xref: /openbmc/linux/net/socket.c (revision 80ecbd24)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
108 
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113 
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 			 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 			  unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.aio_read =	sock_aio_read,
145 	.aio_write =	sock_aio_write,
146 	.poll =		sock_poll,
147 	.unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 	.compat_ioctl = compat_sock_ioctl,
150 #endif
151 	.mmap =		sock_mmap,
152 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	err = get_user(len, ulen);
225 	if (err)
226 		return err;
227 	if (len > klen)
228 		len = klen;
229 	if (len < 0 || len > sizeof(struct sockaddr_storage))
230 		return -EINVAL;
231 	if (len) {
232 		if (audit_sockaddr(klen, kaddr))
233 			return -ENOMEM;
234 		if (copy_to_user(uaddr, kaddr, len))
235 			return -EFAULT;
236 	}
237 	/*
238 	 *      "fromlen shall refer to the value before truncation.."
239 	 *                      1003.1g
240 	 */
241 	return __put_user(klen, ulen);
242 }
243 
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 
246 static struct inode *sock_alloc_inode(struct super_block *sb)
247 {
248 	struct socket_alloc *ei;
249 	struct socket_wq *wq;
250 
251 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 	if (!ei)
253 		return NULL;
254 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 	if (!wq) {
256 		kmem_cache_free(sock_inode_cachep, ei);
257 		return NULL;
258 	}
259 	init_waitqueue_head(&wq->wait);
260 	wq->fasync_list = NULL;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD),
298 					      init_once);
299 	if (sock_inode_cachep == NULL)
300 		return -ENOMEM;
301 	return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305 	.alloc_inode	= sock_alloc_inode,
306 	.destroy_inode	= sock_destroy_inode,
307 	.statfs		= simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 				dentry->d_inode->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320 	.d_dname  = sockfs_dname,
321 };
322 
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 			 int flags, const char *dev_name, void *data)
325 {
326 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 		&sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329 
330 static struct vfsmount *sock_mnt __read_mostly;
331 
332 static struct file_system_type sock_fs_type = {
333 	.name =		"sockfs",
334 	.mount =	sockfs_mount,
335 	.kill_sb =	kill_anon_super,
336 };
337 
338 /*
339  *	Obtains the first available file descriptor and sets it up for use.
340  *
341  *	These functions create file structures and maps them to fd space
342  *	of the current process. On success it returns file descriptor
343  *	and file struct implicitly stored in sock->file.
344  *	Note that another thread may close file descriptor before we return
345  *	from this function. We use the fact that now we do not refer
346  *	to socket after mapping. If one day we will need it, this
347  *	function will increment ref. count on file by 1.
348  *
349  *	In any case returned fd MAY BE not valid!
350  *	This race condition is unavoidable
351  *	with shared fd spaces, we cannot solve it inside kernel,
352  *	but we take care of internal coherence yet.
353  */
354 
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 	struct qstr name = { .name = "" };
358 	struct path path;
359 	struct file *file;
360 
361 	if (dname) {
362 		name.name = dname;
363 		name.len = strlen(name.name);
364 	} else if (sock->sk) {
365 		name.name = sock->sk->sk_prot_creator->name;
366 		name.len = strlen(name.name);
367 	}
368 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 	if (unlikely(!path.dentry))
370 		return ERR_PTR(-ENOMEM);
371 	path.mnt = mntget(sock_mnt);
372 
373 	d_instantiate(path.dentry, SOCK_INODE(sock));
374 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(IS_ERR(file))) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct file *file;
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	file = fget_light(fd, fput_needed);
457 	if (file) {
458 		sock = sock_from_file(file, err);
459 		if (sock)
460 			return sock;
461 		fput_light(file, *fput_needed);
462 	}
463 	return NULL;
464 }
465 
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 			       const char *name, void *value, size_t size)
471 {
472 	const char *proto_name;
473 	size_t proto_size;
474 	int error;
475 
476 	error = -ENODATA;
477 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 		proto_name = dentry->d_name.name;
479 		proto_size = strlen(proto_name);
480 
481 		if (value) {
482 			error = -ERANGE;
483 			if (proto_size + 1 > size)
484 				goto out;
485 
486 			strncpy(value, proto_name, proto_size + 1);
487 		}
488 		error = proto_size + 1;
489 	}
490 
491 out:
492 	return error;
493 }
494 
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 				size_t size)
497 {
498 	ssize_t len;
499 	ssize_t used = 0;
500 
501 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
502 	if (len < 0)
503 		return len;
504 	used += len;
505 	if (buffer) {
506 		if (size < used)
507 			return -ERANGE;
508 		buffer += len;
509 	}
510 
511 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 	used += len;
513 	if (buffer) {
514 		if (size < used)
515 			return -ERANGE;
516 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 		buffer += len;
518 	}
519 
520 	return used;
521 }
522 
523 static const struct inode_operations sockfs_inode_ops = {
524 	.getxattr = sockfs_getxattr,
525 	.listxattr = sockfs_listxattr,
526 };
527 
528 /**
529  *	sock_alloc	-	allocate a socket
530  *
531  *	Allocate a new inode and socket object. The two are bound together
532  *	and initialised. The socket is then returned. If we are out of inodes
533  *	NULL is returned.
534  */
535 
536 static struct socket *sock_alloc(void)
537 {
538 	struct inode *inode;
539 	struct socket *sock;
540 
541 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 	if (!inode)
543 		return NULL;
544 
545 	sock = SOCKET_I(inode);
546 
547 	kmemcheck_annotate_bitfield(sock, type);
548 	inode->i_ino = get_next_ino();
549 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 	inode->i_uid = current_fsuid();
551 	inode->i_gid = current_fsgid();
552 	inode->i_op = &sockfs_inode_ops;
553 
554 	this_cpu_add(sockets_in_use, 1);
555 	return sock;
556 }
557 
558 /*
559  *	In theory you can't get an open on this inode, but /proc provides
560  *	a back door. Remember to keep it shut otherwise you'll let the
561  *	creepy crawlies in.
562  */
563 
564 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
565 {
566 	return -ENXIO;
567 }
568 
569 const struct file_operations bad_sock_fops = {
570 	.owner = THIS_MODULE,
571 	.open = sock_no_open,
572 	.llseek = noop_llseek,
573 };
574 
575 /**
576  *	sock_release	-	close a socket
577  *	@sock: socket to close
578  *
579  *	The socket is released from the protocol stack if it has a release
580  *	callback, and the inode is then released if the socket is bound to
581  *	an inode not a file.
582  */
583 
584 void sock_release(struct socket *sock)
585 {
586 	if (sock->ops) {
587 		struct module *owner = sock->ops->owner;
588 
589 		sock->ops->release(sock);
590 		sock->ops = NULL;
591 		module_put(owner);
592 	}
593 
594 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
595 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
596 
597 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
598 		return;
599 
600 	this_cpu_sub(sockets_in_use, 1);
601 	if (!sock->file) {
602 		iput(SOCK_INODE(sock));
603 		return;
604 	}
605 	sock->file = NULL;
606 }
607 EXPORT_SYMBOL(sock_release);
608 
609 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
610 {
611 	*tx_flags = 0;
612 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
613 		*tx_flags |= SKBTX_HW_TSTAMP;
614 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
615 		*tx_flags |= SKBTX_SW_TSTAMP;
616 	if (sock_flag(sk, SOCK_WIFI_STATUS))
617 		*tx_flags |= SKBTX_WIFI_STATUS;
618 }
619 EXPORT_SYMBOL(sock_tx_timestamp);
620 
621 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
622 				       struct msghdr *msg, size_t size)
623 {
624 	struct sock_iocb *si = kiocb_to_siocb(iocb);
625 
626 	si->sock = sock;
627 	si->scm = NULL;
628 	si->msg = msg;
629 	si->size = size;
630 
631 	return sock->ops->sendmsg(iocb, sock, msg, size);
632 }
633 
634 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
635 				 struct msghdr *msg, size_t size)
636 {
637 	int err = security_socket_sendmsg(sock, msg, size);
638 
639 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
640 }
641 
642 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
643 {
644 	struct kiocb iocb;
645 	struct sock_iocb siocb;
646 	int ret;
647 
648 	init_sync_kiocb(&iocb, NULL);
649 	iocb.private = &siocb;
650 	ret = __sock_sendmsg(&iocb, sock, msg, size);
651 	if (-EIOCBQUEUED == ret)
652 		ret = wait_on_sync_kiocb(&iocb);
653 	return ret;
654 }
655 EXPORT_SYMBOL(sock_sendmsg);
656 
657 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
658 {
659 	struct kiocb iocb;
660 	struct sock_iocb siocb;
661 	int ret;
662 
663 	init_sync_kiocb(&iocb, NULL);
664 	iocb.private = &siocb;
665 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
666 	if (-EIOCBQUEUED == ret)
667 		ret = wait_on_sync_kiocb(&iocb);
668 	return ret;
669 }
670 
671 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
672 		   struct kvec *vec, size_t num, size_t size)
673 {
674 	mm_segment_t oldfs = get_fs();
675 	int result;
676 
677 	set_fs(KERNEL_DS);
678 	/*
679 	 * the following is safe, since for compiler definitions of kvec and
680 	 * iovec are identical, yielding the same in-core layout and alignment
681 	 */
682 	msg->msg_iov = (struct iovec *)vec;
683 	msg->msg_iovlen = num;
684 	result = sock_sendmsg(sock, msg, size);
685 	set_fs(oldfs);
686 	return result;
687 }
688 EXPORT_SYMBOL(kernel_sendmsg);
689 
690 /*
691  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
692  */
693 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
694 	struct sk_buff *skb)
695 {
696 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
697 	struct timespec ts[3];
698 	int empty = 1;
699 	struct skb_shared_hwtstamps *shhwtstamps =
700 		skb_hwtstamps(skb);
701 
702 	/* Race occurred between timestamp enabling and packet
703 	   receiving.  Fill in the current time for now. */
704 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
705 		__net_timestamp(skb);
706 
707 	if (need_software_tstamp) {
708 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
709 			struct timeval tv;
710 			skb_get_timestamp(skb, &tv);
711 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
712 				 sizeof(tv), &tv);
713 		} else {
714 			skb_get_timestampns(skb, &ts[0]);
715 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
716 				 sizeof(ts[0]), &ts[0]);
717 		}
718 	}
719 
720 
721 	memset(ts, 0, sizeof(ts));
722 	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
723 	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
724 		empty = 0;
725 	if (shhwtstamps) {
726 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
727 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
728 			empty = 0;
729 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
730 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
731 			empty = 0;
732 	}
733 	if (!empty)
734 		put_cmsg(msg, SOL_SOCKET,
735 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
736 }
737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
738 
739 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
740 	struct sk_buff *skb)
741 {
742 	int ack;
743 
744 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
745 		return;
746 	if (!skb->wifi_acked_valid)
747 		return;
748 
749 	ack = skb->wifi_acked;
750 
751 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
752 }
753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
754 
755 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
756 				   struct sk_buff *skb)
757 {
758 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
759 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
760 			sizeof(__u32), &skb->dropcount);
761 }
762 
763 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
764 	struct sk_buff *skb)
765 {
766 	sock_recv_timestamp(msg, sk, skb);
767 	sock_recv_drops(msg, sk, skb);
768 }
769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
770 
771 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
772 				       struct msghdr *msg, size_t size, int flags)
773 {
774 	struct sock_iocb *si = kiocb_to_siocb(iocb);
775 
776 	si->sock = sock;
777 	si->scm = NULL;
778 	si->msg = msg;
779 	si->size = size;
780 	si->flags = flags;
781 
782 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
783 }
784 
785 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
786 				 struct msghdr *msg, size_t size, int flags)
787 {
788 	int err = security_socket_recvmsg(sock, msg, size, flags);
789 
790 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
791 }
792 
793 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
794 		 size_t size, int flags)
795 {
796 	struct kiocb iocb;
797 	struct sock_iocb siocb;
798 	int ret;
799 
800 	init_sync_kiocb(&iocb, NULL);
801 	iocb.private = &siocb;
802 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
803 	if (-EIOCBQUEUED == ret)
804 		ret = wait_on_sync_kiocb(&iocb);
805 	return ret;
806 }
807 EXPORT_SYMBOL(sock_recvmsg);
808 
809 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
810 			      size_t size, int flags)
811 {
812 	struct kiocb iocb;
813 	struct sock_iocb siocb;
814 	int ret;
815 
816 	init_sync_kiocb(&iocb, NULL);
817 	iocb.private = &siocb;
818 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
819 	if (-EIOCBQUEUED == ret)
820 		ret = wait_on_sync_kiocb(&iocb);
821 	return ret;
822 }
823 
824 /**
825  * kernel_recvmsg - Receive a message from a socket (kernel space)
826  * @sock:       The socket to receive the message from
827  * @msg:        Received message
828  * @vec:        Input s/g array for message data
829  * @num:        Size of input s/g array
830  * @size:       Number of bytes to read
831  * @flags:      Message flags (MSG_DONTWAIT, etc...)
