992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
993 {
994 	struct socket *sock;
995 	struct sock *sk;
996 	void __user *argp = (void __user *)arg;
997 	int pid, err;
998 	struct net *net;
999 
1000 	sock = file->private_data;
1001 	sk = sock->sk;
1002 	net = sock_net(sk);
1003 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1004 		struct ifreq ifr;
1005 		bool need_copyout;
1006 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1007 			return -EFAULT;
1008 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1009 		if (!err && need_copyout)
1010 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1011 				return -EFAULT;
1012 	} else
1013 #ifdef CONFIG_WEXT_CORE
1014 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1015 		err = wext_handle_ioctl(net, cmd, argp);
1016 	} else
1017 #endif
1018 		switch (cmd) {
1019 		case FIOSETOWN:
1020 		case SIOCSPGRP:
1021 			err = -EFAULT;
1022 			if (get_user(pid, (int __user *)argp))
1023 				break;
1024 			err = f_setown(sock->file, pid, 1);
1025 			break;
1026 		case FIOGETOWN:
1027 		case SIOCGPGRP:
1028 			err = put_user(f_getown(sock->file),
1029 				       (int __user *)argp);
1030 			break;
1031 		case SIOCGIFBR:
1032 		case SIOCSIFBR:
1033 		case SIOCBRADDBR:
1034 		case SIOCBRDELBR:
1035 			err = -ENOPKG;
1036 			if (!br_ioctl_hook)
1037 				request_module("bridge");
1038 
1039 			mutex_lock(&br_ioctl_mutex);
1040 			if (br_ioctl_hook)
1041 				err = br_ioctl_hook(net, cmd, argp);
1042 			mutex_unlock(&br_ioctl_mutex);
1043 			break;
1044 		case SIOCGIFVLAN:
1045 		case SIOCSIFVLAN:
1046 			err = -ENOPKG;
1047 			if (!vlan_ioctl_hook)
1048 				request_module("8021q");
1049 
1050 			mutex_lock(&vlan_ioctl_mutex);
1051 			if (vlan_ioctl_hook)
1052 				err = vlan_ioctl_hook(net, argp);
1053 			mutex_unlock(&vlan_ioctl_mutex);
1054 			break;
1055 		case SIOCADDDLCI:
1056 		case SIOCDELDLCI:
1057 			err = -ENOPKG;
1058 			if (!dlci_ioctl_hook)
1059 				request_module("dlci");
1060 
1061 			mutex_lock(&dlci_ioctl_mutex);
1062 			if (dlci_ioctl_hook)
1063 				err = dlci_ioctl_hook(cmd, argp);
1064 			mutex_unlock(&dlci_ioctl_mutex);
1065 			break;
1066 		case SIOCGSKNS:
1067 			err = -EPERM;
1068 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1069 				break;
1070 
1071 			err = open_related_ns(&net->ns, get_net_ns);
1072 			break;
1073 		default:
1074 			err = sock_do_ioctl(net, sock, cmd, arg,
1075 					    sizeof(struct ifreq));
1076 			break;
1077 		}
1078 	return err;
1079 }
1080 
1081 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1082 {
1083 	int err;
1084 	struct socket *sock = NULL;
1085 
1086 	err = security_socket_create(family, type, protocol, 1);
1087 	if (err)
1088 		goto out;
1089 
1090 	sock = sock_alloc();
1091 	if (!sock) {
1092 		err = -ENOMEM;
1093 		goto out;
1094 	}
1095 
1096 	sock->type = type;
1097 	err = security_socket_post_create(sock, family, type, protocol, 1);
1098 	if (err)
1099 		goto out_release;
1100 
1101 out:
1102 	*res = sock;
1103 	return err;
1104 out_release:
1105 	sock_release(sock);
1106 	sock = NULL;
1107 	goto out;
1108 }
1109 EXPORT_SYMBOL(sock_create_lite);
1110 
1111 /* No kernel lock held - perfect */
1112 static __poll_t sock_poll(struct file *file, poll_table *wait)
1113 {
1114 	struct socket *sock = file->private_data;
1115 	__poll_t events = poll_requested_events(wait), flag = 0;
1116 
1117 	if (!sock->ops->poll)
1118 		return 0;
1119 
1120 	if (sk_can_busy_loop(sock->sk)) {
1121 		/* poll once if requested by the syscall */
1122 		if (events & POLL_BUSY_LOOP)
1123 			sk_busy_loop(sock->sk, 1);
1124 
1125 		/* if this socket can poll_ll, tell the system call */
1126 		flag = POLL_BUSY_LOOP;
1127 	}
1128 
1129 	return sock->ops->poll(file, sock, wait) | flag;
1130 }
1131 
1132 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1133 {
1134 	struct socket *sock = file->private_data;
1135 
1136 	return sock->ops->mmap(file, sock, vma);
1137 }
1138 
1139 static int sock_close(struct inode *inode, struct file *filp)
1140 {
1141 	__sock_release(SOCKET_I(inode), inode);
1142 	return 0;
1143 }
1144 
1145 /*
1146  *	Update the socket async list
1147  *
1148  *	Fasync_list locking strategy.
1149  *
1150  *	1. fasync_list is modified only under process context socket lock
1151  *	   i.e. under semaphore.
1152  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1153  *	   or under socket lock
1154  */
1155 
1156 static int sock_fasync(int fd, struct file *filp, int on)
1157 {
1158 	struct socket *sock = filp->private_data;
1159 	struct sock *sk = sock->sk;
1160 	struct socket_wq *wq;
1161 
1162 	if (sk == NULL)
1163 		return -EINVAL;
1164 
1165 	lock_sock(sk);
1166 	wq = sock->wq;
1167 	fasync_helper(fd, filp, on, &wq->fasync_list);
1168 
1169 	if (!wq->fasync_list)
1170 		sock_reset_flag(sk, SOCK_FASYNC);
1171 	else
1172 		sock_set_flag(sk, SOCK_FASYNC);
1173 
1174 	release_sock(sk);
1175 	return 0;
1176 }
1177 
1178 /* This function may be called only under rcu_lock */
1179 
1180 int sock_wake_async(struct socket_wq *wq, int how, int band)
1181 {
1182 	if (!wq || !wq->fasync_list)
1183 		return -1;
1184 
1185 	switch (how) {
1186 	case SOCK_WAKE_WAITD:
1187 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1188 			break;
1189 		goto call_kill;
1190 	case SOCK_WAKE_SPACE:
1191 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1192 			break;
1193 		/* fall through */
1194 	case SOCK_WAKE_IO:
1195 call_kill:
1196 		kill_fasync(&wq->fasync_list, SIGIO, band);
1197 		break;
1198 	case SOCK_WAKE_URG:
1199 		kill_fasync(&wq->fasync_list, SIGURG, band);
1200 	}
1201 
1202 	return 0;
1203 }
1204 EXPORT_SYMBOL(sock_wake_async);
1205 
1206 int __sock_create(struct net *net, int family, int type, int protocol,
1207 			 struct socket **res, int kern)
1208 {
1209 	int err;
1210 	struct socket *sock;
1211 	const struct net_proto_family *pf;
1212 
1213 	/*
1214 	 *      Check protocol is in range
1215 	 */
1216 	if (family < 0 || family >= NPROTO)
1217 		return -EAFNOSUPPORT;
1218 	if (type < 0 || type >= SOCK_MAX)
1219 		return -EINVAL;
1220 
1221 	/* Compatibility.
1222 
1223 	   This uglymoron is moved from INET layer to here to avoid
1224 	   deadlock in module load.
1225 	 */
1226 	if (family == PF_INET && type == SOCK_PACKET) {
1227 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1228 			     current->comm);
1229 		family = PF_PACKET;
1230 	}
1231 
1232 	err = security_socket_create(family, type, protocol, kern);
1233 	if (err)
1234 		return err;
1235 
1236 	/*
1237 	 *	Allocate the socket and allow the family to set things up. if
1238 	 *	the protocol is 0, the family is instructed to select an appropriate
1239 	 *	default.
1240 	 */
1241 	sock = sock_alloc();
1242 	if (!sock) {
1243 		net_warn_ratelimited("socket: no more sockets\n");
1244 		return -ENFILE;	/* Not exactly a match, but its the
1245 				   closest posix thing */
1246 	}
1247 
1248 	sock->type = type;
1249 
1250 #ifdef CONFIG_MODULES
1251 	/* Attempt to load a protocol module if the find failed.
1252 	 *
1253 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1254 	 * requested real, full-featured networking support upon configuration.
1255 	 * Otherwise module support will break!
1256 	 */
1257 	if (rcu_access_pointer(net_families[family]) == NULL)
1258 		request_module("net-pf-%d", family);
1259 #endif
1260 
1261 	rcu_read_lock();
1262 	pf = rcu_dereference(net_families[family]);
1263 	err = -EAFNOSUPPORT;
1264 	if (!pf)
1265 		goto out_release;
1266 
1267 	/*
1268 	 * We will call the ->create function, that possibly is in a loadable
1269 	 * module, so we have to bump that loadable module refcnt first.
