1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 #include <linux/ptp_clock_kernel.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 116 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 117 118 static int sock_close(struct inode *inode, struct file *file); 119 static __poll_t sock_poll(struct file *file, 120 struct poll_table_struct *wait); 121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 122 #ifdef CONFIG_COMPAT 123 static long compat_sock_ioctl(struct file *file, 124 unsigned int cmd, unsigned long arg); 125 #endif 126 static int sock_fasync(int fd, struct file *filp, int on); 127 static ssize_t sock_sendpage(struct file *file, struct page *page, 128 int offset, size_t size, loff_t *ppos, int more); 129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 130 struct pipe_inode_info *pipe, size_t len, 131 unsigned int flags); 132 133 #ifdef CONFIG_PROC_FS 134 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 135 { 136 struct socket *sock = f->private_data; 137 138 if (sock->ops->show_fdinfo) 139 sock->ops->show_fdinfo(m, sock); 140 } 141 #else 142 #define sock_show_fdinfo NULL 143 #endif 144 145 /* 146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 147 * in the operation structures but are done directly via the socketcall() multiplexor. 148 */ 149 150 static const struct file_operations socket_file_ops = { 151 .owner = THIS_MODULE, 152 .llseek = no_llseek, 153 .read_iter = sock_read_iter, 154 .write_iter = sock_write_iter, 155 .poll = sock_poll, 156 .unlocked_ioctl = sock_ioctl, 157 #ifdef CONFIG_COMPAT 158 .compat_ioctl = compat_sock_ioctl, 159 #endif 160 .mmap = sock_mmap, 161 .release = sock_close, 162 .fasync = sock_fasync, 163 .sendpage = sock_sendpage, 164 .splice_write = generic_splice_sendpage, 165 .splice_read = sock_splice_read, 166 .show_fdinfo = sock_show_fdinfo, 167 }; 168 169 static const char * const pf_family_names[] = { 170 [PF_UNSPEC] = "PF_UNSPEC", 171 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 172 [PF_INET] = "PF_INET", 173 [PF_AX25] = "PF_AX25", 174 [PF_IPX] = "PF_IPX", 175 [PF_APPLETALK] = "PF_APPLETALK", 176 [PF_NETROM] = "PF_NETROM", 177 [PF_BRIDGE] = "PF_BRIDGE", 178 [PF_ATMPVC] = "PF_ATMPVC", 179 [PF_X25] = "PF_X25", 180 [PF_INET6] = "PF_INET6", 181 [PF_ROSE] = "PF_ROSE", 182 [PF_DECnet] = "PF_DECnet", 183 [PF_NETBEUI] = "PF_NETBEUI", 184 [PF_SECURITY] = "PF_SECURITY", 185 [PF_KEY] = "PF_KEY", 186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 187 [PF_PACKET] = "PF_PACKET", 188 [PF_ASH] = "PF_ASH", 189 [PF_ECONET] = "PF_ECONET", 190 [PF_ATMSVC] = "PF_ATMSVC", 191 [PF_RDS] = "PF_RDS", 192 [PF_SNA] = "PF_SNA", 193 [PF_IRDA] = "PF_IRDA", 194 [PF_PPPOX] = "PF_PPPOX", 195 [PF_WANPIPE] = "PF_WANPIPE", 196 [PF_LLC] = "PF_LLC", 197 [PF_IB] = "PF_IB", 198 [PF_MPLS] = "PF_MPLS", 199 [PF_CAN] = "PF_CAN", 200 [PF_TIPC] = "PF_TIPC", 201 [PF_BLUETOOTH] = "PF_BLUETOOTH", 202 [PF_IUCV] = "PF_IUCV", 203 [PF_RXRPC] = "PF_RXRPC", 204 [PF_ISDN] = "PF_ISDN", 205 [PF_PHONET] = "PF_PHONET", 206 [PF_IEEE802154] = "PF_IEEE802154", 207 [PF_CAIF] = "PF_CAIF", 208 [PF_ALG] = "PF_ALG", 209 [PF_NFC] = "PF_NFC", 210 [PF_VSOCK] = "PF_VSOCK", 211 [PF_KCM] = "PF_KCM", 212 [PF_QIPCRTR] = "PF_QIPCRTR", 213 [PF_SMC] = "PF_SMC", 214 [PF_XDP] = "PF_XDP", 215 }; 216 217 /* 218 * The protocol list. Each protocol is registered in here. 219 */ 220 221 static DEFINE_SPINLOCK(net_family_lock); 222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 223 224 /* 225 * Support routines. 226 * Move socket addresses back and forth across the kernel/user 227 * divide and look after the messy bits. 228 */ 229 230 /** 231 * move_addr_to_kernel - copy a socket address into kernel space 232 * @uaddr: Address in user space 233 * @kaddr: Address in kernel space 234 * @ulen: Length in user space 235 * 236 * The address is copied into kernel space. If the provided address is 237 * too long an error code of -EINVAL is returned. If the copy gives 238 * invalid addresses -EFAULT is returned. On a success 0 is returned. 239 */ 240 241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 242 { 243 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 244 return -EINVAL; 245 if (ulen == 0) 246 return 0; 247 if (copy_from_user(kaddr, uaddr, ulen)) 248 return -EFAULT; 249 return audit_sockaddr(ulen, kaddr); 250 } 251 252 /** 253 * move_addr_to_user - copy an address to user space 254 * @kaddr: kernel space address 255 * @klen: length of address in kernel 256 * @uaddr: user space address 257 * @ulen: pointer to user length field 258 * 259 * The value pointed to by ulen on entry is the buffer length available. 260 * This is overwritten with the buffer space used. -EINVAL is returned 261 * if an overlong buffer is specified or a negative buffer size. -EFAULT 262 * is returned if either the buffer or the length field are not 263 * accessible. 264 * After copying the data up to the limit the user specifies, the true 265 * length of the data is written over the length limit the user 266 * specified. Zero is returned for a success. 267 */ 268 269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 270 void __user *uaddr, int __user *ulen) 271 { 272 int err; 273 int len; 274 275 BUG_ON(klen > sizeof(struct sockaddr_storage)); 276 err = get_user(len, ulen); 277 if (err) 278 return err; 279 if (len > klen) 280 len = klen; 281 if (len < 0) 282 return -EINVAL; 283 if (len) { 284 if (audit_sockaddr(klen, kaddr)) 285 return -ENOMEM; 286 if (copy_to_user(uaddr, kaddr, len)) 287 return -EFAULT; 288 } 289 /* 290 * "fromlen shall refer to the value before truncation.." 291 * 1003.1g 292 */ 293 return __put_user(klen, ulen); 294 } 295 296 static struct kmem_cache *sock_inode_cachep __ro_after_init; 297 298 static struct inode *sock_alloc_inode(struct super_block *sb) 299 { 300 struct socket_alloc *ei; 301 302 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 303 if (!ei) 304 return NULL; 305 init_waitqueue_head(&ei->socket.wq.wait); 306 ei->socket.wq.fasync_list = NULL; 307 ei->socket.wq.flags = 0; 308 309 ei->socket.state = SS_UNCONNECTED; 310 ei->socket.flags = 0; 311 ei->socket.ops = NULL; 312 ei->socket.sk = NULL; 313 ei->socket.file = NULL; 314 315 return &ei->vfs_inode; 316 } 317 318 static void sock_free_inode(struct inode *inode) 319 { 320 struct socket_alloc *ei; 321 322 ei = container_of(inode, struct socket_alloc, vfs_inode); 323 kmem_cache_free(sock_inode_cachep, ei); 324 } 325 326 static void init_once(void *foo) 327 { 328 struct socket_alloc *ei = (struct socket_alloc *)foo; 329 330 inode_init_once(&ei->vfs_inode); 331 } 332 333 static void init_inodecache(void) 334 { 335 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 336 sizeof(struct socket_alloc), 337 0, 338 (SLAB_HWCACHE_ALIGN | 339 SLAB_RECLAIM_ACCOUNT | 340 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 341 init_once); 342 BUG_ON(sock_inode_cachep == NULL); 343 } 344 345 static const struct super_operations sockfs_ops = { 346 .alloc_inode = sock_alloc_inode, 347 .free_inode = sock_free_inode, 348 .statfs = simple_statfs, 349 }; 350 351 /* 352 * sockfs_dname() is called from d_path(). 353 */ 354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 355 { 356 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 357 d_inode(dentry)->i_ino); 358 } 359 360 static const struct dentry_operations sockfs_dentry_operations = { 361 .d_dname = sockfs_dname, 362 }; 363 364 static int sockfs_xattr_get(const struct xattr_handler *handler, 365 struct dentry *dentry, struct inode *inode, 366 const char *suffix, void *value, size_t size) 367 { 368 if (value) { 369 if (dentry->d_name.len + 1 > size) 370 return -ERANGE; 371 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 372 } 373 return dentry->d_name.len + 1; 374 } 375 376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 379 380 static const struct xattr_handler sockfs_xattr_handler = { 381 .name = XATTR_NAME_SOCKPROTONAME, 382 .get = sockfs_xattr_get, 383 }; 384 385 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 386 struct user_namespace *mnt_userns, 387 struct dentry *dentry, struct inode *inode, 388 const char *suffix, const void *value, 389 size_t size, int flags) 390 { 391 /* Handled by LSM. */ 392 return -EAGAIN; 393 } 394 395 static const struct xattr_handler sockfs_security_xattr_handler = { 396 .prefix = XATTR_SECURITY_PREFIX, 397 .set = sockfs_security_xattr_set, 398 }; 399 400 static const struct xattr_handler *sockfs_xattr_handlers[] = { 401 &sockfs_xattr_handler, 402 &sockfs_security_xattr_handler, 403 NULL 404 }; 405 406 static int sockfs_init_fs_context(struct fs_context *fc) 407 { 408 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 409 if (!ctx) 410 return -ENOMEM; 411 ctx->ops = &sockfs_ops; 412 ctx->dops = &sockfs_dentry_operations; 413 ctx->xattr = sockfs_xattr_handlers; 414 return 0; 415 } 416 417 static struct vfsmount *sock_mnt __read_mostly; 418 419 static struct file_system_type sock_fs_type = { 420 .name = "sockfs", 421 .init_fs_context = sockfs_init_fs_context, 422 .kill_sb = kill_anon_super, 423 }; 424 425 /* 426 * Obtains the first available file descriptor and sets it up for use. 427 * 428 * These functions create file structures and maps them to fd space 429 * of the current process. On success it returns file descriptor 430 * and file struct implicitly stored in sock->file. 431 * Note that another thread may close file descriptor before we return 432 * from this function. We use the fact that now we do not refer 433 * to socket after mapping. If one day we will need it, this 434 * function will increment ref. count on file by 1. 435 * 436 * In any case returned fd MAY BE not valid! 437 * This race condition is unavoidable 438 * with shared fd spaces, we cannot solve it inside kernel, 439 * but we take care of internal coherence yet. 440 */ 441 442 /** 443 * sock_alloc_file - Bind a &socket to a &file 444 * @sock: socket 445 * @flags: file status flags 446 * @dname: protocol name 447 * 448 * Returns the &file bound with @sock, implicitly storing it 449 * in sock->file. If dname is %NULL, sets to "". 450 * On failure the return is a ERR pointer (see linux/err.h). 451 * This function uses GFP_KERNEL internally. 452 */ 453 454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 455 { 456 struct file *file; 457 458 if (!dname) 459 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 460 461 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 462 O_RDWR | (flags & O_NONBLOCK), 463 &socket_file_ops); 464 if (IS_ERR(file)) { 465 sock_release(sock); 466 return file; 467 } 468 469 sock->file = file; 470 file->private_data = sock; 471 stream_open(SOCK_INODE(sock), file); 472 return file; 473 } 474 EXPORT_SYMBOL(sock_alloc_file); 475 476 static int sock_map_fd(struct socket *sock, int flags) 477 { 478 struct file *newfile; 479 int fd = get_unused_fd_flags(flags); 480 if (unlikely(fd < 0)) { 481 sock_release(sock); 482 return fd; 483 } 484 485 newfile = sock_alloc_file(sock, flags, NULL); 486 if (!IS_ERR(newfile)) { 487 fd_install(fd, newfile); 488 return fd; 489 } 490 491 put_unused_fd(fd); 492 return PTR_ERR(newfile); 493 } 494 495 /** 496 * sock_from_file - Return the &socket bounded to @file. 497 * @file: file 498 * 499 * On failure returns %NULL. 500 */ 501 502 struct socket *sock_from_file(struct file *file) 503 { 504 if (file->f_op == &socket_file_ops) 505 return file->private_data; /* set in sock_map_fd */ 506 507 return NULL; 508 } 509 EXPORT_SYMBOL(sock_from_file); 510 511 /** 512 * sockfd_lookup - Go from a file number to its socket slot 513 * @fd: file handle 514 * @err: pointer to an error code return 515 * 516 * The file handle passed in is locked and the socket it is bound 517 * to is returned. If an error occurs the err pointer is overwritten 518 * with a negative errno code and NULL is returned. The function checks 519 * for both invalid handles and passing a handle which is not a socket. 520 * 521 * On a success the socket object pointer is returned. 