832  *
833  * On return the msg structure contains the scatter/gather array passed in the
834  * vec argument. The array is modified so that it consists of the unfilled
835  * portion of the original array.
836  *
837  * The returned value is the total number of bytes received, or an error.
838  */
839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
840 		   struct kvec *vec, size_t num, size_t size, int flags)
841 {
842 	mm_segment_t oldfs = get_fs();
843 	int result;
844 
845 	set_fs(KERNEL_DS);
846 	/*
847 	 * the following is safe, since for compiler definitions of kvec and
848 	 * iovec are identical, yielding the same in-core layout and alignment
849 	 */
850 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
851 	result = sock_recvmsg(sock, msg, size, flags);
852 	set_fs(oldfs);
853 	return result;
854 }
855 EXPORT_SYMBOL(kernel_recvmsg);
856 
857 static void sock_aio_dtor(struct kiocb *iocb)
858 {
859 	kfree(iocb->private);
860 }
861 
862 static ssize_t sock_sendpage(struct file *file, struct page *page,
863 			     int offset, size_t size, loff_t *ppos, int more)
864 {
865 	struct socket *sock;
866 	int flags;
867 
868 	sock = file->private_data;
869 
870 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
872 	flags |= more;
873 
874 	return kernel_sendpage(sock, page, offset, size, flags);
875 }
876 
877 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
878 				struct pipe_inode_info *pipe, size_t len,
879 				unsigned int flags)
880 {
881 	struct socket *sock = file->private_data;
882 
883 	if (unlikely(!sock->ops->splice_read))
884 		return -EINVAL;
885 
886 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
887 }
888 
889 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
890 					 struct sock_iocb *siocb)
891 {
892 	if (!is_sync_kiocb(iocb)) {
893 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
894 		if (!siocb)
895 			return NULL;
896 		iocb->ki_dtor = sock_aio_dtor;
897 	}
898 
899 	siocb->kiocb = iocb;
900 	iocb->private = siocb;
901 	return siocb;
902 }
903 
904 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
905 		struct file *file, const struct iovec *iov,
906 		unsigned long nr_segs)
907 {
908 	struct socket *sock = file->private_data;
909 	size_t size = 0;
910 	int i;
911 
912 	for (i = 0; i < nr_segs; i++)
913 		size += iov[i].iov_len;
914 
915 	msg->msg_name = NULL;
916 	msg->msg_namelen = 0;
917 	msg->msg_control = NULL;
918 	msg->msg_controllen = 0;
919 	msg->msg_iov = (struct iovec *)iov;
920 	msg->msg_iovlen = nr_segs;
921 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
922 
923 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
924 }
925 
926 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
927 				unsigned long nr_segs, loff_t pos)
928 {
929 	struct sock_iocb siocb, *x;
930 
931 	if (pos != 0)
932 		return -ESPIPE;
933 
934 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
935 		return 0;
936 
937 
938 	x = alloc_sock_iocb(iocb, &siocb);
939 	if (!x)
940 		return -ENOMEM;
941 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
942 }
943 
944 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
945 			struct file *file, const struct iovec *iov,
946 			unsigned long nr_segs)
947 {
948 	struct socket *sock = file->private_data;
949 	size_t size = 0;
950 	int i;
951 
952 	for (i = 0; i < nr_segs; i++)
953 		size += iov[i].iov_len;
954 
955 	msg->msg_name = NULL;
956 	msg->msg_namelen = 0;
957 	msg->msg_control = NULL;
958 	msg->msg_controllen = 0;
959 	msg->msg_iov = (struct iovec *)iov;
960 	msg->msg_iovlen = nr_segs;
961 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
962 	if (sock->type == SOCK_SEQPACKET)
963 		msg->msg_flags |= MSG_EOR;
964 
965 	return __sock_sendmsg(iocb, sock, msg, size);
966 }
967 
968 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
969 			  unsigned long nr_segs, loff_t pos)
970 {
971 	struct sock_iocb siocb, *x;
972 
973 	if (pos != 0)
974 		return -ESPIPE;
975 
976 	x = alloc_sock_iocb(iocb, &siocb);
977 	if (!x)
978 		return -ENOMEM;
979 
980 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
981 }
982 
983 /*
984  * Atomic setting of ioctl hooks to avoid race
985  * with module unload.
986  */
987 
988 static DEFINE_MUTEX(br_ioctl_mutex);
989 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
990 
991 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
992 {
993 	mutex_lock(&br_ioctl_mutex);
994 	br_ioctl_hook = hook;
995 	mutex_unlock(&br_ioctl_mutex);
996 }
997 EXPORT_SYMBOL(brioctl_set);
998 
999 static DEFINE_MUTEX(vlan_ioctl_mutex);
1000 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1001 
1002 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1003 {
1004 	mutex_lock(&vlan_ioctl_mutex);
1005 	vlan_ioctl_hook = hook;
1006 	mutex_unlock(&vlan_ioctl_mutex);
1007 }
1008 EXPORT_SYMBOL(vlan_ioctl_set);
1009 
1010 static DEFINE_MUTEX(dlci_ioctl_mutex);
1011 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1012 
1013 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1014 {
1015 	mutex_lock(&dlci_ioctl_mutex);
1016 	dlci_ioctl_hook = hook;
1017 	mutex_unlock(&dlci_ioctl_mutex);
1018 }
1019 EXPORT_SYMBOL(dlci_ioctl_set);
1020 
1021 static long sock_do_ioctl(struct net *net, struct socket *sock,
1022 				 unsigned int cmd, unsigned long arg)
1023 {
1024 	int err;
1025 	void __user *argp = (void __user *)arg;
1026 
1027 	err = sock->ops->ioctl(sock, cmd, arg);
1028 
1029 	/*
1030 	 * If this ioctl is unknown try to hand it down
1031 	 * to the NIC driver.
1032 	 */
1033 	if (err == -ENOIOCTLCMD)
1034 		err = dev_ioctl(net, cmd, argp);
1035 
1036 	return err;
1037 }
1038 
1039 /*
1040  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1041  *	what to do with it - that's up to the protocol still.
1042  */
1043 
1044 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1045 {
1046 	struct socket *sock;
1047 	struct sock *sk;
1048 	void __user *argp = (void __user *)arg;
1049 	int pid, err;
1050 	struct net *net;
1051 
1052 	sock = file->private_data;
1053 	sk = sock->sk;
1054 	net = sock_net(sk);
1055 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1056 		err = dev_ioctl(net, cmd, argp);
1057 	} else
1058 #ifdef CONFIG_WEXT_CORE
1059 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1060 		err = dev_ioctl(net, cmd, argp);
1061 	} else
1062 #endif
1063 		switch (cmd) {
1064 		case FIOSETOWN:
1065 		case SIOCSPGRP:
1066 			err = -EFAULT;
1067 			if (get_user(pid, (int __user *)argp))
1068 				break;
1069 			err = f_setown(sock->file, pid, 1);
1070 			break;
1071 		case FIOGETOWN:
1072 		case SIOCGPGRP:
1073 			err = put_user(f_getown(sock->file),
1074 				       (int __user *)argp);
1075 			break;
1076 		case SIOCGIFBR:
1077 		case SIOCSIFBR:
1078 		case SIOCBRADDBR:
1079 		case SIOCBRDELBR:
1080 			err = -ENOPKG;
1081 			if (!br_ioctl_hook)
1082 				request_module("bridge");
1083 
1084 			mutex_lock(&br_ioctl_mutex);
1085 			if (br_ioctl_hook)
1086 				err = br_ioctl_hook(net, cmd, argp);
1087 			mutex_unlock(&br_ioctl_mutex);
1088 			break;
1089 		case SIOCGIFVLAN:
1090 		case SIOCSIFVLAN:
1091 			err = -ENOPKG;
1092 			if (!vlan_ioctl_hook)
1093 				request_module("8021q");
1094 
1095 			mutex_lock(&vlan_ioctl_mutex);
1096 			if (vlan_ioctl_hook)
1097 				err = vlan_ioctl_hook(net, argp);
1098 			mutex_unlock(&vlan_ioctl_mutex);
1099 			break;
1100 		case SIOCADDDLCI:
1101 		case SIOCDELDLCI:
1102 			err = -ENOPKG;
1103 			if (!dlci_ioctl_hook)
1104 				request_module("dlci");
1105 
1106 			mutex_lock(&dlci_ioctl_mutex);
1107 			if (dlci_ioctl_hook)
1108 				err = dlci_ioctl_hook(cmd, argp);
1109 			mutex_unlock(&dlci_ioctl_mutex);
1110 			break;
1111 		default:
1112 			err = sock_do_ioctl(net, sock, cmd, arg);
1113 			break;
1114 		}
1115 	return err;
1116 }
1117 
1118 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1119 {
1120 	int err;
1121 	struct socket *sock = NULL;
1122 
1123 	err = security_socket_create(family, type, protocol, 1);
1124 	if (err)
1125 		goto out;
1126 
1127 	sock = sock_alloc();
1128 	if (!sock) {
1129 		err = -ENOMEM;
1130 		goto out;
1131 	}
1132 
1133 	sock->type = type;
1134 	err = security_socket_post_create(sock, family, type, protocol, 1);
1135 	if (err)
1136 		goto out_release;
1137 
1138 out:
1139 	*res = sock;
1140 	return err;
1141 out_release:
1142 	sock_release(sock);
1143 	sock = NULL;
1144 	goto out;
1145 }
1146 EXPORT_SYMBOL(sock_create_lite);
1147 
1148 /* No kernel lock held - perfect */
1149 static unsigned int sock_poll(struct file *file, poll_table *wait)
1150 {
1151 	unsigned int busy_flag = 0;
1152 	struct socket *sock;
1153 
1154 	/*
1155 	 *      We can't return errors to poll, so it's either yes or no.
