xref: /openbmc/linux/net/socket.c (revision 840ef8b7)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 	struct socket_wq *wq;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 	if (!wq) {
250 		kmem_cache_free(sock_inode_cachep, ei);
251 		return NULL;
252 	}
253 	init_waitqueue_head(&wq->wait);
254 	wq->fasync_list = NULL;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static int init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD),
292 					      init_once);
293 	if (sock_inode_cachep == NULL)
294 		return -ENOMEM;
295 	return 0;
296 }
297 
298 static const struct super_operations sockfs_ops = {
299 	.alloc_inode	= sock_alloc_inode,
300 	.destroy_inode	= sock_destroy_inode,
301 	.statfs		= simple_statfs,
302 };
303 
304 /*
305  * sockfs_dname() is called from d_path().
306  */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 				dentry->d_inode->i_ino);
311 }
312 
313 static const struct dentry_operations sockfs_dentry_operations = {
314 	.d_dname  = sockfs_dname,
315 };
316 
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 			 int flags, const char *dev_name, void *data)
319 {
320 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 		&sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323 
324 static struct vfsmount *sock_mnt __read_mostly;
325 
326 static struct file_system_type sock_fs_type = {
327 	.name =		"sockfs",
328 	.mount =	sockfs_mount,
329 	.kill_sb =	kill_anon_super,
330 };
331 
332 /*
333  *	Obtains the first available file descriptor and sets it up for use.
334  *
335  *	These functions create file structures and maps them to fd space
336  *	of the current process. On success it returns file descriptor
337  *	and file struct implicitly stored in sock->file.
338  *	Note that another thread may close file descriptor before we return
339  *	from this function. We use the fact that now we do not refer
340  *	to socket after mapping. If one day we will need it, this
341  *	function will increment ref. count on file by 1.
342  *
343  *	In any case returned fd MAY BE not valid!
344  *	This race condition is unavoidable
345  *	with shared fd spaces, we cannot solve it inside kernel,
346  *	but we take care of internal coherence yet.
347  */
348 
349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
350 {
351 	struct qstr name = { .name = "" };
352 	struct path path;
353 	struct file *file;
354 
355 	if (dname) {
356 		name.name = dname;
357 		name.len = strlen(name.name);
358 	} else if (sock->sk) {
359 		name.name = sock->sk->sk_prot_creator->name;
360 		name.len = strlen(name.name);
361 	}
362 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363 	if (unlikely(!path.dentry))
364 		return ERR_PTR(-ENOMEM);
365 	path.mnt = mntget(sock_mnt);
366 
367 	d_instantiate(path.dentry, SOCK_INODE(sock));
368 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
369 
370 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 		  &socket_file_ops);
372 	if (unlikely(IS_ERR(file))) {
373 		/* drop dentry, keep inode */
374 		ihold(path.dentry->d_inode);
375 		path_put(&path);
376 		return file;
377 	}
378 
379 	sock->file = file;
380 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381 	file->private_data = sock;
382 	return file;
383 }
384 EXPORT_SYMBOL(sock_alloc_file);
385 
386 static int sock_map_fd(struct socket *sock, int flags)
387 {
388 	struct file *newfile;
389 	int fd = get_unused_fd_flags(flags);
390 	if (unlikely(fd < 0))
391 		return fd;
392 
393 	newfile = sock_alloc_file(sock, flags, NULL);
394 	if (likely(!IS_ERR(newfile))) {
395 		fd_install(fd, newfile);
396 		return fd;
397 	}
398 
399 	put_unused_fd(fd);
400 	return PTR_ERR(newfile);
401 }
402 
403 struct socket *sock_from_file(struct file *file, int *err)
404 {
405 	if (file->f_op == &socket_file_ops)
406 		return file->private_data;	/* set in sock_map_fd */
407 
408 	*err = -ENOTSOCK;
409 	return NULL;
410 }
411 EXPORT_SYMBOL(sock_from_file);
412 
413 /**
414  *	sockfd_lookup - Go from a file number to its socket slot
415  *	@fd: file handle
416  *	@err: pointer to an error code return
417  *
418  *	The file handle passed in is locked and the socket it is bound
419  *	too is returned. If an error occurs the err pointer is overwritten
420  *	with a negative errno code and NULL is returned. The function checks
421  *	for both invalid handles and passing a handle which is not a socket.
422  *
423  *	On a success the socket object pointer is returned.
424  */
425 
426 struct socket *sockfd_lookup(int fd, int *err)
427 {
428 	struct file *file;
429 	struct socket *sock;
430 
431 	file = fget(fd);
432 	if (!file) {
433 		*err = -EBADF;
434 		return NULL;
435 	}
436 
437 	sock = sock_from_file(file, err);
438 	if (!sock)
439 		fput(file);
440 	return sock;
441 }
442 EXPORT_SYMBOL(sockfd_lookup);
443 
444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
445 {
446 	struct file *file;
447 	struct socket *sock;
448 
449 	*err = -EBADF;
450 	file = fget_light(fd, fput_needed);
451 	if (file) {
452 		sock = sock_from_file(file, err);
453 		if (sock)
454 			return sock;
455 		fput_light(file, *fput_needed);
456 	}
457 	return NULL;
458 }
459 
460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
463 static ssize_t sockfs_getxattr(struct dentry *dentry,
464 			       const char *name, void *value, size_t size)
465 {
466 	const char *proto_name;
467 	size_t proto_size;
468 	int error;
469 
470 	error = -ENODATA;
471 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
472 		proto_name = dentry->d_name.name;
473 		proto_size = strlen(proto_name);
474 
475 		if (value) {
476 			error = -ERANGE;
477 			if (proto_size + 1 > size)
478 				goto out;
479 
480 			strncpy(value, proto_name, proto_size + 1);
481 		}
482 		error = proto_size + 1;
483 	}
484 
485 out:
486 	return error;
487 }
488 
489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
490 				size_t size)
491 {
492 	ssize_t len;
493 	ssize_t used = 0;
494 
495 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
496 	if (len < 0)
497 		return len;
498 	used += len;
499 	if (buffer) {
500 		if (size < used)
501 			return -ERANGE;
502 		buffer += len;
503 	}
504 
505 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
506 	used += len;
507 	if (buffer) {
508 		if (size < used)
509 			return -ERANGE;
510 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
511 		buffer += len;
512 	}
513 
514 	return used;
515 }
516 
517 static const struct inode_operations sockfs_inode_ops = {
518 	.getxattr = sockfs_getxattr,
519 	.listxattr = sockfs_listxattr,
520 };
521 
522 /**
523  *	sock_alloc	-	allocate a socket
524  *
525  *	Allocate a new inode and socket object. The two are bound together
526  *	and initialised. The socket is then returned. If we are out of inodes
527  *	NULL is returned.
528  */
529 
530 static struct socket *sock_alloc(void)
531 {
532 	struct inode *inode;
533 	struct socket *sock;
534 
535 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
536 	if (!inode)
537 		return NULL;
538 
539 	sock = SOCKET_I(inode);
540 
541 	kmemcheck_annotate_bitfield(sock, type);
542 	inode->i_ino = get_next_ino();
543 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
544 	inode->i_uid = current_fsuid();
545 	inode->i_gid = current_fsgid();
546 	inode->i_op = &sockfs_inode_ops;
547 
548 	this_cpu_add(sockets_in_use, 1);
549 	return sock;
550 }
551 
552 /*
553  *	In theory you can't get an open on this inode, but /proc provides
554  *	a back door. Remember to keep it shut otherwise you'll let the
555  *	creepy crawlies in.
556  */
557 
558 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
559 {
560 	return -ENXIO;
561 }
562 
563 const struct file_operations bad_sock_fops = {
564 	.owner = THIS_MODULE,
565 	.open = sock_no_open,
566 	.llseek = noop_llseek,
567 };
568 
569 /**
570  *	sock_release	-	close a socket
571  *	@sock: socket to close
572  *
573  *	The socket is released from the protocol stack if it has a release
574  *	callback, and the inode is then released if the socket is bound to
575  *	an inode not a file.
576  */
577 
578 void sock_release(struct socket *sock)
579 {
580 	if (sock->ops) {
581 		struct module *owner = sock->ops->owner;
582 
583 		sock->ops->release(sock);
584 		sock->ops = NULL;
585 		module_put(owner);
586 	}
587 
588 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
589 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
590 
591 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
592 		return;
593 
594 	this_cpu_sub(sockets_in_use, 1);
595 	if (!sock->file) {
596 		iput(SOCK_INODE(sock));
597 		return;
598 	}
599 	sock->file = NULL;
600 }
601 EXPORT_SYMBOL(sock_release);
602 
603 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
604 {
605 	*tx_flags = 0;
606 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
607 		*tx_flags |= SKBTX_HW_TSTAMP;
608 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
609 		*tx_flags |= SKBTX_SW_TSTAMP;
610 	if (sock_flag(sk, SOCK_WIFI_STATUS))
611 		*tx_flags |= SKBTX_WIFI_STATUS;
612 	return 0;
613 }
614 EXPORT_SYMBOL(sock_tx_timestamp);
615 
616 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
617 				       struct msghdr *msg, size_t size)
618 {
619 	struct sock_iocb *si = kiocb_to_siocb(iocb);
620 
621 	si->sock = sock;
622 	si->scm = NULL;
623 	si->msg = msg;
624 	si->size = size;
625 
626 	return sock->ops->sendmsg(iocb, sock, msg, size);
627 }
628 
629 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
630 				 struct msghdr *msg, size_t size)
631 {
632 	int err = security_socket_sendmsg(sock, msg, size);
633 
634 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
635 }
636 
637 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
638 {
639 	struct kiocb iocb;
640 	struct sock_iocb siocb;
641 	int ret;
642 
643 	init_sync_kiocb(&iocb, NULL);
644 	iocb.private = &siocb;
645 	ret = __sock_sendmsg(&iocb, sock, msg, size);
646 	if (-EIOCBQUEUED == ret)
647 		ret = wait_on_sync_kiocb(&iocb);
648 	return ret;
649 }
650 EXPORT_SYMBOL(sock_sendmsg);
651 
652 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
653 {
654 	struct kiocb iocb;
655 	struct sock_iocb siocb;
656 	int ret;
657 
658 	init_sync_kiocb(&iocb, NULL);
659 	iocb.private = &siocb;
660 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
661 	if (-EIOCBQUEUED == ret)
662 		ret = wait_on_sync_kiocb(&iocb);
663 	return ret;
664 }
665 
666 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
667 		   struct kvec *vec, size_t num, size_t size)
668 {
669 	mm_segment_t oldfs = get_fs();
670 	int result;
671 
672 	set_fs(KERNEL_DS);
673 	/*
674 	 * the following is safe, since for compiler definitions of kvec and
675 	 * iovec are identical, yielding the same in-core layout and alignment
676 	 */
677 	msg->msg_iov = (struct iovec *)vec;
678 	msg->msg_iovlen = num;
679 	result = sock_sendmsg(sock, msg, size);
680 	set_fs(oldfs);
681 	return result;
682 }
683 EXPORT_SYMBOL(kernel_sendmsg);
684 
685 static int ktime2ts(ktime_t kt, struct timespec *ts)
686 {
687 	if (kt.tv64) {
688 		*ts = ktime_to_timespec(kt);
689 		return 1;
690 	} else {
691 		return 0;
692 	}
693 }
694 
695 /*
696  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
697  */
698 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
699 	struct sk_buff *skb)
700 {
701 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
702 	struct timespec ts[3];
703 	int empty = 1;
704 	struct skb_shared_hwtstamps *shhwtstamps =
705 		skb_hwtstamps(skb);
706 
707 	/* Race occurred between timestamp enabling and packet
708 	   receiving.  Fill in the current time for now. */
709 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
710 		__net_timestamp(skb);
711 
712 	if (need_software_tstamp) {
713 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
714 			struct timeval tv;
715 			skb_get_timestamp(skb, &tv);
716 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
717 				 sizeof(tv), &tv);
718 		} else {
719 			skb_get_timestampns(skb, &ts[0]);
720 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
721 				 sizeof(ts[0]), &ts[0]);
722 		}
723 	}