522 */ 523 524 struct socket *sockfd_lookup(int fd, int *err) 525 { 526 struct file *file; 527 struct socket *sock; 528 529 file = fget(fd); 530 if (!file) { 531 *err = -EBADF; 532 return NULL; 533 } 534 535 sock = sock_from_file(file); 536 if (!sock) { 537 *err = -ENOTSOCK; 538 fput(file); 539 } 540 return sock; 541 } 542 EXPORT_SYMBOL(sockfd_lookup); 543 544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 545 { 546 struct fd f = fdget(fd); 547 struct socket *sock; 548 549 *err = -EBADF; 550 if (f.file) { 551 sock = sock_from_file(f.file); 552 if (likely(sock)) { 553 *fput_needed = f.flags & FDPUT_FPUT; 554 return sock; 555 } 556 *err = -ENOTSOCK; 557 fdput(f); 558 } 559 return NULL; 560 } 561 562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 563 size_t size) 564 { 565 ssize_t len; 566 ssize_t used = 0; 567 568 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 569 if (len < 0) 570 return len; 571 used += len; 572 if (buffer) { 573 if (size < used) 574 return -ERANGE; 575 buffer += len; 576 } 577 578 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 579 used += len; 580 if (buffer) { 581 if (size < used) 582 return -ERANGE; 583 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 584 buffer += len; 585 } 586 587 return used; 588 } 589 590 static int sockfs_setattr(struct user_namespace *mnt_userns, 591 struct dentry *dentry, struct iattr *iattr) 592 { 593 int err = simple_setattr(&init_user_ns, dentry, iattr); 594 595 if (!err && (iattr->ia_valid & ATTR_UID)) { 596 struct socket *sock = SOCKET_I(d_inode(dentry)); 597 598 if (sock->sk) 599 sock->sk->sk_uid = iattr->ia_uid; 600 else 601 err = -ENOENT; 602 } 603 604 return err; 605 } 606 607 static const struct inode_operations sockfs_inode_ops = { 608 .listxattr = sockfs_listxattr, 609 .setattr = sockfs_setattr, 610 }; 611 612 /** 613 * sock_alloc - allocate a socket 614 * 615 * Allocate a new inode and socket object. The two are bound together 616 * and initialised. The socket is then returned. If we are out of inodes 617 * NULL is returned. This functions uses GFP_KERNEL internally. 618 */ 619 620 struct socket *sock_alloc(void) 621 { 622 struct inode *inode; 623 struct socket *sock; 624 625 inode = new_inode_pseudo(sock_mnt->mnt_sb); 626 if (!inode) 627 return NULL; 628 629 sock = SOCKET_I(inode); 630 631 inode->i_ino = get_next_ino(); 632 inode->i_mode = S_IFSOCK | S_IRWXUGO; 633 inode->i_uid = current_fsuid(); 634 inode->i_gid = current_fsgid(); 635 inode->i_op = &sockfs_inode_ops; 636 637 return sock; 638 } 639 EXPORT_SYMBOL(sock_alloc); 640 641 static void __sock_release(struct socket *sock, struct inode *inode) 642 { 643 if (sock->ops) { 644 struct module *owner = sock->ops->owner; 645 646 if (inode) 647 inode_lock(inode); 648 sock->ops->release(sock); 649 sock->sk = NULL; 650 if (inode) 651 inode_unlock(inode); 652 sock->ops = NULL; 653 module_put(owner); 654 } 655 656 if (sock->wq.fasync_list) 657 pr_err("%s: fasync list not empty!\n", __func__); 658 659 if (!sock->file) { 660 iput(SOCK_INODE(sock)); 661 return; 662 } 663 sock->file = NULL; 664 } 665 666 /** 667 * sock_release - close a socket 668 * @sock: socket to close 669 * 670 * The socket is released from the protocol stack if it has a release 671 * callback, and the inode is then released if the socket is bound to 672 * an inode not a file. 673 */ 674 void sock_release(struct socket *sock) 675 { 676 __sock_release(sock, NULL); 677 } 678 EXPORT_SYMBOL(sock_release); 679 680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 681 { 682 u8 flags = *tx_flags; 683 684 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 685 flags |= SKBTX_HW_TSTAMP; 686 687 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 688 flags |= SKBTX_SW_TSTAMP; 689 690 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 691 flags |= SKBTX_SCHED_TSTAMP; 692 693 *tx_flags = flags; 694 } 695 EXPORT_SYMBOL(__sock_tx_timestamp); 696 697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 698 size_t)); 699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 700 size_t)); 701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 702 { 703 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 704 inet_sendmsg, sock, msg, 705 msg_data_left(msg)); 706 BUG_ON(ret == -EIOCBQUEUED); 707 return ret; 708 } 709 710 /** 711 * sock_sendmsg - send a message through @sock 712 * @sock: socket 713 * @msg: message to send 714 * 715 * Sends @msg through @sock, passing through LSM. 716 * Returns the number of bytes sent, or an error code. 717 */ 718 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 719 { 720 int err = security_socket_sendmsg(sock, msg, 721 msg_data_left(msg)); 722 723 return err ?: sock_sendmsg_nosec(sock, msg); 724 } 725 EXPORT_SYMBOL(sock_sendmsg); 726 727 /** 728 * kernel_sendmsg - send a message through @sock (kernel-space) 729 * @sock: socket 730 * @msg: message header 731 * @vec: kernel vec 732 * @num: vec array length 733 * @size: total message data size 734 * 735 * Builds the message data with @vec and sends it through @sock. 736 * Returns the number of bytes sent, or an error code. 737 */ 738 739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 740 struct kvec *vec, size_t num, size_t size) 741 { 742 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 743 return sock_sendmsg(sock, msg); 744 } 745 EXPORT_SYMBOL(kernel_sendmsg); 746 747 /** 748 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 749 * @sk: sock 750 * @msg: message header 751 * @vec: output s/g array 752 * @num: output s/g array length 753 * @size: total message data size 754 * 755 * Builds the message data with @vec and sends it through @sock. 756 * Returns the number of bytes sent, or an error code. 757 * Caller must hold @sk. 758 */ 759 760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 761 struct kvec *vec, size_t num, size_t size) 762 { 763 struct socket *sock = sk->sk_socket; 764 765 if (!sock->ops->sendmsg_locked) 766 return sock_no_sendmsg_locked(sk, msg, size); 767 768 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 769 770 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 771 } 772 EXPORT_SYMBOL(kernel_sendmsg_locked); 773 774 static bool skb_is_err_queue(const struct sk_buff *skb) 775 { 776 /* pkt_type of skbs enqueued on the error queue are set to 777 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 778 * in recvmsg, since skbs received on a local socket will never 779 * have a pkt_type of PACKET_OUTGOING. 780 */ 781 return skb->pkt_type == PACKET_OUTGOING; 782 } 783 784 /* On transmit, software and hardware timestamps are returned independently. 785 * As the two skb clones share the hardware timestamp, which may be updated 786 * before the software timestamp is received, a hardware TX timestamp may be 787 * returned only if there is no software TX timestamp. Ignore false software 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 790 * hardware timestamp. 791 */ 792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 793 { 794 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 795 } 796 797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 798 { 799 struct scm_ts_pktinfo ts_pktinfo; 800 struct net_device *orig_dev; 801 802 if (!skb_mac_header_was_set(skb)) 803 return; 804 805 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 806 807 rcu_read_lock(); 808 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 809 if (orig_dev) 810 ts_pktinfo.if_index = orig_dev->ifindex; 811 rcu_read_unlock(); 812 813 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 814 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 815 sizeof(ts_pktinfo), &ts_pktinfo); 816 } 817 818 /* 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 820 */ 821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 822 struct sk_buff *skb) 823 { 824 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 825 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 826 struct scm_timestamping_internal tss; 827 828 int empty = 1, false_tstamp = 0; 829 struct skb_shared_hwtstamps *shhwtstamps = 830 skb_hwtstamps(skb); 831 832 /* Race occurred between timestamp enabling and packet 833 receiving. Fill in the current time for now. */ 834 if (need_software_tstamp && skb->tstamp == 0) { 835 __net_timestamp(skb); 836 false_tstamp = 1; 837 } 838 839 if (need_software_tstamp) { 840 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 841 if (new_tstamp) { 842 struct __kernel_sock_timeval tv; 843 844 skb_get_new_timestamp(skb, &tv); 845 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 846 sizeof(tv), &tv); 847 } else { 848 struct __kernel_old_timeval tv; 849 850 skb_get_timestamp(skb, &tv); 851 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 852 sizeof(tv), &tv); 853 } 854 } else { 855 if (new_tstamp) { 856 struct __kernel_timespec ts; 857 858 skb_get_new_timestampns(skb, &ts); 859 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 860 sizeof(ts), &ts); 861 } else { 862 struct __kernel_old_timespec ts; 863 864 skb_get_timestampns(skb, &ts); 865 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 866 sizeof(ts), &ts); 867 } 868 } 869 } 870 871 memset(&tss, 0, sizeof(tss)); 872 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 873 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 874 empty = 0; 875 if (shhwtstamps && 876 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 877 !skb_is_swtx_tstamp(skb, false_tstamp)) { 878 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 879 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc); 880 881 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp, 882 tss.ts + 2)) { 883 empty = 0; 884 885 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 886 !skb_is_err_queue(skb)) 887 put_ts_pktinfo(msg, skb); 888 } 889 } 890 if (!empty) { 891 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 892 put_cmsg_scm_timestamping64(msg, &tss); 893 else 894 put_cmsg_scm_timestamping(msg, &tss); 895 896 if (skb_is_err_queue(skb) && skb->len && 897 SKB_EXT_ERR(skb)->opt_stats) 898 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 899 skb->len, skb->data); 900 } 901 } 902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 903 904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 905 struct sk_buff *skb) 906 { 907 int ack; 908 909 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 910 return; 911 if (!skb->wifi_acked_valid) 912 return; 913 914 ack = skb->wifi_acked; 915 916 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 917 } 918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 919 920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 921 struct sk_buff *skb) 922 { 923 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 924 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 925 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 926 } 927 928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 929 struct sk_buff *skb) 930 { 931 sock_recv_timestamp(msg, sk, skb); 932 sock_recv_drops(msg, sk, skb); 933 } 934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 935 936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 937 size_t, int)); 938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 939 size_t, int)); 940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 941 int flags) 942 { 943 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 944 inet_recvmsg, sock, msg, msg_data_left(msg), 945 flags); 946 } 947 948 /** 949 * sock_recvmsg - receive a message from @sock 950 * @sock: socket 951 * @msg: message to receive 952 * @flags: message flags 953 * 954 * Receives @msg from @sock, passing through LSM. Returns the total number 955 * of bytes received, or an error. 956 */ 957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 958 { 959 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 960 961 return err ?: sock_recvmsg_nosec(sock, msg, flags); 962 } 963 EXPORT_SYMBOL(sock_recvmsg); 964 965 /** 966 * kernel_recvmsg - Receive a message from a socket (kernel space) 967 * @sock: The socket to receive the message from 968 * @msg: Received message 969 * @vec: Input s/g array for message data 970 * @num: Size of input s/g array 971 * @size: Number of bytes to read 972 * @flags: Message flags (MSG_DONTWAIT, etc...) 973 * 974 * On return the msg structure contains the scatter/gather array passed in the 975 * vec argument. The array is modified so that it consists of the unfilled 976 * portion of the original array. 977 * 978 * The returned value is the total number of bytes received, or an error. 