1156 	 */
1157 	sock = file->private_data;
1158 
1159 	if (sk_can_busy_loop(sock->sk)) {
1160 		/* this socket can poll_ll so tell the system call */
1161 		busy_flag = POLL_BUSY_LOOP;
1162 
1163 		/* once, only if requested by syscall */
1164 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1165 			sk_busy_loop(sock->sk, 1);
1166 	}
1167 
1168 	return busy_flag | sock->ops->poll(file, sock, wait);
1169 }
1170 
1171 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1172 {
1173 	struct socket *sock = file->private_data;
1174 
1175 	return sock->ops->mmap(file, sock, vma);
1176 }
1177 
1178 static int sock_close(struct inode *inode, struct file *filp)
1179 {
1180 	sock_release(SOCKET_I(inode));
1181 	return 0;
1182 }
1183 
1184 /*
1185  *	Update the socket async list
1186  *
1187  *	Fasync_list locking strategy.
1188  *
1189  *	1. fasync_list is modified only under process context socket lock
1190  *	   i.e. under semaphore.
1191  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192  *	   or under socket lock
1193  */
1194 
1195 static int sock_fasync(int fd, struct file *filp, int on)
1196 {
1197 	struct socket *sock = filp->private_data;
1198 	struct sock *sk = sock->sk;
1199 	struct socket_wq *wq;
1200 
1201 	if (sk == NULL)
1202 		return -EINVAL;
1203 
1204 	lock_sock(sk);
1205 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1206 	fasync_helper(fd, filp, on, &wq->fasync_list);
1207 
1208 	if (!wq->fasync_list)
1209 		sock_reset_flag(sk, SOCK_FASYNC);
1210 	else
1211 		sock_set_flag(sk, SOCK_FASYNC);
1212 
1213 	release_sock(sk);
1214 	return 0;
1215 }
1216 
1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1218 
1219 int sock_wake_async(struct socket *sock, int how, int band)
1220 {
1221 	struct socket_wq *wq;
1222 
1223 	if (!sock)
1224 		return -1;
1225 	rcu_read_lock();
1226 	wq = rcu_dereference(sock->wq);
1227 	if (!wq || !wq->fasync_list) {
1228 		rcu_read_unlock();
1229 		return -1;
1230 	}
1231 	switch (how) {
1232 	case SOCK_WAKE_WAITD:
1233 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1234 			break;
1235 		goto call_kill;
1236 	case SOCK_WAKE_SPACE:
1237 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1238 			break;
1239 		/* fall through */
1240 	case SOCK_WAKE_IO:
1241 call_kill:
1242 		kill_fasync(&wq->fasync_list, SIGIO, band);
1243 		break;
1244 	case SOCK_WAKE_URG:
1245 		kill_fasync(&wq->fasync_list, SIGURG, band);
1246 	}
1247 	rcu_read_unlock();
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL(sock_wake_async);
1251 
1252 int __sock_create(struct net *net, int family, int type, int protocol,
1253 			 struct socket **res, int kern)
1254 {
1255 	int err;
1256 	struct socket *sock;
1257 	const struct net_proto_family *pf;
1258 
1259 	/*
1260 	 *      Check protocol is in range
1261 	 */
1262 	if (family < 0 || family >= NPROTO)
1263 		return -EAFNOSUPPORT;
1264 	if (type < 0 || type >= SOCK_MAX)
1265 		return -EINVAL;
1266 
1267 	/* Compatibility.
1268 
1269 	   This uglymoron is moved from INET layer to here to avoid
1270 	   deadlock in module load.
1271 	 */
1272 	if (family == PF_INET && type == SOCK_PACKET) {
1273 		static int warned;
1274 		if (!warned) {
1275 			warned = 1;
1276 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1277 			       current->comm);
1278 		}
1279 		family = PF_PACKET;
1280 	}
1281 
1282 	err = security_socket_create(family, type, protocol, kern);
1283 	if (err)
1284 		return err;
1285 
1286 	/*
1287 	 *	Allocate the socket and allow the family to set things up. if
1288 	 *	the protocol is 0, the family is instructed to select an appropriate
1289 	 *	default.
1290 	 */
1291 	sock = sock_alloc();
1292 	if (!sock) {
1293 		net_warn_ratelimited("socket: no more sockets\n");
1294 		return -ENFILE;	/* Not exactly a match, but its the
1295 				   closest posix thing */
1296 	}
1297 
1298 	sock->type = type;
1299 
1300 #ifdef CONFIG_MODULES
1301 	/* Attempt to load a protocol module if the find failed.
1302 	 *
1303 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1304 	 * requested real, full-featured networking support upon configuration.
1305 	 * Otherwise module support will break!
1306 	 */
1307 	if (rcu_access_pointer(net_families[family]) == NULL)
1308 		request_module("net-pf-%d", family);
1309 #endif
1310 
1311 	rcu_read_lock();
1312 	pf = rcu_dereference(net_families[family]);
1313 	err = -EAFNOSUPPORT;
1314 	if (!pf)
1315 		goto out_release;
1316 
1317 	/*
1318 	 * We will call the ->create function, that possibly is in a loadable
1319 	 * module, so we have to bump that loadable module refcnt first.
1320 	 */
1321 	if (!try_module_get(pf->owner))
1322 		goto out_release;
1323 
1324 	/* Now protected by module ref count */
1325 	rcu_read_unlock();
1326 
1327 	err = pf->create(net, sock, protocol, kern);
1328 	if (err < 0)
1329 		goto out_module_put;
1330 
1331 	/*
1332 	 * Now to bump the refcnt of the [loadable] module that owns this
1333 	 * socket at sock_release time we decrement its refcnt.
1334 	 */
1335 	if (!try_module_get(sock->ops->owner))
1336 		goto out_module_busy;
1337 
1338 	/*
1339 	 * Now that we're done with the ->create function, the [loadable]
1340 	 * module can have its refcnt decremented
1341 	 */
1342 	module_put(pf->owner);
1343 	err = security_socket_post_create(sock, family, type, protocol, kern);
1344 	if (err)
1345 		goto out_sock_release;
1346 	*res = sock;
1347 
1348 	return 0;
1349 
1350 out_module_busy:
1351 	err = -EAFNOSUPPORT;
1352 out_module_put:
1353 	sock->ops = NULL;
1354 	module_put(pf->owner);
1355 out_sock_release:
1356 	sock_release(sock);
1357 	return err;
1358 
1359 out_release:
1360 	rcu_read_unlock();
1361 	goto out_sock_release;
1362 }
1363 EXPORT_SYMBOL(__sock_create);
1364 
1365 int sock_create(int family, int type, int protocol, struct socket **res)
1366 {
1367 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1368 }
1369 EXPORT_SYMBOL(sock_create);
1370 
1371 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1372 {
1373 	return __sock_create(&init_net, family, type, protocol, res, 1);
1374 }
1375 EXPORT_SYMBOL(sock_create_kern);
1376 
1377 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1378 {
1379 	int retval;
1380 	struct socket *sock;
1381 	int flags;
1382 
1383 	/* Check the SOCK_* constants for consistency.  */
1384 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1385 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1386 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1387 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1388 
1389 	flags = type & ~SOCK_TYPE_MASK;
1390 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1391 		return -EINVAL;
1392 	type &= SOCK_TYPE_MASK;
1393 
1394 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1395 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1396 
1397 	retval = sock_create(family, type, protocol, &sock);
1398 	if (retval < 0)
1399 		goto out;
1400 
1401 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1402 	if (retval < 0)
1403 		goto out_release;
1404 
1405 out:
1406 	/* It may be already another descriptor 8) Not kernel problem. */
1407 	return retval;
1408 
1409 out_release:
1410 	sock_release(sock);
1411 	return retval;
1412 }
1413 
1414 /*
1415  *	Create a pair of connected sockets.
1416  */
1417 
1418 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1419 		int __user *, usockvec)
1420 {
1421 	struct socket *sock1, *sock2;
1422 	int fd1, fd2, err;
1423 	struct file *newfile1, *newfile2;
1424 	int flags;
1425 
1426 	flags = type & ~SOCK_TYPE_MASK;
1427 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1428 		return -EINVAL;
1429 	type &= SOCK_TYPE_MASK;
1430 
1431 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1432 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1433 
1434 	/*
1435 	 * Obtain the first socket and check if the underlying protocol
1436 	 * supports the socketpair call.
1437 	 */
1438 
1439 	err = sock_create(family, type, protocol, &sock1);
1440 	if (err < 0)
1441 		goto out;
1442 
1443 	err = sock_create(family, type, protocol, &sock2);
1444 	if (err < 0)
1445 		goto out_release_1;
1446 
1447 	err = sock1->ops->socketpair(sock1, sock2);
1448 	if (err < 0)
1449 		goto out_release_both;
1450 
1451 	fd1 = get_unused_fd_flags(flags);
1452 	if (unlikely(fd1 < 0)) {
1453 		err = fd1;
1454 		goto out_release_both;
1455 	}
1456 	fd2 = get_unused_fd_flags(flags);
1457 	if (unlikely(fd2 < 0)) {
1458 		err = fd2;
1459 		put_unused_fd(fd1);
1460 		goto out_release_both;
1461 	}
1462 
1463 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1464 	if (unlikely(IS_ERR(newfile1))) {
1465 		err = PTR_ERR(newfile1);
1466 		put_unused_fd(fd1);
1467 		put_unused_fd(fd2);
1468 		goto out_release_both;
1469 	}
1470 
1471 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1472 	if (IS_ERR(newfile2)) {
1473 		err = PTR_ERR(newfile2);
1474 		fput(newfile1);
1475 		put_unused_fd(fd1);
1476 		put_unused_fd(fd2);
1477 		sock_release(sock2);
1478 		goto out;
1479 	}
1480 
1481 	audit_fd_pair(fd1, fd2);
1482 	fd_install(fd1, newfile1);
1483 	fd_install(fd2, newfile2);
1484 	/* fd1 and fd2 may be already another descriptors.
1485 	 * Not kernel problem.
1486 	 */
1487 
1488 	err = put_user(fd1, &usockvec[0]);
1489 	if (!err)
1490 		err = put_user(fd2, &usockvec[1]);
1491 	if (!err)
1492 		return 0;
1493 
1494 	sys_close(fd2);
1495 	sys_close(fd1);
1496 	return err;
1497 
1498 out_release_both:
1499 	sock_release(sock2);
1500 out_release_1:
1501 	sock_release(sock1);
1502 out:
1503 	return err;
1504 }
1505 
1506 /*
1507  *	Bind a name to a socket. Nothing much to do here since it's
1508  *	the protocol's responsibility to handle the local address.
1509  *
1510  *	We move the socket address to kernel space before we call
1511  *	the protocol layer (having also checked the address is ok).
1512  */
1513 
1514 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1515 {
1516 	struct socket *sock;
1517 	struct sockaddr_storage address;
1518 	int err, fput_needed;
1519 
1520 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521 	if (sock) {
1522 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1523 		if (err >= 0) {
1524 			err = security_socket_bind(sock,
1525 						   (struct sockaddr *)&address,
1526 						   addrlen);
1527 			if (!err)
1528 				err = sock->ops->bind(sock,
1529 						      (struct sockaddr *)
1530 						      &address, addrlen);
1531 		}
1532 		fput_light(sock->file, fput_needed);
1533 	}
1534 	return err;
1535 }
1536 
1537 /*
1538  *	Perform a listen. Basically, we allow the protocol to do anything
1539  *	necessary for a listen, and if that works, we mark the socket as
1540  *	ready for listening.