724 
725 
726 	memset(ts, 0, sizeof(ts));
727 	if (skb->tstamp.tv64 &&
728 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
729 		skb_get_timestampns(skb, ts + 0);
730 		empty = 0;
731 	}
732 	if (shhwtstamps) {
733 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
734 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
735 			empty = 0;
736 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
737 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
738 			empty = 0;
739 	}
740 	if (!empty)
741 		put_cmsg(msg, SOL_SOCKET,
742 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
743 }
744 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
745 
746 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
747 	struct sk_buff *skb)
748 {
749 	int ack;
750 
751 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
752 		return;
753 	if (!skb->wifi_acked_valid)
754 		return;
755 
756 	ack = skb->wifi_acked;
757 
758 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
759 }
760 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
761 
762 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
763 				   struct sk_buff *skb)
764 {
765 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
766 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
767 			sizeof(__u32), &skb->dropcount);
768 }
769 
770 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
771 	struct sk_buff *skb)
772 {
773 	sock_recv_timestamp(msg, sk, skb);
774 	sock_recv_drops(msg, sk, skb);
775 }
776 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
777 
778 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
779 				       struct msghdr *msg, size_t size, int flags)
780 {
781 	struct sock_iocb *si = kiocb_to_siocb(iocb);
782 
783 	si->sock = sock;
784 	si->scm = NULL;
785 	si->msg = msg;
786 	si->size = size;
787 	si->flags = flags;
788 
789 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
790 }
791 
792 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
793 				 struct msghdr *msg, size_t size, int flags)
794 {
795 	int err = security_socket_recvmsg(sock, msg, size, flags);
796 
797 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
798 }
799 
800 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
801 		 size_t size, int flags)
802 {
803 	struct kiocb iocb;
804 	struct sock_iocb siocb;
805 	int ret;
806 
807 	init_sync_kiocb(&iocb, NULL);
808 	iocb.private = &siocb;
809 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
810 	if (-EIOCBQUEUED == ret)
811 		ret = wait_on_sync_kiocb(&iocb);
812 	return ret;
813 }
814 EXPORT_SYMBOL(sock_recvmsg);
815 
816 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
817 			      size_t size, int flags)
818 {
819 	struct kiocb iocb;
820 	struct sock_iocb siocb;
821 	int ret;
822 
823 	init_sync_kiocb(&iocb, NULL);
824 	iocb.private = &siocb;
825 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
826 	if (-EIOCBQUEUED == ret)
827 		ret = wait_on_sync_kiocb(&iocb);
828 	return ret;
829 }
830 
831 /**
832  * kernel_recvmsg - Receive a message from a socket (kernel space)
833  * @sock:       The socket to receive the message from
834  * @msg:        Received message
835  * @vec:        Input s/g array for message data
836  * @num:        Size of input s/g array
837  * @size:       Number of bytes to read
838  * @flags:      Message flags (MSG_DONTWAIT, etc...)
839  *
840  * On return the msg structure contains the scatter/gather array passed in the
841  * vec argument. The array is modified so that it consists of the unfilled
842  * portion of the original array.
843  *
844  * The returned value is the total number of bytes received, or an error.
845  */
846 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
847 		   struct kvec *vec, size_t num, size_t size, int flags)
848 {
849 	mm_segment_t oldfs = get_fs();
850 	int result;
851 
852 	set_fs(KERNEL_DS);
853 	/*
854 	 * the following is safe, since for compiler definitions of kvec and
855 	 * iovec are identical, yielding the same in-core layout and alignment
856 	 */
857 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
858 	result = sock_recvmsg(sock, msg, size, flags);
859 	set_fs(oldfs);
860 	return result;
861 }
862 EXPORT_SYMBOL(kernel_recvmsg);
863 
864 static void sock_aio_dtor(struct kiocb *iocb)
865 {
866 	kfree(iocb->private);
867 }
868 
869 static ssize_t sock_sendpage(struct file *file, struct page *page,
870 			     int offset, size_t size, loff_t *ppos, int more)
871 {
872 	struct socket *sock;
873 	int flags;
874 
875 	sock = file->private_data;
876 
877 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
878 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
879 	flags |= more;
880 
881 	return kernel_sendpage(sock, page, offset, size, flags);
882 }
883 
884 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
885 				struct pipe_inode_info *pipe, size_t len,
886 				unsigned int flags)
887 {
888 	struct socket *sock = file->private_data;
889 
890 	if (unlikely(!sock->ops->splice_read))
891 		return -EINVAL;
892 
893 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
894 }
895 
896 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
897 					 struct sock_iocb *siocb)
898 {
899 	if (!is_sync_kiocb(iocb)) {
900 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
901 		if (!siocb)
902 			return NULL;
903 		iocb->ki_dtor = sock_aio_dtor;
904 	}
905 
906 	siocb->kiocb = iocb;
907 	iocb->private = siocb;
908 	return siocb;
909 }
910 
911 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
912 		struct file *file, const struct iovec *iov,
913 		unsigned long nr_segs)
914 {
915 	struct socket *sock = file->private_data;
916 	size_t size = 0;
917 	int i;
918 
919 	for (i = 0; i < nr_segs; i++)
920 		size += iov[i].iov_len;
921 
922 	msg->msg_name = NULL;
923 	msg->msg_namelen = 0;
924 	msg->msg_control = NULL;
925 	msg->msg_controllen = 0;
926 	msg->msg_iov = (struct iovec *)iov;
927 	msg->msg_iovlen = nr_segs;
928 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
929 
930 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
931 }
932 
933 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
934 				unsigned long nr_segs, loff_t pos)
935 {
936 	struct sock_iocb siocb, *x;
937 
938 	if (pos != 0)
939 		return -ESPIPE;
940 
941 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
942 		return 0;
943 
944 
945 	x = alloc_sock_iocb(iocb, &siocb);
946 	if (!x)
947 		return -ENOMEM;
948 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
949 }
950 
951 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
952 			struct file *file, const struct iovec *iov,
953 			unsigned long nr_segs)
954 {
955 	struct socket *sock = file->private_data;
956 	size_t size = 0;
957 	int i;
958 
959 	for (i = 0; i < nr_segs; i++)
960 		size += iov[i].iov_len;
961 
962 	msg->msg_name = NULL;
963 	msg->msg_namelen = 0;
964 	msg->msg_control = NULL;
965 	msg->msg_controllen = 0;
966 	msg->msg_iov = (struct iovec *)iov;
967 	msg->msg_iovlen = nr_segs;
968 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
969 	if (sock->type == SOCK_SEQPACKET)
970 		msg->msg_flags |= MSG_EOR;
971 
972 	return __sock_sendmsg(iocb, sock, msg, size);
973 }
974 
975 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
976 			  unsigned long nr_segs, loff_t pos)
977 {
978 	struct sock_iocb siocb, *x;
979 
980 	if (pos != 0)
981 		return -ESPIPE;
982 
983 	x = alloc_sock_iocb(iocb, &siocb);
984 	if (!x)
985 		return -ENOMEM;
986 
987 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
988 }
989 
990 /*
991  * Atomic setting of ioctl hooks to avoid race
992  * with module unload.
993  */
994 
995 static DEFINE_MUTEX(br_ioctl_mutex);
996 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
997 
998 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
999 {
1000 	mutex_lock(&br_ioctl_mutex);
1001 	br_ioctl_hook = hook;
1002 	mutex_unlock(&br_ioctl_mutex);
1003 }
1004 EXPORT_SYMBOL(brioctl_set);
1005 
1006 static DEFINE_MUTEX(vlan_ioctl_mutex);
1007 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1008 
1009 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1010 {
1011 	mutex_lock(&vlan_ioctl_mutex);
1012 	vlan_ioctl_hook = hook;
1013 	mutex_unlock(&vlan_ioctl_mutex);
1014 }
1015 EXPORT_SYMBOL(vlan_ioctl_set);
1016 
1017 static DEFINE_MUTEX(dlci_ioctl_mutex);
1018 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1019 
1020 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1021 {
1022 	mutex_lock(&dlci_ioctl_mutex);
1023 	dlci_ioctl_hook = hook;
1024 	mutex_unlock(&dlci_ioctl_mutex);
1025 }
1026 EXPORT_SYMBOL(dlci_ioctl_set);
1027 
1028 static long sock_do_ioctl(struct net *net, struct socket *sock,
1029 				 unsigned int cmd, unsigned long arg)
1030 {
1031 	int err;
1032 	void __user *argp = (void __user *)arg;
1033 
1034 	err = sock->ops->ioctl(sock, cmd, arg);
1035 
1036 	/*
1037 	 * If this ioctl is unknown try to hand it down
1038 	 * to the NIC driver.
1039 	 */
1040 	if (err == -ENOIOCTLCMD)
1041 		err = dev_ioctl(net, cmd, argp);
1042 
1043 	return err;
1044 }
1045 
1046 /*
1047  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1048  *	what to do with it - that's up to the protocol still.
1049  */
1050 
1051 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1052 {
1053 	struct socket *sock;
1054 	struct sock *sk;
1055 	void __user *argp = (void __user *)arg;
1056 	int pid, err;
1057 	struct net *net;
1058 
1059 	sock = file->private_data;
1060 	sk = sock->sk;
1061 	net = sock_net(sk);
1062 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1063 		err = dev_ioctl(net, cmd, argp);
1064 	} else
1065 #ifdef CONFIG_WEXT_CORE
1066 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1067 		err = dev_ioctl(net, cmd, argp);
1068 	} else
1069 #endif
1070 		switch (cmd) {
1071 		case FIOSETOWN:
1072 		case SIOCSPGRP:
1073 			err = -EFAULT;
1074 			if (get_user(pid, (int __user *)argp))
1075 				break;
1076 			err = f_setown(sock->file, pid, 1);
1077 			break;
1078 		case FIOGETOWN:
1079 		case SIOCGPGRP:
1080 			err = put_user(f_getown(sock->file),
1081 				       (int __user *)argp);
1082 			break;
1083 		case SIOCGIFBR:
1084 		case SIOCSIFBR:
1085 		case SIOCBRADDBR:
1086 		case SIOCBRDELBR:
1087 			err = -ENOPKG;
1088 			if (!br_ioctl_hook)
1089 				request_module("bridge");
1090 
1091 			mutex_lock(&br_ioctl_mutex);
1092 			if (br_ioctl_hook)
1093 				err = br_ioctl_hook(net, cmd, argp);
1094 			mutex_unlock(&br_ioctl_mutex);
1095 			break;
1096 		case SIOCGIFVLAN:
1097 		case SIOCSIFVLAN:
1098 			err = -ENOPKG;
1099 			if (!vlan_ioctl_hook)
1100 				request_module("8021q");
1101 
1102 			mutex_lock(&vlan_ioctl_mutex);
1103 			if (vlan_ioctl_hook)
1104 				err = vlan_ioctl_hook(net, argp);
1105 			mutex_unlock(&vlan_ioctl_mutex);
1106 			break;
1107 		case SIOCADDDLCI:
1108 		case SIOCDELDLCI:
1109 			err = -ENOPKG;
1110 			if (!dlci_ioctl_hook)
1111 				request_module("dlci");
1112 
1113 			mutex_lock(&dlci_ioctl_mutex);
1114 			if (dlci_ioctl_hook)
1115 				err = dlci_ioctl_hook(cmd, argp);
1116 			mutex_unlock(&dlci_ioctl_mutex);
1117 			break;
1118 		default:
1119 			err = sock_do_ioctl(net, sock, cmd, arg);
1120 			break;
1121 		}
1122 	return err;
1123 }
1124 
1125 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1126 {
1127 	int err;
1128 	struct socket *sock = NULL;
1129 
1130 	err = security_socket_create(family, type, protocol, 1);
1131 	if (err)
1132 		goto out;
1133 
1134 	sock = sock_alloc();
1135 	if (!sock) {
1136 		err = -ENOMEM;
1137 		goto out;
1138 	}
1139 
1140 	sock->type = type;
1141 	err = security_socket_post_create(sock, family, type, protocol, 1);
1142 	if (err)
1143 		goto out_release;
1144 
1145 out:
1146 	*res = sock;
1147 	return err;
1148 out_release:
1149 	sock_release(sock);
1150 	sock = NULL;
1151 	goto out;
1152 }
1153 EXPORT_SYMBOL(sock_create_lite);
1154 
1155 /* No kernel lock held - perfect */
1156 static unsigned int sock_poll(struct file *file, poll_table *wait)
1157 {
1158 	struct socket *sock;
1159 
1160 	/*
1161 	 *      We can't return errors to poll, so it's either yes or no.