979 */ 980 981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 982 struct kvec *vec, size_t num, size_t size, int flags) 983 { 984 msg->msg_control_is_user = false; 985 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 986 return sock_recvmsg(sock, msg, flags); 987 } 988 EXPORT_SYMBOL(kernel_recvmsg); 989 990 static ssize_t sock_sendpage(struct file *file, struct page *page, 991 int offset, size_t size, loff_t *ppos, int more) 992 { 993 struct socket *sock; 994 int flags; 995 996 sock = file->private_data; 997 998 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 999 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1000 flags |= more; 1001 1002 return kernel_sendpage(sock, page, offset, size, flags); 1003 } 1004 1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1006 struct pipe_inode_info *pipe, size_t len, 1007 unsigned int flags) 1008 { 1009 struct socket *sock = file->private_data; 1010 1011 if (unlikely(!sock->ops->splice_read)) 1012 return generic_file_splice_read(file, ppos, pipe, len, flags); 1013 1014 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1015 } 1016 1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1018 { 1019 struct file *file = iocb->ki_filp; 1020 struct socket *sock = file->private_data; 1021 struct msghdr msg = {.msg_iter = *to, 1022 .msg_iocb = iocb}; 1023 ssize_t res; 1024 1025 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1026 msg.msg_flags = MSG_DONTWAIT; 1027 1028 if (iocb->ki_pos != 0) 1029 return -ESPIPE; 1030 1031 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1032 return 0; 1033 1034 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1035 *to = msg.msg_iter; 1036 return res; 1037 } 1038 1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1040 { 1041 struct file *file = iocb->ki_filp; 1042 struct socket *sock = file->private_data; 1043 struct msghdr msg = {.msg_iter = *from, 1044 .msg_iocb = iocb}; 1045 ssize_t res; 1046 1047 if (iocb->ki_pos != 0) 1048 return -ESPIPE; 1049 1050 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1051 msg.msg_flags = MSG_DONTWAIT; 1052 1053 if (sock->type == SOCK_SEQPACKET) 1054 msg.msg_flags |= MSG_EOR; 1055 1056 res = sock_sendmsg(sock, &msg); 1057 *from = msg.msg_iter; 1058 return res; 1059 } 1060 1061 /* 1062 * Atomic setting of ioctl hooks to avoid race 1063 * with module unload. 1064 */ 1065 1066 static DEFINE_MUTEX(br_ioctl_mutex); 1067 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1068 1069 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1070 { 1071 mutex_lock(&br_ioctl_mutex); 1072 br_ioctl_hook = hook; 1073 mutex_unlock(&br_ioctl_mutex); 1074 } 1075 EXPORT_SYMBOL(brioctl_set); 1076 1077 static DEFINE_MUTEX(vlan_ioctl_mutex); 1078 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1079 1080 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1081 { 1082 mutex_lock(&vlan_ioctl_mutex); 1083 vlan_ioctl_hook = hook; 1084 mutex_unlock(&vlan_ioctl_mutex); 1085 } 1086 EXPORT_SYMBOL(vlan_ioctl_set); 1087 1088 static long sock_do_ioctl(struct net *net, struct socket *sock, 1089 unsigned int cmd, unsigned long arg) 1090 { 1091 int err; 1092 void __user *argp = (void __user *)arg; 1093 1094 err = sock->ops->ioctl(sock, cmd, arg); 1095 1096 /* 1097 * If this ioctl is unknown try to hand it down 1098 * to the NIC driver. 1099 */ 1100 if (err != -ENOIOCTLCMD) 1101 return err; 1102 1103 if (cmd == SIOCGIFCONF) { 1104 struct ifconf ifc; 1105 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1106 return -EFAULT; 1107 rtnl_lock(); 1108 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1109 rtnl_unlock(); 1110 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1111 err = -EFAULT; 1112 } else { 1113 struct ifreq ifr; 1114 bool need_copyout; 1115 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1116 return -EFAULT; 1117 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1118 if (!err && need_copyout) 1119 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1120 return -EFAULT; 1121 } 1122 return err; 1123 } 1124 1125 /* 1126 * With an ioctl, arg may well be a user mode pointer, but we don't know 1127 * what to do with it - that's up to the protocol still. 1128 */ 1129 1130 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1131 { 1132 struct socket *sock; 1133 struct sock *sk; 1134 void __user *argp = (void __user *)arg; 1135 int pid, err; 1136 struct net *net; 1137 1138 sock = file->private_data; 1139 sk = sock->sk; 1140 net = sock_net(sk); 1141 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1142 struct ifreq ifr; 1143 bool need_copyout; 1144 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1145 return -EFAULT; 1146 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1147 if (!err && need_copyout) 1148 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1149 return -EFAULT; 1150 } else 1151 #ifdef CONFIG_WEXT_CORE 1152 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1153 err = wext_handle_ioctl(net, cmd, argp); 1154 } else 1155 #endif 1156 switch (cmd) { 1157 case FIOSETOWN: 1158 case SIOCSPGRP: 1159 err = -EFAULT; 1160 if (get_user(pid, (int __user *)argp)) 1161 break; 1162 err = f_setown(sock->file, pid, 1); 1163 break; 1164 case FIOGETOWN: 1165 case SIOCGPGRP: 1166 err = put_user(f_getown(sock->file), 1167 (int __user *)argp); 1168 break; 1169 case SIOCGIFBR: 1170 case SIOCSIFBR: 1171 case SIOCBRADDBR: 1172 case SIOCBRDELBR: 1173 err = -ENOPKG; 1174 if (!br_ioctl_hook) 1175 request_module("bridge"); 1176 1177 mutex_lock(&br_ioctl_mutex); 1178 if (br_ioctl_hook) 1179 err = br_ioctl_hook(net, cmd, argp); 1180 mutex_unlock(&br_ioctl_mutex); 1181 break; 1182 case SIOCGIFVLAN: 1183 case SIOCSIFVLAN: 1184 err = -ENOPKG; 1185 if (!vlan_ioctl_hook) 1186 request_module("8021q"); 1187 1188 mutex_lock(&vlan_ioctl_mutex); 1189 if (vlan_ioctl_hook) 1190 err = vlan_ioctl_hook(net, argp); 1191 mutex_unlock(&vlan_ioctl_mutex); 1192 break; 1193 case SIOCGSKNS: 1194 err = -EPERM; 1195 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1196 break; 1197 1198 err = open_related_ns(&net->ns, get_net_ns); 1199 break; 1200 case SIOCGSTAMP_OLD: 1201 case SIOCGSTAMPNS_OLD: 1202 if (!sock->ops->gettstamp) { 1203 err = -ENOIOCTLCMD; 1204 break; 1205 } 1206 err = sock->ops->gettstamp(sock, argp, 1207 cmd == SIOCGSTAMP_OLD, 1208 !IS_ENABLED(CONFIG_64BIT)); 1209 break; 1210 case SIOCGSTAMP_NEW: 1211 case SIOCGSTAMPNS_NEW: 1212 if (!sock->ops->gettstamp) { 1213 err = -ENOIOCTLCMD; 1214 break; 1215 } 1216 err = sock->ops->gettstamp(sock, argp, 1217 cmd == SIOCGSTAMP_NEW, 1218 false); 1219 break; 1220 default: 1221 err = sock_do_ioctl(net, sock, cmd, arg); 1222 break; 1223 } 1224 return err; 1225 } 1226 1227 /** 1228 * sock_create_lite - creates a socket 1229 * @family: protocol family (AF_INET, ...) 1230 * @type: communication type (SOCK_STREAM, ...) 1231 * @protocol: protocol (0, ...) 1232 * @res: new socket 1233 * 1234 * Creates a new socket and assigns it to @res, passing through LSM. 1235 * The new socket initialization is not complete, see kernel_accept(). 1236 * Returns 0 or an error. On failure @res is set to %NULL. 1237 * This function internally uses GFP_KERNEL. 1238 */ 1239 1240 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1241 { 1242 int err; 1243 struct socket *sock = NULL; 1244 1245 err = security_socket_create(family, type, protocol, 1); 1246 if (err) 1247 goto out; 1248 1249 sock = sock_alloc(); 1250 if (!sock) { 1251 err = -ENOMEM; 1252 goto out; 1253 } 1254 1255 sock->type = type; 1256 err = security_socket_post_create(sock, family, type, protocol, 1); 1257 if (err) 1258 goto out_release; 1259 1260 out: 1261 *res = sock; 1262 return err; 1263 out_release: 1264 sock_release(sock); 1265 sock = NULL; 1266 goto out; 1267 } 1268 EXPORT_SYMBOL(sock_create_lite); 1269 1270 /* No kernel lock held - perfect */ 1271 static __poll_t sock_poll(struct file *file, poll_table *wait) 1272 { 1273 struct socket *sock = file->private_data; 1274 __poll_t events = poll_requested_events(wait), flag = 0; 1275 1276 if (!sock->ops->poll) 1277 return 0; 1278 1279 if (sk_can_busy_loop(sock->sk)) { 1280 /* poll once if requested by the syscall */ 1281 if (events & POLL_BUSY_LOOP) 1282 sk_busy_loop(sock->sk, 1); 1283 1284 /* if this socket can poll_ll, tell the system call */ 1285 flag = POLL_BUSY_LOOP; 1286 } 1287 1288 return sock->ops->poll(file, sock, wait) | flag; 1289 } 1290 1291 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1292 { 1293 struct socket *sock = file->private_data; 1294 1295 return sock->ops->mmap(file, sock, vma); 1296 } 1297 1298 static int sock_close(struct inode *inode, struct file *filp) 1299 { 1300 __sock_release(SOCKET_I(inode), inode); 1301 return 0; 1302 } 1303 1304 /* 1305 * Update the socket async list 1306 * 1307 * Fasync_list locking strategy. 1308 * 1309 * 1. fasync_list is modified only under process context socket lock 1310 * i.e. under semaphore. 1311 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1312 * or under socket lock 1313 */ 1314 1315 static int sock_fasync(int fd, struct file *filp, int on) 1316 { 1317 struct socket *sock = filp->private_data; 1318 struct sock *sk = sock->sk; 1319 struct socket_wq *wq = &sock->wq; 1320 1321 if (sk == NULL) 1322 return -EINVAL; 1323 1324 lock_sock(sk); 1325 fasync_helper(fd, filp, on, &wq->fasync_list); 1326 1327 if (!wq->fasync_list) 1328 sock_reset_flag(sk, SOCK_FASYNC); 1329 else 1330 sock_set_flag(sk, SOCK_FASYNC); 1331 1332 release_sock(sk); 1333 return 0; 1334 } 1335 1336 /* This function may be called only under rcu_lock */ 1337 1338 int sock_wake_async(struct socket_wq *wq, int how, int band) 1339 { 1340 if (!wq || !wq->fasync_list) 1341 return -1; 1342 1343 switch (how) { 1344 case SOCK_WAKE_WAITD: 1345 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1346 break; 1347 goto call_kill; 1348 case SOCK_WAKE_SPACE: 1349 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1350 break; 1351 fallthrough; 1352 case SOCK_WAKE_IO: 1353 call_kill: 1354 kill_fasync(&wq->fasync_list, SIGIO, band); 1355 break; 1356 case SOCK_WAKE_URG: 1357 kill_fasync(&wq->fasync_list, SIGURG, band); 1358 } 1359 1360 return 0; 1361 } 1362 EXPORT_SYMBOL(sock_wake_async); 1363 1364 /** 1365 * __sock_create - creates a socket 1366 * @net: net namespace 1367 * @family: protocol family (AF_INET, ...) 1368 * @type: communication type (SOCK_STREAM, ...) 1369 * @protocol: protocol (0, ...) 1370 * @res: new socket 1371 * @kern: boolean for kernel space sockets 1372 * 1373 * Creates a new socket and assigns it to @res, passing through LSM. 1374 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1375 * be set to true if the socket resides in kernel space. 1376 * This function internally uses GFP_KERNEL. 1377 */ 1378 1379 int __sock_create(struct net *net, int family, int type, int protocol, 1380 struct socket **res, int kern) 1381 { 1382 int err; 1383 struct socket *sock; 1384 const struct net_proto_family *pf; 1385 1386 /* 1387 * Check protocol is in range 1388 */ 1389 if (family < 0 || family >= NPROTO) 1390 return -EAFNOSUPPORT; 1391 if (type < 0 || type >= SOCK_MAX) 1392 return -EINVAL; 1393 1394 /* Compatibility. 1395 1396 This uglymoron is moved from INET layer to here to avoid 1397 deadlock in module load. 1398 */ 1399 if (family == PF_INET && type == SOCK_PACKET) { 1400 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1401 current->comm); 1402 family = PF_PACKET; 1403 } 1404 1405 err = security_socket_create(family, type, protocol, kern); 1406 if (err) 1407 return err; 1408 1409 /* 1410 * Allocate the socket and allow the family to set things up. if 1411 * the protocol is 0, the family is instructed to select an appropriate 1412 * default. 1413 */ 1414 sock = sock_alloc(); 1415 if (!sock) { 1416 net_warn_ratelimited("socket: no more sockets\n"); 1417 return -ENFILE; /* Not exactly a match, but its the 1418 closest posix thing */ 1419 } 1420 1421 sock->type = type; 1422 1423 #ifdef CONFIG_MODULES 1424 /* Attempt to load a protocol module if the find failed. 1425 * 1426 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1427 * requested real, full-featured networking support upon configuration. 1428 * Otherwise module support will break! 1429 */ 1430 if (rcu_access_pointer(net_families[family]) == NULL) 1431 request_module("net-pf-%d", family); 1432 #endif 1433 1434 rcu_read_lock(); 1435 pf = rcu_dereference(net_families[family]); 1436 err = -EAFNOSUPPORT; 1437 if (!pf) 1438 goto out_release; 1439 1440 /* 1441 * We will call the ->create function, that possibly is in a loadable 1442 * module, so we have to bump that loadable module refcnt first. 1443 */ 1444 if (!try_module_get(pf->owner)) 1445 goto out_release; 1446 1447 /* Now protected by module ref count */ 1448 rcu_read_unlock(); 1449 1450 err = pf->create(net, sock, protocol, kern); 1451 if (err < 0) 1452 goto out_module_put; 1453 1454 /* 1455 * Now to bump the refcnt of the [loadable] module that owns this 1456 * socket at sock_release time we decrement its refcnt. 