1270 	 */
1271 	if (!try_module_get(pf->owner))
1272 		goto out_release;
1273 
1274 	/* Now protected by module ref count */
1275 	rcu_read_unlock();
1276 
1277 	err = pf->create(net, sock, protocol, kern);
1278 	if (err < 0)
1279 		goto out_module_put;
1280 
1281 	/*
1282 	 * Now to bump the refcnt of the [loadable] module that owns this
1283 	 * socket at sock_release time we decrement its refcnt.
1284 	 */
1285 	if (!try_module_get(sock->ops->owner))
1286 		goto out_module_busy;
1287 
1288 	/*
1289 	 * Now that we're done with the ->create function, the [loadable]
1290 	 * module can have its refcnt decremented
1291 	 */
1292 	module_put(pf->owner);
1293 	err = security_socket_post_create(sock, family, type, protocol, kern);
1294 	if (err)
1295 		goto out_sock_release;
1296 	*res = sock;
1297 
1298 	return 0;
1299 
1300 out_module_busy:
1301 	err = -EAFNOSUPPORT;
1302 out_module_put:
1303 	sock->ops = NULL;
1304 	module_put(pf->owner);
1305 out_sock_release:
1306 	sock_release(sock);
1307 	return err;
1308 
1309 out_release:
1310 	rcu_read_unlock();
1311 	goto out_sock_release;
1312 }
1313 EXPORT_SYMBOL(__sock_create);
1314 
1315 int sock_create(int family, int type, int protocol, struct socket **res)
1316 {
1317 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1318 }
1319 EXPORT_SYMBOL(sock_create);
1320 
1321 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1322 {
1323 	return __sock_create(net, family, type, protocol, res, 1);
1324 }
1325 EXPORT_SYMBOL(sock_create_kern);
1326 
1327 int __sys_socket(int family, int type, int protocol)
1328 {
1329 	int retval;
1330 	struct socket *sock;
1331 	int flags;
1332 
1333 	/* Check the SOCK_* constants for consistency.  */
1334 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1335 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1336 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1337 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1338 
1339 	flags = type & ~SOCK_TYPE_MASK;
1340 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1341 		return -EINVAL;
1342 	type &= SOCK_TYPE_MASK;
1343 
1344 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1345 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1346 
1347 	retval = sock_create(family, type, protocol, &sock);
1348 	if (retval < 0)
1349 		return retval;
1350 
1351 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1352 }
1353 
1354 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1355 {
1356 	return __sys_socket(family, type, protocol);
1357 }
1358 
1359 /*
1360  *	Create a pair of connected sockets.
1361  */
1362 
1363 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1364 {
1365 	struct socket *sock1, *sock2;
1366 	int fd1, fd2, err;
1367 	struct file *newfile1, *newfile2;
1368 	int flags;
1369 
1370 	flags = type & ~SOCK_TYPE_MASK;
1371 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1372 		return -EINVAL;
1373 	type &= SOCK_TYPE_MASK;
1374 
1375 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1376 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1377 
1378 	/*
1379 	 * reserve descriptors and make sure we won't fail
1380 	 * to return them to userland.
1381 	 */
1382 	fd1 = get_unused_fd_flags(flags);
1383 	if (unlikely(fd1 < 0))
1384 		return fd1;
1385 
1386 	fd2 = get_unused_fd_flags(flags);
1387 	if (unlikely(fd2 < 0)) {
1388 		put_unused_fd(fd1);
1389 		return fd2;
1390 	}
1391 
1392 	err = put_user(fd1, &usockvec[0]);
1393 	if (err)
1394 		goto out;
1395 
1396 	err = put_user(fd2, &usockvec[1]);
1397 	if (err)
1398 		goto out;
1399 
1400 	/*
1401 	 * Obtain the first socket and check if the underlying protocol
1402 	 * supports the socketpair call.
1403 	 */
1404 
1405 	err = sock_create(family, type, protocol, &sock1);
1406 	if (unlikely(err < 0))
1407 		goto out;
1408 
1409 	err = sock_create(family, type, protocol, &sock2);
1410 	if (unlikely(err < 0)) {
1411 		sock_release(sock1);
1412 		goto out;
1413 	}
1414 
1415 	err = security_socket_socketpair(sock1, sock2);
1416 	if (unlikely(err)) {
1417 		sock_release(sock2);
1418 		sock_release(sock1);
1419 		goto out;
1420 	}
1421 
1422 	err = sock1->ops->socketpair(sock1, sock2);
1423 	if (unlikely(err < 0)) {
1424 		sock_release(sock2);
1425 		sock_release(sock1);
1426 		goto out;
1427 	}
1428 
1429 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1430 	if (IS_ERR(newfile1)) {
1431 		err = PTR_ERR(newfile1);
1432 		sock_release(sock2);
1433 		goto out;
1434 	}
1435 
1436 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1437 	if (IS_ERR(newfile2)) {
1438 		err = PTR_ERR(newfile2);
1439 		fput(newfile1);
1440 		goto out;
1441 	}
1442 
1443 	audit_fd_pair(fd1, fd2);
1444 
1445 	fd_install(fd1, newfile1);
1446 	fd_install(fd2, newfile2);
1447 	return 0;
1448 
1449 out:
1450 	put_unused_fd(fd2);
1451 	put_unused_fd(fd1);
1452 	return err;
1453 }
1454 
1455 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1456 		int __user *, usockvec)
1457 {
1458 	return __sys_socketpair(family, type, protocol, usockvec);
1459 }
1460 
1461 /*
1462  *	Bind a name to a socket. Nothing much to do here since it's
1463  *	the protocol's responsibility to handle the local address.
1464  *
1465  *	We move the socket address to kernel space before we call
1466  *	the protocol layer (having also checked the address is ok).
1467  */
1468 
1469 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1470 {
1471 	struct socket *sock;
1472 	struct sockaddr_storage address;
1473 	int err, fput_needed;
1474 
1475 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476 	if (sock) {
1477 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1478 		if (!err) {
1479 			err = security_socket_bind(sock,
1480 						   (struct sockaddr *)&address,
1481 						   addrlen);
1482 			if (!err)
1483 				err = sock->ops->bind(sock,
1484 						      (struct sockaddr *)
1485 						      &address, addrlen);
1486 		}
1487 		fput_light(sock->file, fput_needed);
1488 	}
1489 	return err;
1490 }
1491 
1492 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1493 {
1494 	return __sys_bind(fd, umyaddr, addrlen);
1495 }
1496 
1497 /*
1498  *	Perform a listen. Basically, we allow the protocol to do anything
1499  *	necessary for a listen, and if that works, we mark the socket as
1500  *	ready for listening.
1501  */
1502 
1503 int __sys_listen(int fd, int backlog)
1504 {
1505 	struct socket *sock;
1506 	int err, fput_needed;
1507 	int somaxconn;
1508 
1509 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1510 	if (sock) {
1511 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1512 		if ((unsigned int)backlog > somaxconn)
1513 			backlog = somaxconn;
1514 
1515 		err = security_socket_listen(sock, backlog);
1516 		if (!err)
1517 			err = sock->ops->listen(sock, backlog);
1518 
1519 		fput_light(sock->file, fput_needed);
1520 	}
1521 	return err;
1522 }
1523 
1524 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1525 {
1526 	return __sys_listen(fd, backlog);
1527 }
1528 
1529 /*
1530  *	For accept, we attempt to create a new socket, set up the link
1531  *	with the client, wake up the client, then return the new
1532  *	connected fd. We collect the address of the connector in kernel
1533  *	space and move it to user at the very end. This is unclean because
1534  *	we open the socket then return an error.
1535  *
1536  *	1003.1g adds the ability to recvmsg() to query connection pending
1537  *	status to recvmsg. We need to add that support in a way thats
1538  *	clean when we restructure accept also.
1539  */
1540 
1541 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1542 		  int __user *upeer_addrlen, int flags)
1543 {
1544 	struct socket *sock, *newsock;
1545 	struct file *newfile;
1546 	int err, len, newfd, fput_needed;
1547 	struct sockaddr_storage address;
1548 
1549 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1550 		return -EINVAL;
1551 
1552 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1553 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1554 
1555 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1556 	if (!sock)
1557 		goto out;
1558 
1559 	err = -ENFILE;
1560 	newsock = sock_alloc();
1561 	if (!newsock)
1562 		goto out_put;
1563 
1564 	newsock->type = sock->type;
1565 	newsock->ops = sock->ops;
1566 
1567 	/*
1568 	 * We don't need try_module_get here, as the listening socket (sock)
1569 	 * has the protocol module (sock->ops->owner) held.