1162 	 */
1163 	sock = file->private_data;
1164 	return sock->ops->poll(file, sock, wait);
1165 }
1166 
1167 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1168 {
1169 	struct socket *sock = file->private_data;
1170 
1171 	return sock->ops->mmap(file, sock, vma);
1172 }
1173 
1174 static int sock_close(struct inode *inode, struct file *filp)
1175 {
1176 	/*
1177 	 *      It was possible the inode is NULL we were
1178 	 *      closing an unfinished socket.
1179 	 */
1180 
1181 	if (!inode) {
1182 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1183 		return 0;
1184 	}
1185 	sock_release(SOCKET_I(inode));
1186 	return 0;
1187 }
1188 
1189 /*
1190  *	Update the socket async list
1191  *
1192  *	Fasync_list locking strategy.
1193  *
1194  *	1. fasync_list is modified only under process context socket lock
1195  *	   i.e. under semaphore.
1196  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1197  *	   or under socket lock
1198  */
1199 
1200 static int sock_fasync(int fd, struct file *filp, int on)
1201 {
1202 	struct socket *sock = filp->private_data;
1203 	struct sock *sk = sock->sk;
1204 	struct socket_wq *wq;
1205 
1206 	if (sk == NULL)
1207 		return -EINVAL;
1208 
1209 	lock_sock(sk);
1210 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1211 	fasync_helper(fd, filp, on, &wq->fasync_list);
1212 
1213 	if (!wq->fasync_list)
1214 		sock_reset_flag(sk, SOCK_FASYNC);
1215 	else
1216 		sock_set_flag(sk, SOCK_FASYNC);
1217 
1218 	release_sock(sk);
1219 	return 0;
1220 }
1221 
1222 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1223 
1224 int sock_wake_async(struct socket *sock, int how, int band)
1225 {
1226 	struct socket_wq *wq;
1227 
1228 	if (!sock)
1229 		return -1;
1230 	rcu_read_lock();
1231 	wq = rcu_dereference(sock->wq);
1232 	if (!wq || !wq->fasync_list) {
1233 		rcu_read_unlock();
1234 		return -1;
1235 	}
1236 	switch (how) {
1237 	case SOCK_WAKE_WAITD:
1238 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1239 			break;
1240 		goto call_kill;
1241 	case SOCK_WAKE_SPACE:
1242 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1243 			break;
1244 		/* fall through */
1245 	case SOCK_WAKE_IO:
1246 call_kill:
1247 		kill_fasync(&wq->fasync_list, SIGIO, band);
1248 		break;
1249 	case SOCK_WAKE_URG:
1250 		kill_fasync(&wq->fasync_list, SIGURG, band);
1251 	}
1252 	rcu_read_unlock();
1253 	return 0;
1254 }
1255 EXPORT_SYMBOL(sock_wake_async);
1256 
1257 int __sock_create(struct net *net, int family, int type, int protocol,
1258 			 struct socket **res, int kern)
1259 {
1260 	int err;
1261 	struct socket *sock;
1262 	const struct net_proto_family *pf;
1263 
1264 	/*
1265 	 *      Check protocol is in range
1266 	 */
1267 	if (family < 0 || family >= NPROTO)
1268 		return -EAFNOSUPPORT;
1269 	if (type < 0 || type >= SOCK_MAX)
1270 		return -EINVAL;
1271 
1272 	/* Compatibility.
1273 
1274 	   This uglymoron is moved from INET layer to here to avoid
1275 	   deadlock in module load.
1276 	 */
1277 	if (family == PF_INET && type == SOCK_PACKET) {
1278 		static int warned;
1279 		if (!warned) {
1280 			warned = 1;
1281 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1282 			       current->comm);
1283 		}
1284 		family = PF_PACKET;
1285 	}
1286 
1287 	err = security_socket_create(family, type, protocol, kern);
1288 	if (err)
1289 		return err;
1290 
1291 	/*
1292 	 *	Allocate the socket and allow the family to set things up. if
1293 	 *	the protocol is 0, the family is instructed to select an appropriate
1294 	 *	default.
1295 	 */
1296 	sock = sock_alloc();
1297 	if (!sock) {
1298 		net_warn_ratelimited("socket: no more sockets\n");
1299 		return -ENFILE;	/* Not exactly a match, but its the
1300 				   closest posix thing */
1301 	}
1302 
1303 	sock->type = type;
1304 
1305 #ifdef CONFIG_MODULES
1306 	/* Attempt to load a protocol module if the find failed.
1307 	 *
1308 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1309 	 * requested real, full-featured networking support upon configuration.
1310 	 * Otherwise module support will break!
1311 	 */
1312 	if (rcu_access_pointer(net_families[family]) == NULL)
1313 		request_module("net-pf-%d", family);
1314 #endif
1315 
1316 	rcu_read_lock();
1317 	pf = rcu_dereference(net_families[family]);
1318 	err = -EAFNOSUPPORT;
1319 	if (!pf)
1320 		goto out_release;
1321 
1322 	/*
1323 	 * We will call the ->create function, that possibly is in a loadable
1324 	 * module, so we have to bump that loadable module refcnt first.
1325 	 */
1326 	if (!try_module_get(pf->owner))
1327 		goto out_release;
1328 
1329 	/* Now protected by module ref count */
1330 	rcu_read_unlock();
1331 
1332 	err = pf->create(net, sock, protocol, kern);
1333 	if (err < 0)
1334 		goto out_module_put;
1335 
1336 	/*
1337 	 * Now to bump the refcnt of the [loadable] module that owns this
1338 	 * socket at sock_release time we decrement its refcnt.
1339 	 */
1340 	if (!try_module_get(sock->ops->owner))
1341 		goto out_module_busy;
1342 
1343 	/*
1344 	 * Now that we're done with the ->create function, the [loadable]
1345 	 * module can have its refcnt decremented
1346 	 */
1347 	module_put(pf->owner);
1348 	err = security_socket_post_create(sock, family, type, protocol, kern);
1349 	if (err)
1350 		goto out_sock_release;
1351 	*res = sock;
1352 
1353 	return 0;
1354 
1355 out_module_busy:
1356 	err = -EAFNOSUPPORT;
1357 out_module_put:
1358 	sock->ops = NULL;
1359 	module_put(pf->owner);
1360 out_sock_release:
1361 	sock_release(sock);
1362 	return err;
1363 
1364 out_release:
1365 	rcu_read_unlock();
1366 	goto out_sock_release;
1367 }
1368 EXPORT_SYMBOL(__sock_create);
1369 
1370 int sock_create(int family, int type, int protocol, struct socket **res)
1371 {
1372 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1373 }
1374 EXPORT_SYMBOL(sock_create);
1375 
1376 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1377 {
1378 	return __sock_create(&init_net, family, type, protocol, res, 1);
1379 }
1380 EXPORT_SYMBOL(sock_create_kern);
1381 
1382 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1383 {
1384 	int retval;
1385 	struct socket *sock;
1386 	int flags;
1387 
1388 	/* Check the SOCK_* constants for consistency.  */
1389 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1390 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1391 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1392 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1393 
1394 	flags = type & ~SOCK_TYPE_MASK;
1395 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1396 		return -EINVAL;
1397 	type &= SOCK_TYPE_MASK;
1398 
1399 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1400 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1401 
1402 	retval = sock_create(family, type, protocol, &sock);
1403 	if (retval < 0)
1404 		goto out;
1405 
1406 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1407 	if (retval < 0)
1408 		goto out_release;
1409 
1410 out:
1411 	/* It may be already another descriptor 8) Not kernel problem. */
1412 	return retval;
1413 
1414 out_release:
1415 	sock_release(sock);
1416 	return retval;
1417 }
1418 
1419 /*
1420  *	Create a pair of connected sockets.
1421  */
1422 
1423 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1424 		int __user *, usockvec)
1425 {
1426 	struct socket *sock1, *sock2;
1427 	int fd1, fd2, err;
1428 	struct file *newfile1, *newfile2;
1429 	int flags;
1430 
1431 	flags = type & ~SOCK_TYPE_MASK;
1432 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1433 		return -EINVAL;
1434 	type &= SOCK_TYPE_MASK;
1435 
1436 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1437 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1438 
1439 	/*
1440 	 * Obtain the first socket and check if the underlying protocol
1441 	 * supports the socketpair call.
1442 	 */
1443 
1444 	err = sock_create(family, type, protocol, &sock1);
1445 	if (err < 0)
1446 		goto out;
1447 
1448 	err = sock_create(family, type, protocol, &sock2);
1449 	if (err < 0)
1450 		goto out_release_1;
1451 
1452 	err = sock1->ops->socketpair(sock1, sock2);
1453 	if (err < 0)
1454 		goto out_release_both;
1455 
1456 	fd1 = get_unused_fd_flags(flags);
1457 	if (unlikely(fd1 < 0)) {
1458 		err = fd1;
1459 		goto out_release_both;
1460 	}
1461 	fd2 = get_unused_fd_flags(flags);
1462 	if (unlikely(fd2 < 0)) {
1463 		err = fd2;
1464 		put_unused_fd(fd1);
1465 		goto out_release_both;
1466 	}
1467 
1468 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1469 	if (unlikely(IS_ERR(newfile1))) {
1470 		err = PTR_ERR(newfile1);
1471 		put_unused_fd(fd1);
1472 		put_unused_fd(fd2);
1473 		goto out_release_both;
1474 	}
1475 
1476 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1477 	if (IS_ERR(newfile2)) {
1478 		err = PTR_ERR(newfile2);
1479 		fput(newfile1);
1480 		put_unused_fd(fd1);
1481 		put_unused_fd(fd2);
1482 		sock_release(sock2);
1483 		goto out;
1484 	}
1485 
1486 	audit_fd_pair(fd1, fd2);
1487 	fd_install(fd1, newfile1);
1488 	fd_install(fd2, newfile2);
1489 	/* fd1 and fd2 may be already another descriptors.