1457 */ 1458 if (!try_module_get(sock->ops->owner)) 1459 goto out_module_busy; 1460 1461 /* 1462 * Now that we're done with the ->create function, the [loadable] 1463 * module can have its refcnt decremented 1464 */ 1465 module_put(pf->owner); 1466 err = security_socket_post_create(sock, family, type, protocol, kern); 1467 if (err) 1468 goto out_sock_release; 1469 *res = sock; 1470 1471 return 0; 1472 1473 out_module_busy: 1474 err = -EAFNOSUPPORT; 1475 out_module_put: 1476 sock->ops = NULL; 1477 module_put(pf->owner); 1478 out_sock_release: 1479 sock_release(sock); 1480 return err; 1481 1482 out_release: 1483 rcu_read_unlock(); 1484 goto out_sock_release; 1485 } 1486 EXPORT_SYMBOL(__sock_create); 1487 1488 /** 1489 * sock_create - creates a socket 1490 * @family: protocol family (AF_INET, ...) 1491 * @type: communication type (SOCK_STREAM, ...) 1492 * @protocol: protocol (0, ...) 1493 * @res: new socket 1494 * 1495 * A wrapper around __sock_create(). 1496 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1497 */ 1498 1499 int sock_create(int family, int type, int protocol, struct socket **res) 1500 { 1501 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1502 } 1503 EXPORT_SYMBOL(sock_create); 1504 1505 /** 1506 * sock_create_kern - creates a socket (kernel space) 1507 * @net: net namespace 1508 * @family: protocol family (AF_INET, ...) 1509 * @type: communication type (SOCK_STREAM, ...) 1510 * @protocol: protocol (0, ...) 1511 * @res: new socket 1512 * 1513 * A wrapper around __sock_create(). 1514 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1515 */ 1516 1517 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1518 { 1519 return __sock_create(net, family, type, protocol, res, 1); 1520 } 1521 EXPORT_SYMBOL(sock_create_kern); 1522 1523 int __sys_socket(int family, int type, int protocol) 1524 { 1525 int retval; 1526 struct socket *sock; 1527 int flags; 1528 1529 /* Check the SOCK_* constants for consistency. */ 1530 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1531 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1532 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1533 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1534 1535 flags = type & ~SOCK_TYPE_MASK; 1536 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1537 return -EINVAL; 1538 type &= SOCK_TYPE_MASK; 1539 1540 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1541 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1542 1543 retval = sock_create(family, type, protocol, &sock); 1544 if (retval < 0) 1545 return retval; 1546 1547 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1548 } 1549 1550 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1551 { 1552 return __sys_socket(family, type, protocol); 1553 } 1554 1555 /* 1556 * Create a pair of connected sockets. 1557 */ 1558 1559 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1560 { 1561 struct socket *sock1, *sock2; 1562 int fd1, fd2, err; 1563 struct file *newfile1, *newfile2; 1564 int flags; 1565 1566 flags = type & ~SOCK_TYPE_MASK; 1567 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1568 return -EINVAL; 1569 type &= SOCK_TYPE_MASK; 1570 1571 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1572 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1573 1574 /* 1575 * reserve descriptors and make sure we won't fail 1576 * to return them to userland. 1577 */ 1578 fd1 = get_unused_fd_flags(flags); 1579 if (unlikely(fd1 < 0)) 1580 return fd1; 1581 1582 fd2 = get_unused_fd_flags(flags); 1583 if (unlikely(fd2 < 0)) { 1584 put_unused_fd(fd1); 1585 return fd2; 1586 } 1587 1588 err = put_user(fd1, &usockvec[0]); 1589 if (err) 1590 goto out; 1591 1592 err = put_user(fd2, &usockvec[1]); 1593 if (err) 1594 goto out; 1595 1596 /* 1597 * Obtain the first socket and check if the underlying protocol 1598 * supports the socketpair call. 1599 */ 1600 1601 err = sock_create(family, type, protocol, &sock1); 1602 if (unlikely(err < 0)) 1603 goto out; 1604 1605 err = sock_create(family, type, protocol, &sock2); 1606 if (unlikely(err < 0)) { 1607 sock_release(sock1); 1608 goto out; 1609 } 1610 1611 err = security_socket_socketpair(sock1, sock2); 1612 if (unlikely(err)) { 1613 sock_release(sock2); 1614 sock_release(sock1); 1615 goto out; 1616 } 1617 1618 err = sock1->ops->socketpair(sock1, sock2); 1619 if (unlikely(err < 0)) { 1620 sock_release(sock2); 1621 sock_release(sock1); 1622 goto out; 1623 } 1624 1625 newfile1 = sock_alloc_file(sock1, flags, NULL); 1626 if (IS_ERR(newfile1)) { 1627 err = PTR_ERR(newfile1); 1628 sock_release(sock2); 1629 goto out; 1630 } 1631 1632 newfile2 = sock_alloc_file(sock2, flags, NULL); 1633 if (IS_ERR(newfile2)) { 1634 err = PTR_ERR(newfile2); 1635 fput(newfile1); 1636 goto out; 1637 } 1638 1639 audit_fd_pair(fd1, fd2); 1640 1641 fd_install(fd1, newfile1); 1642 fd_install(fd2, newfile2); 1643 return 0; 1644 1645 out: 1646 put_unused_fd(fd2); 1647 put_unused_fd(fd1); 1648 return err; 1649 } 1650 1651 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1652 int __user *, usockvec) 1653 { 1654 return __sys_socketpair(family, type, protocol, usockvec); 1655 } 1656 1657 /* 1658 * Bind a name to a socket. Nothing much to do here since it's 1659 * the protocol's responsibility to handle the local address. 1660 * 1661 * We move the socket address to kernel space before we call 1662 * the protocol layer (having also checked the address is ok). 1663 */ 1664 1665 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1666 { 1667 struct socket *sock; 1668 struct sockaddr_storage address; 1669 int err, fput_needed; 1670 1671 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1672 if (sock) { 1673 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1674 if (!err) { 1675 err = security_socket_bind(sock, 1676 (struct sockaddr *)&address, 1677 addrlen); 1678 if (!err) 1679 err = sock->ops->bind(sock, 1680 (struct sockaddr *) 1681 &address, addrlen); 1682 } 1683 fput_light(sock->file, fput_needed); 1684 } 1685 return err; 1686 } 1687 1688 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1689 { 1690 return __sys_bind(fd, umyaddr, addrlen); 1691 } 1692 1693 /* 1694 * Perform a listen. Basically, we allow the protocol to do anything 1695 * necessary for a listen, and if that works, we mark the socket as 1696 * ready for listening. 1697 */ 1698 1699 int __sys_listen(int fd, int backlog) 1700 { 1701 struct socket *sock; 1702 int err, fput_needed; 1703 int somaxconn; 1704 1705 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1706 if (sock) { 1707 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1708 if ((unsigned int)backlog > somaxconn) 1709 backlog = somaxconn; 1710 1711 err = security_socket_listen(sock, backlog); 1712 if (!err) 1713 err = sock->ops->listen(sock, backlog); 1714 1715 fput_light(sock->file, fput_needed); 1716 } 1717 return err; 1718 } 1719 1720 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1721 { 1722 return __sys_listen(fd, backlog); 1723 } 1724 1725 int __sys_accept4_file(struct file *file, unsigned file_flags, 1726 struct sockaddr __user *upeer_sockaddr, 1727 int __user *upeer_addrlen, int flags, 1728 unsigned long nofile) 1729 { 1730 struct socket *sock, *newsock; 1731 struct file *newfile; 1732 int err, len, newfd; 1733 struct sockaddr_storage address; 1734 1735 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1736 return -EINVAL; 1737 1738 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1739 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1740 1741 sock = sock_from_file(file); 1742 if (!sock) { 1743 err = -ENOTSOCK; 1744 goto out; 1745 } 1746 1747 err = -ENFILE; 1748 newsock = sock_alloc(); 1749 if (!newsock) 1750 goto out; 1751 1752 newsock->type = sock->type; 1753 newsock->ops = sock->ops; 1754 1755 /* 1756 * We don't need try_module_get here, as the listening socket (sock) 1757 * has the protocol module (sock->ops->owner) held. 1758 */ 1759 __module_get(newsock->ops->owner); 1760 1761 newfd = __get_unused_fd_flags(flags, nofile); 1762 if (unlikely(newfd < 0)) { 1763 err = newfd; 1764 sock_release(newsock); 1765 goto out; 1766 } 1767 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1768 if (IS_ERR(newfile)) { 1769 err = PTR_ERR(newfile); 1770 put_unused_fd(newfd); 1771 goto out; 1772 } 1773 1774 err = security_socket_accept(sock, newsock); 1775 if (err) 1776 goto out_fd; 1777 1778 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1779 false); 1780 if (err < 0) 1781 goto out_fd; 1782 1783 if (upeer_sockaddr) { 1784 len = newsock->ops->getname(newsock, 1785 (struct sockaddr *)&address, 2); 1786 if (len < 0) { 1787 err = -ECONNABORTED; 1788 goto out_fd; 1789 } 1790 err = move_addr_to_user(&address, 1791 len, upeer_sockaddr, upeer_addrlen); 1792 if (err < 0) 1793 goto out_fd; 1794 } 1795 1796 /* File flags are not inherited via accept() unlike another OSes. */ 1797 1798 fd_install(newfd, newfile); 1799 err = newfd; 1800 out: 1801 return err; 1802 out_fd: 1803 fput(newfile); 1804 put_unused_fd(newfd); 1805 goto out; 1806 1807 } 1808 1809 /* 1810 * For accept, we attempt to create a new socket, set up the link 1811 * with the client, wake up the client, then return the new 1812 * connected fd. We collect the address of the connector in kernel 1813 * space and move it to user at the very end. This is unclean because 1814 * we open the socket then return an error. 1815 * 1816 * 1003.1g adds the ability to recvmsg() to query connection pending 1817 * status to recvmsg. We need to add that support in a way thats 1818 * clean when we restructure accept also. 1819 */ 1820 1821 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1822 int __user *upeer_addrlen, int flags) 1823 { 1824 int ret = -EBADF; 1825 struct fd f; 1826 1827 f = fdget(fd); 1828 if (f.file) { 1829 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1830 upeer_addrlen, flags, 1831 rlimit(RLIMIT_NOFILE)); 1832 fdput(f); 1833 } 1834 1835 return ret; 1836 } 1837 1838 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1839 int __user *, upeer_addrlen, int, flags) 1840 { 1841 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1842 } 1843 1844 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1845 int __user *, upeer_addrlen) 1846 { 1847 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1848 } 1849 1850 /* 1851 * Attempt to connect to a socket with the server address. The address 1852 * is in user space so we verify it is OK and move it to kernel space. 1853 * 1854 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1855 * break bindings 1856 * 1857 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1858 * other SEQPACKET protocols that take time to connect() as it doesn't 1859 * include the -EINPROGRESS status for such sockets. 1860 */ 1861 1862 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1863 int addrlen, int file_flags) 1864 { 1865 struct socket *sock; 1866 int err; 1867 1868 sock = sock_from_file(file); 1869 if (!sock) { 1870 err = -ENOTSOCK; 1871 goto out; 1872 } 1873 1874 err = 1875 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1876 if (err) 1877 goto out; 1878 1879 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1880 sock->file->f_flags | file_flags); 1881 out: 1882 return err; 1883 } 1884 1885 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1886 { 1887 int ret = -EBADF; 1888 struct fd f; 1889 1890 f = fdget(fd); 1891 if (f.file) { 1892 struct sockaddr_storage address; 1893 1894 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1895 if (!ret) 1896 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1897 fdput(f); 1898 } 1899 1900 return ret; 1901 } 1902 1903 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1904 int, addrlen) 1905 { 1906 return __sys_connect(fd, uservaddr, addrlen); 1907 } 1908 1909 /* 1910 * Get the local address ('name') of a socket object. Move the obtained 1911 * name to user space. 1912 */ 1913 1914 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1915 int __user *usockaddr_len) 1916 { 1917 struct socket *sock; 1918 struct sockaddr_storage address; 1919 int err, fput_needed; 1920 1921 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1922 if (!sock) 1923 goto out; 1924 1925 err = security_socket_getsockname(sock); 1926 if (err) 1927 goto out_put; 1928 1929 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1930 if (err < 0) 1931 goto out_put; 1932 /* "err" is actually length in this case */ 1933 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1934 1935 out_put: 1936 fput_light(sock->file, fput_needed); 1937 out: 1938 return err; 1939 } 1940 1941 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1942 int __user *, usockaddr_len) 1943 { 1944 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1945 } 1946 1947 /* 1948 * Get the remote address ('name') of a socket object. Move the obtained 1949 * name to user space. 