1541  */
1542 
1543 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1544 {
1545 	struct socket *sock;
1546 	int err, fput_needed;
1547 	int somaxconn;
1548 
1549 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550 	if (sock) {
1551 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1552 		if ((unsigned int)backlog > somaxconn)
1553 			backlog = somaxconn;
1554 
1555 		err = security_socket_listen(sock, backlog);
1556 		if (!err)
1557 			err = sock->ops->listen(sock, backlog);
1558 
1559 		fput_light(sock->file, fput_needed);
1560 	}
1561 	return err;
1562 }
1563 
1564 /*
1565  *	For accept, we attempt to create a new socket, set up the link
1566  *	with the client, wake up the client, then return the new
1567  *	connected fd. We collect the address of the connector in kernel
1568  *	space and move it to user at the very end. This is unclean because
1569  *	we open the socket then return an error.
1570  *
1571  *	1003.1g adds the ability to recvmsg() to query connection pending
1572  *	status to recvmsg. We need to add that support in a way thats
1573  *	clean when we restucture accept also.
1574  */
1575 
1576 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1577 		int __user *, upeer_addrlen, int, flags)
1578 {
1579 	struct socket *sock, *newsock;
1580 	struct file *newfile;
1581 	int err, len, newfd, fput_needed;
1582 	struct sockaddr_storage address;
1583 
1584 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1585 		return -EINVAL;
1586 
1587 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1588 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1589 
1590 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1591 	if (!sock)
1592 		goto out;
1593 
1594 	err = -ENFILE;
1595 	newsock = sock_alloc();
1596 	if (!newsock)
1597 		goto out_put;
1598 
1599 	newsock->type = sock->type;
1600 	newsock->ops = sock->ops;
1601 
1602 	/*
1603 	 * We don't need try_module_get here, as the listening socket (sock)
1604 	 * has the protocol module (sock->ops->owner) held.
1605 	 */
1606 	__module_get(newsock->ops->owner);
1607 
1608 	newfd = get_unused_fd_flags(flags);
1609 	if (unlikely(newfd < 0)) {
1610 		err = newfd;
1611 		sock_release(newsock);
1612 		goto out_put;
1613 	}
1614 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1615 	if (unlikely(IS_ERR(newfile))) {
1616 		err = PTR_ERR(newfile);
1617 		put_unused_fd(newfd);
1618 		sock_release(newsock);
1619 		goto out_put;
1620 	}
1621 
1622 	err = security_socket_accept(sock, newsock);
1623 	if (err)
1624 		goto out_fd;
1625 
1626 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1627 	if (err < 0)
1628 		goto out_fd;
1629 
1630 	if (upeer_sockaddr) {
1631 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1632 					  &len, 2) < 0) {
1633 			err = -ECONNABORTED;
1634 			goto out_fd;
1635 		}
1636 		err = move_addr_to_user(&address,
1637 					len, upeer_sockaddr, upeer_addrlen);
1638 		if (err < 0)
1639 			goto out_fd;
1640 	}
1641 
1642 	/* File flags are not inherited via accept() unlike another OSes. */
1643 
1644 	fd_install(newfd, newfile);
1645 	err = newfd;
1646 
1647 out_put:
1648 	fput_light(sock->file, fput_needed);
1649 out:
1650 	return err;
1651 out_fd:
1652 	fput(newfile);
1653 	put_unused_fd(newfd);
1654 	goto out_put;
1655 }
1656 
1657 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1658 		int __user *, upeer_addrlen)
1659 {
1660 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1661 }
1662 
1663 /*
1664  *	Attempt to connect to a socket with the server address.  The address
1665  *	is in user space so we verify it is OK and move it to kernel space.
1666  *
1667  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1668  *	break bindings
1669  *
1670  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1671  *	other SEQPACKET protocols that take time to connect() as it doesn't
1672  *	include the -EINPROGRESS status for such sockets.
1673  */
1674 
1675 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1676 		int, addrlen)
1677 {
1678 	struct socket *sock;
1679 	struct sockaddr_storage address;
1680 	int err, fput_needed;
1681 
1682 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683 	if (!sock)
1684 		goto out;
1685 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1686 	if (err < 0)
1687 		goto out_put;
1688 
1689 	err =
1690 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1691 	if (err)
1692 		goto out_put;
1693 
1694 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1695 				 sock->file->f_flags);
1696 out_put:
1697 	fput_light(sock->file, fput_needed);
1698 out:
1699 	return err;
1700 }
1701 
1702 /*
1703  *	Get the local address ('name') of a socket object. Move the obtained
1704  *	name to user space.
1705  */
1706 
1707 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1708 		int __user *, usockaddr_len)
1709 {
1710 	struct socket *sock;
1711 	struct sockaddr_storage address;
1712 	int len, err, fput_needed;
1713 
1714 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1715 	if (!sock)
1716 		goto out;
1717 
1718 	err = security_socket_getsockname(sock);
1719 	if (err)
1720 		goto out_put;
1721 
1722 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1723 	if (err)
1724 		goto out_put;
1725 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1726 
1727 out_put:
1728 	fput_light(sock->file, fput_needed);
1729 out:
1730 	return err;
1731 }
1732 
1733 /*
1734  *	Get the remote address ('name') of a socket object. Move the obtained
1735  *	name to user space.
1736  */
1737 
1738 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1739 		int __user *, usockaddr_len)
1740 {
1741 	struct socket *sock;
1742 	struct sockaddr_storage address;
1743 	int len, err, fput_needed;
1744 
1745 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 	if (sock != NULL) {
1747 		err = security_socket_getpeername(sock);
1748 		if (err) {
1749 			fput_light(sock->file, fput_needed);
1750 			return err;
1751 		}
1752 
1753 		err =
1754 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1755 				       1);
1756 		if (!err)
1757 			err = move_addr_to_user(&address, len, usockaddr,
1758 						usockaddr_len);
1759 		fput_light(sock->file, fput_needed);
1760 	}
1761 	return err;
1762 }
1763 
1764 /*
1765  *	Send a datagram to a given address. We move the address into kernel
1766  *	space and check the user space data area is readable before invoking
1767  *	the protocol.
1768  */
1769 
1770 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1771 		unsigned int, flags, struct sockaddr __user *, addr,
1772 		int, addr_len)
1773 {
1774 	struct socket *sock;
1775 	struct sockaddr_storage address;
1776 	int err;
1777 	struct msghdr msg;
1778 	struct iovec iov;
1779 	int fput_needed;
1780 
1781 	if (len > INT_MAX)
1782 		len = INT_MAX;
1783 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 	if (!sock)
1785 		goto out;
1786 
1787 	iov.iov_base = buff;
1788 	iov.iov_len = len;
1789 	msg.msg_name = NULL;
1790 	msg.msg_iov = &iov;
1791 	msg.msg_iovlen = 1;
1792 	msg.msg_control = NULL;
1793 	msg.msg_controllen = 0;
1794 	msg.msg_namelen = 0;
1795 	if (addr) {
1796 		err = move_addr_to_kernel(addr, addr_len, &address);
1797 		if (err < 0)
1798 			goto out_put;
1799 		msg.msg_name = (struct sockaddr *)&address;
1800 		msg.msg_namelen = addr_len;
1801 	}
1802 	if (sock->file->f_flags & O_NONBLOCK)
1803 		flags |= MSG_DONTWAIT;
1804 	msg.msg_flags = flags;
1805 	err = sock_sendmsg(sock, &msg, len);
1806 
1807 out_put:
1808 	fput_light(sock->file, fput_needed);
1809 out:
1810 	return err;
1811 }
1812 
1813 /*
1814  *	Send a datagram down a socket.
1815  */
1816 
1817 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1818 		unsigned int, flags)
1819 {
1820 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1821 }
1822 
1823 /*
1824  *	Receive a frame from the socket and optionally record the address of the
1825  *	sender. We verify the buffers are writable and if needed move the
1826  *	sender address from kernel to user space.
1827  */
1828 
1829 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1830 		unsigned int, flags, struct sockaddr __user *, addr,
1831 		int __user *, addr_len)
1832 {
1833 	struct socket *sock;
1834 	struct iovec iov;
1835 	struct msghdr msg;
1836 	struct sockaddr_storage address;
1837 	int err, err2;
1838 	int fput_needed;
1839 
1840 	if (size > INT_MAX)
1841 		size = INT_MAX;
1842 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1843 	if (!sock)
1844 		goto out;
1845 
1846 	msg.msg_control = NULL;
1847 	msg.msg_controllen = 0;
1848 	msg.msg_iovlen = 1;
1849 	msg.msg_iov = &iov;
1850 	iov.iov_len = size;
1851 	iov.iov_base = ubuf;
1852 	msg.msg_name = (struct sockaddr *)&address;
1853 	msg.msg_namelen = sizeof(address);
1854 	if (sock->file->f_flags & O_NONBLOCK)
1855 		flags |= MSG_DONTWAIT;
1856 	err = sock_recvmsg(sock, &msg, size, flags);
1857 
1858 	if (err >= 0 && addr != NULL) {
1859 		err2 = move_addr_to_user(&address,
1860 					 msg.msg_namelen, addr, addr_len);
1861 		if (err2 < 0)
1862 			err = err2;
1863 	}
1864 
1865 	fput_light(sock->file, fput_needed);
1866 out:
1867 	return err;
1868 }
1869 
1870 /*
1871  *	Receive a datagram from a socket.
1872  */
1873 
1874 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1875 			 unsigned int flags)
1876 {
1877 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1878 }
1879 
1880 /*
1881  *	Set a socket option. Because we don't know the option lengths we have
1882  *	to pass the user mode parameter for the protocols to sort out.
1883  */
1884 
1885 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1886 		char __user *, optval, int, optlen)
1887 {
1888 	int err, fput_needed;
1889 	struct socket *sock;
1890 
1891 	if (optlen < 0)
1892 		return -EINVAL;
1893 
1894 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1895 	if (sock != NULL) {
1896 		err = security_socket_setsockopt(sock, level, optname);
1897 		if (err)
1898 			goto out_put;
1899 
1900 		if (level == SOL_SOCKET)
1901 			err =
1902 			    sock_setsockopt(sock, level, optname, optval,
1903 					    optlen);
1904 		else
1905 			err =
1906 			    sock->ops->setsockopt(sock, level, optname, optval,
1907 						  optlen);
1908 out_put:
1909 		fput_light(sock->file, fput_needed);
1910 	}
1911 	return err;
1912 }
1913 
1914 /*
1915  *	Get a socket option. Because we don't know the option lengths we have
1916  *	to pass a user mode parameter for the protocols to sort out.
1917  */
1918 
1919 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1920 		char __user *, optval, int __user *, optlen)
1921 {
1922 	int err, fput_needed;
1923 	struct socket *sock;
1924 
1925 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1926 	if (sock != NULL) {
1927 		err = security_socket_getsockopt(sock, level, optname);
1928 		if (err)
1929 			goto out_put;
1930 
1931 		if (level == SOL_SOCKET)
1932 			err =
1933 			    sock_getsockopt(sock, level, optname, optval,
1934 					    optlen);
1935 		else
1936 			err =
1937 			    sock->ops->getsockopt(sock, level, optname, optval,
1938 						  optlen);
1939 out_put:
1940 		fput_light(sock->file, fput_needed);
1941 	}
1942 	return err;
1943 }
1944 
1945 /*
1946  *	Shutdown a socket.