1490 	 * Not kernel problem.
1491 	 */
1492 
1493 	err = put_user(fd1, &usockvec[0]);
1494 	if (!err)
1495 		err = put_user(fd2, &usockvec[1]);
1496 	if (!err)
1497 		return 0;
1498 
1499 	sys_close(fd2);
1500 	sys_close(fd1);
1501 	return err;
1502 
1503 out_release_both:
1504 	sock_release(sock2);
1505 out_release_1:
1506 	sock_release(sock1);
1507 out:
1508 	return err;
1509 }
1510 
1511 /*
1512  *	Bind a name to a socket. Nothing much to do here since it's
1513  *	the protocol's responsibility to handle the local address.
1514  *
1515  *	We move the socket address to kernel space before we call
1516  *	the protocol layer (having also checked the address is ok).
1517  */
1518 
1519 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1520 {
1521 	struct socket *sock;
1522 	struct sockaddr_storage address;
1523 	int err, fput_needed;
1524 
1525 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1526 	if (sock) {
1527 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1528 		if (err >= 0) {
1529 			err = security_socket_bind(sock,
1530 						   (struct sockaddr *)&address,
1531 						   addrlen);
1532 			if (!err)
1533 				err = sock->ops->bind(sock,
1534 						      (struct sockaddr *)
1535 						      &address, addrlen);
1536 		}
1537 		fput_light(sock->file, fput_needed);
1538 	}
1539 	return err;
1540 }
1541 
1542 /*
1543  *	Perform a listen. Basically, we allow the protocol to do anything
1544  *	necessary for a listen, and if that works, we mark the socket as
1545  *	ready for listening.
1546  */
1547 
1548 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1549 {
1550 	struct socket *sock;
1551 	int err, fput_needed;
1552 	int somaxconn;
1553 
1554 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 	if (sock) {
1556 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1557 		if ((unsigned int)backlog > somaxconn)
1558 			backlog = somaxconn;
1559 
1560 		err = security_socket_listen(sock, backlog);
1561 		if (!err)
1562 			err = sock->ops->listen(sock, backlog);
1563 
1564 		fput_light(sock->file, fput_needed);
1565 	}
1566 	return err;
1567 }
1568 
1569 /*
1570  *	For accept, we attempt to create a new socket, set up the link
1571  *	with the client, wake up the client, then return the new
1572  *	connected fd. We collect the address of the connector in kernel
1573  *	space and move it to user at the very end. This is unclean because
1574  *	we open the socket then return an error.
1575  *
1576  *	1003.1g adds the ability to recvmsg() to query connection pending
1577  *	status to recvmsg. We need to add that support in a way thats
1578  *	clean when we restucture accept also.
1579  */
1580 
1581 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1582 		int __user *, upeer_addrlen, int, flags)
1583 {
1584 	struct socket *sock, *newsock;
1585 	struct file *newfile;
1586 	int err, len, newfd, fput_needed;
1587 	struct sockaddr_storage address;
1588 
1589 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1590 		return -EINVAL;
1591 
1592 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1593 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1594 
1595 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596 	if (!sock)
1597 		goto out;
1598 
1599 	err = -ENFILE;
1600 	newsock = sock_alloc();
1601 	if (!newsock)
1602 		goto out_put;
1603 
1604 	newsock->type = sock->type;
1605 	newsock->ops = sock->ops;
1606 
1607 	/*
1608 	 * We don't need try_module_get here, as the listening socket (sock)
1609 	 * has the protocol module (sock->ops->owner) held.
1610 	 */
1611 	__module_get(newsock->ops->owner);
1612 
1613 	newfd = get_unused_fd_flags(flags);
1614 	if (unlikely(newfd < 0)) {
1615 		err = newfd;
1616 		sock_release(newsock);
1617 		goto out_put;
1618 	}
1619 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1620 	if (unlikely(IS_ERR(newfile))) {
1621 		err = PTR_ERR(newfile);
1622 		put_unused_fd(newfd);
1623 		sock_release(newsock);
1624 		goto out_put;
1625 	}
1626 
1627 	err = security_socket_accept(sock, newsock);
1628 	if (err)
1629 		goto out_fd;
1630 
1631 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1632 	if (err < 0)
1633 		goto out_fd;
1634 
1635 	if (upeer_sockaddr) {
1636 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1637 					  &len, 2) < 0) {
1638 			err = -ECONNABORTED;
1639 			goto out_fd;
1640 		}
1641 		err = move_addr_to_user(&address,
1642 					len, upeer_sockaddr, upeer_addrlen);
1643 		if (err < 0)
1644 			goto out_fd;
1645 	}
1646 
1647 	/* File flags are not inherited via accept() unlike another OSes. */
1648 
1649 	fd_install(newfd, newfile);
1650 	err = newfd;
1651 
1652 out_put:
1653 	fput_light(sock->file, fput_needed);
1654 out:
1655 	return err;
1656 out_fd:
1657 	fput(newfile);
1658 	put_unused_fd(newfd);
1659 	goto out_put;
1660 }
1661 
1662 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1663 		int __user *, upeer_addrlen)
1664 {
1665 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1666 }
1667 
1668 /*
1669  *	Attempt to connect to a socket with the server address.  The address
1670  *	is in user space so we verify it is OK and move it to kernel space.
1671  *
1672  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1673  *	break bindings
1674  *
1675  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1676  *	other SEQPACKET protocols that take time to connect() as it doesn't
1677  *	include the -EINPROGRESS status for such sockets.
1678  */
1679 
1680 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1681 		int, addrlen)
1682 {
1683 	struct socket *sock;
1684 	struct sockaddr_storage address;
1685 	int err, fput_needed;
1686 
1687 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1688 	if (!sock)
1689 		goto out;
1690 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1691 	if (err < 0)
1692 		goto out_put;
1693 
1694 	err =
1695 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1696 	if (err)
1697 		goto out_put;
1698 
1699 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1700 				 sock->file->f_flags);
1701 out_put:
1702 	fput_light(sock->file, fput_needed);
1703 out:
1704 	return err;
1705 }
1706 
1707 /*
1708  *	Get the local address ('name') of a socket object. Move the obtained
1709  *	name to user space.
1710  */
1711 
1712 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1713 		int __user *, usockaddr_len)
1714 {
1715 	struct socket *sock;
1716 	struct sockaddr_storage address;
1717 	int len, err, fput_needed;
1718 
1719 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 	if (!sock)
1721 		goto out;
1722 
1723 	err = security_socket_getsockname(sock);
1724 	if (err)
1725 		goto out_put;
1726 
1727 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1728 	if (err)
1729 		goto out_put;
1730 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1731 
1732 out_put:
1733 	fput_light(sock->file, fput_needed);
1734 out:
1735 	return err;
1736 }
1737 
1738 /*
1739  *	Get the remote address ('name') of a socket object. Move the obtained
1740  *	name to user space.
1741  */
1742 
1743 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1744 		int __user *, usockaddr_len)
1745 {
1746 	struct socket *sock;
1747 	struct sockaddr_storage address;
1748 	int len, err, fput_needed;
1749 
1750 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1751 	if (sock != NULL) {
1752 		err = security_socket_getpeername(sock);
1753 		if (err) {
1754 			fput_light(sock->file, fput_needed);
1755 			return err;
1756 		}
1757 
1758 		err =
1759 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1760 				       1);
1761 		if (!err)
1762 			err = move_addr_to_user(&address, len, usockaddr,
1763 						usockaddr_len);
1764 		fput_light(sock->file, fput_needed);
1765 	}
1766 	return err;
1767 }
1768 
1769 /*
1770  *	Send a datagram to a given address. We move the address into kernel
1771  *	space and check the user space data area is readable before invoking
1772  *	the protocol.
1773  */
1774 
1775 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1776 		unsigned int, flags, struct sockaddr __user *, addr,
1777 		int, addr_len)
1778 {
1779 	struct socket *sock;
1780 	struct sockaddr_storage address;
1781 	int err;
1782 	struct msghdr msg;
1783 	struct iovec iov;
1784 	int fput_needed;
1785 
1786 	if (len > INT_MAX)
1787 		len = INT_MAX;
1788 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 	if (!sock)
1790 		goto out;
1791 
1792 	iov.iov_base = buff;
1793 	iov.iov_len = len;
1794 	msg.msg_name = NULL;
1795 	msg.msg_iov = &iov;
1796 	msg.msg_iovlen = 1;
1797 	msg.msg_control = NULL;
1798 	msg.msg_controllen = 0;
1799 	msg.msg_namelen = 0;
1800 	if (addr) {
1801 		err = move_addr_to_kernel(addr, addr_len, &address);
1802 		if (err < 0)
1803 			goto out_put;
1804 		msg.msg_name = (struct sockaddr *)&address;
1805 		msg.msg_namelen = addr_len;
1806 	}
1807 	if (sock->file->f_flags & O_NONBLOCK)
1808 		flags |= MSG_DONTWAIT;
1809 	msg.msg_flags = flags;
1810 	err = sock_sendmsg(sock, &msg, len);
1811 
1812 out_put:
1813 	fput_light(sock->file, fput_needed);
1814 out:
1815 	return err;
1816 }
1817 
1818 /*
1819  *	Send a datagram down a socket.
1820  */
1821 
1822 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1823 		unsigned int, flags)
1824 {
1825 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1826 }
1827 
1828 /*
1829  *	Receive a frame from the socket and optionally record the address of the
1830  *	sender. We verify the buffers are writable and if needed move the
1831  *	sender address from kernel to user space.
1832  */
1833 
1834 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1835 		unsigned int, flags, struct sockaddr __user *, addr,
1836 		int __user *, addr_len)
1837 {
1838 	struct socket *sock;
1839 	struct iovec iov;
1840 	struct msghdr msg;
1841 	struct sockaddr_storage address;
1842 	int err, err2;
1843 	int fput_needed;
1844 
1845 	if (size > INT_MAX)
1846 		size = INT_MAX;
1847 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1848 	if (!sock)
1849 		goto out;
1850 
1851 	msg.msg_control = NULL;
1852 	msg.msg_controllen = 0;
1853 	msg.msg_iovlen = 1;
1854 	msg.msg_iov = &iov;
1855 	iov.iov_len = size;
1856 	iov.iov_base = ubuf;
1857 	msg.msg_name = (struct sockaddr *)&address;
1858 	msg.msg_namelen = sizeof(address);
1859 	if (sock->file->f_flags & O_NONBLOCK)
1860 		flags |= MSG_DONTWAIT;
1861 	err = sock_recvmsg(sock, &msg, size, flags);
1862 
1863 	if (err >= 0 && addr != NULL) {
1864 		err2 = move_addr_to_user(&address,
1865 					 msg.msg_namelen, addr, addr_len);
1866 		if (err2 < 0)
1867 			err = err2;
1868 	}
1869 
1870 	fput_light(sock->file, fput_needed);
1871 out:
1872 	return err;
1873 }
1874 
1875 /*
1876  *	Receive a datagram from a socket.
1877  */
1878 
1879 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1880 			 unsigned int flags)
1881 {
1882 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1883 }
1884 
1885 /*
1886  *	Set a socket option. Because we don't know the option lengths we have
1887  *	to pass the user mode parameter for the protocols to sort out.