1950 */ 1951 1952 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1953 int __user *usockaddr_len) 1954 { 1955 struct socket *sock; 1956 struct sockaddr_storage address; 1957 int err, fput_needed; 1958 1959 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1960 if (sock != NULL) { 1961 err = security_socket_getpeername(sock); 1962 if (err) { 1963 fput_light(sock->file, fput_needed); 1964 return err; 1965 } 1966 1967 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1968 if (err >= 0) 1969 /* "err" is actually length in this case */ 1970 err = move_addr_to_user(&address, err, usockaddr, 1971 usockaddr_len); 1972 fput_light(sock->file, fput_needed); 1973 } 1974 return err; 1975 } 1976 1977 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1978 int __user *, usockaddr_len) 1979 { 1980 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1981 } 1982 1983 /* 1984 * Send a datagram to a given address. We move the address into kernel 1985 * space and check the user space data area is readable before invoking 1986 * the protocol. 1987 */ 1988 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1989 struct sockaddr __user *addr, int addr_len) 1990 { 1991 struct socket *sock; 1992 struct sockaddr_storage address; 1993 int err; 1994 struct msghdr msg; 1995 struct iovec iov; 1996 int fput_needed; 1997 1998 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1999 if (unlikely(err)) 2000 return err; 2001 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2002 if (!sock) 2003 goto out; 2004 2005 msg.msg_name = NULL; 2006 msg.msg_control = NULL; 2007 msg.msg_controllen = 0; 2008 msg.msg_namelen = 0; 2009 if (addr) { 2010 err = move_addr_to_kernel(addr, addr_len, &address); 2011 if (err < 0) 2012 goto out_put; 2013 msg.msg_name = (struct sockaddr *)&address; 2014 msg.msg_namelen = addr_len; 2015 } 2016 if (sock->file->f_flags & O_NONBLOCK) 2017 flags |= MSG_DONTWAIT; 2018 msg.msg_flags = flags; 2019 err = sock_sendmsg(sock, &msg); 2020 2021 out_put: 2022 fput_light(sock->file, fput_needed); 2023 out: 2024 return err; 2025 } 2026 2027 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2028 unsigned int, flags, struct sockaddr __user *, addr, 2029 int, addr_len) 2030 { 2031 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2032 } 2033 2034 /* 2035 * Send a datagram down a socket. 2036 */ 2037 2038 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2039 unsigned int, flags) 2040 { 2041 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2042 } 2043 2044 /* 2045 * Receive a frame from the socket and optionally record the address of the 2046 * sender. We verify the buffers are writable and if needed move the 2047 * sender address from kernel to user space. 2048 */ 2049 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2050 struct sockaddr __user *addr, int __user *addr_len) 2051 { 2052 struct socket *sock; 2053 struct iovec iov; 2054 struct msghdr msg; 2055 struct sockaddr_storage address; 2056 int err, err2; 2057 int fput_needed; 2058 2059 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2060 if (unlikely(err)) 2061 return err; 2062 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2063 if (!sock) 2064 goto out; 2065 2066 msg.msg_control = NULL; 2067 msg.msg_controllen = 0; 2068 /* Save some cycles and don't copy the address if not needed */ 2069 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2070 /* We assume all kernel code knows the size of sockaddr_storage */ 2071 msg.msg_namelen = 0; 2072 msg.msg_iocb = NULL; 2073 msg.msg_flags = 0; 2074 if (sock->file->f_flags & O_NONBLOCK) 2075 flags |= MSG_DONTWAIT; 2076 err = sock_recvmsg(sock, &msg, flags); 2077 2078 if (err >= 0 && addr != NULL) { 2079 err2 = move_addr_to_user(&address, 2080 msg.msg_namelen, addr, addr_len); 2081 if (err2 < 0) 2082 err = err2; 2083 } 2084 2085 fput_light(sock->file, fput_needed); 2086 out: 2087 return err; 2088 } 2089 2090 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2091 unsigned int, flags, struct sockaddr __user *, addr, 2092 int __user *, addr_len) 2093 { 2094 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2095 } 2096 2097 /* 2098 * Receive a datagram from a socket. 2099 */ 2100 2101 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2102 unsigned int, flags) 2103 { 2104 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2105 } 2106 2107 static bool sock_use_custom_sol_socket(const struct socket *sock) 2108 { 2109 const struct sock *sk = sock->sk; 2110 2111 /* Use sock->ops->setsockopt() for MPTCP */ 2112 return IS_ENABLED(CONFIG_MPTCP) && 2113 sk->sk_protocol == IPPROTO_MPTCP && 2114 sk->sk_type == SOCK_STREAM && 2115 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2116 } 2117 2118 /* 2119 * Set a socket option. Because we don't know the option lengths we have 2120 * to pass the user mode parameter for the protocols to sort out. 2121 */ 2122 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2123 int optlen) 2124 { 2125 sockptr_t optval = USER_SOCKPTR(user_optval); 2126 char *kernel_optval = NULL; 2127 int err, fput_needed; 2128 struct socket *sock; 2129 2130 if (optlen < 0) 2131 return -EINVAL; 2132 2133 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2134 if (!sock) 2135 return err; 2136 2137 err = security_socket_setsockopt(sock, level, optname); 2138 if (err) 2139 goto out_put; 2140 2141 if (!in_compat_syscall()) 2142 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2143 user_optval, &optlen, 2144 &kernel_optval); 2145 if (err < 0) 2146 goto out_put; 2147 if (err > 0) { 2148 err = 0; 2149 goto out_put; 2150 } 2151 2152 if (kernel_optval) 2153 optval = KERNEL_SOCKPTR(kernel_optval); 2154 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2155 err = sock_setsockopt(sock, level, optname, optval, optlen); 2156 else if (unlikely(!sock->ops->setsockopt)) 2157 err = -EOPNOTSUPP; 2158 else 2159 err = sock->ops->setsockopt(sock, level, optname, optval, 2160 optlen); 2161 kfree(kernel_optval); 2162 out_put: 2163 fput_light(sock->file, fput_needed); 2164 return err; 2165 } 2166 2167 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2168 char __user *, optval, int, optlen) 2169 { 2170 return __sys_setsockopt(fd, level, optname, optval, optlen); 2171 } 2172 2173 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2174 int optname)); 2175 2176 /* 2177 * Get a socket option. Because we don't know the option lengths we have 2178 * to pass a user mode parameter for the protocols to sort out. 2179 */ 2180 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2181 int __user *optlen) 2182 { 2183 int err, fput_needed; 2184 struct socket *sock; 2185 int max_optlen; 2186 2187 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2188 if (!sock) 2189 return err; 2190 2191 err = security_socket_getsockopt(sock, level, optname); 2192 if (err) 2193 goto out_put; 2194 2195 if (!in_compat_syscall()) 2196 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2197 2198 if (level == SOL_SOCKET) 2199 err = sock_getsockopt(sock, level, optname, optval, optlen); 2200 else if (unlikely(!sock->ops->getsockopt)) 2201 err = -EOPNOTSUPP; 2202 else 2203 err = sock->ops->getsockopt(sock, level, optname, optval, 2204 optlen); 2205 2206 if (!in_compat_syscall()) 2207 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2208 optval, optlen, max_optlen, 2209 err); 2210 out_put: 2211 fput_light(sock->file, fput_needed); 2212 return err; 2213 } 2214 2215 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2216 char __user *, optval, int __user *, optlen) 2217 { 2218 return __sys_getsockopt(fd, level, optname, optval, optlen); 2219 } 2220 2221 /* 2222 * Shutdown a socket. 2223 */ 2224 2225 int __sys_shutdown_sock(struct socket *sock, int how) 2226 { 2227 int err; 2228 2229 err = security_socket_shutdown(sock, how); 2230 if (!err) 2231 err = sock->ops->shutdown(sock, how); 2232 2233 return err; 2234 } 2235 2236 int __sys_shutdown(int fd, int how) 2237 { 2238 int err, fput_needed; 2239 struct socket *sock; 2240 2241 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2242 if (sock != NULL) { 2243 err = __sys_shutdown_sock(sock, how); 2244 fput_light(sock->file, fput_needed); 2245 } 2246 return err; 2247 } 2248 2249 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2250 { 2251 return __sys_shutdown(fd, how); 2252 } 2253 2254 /* A couple of helpful macros for getting the address of the 32/64 bit 2255 * fields which are the same type (int / unsigned) on our platforms. 2256 */ 2257 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2258 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2259 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2260 2261 struct used_address { 2262 struct sockaddr_storage name; 2263 unsigned int name_len; 2264 }; 2265 2266 int __copy_msghdr_from_user(struct msghdr *kmsg, 2267 struct user_msghdr __user *umsg, 2268 struct sockaddr __user **save_addr, 2269 struct iovec __user **uiov, size_t *nsegs) 2270 { 2271 struct user_msghdr msg; 2272 ssize_t err; 2273 2274 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2275 return -EFAULT; 2276 2277 kmsg->msg_control_is_user = true; 2278 kmsg->msg_control_user = msg.msg_control; 2279 kmsg->msg_controllen = msg.msg_controllen; 2280 kmsg->msg_flags = msg.msg_flags; 2281 2282 kmsg->msg_namelen = msg.msg_namelen; 2283 if (!msg.msg_name) 2284 kmsg->msg_namelen = 0; 2285 2286 if (kmsg->msg_namelen < 0) 2287 return -EINVAL; 2288 2289 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2290 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2291 2292 if (save_addr) 2293 *save_addr = msg.msg_name; 2294 2295 if (msg.msg_name && kmsg->msg_namelen) { 2296 if (!save_addr) { 2297 err = move_addr_to_kernel(msg.msg_name, 2298 kmsg->msg_namelen, 2299 kmsg->msg_name); 2300 if (err < 0) 2301 return err; 2302 } 2303 } else { 2304 kmsg->msg_name = NULL; 2305 kmsg->msg_namelen = 0; 2306 } 2307 2308 if (msg.msg_iovlen > UIO_MAXIOV) 2309 return -EMSGSIZE; 2310 2311 kmsg->msg_iocb = NULL; 2312 *uiov = msg.msg_iov; 2313 *nsegs = msg.msg_iovlen; 2314 return 0; 2315 } 2316 2317 static int copy_msghdr_from_user(struct msghdr *kmsg, 2318 struct user_msghdr __user *umsg, 2319 struct sockaddr __user **save_addr, 2320 struct iovec **iov) 2321 { 2322 struct user_msghdr msg; 2323 ssize_t err; 2324 2325 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2326 &msg.msg_iovlen); 2327 if (err) 2328 return err; 2329 2330 err = import_iovec(save_addr ? READ : WRITE, 2331 msg.msg_iov, msg.msg_iovlen, 2332 UIO_FASTIOV, iov, &kmsg->msg_iter); 2333 return err < 0 ? err : 0; 2334 } 2335 2336 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2337 unsigned int flags, struct used_address *used_address, 2338 unsigned int allowed_msghdr_flags) 2339 { 2340 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2341 __aligned(sizeof(__kernel_size_t)); 2342 /* 20 is size of ipv6_pktinfo */ 2343 unsigned char *ctl_buf = ctl; 2344 int ctl_len; 2345 ssize_t err; 2346 2347 err = -ENOBUFS; 2348 2349 if (msg_sys->msg_controllen > INT_MAX) 2350 goto out; 2351 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2352 ctl_len = msg_sys->msg_controllen; 2353 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2354 err = 2355 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2356 sizeof(ctl)); 2357 if (err) 2358 goto out; 2359 ctl_buf = msg_sys->msg_control; 2360 ctl_len = msg_sys->msg_controllen; 2361 } else if (ctl_len) { 2362 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2363 CMSG_ALIGN(sizeof(struct cmsghdr))); 2364 if (ctl_len > sizeof(ctl)) { 2365 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2366 if (ctl_buf == NULL) 2367 goto out; 2368 } 2369 err = -EFAULT; 2370 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2371 goto out_freectl; 2372 msg_sys->msg_control = ctl_buf; 2373 msg_sys->msg_control_is_user = false; 2374 } 2375 msg_sys->msg_flags = flags; 2376 2377 if (sock->file->f_flags & O_NONBLOCK) 2378 msg_sys->msg_flags |= MSG_DONTWAIT; 2379 /* 2380 * If this is sendmmsg() and current destination address is same as 2381 * previously succeeded address, omit asking LSM's decision. 