1570 	 */
1571 	__module_get(newsock->ops->owner);
1572 
1573 	newfd = get_unused_fd_flags(flags);
1574 	if (unlikely(newfd < 0)) {
1575 		err = newfd;
1576 		sock_release(newsock);
1577 		goto out_put;
1578 	}
1579 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1580 	if (IS_ERR(newfile)) {
1581 		err = PTR_ERR(newfile);
1582 		put_unused_fd(newfd);
1583 		goto out_put;
1584 	}
1585 
1586 	err = security_socket_accept(sock, newsock);
1587 	if (err)
1588 		goto out_fd;
1589 
1590 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1591 	if (err < 0)
1592 		goto out_fd;
1593 
1594 	if (upeer_sockaddr) {
1595 		len = newsock->ops->getname(newsock,
1596 					(struct sockaddr *)&address, 2);
1597 		if (len < 0) {
1598 			err = -ECONNABORTED;
1599 			goto out_fd;
1600 		}
1601 		err = move_addr_to_user(&address,
1602 					len, upeer_sockaddr, upeer_addrlen);
1603 		if (err < 0)
1604 			goto out_fd;
1605 	}
1606 
1607 	/* File flags are not inherited via accept() unlike another OSes. */
1608 
1609 	fd_install(newfd, newfile);
1610 	err = newfd;
1611 
1612 out_put:
1613 	fput_light(sock->file, fput_needed);
1614 out:
1615 	return err;
1616 out_fd:
1617 	fput(newfile);
1618 	put_unused_fd(newfd);
1619 	goto out_put;
1620 }
1621 
1622 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1623 		int __user *, upeer_addrlen, int, flags)
1624 {
1625 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1626 }
1627 
1628 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1629 		int __user *, upeer_addrlen)
1630 {
1631 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1632 }
1633 
1634 /*
1635  *	Attempt to connect to a socket with the server address.  The address
1636  *	is in user space so we verify it is OK and move it to kernel space.
1637  *
1638  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1639  *	break bindings
1640  *
1641  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1642  *	other SEQPACKET protocols that take time to connect() as it doesn't
1643  *	include the -EINPROGRESS status for such sockets.
1644  */
1645 
1646 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1647 {
1648 	struct socket *sock;
1649 	struct sockaddr_storage address;
1650 	int err, fput_needed;
1651 
1652 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1653 	if (!sock)
1654 		goto out;
1655 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1656 	if (err < 0)
1657 		goto out_put;
1658 
1659 	err =
1660 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1661 	if (err)
1662 		goto out_put;
1663 
1664 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1665 				 sock->file->f_flags);
1666 out_put:
1667 	fput_light(sock->file, fput_needed);
1668 out:
1669 	return err;
1670 }
1671 
1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1673 		int, addrlen)
1674 {
1675 	return __sys_connect(fd, uservaddr, addrlen);
1676 }
1677 
1678 /*
1679  *	Get the local address ('name') of a socket object. Move the obtained
1680  *	name to user space.
1681  */
1682 
1683 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1684 		      int __user *usockaddr_len)
1685 {
1686 	struct socket *sock;
1687 	struct sockaddr_storage address;
1688 	int err, fput_needed;
1689 
1690 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 	if (!sock)
1692 		goto out;
1693 
1694 	err = security_socket_getsockname(sock);
1695 	if (err)
1696 		goto out_put;
1697 
1698 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1699 	if (err < 0)
1700 		goto out_put;
1701         /* "err" is actually length in this case */
1702 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1703 
1704 out_put:
1705 	fput_light(sock->file, fput_needed);
1706 out:
1707 	return err;
1708 }
1709 
1710 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1711 		int __user *, usockaddr_len)
1712 {
1713 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1714 }
1715 
1716 /*
1717  *	Get the remote address ('name') of a socket object. Move the obtained
1718  *	name to user space.
1719  */
1720 
1721 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1722 		      int __user *usockaddr_len)
1723 {
1724 	struct socket *sock;
1725 	struct sockaddr_storage address;
1726 	int err, fput_needed;
1727 
1728 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729 	if (sock != NULL) {
1730 		err = security_socket_getpeername(sock);
1731 		if (err) {
1732 			fput_light(sock->file, fput_needed);
1733 			return err;
1734 		}
1735 
1736 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1737 		if (err >= 0)
1738 			/* "err" is actually length in this case */
1739 			err = move_addr_to_user(&address, err, usockaddr,
1740 						usockaddr_len);
1741 		fput_light(sock->file, fput_needed);
1742 	}
1743 	return err;
1744 }
1745 
1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1747 		int __user *, usockaddr_len)
1748 {
1749 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1750 }
1751 
1752 /*
1753  *	Send a datagram to a given address. We move the address into kernel
1754  *	space and check the user space data area is readable before invoking
1755  *	the protocol.
1756  */
1757 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1758 		 struct sockaddr __user *addr,  int addr_len)
1759 {
1760 	struct socket *sock;
1761 	struct sockaddr_storage address;
1762 	int err;
1763 	struct msghdr msg;
1764 	struct iovec iov;
1765 	int fput_needed;
1766 
1767 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1768 	if (unlikely(err))
1769 		return err;
1770 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1771 	if (!sock)
1772 		goto out;
1773 
1774 	msg.msg_name = NULL;
1775 	msg.msg_control = NULL;
1776 	msg.msg_controllen = 0;
1777 	msg.msg_namelen = 0;
1778 	if (addr) {
1779 		err = move_addr_to_kernel(addr, addr_len, &address);
1780 		if (err < 0)
1781 			goto out_put;
1782 		msg.msg_name = (struct sockaddr *)&address;
1783 		msg.msg_namelen = addr_len;
1784 	}
1785 	if (sock->file->f_flags & O_NONBLOCK)
1786 		flags |= MSG_DONTWAIT;
1787 	msg.msg_flags = flags;
1788 	err = sock_sendmsg(sock, &msg);
1789 
1790 out_put:
1791 	fput_light(sock->file, fput_needed);
1792 out:
1793 	return err;
1794 }
1795 
1796 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1797 		unsigned int, flags, struct sockaddr __user *, addr,
1798 		int, addr_len)
1799 {
1800 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1801 }
1802 
1803 /*
1804  *	Send a datagram down a socket.
1805  */
1806 
1807 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1808 		unsigned int, flags)
1809 {
1810 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1811 }
1812 
1813 /*
1814  *	Receive a frame from the socket and optionally record the address of the
1815  *	sender. We verify the buffers are writable and if needed move the
1816  *	sender address from kernel to user space.
1817  */
1818 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1819 		   struct sockaddr __user *addr, int __user *addr_len)
1820 {
1821 	struct socket *sock;
1822 	struct iovec iov;
1823 	struct msghdr msg;
1824 	struct sockaddr_storage address;
1825 	int err, err2;
1826 	int fput_needed;
1827 
1828 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1829 	if (unlikely(err))
1830 		return err;
1831 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 	if (!sock)
1833 		goto out;
1834 
1835 	msg.msg_control = NULL;
1836 	msg.msg_controllen = 0;
1837 	/* Save some cycles and don't copy the address if not needed */
1838 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1839 	/* We assume all kernel code knows the size of sockaddr_storage */
1840 	msg.msg_namelen = 0;
1841 	msg.msg_iocb = NULL;
1842 	msg.msg_flags = 0;
1843 	if (sock->file->f_flags & O_NONBLOCK)
1844 		flags |= MSG_DONTWAIT;
1845 	err = sock_recvmsg(sock, &msg, flags);
1846 
1847 	if (err >= 0 && addr != NULL) {
1848 		err2 = move_addr_to_user(&address,
1849 					 msg.msg_namelen, addr, addr_len);
1850 		if (err2 < 0)
1851 			err = err2;
1852 	}
1853 
1854 	fput_light(sock->file, fput_needed);
1855 out:
1856 	return err;
1857 }
1858 
1859 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1860 		unsigned int, flags, struct sockaddr __user *, addr,
1861 		int __user *, addr_len)
1862 {
1863 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1864 }
1865 
1866 /*
1867  *	Receive a datagram from a socket.
1868  */
1869 
1870 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1871 		unsigned int, flags)
1872 {
1873 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1874 }
1875 
1876 /*
1877  *	Set a socket option. Because we don't know the option lengths we have
1878  *	to pass the user mode parameter for the protocols to sort out.
1879  */
1880 
1881 static int __sys_setsockopt(int fd, int level, int optname,
1882 			    char __user *optval, int optlen)
1883 {
1884 	int err, fput_needed;
1885 	struct socket *sock;
1886 
1887 	if (optlen < 0)
1888 		return -EINVAL;
1889 
1890 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1891 	if (sock != NULL) {
1892 		err = security_socket_setsockopt(sock, level, optname);
1893 		if (err)
1894 			goto out_put;
1895 
1896 		if (level == SOL_SOCKET)
1897 			err =
1898 			    sock_setsockopt(sock, level, optname, optval,
1899 					    optlen);
1900 		else
1901 			err =
1902 			    sock->ops->setsockopt(sock, level, optname, optval,
1903 						  optlen);
1904 out_put:
1905 		fput_light(sock->file, fput_needed);
1906 	}
1907 	return err;
1908 }
1909 
1910 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1911 		char __user *, optval, int, optlen)
1912 {
1913 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1914 }
1915 
1916 /*
1917  *	Get a socket option. Because we don't know the option lengths we have
1918  *	to pass a user mode parameter for the protocols to sort out.