1888  */
1889 
1890 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1891 		char __user *, optval, int, optlen)
1892 {
1893 	int err, fput_needed;
1894 	struct socket *sock;
1895 
1896 	if (optlen < 0)
1897 		return -EINVAL;
1898 
1899 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1900 	if (sock != NULL) {
1901 		err = security_socket_setsockopt(sock, level, optname);
1902 		if (err)
1903 			goto out_put;
1904 
1905 		if (level == SOL_SOCKET)
1906 			err =
1907 			    sock_setsockopt(sock, level, optname, optval,
1908 					    optlen);
1909 		else
1910 			err =
1911 			    sock->ops->setsockopt(sock, level, optname, optval,
1912 						  optlen);
1913 out_put:
1914 		fput_light(sock->file, fput_needed);
1915 	}
1916 	return err;
1917 }
1918 
1919 /*
1920  *	Get a socket option. Because we don't know the option lengths we have
1921  *	to pass a user mode parameter for the protocols to sort out.
1922  */
1923 
1924 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1925 		char __user *, optval, int __user *, optlen)
1926 {
1927 	int err, fput_needed;
1928 	struct socket *sock;
1929 
1930 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1931 	if (sock != NULL) {
1932 		err = security_socket_getsockopt(sock, level, optname);
1933 		if (err)
1934 			goto out_put;
1935 
1936 		if (level == SOL_SOCKET)
1937 			err =
1938 			    sock_getsockopt(sock, level, optname, optval,
1939 					    optlen);
1940 		else
1941 			err =
1942 			    sock->ops->getsockopt(sock, level, optname, optval,
1943 						  optlen);
1944 out_put:
1945 		fput_light(sock->file, fput_needed);
1946 	}
1947 	return err;
1948 }
1949 
1950 /*
1951  *	Shutdown a socket.
1952  */
1953 
1954 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1955 {
1956 	int err, fput_needed;
1957 	struct socket *sock;
1958 
1959 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1960 	if (sock != NULL) {
1961 		err = security_socket_shutdown(sock, how);
1962 		if (!err)
1963 			err = sock->ops->shutdown(sock, how);
1964 		fput_light(sock->file, fput_needed);
1965 	}
1966 	return err;
1967 }
1968 
1969 /* A couple of helpful macros for getting the address of the 32/64 bit
1970  * fields which are the same type (int / unsigned) on our platforms.
1971  */
1972 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1973 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1974 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1975 
1976 struct used_address {
1977 	struct sockaddr_storage name;
1978 	unsigned int name_len;
1979 };
1980 
1981 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1982 			 struct msghdr *msg_sys, unsigned int flags,
1983 			 struct used_address *used_address)
1984 {
1985 	struct compat_msghdr __user *msg_compat =
1986 	    (struct compat_msghdr __user *)msg;
1987 	struct sockaddr_storage address;
1988 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1989 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1990 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1991 	/* 20 is size of ipv6_pktinfo */
1992 	unsigned char *ctl_buf = ctl;
1993 	int err, ctl_len, total_len;
1994 
1995 	err = -EFAULT;
1996 	if (MSG_CMSG_COMPAT & flags) {
1997 		if (get_compat_msghdr(msg_sys, msg_compat))
1998 			return -EFAULT;
1999 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2000 		return -EFAULT;
2001 
2002 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2003 		err = -EMSGSIZE;
2004 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2005 			goto out;
2006 		err = -ENOMEM;
2007 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2008 			      GFP_KERNEL);
2009 		if (!iov)
2010 			goto out;
2011 	}
2012 
2013 	/* This will also move the address data into kernel space */
2014 	if (MSG_CMSG_COMPAT & flags) {
2015 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2016 	} else
2017 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2018 	if (err < 0)
2019 		goto out_freeiov;
2020 	total_len = err;
2021 
2022 	err = -ENOBUFS;
2023 
2024 	if (msg_sys->msg_controllen > INT_MAX)
2025 		goto out_freeiov;
2026 	ctl_len = msg_sys->msg_controllen;
2027 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2028 		err =
2029 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2030 						     sizeof(ctl));
2031 		if (err)
2032 			goto out_freeiov;
2033 		ctl_buf = msg_sys->msg_control;
2034 		ctl_len = msg_sys->msg_controllen;
2035 	} else if (ctl_len) {
2036 		if (ctl_len > sizeof(ctl)) {
2037 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2038 			if (ctl_buf == NULL)
2039 				goto out_freeiov;
2040 		}
2041 		err = -EFAULT;
2042 		/*
2043 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2044 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2045 		 * checking falls down on this.
2046 		 */
2047 		if (copy_from_user(ctl_buf,
2048 				   (void __user __force *)msg_sys->msg_control,
2049 				   ctl_len))
2050 			goto out_freectl;
2051 		msg_sys->msg_control = ctl_buf;
2052 	}
2053 	msg_sys->msg_flags = flags;
2054 
2055 	if (sock->file->f_flags & O_NONBLOCK)
2056 		msg_sys->msg_flags |= MSG_DONTWAIT;
2057 	/*
2058 	 * If this is sendmmsg() and current destination address is same as
2059 	 * previously succeeded address, omit asking LSM's decision.
2060 	 * used_address->name_len is initialized to UINT_MAX so that the first
2061 	 * destination address never matches.
2062 	 */
2063 	if (used_address && msg_sys->msg_name &&
2064 	    used_address->name_len == msg_sys->msg_namelen &&
2065 	    !memcmp(&used_address->name, msg_sys->msg_name,
2066 		    used_address->name_len)) {
2067 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2068 		goto out_freectl;
2069 	}
2070 	err = sock_sendmsg(sock, msg_sys, total_len);
2071 	/*
2072 	 * If this is sendmmsg() and sending to current destination address was
2073 	 * successful, remember it.
2074 	 */
2075 	if (used_address && err >= 0) {
2076 		used_address->name_len = msg_sys->msg_namelen;
2077 		if (msg_sys->msg_name)
2078 			memcpy(&used_address->name, msg_sys->msg_name,
2079 			       used_address->name_len);
2080 	}
2081 
2082 out_freectl:
2083 	if (ctl_buf != ctl)
2084 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2085 out_freeiov:
2086 	if (iov != iovstack)
2087 		kfree(iov);
2088 out:
2089 	return err;
2090 }
2091 
2092 /*
2093  *	BSD sendmsg interface
2094  */
2095 
2096 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2097 {
2098 	int fput_needed, err;
2099 	struct msghdr msg_sys;
2100 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2101 
2102 	if (!sock)
2103 		goto out;
2104 
2105 	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2106 
2107 	fput_light(sock->file, fput_needed);
2108 out:
2109 	return err;
2110 }
2111 
2112 /*
2113  *	Linux sendmmsg interface
2114  */
2115 
2116 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2117 		   unsigned int flags)
2118 {
2119 	int fput_needed, err, datagrams;
2120 	struct socket *sock;
2121 	struct mmsghdr __user *entry;
2122 	struct compat_mmsghdr __user *compat_entry;
2123 	struct msghdr msg_sys;
2124 	struct used_address used_address;
2125 
2126 	if (vlen > UIO_MAXIOV)
2127 		vlen = UIO_MAXIOV;
2128 
2129 	datagrams = 0;
2130 
2131 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2132 	if (!sock)
2133 		return err;
2134 
2135 	used_address.name_len = UINT_MAX;
2136 	entry = mmsg;
2137 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2138 	err = 0;
2139 
2140 	while (datagrams < vlen) {
2141 		if (MSG_CMSG_COMPAT & flags) {
2142 			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2143 					    &msg_sys, flags, &used_address);
2144 			if (err < 0)
2145 				break;
2146 			err = __put_user(err, &compat_entry->msg_len);
2147 			++compat_entry;
2148 		} else {
2149 			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2150 					    &msg_sys, flags, &used_address);
2151 			if (err < 0)
2152 				break;
2153 			err = put_user(err, &entry->msg_len);
2154 			++entry;
2155 		}
2156 
2157 		if (err)
2158 			break;
2159 		++datagrams;
2160 	}
2161 
2162 	fput_light(sock->file, fput_needed);
2163 
2164 	/* We only return an error if no datagrams were able to be sent */
2165 	if (datagrams != 0)
2166 		return datagrams;
2167 
2168 	return err;
2169 }
2170 
2171 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2172 		unsigned int, vlen, unsigned int, flags)
2173 {
2174 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2175 }
2176 
2177 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2178 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2179 {
2180 	struct compat_msghdr __user *msg_compat =
2181 	    (struct compat_msghdr __user *)msg;
2182 	struct iovec iovstack[UIO_FASTIOV];
2183 	struct iovec *iov = iovstack;
2184 	unsigned long cmsg_ptr;
2185 	int err, total_len, len;
2186 
2187 	/* kernel mode address */
2188 	struct sockaddr_storage addr;
2189 
2190 	/* user mode address pointers */
2191 	struct sockaddr __user *uaddr;
2192 	int __user *uaddr_len;
2193 
2194 	if (MSG_CMSG_COMPAT & flags) {
2195 		if (get_compat_msghdr(msg_sys, msg_compat))
2196 			return -EFAULT;
2197 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2198 		return -EFAULT;
2199 
2200 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2201 		err = -EMSGSIZE;
2202 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2203 			goto out;
2204 		err = -ENOMEM;
2205 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2206 			      GFP_KERNEL);
2207 		if (!iov)
2208 			goto out;
2209 	}
2210 
2211 	/*
2212 	 *      Save the user-mode address (verify_iovec will change the
2213 	 *      kernel msghdr to use the kernel address space)
2214 	 */
2215 
2216 	uaddr = (__force void __user *)msg_sys->msg_name;
2217 	uaddr_len = COMPAT_NAMELEN(msg);
2218 	if (MSG_CMSG_COMPAT & flags) {
2219 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2220 	} else
2221 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2222 	if (err < 0)
2223 		goto out_freeiov;
2224 	total_len = err;
2225 
2226 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2227 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2228 
2229 	if (sock->file->f_flags & O_NONBLOCK)
2230 		flags |= MSG_DONTWAIT;
2231 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2232 							  total_len, flags);
2233 	if (err < 0)
2234 		goto out_freeiov;
2235 	len = err;
2236 
2237 	if (uaddr != NULL) {
2238 		err = move_addr_to_user(&addr,
2239 					msg_sys->msg_namelen, uaddr,
2240 					uaddr_len);
2241 		if (err < 0)
2242 			goto out_freeiov;
2243 	}
2244 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2245 			 COMPAT_FLAGS(msg));
2246 	if (err)
2247 		goto out_freeiov;
2248 	if (MSG_CMSG_COMPAT & flags)
2249 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2250 				 &msg_compat->msg_controllen);
2251 	else
2252 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2253 				 &msg->msg_controllen);
2254 	if (err)
2255 		goto out_freeiov;
2256 	err = len;
2257 
2258 out_freeiov:
2259 	if (iov != iovstack)
2260 		kfree(iov);
2261 out:
2262 	return err;
2263 }
2264 
2265 /*
2266  *	BSD recvmsg interface
2267  */
2268 
2269 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2270 		unsigned int, flags)
2271 {
2272 	int fput_needed, err;
2273 	struct msghdr msg_sys;
2274 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2275 
2276 	if (!sock)
2277 		goto out;
2278 
2279 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2280 
2281 	fput_light(sock->file, fput_needed);
2282 out:
2283 	return err;
2284 }
2285 
2286 /*
2287  *     Linux recvmmsg interface
2288  */
2289 
2290 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2291 		   unsigned int flags, struct timespec *timeout)
2292 {
2293 	int fput_needed, err, datagrams;
2294 	struct socket *sock;
2295 	struct mmsghdr __user *entry;
2296 	struct compat_mmsghdr __user *compat_entry;
2297 	struct msghdr msg_sys;
2298 	struct timespec end_time;
2299 
2300 	if (timeout &&
2301 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2302 				    timeout->tv_nsec))
2303 		return -EINVAL;
2304 
2305 	datagrams = 0;
2306 
2307 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2308 	if (!sock)
2309 		return err;
2310 
2311 	err = sock_error(sock->sk);
2312 	if (err)
2313 		goto out_put;
2314 
2315 	entry = mmsg;
2316 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2317 
2318 	while (datagrams < vlen) {
2319 		/*
2320 		 * No need to ask LSM for more than the first datagram.