2382 * used_address->name_len is initialized to UINT_MAX so that the first 2383 * destination address never matches. 2384 */ 2385 if (used_address && msg_sys->msg_name && 2386 used_address->name_len == msg_sys->msg_namelen && 2387 !memcmp(&used_address->name, msg_sys->msg_name, 2388 used_address->name_len)) { 2389 err = sock_sendmsg_nosec(sock, msg_sys); 2390 goto out_freectl; 2391 } 2392 err = sock_sendmsg(sock, msg_sys); 2393 /* 2394 * If this is sendmmsg() and sending to current destination address was 2395 * successful, remember it. 2396 */ 2397 if (used_address && err >= 0) { 2398 used_address->name_len = msg_sys->msg_namelen; 2399 if (msg_sys->msg_name) 2400 memcpy(&used_address->name, msg_sys->msg_name, 2401 used_address->name_len); 2402 } 2403 2404 out_freectl: 2405 if (ctl_buf != ctl) 2406 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2407 out: 2408 return err; 2409 } 2410 2411 int sendmsg_copy_msghdr(struct msghdr *msg, 2412 struct user_msghdr __user *umsg, unsigned flags, 2413 struct iovec **iov) 2414 { 2415 int err; 2416 2417 if (flags & MSG_CMSG_COMPAT) { 2418 struct compat_msghdr __user *msg_compat; 2419 2420 msg_compat = (struct compat_msghdr __user *) umsg; 2421 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2422 } else { 2423 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2424 } 2425 if (err < 0) 2426 return err; 2427 2428 return 0; 2429 } 2430 2431 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2432 struct msghdr *msg_sys, unsigned int flags, 2433 struct used_address *used_address, 2434 unsigned int allowed_msghdr_flags) 2435 { 2436 struct sockaddr_storage address; 2437 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2438 ssize_t err; 2439 2440 msg_sys->msg_name = &address; 2441 2442 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2443 if (err < 0) 2444 return err; 2445 2446 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2447 allowed_msghdr_flags); 2448 kfree(iov); 2449 return err; 2450 } 2451 2452 /* 2453 * BSD sendmsg interface 2454 */ 2455 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2456 unsigned int flags) 2457 { 2458 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2459 } 2460 2461 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2462 bool forbid_cmsg_compat) 2463 { 2464 int fput_needed, err; 2465 struct msghdr msg_sys; 2466 struct socket *sock; 2467 2468 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2469 return -EINVAL; 2470 2471 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2472 if (!sock) 2473 goto out; 2474 2475 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2476 2477 fput_light(sock->file, fput_needed); 2478 out: 2479 return err; 2480 } 2481 2482 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2483 { 2484 return __sys_sendmsg(fd, msg, flags, true); 2485 } 2486 2487 /* 2488 * Linux sendmmsg interface 2489 */ 2490 2491 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2492 unsigned int flags, bool forbid_cmsg_compat) 2493 { 2494 int fput_needed, err, datagrams; 2495 struct socket *sock; 2496 struct mmsghdr __user *entry; 2497 struct compat_mmsghdr __user *compat_entry; 2498 struct msghdr msg_sys; 2499 struct used_address used_address; 2500 unsigned int oflags = flags; 2501 2502 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2503 return -EINVAL; 2504 2505 if (vlen > UIO_MAXIOV) 2506 vlen = UIO_MAXIOV; 2507 2508 datagrams = 0; 2509 2510 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2511 if (!sock) 2512 return err; 2513 2514 used_address.name_len = UINT_MAX; 2515 entry = mmsg; 2516 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2517 err = 0; 2518 flags |= MSG_BATCH; 2519 2520 while (datagrams < vlen) { 2521 if (datagrams == vlen - 1) 2522 flags = oflags; 2523 2524 if (MSG_CMSG_COMPAT & flags) { 2525 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2526 &msg_sys, flags, &used_address, MSG_EOR); 2527 if (err < 0) 2528 break; 2529 err = __put_user(err, &compat_entry->msg_len); 2530 ++compat_entry; 2531 } else { 2532 err = ___sys_sendmsg(sock, 2533 (struct user_msghdr __user *)entry, 2534 &msg_sys, flags, &used_address, MSG_EOR); 2535 if (err < 0) 2536 break; 2537 err = put_user(err, &entry->msg_len); 2538 ++entry; 2539 } 2540 2541 if (err) 2542 break; 2543 ++datagrams; 2544 if (msg_data_left(&msg_sys)) 2545 break; 2546 cond_resched(); 2547 } 2548 2549 fput_light(sock->file, fput_needed); 2550 2551 /* We only return an error if no datagrams were able to be sent */ 2552 if (datagrams != 0) 2553 return datagrams; 2554 2555 return err; 2556 } 2557 2558 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2559 unsigned int, vlen, unsigned int, flags) 2560 { 2561 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2562 } 2563 2564 int recvmsg_copy_msghdr(struct msghdr *msg, 2565 struct user_msghdr __user *umsg, unsigned flags, 2566 struct sockaddr __user **uaddr, 2567 struct iovec **iov) 2568 { 2569 ssize_t err; 2570 2571 if (MSG_CMSG_COMPAT & flags) { 2572 struct compat_msghdr __user *msg_compat; 2573 2574 msg_compat = (struct compat_msghdr __user *) umsg; 2575 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2576 } else { 2577 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2578 } 2579 if (err < 0) 2580 return err; 2581 2582 return 0; 2583 } 2584 2585 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2586 struct user_msghdr __user *msg, 2587 struct sockaddr __user *uaddr, 2588 unsigned int flags, int nosec) 2589 { 2590 struct compat_msghdr __user *msg_compat = 2591 (struct compat_msghdr __user *) msg; 2592 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2593 struct sockaddr_storage addr; 2594 unsigned long cmsg_ptr; 2595 int len; 2596 ssize_t err; 2597 2598 msg_sys->msg_name = &addr; 2599 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2600 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2601 2602 /* We assume all kernel code knows the size of sockaddr_storage */ 2603 msg_sys->msg_namelen = 0; 2604 2605 if (sock->file->f_flags & O_NONBLOCK) 2606 flags |= MSG_DONTWAIT; 2607 2608 if (unlikely(nosec)) 2609 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2610 else 2611 err = sock_recvmsg(sock, msg_sys, flags); 2612 2613 if (err < 0) 2614 goto out; 2615 len = err; 2616 2617 if (uaddr != NULL) { 2618 err = move_addr_to_user(&addr, 2619 msg_sys->msg_namelen, uaddr, 2620 uaddr_len); 2621 if (err < 0) 2622 goto out; 2623 } 2624 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2625 COMPAT_FLAGS(msg)); 2626 if (err) 2627 goto out; 2628 if (MSG_CMSG_COMPAT & flags) 2629 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2630 &msg_compat->msg_controllen); 2631 else 2632 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2633 &msg->msg_controllen); 2634 if (err) 2635 goto out; 2636 err = len; 2637 out: 2638 return err; 2639 } 2640 2641 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2642 struct msghdr *msg_sys, unsigned int flags, int nosec) 2643 { 2644 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2645 /* user mode address pointers */ 2646 struct sockaddr __user *uaddr; 2647 ssize_t err; 2648 2649 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2650 if (err < 0) 2651 return err; 2652 2653 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2654 kfree(iov); 2655 return err; 2656 } 2657 2658 /* 2659 * BSD recvmsg interface 2660 */ 2661 2662 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2663 struct user_msghdr __user *umsg, 2664 struct sockaddr __user *uaddr, unsigned int flags) 2665 { 2666 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2667 } 2668 2669 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2670 bool forbid_cmsg_compat) 2671 { 2672 int fput_needed, err; 2673 struct msghdr msg_sys; 2674 struct socket *sock; 2675 2676 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2677 return -EINVAL; 2678 2679 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2680 if (!sock) 2681 goto out; 2682 2683 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2684 2685 fput_light(sock->file, fput_needed); 2686 out: 2687 return err; 2688 } 2689 2690 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2691 unsigned int, flags) 2692 { 2693 return __sys_recvmsg(fd, msg, flags, true); 2694 } 2695 2696 /* 2697 * Linux recvmmsg interface 2698 */ 2699 2700 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2701 unsigned int vlen, unsigned int flags, 2702 struct timespec64 *timeout) 2703 { 2704 int fput_needed, err, datagrams; 2705 struct socket *sock; 2706 struct mmsghdr __user *entry; 2707 struct compat_mmsghdr __user *compat_entry; 2708 struct msghdr msg_sys; 2709 struct timespec64 end_time; 2710 struct timespec64 timeout64; 2711 2712 if (timeout && 2713 poll_select_set_timeout(&end_time, timeout->tv_sec, 2714 timeout->tv_nsec)) 2715 return -EINVAL; 2716 2717 datagrams = 0; 2718 2719 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2720 if (!sock) 2721 return err; 2722 2723 if (likely(!(flags & MSG_ERRQUEUE))) { 2724 err = sock_error(sock->sk); 2725 if (err) { 2726 datagrams = err; 2727 goto out_put; 2728 } 2729 } 2730 2731 entry = mmsg; 2732 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2733 2734 while (datagrams < vlen) { 2735 /* 2736 * No need to ask LSM for more than the first datagram. 2737 */ 2738 if (MSG_CMSG_COMPAT & flags) { 2739 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2740 &msg_sys, flags & ~MSG_WAITFORONE, 2741 datagrams); 2742 if (err < 0) 2743 break; 2744 err = __put_user(err, &compat_entry->msg_len); 2745 ++compat_entry; 2746 } else { 2747 err = ___sys_recvmsg(sock, 2748 (struct user_msghdr __user *)entry, 2749 &msg_sys, flags & ~MSG_WAITFORONE, 2750 datagrams); 2751 if (err < 0) 2752 break; 2753 err = put_user(err, &entry->msg_len); 2754 ++entry; 2755 } 2756 2757 if (err) 2758 break; 2759 ++datagrams; 2760 2761 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2762 if (flags & MSG_WAITFORONE) 2763 flags |= MSG_DONTWAIT; 2764 2765 if (timeout) { 2766 ktime_get_ts64(&timeout64); 2767 *timeout = timespec64_sub(end_time, timeout64); 2768 if (timeout->tv_sec < 0) { 2769 timeout->tv_sec = timeout->tv_nsec = 0; 2770 break; 2771 } 2772 2773 /* Timeout, return less than vlen datagrams */ 2774 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2775 break; 2776 } 2777 2778 /* Out of band data, return right away */ 2779 if (msg_sys.msg_flags & MSG_OOB) 2780 break; 2781 cond_resched(); 2782 } 2783 2784 if (err == 0) 2785 goto out_put; 2786 2787 if (datagrams == 0) { 2788 datagrams = err; 2789 goto out_put; 2790 } 2791 2792 /* 2793 * We may return less entries than requested (vlen) if the 2794 * sock is non block and there aren't enough datagrams... 2795 */ 2796 if (err != -EAGAIN) { 2797 /* 2798 * ... or if recvmsg returns an error after we 2799 * received some datagrams, where we record the 2800 * error to return on the next call or if the 2801 * app asks about it using getsockopt(SO_ERROR). 2802 */ 2803 sock->sk->sk_err = -err; 2804 } 2805 out_put: 2806 fput_light(sock->file, fput_needed); 2807 2808 return datagrams; 2809 } 2810 2811 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2812 unsigned int vlen, unsigned int flags, 2813 struct __kernel_timespec __user *timeout, 2814 struct old_timespec32 __user *timeout32) 2815 { 2816 int datagrams; 2817 struct timespec64 timeout_sys; 2818 2819 if (timeout && get_timespec64(&timeout_sys, timeout)) 2820 return -EFAULT; 2821 2822 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2823 return -EFAULT; 2824 2825 if (!timeout && !timeout32) 2826 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2827 2828 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2829 2830 if (datagrams <= 0) 2831 return datagrams; 2832 2833 if (timeout && put_timespec64(&timeout_sys, timeout)) 2834 datagrams = -EFAULT; 2835 2836 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2837 datagrams = -EFAULT; 2838 2839 return datagrams; 2840 } 2841 2842 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2843 unsigned int, vlen, unsigned int, flags, 2844 struct __kernel_timespec __user *, timeout) 2845 { 2846 if (flags & MSG_CMSG_COMPAT) 2847 return -EINVAL; 2848 2849 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2850 } 2851 2852 #ifdef CONFIG_COMPAT_32BIT_TIME 2853 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2854 unsigned int, vlen, unsigned int, flags, 2855 struct old_timespec32 __user *, timeout) 2856 { 2857 if (flags & MSG_CMSG_COMPAT) 2858 return -EINVAL; 2859 2860 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2861 } 2862 #endif 2863 2864 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2865 /* Argument list sizes for sys_socketcall */ 2866 #define AL(x) ((x) * sizeof(unsigned long)) 2867 static const unsigned char nargs[21] = { 2868 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2869 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2870 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2871 AL(4), AL(5), AL(4) 2872 }; 2873 2874 #undef AL 2875 2876 /* 2877 * System call vectors. 