1947  */
1948 
1949 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1950 {
1951 	int err, fput_needed;
1952 	struct socket *sock;
1953 
1954 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1955 	if (sock != NULL) {
1956 		err = security_socket_shutdown(sock, how);
1957 		if (!err)
1958 			err = sock->ops->shutdown(sock, how);
1959 		fput_light(sock->file, fput_needed);
1960 	}
1961 	return err;
1962 }
1963 
1964 /* A couple of helpful macros for getting the address of the 32/64 bit
1965  * fields which are the same type (int / unsigned) on our platforms.
1966  */
1967 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1968 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1969 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1970 
1971 struct used_address {
1972 	struct sockaddr_storage name;
1973 	unsigned int name_len;
1974 };
1975 
1976 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1977 			 struct msghdr *msg_sys, unsigned int flags,
1978 			 struct used_address *used_address)
1979 {
1980 	struct compat_msghdr __user *msg_compat =
1981 	    (struct compat_msghdr __user *)msg;
1982 	struct sockaddr_storage address;
1983 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1984 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1985 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1986 	/* 20 is size of ipv6_pktinfo */
1987 	unsigned char *ctl_buf = ctl;
1988 	int err, ctl_len, total_len;
1989 
1990 	err = -EFAULT;
1991 	if (MSG_CMSG_COMPAT & flags) {
1992 		if (get_compat_msghdr(msg_sys, msg_compat))
1993 			return -EFAULT;
1994 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1995 		return -EFAULT;
1996 
1997 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1998 		err = -EMSGSIZE;
1999 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2000 			goto out;
2001 		err = -ENOMEM;
2002 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2003 			      GFP_KERNEL);
2004 		if (!iov)
2005 			goto out;
2006 	}
2007 
2008 	/* This will also move the address data into kernel space */
2009 	if (MSG_CMSG_COMPAT & flags) {
2010 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2011 	} else
2012 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2013 	if (err < 0)
2014 		goto out_freeiov;
2015 	total_len = err;
2016 
2017 	err = -ENOBUFS;
2018 
2019 	if (msg_sys->msg_controllen > INT_MAX)
2020 		goto out_freeiov;
2021 	ctl_len = msg_sys->msg_controllen;
2022 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2023 		err =
2024 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2025 						     sizeof(ctl));
2026 		if (err)
2027 			goto out_freeiov;
2028 		ctl_buf = msg_sys->msg_control;
2029 		ctl_len = msg_sys->msg_controllen;
2030 	} else if (ctl_len) {
2031 		if (ctl_len > sizeof(ctl)) {
2032 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2033 			if (ctl_buf == NULL)
2034 				goto out_freeiov;
2035 		}
2036 		err = -EFAULT;
2037 		/*
2038 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2039 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2040 		 * checking falls down on this.
2041 		 */
2042 		if (copy_from_user(ctl_buf,
2043 				   (void __user __force *)msg_sys->msg_control,
2044 				   ctl_len))
2045 			goto out_freectl;
2046 		msg_sys->msg_control = ctl_buf;
2047 	}
2048 	msg_sys->msg_flags = flags;
2049 
2050 	if (sock->file->f_flags & O_NONBLOCK)
2051 		msg_sys->msg_flags |= MSG_DONTWAIT;
2052 	/*
2053 	 * If this is sendmmsg() and current destination address is same as
2054 	 * previously succeeded address, omit asking LSM's decision.
2055 	 * used_address->name_len is initialized to UINT_MAX so that the first
2056 	 * destination address never matches.
2057 	 */
2058 	if (used_address && msg_sys->msg_name &&
2059 	    used_address->name_len == msg_sys->msg_namelen &&
2060 	    !memcmp(&used_address->name, msg_sys->msg_name,
2061 		    used_address->name_len)) {
2062 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2063 		goto out_freectl;
2064 	}
2065 	err = sock_sendmsg(sock, msg_sys, total_len);
2066 	/*
2067 	 * If this is sendmmsg() and sending to current destination address was
2068 	 * successful, remember it.
2069 	 */
2070 	if (used_address && err >= 0) {
2071 		used_address->name_len = msg_sys->msg_namelen;
2072 		if (msg_sys->msg_name)
2073 			memcpy(&used_address->name, msg_sys->msg_name,
2074 			       used_address->name_len);
2075 	}
2076 
2077 out_freectl:
2078 	if (ctl_buf != ctl)
2079 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2080 out_freeiov:
2081 	if (iov != iovstack)
2082 		kfree(iov);
2083 out:
2084 	return err;
2085 }
2086 
2087 /*
2088  *	BSD sendmsg interface
2089  */
2090 
2091 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2092 {
2093 	int fput_needed, err;
2094 	struct msghdr msg_sys;
2095 	struct socket *sock;
2096 
2097 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2098 	if (!sock)
2099 		goto out;
2100 
2101 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2102 
2103 	fput_light(sock->file, fput_needed);
2104 out:
2105 	return err;
2106 }
2107 
2108 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2109 {
2110 	if (flags & MSG_CMSG_COMPAT)
2111 		return -EINVAL;
2112 	return __sys_sendmsg(fd, msg, flags);
2113 }
2114 
2115 /*
2116  *	Linux sendmmsg interface
2117  */
2118 
2119 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2120 		   unsigned int flags)
2121 {
2122 	int fput_needed, err, datagrams;
2123 	struct socket *sock;
2124 	struct mmsghdr __user *entry;
2125 	struct compat_mmsghdr __user *compat_entry;
2126 	struct msghdr msg_sys;
2127 	struct used_address used_address;
2128 
2129 	if (vlen > UIO_MAXIOV)
2130 		vlen = UIO_MAXIOV;
2131 
2132 	datagrams = 0;
2133 
2134 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2135 	if (!sock)
2136 		return err;
2137 
2138 	used_address.name_len = UINT_MAX;
2139 	entry = mmsg;
2140 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2141 	err = 0;
2142 
2143 	while (datagrams < vlen) {
2144 		if (MSG_CMSG_COMPAT & flags) {
2145 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2146 					     &msg_sys, flags, &used_address);
2147 			if (err < 0)
2148 				break;
2149 			err = __put_user(err, &compat_entry->msg_len);
2150 			++compat_entry;
2151 		} else {
2152 			err = ___sys_sendmsg(sock,
2153 					     (struct msghdr __user *)entry,
2154 					     &msg_sys, flags, &used_address);
2155 			if (err < 0)
2156 				break;
2157 			err = put_user(err, &entry->msg_len);
2158 			++entry;
2159 		}
2160 
2161 		if (err)
2162 			break;
2163 		++datagrams;
2164 	}
2165 
2166 	fput_light(sock->file, fput_needed);
2167 
2168 	/* We only return an error if no datagrams were able to be sent */
2169 	if (datagrams != 0)
2170 		return datagrams;
2171 
2172 	return err;
2173 }
2174 
2175 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2176 		unsigned int, vlen, unsigned int, flags)
2177 {
2178 	if (flags & MSG_CMSG_COMPAT)
2179 		return -EINVAL;
2180 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2181 }
2182 
2183 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2184 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2185 {
2186 	struct compat_msghdr __user *msg_compat =
2187 	    (struct compat_msghdr __user *)msg;
2188 	struct iovec iovstack[UIO_FASTIOV];
2189 	struct iovec *iov = iovstack;
2190 	unsigned long cmsg_ptr;
2191 	int err, total_len, len;
2192 
2193 	/* kernel mode address */
2194 	struct sockaddr_storage addr;
2195 
2196 	/* user mode address pointers */
2197 	struct sockaddr __user *uaddr;
2198 	int __user *uaddr_len;
2199 
2200 	if (MSG_CMSG_COMPAT & flags) {
2201 		if (get_compat_msghdr(msg_sys, msg_compat))
2202 			return -EFAULT;
2203 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2204 		return -EFAULT;
2205 
2206 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2207 		err = -EMSGSIZE;
2208 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2209 			goto out;
2210 		err = -ENOMEM;
2211 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2212 			      GFP_KERNEL);
2213 		if (!iov)
2214 			goto out;
2215 	}
2216 
2217 	/*
2218 	 *      Save the user-mode address (verify_iovec will change the
2219 	 *      kernel msghdr to use the kernel address space)
2220 	 */
2221 
2222 	uaddr = (__force void __user *)msg_sys->msg_name;
2223 	uaddr_len = COMPAT_NAMELEN(msg);
2224 	if (MSG_CMSG_COMPAT & flags) {
2225 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2226 	} else
2227 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2228 	if (err < 0)
2229 		goto out_freeiov;
2230 	total_len = err;
2231 
2232 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2233 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2234 
2235 	if (sock->file->f_flags & O_NONBLOCK)
2236 		flags |= MSG_DONTWAIT;
2237 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2238 							  total_len, flags);
2239 	if (err < 0)
2240 		goto out_freeiov;
2241 	len = err;
2242 
2243 	if (uaddr != NULL) {
2244 		err = move_addr_to_user(&addr,
2245 					msg_sys->msg_namelen, uaddr,
2246 					uaddr_len);
2247 		if (err < 0)
2248 			goto out_freeiov;
2249 	}
2250 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2251 			 COMPAT_FLAGS(msg));
2252 	if (err)
2253 		goto out_freeiov;
2254 	if (MSG_CMSG_COMPAT & flags)
2255 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2256 				 &msg_compat->msg_controllen);
2257 	else
2258 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2259 				 &msg->msg_controllen);
2260 	if (err)
2261 		goto out_freeiov;
2262 	err = len;
2263 
2264 out_freeiov:
2265 	if (iov != iovstack)
2266 		kfree(iov);
2267 out:
2268 	return err;
2269 }
2270 
2271 /*
2272  *	BSD recvmsg interface
2273  */
2274 
2275 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2276 {
2277 	int fput_needed, err;
2278 	struct msghdr msg_sys;
2279 	struct socket *sock;
2280 
2281 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2282 	if (!sock)
2283 		goto out;
2284 
2285 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2286 
2287 	fput_light(sock->file, fput_needed);
2288 out:
2289 	return err;
2290 }
2291 
2292 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2293 		unsigned int, flags)
2294 {
2295 	if (flags & MSG_CMSG_COMPAT)
2296 		return -EINVAL;
2297 	return __sys_recvmsg(fd, msg, flags);
2298 }
2299 
2300 /*
2301  *     Linux recvmmsg interface
2302  */
2303 
2304 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2305 		   unsigned int flags, struct timespec *timeout)
2306 {
2307 	int fput_needed, err, datagrams;
2308 	struct socket *sock;
2309 	struct mmsghdr __user *entry;
2310 	struct compat_mmsghdr __user *compat_entry;
2311 	struct msghdr msg_sys;
2312 	struct timespec end_time;
2313 
2314 	if (timeout &&
2315 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2316 				    timeout->tv_nsec))
2317 		return -EINVAL;
2318 
2319 	datagrams = 0;
2320 
2321 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2322 	if (!sock)
2323 		return err;
2324 
2325 	err = sock_error(sock->sk);
2326 	if (err)
2327 		goto out_put;
2328 
2329 	entry = mmsg;
2330 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2331 
2332 	while (datagrams < vlen) {
2333 		/*
2334 		 * No need to ask LSM for more than the first datagram.