2321 		 */
2322 		if (MSG_CMSG_COMPAT & flags) {
2323 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2324 					    &msg_sys, flags & ~MSG_WAITFORONE,
2325 					    datagrams);
2326 			if (err < 0)
2327 				break;
2328 			err = __put_user(err, &compat_entry->msg_len);
2329 			++compat_entry;
2330 		} else {
2331 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2332 					    &msg_sys, flags & ~MSG_WAITFORONE,
2333 					    datagrams);
2334 			if (err < 0)
2335 				break;
2336 			err = put_user(err, &entry->msg_len);
2337 			++entry;
2338 		}
2339 
2340 		if (err)
2341 			break;
2342 		++datagrams;
2343 
2344 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2345 		if (flags & MSG_WAITFORONE)
2346 			flags |= MSG_DONTWAIT;
2347 
2348 		if (timeout) {
2349 			ktime_get_ts(timeout);
2350 			*timeout = timespec_sub(end_time, *timeout);
2351 			if (timeout->tv_sec < 0) {
2352 				timeout->tv_sec = timeout->tv_nsec = 0;
2353 				break;
2354 			}
2355 
2356 			/* Timeout, return less than vlen datagrams */
2357 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2358 				break;
2359 		}
2360 
2361 		/* Out of band data, return right away */
2362 		if (msg_sys.msg_flags & MSG_OOB)
2363 			break;
2364 	}
2365 
2366 out_put:
2367 	fput_light(sock->file, fput_needed);
2368 
2369 	if (err == 0)
2370 		return datagrams;
2371 
2372 	if (datagrams != 0) {
2373 		/*
2374 		 * We may return less entries than requested (vlen) if the
2375 		 * sock is non block and there aren't enough datagrams...
2376 		 */
2377 		if (err != -EAGAIN) {
2378 			/*
2379 			 * ... or  if recvmsg returns an error after we
2380 			 * received some datagrams, where we record the
2381 			 * error to return on the next call or if the
2382 			 * app asks about it using getsockopt(SO_ERROR).
2383 			 */
2384 			sock->sk->sk_err = -err;
2385 		}
2386 
2387 		return datagrams;
2388 	}
2389 
2390 	return err;
2391 }
2392 
2393 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2394 		unsigned int, vlen, unsigned int, flags,
2395 		struct timespec __user *, timeout)
2396 {
2397 	int datagrams;
2398 	struct timespec timeout_sys;
2399 
2400 	if (!timeout)
2401 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2402 
2403 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2404 		return -EFAULT;
2405 
2406 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2407 
2408 	if (datagrams > 0 &&
2409 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2410 		datagrams = -EFAULT;
2411 
2412 	return datagrams;
2413 }
2414 
2415 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2416 /* Argument list sizes for sys_socketcall */
2417 #define AL(x) ((x) * sizeof(unsigned long))
2418 static const unsigned char nargs[21] = {
2419 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2420 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2421 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2422 	AL(4), AL(5), AL(4)
2423 };
2424 
2425 #undef AL
2426 
2427 /*
2428  *	System call vectors.
2429  *
2430  *	Argument checking cleaned up. Saved 20% in size.
2431  *  This function doesn't need to set the kernel lock because
2432  *  it is set by the callees.
2433  */
2434 
2435 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2436 {
2437 	unsigned long a[6];
2438 	unsigned long a0, a1;
2439 	int err;
2440 	unsigned int len;
2441 
2442 	if (call < 1 || call > SYS_SENDMMSG)
2443 		return -EINVAL;
2444 
2445 	len = nargs[call];
2446 	if (len > sizeof(a))
2447 		return -EINVAL;
2448 
2449 	/* copy_from_user should be SMP safe. */
2450 	if (copy_from_user(a, args, len))
2451 		return -EFAULT;
2452 
2453 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2454 
2455 	a0 = a[0];
2456 	a1 = a[1];
2457 
2458 	switch (call) {
2459 	case SYS_SOCKET:
2460 		err = sys_socket(a0, a1, a[2]);
2461 		break;
2462 	case SYS_BIND:
2463 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2464 		break;
2465 	case SYS_CONNECT:
2466 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2467 		break;
2468 	case SYS_LISTEN:
2469 		err = sys_listen(a0, a1);
2470 		break;
2471 	case SYS_ACCEPT:
2472 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2473 				  (int __user *)a[2], 0);
2474 		break;
2475 	case SYS_GETSOCKNAME:
2476 		err =
2477 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2478 				    (int __user *)a[2]);
2479 		break;
2480 	case SYS_GETPEERNAME:
2481 		err =
2482 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2483 				    (int __user *)a[2]);
2484 		break;
2485 	case SYS_SOCKETPAIR:
2486 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2487 		break;
2488 	case SYS_SEND:
2489 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2490 		break;
2491 	case SYS_SENDTO:
2492 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2493 				 (struct sockaddr __user *)a[4], a[5]);
2494 		break;
2495 	case SYS_RECV:
2496 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2497 		break;
2498 	case SYS_RECVFROM:
2499 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2500 				   (struct sockaddr __user *)a[4],
2501 				   (int __user *)a[5]);
2502 		break;
2503 	case SYS_SHUTDOWN:
2504 		err = sys_shutdown(a0, a1);
2505 		break;
2506 	case SYS_SETSOCKOPT:
2507 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2508 		break;
2509 	case SYS_GETSOCKOPT:
2510 		err =
2511 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2512 				   (int __user *)a[4]);
2513 		break;
2514 	case SYS_SENDMSG:
2515 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2516 		break;
2517 	case SYS_SENDMMSG:
2518 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2519 		break;
2520 	case SYS_RECVMSG:
2521 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2522 		break;
2523 	case SYS_RECVMMSG:
2524 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2525 				   (struct timespec __user *)a[4]);
2526 		break;
2527 	case SYS_ACCEPT4:
2528 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2529 				  (int __user *)a[2], a[3]);
2530 		break;
2531 	default:
2532 		err = -EINVAL;
2533 		break;
2534 	}
2535 	return err;
2536 }
2537 
2538 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2539 
2540 /**
2541  *	sock_register - add a socket protocol handler
2542  *	@ops: description of protocol
2543  *
2544  *	This function is called by a protocol handler that wants to
2545  *	advertise its address family, and have it linked into the
2546  *	socket interface. The value ops->family coresponds to the
2547  *	socket system call protocol family.
2548  */
2549 int sock_register(const struct net_proto_family *ops)
2550 {
2551 	int err;
2552 
2553 	if (ops->family >= NPROTO) {
2554 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2555 		       NPROTO);
2556 		return -ENOBUFS;
2557 	}
2558 
2559 	spin_lock(&net_family_lock);
2560 	if (rcu_dereference_protected(net_families[ops->family],
2561 				      lockdep_is_held(&net_family_lock)))
2562 		err = -EEXIST;
2563 	else {
2564 		rcu_assign_pointer(net_families[ops->family], ops);
2565 		err = 0;
2566 	}
2567 	spin_unlock(&net_family_lock);
2568 
2569 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2570 	return err;
2571 }
2572 EXPORT_SYMBOL(sock_register);
2573 
2574 /**
2575  *	sock_unregister - remove a protocol handler
2576  *	@family: protocol family to remove
2577  *
2578  *	This function is called by a protocol handler that wants to
2579  *	remove its address family, and have it unlinked from the
2580  *	new socket creation.
2581  *
2582  *	If protocol handler is a module, then it can use module reference
2583  *	counts to protect against new references. If protocol handler is not
2584  *	a module then it needs to provide its own protection in
2585  *	the ops->create routine.
2586  */
2587 void sock_unregister(int family)
2588 {
2589 	BUG_ON(family < 0 || family >= NPROTO);
2590 
2591 	spin_lock(&net_family_lock);
2592 	RCU_INIT_POINTER(net_families[family], NULL);
2593 	spin_unlock(&net_family_lock);
2594 
2595 	synchronize_rcu();
2596 
2597 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2598 }
2599 EXPORT_SYMBOL(sock_unregister);
2600 
2601 static int __init sock_init(void)
2602 {
2603 	int err;
2604 	/*
2605 	 *      Initialize the network sysctl infrastructure.
2606 	 */
2607 	err = net_sysctl_init();
2608 	if (err)
2609 		goto out;
2610 
2611 	/*
2612 	 *      Initialize skbuff SLAB cache
2613 	 */
2614 	skb_init();
2615 
2616 	/*
2617 	 *      Initialize the protocols module.
2618 	 */
2619 
2620 	init_inodecache();
2621 
2622 	err = register_filesystem(&sock_fs_type);
2623 	if (err)
2624 		goto out_fs;
2625 	sock_mnt = kern_mount(&sock_fs_type);
2626 	if (IS_ERR(sock_mnt)) {
2627 		err = PTR_ERR(sock_mnt);
2628 		goto out_mount;
2629 	}
2630 
2631 	/* The real protocol initialization is performed in later initcalls.
2632 	 */
2633 
2634 #ifdef CONFIG_NETFILTER
2635 	netfilter_init();
2636 #endif
2637 
2638 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2639 	skb_timestamping_init();
2640 #endif
2641 
2642 out:
2643 	return err;
2644 
2645 out_mount:
2646 	unregister_filesystem(&sock_fs_type);
2647 out_fs:
2648 	goto out;
2649 }
2650 
2651 core_initcall(sock_init);	/* early initcall */
2652 
2653 #ifdef CONFIG_PROC_FS
2654 void socket_seq_show(struct seq_file *seq)
2655 {
2656 	int cpu;
2657 	int counter = 0;
2658 
2659 	for_each_possible_cpu(cpu)
2660 	    counter += per_cpu(sockets_in_use, cpu);
2661 
2662 	/* It can be negative, by the way. 8) */
2663 	if (counter < 0)
2664 		counter = 0;
2665 
2666 	seq_printf(seq, "sockets: used %d\n", counter);
2667 }
2668 #endif				/* CONFIG_PROC_FS */
2669 
2670 #ifdef CONFIG_COMPAT
2671 static int do_siocgstamp(struct net *net, struct socket *sock,
2672 			 unsigned int cmd, void __user *up)
2673 {
2674 	mm_segment_t old_fs = get_fs();
2675 	struct timeval ktv;
2676 	int err;
2677 
2678 	set_fs(KERNEL_DS);
2679 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2680 	set_fs(old_fs);
2681 	if (!err)
2682 		err = compat_put_timeval(&ktv, up);
2683 
2684 	return err;
2685 }
2686 
2687 static int do_siocgstampns(struct net *net, struct socket *sock,
2688 			   unsigned int cmd, void __user *up)
2689 {
2690 	mm_segment_t old_fs = get_fs();
2691 	struct timespec kts;
2692 	int err;
2693 
2694 	set_fs(KERNEL_DS);
2695 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2696 	set_fs(old_fs);
2697 	if (!err)
2698 		err = compat_put_timespec(&kts, up);
2699 
2700 	return err;
2701 }
2702 
2703 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2704 {
2705 	struct ifreq __user *uifr;
2706 	int err;
2707 
2708 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2709 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2710 		return -EFAULT;
2711 
2712 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2713 	if (err)
2714 		return err;
2715 
2716 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2717 		return -EFAULT;
2718 
2719 	return 0;
2720 }
2721 
2722 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2723 {
2724 	struct compat_ifconf ifc32;
2725 	struct ifconf ifc;
2726 	struct ifconf __user *uifc;
2727 	struct compat_ifreq __user *ifr32;
2728 	struct ifreq __user *ifr;
2729 	unsigned int i, j;
2730 	int err;
2731 
2732 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2733 		return -EFAULT;
2734 
2735 	memset(&ifc, 0, sizeof(ifc));
2736 	if (ifc32.ifcbuf == 0) {
2737 		ifc32.ifc_len = 0;
2738 		ifc.ifc_len = 0;
2739 		ifc.ifc_req = NULL;
2740 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2741 	} else {
2742 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2743 			sizeof(struct ifreq);
2744 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2745 		ifc.ifc_len = len;
2746 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2747 		ifr32 = compat_ptr(ifc32.ifcbuf);
2748 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2749 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2750 				return -EFAULT;
2751 			ifr++;
2752 			ifr32++;
2753 		}
2754 	}
2755 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2756 		return -EFAULT;
2757 
2758 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2759 	if (err)
2760 		return err;
2761 
2762 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2763 		return -EFAULT;
2764 
2765 	ifr = ifc.ifc_req;
2766 	ifr32 = compat_ptr(ifc32.ifcbuf);
2767 	for (i = 0, j = 0;
2768 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2769 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2770 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2771 			return -EFAULT;
2772 		ifr32++;
2773 		ifr++;
2774 	}
2775 
2776 	if (ifc32.ifcbuf == 0) {
2777 		/* Translate from 64-bit structure multiple to
2778 		 * a 32-bit one.