1919  */
1920 
1921 static int __sys_getsockopt(int fd, int level, int optname,
1922 			    char __user *optval, int __user *optlen)
1923 {
1924 	int err, fput_needed;
1925 	struct socket *sock;
1926 
1927 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1928 	if (sock != NULL) {
1929 		err = security_socket_getsockopt(sock, level, optname);
1930 		if (err)
1931 			goto out_put;
1932 
1933 		if (level == SOL_SOCKET)
1934 			err =
1935 			    sock_getsockopt(sock, level, optname, optval,
1936 					    optlen);
1937 		else
1938 			err =
1939 			    sock->ops->getsockopt(sock, level, optname, optval,
1940 						  optlen);
1941 out_put:
1942 		fput_light(sock->file, fput_needed);
1943 	}
1944 	return err;
1945 }
1946 
1947 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1948 		char __user *, optval, int __user *, optlen)
1949 {
1950 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1951 }
1952 
1953 /*
1954  *	Shutdown a socket.
1955  */
1956 
1957 int __sys_shutdown(int fd, int how)
1958 {
1959 	int err, fput_needed;
1960 	struct socket *sock;
1961 
1962 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1963 	if (sock != NULL) {
1964 		err = security_socket_shutdown(sock, how);
1965 		if (!err)
1966 			err = sock->ops->shutdown(sock, how);
1967 		fput_light(sock->file, fput_needed);
1968 	}
1969 	return err;
1970 }
1971 
1972 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1973 {
1974 	return __sys_shutdown(fd, how);
1975 }
1976 
1977 /* A couple of helpful macros for getting the address of the 32/64 bit
1978  * fields which are the same type (int / unsigned) on our platforms.
1979  */
1980 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1981 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1982 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1983 
1984 struct used_address {
1985 	struct sockaddr_storage name;
1986 	unsigned int name_len;
1987 };
1988 
1989 static int copy_msghdr_from_user(struct msghdr *kmsg,
1990 				 struct user_msghdr __user *umsg,
1991 				 struct sockaddr __user **save_addr,
1992 				 struct iovec **iov)
1993 {
1994 	struct user_msghdr msg;
1995 	ssize_t err;
1996 
1997 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1998 		return -EFAULT;
1999 
2000 	kmsg->msg_control = (void __force *)msg.msg_control;
2001 	kmsg->msg_controllen = msg.msg_controllen;
2002 	kmsg->msg_flags = msg.msg_flags;
2003 
2004 	kmsg->msg_namelen = msg.msg_namelen;
2005 	if (!msg.msg_name)
2006 		kmsg->msg_namelen = 0;
2007 
2008 	if (kmsg->msg_namelen < 0)
2009 		return -EINVAL;
2010 
2011 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2012 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2013 
2014 	if (save_addr)
2015 		*save_addr = msg.msg_name;
2016 
2017 	if (msg.msg_name && kmsg->msg_namelen) {
2018 		if (!save_addr) {
2019 			err = move_addr_to_kernel(msg.msg_name,
2020 						  kmsg->msg_namelen,
2021 						  kmsg->msg_name);
2022 			if (err < 0)
2023 				return err;
2024 		}
2025 	} else {
2026 		kmsg->msg_name = NULL;
2027 		kmsg->msg_namelen = 0;
2028 	}
2029 
2030 	if (msg.msg_iovlen > UIO_MAXIOV)
2031 		return -EMSGSIZE;
2032 
2033 	kmsg->msg_iocb = NULL;
2034 
2035 	return import_iovec(save_addr ? READ : WRITE,
2036 			    msg.msg_iov, msg.msg_iovlen,
2037 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2038 }
2039 
2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2041 			 struct msghdr *msg_sys, unsigned int flags,
2042 			 struct used_address *used_address,
2043 			 unsigned int allowed_msghdr_flags)
2044 {
2045 	struct compat_msghdr __user *msg_compat =
2046 	    (struct compat_msghdr __user *)msg;
2047 	struct sockaddr_storage address;
2048 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2049 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2050 				__aligned(sizeof(__kernel_size_t));
2051 	/* 20 is size of ipv6_pktinfo */
2052 	unsigned char *ctl_buf = ctl;
2053 	int ctl_len;
2054 	ssize_t err;
2055 
2056 	msg_sys->msg_name = &address;
2057 
2058 	if (MSG_CMSG_COMPAT & flags)
2059 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2060 	else
2061 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2062 	if (err < 0)
2063 		return err;
2064 
2065 	err = -ENOBUFS;
2066 
2067 	if (msg_sys->msg_controllen > INT_MAX)
2068 		goto out_freeiov;
2069 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2070 	ctl_len = msg_sys->msg_controllen;
2071 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2072 		err =
2073 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2074 						     sizeof(ctl));
2075 		if (err)
2076 			goto out_freeiov;
2077 		ctl_buf = msg_sys->msg_control;
2078 		ctl_len = msg_sys->msg_controllen;
2079 	} else if (ctl_len) {
2080 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2081 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2082 		if (ctl_len > sizeof(ctl)) {
2083 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2084 			if (ctl_buf == NULL)
2085 				goto out_freeiov;
2086 		}
2087 		err = -EFAULT;
2088 		/*
2089 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2090 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2091 		 * checking falls down on this.
2092 		 */
2093 		if (copy_from_user(ctl_buf,
2094 				   (void __user __force *)msg_sys->msg_control,
2095 				   ctl_len))
2096 			goto out_freectl;
2097 		msg_sys->msg_control = ctl_buf;
2098 	}
2099 	msg_sys->msg_flags = flags;
2100 
2101 	if (sock->file->f_flags & O_NONBLOCK)
2102 		msg_sys->msg_flags |= MSG_DONTWAIT;
2103 	/*
2104 	 * If this is sendmmsg() and current destination address is same as
2105 	 * previously succeeded address, omit asking LSM's decision.
2106 	 * used_address->name_len is initialized to UINT_MAX so that the first
2107 	 * destination address never matches.
2108 	 */
2109 	if (used_address && msg_sys->msg_name &&
2110 	    used_address->name_len == msg_sys->msg_namelen &&
2111 	    !memcmp(&used_address->name, msg_sys->msg_name,
2112 		    used_address->name_len)) {
2113 		err = sock_sendmsg_nosec(sock, msg_sys);
2114 		goto out_freectl;
2115 	}
2116 	err = sock_sendmsg(sock, msg_sys);
2117 	/*
2118 	 * If this is sendmmsg() and sending to current destination address was
2119 	 * successful, remember it.
2120 	 */
2121 	if (used_address && err >= 0) {
2122 		used_address->name_len = msg_sys->msg_namelen;
2123 		if (msg_sys->msg_name)
2124 			memcpy(&used_address->name, msg_sys->msg_name,
2125 			       used_address->name_len);
2126 	}
2127 
2128 out_freectl:
2129 	if (ctl_buf != ctl)
2130 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2131 out_freeiov:
2132 	kfree(iov);
2133 	return err;
2134 }
2135 
2136 /*
2137  *	BSD sendmsg interface
2138  */
2139 
2140 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2141 		   bool forbid_cmsg_compat)
2142 {
2143 	int fput_needed, err;
2144 	struct msghdr msg_sys;
2145 	struct socket *sock;
2146 
2147 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2148 		return -EINVAL;
2149 
2150 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2151 	if (!sock)
2152 		goto out;
2153 
2154 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2155 
2156 	fput_light(sock->file, fput_needed);
2157 out:
2158 	return err;
2159 }
2160 
2161 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2162 {
2163 	return __sys_sendmsg(fd, msg, flags, true);
2164 }
2165 
2166 /*
2167  *	Linux sendmmsg interface
2168  */
2169 
2170 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2171 		   unsigned int flags, bool forbid_cmsg_compat)
2172 {
2173 	int fput_needed, err, datagrams;
2174 	struct socket *sock;
2175 	struct mmsghdr __user *entry;
2176 	struct compat_mmsghdr __user *compat_entry;
2177 	struct msghdr msg_sys;
2178 	struct used_address used_address;
2179 	unsigned int oflags = flags;
2180 
2181 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2182 		return -EINVAL;
2183 
2184 	if (vlen > UIO_MAXIOV)
2185 		vlen = UIO_MAXIOV;
2186 
2187 	datagrams = 0;
2188 
2189 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 	if (!sock)
2191 		return err;
2192 
2193 	used_address.name_len = UINT_MAX;
2194 	entry = mmsg;
2195 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196 	err = 0;
2197 	flags |= MSG_BATCH;
2198 
2199 	while (datagrams < vlen) {
2200 		if (datagrams == vlen - 1)
2201 			flags = oflags;
2202 
2203 		if (MSG_CMSG_COMPAT & flags) {
2204 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2205 					     &msg_sys, flags, &used_address, MSG_EOR);
2206 			if (err < 0)
2207 				break;
2208 			err = __put_user(err, &compat_entry->msg_len);
2209 			++compat_entry;
2210 		} else {
2211 			err = ___sys_sendmsg(sock,
2212 					     (struct user_msghdr __user *)entry,