2335 		 */
2336 		if (MSG_CMSG_COMPAT & flags) {
2337 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2338 					     &msg_sys, flags & ~MSG_WAITFORONE,
2339 					     datagrams);
2340 			if (err < 0)
2341 				break;
2342 			err = __put_user(err, &compat_entry->msg_len);
2343 			++compat_entry;
2344 		} else {
2345 			err = ___sys_recvmsg(sock,
2346 					     (struct msghdr __user *)entry,
2347 					     &msg_sys, flags & ~MSG_WAITFORONE,
2348 					     datagrams);
2349 			if (err < 0)
2350 				break;
2351 			err = put_user(err, &entry->msg_len);
2352 			++entry;
2353 		}
2354 
2355 		if (err)
2356 			break;
2357 		++datagrams;
2358 
2359 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2360 		if (flags & MSG_WAITFORONE)
2361 			flags |= MSG_DONTWAIT;
2362 
2363 		if (timeout) {
2364 			ktime_get_ts(timeout);
2365 			*timeout = timespec_sub(end_time, *timeout);
2366 			if (timeout->tv_sec < 0) {
2367 				timeout->tv_sec = timeout->tv_nsec = 0;
2368 				break;
2369 			}
2370 
2371 			/* Timeout, return less than vlen datagrams */
2372 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2373 				break;
2374 		}
2375 
2376 		/* Out of band data, return right away */
2377 		if (msg_sys.msg_flags & MSG_OOB)
2378 			break;
2379 	}
2380 
2381 out_put:
2382 	fput_light(sock->file, fput_needed);
2383 
2384 	if (err == 0)
2385 		return datagrams;
2386 
2387 	if (datagrams != 0) {
2388 		/*
2389 		 * We may return less entries than requested (vlen) if the
2390 		 * sock is non block and there aren't enough datagrams...
2391 		 */
2392 		if (err != -EAGAIN) {
2393 			/*
2394 			 * ... or  if recvmsg returns an error after we
2395 			 * received some datagrams, where we record the
2396 			 * error to return on the next call or if the
2397 			 * app asks about it using getsockopt(SO_ERROR).
2398 			 */
2399 			sock->sk->sk_err = -err;
2400 		}
2401 
2402 		return datagrams;
2403 	}
2404 
2405 	return err;
2406 }
2407 
2408 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2409 		unsigned int, vlen, unsigned int, flags,
2410 		struct timespec __user *, timeout)
2411 {
2412 	int datagrams;
2413 	struct timespec timeout_sys;
2414 
2415 	if (flags & MSG_CMSG_COMPAT)
2416 		return -EINVAL;
2417 
2418 	if (!timeout)
2419 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2420 
2421 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2422 		return -EFAULT;
2423 
2424 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2425 
2426 	if (datagrams > 0 &&
2427 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2428 		datagrams = -EFAULT;
2429 
2430 	return datagrams;
2431 }
2432 
2433 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2434 /* Argument list sizes for sys_socketcall */
2435 #define AL(x) ((x) * sizeof(unsigned long))
2436 static const unsigned char nargs[21] = {
2437 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2438 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2439 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2440 	AL(4), AL(5), AL(4)
2441 };
2442 
2443 #undef AL
2444 
2445 /*
2446  *	System call vectors.
2447  *
2448  *	Argument checking cleaned up. Saved 20% in size.
2449  *  This function doesn't need to set the kernel lock because
2450  *  it is set by the callees.
2451  */
2452 
2453 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2454 {
2455 	unsigned long a[AUDITSC_ARGS];
2456 	unsigned long a0, a1;
2457 	int err;
2458 	unsigned int len;
2459 
2460 	if (call < 1 || call > SYS_SENDMMSG)
2461 		return -EINVAL;
2462 
2463 	len = nargs[call];
2464 	if (len > sizeof(a))
2465 		return -EINVAL;
2466 
2467 	/* copy_from_user should be SMP safe. */
2468 	if (copy_from_user(a, args, len))
2469 		return -EFAULT;
2470 
2471 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2472 	if (err)
2473 		return err;
2474 
2475 	a0 = a[0];
2476 	a1 = a[1];
2477 
2478 	switch (call) {
2479 	case SYS_SOCKET:
2480 		err = sys_socket(a0, a1, a[2]);
2481 		break;
2482 	case SYS_BIND:
2483 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2484 		break;
2485 	case SYS_CONNECT:
2486 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2487 		break;
2488 	case SYS_LISTEN:
2489 		err = sys_listen(a0, a1);
2490 		break;
2491 	case SYS_ACCEPT:
2492 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2493 				  (int __user *)a[2], 0);
2494 		break;
2495 	case SYS_GETSOCKNAME:
2496 		err =
2497 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2498 				    (int __user *)a[2]);
2499 		break;
2500 	case SYS_GETPEERNAME:
2501 		err =
2502 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2503 				    (int __user *)a[2]);
2504 		break;
2505 	case SYS_SOCKETPAIR:
2506 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2507 		break;
2508 	case SYS_SEND:
2509 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2510 		break;
2511 	case SYS_SENDTO:
2512 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2513 				 (struct sockaddr __user *)a[4], a[5]);
2514 		break;
2515 	case SYS_RECV:
2516 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2517 		break;
2518 	case SYS_RECVFROM:
2519 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2520 				   (struct sockaddr __user *)a[4],
2521 				   (int __user *)a[5]);
2522 		break;
2523 	case SYS_SHUTDOWN:
2524 		err = sys_shutdown(a0, a1);
2525 		break;
2526 	case SYS_SETSOCKOPT:
2527 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2528 		break;
2529 	case SYS_GETSOCKOPT:
2530 		err =
2531 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2532 				   (int __user *)a[4]);
2533 		break;
2534 	case SYS_SENDMSG:
2535 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2536 		break;
2537 	case SYS_SENDMMSG:
2538 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2539 		break;
2540 	case SYS_RECVMSG:
2541 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2542 		break;
2543 	case SYS_RECVMMSG:
2544 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2545 				   (struct timespec __user *)a[4]);
2546 		break;
2547 	case SYS_ACCEPT4:
2548 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2549 				  (int __user *)a[2], a[3]);
2550 		break;
2551 	default:
2552 		err = -EINVAL;
2553 		break;
2554 	}
2555 	return err;
2556 }
2557 
2558 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2559 
2560 /**
2561  *	sock_register - add a socket protocol handler
2562  *	@ops: description of protocol
2563  *
2564  *	This function is called by a protocol handler that wants to
2565  *	advertise its address family, and have it linked into the
2566  *	socket interface. The value ops->family coresponds to the
2567  *	socket system call protocol family.
2568  */
2569 int sock_register(const struct net_proto_family *ops)
2570 {
2571 	int err;
2572 
2573 	if (ops->family >= NPROTO) {
2574 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2575 		       NPROTO);
2576 		return -ENOBUFS;
2577 	}
2578 
2579 	spin_lock(&net_family_lock);
2580 	if (rcu_dereference_protected(net_families[ops->family],
2581 				      lockdep_is_held(&net_family_lock)))
2582 		err = -EEXIST;
2583 	else {
2584 		rcu_assign_pointer(net_families[ops->family], ops);
2585 		err = 0;
2586 	}
2587 	spin_unlock(&net_family_lock);
2588 
2589 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2590 	return err;
2591 }
2592 EXPORT_SYMBOL(sock_register);
2593 
2594 /**
2595  *	sock_unregister - remove a protocol handler
2596  *	@family: protocol family to remove
2597  *
2598  *	This function is called by a protocol handler that wants to
2599  *	remove its address family, and have it unlinked from the
2600  *	new socket creation.
2601  *
2602  *	If protocol handler is a module, then it can use module reference
2603  *	counts to protect against new references. If protocol handler is not
2604  *	a module then it needs to provide its own protection in
2605  *	the ops->create routine.
2606  */
2607 void sock_unregister(int family)
2608 {
2609 	BUG_ON(family < 0 || family >= NPROTO);
2610 
2611 	spin_lock(&net_family_lock);
2612 	RCU_INIT_POINTER(net_families[family], NULL);
2613 	spin_unlock(&net_family_lock);
2614 
2615 	synchronize_rcu();
2616 
2617 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2618 }
2619 EXPORT_SYMBOL(sock_unregister);
2620 
2621 static int __init sock_init(void)
2622 {
2623 	int err;
2624 	/*
2625 	 *      Initialize the network sysctl infrastructure.
2626 	 */
2627 	err = net_sysctl_init();
2628 	if (err)
2629 		goto out;
2630 
2631 	/*
2632 	 *      Initialize skbuff SLAB cache
2633 	 */
2634 	skb_init();
2635 
2636 	/*
2637 	 *      Initialize the protocols module.
2638 	 */
2639 
2640 	init_inodecache();
2641 
2642 	err = register_filesystem(&sock_fs_type);
2643 	if (err)
2644 		goto out_fs;
2645 	sock_mnt = kern_mount(&sock_fs_type);
2646 	if (IS_ERR(sock_mnt)) {
2647 		err = PTR_ERR(sock_mnt);
2648 		goto out_mount;
2649 	}
2650 
2651 	/* The real protocol initialization is performed in later initcalls.
2652 	 */
2653 
2654 #ifdef CONFIG_NETFILTER
2655 	err = netfilter_init();
2656 	if (err)
2657 		goto out;
2658 #endif
2659 
2660 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2661 	skb_timestamping_init();
2662 #endif
2663 
2664 out:
2665 	return err;
2666 
2667 out_mount:
2668 	unregister_filesystem(&sock_fs_type);
2669 out_fs:
2670 	goto out;
2671 }
2672 
2673 core_initcall(sock_init);	/* early initcall */
2674 
2675 #ifdef CONFIG_PROC_FS
2676 void socket_seq_show(struct seq_file *seq)
2677 {
2678 	int cpu;
2679 	int counter = 0;
2680 
2681 	for_each_possible_cpu(cpu)
2682 	    counter += per_cpu(sockets_in_use, cpu);
2683 
2684 	/* It can be negative, by the way. 8) */
2685 	if (counter < 0)
2686 		counter = 0;
2687 
2688 	seq_printf(seq, "sockets: used %d\n", counter);
2689 }
2690 #endif				/* CONFIG_PROC_FS */
2691 
2692 #ifdef CONFIG_COMPAT
2693 static int do_siocgstamp(struct net *net, struct socket *sock,
2694 			 unsigned int cmd, void __user *up)
2695 {
2696 	mm_segment_t old_fs = get_fs();
2697 	struct timeval ktv;
2698 	int err;
2699 
2700 	set_fs(KERNEL_DS);
2701 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2702 	set_fs(old_fs);
2703 	if (!err)
2704 		err = compat_put_timeval(&ktv, up);
2705 
2706 	return err;
2707 }
2708 
2709 static int do_siocgstampns(struct net *net, struct socket *sock,
2710 			   unsigned int cmd, void __user *up)
2711 {
2712 	mm_segment_t old_fs = get_fs();
2713 	struct timespec kts;
2714 	int err;
2715 
2716 	set_fs(KERNEL_DS);
2717 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2718 	set_fs(old_fs);
2719 	if (!err)
2720 		err = compat_put_timespec(&kts, up);
2721 
2722 	return err;
2723 }
2724 
2725 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2726 {
2727 	struct ifreq __user *uifr;
2728 	int err;
2729 
2730 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2731 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2732 		return -EFAULT;
2733 
2734 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2735 	if (err)
2736 		return err;
2737 
2738 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2739 		return -EFAULT;
2740 
2741 	return 0;
2742 }
2743 
2744 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2745 {
2746 	struct compat_ifconf ifc32;
2747 	struct ifconf ifc;
2748 	struct ifconf __user *uifc;
2749 	struct compat_ifreq __user *ifr32;
2750 	struct ifreq __user *ifr;
2751 	unsigned int i, j;
2752 	int err;
2753 
2754 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2755 		return -EFAULT;
2756 
2757 	memset(&ifc, 0, sizeof(ifc));
2758 	if (ifc32.ifcbuf == 0) {
2759 		ifc32.ifc_len = 0;
2760 		ifc.ifc_len = 0;
2761 		ifc.ifc_req = NULL;
2762 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2763 	} else {
2764 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2765 			sizeof(struct ifreq);
2766 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2767 		ifc.ifc_len = len;
2768 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2769 		ifr32 = compat_ptr(ifc32.ifcbuf);
2770 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2771 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2772 				return -EFAULT;
2773 			ifr++;
2774 			ifr32++;
2775 		}
2776 	}
2777 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2778 		return -EFAULT;
2779 
2780 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2781 	if (err)
2782 		return err;
2783 
2784 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2785 		return -EFAULT;
2786 
2787 	ifr = ifc.ifc_req;
2788 	ifr32 = compat_ptr(ifc32.ifcbuf);
2789 	for (i = 0, j = 0;
2790 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2791 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2792 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2793 			return -EFAULT;
2794 		ifr32++;
2795 		ifr++;
2796 	}
2797 
2798 	if (ifc32.ifcbuf == 0) {
2799 		/* Translate from 64-bit structure multiple to
2800 		 * a 32-bit one.