2779 		 */
2780 		i = ifc.ifc_len;
2781 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2782 		ifc32.ifc_len = i;
2783 	} else {
2784 		ifc32.ifc_len = i;
2785 	}
2786 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2787 		return -EFAULT;
2788 
2789 	return 0;
2790 }
2791 
2792 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2793 {
2794 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2795 	bool convert_in = false, convert_out = false;
2796 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2797 	struct ethtool_rxnfc __user *rxnfc;
2798 	struct ifreq __user *ifr;
2799 	u32 rule_cnt = 0, actual_rule_cnt;
2800 	u32 ethcmd;
2801 	u32 data;
2802 	int ret;
2803 
2804 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2805 		return -EFAULT;
2806 
2807 	compat_rxnfc = compat_ptr(data);
2808 
2809 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2810 		return -EFAULT;
2811 
2812 	/* Most ethtool structures are defined without padding.
2813 	 * Unfortunately struct ethtool_rxnfc is an exception.
2814 	 */
2815 	switch (ethcmd) {
2816 	default:
2817 		break;
2818 	case ETHTOOL_GRXCLSRLALL:
2819 		/* Buffer size is variable */
2820 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2821 			return -EFAULT;
2822 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2823 			return -ENOMEM;
2824 		buf_size += rule_cnt * sizeof(u32);
2825 		/* fall through */
2826 	case ETHTOOL_GRXRINGS:
2827 	case ETHTOOL_GRXCLSRLCNT:
2828 	case ETHTOOL_GRXCLSRULE:
2829 	case ETHTOOL_SRXCLSRLINS:
2830 		convert_out = true;
2831 		/* fall through */
2832 	case ETHTOOL_SRXCLSRLDEL:
2833 		buf_size += sizeof(struct ethtool_rxnfc);
2834 		convert_in = true;
2835 		break;
2836 	}
2837 
2838 	ifr = compat_alloc_user_space(buf_size);
2839 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2840 
2841 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2842 		return -EFAULT;
2843 
2844 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2845 		     &ifr->ifr_ifru.ifru_data))
2846 		return -EFAULT;
2847 
2848 	if (convert_in) {
2849 		/* We expect there to be holes between fs.m_ext and
2850 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2851 		 */
2852 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2853 			     sizeof(compat_rxnfc->fs.m_ext) !=
2854 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2855 			     sizeof(rxnfc->fs.m_ext));
2856 		BUILD_BUG_ON(
2857 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2858 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2859 			offsetof(struct ethtool_rxnfc, fs.location) -
2860 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2861 
2862 		if (copy_in_user(rxnfc, compat_rxnfc,
2863 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2864 				 (void __user *)rxnfc) ||
2865 		    copy_in_user(&rxnfc->fs.ring_cookie,
2866 				 &compat_rxnfc->fs.ring_cookie,
2867 				 (void __user *)(&rxnfc->fs.location + 1) -
2868 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2869 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2870 				 sizeof(rxnfc->rule_cnt)))
2871 			return -EFAULT;
2872 	}
2873 
2874 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2875 	if (ret)
2876 		return ret;
2877 
2878 	if (convert_out) {
2879 		if (copy_in_user(compat_rxnfc, rxnfc,
2880 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2881 				 (const void __user *)rxnfc) ||
2882 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2883 				 &rxnfc->fs.ring_cookie,
2884 				 (const void __user *)(&rxnfc->fs.location + 1) -
2885 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2886 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2887 				 sizeof(rxnfc->rule_cnt)))
2888 			return -EFAULT;
2889 
2890 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2891 			/* As an optimisation, we only copy the actual
2892 			 * number of rules that the underlying
2893 			 * function returned.  Since Mallory might
2894 			 * change the rule count in user memory, we
2895 			 * check that it is less than the rule count
2896 			 * originally given (as the user buffer size),
2897 			 * which has been range-checked.
2898 			 */
2899 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2900 				return -EFAULT;
2901 			if (actual_rule_cnt < rule_cnt)
2902 				rule_cnt = actual_rule_cnt;
2903 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2904 					 &rxnfc->rule_locs[0],
2905 					 rule_cnt * sizeof(u32)))
2906 				return -EFAULT;
2907 		}
2908 	}
2909 
2910 	return 0;
2911 }
2912 
2913 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2914 {
2915 	void __user *uptr;
2916 	compat_uptr_t uptr32;
2917 	struct ifreq __user *uifr;
2918 
2919 	uifr = compat_alloc_user_space(sizeof(*uifr));
2920 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2921 		return -EFAULT;
2922 
2923 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2924 		return -EFAULT;
2925 
2926 	uptr = compat_ptr(uptr32);
2927 
2928 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2929 		return -EFAULT;
2930 
2931 	return dev_ioctl(net, SIOCWANDEV, uifr);
2932 }
2933 
2934 static int bond_ioctl(struct net *net, unsigned int cmd,
2935 			 struct compat_ifreq __user *ifr32)
2936 {
2937 	struct ifreq kifr;
2938 	struct ifreq __user *uifr;
2939 	mm_segment_t old_fs;
2940 	int err;
2941 	u32 data;
2942 	void __user *datap;
2943 
2944 	switch (cmd) {
2945 	case SIOCBONDENSLAVE:
2946 	case SIOCBONDRELEASE:
2947 	case SIOCBONDSETHWADDR:
2948 	case SIOCBONDCHANGEACTIVE:
2949 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2950 			return -EFAULT;
2951 
2952 		old_fs = get_fs();
2953 		set_fs(KERNEL_DS);
2954 		err = dev_ioctl(net, cmd,
2955 				(struct ifreq __user __force *) &kifr);
2956 		set_fs(old_fs);
2957 
2958 		return err;
2959 	case SIOCBONDSLAVEINFOQUERY:
2960 	case SIOCBONDINFOQUERY:
2961 		uifr = compat_alloc_user_space(sizeof(*uifr));
2962 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2963 			return -EFAULT;
2964 
2965 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2966 			return -EFAULT;
2967 
2968 		datap = compat_ptr(data);
2969 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2970 			return -EFAULT;
2971 
2972 		return dev_ioctl(net, cmd, uifr);
2973 	default:
2974 		return -ENOIOCTLCMD;
2975 	}
2976 }
2977 
2978 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2979 				 struct compat_ifreq __user *u_ifreq32)
2980 {
2981 	struct ifreq __user *u_ifreq64;
2982 	char tmp_buf[IFNAMSIZ];
2983 	void __user *data64;
2984 	u32 data32;
2985 
2986 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2987 			   IFNAMSIZ))
2988 		return -EFAULT;
2989 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2990 		return -EFAULT;
2991 	data64 = compat_ptr(data32);
2992 
2993 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2994 
2995 	/* Don't check these user accesses, just let that get trapped
2996 	 * in the ioctl handler instead.