2213 					     &msg_sys, flags, &used_address, MSG_EOR);
2214 			if (err < 0)
2215 				break;
2216 			err = put_user(err, &entry->msg_len);
2217 			++entry;
2218 		}
2219 
2220 		if (err)
2221 			break;
2222 		++datagrams;
2223 		if (msg_data_left(&msg_sys))
2224 			break;
2225 		cond_resched();
2226 	}
2227 
2228 	fput_light(sock->file, fput_needed);
2229 
2230 	/* We only return an error if no datagrams were able to be sent */
2231 	if (datagrams != 0)
2232 		return datagrams;
2233 
2234 	return err;
2235 }
2236 
2237 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2238 		unsigned int, vlen, unsigned int, flags)
2239 {
2240 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2241 }
2242 
2243 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2244 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2245 {
2246 	struct compat_msghdr __user *msg_compat =
2247 	    (struct compat_msghdr __user *)msg;
2248 	struct iovec iovstack[UIO_FASTIOV];
2249 	struct iovec *iov = iovstack;
2250 	unsigned long cmsg_ptr;
2251 	int len;
2252 	ssize_t err;
2253 
2254 	/* kernel mode address */
2255 	struct sockaddr_storage addr;
2256 
2257 	/* user mode address pointers */
2258 	struct sockaddr __user *uaddr;
2259 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2260 
2261 	msg_sys->msg_name = &addr;
2262 
2263 	if (MSG_CMSG_COMPAT & flags)
2264 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2265 	else
2266 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2267 	if (err < 0)
2268 		return err;
2269 
2270 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2271 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2272 
2273 	/* We assume all kernel code knows the size of sockaddr_storage */
2274 	msg_sys->msg_namelen = 0;
2275 
2276 	if (sock->file->f_flags & O_NONBLOCK)
2277 		flags |= MSG_DONTWAIT;
2278 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2279 	if (err < 0)
2280 		goto out_freeiov;
2281 	len = err;
2282 
2283 	if (uaddr != NULL) {
2284 		err = move_addr_to_user(&addr,
2285 					msg_sys->msg_namelen, uaddr,
2286 					uaddr_len);
2287 		if (err < 0)
2288 			goto out_freeiov;
2289 	}
2290 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2291 			 COMPAT_FLAGS(msg));
2292 	if (err)
2293 		goto out_freeiov;
2294 	if (MSG_CMSG_COMPAT & flags)
2295 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2296 				 &msg_compat->msg_controllen);
2297 	else
2298 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2299 				 &msg->msg_controllen);
2300 	if (err)
2301 		goto out_freeiov;
2302 	err = len;
2303 
2304 out_freeiov:
2305 	kfree(iov);
2306 	return err;
2307 }
2308 
2309 /*
2310  *	BSD recvmsg interface
2311  */
2312 
2313 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2314 		   bool forbid_cmsg_compat)
2315 {
2316 	int fput_needed, err;
2317 	struct msghdr msg_sys;
2318 	struct socket *sock;
2319 
2320 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2321 		return -EINVAL;
2322 
2323 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2324 	if (!sock)
2325 		goto out;
2326 
2327 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2328 
2329 	fput_light(sock->file, fput_needed);
2330 out:
2331 	return err;
2332 }
2333 
2334 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2335 		unsigned int, flags)
2336 {
2337 	return __sys_recvmsg(fd, msg, flags, true);
2338 }
2339 
2340 /*
2341  *     Linux recvmmsg interface
2342  */
2343 
2344 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2345 			  unsigned int vlen, unsigned int flags,
2346 			  struct timespec64 *timeout)
2347 {
2348 	int fput_needed, err, datagrams;
2349 	struct socket *sock;
2350 	struct mmsghdr __user *entry;
2351 	struct compat_mmsghdr __user *compat_entry;
2352 	struct msghdr msg_sys;
2353 	struct timespec64 end_time;
2354 	struct timespec64 timeout64;
2355 
2356 	if (timeout &&
2357 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2358 				    timeout->tv_nsec))
2359 		return -EINVAL;
2360 
2361 	datagrams = 0;
2362 
2363 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2364 	if (!sock)
2365 		return err;
2366 
2367 	if (likely(!(flags & MSG_ERRQUEUE))) {
2368 		err = sock_error(sock->sk);
2369 		if (err) {
2370 			datagrams = err;
2371 			goto out_put;
2372 		}
2373 	}
2374 
2375 	entry = mmsg;
2376 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2377 
2378 	while (datagrams < vlen) {
2379 		/*
2380 		 * No need to ask LSM for more than the first datagram.
2381 		 */
2382 		if (MSG_CMSG_COMPAT & flags) {
2383 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2384 					     &msg_sys, flags & ~MSG_WAITFORONE,
2385 					     datagrams);
2386 			if (err < 0)
2387 				break;
2388 			err = __put_user(err, &compat_entry->msg_len);
2389 			++compat_entry;
2390 		} else {
2391 			err = ___sys_recvmsg(sock,
2392 					     (struct user_msghdr __user *)entry,
2393 					     &msg_sys, flags & ~MSG_WAITFORONE,
2394 					     datagrams);
2395 			if (err < 0)
2396 				break;
2397 			err = put_user(err, &entry->msg_len);
2398 			++entry;
2399 		}
2400 
2401 		if (err)
2402 			break;
2403 		++datagrams;
2404 
2405 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2406 		if (flags & MSG_WAITFORONE)
2407 			flags |= MSG_DONTWAIT;
2408 
2409 		if (timeout) {
2410 			ktime_get_ts64(&timeout64);
2411 			*timeout = timespec64_sub(end_time, timeout64);
2412 			if (timeout->tv_sec < 0) {
2413 				timeout->tv_sec = timeout->tv_nsec = 0;
2414 				break;
2415 			}
2416 
2417 			/* Timeout, return less than vlen datagrams */
2418 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2419 				break;
2420 		}
2421 
2422 		/* Out of band data, return right away */
2423 		if (msg_sys.msg_flags & MSG_OOB)
2424 			break;
2425 		cond_resched();
2426 	}
2427 
2428 	if (err == 0)
2429 		goto out_put;
2430 
2431 	if (datagrams == 0) {
2432 		datagrams = err;
2433 		goto out_put;
2434 	}
2435 
2436 	/*
2437 	 * We may return less entries than requested (vlen) if the
2438 	 * sock is non block and there aren't enough datagrams...
2439 	 */
2440 	if (err != -EAGAIN) {
2441 		/*
2442 		 * ... or  if recvmsg returns an error after we
2443 		 * received some datagrams, where we record the
2444 		 * error to return on the next call or if the
2445 		 * app asks about it using getsockopt(SO_ERROR).
2446 		 */
2447 		sock->sk->sk_err = -err;
2448 	}
2449 out_put:
2450 	fput_light(sock->file, fput_needed);
2451 
2452 	return datagrams;
2453 }
2454 
2455 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2456 		   unsigned int vlen, unsigned int flags,
2457 		   struct __kernel_timespec __user *timeout,
2458 		   struct old_timespec32 __user *timeout32)
2459 {
2460 	int datagrams;
2461 	struct timespec64 timeout_sys;
2462 
2463 	if (timeout && get_timespec64(&timeout_sys, timeout))
2464 		return -EFAULT;
2465 
2466 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2467 		return -EFAULT;
2468 
2469 	if (!timeout && !timeout32)
2470 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2471 
2472 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2473 
2474 	if (datagrams <= 0)
2475 		return datagrams;
2476 
2477 	if (timeout && put_timespec64(&timeout_sys, timeout))
2478 		datagrams = -EFAULT;
2479 
2480 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2481 		datagrams = -EFAULT;
2482 
2483 	return datagrams;
2484 }
2485 
2486 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2487 		unsigned int, vlen, unsigned int, flags,
2488 		struct __kernel_timespec __user *, timeout)
2489 {
2490 	if (flags & MSG_CMSG_COMPAT)
2491 		return -EINVAL;
2492 
2493 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2494 }
2495 
2496 #ifdef CONFIG_COMPAT_32BIT_TIME
2497 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2498 		unsigned int, vlen, unsigned int, flags,
2499 		struct old_timespec32 __user *, timeout)
2500 {
2501 	if (flags & MSG_CMSG_COMPAT)
2502 		return -EINVAL;
2503 
2504 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2505 }
2506 #endif
2507 
2508 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2509 /* Argument list sizes for sys_socketcall */
2510 #define AL(x) ((x) * sizeof(unsigned long))
2511 static const unsigned char nargs[21] = {
2512 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2513 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2514 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2515 	AL(4), AL(5), AL(4)
2516 };
2517 
2518 #undef AL
2519 
2520 /*
2521  *	System call vectors.
2522  *
2523  *	Argument checking cleaned up. Saved 20% in size.
2524  *  This function doesn't need to set the kernel lock because
2525  *  it is set by the callees.