2801 		 */
2802 		i = ifc.ifc_len;
2803 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2804 		ifc32.ifc_len = i;
2805 	} else {
2806 		ifc32.ifc_len = i;
2807 	}
2808 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2809 		return -EFAULT;
2810 
2811 	return 0;
2812 }
2813 
2814 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2815 {
2816 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2817 	bool convert_in = false, convert_out = false;
2818 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2819 	struct ethtool_rxnfc __user *rxnfc;
2820 	struct ifreq __user *ifr;
2821 	u32 rule_cnt = 0, actual_rule_cnt;
2822 	u32 ethcmd;
2823 	u32 data;
2824 	int ret;
2825 
2826 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2827 		return -EFAULT;
2828 
2829 	compat_rxnfc = compat_ptr(data);
2830 
2831 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2832 		return -EFAULT;
2833 
2834 	/* Most ethtool structures are defined without padding.
2835 	 * Unfortunately struct ethtool_rxnfc is an exception.
2836 	 */
2837 	switch (ethcmd) {
2838 	default:
2839 		break;
2840 	case ETHTOOL_GRXCLSRLALL:
2841 		/* Buffer size is variable */
2842 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2843 			return -EFAULT;
2844 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2845 			return -ENOMEM;
2846 		buf_size += rule_cnt * sizeof(u32);
2847 		/* fall through */
2848 	case ETHTOOL_GRXRINGS:
2849 	case ETHTOOL_GRXCLSRLCNT:
2850 	case ETHTOOL_GRXCLSRULE:
2851 	case ETHTOOL_SRXCLSRLINS:
2852 		convert_out = true;
2853 		/* fall through */
2854 	case ETHTOOL_SRXCLSRLDEL:
2855 		buf_size += sizeof(struct ethtool_rxnfc);
2856 		convert_in = true;
2857 		break;
2858 	}
2859 
2860 	ifr = compat_alloc_user_space(buf_size);
2861 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2862 
2863 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2864 		return -EFAULT;
2865 
2866 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2867 		     &ifr->ifr_ifru.ifru_data))
2868 		return -EFAULT;
2869 
2870 	if (convert_in) {
2871 		/* We expect there to be holes between fs.m_ext and
2872 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2873 		 */
2874 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2875 			     sizeof(compat_rxnfc->fs.m_ext) !=
2876 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2877 			     sizeof(rxnfc->fs.m_ext));
2878 		BUILD_BUG_ON(
2879 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2880 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2881 			offsetof(struct ethtool_rxnfc, fs.location) -
2882 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2883 
2884 		if (copy_in_user(rxnfc, compat_rxnfc,
2885 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2886 				 (void __user *)rxnfc) ||
2887 		    copy_in_user(&rxnfc->fs.ring_cookie,
2888 				 &compat_rxnfc->fs.ring_cookie,
2889 				 (void __user *)(&rxnfc->fs.location + 1) -
2890 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2891 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2892 				 sizeof(rxnfc->rule_cnt)))
2893 			return -EFAULT;
2894 	}
2895 
2896 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2897 	if (ret)
2898 		return ret;
2899 
2900 	if (convert_out) {
2901 		if (copy_in_user(compat_rxnfc, rxnfc,
2902 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2903 				 (const void __user *)rxnfc) ||
2904 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2905 				 &rxnfc->fs.ring_cookie,
2906 				 (const void __user *)(&rxnfc->fs.location + 1) -
2907 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2908 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2909 				 sizeof(rxnfc->rule_cnt)))
2910 			return -EFAULT;
2911 
2912 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2913 			/* As an optimisation, we only copy the actual
2914 			 * number of rules that the underlying
2915 			 * function returned.  Since Mallory might
2916 			 * change the rule count in user memory, we
2917 			 * check that it is less than the rule count
2918 			 * originally given (as the user buffer size),
2919 			 * which has been range-checked.
2920 			 */
2921 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2922 				return -EFAULT;
2923 			if (actual_rule_cnt < rule_cnt)
2924 				rule_cnt = actual_rule_cnt;
2925 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2926 					 &rxnfc->rule_locs[0],
2927 					 rule_cnt * sizeof(u32)))
2928 				return -EFAULT;
2929 		}
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2936 {
2937 	void __user *uptr;
2938 	compat_uptr_t uptr32;
2939 	struct ifreq __user *uifr;
2940 
2941 	uifr = compat_alloc_user_space(sizeof(*uifr));
2942 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2943 		return -EFAULT;
2944 
2945 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2946 		return -EFAULT;
2947 
2948 	uptr = compat_ptr(uptr32);
2949 
2950 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2951 		return -EFAULT;
2952 
2953 	return dev_ioctl(net, SIOCWANDEV, uifr);
2954 }
2955 
2956 static int bond_ioctl(struct net *net, unsigned int cmd,
2957 			 struct compat_ifreq __user *ifr32)
2958 {
2959 	struct ifreq kifr;
2960 	struct ifreq __user *uifr;
2961 	mm_segment_t old_fs;
2962 	int err;
2963 	u32 data;
2964 	void __user *datap;
2965 
2966 	switch (cmd) {
2967 	case SIOCBONDENSLAVE:
2968 	case SIOCBONDRELEASE:
2969 	case SIOCBONDSETHWADDR:
2970 	case SIOCBONDCHANGEACTIVE:
2971 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2972 			return -EFAULT;
2973 
2974 		old_fs = get_fs();
2975 		set_fs(KERNEL_DS);
2976 		err = dev_ioctl(net, cmd,
2977 				(struct ifreq __user __force *) &kifr);
2978 		set_fs(old_fs);
2979 
2980 		return err;
2981 	case SIOCBONDSLAVEINFOQUERY:
2982 	case SIOCBONDINFOQUERY:
2983 		uifr = compat_alloc_user_space(sizeof(*uifr));
2984 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2985 			return -EFAULT;
2986 
2987 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2988 			return -EFAULT;
2989 
2990 		datap = compat_ptr(data);
2991 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2992 			return -EFAULT;
2993 
2994 		return dev_ioctl(net, cmd, uifr);
2995 	default:
2996 		return -ENOIOCTLCMD;
2997 	}
2998 }
2999 
3000 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3001 				 struct compat_ifreq __user *u_ifreq32)
3002 {
3003 	struct ifreq __user *u_ifreq64;
3004 	char tmp_buf[IFNAMSIZ];
3005 	void __user *data64;
3006 	u32 data32;
3007 
3008 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3009 			   IFNAMSIZ))
3010 		return -EFAULT;
3011 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3012 		return -EFAULT;
3013 	data64 = compat_ptr(data32);
3014 
3015 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3016 
3017 	/* Don't check these user accesses, just let that get trapped
3018 	 * in the ioctl handler instead.