2997 	 */
2998 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2999 			 IFNAMSIZ))
3000 		return -EFAULT;
3001 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3002 		return -EFAULT;
3003 
3004 	return dev_ioctl(net, cmd, u_ifreq64);
3005 }
3006 
3007 static int dev_ifsioc(struct net *net, struct socket *sock,
3008 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3009 {
3010 	struct ifreq __user *uifr;
3011 	int err;
3012 
3013 	uifr = compat_alloc_user_space(sizeof(*uifr));
3014 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3015 		return -EFAULT;
3016 
3017 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3018 
3019 	if (!err) {
3020 		switch (cmd) {
3021 		case SIOCGIFFLAGS:
3022 		case SIOCGIFMETRIC:
3023 		case SIOCGIFMTU:
3024 		case SIOCGIFMEM:
3025 		case SIOCGIFHWADDR:
3026 		case SIOCGIFINDEX:
3027 		case SIOCGIFADDR:
3028 		case SIOCGIFBRDADDR:
3029 		case SIOCGIFDSTADDR:
3030 		case SIOCGIFNETMASK:
3031 		case SIOCGIFPFLAGS:
3032 		case SIOCGIFTXQLEN:
3033 		case SIOCGMIIPHY:
3034 		case SIOCGMIIREG:
3035 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3036 				err = -EFAULT;
3037 			break;
3038 		}
3039 	}
3040 	return err;
3041 }
3042 
3043 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3044 			struct compat_ifreq __user *uifr32)
3045 {
3046 	struct ifreq ifr;
3047 	struct compat_ifmap __user *uifmap32;
3048 	mm_segment_t old_fs;
3049 	int err;
3050 
3051 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3052 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3053 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3054 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3055 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3056 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3057 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3058 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3059 	if (err)
3060 		return -EFAULT;
3061 
3062 	old_fs = get_fs();
3063 	set_fs(KERNEL_DS);
3064 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3065 	set_fs(old_fs);
3066 
3067 	if (cmd == SIOCGIFMAP && !err) {
3068 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3069 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3070 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3071 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3072 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3073 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3074 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3075 		if (err)
3076 			err = -EFAULT;
3077 	}
3078 	return err;
3079 }
3080 
3081 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3082 {
3083 	void __user *uptr;
3084 	compat_uptr_t uptr32;
3085 	struct ifreq __user *uifr;
3086 
3087 	uifr = compat_alloc_user_space(sizeof(*uifr));
3088 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3089 		return -EFAULT;
3090 
3091 	if (get_user(uptr32, &uifr32->ifr_data))
3092 		return -EFAULT;
3093 
3094 	uptr = compat_ptr(uptr32);
3095 
3096 	if (put_user(uptr, &uifr->ifr_data))
3097 		return -EFAULT;
3098 
3099 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3100 }
3101 
3102 struct rtentry32 {
3103 	u32		rt_pad1;
3104 	struct sockaddr rt_dst;         /* target address               */
3105 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3106 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3107 	unsigned short	rt_flags;
3108 	short		rt_pad2;
3109 	u32		rt_pad3;
3110 	unsigned char	rt_tos;
3111 	unsigned char	rt_class;
3112 	short		rt_pad4;
3113 	short		rt_metric;      /* +1 for binary compatibility! */
3114 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3115 	u32		rt_mtu;         /* per route MTU/Window         */
3116 	u32		rt_window;      /* Window clamping              */
3117 	unsigned short  rt_irtt;        /* Initial RTT                  */
3118 };
3119 
3120 struct in6_rtmsg32 {
3121 	struct in6_addr		rtmsg_dst;
3122 	struct in6_addr		rtmsg_src;
3123 	struct in6_addr		rtmsg_gateway;
3124 	u32			rtmsg_type;
3125 	u16			rtmsg_dst_len;
3126 	u16			rtmsg_src_len;
3127 	u32			rtmsg_metric;
3128 	u32			rtmsg_info;
3129 	u32			rtmsg_flags;
3130 	s32			rtmsg_ifindex;
3131 };
3132 
3133 static int routing_ioctl(struct net *net, struct socket *sock,
3134 			 unsigned int cmd, void __user *argp)
3135 {
3136 	int ret;
3137 	void *r = NULL;
3138 	struct in6_rtmsg r6;
3139 	struct rtentry r4;
3140 	char devname[16];
3141 	u32 rtdev;
3142 	mm_segment_t old_fs = get_fs();
3143 
3144 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3145 		struct in6_rtmsg32 __user *ur6 = argp;
3146 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3147 			3 * sizeof(struct in6_addr));
3148 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3149 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3150 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3151 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3152 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3153 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3154 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3155 
3156 		r = (void *) &r6;
3157 	} else { /* ipv4 */
3158 		struct rtentry32 __user *ur4 = argp;
3159 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3160 					3 * sizeof(struct sockaddr));
3161 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3162 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3163 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3164 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3165 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3166 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3167 		if (rtdev) {
3168 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3169 			r4.rt_dev = (char __user __force *)devname;
3170 			devname[15] = 0;
3171 		} else
3172 			r4.rt_dev = NULL;
3173 
3174 		r = (void *) &r4;
3175 	}
3176 
3177 	if (ret) {
3178 		ret = -EFAULT;
3179 		goto out;
3180 	}
3181 
3182 	set_fs(KERNEL_DS);
3183 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3184 	set_fs(old_fs);
3185 
3186 out:
3187 	return ret;
3188 }
3189 
3190 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3191  * for some operations; this forces use of the newer bridge-utils that
3192  * use compatible ioctls
3193  */
3194 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3195 {
3196 	compat_ulong_t tmp;
3197 
3198 	if (get_user(tmp, argp))
3199 		return -EFAULT;
3200 	if (tmp == BRCTL_GET_VERSION)
3201 		return BRCTL_VERSION + 1;
3202 	return -EINVAL;
3203 }
3204 
3205 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3206 			 unsigned int cmd, unsigned long arg)
3207 {
3208 	void __user *argp = compat_ptr(arg);
3209 	struct sock *sk = sock->sk;
3210 	struct net *net = sock_net(sk);
3211 
3212 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3213 		return siocdevprivate_ioctl(net, cmd, argp);
3214 
3215 	switch (cmd) {
3216 	case SIOCSIFBR:
3217 	case SIOCGIFBR:
3218 		return old_bridge_ioctl(argp);
3219 	case SIOCGIFNAME:
3220 		return dev_ifname32(net, argp);
3221 	case SIOCGIFCONF:
3222 		return dev_ifconf(net, argp);
3223 	case SIOCETHTOOL:
3224 		return ethtool_ioctl(net, argp);
3225 	case SIOCWANDEV:
3226 		return compat_siocwandev(net, argp);
3227 	case SIOCGIFMAP:
3228 	case SIOCSIFMAP:
3229 		return compat_sioc_ifmap(net, cmd, argp);
3230 	case SIOCBONDENSLAVE:
3231 	case SIOCBONDRELEASE:
3232 	case SIOCBONDSETHWADDR:
3233 	case SIOCBONDSLAVEINFOQUERY:
3234 	case SIOCBONDINFOQUERY:
3235 	case SIOCBONDCHANGEACTIVE:
3236 		return bond_ioctl(net, cmd, argp);
3237 	case SIOCADDRT:
3238 	case SIOCDELRT:
3239 		return routing_ioctl(net, sock, cmd, argp);
3240 	case SIOCGSTAMP:
3241 		return do_siocgstamp(net, sock, cmd, argp);
3242 	case SIOCGSTAMPNS:
3243 		return do_siocgstampns(net, sock, cmd, argp);
3244 	case SIOCSHWTSTAMP:
3245 		return compat_siocshwtstamp(net, argp);
3246 
3247 	case FIOSETOWN:
3248 	case SIOCSPGRP:
3249 	case FIOGETOWN:
3250 	case SIOCGPGRP:
3251 	case SIOCBRADDBR:
3252 	case SIOCBRDELBR:
3253 	case SIOCGIFVLAN:
3254 	case SIOCSIFVLAN:
3255 	case SIOCADDDLCI:
3256 	case SIOCDELDLCI:
3257 		return sock_ioctl(file, cmd, arg);
3258 
3259 	case SIOCGIFFLAGS:
3260 	case SIOCSIFFLAGS:
3261 	case SIOCGIFMETRIC:
3262 	case SIOCSIFMETRIC:
3263 	case SIOCGIFMTU:
3264 	case SIOCSIFMTU:
3265 	case SIOCGIFMEM:
3266 	case SIOCSIFMEM:
3267 	case SIOCGIFHWADDR:
3268 	case SIOCSIFHWADDR:
3269 	case SIOCADDMULTI:
3270 	case SIOCDELMULTI:
3271 	case SIOCGIFINDEX:
3272 	case SIOCGIFADDR:
3273 	case SIOCSIFADDR:
3274 	case SIOCSIFHWBROADCAST:
3275 	case SIOCDIFADDR:
3276 	case SIOCGIFBRDADDR:
3277 	case SIOCSIFBRDADDR:
3278 	case SIOCGIFDSTADDR:
3279 	case SIOCSIFDSTADDR:
3280 	case SIOCGIFNETMASK:
3281 	case SIOCSIFNETMASK:
3282 	case SIOCSIFPFLAGS:
3283 	case SIOCGIFPFLAGS:
3284 	case SIOCGIFTXQLEN:
3285 	case SIOCSIFTXQLEN:
3286 	case SIOCBRADDIF:
3287 	case SIOCBRDELIF:
3288 	case SIOCSIFNAME:
3289 	case SIOCGMIIPHY:
3290 	case SIOCGMIIREG:
3291 	case SIOCSMIIREG:
3292 		return dev_ifsioc(net, sock, cmd, argp);
3293 
3294 	case SIOCSARP:
3295 	case SIOCGARP:
3296 	case SIOCDARP:
3297 	case SIOCATMARK:
3298 		return sock_do_ioctl(net, sock, cmd, arg);
3299 	}
3300 
3301 	return -ENOIOCTLCMD;
3302 }
3303 
3304 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3305 			      unsigned long arg)
3306 {
3307 	struct socket *sock = file->private_data;
3308 	int ret = -ENOIOCTLCMD;
3309 	struct sock *sk;
3310 	struct net *net;
3311 
3312 	sk = sock->sk;
3313 	net = sock_net(sk);
3314 
3315 	if (sock->ops->compat_ioctl)
3316 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3317 
3318 	if (ret == -ENOIOCTLCMD &&
3319 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3320 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3321 
3322 	if (ret == -ENOIOCTLCMD)
3323 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3324 
3325 	return ret;
3326 }
3327 #endif
3328 
3329 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3330 {
3331 	return sock->ops->bind(sock, addr, addrlen);
3332 }
3333 EXPORT_SYMBOL(kernel_bind);
3334 
3335 int kernel_listen(struct socket *sock, int backlog)
3336 {
3337 	return sock->ops->listen(sock, backlog);
3338 }
3339 EXPORT_SYMBOL(kernel_listen);
3340 
3341 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3342 {
3343 	struct sock *sk = sock->sk;
3344 	int err;
3345 
3346 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3347 			       newsock);
3348 	if (err < 0)
3349 		goto done;
3350 
3351 	err = sock->ops->accept(sock, *newsock, flags);
3352 	if (err < 0) {
3353 		sock_release(*newsock);
3354 		*newsock = NULL;
3355 		goto done;
3356 	}
3357 
3358 	(*newsock)->ops = sock->ops;
3359 	__module_get((*newsock)->ops->owner);
3360 
3361 done:
3362 	return err;
3363 }
3364 EXPORT_SYMBOL(kernel_accept);
3365 
3366 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3367 		   int flags)
3368 {
3369 	return sock->ops->connect(sock, addr, addrlen, flags);
3370 }
3371 EXPORT_SYMBOL(kernel_connect);
3372 
3373 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3374 			 int *addrlen)
3375 {
3376 	return sock->ops->getname(sock, addr, addrlen, 0);
3377 }
3378 EXPORT_SYMBOL(kernel_getsockname);
3379 
3380 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3381 			 int *addrlen)
3382 {
3383 	return sock->ops->getname(sock, addr, addrlen, 1);
3384 }
3385 EXPORT_SYMBOL(kernel_getpeername);
3386 
3387 int kernel_getsockopt(struct socket *sock, int level, int optname,
3388 			char *optval, int *optlen)
3389 {
3390 	mm_segment_t oldfs = get_fs();
3391 	char __user *uoptval;
3392 	int __user *uoptlen;
3393 	int err;
3394 
3395 	uoptval = (char __user __force *) optval;
3396 	uoptlen = (int __user __force *) optlen;
3397 
3398 	set_fs(KERNEL_DS);
3399 	if (level == SOL_SOCKET)
3400 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3401 	else
3402 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3403 					    uoptlen);
3404 	set_fs(oldfs);
3405 	return err;
3406 }
3407 EXPORT_SYMBOL(kernel_getsockopt);
3408 
3409 int kernel_setsockopt(struct socket *sock, int level, int optname,
3410 			char *optval, unsigned int optlen)
3411 {
3412 	mm_segment_t oldfs = get_fs();
3413 	char __user *uoptval;
3414 	int err;
3415 
3416 	uoptval = (char __user __force *) optval;
3417 
3418 	set_fs(KERNEL_DS);
3419 	if (level == SOL_SOCKET)
3420 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3421 	else
3422 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3423 					    optlen);
3424 	set_fs(oldfs);
3425 	return err;
3426 }
3427 EXPORT_SYMBOL(kernel_setsockopt);
3428 
3429 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3430 		    size_t size, int flags)
3431 {
3432 	if (sock->ops->sendpage)
3433 		return sock->ops->sendpage(sock, page, offset, size, flags);
3434 
3435 	return sock_no_sendpage(sock, page, offset, size, flags);
3436 }
3437 EXPORT_SYMBOL(kernel_sendpage);
3438 
3439 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3440 {
3441 	mm_segment_t oldfs = get_fs();
3442 	int err;
3443 
3444 	set_fs(KERNEL_DS);
3445 	err = sock->ops->ioctl(sock, cmd, arg);
3446 	set_fs(oldfs);
3447 
3448 	return err;
3449 }
3450 EXPORT_SYMBOL(kernel_sock_ioctl);
3451 
3452 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3453 {
3454 	return sock->ops->shutdown(sock, how);
3455 }
3456 EXPORT_SYMBOL(kernel_sock_shutdown);
3457