2878 * 2879 * Argument checking cleaned up. Saved 20% in size. 2880 * This function doesn't need to set the kernel lock because 2881 * it is set by the callees. 2882 */ 2883 2884 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2885 { 2886 unsigned long a[AUDITSC_ARGS]; 2887 unsigned long a0, a1; 2888 int err; 2889 unsigned int len; 2890 2891 if (call < 1 || call > SYS_SENDMMSG) 2892 return -EINVAL; 2893 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2894 2895 len = nargs[call]; 2896 if (len > sizeof(a)) 2897 return -EINVAL; 2898 2899 /* copy_from_user should be SMP safe. */ 2900 if (copy_from_user(a, args, len)) 2901 return -EFAULT; 2902 2903 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2904 if (err) 2905 return err; 2906 2907 a0 = a[0]; 2908 a1 = a[1]; 2909 2910 switch (call) { 2911 case SYS_SOCKET: 2912 err = __sys_socket(a0, a1, a[2]); 2913 break; 2914 case SYS_BIND: 2915 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2916 break; 2917 case SYS_CONNECT: 2918 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2919 break; 2920 case SYS_LISTEN: 2921 err = __sys_listen(a0, a1); 2922 break; 2923 case SYS_ACCEPT: 2924 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2925 (int __user *)a[2], 0); 2926 break; 2927 case SYS_GETSOCKNAME: 2928 err = 2929 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2930 (int __user *)a[2]); 2931 break; 2932 case SYS_GETPEERNAME: 2933 err = 2934 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2935 (int __user *)a[2]); 2936 break; 2937 case SYS_SOCKETPAIR: 2938 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2939 break; 2940 case SYS_SEND: 2941 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2942 NULL, 0); 2943 break; 2944 case SYS_SENDTO: 2945 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2946 (struct sockaddr __user *)a[4], a[5]); 2947 break; 2948 case SYS_RECV: 2949 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2950 NULL, NULL); 2951 break; 2952 case SYS_RECVFROM: 2953 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2954 (struct sockaddr __user *)a[4], 2955 (int __user *)a[5]); 2956 break; 2957 case SYS_SHUTDOWN: 2958 err = __sys_shutdown(a0, a1); 2959 break; 2960 case SYS_SETSOCKOPT: 2961 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2962 a[4]); 2963 break; 2964 case SYS_GETSOCKOPT: 2965 err = 2966 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2967 (int __user *)a[4]); 2968 break; 2969 case SYS_SENDMSG: 2970 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2971 a[2], true); 2972 break; 2973 case SYS_SENDMMSG: 2974 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2975 a[3], true); 2976 break; 2977 case SYS_RECVMSG: 2978 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2979 a[2], true); 2980 break; 2981 case SYS_RECVMMSG: 2982 if (IS_ENABLED(CONFIG_64BIT)) 2983 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2984 a[2], a[3], 2985 (struct __kernel_timespec __user *)a[4], 2986 NULL); 2987 else 2988 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2989 a[2], a[3], NULL, 2990 (struct old_timespec32 __user *)a[4]); 2991 break; 2992 case SYS_ACCEPT4: 2993 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2994 (int __user *)a[2], a[3]); 2995 break; 2996 default: 2997 err = -EINVAL; 2998 break; 2999 } 3000 return err; 3001 } 3002 3003 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3004 3005 /** 3006 * sock_register - add a socket protocol handler 3007 * @ops: description of protocol 3008 * 3009 * This function is called by a protocol handler that wants to 3010 * advertise its address family, and have it linked into the 3011 * socket interface. The value ops->family corresponds to the 3012 * socket system call protocol family. 3013 */ 3014 int sock_register(const struct net_proto_family *ops) 3015 { 3016 int err; 3017 3018 if (ops->family >= NPROTO) { 3019 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3020 return -ENOBUFS; 3021 } 3022 3023 spin_lock(&net_family_lock); 3024 if (rcu_dereference_protected(net_families[ops->family], 3025 lockdep_is_held(&net_family_lock))) 3026 err = -EEXIST; 3027 else { 3028 rcu_assign_pointer(net_families[ops->family], ops); 3029 err = 0; 3030 } 3031 spin_unlock(&net_family_lock); 3032 3033 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3034 return err; 3035 } 3036 EXPORT_SYMBOL(sock_register); 3037 3038 /** 3039 * sock_unregister - remove a protocol handler 3040 * @family: protocol family to remove 3041 * 3042 * This function is called by a protocol handler that wants to 3043 * remove its address family, and have it unlinked from the 3044 * new socket creation. 3045 * 3046 * If protocol handler is a module, then it can use module reference 3047 * counts to protect against new references. If protocol handler is not 3048 * a module then it needs to provide its own protection in 3049 * the ops->create routine. 3050 */ 3051 void sock_unregister(int family) 3052 { 3053 BUG_ON(family < 0 || family >= NPROTO); 3054 3055 spin_lock(&net_family_lock); 3056 RCU_INIT_POINTER(net_families[family], NULL); 3057 spin_unlock(&net_family_lock); 3058 3059 synchronize_rcu(); 3060 3061 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3062 } 3063 EXPORT_SYMBOL(sock_unregister); 3064 3065 bool sock_is_registered(int family) 3066 { 3067 return family < NPROTO && rcu_access_pointer(net_families[family]); 3068 } 3069 3070 static int __init sock_init(void) 3071 { 3072 int err; 3073 /* 3074 * Initialize the network sysctl infrastructure. 3075 */ 3076 err = net_sysctl_init(); 3077 if (err) 3078 goto out; 3079 3080 /* 3081 * Initialize skbuff SLAB cache 3082 */ 3083 skb_init(); 3084 3085 /* 3086 * Initialize the protocols module. 3087 */ 3088 3089 init_inodecache(); 3090 3091 err = register_filesystem(&sock_fs_type); 3092 if (err) 3093 goto out; 3094 sock_mnt = kern_mount(&sock_fs_type); 3095 if (IS_ERR(sock_mnt)) { 3096 err = PTR_ERR(sock_mnt); 3097 goto out_mount; 3098 } 3099 3100 /* The real protocol initialization is performed in later initcalls. 3101 */ 3102 3103 #ifdef CONFIG_NETFILTER 3104 err = netfilter_init(); 3105 if (err) 3106 goto out; 3107 #endif 3108 3109 ptp_classifier_init(); 3110 3111 out: 3112 return err; 3113 3114 out_mount: 3115 unregister_filesystem(&sock_fs_type); 3116 goto out; 3117 } 3118 3119 core_initcall(sock_init); /* early initcall */ 3120 3121 #ifdef CONFIG_PROC_FS 3122 void socket_seq_show(struct seq_file *seq) 3123 { 3124 seq_printf(seq, "sockets: used %d\n", 3125 sock_inuse_get(seq->private)); 3126 } 3127 #endif /* CONFIG_PROC_FS */ 3128 3129 #ifdef CONFIG_COMPAT 3130 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3131 { 3132 struct compat_ifconf ifc32; 3133 struct ifconf ifc; 3134 int err; 3135 3136 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3137 return -EFAULT; 3138 3139 ifc.ifc_len = ifc32.ifc_len; 3140 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3141 3142 rtnl_lock(); 3143 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3144 rtnl_unlock(); 3145 if (err) 3146 return err; 3147 3148 ifc32.ifc_len = ifc.ifc_len; 3149 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3150 return -EFAULT; 3151 3152 return 0; 3153 } 3154 3155 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3156 { 3157 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3158 bool convert_in = false, convert_out = false; 3159 size_t buf_size = 0; 3160 struct ethtool_rxnfc __user *rxnfc = NULL; 3161 struct ifreq ifr; 3162 u32 rule_cnt = 0, actual_rule_cnt; 3163 u32 ethcmd; 3164 u32 data; 3165 int ret; 3166 3167 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3168 return -EFAULT; 3169 3170 compat_rxnfc = compat_ptr(data); 3171 3172 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3173 return -EFAULT; 3174 3175 /* Most ethtool structures are defined without padding. 3176 * Unfortunately struct ethtool_rxnfc is an exception. 3177 */ 3178 switch (ethcmd) { 3179 default: 3180 break; 3181 case ETHTOOL_GRXCLSRLALL: 3182 /* Buffer size is variable */ 3183 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3184 return -EFAULT; 3185 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3186 return -ENOMEM; 3187 buf_size += rule_cnt * sizeof(u32); 3188 fallthrough; 3189 case ETHTOOL_GRXRINGS: 3190 case ETHTOOL_GRXCLSRLCNT: 3191 case ETHTOOL_GRXCLSRULE: 3192 case ETHTOOL_SRXCLSRLINS: 3193 convert_out = true; 3194 fallthrough; 3195 case ETHTOOL_SRXCLSRLDEL: 3196 buf_size += sizeof(struct ethtool_rxnfc); 3197 convert_in = true; 3198 rxnfc = compat_alloc_user_space(buf_size); 3199 break; 3200 } 3201 3202 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3203 return -EFAULT; 3204 3205 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3206 3207 if (convert_in) { 3208 /* We expect there to be holes between fs.m_ext and 3209 * fs.ring_cookie and at the end of fs, but nowhere else. 3210 */ 3211 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3212 sizeof(compat_rxnfc->fs.m_ext) != 3213 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3214 sizeof(rxnfc->fs.m_ext)); 3215 BUILD_BUG_ON( 3216 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3217 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3218 offsetof(struct ethtool_rxnfc, fs.location) - 3219 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3220 3221 if (copy_in_user(rxnfc, compat_rxnfc, 3222 (void __user *)(&rxnfc->fs.m_ext + 1) - 3223 (void __user *)rxnfc) || 3224 copy_in_user(&rxnfc->fs.ring_cookie, 3225 &compat_rxnfc->fs.ring_cookie, 3226 (void __user *)(&rxnfc->fs.location + 1) - 3227 (void __user *)&rxnfc->fs.ring_cookie)) 3228 return -EFAULT; 3229 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3230 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3231 return -EFAULT; 3232 } else if (copy_in_user(&rxnfc->rule_cnt, 3233 &compat_rxnfc->rule_cnt, 3234 sizeof(rxnfc->rule_cnt))) 3235 return -EFAULT; 3236 } 3237 3238 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3239 if (ret) 3240 return ret; 3241 3242 if (convert_out) { 3243 if (copy_in_user(compat_rxnfc, rxnfc, 3244 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3245 (const void __user *)rxnfc) || 3246 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3247 &rxnfc->fs.ring_cookie, 3248 (const void __user *)(&rxnfc->fs.location + 1) - 3249 (const void __user *)&rxnfc->fs.ring_cookie) || 3250 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3251 sizeof(rxnfc->rule_cnt))) 3252 return -EFAULT; 3253 3254 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3255 /* As an optimisation, we only copy the actual 3256 * number of rules that the underlying 3257 * function returned. Since Mallory might 3258 * change the rule count in user memory, we 3259 * check that it is less than the rule count 3260 * originally given (as the user buffer size), 3261 * which has been range-checked. 3262 */ 3263 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3264 return -EFAULT; 3265 if (actual_rule_cnt < rule_cnt) 3266 rule_cnt = actual_rule_cnt; 3267 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3268 &rxnfc->rule_locs[0], 3269 rule_cnt * sizeof(u32))) 3270 return -EFAULT; 3271 } 3272 } 3273 3274 return 0; 3275 } 3276 3277 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3278 { 3279 compat_uptr_t uptr32; 3280 struct ifreq ifr; 3281 void __user *saved; 3282 int err; 3283 3284 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3285 return -EFAULT; 3286 3287 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3288 return -EFAULT; 3289 3290 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3291 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3292 3293 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3294 if (!err) { 3295 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3296 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3297 err = -EFAULT; 3298 } 3299 return err; 3300 } 3301 3302 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3303 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3304 struct compat_ifreq __user *u_ifreq32) 3305 { 3306 struct ifreq ifreq; 3307 u32 data32; 3308 3309 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3310 return -EFAULT; 3311 if (get_user(data32, &u_ifreq32->ifr_data)) 3312 return -EFAULT; 3313 ifreq.ifr_data = compat_ptr(data32); 3314 3315 return dev_ioctl(net, cmd, &ifreq, NULL); 3316 } 3317 3318 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3319 unsigned int cmd, 3320 struct compat_ifreq __user *uifr32) 3321 { 3322 struct ifreq __user *uifr; 3323 int err; 3324 3325 /* Handle the fact that while struct ifreq has the same *layout* on 3326 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3327 * which are handled elsewhere, it still has different *size* due to 3328 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3329 * resulting in struct ifreq being 32 and 40 bytes respectively). 