2526  */
2527 
2528 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2529 {
2530 	unsigned long a[AUDITSC_ARGS];
2531 	unsigned long a0, a1;
2532 	int err;
2533 	unsigned int len;
2534 
2535 	if (call < 1 || call > SYS_SENDMMSG)
2536 		return -EINVAL;
2537 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2538 
2539 	len = nargs[call];
2540 	if (len > sizeof(a))
2541 		return -EINVAL;
2542 
2543 	/* copy_from_user should be SMP safe. */
2544 	if (copy_from_user(a, args, len))
2545 		return -EFAULT;
2546 
2547 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2548 	if (err)
2549 		return err;
2550 
2551 	a0 = a[0];
2552 	a1 = a[1];
2553 
2554 	switch (call) {
2555 	case SYS_SOCKET:
2556 		err = __sys_socket(a0, a1, a[2]);
2557 		break;
2558 	case SYS_BIND:
2559 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2560 		break;
2561 	case SYS_CONNECT:
2562 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2563 		break;
2564 	case SYS_LISTEN:
2565 		err = __sys_listen(a0, a1);
2566 		break;
2567 	case SYS_ACCEPT:
2568 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2569 				    (int __user *)a[2], 0);
2570 		break;
2571 	case SYS_GETSOCKNAME:
2572 		err =
2573 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2574 				      (int __user *)a[2]);
2575 		break;
2576 	case SYS_GETPEERNAME:
2577 		err =
2578 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2579 				      (int __user *)a[2]);
2580 		break;
2581 	case SYS_SOCKETPAIR:
2582 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2583 		break;
2584 	case SYS_SEND:
2585 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2586 				   NULL, 0);
2587 		break;
2588 	case SYS_SENDTO:
2589 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2590 				   (struct sockaddr __user *)a[4], a[5]);
2591 		break;
2592 	case SYS_RECV:
2593 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2594 				     NULL, NULL);
2595 		break;
2596 	case SYS_RECVFROM:
2597 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2598 				     (struct sockaddr __user *)a[4],
2599 				     (int __user *)a[5]);
2600 		break;
2601 	case SYS_SHUTDOWN:
2602 		err = __sys_shutdown(a0, a1);
2603 		break;
2604 	case SYS_SETSOCKOPT:
2605 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2606 				       a[4]);
2607 		break;
2608 	case SYS_GETSOCKOPT:
2609 		err =
2610 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2611 				     (int __user *)a[4]);
2612 		break;
2613 	case SYS_SENDMSG:
2614 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2615 				    a[2], true);
2616 		break;
2617 	case SYS_SENDMMSG:
2618 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2619 				     a[3], true);
2620 		break;
2621 	case SYS_RECVMSG:
2622 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2623 				    a[2], true);
2624 		break;
2625 	case SYS_RECVMMSG:
2626 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2627 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2628 					     a[2], a[3],
2629 					     (struct __kernel_timespec __user *)a[4],
2630 					     NULL);
2631 		else
2632 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2633 					     a[2], a[3], NULL,
2634 					     (struct old_timespec32 __user *)a[4]);
2635 		break;
2636 	case SYS_ACCEPT4:
2637 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2638 				    (int __user *)a[2], a[3]);
2639 		break;
2640 	default:
2641 		err = -EINVAL;
2642 		break;
2643 	}
2644 	return err;
2645 }
2646 
2647 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2648 
2649 /**
2650  *	sock_register - add a socket protocol handler
2651  *	@ops: description of protocol
2652  *
2653  *	This function is called by a protocol handler that wants to
2654  *	advertise its address family, and have it linked into the
2655  *	socket interface. The value ops->family corresponds to the
2656  *	socket system call protocol family.
2657  */
2658 int sock_register(const struct net_proto_family *ops)
2659 {
2660 	int err;
2661 
2662 	if (ops->family >= NPROTO) {
2663 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2664 		return -ENOBUFS;
2665 	}
2666 
2667 	spin_lock(&net_family_lock);
2668 	if (rcu_dereference_protected(net_families[ops->family],
2669 				      lockdep_is_held(&net_family_lock)))
2670 		err = -EEXIST;
2671 	else {
2672 		rcu_assign_pointer(net_families[ops->family], ops);
2673 		err = 0;
2674 	}
2675 	spin_unlock(&net_family_lock);
2676 
2677 	pr_info("NET: Registered protocol family %d\n", ops->family);
2678 	return err;
2679 }
2680 EXPORT_SYMBOL(sock_register);
2681 
2682 /**
2683  *	sock_unregister - remove a protocol handler
2684  *	@family: protocol family to remove
2685  *
2686  *	This function is called by a protocol handler that wants to
2687  *	remove its address family, and have it unlinked from the
2688  *	new socket creation.
2689  *
2690  *	If protocol handler is a module, then it can use module reference
2691  *	counts to protect against new references. If protocol handler is not
2692  *	a module then it needs to provide its own protection in
2693  *	the ops->create routine.
2694  */
2695 void sock_unregister(int family)
2696 {
2697 	BUG_ON(family < 0 || family >= NPROTO);
2698 
2699 	spin_lock(&net_family_lock);
2700 	RCU_INIT_POINTER(net_families[family], NULL);
2701 	spin_unlock(&net_family_lock);
2702 
2703 	synchronize_rcu();
2704 
2705 	pr_info("NET: Unregistered protocol family %d\n", family);
2706 }
2707 EXPORT_SYMBOL(sock_unregister);
2708 
2709 bool sock_is_registered(int family)
2710 {
2711 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2712 }
2713 
2714 static int __init sock_init(void)
2715 {
2716 	int err;
2717 	/*
2718 	 *      Initialize the network sysctl infrastructure.
2719 	 */
2720 	err = net_sysctl_init();
2721 	if (err)
2722 		goto out;
2723 
2724 	/*
2725 	 *      Initialize skbuff SLAB cache
2726 	 */
2727 	skb_init();
2728 
2729 	/*
2730 	 *      Initialize the protocols module.
2731 	 */
2732 
2733 	init_inodecache();
2734 
2735 	err = register_filesystem(&sock_fs_type);
2736 	if (err)
2737 		goto out_fs;
2738 	sock_mnt = kern_mount(&sock_fs_type);
2739 	if (IS_ERR(sock_mnt)) {
2740 		err = PTR_ERR(sock_mnt);
2741 		goto out_mount;
2742 	}
2743 
2744 	/* The real protocol initialization is performed in later initcalls.
2745 	 */
2746 
2747 #ifdef CONFIG_NETFILTER
2748 	err = netfilter_init();
2749 	if (err)
2750 		goto out;
2751 #endif
2752 
2753 	ptp_classifier_init();
2754 
2755 out:
2756 	return err;
2757 
2758 out_mount:
2759 	unregister_filesystem(&sock_fs_type);
2760 out_fs:
2761 	goto out;
2762 }
2763 
2764 core_initcall(sock_init);	/* early initcall */
2765 
2766 #ifdef CONFIG_PROC_FS
2767 void socket_seq_show(struct seq_file *seq)
2768 {
2769 	seq_printf(seq, "sockets: used %d\n",
2770 		   sock_inuse_get(seq->private));
2771 }
2772 #endif				/* CONFIG_PROC_FS */
2773 
2774 #ifdef CONFIG_COMPAT
2775 static int do_siocgstamp(struct net *net, struct socket *sock,
2776 			 unsigned int cmd, void __user *up)
2777 {
2778 	mm_segment_t old_fs = get_fs();
2779 	struct timeval ktv;
2780 	int err;
2781 
2782 	set_fs(KERNEL_DS);
2783 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv,
2784 			    sizeof(struct compat_ifreq));
2785 	set_fs(old_fs);
2786 	if (!err)
2787 		err = compat_put_timeval(&ktv, up);
2788 
2789 	return err;
2790 }
2791 
2792 static int do_siocgstampns(struct net *net, struct socket *sock,
2793 			   unsigned int cmd, void __user *up)
2794 {
2795 	mm_segment_t old_fs = get_fs();
2796 	struct timespec kts;
2797 	int err;
2798 
2799 	set_fs(KERNEL_DS);
2800 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts,
2801 			    sizeof(struct compat_ifreq));
2802 	set_fs(old_fs);
2803 	if (!err)
2804 		err = compat_put_timespec(&kts, up);
2805 
2806 	return err;
2807 }
2808 
2809 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2810 {
2811 	struct compat_ifconf ifc32;
2812 	struct ifconf ifc;
2813 	int err;
2814 
2815 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2816 		return -EFAULT;
2817 
2818 	ifc.ifc_len = ifc32.ifc_len;
2819 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2820 
2821 	rtnl_lock();
2822 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2823 	rtnl_unlock();
2824 	if (err)
2825 		return err;
2826 
2827 	ifc32.ifc_len = ifc.ifc_len;
2828 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2829 		return -EFAULT;
2830 
2831 	return 0;
2832 }
2833 
2834 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2835 {
2836 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2837 	bool convert_in = false, convert_out = false;
2838 	size_t buf_size = 0;
2839 	struct ethtool_rxnfc __user *rxnfc = NULL;
2840 	struct ifreq ifr;
2841 	u32 rule_cnt = 0, actual_rule_cnt;
2842 	u32 ethcmd;
2843 	u32 data;
2844 	int ret;
2845 
2846 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2847 		return -EFAULT;
2848 
2849 	compat_rxnfc = compat_ptr(data);
2850 
2851 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2852 		return -EFAULT;
2853 
2854 	/* Most ethtool structures are defined without padding.
2855 	 * Unfortunately struct ethtool_rxnfc is an exception.