3019 	 */
3020 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3021 			 IFNAMSIZ))
3022 		return -EFAULT;
3023 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3024 		return -EFAULT;
3025 
3026 	return dev_ioctl(net, cmd, u_ifreq64);
3027 }
3028 
3029 static int dev_ifsioc(struct net *net, struct socket *sock,
3030 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3031 {
3032 	struct ifreq __user *uifr;
3033 	int err;
3034 
3035 	uifr = compat_alloc_user_space(sizeof(*uifr));
3036 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3037 		return -EFAULT;
3038 
3039 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3040 
3041 	if (!err) {
3042 		switch (cmd) {
3043 		case SIOCGIFFLAGS:
3044 		case SIOCGIFMETRIC:
3045 		case SIOCGIFMTU:
3046 		case SIOCGIFMEM:
3047 		case SIOCGIFHWADDR:
3048 		case SIOCGIFINDEX:
3049 		case SIOCGIFADDR:
3050 		case SIOCGIFBRDADDR:
3051 		case SIOCGIFDSTADDR:
3052 		case SIOCGIFNETMASK:
3053 		case SIOCGIFPFLAGS:
3054 		case SIOCGIFTXQLEN:
3055 		case SIOCGMIIPHY:
3056 		case SIOCGMIIREG:
3057 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3058 				err = -EFAULT;
3059 			break;
3060 		}
3061 	}
3062 	return err;
3063 }
3064 
3065 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3066 			struct compat_ifreq __user *uifr32)
3067 {
3068 	struct ifreq ifr;
3069 	struct compat_ifmap __user *uifmap32;
3070 	mm_segment_t old_fs;
3071 	int err;
3072 
3073 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3074 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3075 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3076 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3077 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3078 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3079 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3080 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3081 	if (err)
3082 		return -EFAULT;
3083 
3084 	old_fs = get_fs();
3085 	set_fs(KERNEL_DS);
3086 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3087 	set_fs(old_fs);
3088 
3089 	if (cmd == SIOCGIFMAP && !err) {
3090 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3091 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3092 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3093 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3094 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3095 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3096 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3097 		if (err)
3098 			err = -EFAULT;
3099 	}
3100 	return err;
3101 }
3102 
3103 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3104 {
3105 	void __user *uptr;
3106 	compat_uptr_t uptr32;
3107 	struct ifreq __user *uifr;
3108 
3109 	uifr = compat_alloc_user_space(sizeof(*uifr));
3110 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3111 		return -EFAULT;
3112 
3113 	if (get_user(uptr32, &uifr32->ifr_data))
3114 		return -EFAULT;
3115 
3116 	uptr = compat_ptr(uptr32);
3117 
3118 	if (put_user(uptr, &uifr->ifr_data))
3119 		return -EFAULT;
3120 
3121 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3122 }
3123 
3124 struct rtentry32 {
3125 	u32		rt_pad1;
3126 	struct sockaddr rt_dst;         /* target address               */
3127 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3128 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3129 	unsigned short	rt_flags;
3130 	short		rt_pad2;
3131 	u32		rt_pad3;
3132 	unsigned char	rt_tos;
3133 	unsigned char	rt_class;
3134 	short		rt_pad4;
3135 	short		rt_metric;      /* +1 for binary compatibility! */
3136 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3137 	u32		rt_mtu;         /* per route MTU/Window         */
3138 	u32		rt_window;      /* Window clamping              */
3139 	unsigned short  rt_irtt;        /* Initial RTT                  */
3140 };
3141 
3142 struct in6_rtmsg32 {
3143 	struct in6_addr		rtmsg_dst;
3144 	struct in6_addr		rtmsg_src;
3145 	struct in6_addr		rtmsg_gateway;
3146 	u32			rtmsg_type;
3147 	u16			rtmsg_dst_len;
3148 	u16			rtmsg_src_len;
3149 	u32			rtmsg_metric;
3150 	u32			rtmsg_info;
3151 	u32			rtmsg_flags;
3152 	s32			rtmsg_ifindex;
3153 };
3154 
3155 static int routing_ioctl(struct net *net, struct socket *sock,
3156 			 unsigned int cmd, void __user *argp)
3157 {
3158 	int ret;
3159 	void *r = NULL;
3160 	struct in6_rtmsg r6;
3161 	struct rtentry r4;
3162 	char devname[16];
3163 	u32 rtdev;
3164 	mm_segment_t old_fs = get_fs();
3165 
3166 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3167 		struct in6_rtmsg32 __user *ur6 = argp;
3168 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3169 			3 * sizeof(struct in6_addr));
3170 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3171 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3172 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3173 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3174 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3175 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3176 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3177 
3178 		r = (void *) &r6;
3179 	} else { /* ipv4 */
3180 		struct rtentry32 __user *ur4 = argp;
3181 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3182 					3 * sizeof(struct sockaddr));
3183 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3184 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3185 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3186 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3187 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3188 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3189 		if (rtdev) {
3190 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3191 			r4.rt_dev = (char __user __force *)devname;
3192 			devname[15] = 0;
3193 		} else
3194 			r4.rt_dev = NULL;
3195 
3196 		r = (void *) &r4;
3197 	}
3198 
3199 	if (ret) {
3200 		ret = -EFAULT;
3201 		goto out;
3202 	}
3203 
3204 	set_fs(KERNEL_DS);
3205 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3206 	set_fs(old_fs);
3207 
3208 out:
3209 	return ret;
3210 }
3211 
3212 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3213  * for some operations; this forces use of the newer bridge-utils that
3214  * use compatible ioctls
3215  */
3216 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3217 {
3218 	compat_ulong_t tmp;
3219 
3220 	if (get_user(tmp, argp))
3221 		return -EFAULT;
3222 	if (tmp == BRCTL_GET_VERSION)
3223 		return BRCTL_VERSION + 1;
3224 	return -EINVAL;
3225 }
3226 
3227 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3228 			 unsigned int cmd, unsigned long arg)
3229 {
3230 	void __user *argp = compat_ptr(arg);
3231 	struct sock *sk = sock->sk;
3232 	struct net *net = sock_net(sk);
3233 
3234 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3235 		return siocdevprivate_ioctl(net, cmd, argp);
3236 
3237 	switch (cmd) {
3238 	case SIOCSIFBR:
3239 	case SIOCGIFBR:
3240 		return old_bridge_ioctl(argp);
3241 	case SIOCGIFNAME:
3242 		return dev_ifname32(net, argp);
3243 	case SIOCGIFCONF:
3244 		return dev_ifconf(net, argp);
3245 	case SIOCETHTOOL:
3246 		return ethtool_ioctl(net, argp);
3247 	case SIOCWANDEV:
3248 		return compat_siocwandev(net, argp);
3249 	case SIOCGIFMAP:
3250 	case SIOCSIFMAP:
3251 		return compat_sioc_ifmap(net, cmd, argp);
3252 	case SIOCBONDENSLAVE:
3253 	case SIOCBONDRELEASE:
3254 	case SIOCBONDSETHWADDR:
3255 	case SIOCBONDSLAVEINFOQUERY:
3256 	case SIOCBONDINFOQUERY:
3257 	case SIOCBONDCHANGEACTIVE:
3258 		return bond_ioctl(net, cmd, argp);
3259 	case SIOCADDRT:
3260 	case SIOCDELRT:
3261 		return routing_ioctl(net, sock, cmd, argp);
3262 	case SIOCGSTAMP:
3263 		return do_siocgstamp(net, sock, cmd, argp);
3264 	case SIOCGSTAMPNS:
3265 		return do_siocgstampns(net, sock, cmd, argp);
3266 	case SIOCSHWTSTAMP:
3267 		return compat_siocshwtstamp(net, argp);
3268 
3269 	case FIOSETOWN:
3270 	case SIOCSPGRP:
3271 	case FIOGETOWN:
3272 	case SIOCGPGRP:
3273 	case SIOCBRADDBR:
3274 	case SIOCBRDELBR:
3275 	case SIOCGIFVLAN:
3276 	case SIOCSIFVLAN:
3277 	case SIOCADDDLCI:
3278 	case SIOCDELDLCI:
3279 		return sock_ioctl(file, cmd, arg);
3280 
3281 	case SIOCGIFFLAGS:
3282 	case SIOCSIFFLAGS:
3283 	case SIOCGIFMETRIC:
3284 	case SIOCSIFMETRIC:
3285 	case SIOCGIFMTU:
3286 	case SIOCSIFMTU:
3287 	case SIOCGIFMEM:
3288 	case SIOCSIFMEM:
3289 	case SIOCGIFHWADDR:
3290 	case SIOCSIFHWADDR:
3291 	case SIOCADDMULTI:
3292 	case SIOCDELMULTI:
3293 	case SIOCGIFINDEX:
3294 	case SIOCGIFADDR:
3295 	case SIOCSIFADDR:
3296 	case SIOCSIFHWBROADCAST:
3297 	case SIOCDIFADDR:
3298 	case SIOCGIFBRDADDR:
3299 	case SIOCSIFBRDADDR:
3300 	case SIOCGIFDSTADDR:
3301 	case SIOCSIFDSTADDR:
3302 	case SIOCGIFNETMASK:
3303 	case SIOCSIFNETMASK:
3304 	case SIOCSIFPFLAGS:
3305 	case SIOCGIFPFLAGS:
3306 	case SIOCGIFTXQLEN:
3307 	case SIOCSIFTXQLEN:
3308 	case SIOCBRADDIF:
3309 	case SIOCBRDELIF:
3310 	case SIOCSIFNAME:
3311 	case SIOCGMIIPHY:
3312 	case SIOCGMIIREG:
3313 	case SIOCSMIIREG:
3314 		return dev_ifsioc(net, sock, cmd, argp);
3315 
3316 	case SIOCSARP:
3317 	case SIOCGARP:
3318 	case SIOCDARP:
3319 	case SIOCATMARK:
3320 		return sock_do_ioctl(net, sock, cmd, arg);
3321 	}
3322 
3323 	return -ENOIOCTLCMD;
3324 }
3325 
3326 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3327 			      unsigned long arg)
3328 {
3329 	struct socket *sock = file->private_data;
3330 	int ret = -ENOIOCTLCMD;
3331 	struct sock *sk;
3332 	struct net *net;
3333 
3334 	sk = sock->sk;
3335 	net = sock_net(sk);
3336 
3337 	if (sock->ops->compat_ioctl)
3338 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3339 
3340 	if (ret == -ENOIOCTLCMD &&
3341 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3342 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3343 
3344 	if (ret == -ENOIOCTLCMD)
3345 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3346 
3347 	return ret;
3348 }
3349 #endif
3350 
3351 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3352 {
3353 	return sock->ops->bind(sock, addr, addrlen);
3354 }
3355 EXPORT_SYMBOL(kernel_bind);
3356 
3357 int kernel_listen(struct socket *sock, int backlog)
3358 {
3359 	return sock->ops->listen(sock, backlog);
3360 }
3361 EXPORT_SYMBOL(kernel_listen);
3362 
3363 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3364 {
3365 	struct sock *sk = sock->sk;
3366 	int err;
3367 
3368 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3369 			       newsock);
3370 	if (err < 0)
3371 		goto done;
3372 
3373 	err = sock->ops->accept(sock, *newsock, flags);
3374 	if (err < 0) {
3375 		sock_release(*newsock);
3376 		*newsock = NULL;
3377 		goto done;
3378 	}
3379 
3380 	(*newsock)->ops = sock->ops;
3381 	__module_get((*newsock)->ops->owner);
3382 
3383 done:
3384 	return err;
3385 }
3386 EXPORT_SYMBOL(kernel_accept);
3387 
3388 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3389 		   int flags)
3390 {
3391 	return sock->ops->connect(sock, addr, addrlen, flags);
3392 }
3393 EXPORT_SYMBOL(kernel_connect);
3394 
3395 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3396 			 int *addrlen)
3397 {
3398 	return sock->ops->getname(sock, addr, addrlen, 0);
3399 }
3400 EXPORT_SYMBOL(kernel_getsockname);
3401 
3402 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3403 			 int *addrlen)
3404 {
3405 	return sock->ops->getname(sock, addr, addrlen, 1);
3406 }
3407 EXPORT_SYMBOL(kernel_getpeername);
3408 
3409 int kernel_getsockopt(struct socket *sock, int level, int optname,
3410 			char *optval, int *optlen)
3411 {
3412 	mm_segment_t oldfs = get_fs();
3413 	char __user *uoptval;
3414 	int __user *uoptlen;
3415 	int err;
3416 
3417 	uoptval = (char __user __force *) optval;
3418 	uoptlen = (int __user __force *) optlen;
3419 
3420 	set_fs(KERNEL_DS);
3421 	if (level == SOL_SOCKET)
3422 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3423 	else
3424 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3425 					    uoptlen);
3426 	set_fs(oldfs);
3427 	return err;
3428 }
3429 EXPORT_SYMBOL(kernel_getsockopt);
3430 
3431 int kernel_setsockopt(struct socket *sock, int level, int optname,
3432 			char *optval, unsigned int optlen)
3433 {
3434 	mm_segment_t oldfs = get_fs();
3435 	char __user *uoptval;
3436 	int err;
3437 
3438 	uoptval = (char __user __force *) optval;
3439 
3440 	set_fs(KERNEL_DS);
3441 	if (level == SOL_SOCKET)
3442 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3443 	else
3444 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3445 					    optlen);
3446 	set_fs(oldfs);
3447 	return err;
3448 }
3449 EXPORT_SYMBOL(kernel_setsockopt);
3450 
3451 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3452 		    size_t size, int flags)
3453 {
3454 	if (sock->ops->sendpage)
3455 		return sock->ops->sendpage(sock, page, offset, size, flags);
3456 
3457 	return sock_no_sendpage(sock, page, offset, size, flags);
3458 }
3459 EXPORT_SYMBOL(kernel_sendpage);
3460 
3461 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3462 {
3463 	mm_segment_t oldfs = get_fs();
3464 	int err;
3465 
3466 	set_fs(KERNEL_DS);
3467 	err = sock->ops->ioctl(sock, cmd, arg);
3468 	set_fs(oldfs);
3469 
3470 	return err;
3471 }
3472 EXPORT_SYMBOL(kernel_sock_ioctl);
3473 
3474 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3475 {
3476 	return sock->ops->shutdown(sock, how);
3477 }
3478 EXPORT_SYMBOL(kernel_sock_shutdown);
3479