2856 	 */
2857 	switch (ethcmd) {
2858 	default:
2859 		break;
2860 	case ETHTOOL_GRXCLSRLALL:
2861 		/* Buffer size is variable */
2862 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2863 			return -EFAULT;
2864 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2865 			return -ENOMEM;
2866 		buf_size += rule_cnt * sizeof(u32);
2867 		/* fall through */
2868 	case ETHTOOL_GRXRINGS:
2869 	case ETHTOOL_GRXCLSRLCNT:
2870 	case ETHTOOL_GRXCLSRULE:
2871 	case ETHTOOL_SRXCLSRLINS:
2872 		convert_out = true;
2873 		/* fall through */
2874 	case ETHTOOL_SRXCLSRLDEL:
2875 		buf_size += sizeof(struct ethtool_rxnfc);
2876 		convert_in = true;
2877 		rxnfc = compat_alloc_user_space(buf_size);
2878 		break;
2879 	}
2880 
2881 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2882 		return -EFAULT;
2883 
2884 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2885 
2886 	if (convert_in) {
2887 		/* We expect there to be holes between fs.m_ext and
2888 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2889 		 */
2890 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2891 			     sizeof(compat_rxnfc->fs.m_ext) !=
2892 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2893 			     sizeof(rxnfc->fs.m_ext));
2894 		BUILD_BUG_ON(
2895 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2896 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2897 			offsetof(struct ethtool_rxnfc, fs.location) -
2898 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2899 
2900 		if (copy_in_user(rxnfc, compat_rxnfc,
2901 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2902 				 (void __user *)rxnfc) ||
2903 		    copy_in_user(&rxnfc->fs.ring_cookie,
2904 				 &compat_rxnfc->fs.ring_cookie,
2905 				 (void __user *)(&rxnfc->fs.location + 1) -
2906 				 (void __user *)&rxnfc->fs.ring_cookie))
2907 			return -EFAULT;
2908 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2909 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
2910 				return -EFAULT;
2911 		} else if (copy_in_user(&rxnfc->rule_cnt,
2912 					&compat_rxnfc->rule_cnt,
2913 					sizeof(rxnfc->rule_cnt)))
2914 			return -EFAULT;
2915 	}
2916 
2917 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2918 	if (ret)
2919 		return ret;
2920 
2921 	if (convert_out) {
2922 		if (copy_in_user(compat_rxnfc, rxnfc,
2923 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2924 				 (const void __user *)rxnfc) ||
2925 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2926 				 &rxnfc->fs.ring_cookie,
2927 				 (const void __user *)(&rxnfc->fs.location + 1) -
2928 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2929 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2930 				 sizeof(rxnfc->rule_cnt)))
2931 			return -EFAULT;
2932 
2933 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2934 			/* As an optimisation, we only copy the actual
2935 			 * number of rules that the underlying
2936 			 * function returned.  Since Mallory might
2937 			 * change the rule count in user memory, we
2938 			 * check that it is less than the rule count
2939 			 * originally given (as the user buffer size),
2940 			 * which has been range-checked.
2941 			 */
2942 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2943 				return -EFAULT;
2944 			if (actual_rule_cnt < rule_cnt)
2945 				rule_cnt = actual_rule_cnt;
2946 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2947 					 &rxnfc->rule_locs[0],
2948 					 rule_cnt * sizeof(u32)))
2949 				return -EFAULT;
2950 		}
2951 	}
2952 
2953 	return 0;
2954 }
2955 
2956 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2957 {
2958 	compat_uptr_t uptr32;
2959 	struct ifreq ifr;
2960 	void __user *saved;
2961 	int err;
2962 
2963 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2964 		return -EFAULT;
2965 
2966 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2967 		return -EFAULT;
2968 
2969 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2970 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2971 
2972 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2973 	if (!err) {
2974 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2975 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2976 			err = -EFAULT;
2977 	}
2978 	return err;
2979 }
2980 
2981 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2982 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2983 				 struct compat_ifreq __user *u_ifreq32)
2984 {
2985 	struct ifreq ifreq;
2986 	u32 data32;
2987 
2988 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2989 		return -EFAULT;
2990 	if (get_user(data32, &u_ifreq32->ifr_data))
2991 		return -EFAULT;
2992 	ifreq.ifr_data = compat_ptr(data32);
2993 
2994 	return dev_ioctl(net, cmd, &ifreq, NULL);
2995 }
2996 
2997 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2998 			struct compat_ifreq __user *uifr32)
2999 {
3000 	struct ifreq ifr;
3001 	struct compat_ifmap __user *uifmap32;
3002 	int err;
3003 
3004 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3005 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3006 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3007 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3008 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3009 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3010 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3011 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3012 	if (err)
3013 		return -EFAULT;
3014 
3015 	err = dev_ioctl(net, cmd, &ifr, NULL);
3016 
3017 	if (cmd == SIOCGIFMAP && !err) {
3018 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3019 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3020 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3021 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3022 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3023 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3024 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3025 		if (err)
3026 			err = -EFAULT;
3027 	}
3028 	return err;
3029 }
3030 
3031 struct rtentry32 {
3032 	u32		rt_pad1;
3033 	struct sockaddr rt_dst;         /* target address               */
3034 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3035 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3036 	unsigned short	rt_flags;
3037 	short		rt_pad2;
3038 	u32		rt_pad3;
3039 	unsigned char	rt_tos;
3040 	unsigned char	rt_class;
3041 	short		rt_pad4;
3042 	short		rt_metric;      /* +1 for binary compatibility! */
3043 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3044 	u32		rt_mtu;         /* per route MTU/Window         */
3045 	u32		rt_window;      /* Window clamping              */
3046 	unsigned short  rt_irtt;        /* Initial RTT                  */
3047 };
3048 
3049 struct in6_rtmsg32 {
3050 	struct in6_addr		rtmsg_dst;
3051 	struct in6_addr		rtmsg_src;
3052 	struct in6_addr		rtmsg_gateway;
3053 	u32			rtmsg_type;
3054 	u16			rtmsg_dst_len;
3055 	u16			rtmsg_src_len;
3056 	u32			rtmsg_metric;
3057 	u32			rtmsg_info;
3058 	u32			rtmsg_flags;
3059 	s32			rtmsg_ifindex;
3060 };
3061 
3062 static int routing_ioctl(struct net *net, struct socket *sock,
3063 			 unsigned int cmd, void __user *argp)
3064 {
3065 	int ret;
3066 	void *r = NULL;
3067 	struct in6_rtmsg r6;
3068 	struct rtentry r4;
3069 	char devname[16];
3070 	u32 rtdev;
3071 	mm_segment_t old_fs = get_fs();
3072 
3073 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3074 		struct in6_rtmsg32 __user *ur6 = argp;
3075 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3076 			3 * sizeof(struct in6_addr));
3077 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3078 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3079 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3080 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3081 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3082 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3083 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3084 
3085 		r = (void *) &r6;
3086 	} else { /* ipv4 */
3087 		struct rtentry32 __user *ur4 = argp;
3088 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3089 					3 * sizeof(struct sockaddr));
3090 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3091 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3092 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3093 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3094 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3095 		ret |= get_user(rtdev, &(ur4->rt_dev));
3096 		if (rtdev) {
3097 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3098 			r4.rt_dev = (char __user __force *)devname;
3099 			devname[15] = 0;
3100 		} else
3101 			r4.rt_dev = NULL;
3102 
3103 		r = (void *) &r4;
3104 	}
3105 
3106 	if (ret) {
3107 		ret = -EFAULT;
3108 		goto out;
3109 	}
3110 
3111 	set_fs(KERNEL_DS);
3112 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r,
3113 			    sizeof(struct compat_ifreq));
3114 	set_fs(old_fs);
3115 
3116 out:
3117 	return ret;
3118 }
3119 
3120 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3121  * for some operations; this forces use of the newer bridge-utils that
3122  * use compatible ioctls
3123  */
3124 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3125 {
3126 	compat_ulong_t tmp;
3127 
3128 	if (get_user(tmp, argp))
3129 		return -EFAULT;
3130 	if (tmp == BRCTL_GET_VERSION)
3131 		return BRCTL_VERSION + 1;
3132 	return -EINVAL;
3133 }
3134 
3135 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3136 			 unsigned int cmd, unsigned long arg)
3137 {
3138 	void __user *argp = compat_ptr(arg);
3139 	struct sock *sk = sock->sk;
3140 	struct net *net = sock_net(sk);
3141 
3142 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3143 		return compat_ifr_data_ioctl(net, cmd, argp);
3144 
3145 	switch (cmd) {
3146 	case SIOCSIFBR:
3147 	case SIOCGIFBR:
3148 		return old_bridge_ioctl(argp);
3149 	case SIOCGIFCONF:
3150 		return compat_dev_ifconf(net, argp);
3151 	case SIOCETHTOOL:
3152 		return ethtool_ioctl(net, argp);
3153 	case SIOCWANDEV:
3154 		return compat_siocwandev(net, argp);
3155 	case SIOCGIFMAP:
3156 	case SIOCSIFMAP:
3157 		return compat_sioc_ifmap(net, cmd, argp);
3158 	case SIOCADDRT:
3159 	case SIOCDELRT:
3160 		return routing_ioctl(net, sock, cmd, argp);
3161 	case SIOCGSTAMP:
3162 		return do_siocgstamp(net, sock, cmd, argp);
3163 	case SIOCGSTAMPNS:
3164 		return do_siocgstampns(net, sock, cmd, argp);
3165 	case SIOCBONDSLAVEINFOQUERY:
3166 	case SIOCBONDINFOQUERY:
3167 	case SIOCSHWTSTAMP:
3168 	case SIOCGHWTSTAMP:
3169 		return compat_ifr_data_ioctl(net, cmd, argp);
3170 
3171 	case FIOSETOWN:
3172 	case SIOCSPGRP:
3173 	case FIOGETOWN:
3174 	case SIOCGPGRP:
3175 	case SIOCBRADDBR:
3176 	case SIOCBRDELBR:
3177 	case SIOCGIFVLAN:
3178 	case SIOCSIFVLAN:
3179 	case SIOCADDDLCI:
3180 	case SIOCDELDLCI:
3181 	case SIOCGSKNS:
3182 		return sock_ioctl(file, cmd, arg);
3183 
3184 	case SIOCGIFFLAGS:
3185 	case SIOCSIFFLAGS:
3186 	case SIOCGIFMETRIC:
3187 	case SIOCSIFMETRIC:
3188 	case SIOCGIFMTU:
3189 	case SIOCSIFMTU:
3190 	case SIOCGIFMEM:
3191 	case SIOCSIFMEM:
3192 	case SIOCGIFHWADDR:
3193 	case SIOCSIFHWADDR:
3194 	case SIOCADDMULTI:
3195 	case SIOCDELMULTI:
3196 	case SIOCGIFINDEX:
3197 	case SIOCGIFADDR:
3198 	case SIOCSIFADDR:
3199 	case SIOCSIFHWBROADCAST:
3200 	case SIOCDIFADDR:
3201 	case SIOCGIFBRDADDR:
3202 	case SIOCSIFBRDADDR:
3203 	case SIOCGIFDSTADDR:
3204 	case SIOCSIFDSTADDR:
3205 	case SIOCGIFNETMASK:
3206 	case SIOCSIFNETMASK:
3207 	case SIOCSIFPFLAGS:
3208 	case SIOCGIFPFLAGS:
3209 	case SIOCGIFTXQLEN:
3210 	case SIOCSIFTXQLEN:
3211 	case SIOCBRADDIF:
3212 	case SIOCBRDELIF:
3213 	case SIOCSIFNAME:
3214 	case SIOCGMIIPHY:
3215 	case SIOCGMIIREG:
3216 	case SIOCSMIIREG:
3217 	case SIOCSARP:
3218 	case SIOCGARP:
3219 	case SIOCDARP:
3220 	case SIOCATMARK:
3221 	case SIOCBONDENSLAVE:
3222 	case SIOCBONDRELEASE:
3223 	case SIOCBONDSETHWADDR:
3224 	case SIOCBONDCHANGEACTIVE:
3225 	case SIOCGIFNAME:
3226 		return sock_do_ioctl(net, sock, cmd, arg,
3227 				     sizeof(struct compat_ifreq));
3228 	}
3229 
3230 	return -ENOIOCTLCMD;
3231 }
3232 
3233 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3234 			      unsigned long arg)
3235 {
3236 	struct socket *sock = file->private_data;
3237 	int ret = -ENOIOCTLCMD;
3238 	struct sock *sk;
3239 	struct net *net;
3240 
3241 	sk = sock->sk;
3242 	net = sock_net(sk);
3243 
3244 	if (sock->ops->compat_ioctl)
3245 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3246 
3247 	if (ret == -ENOIOCTLCMD &&
3248 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3249 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3250 
3251 	if (ret == -ENOIOCTLCMD)
3252 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3253 
3254 	return ret;
3255 }
3256 #endif
3257 
3258 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3259 {
3260 	return sock->ops->bind(sock, addr, addrlen);
3261 }
3262 EXPORT_SYMBOL(kernel_bind);
3263 
3264 int kernel_listen(struct socket *sock, int backlog)
3265 {
3266 	return sock->ops->listen(sock, backlog);
3267 }
3268 EXPORT_SYMBOL(kernel_listen);
3269 
3270 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3271 {
3272 	struct sock *sk = sock->sk;
3273 	int err;
3274 
3275 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3276 			       newsock);
3277 	if (err < 0)
3278 		goto done;
3279 
3280 	err = sock->ops->accept(sock, *newsock, flags, true);
3281 	if (err < 0) {
3282 		sock_release(*newsock);
3283 		*newsock = NULL;
3284 		goto done;
3285 	}
3286 
3287 	(*newsock)->ops = sock->ops;
3288 	__module_get((*newsock)->ops->owner);
3289 
3290 done:
3291 	return err;
3292 }
3293 EXPORT_SYMBOL(kernel_accept);
3294 
3295 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3296 		   int flags)
3297 {
3298 	return sock->ops->connect(sock, addr, addrlen, flags);
3299 }
3300 EXPORT_SYMBOL(kernel_connect);
3301 
3302 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3303 {
3304 	return sock->ops->getname(sock, addr, 0);
3305 }
3306 EXPORT_SYMBOL(kernel_getsockname);
3307 
3308 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3309 {
3310 	return sock->ops->getname(sock, addr, 1);
3311 }
3312 EXPORT_SYMBOL(kernel_getpeername);
3313 
3314 int kernel_getsockopt(struct socket *sock, int level, int optname,
3315 			char *optval, int *optlen)
3316 {
3317 	mm_segment_t oldfs = get_fs();
3318 	char __user *uoptval;
3319 	int __user *uoptlen;
3320 	int err;
3321 
3322 	uoptval = (char __user __force *) optval;
3323 	uoptlen = (int __user __force *) optlen;
3324 
3325 	set_fs(KERNEL_DS);
3326 	if (level == SOL_SOCKET)
3327 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3328 	else
3329 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3330 					    uoptlen);
3331 	set_fs(oldfs);
3332 	return err;
3333 }
3334 EXPORT_SYMBOL(kernel_getsockopt);
3335 
3336 int kernel_setsockopt(struct socket *sock, int level, int optname,
3337 			char *optval, unsigned int optlen)
3338 {
3339 	mm_segment_t oldfs = get_fs();
3340 	char __user *uoptval;
3341 	int err;
3342 
3343 	uoptval = (char __user __force *) optval;
3344 
3345 	set_fs(KERNEL_DS);
3346 	if (level == SOL_SOCKET)
3347 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3348 	else
3349 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3350 					    optlen);
3351 	set_fs(oldfs);
3352 	return err;
3353 }
3354 EXPORT_SYMBOL(kernel_setsockopt);
3355 
3356 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3357 		    size_t size, int flags)
3358 {
3359 	if (sock->ops->sendpage)
3360 		return sock->ops->sendpage(sock, page, offset, size, flags);
3361 
3362 	return sock_no_sendpage(sock, page, offset, size, flags);
3363 }
3364 EXPORT_SYMBOL(kernel_sendpage);
3365 
3366 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3367 			   size_t size, int flags)
3368 {
3369 	struct socket *sock = sk->sk_socket;
3370 
3371 	if (sock->ops->sendpage_locked)
3372 		return sock->ops->sendpage_locked(sk, page, offset, size,
3373 						  flags);
3374 
3375 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3376 }
3377 EXPORT_SYMBOL(kernel_sendpage_locked);
3378 
3379 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3380 {
3381 	return sock->ops->shutdown(sock, how);
3382 }
3383 EXPORT_SYMBOL(kernel_sock_shutdown);
3384 
3385 /* This routine returns the IP overhead imposed by a socket i.e.
3386  * the length of the underlying IP header, depending on whether
3387  * this is an IPv4 or IPv6 socket and the length from IP options turned
3388  * on at the socket. Assumes that the caller has a lock on the socket.
3389  */
3390 u32 kernel_sock_ip_overhead(struct sock *sk)
3391 {
3392 	struct inet_sock *inet;
3393 	struct ip_options_rcu *opt;
3394 	u32 overhead = 0;
3395 #if IS_ENABLED(CONFIG_IPV6)
3396 	struct ipv6_pinfo *np;
3397 	struct ipv6_txoptions *optv6 = NULL;
3398 #endif /* IS_ENABLED(CONFIG_IPV6) */
3399 
3400 	if (!sk)
3401 		return overhead;
3402 
3403 	switch (sk->sk_family) {
3404 	case AF_INET:
3405 		inet = inet_sk(sk);
3406 		overhead += sizeof(struct iphdr);
3407 		opt = rcu_dereference_protected(inet->inet_opt,
3408 						sock_owned_by_user(sk));
3409 		if (opt)
3410 			overhead += opt->opt.optlen;
3411 		return overhead;
3412 #if IS_ENABLED(CONFIG_IPV6)
3413 	case AF_INET6:
3414 		np = inet6_sk(sk);
3415 		overhead += sizeof(struct ipv6hdr);
3416 		if (np)
3417 			optv6 = rcu_dereference_protected(np->opt,
3418 							  sock_owned_by_user(sk));
3419 		if (optv6)
3420 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3421 		return overhead;
3422 #endif /* IS_ENABLED(CONFIG_IPV6) */
3423 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3424 		return overhead;
3425 	}
3426 }
3427 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3428