3330 * As a result, if the struct happens to be at the end of a page and 3331 * the next page isn't readable/writable, we get a fault. To prevent 3332 * that, copy back and forth to the full size. 3333 */ 3334 3335 uifr = compat_alloc_user_space(sizeof(*uifr)); 3336 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3337 return -EFAULT; 3338 3339 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3340 3341 if (!err) { 3342 switch (cmd) { 3343 case SIOCGIFFLAGS: 3344 case SIOCGIFMETRIC: 3345 case SIOCGIFMTU: 3346 case SIOCGIFMEM: 3347 case SIOCGIFHWADDR: 3348 case SIOCGIFINDEX: 3349 case SIOCGIFADDR: 3350 case SIOCGIFBRDADDR: 3351 case SIOCGIFDSTADDR: 3352 case SIOCGIFNETMASK: 3353 case SIOCGIFPFLAGS: 3354 case SIOCGIFTXQLEN: 3355 case SIOCGMIIPHY: 3356 case SIOCGMIIREG: 3357 case SIOCGIFNAME: 3358 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3359 err = -EFAULT; 3360 break; 3361 } 3362 } 3363 return err; 3364 } 3365 3366 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3367 struct compat_ifreq __user *uifr32) 3368 { 3369 struct ifreq ifr; 3370 struct compat_ifmap __user *uifmap32; 3371 int err; 3372 3373 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3374 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3375 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3376 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3377 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3378 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3379 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3380 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3381 if (err) 3382 return -EFAULT; 3383 3384 err = dev_ioctl(net, cmd, &ifr, NULL); 3385 3386 if (cmd == SIOCGIFMAP && !err) { 3387 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3388 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3389 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3390 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3391 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3392 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3393 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3394 if (err) 3395 err = -EFAULT; 3396 } 3397 return err; 3398 } 3399 3400 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3401 * for some operations; this forces use of the newer bridge-utils that 3402 * use compatible ioctls 3403 */ 3404 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3405 { 3406 compat_ulong_t tmp; 3407 3408 if (get_user(tmp, argp)) 3409 return -EFAULT; 3410 if (tmp == BRCTL_GET_VERSION) 3411 return BRCTL_VERSION + 1; 3412 return -EINVAL; 3413 } 3414 3415 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3416 unsigned int cmd, unsigned long arg) 3417 { 3418 void __user *argp = compat_ptr(arg); 3419 struct sock *sk = sock->sk; 3420 struct net *net = sock_net(sk); 3421 3422 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3423 return compat_ifr_data_ioctl(net, cmd, argp); 3424 3425 switch (cmd) { 3426 case SIOCSIFBR: 3427 case SIOCGIFBR: 3428 return old_bridge_ioctl(argp); 3429 case SIOCGIFCONF: 3430 return compat_dev_ifconf(net, argp); 3431 case SIOCETHTOOL: 3432 return ethtool_ioctl(net, argp); 3433 case SIOCWANDEV: 3434 return compat_siocwandev(net, argp); 3435 case SIOCGIFMAP: 3436 case SIOCSIFMAP: 3437 return compat_sioc_ifmap(net, cmd, argp); 3438 case SIOCGSTAMP_OLD: 3439 case SIOCGSTAMPNS_OLD: 3440 if (!sock->ops->gettstamp) 3441 return -ENOIOCTLCMD; 3442 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3443 !COMPAT_USE_64BIT_TIME); 3444 3445 case SIOCBONDSLAVEINFOQUERY: 3446 case SIOCBONDINFOQUERY: 3447 case SIOCSHWTSTAMP: 3448 case SIOCGHWTSTAMP: 3449 return compat_ifr_data_ioctl(net, cmd, argp); 3450 3451 case FIOSETOWN: 3452 case SIOCSPGRP: 3453 case FIOGETOWN: 3454 case SIOCGPGRP: 3455 case SIOCBRADDBR: 3456 case SIOCBRDELBR: 3457 case SIOCGIFVLAN: 3458 case SIOCSIFVLAN: 3459 case SIOCGSKNS: 3460 case SIOCGSTAMP_NEW: 3461 case SIOCGSTAMPNS_NEW: 3462 return sock_ioctl(file, cmd, arg); 3463 3464 case SIOCGIFFLAGS: 3465 case SIOCSIFFLAGS: 3466 case SIOCGIFMETRIC: 3467 case SIOCSIFMETRIC: 3468 case SIOCGIFMTU: 3469 case SIOCSIFMTU: 3470 case SIOCGIFMEM: 3471 case SIOCSIFMEM: 3472 case SIOCGIFHWADDR: 3473 case SIOCSIFHWADDR: 3474 case SIOCADDMULTI: 3475 case SIOCDELMULTI: 3476 case SIOCGIFINDEX: 3477 case SIOCGIFADDR: 3478 case SIOCSIFADDR: 3479 case SIOCSIFHWBROADCAST: 3480 case SIOCDIFADDR: 3481 case SIOCGIFBRDADDR: 3482 case SIOCSIFBRDADDR: 3483 case SIOCGIFDSTADDR: 3484 case SIOCSIFDSTADDR: 3485 case SIOCGIFNETMASK: 3486 case SIOCSIFNETMASK: 3487 case SIOCSIFPFLAGS: 3488 case SIOCGIFPFLAGS: 3489 case SIOCGIFTXQLEN: 3490 case SIOCSIFTXQLEN: 3491 case SIOCBRADDIF: 3492 case SIOCBRDELIF: 3493 case SIOCGIFNAME: 3494 case SIOCSIFNAME: 3495 case SIOCGMIIPHY: 3496 case SIOCGMIIREG: 3497 case SIOCSMIIREG: 3498 case SIOCBONDENSLAVE: 3499 case SIOCBONDRELEASE: 3500 case SIOCBONDSETHWADDR: 3501 case SIOCBONDCHANGEACTIVE: 3502 return compat_ifreq_ioctl(net, sock, cmd, argp); 3503 3504 case SIOCSARP: 3505 case SIOCGARP: 3506 case SIOCDARP: 3507 case SIOCOUTQ: 3508 case SIOCOUTQNSD: 3509 case SIOCATMARK: 3510 return sock_do_ioctl(net, sock, cmd, arg); 3511 } 3512 3513 return -ENOIOCTLCMD; 3514 } 3515 3516 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3517 unsigned long arg) 3518 { 3519 struct socket *sock = file->private_data; 3520 int ret = -ENOIOCTLCMD; 3521 struct sock *sk; 3522 struct net *net; 3523 3524 sk = sock->sk; 3525 net = sock_net(sk); 3526 3527 if (sock->ops->compat_ioctl) 3528 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3529 3530 if (ret == -ENOIOCTLCMD && 3531 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3532 ret = compat_wext_handle_ioctl(net, cmd, arg); 3533 3534 if (ret == -ENOIOCTLCMD) 3535 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3536 3537 return ret; 3538 } 3539 #endif 3540 3541 /** 3542 * kernel_bind - bind an address to a socket (kernel space) 3543 * @sock: socket 3544 * @addr: address 3545 * @addrlen: length of address 3546 * 3547 * Returns 0 or an error. 3548 */ 3549 3550 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3551 { 3552 return sock->ops->bind(sock, addr, addrlen); 3553 } 3554 EXPORT_SYMBOL(kernel_bind); 3555 3556 /** 3557 * kernel_listen - move socket to listening state (kernel space) 3558 * @sock: socket 3559 * @backlog: pending connections queue size 3560 * 3561 * Returns 0 or an error. 3562 */ 3563 3564 int kernel_listen(struct socket *sock, int backlog) 3565 { 3566 return sock->ops->listen(sock, backlog); 3567 } 3568 EXPORT_SYMBOL(kernel_listen); 3569 3570 /** 3571 * kernel_accept - accept a connection (kernel space) 3572 * @sock: listening socket 3573 * @newsock: new connected socket 3574 * @flags: flags 3575 * 3576 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3577 * If it fails, @newsock is guaranteed to be %NULL. 3578 * Returns 0 or an error. 3579 */ 3580 3581 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3582 { 3583 struct sock *sk = sock->sk; 3584 int err; 3585 3586 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3587 newsock); 3588 if (err < 0) 3589 goto done; 3590 3591 err = sock->ops->accept(sock, *newsock, flags, true); 3592 if (err < 0) { 3593 sock_release(*newsock); 3594 *newsock = NULL; 3595 goto done; 3596 } 3597 3598 (*newsock)->ops = sock->ops; 3599 __module_get((*newsock)->ops->owner); 3600 3601 done: 3602 return err; 3603 } 3604 EXPORT_SYMBOL(kernel_accept); 3605 3606 /** 3607 * kernel_connect - connect a socket (kernel space) 3608 * @sock: socket 3609 * @addr: address 3610 * @addrlen: address length 3611 * @flags: flags (O_NONBLOCK, ...) 3612 * 3613 * For datagram sockets, @addr is the address to which datagrams are sent 3614 * by default, and the only address from which datagrams are received. 3615 * For stream sockets, attempts to connect to @addr. 3616 * Returns 0 or an error code. 3617 */ 3618 3619 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3620 int flags) 3621 { 3622 return sock->ops->connect(sock, addr, addrlen, flags); 3623 } 3624 EXPORT_SYMBOL(kernel_connect); 3625 3626 /** 3627 * kernel_getsockname - get the address which the socket is bound (kernel space) 3628 * @sock: socket 3629 * @addr: address holder 3630 * 3631 * Fills the @addr pointer with the address which the socket is bound. 3632 * Returns 0 or an error code. 3633 */ 3634 3635 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3636 { 3637 return sock->ops->getname(sock, addr, 0); 3638 } 3639 EXPORT_SYMBOL(kernel_getsockname); 3640 3641 /** 3642 * kernel_getpeername - get the address which the socket is connected (kernel space) 3643 * @sock: socket 3644 * @addr: address holder 3645 * 3646 * Fills the @addr pointer with the address which the socket is connected. 3647 * Returns 0 or an error code. 3648 */ 3649 3650 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3651 { 3652 return sock->ops->getname(sock, addr, 1); 3653 } 3654 EXPORT_SYMBOL(kernel_getpeername); 3655 3656 /** 3657 * kernel_sendpage - send a &page through a socket (kernel space) 3658 * @sock: socket 3659 * @page: page 3660 * @offset: page offset 3661 * @size: total size in bytes 3662 * @flags: flags (MSG_DONTWAIT, ...) 3663 * 3664 * Returns the total amount sent in bytes or an error. 3665 */ 3666 3667 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3668 size_t size, int flags) 3669 { 3670 if (sock->ops->sendpage) { 3671 /* Warn in case the improper page to zero-copy send */ 3672 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3673 return sock->ops->sendpage(sock, page, offset, size, flags); 3674 } 3675 return sock_no_sendpage(sock, page, offset, size, flags); 3676 } 3677 EXPORT_SYMBOL(kernel_sendpage); 3678 3679 /** 3680 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3681 * @sk: sock 3682 * @page: page 3683 * @offset: page offset 3684 * @size: total size in bytes 3685 * @flags: flags (MSG_DONTWAIT, ...) 3686 * 3687 * Returns the total amount sent in bytes or an error. 3688 * Caller must hold @sk. 3689 */ 3690 3691 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3692 size_t size, int flags) 3693 { 3694 struct socket *sock = sk->sk_socket; 3695 3696 if (sock->ops->sendpage_locked) 3697 return sock->ops->sendpage_locked(sk, page, offset, size, 3698 flags); 3699 3700 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3701 } 3702 EXPORT_SYMBOL(kernel_sendpage_locked); 3703 3704 /** 3705 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3706 * @sock: socket 3707 * @how: connection part 3708 * 3709 * Returns 0 or an error. 3710 */ 3711 3712 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3713 { 3714 return sock->ops->shutdown(sock, how); 3715 } 3716 EXPORT_SYMBOL(kernel_sock_shutdown); 3717 3718 /** 3719 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3720 * @sk: socket 3721 * 3722 * This routine returns the IP overhead imposed by a socket i.e. 3723 * the length of the underlying IP header, depending on whether 3724 * this is an IPv4 or IPv6 socket and the length from IP options turned 3725 * on at the socket. Assumes that the caller has a lock on the socket. 3726 */ 3727 3728 u32 kernel_sock_ip_overhead(struct sock *sk) 3729 { 3730 struct inet_sock *inet; 3731 struct ip_options_rcu *opt; 3732 u32 overhead = 0; 3733 #if IS_ENABLED(CONFIG_IPV6) 3734 struct ipv6_pinfo *np; 3735 struct ipv6_txoptions *optv6 = NULL; 3736 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3737 3738 if (!sk) 3739 return overhead; 3740 3741 switch (sk->sk_family) { 3742 case AF_INET: 3743 inet = inet_sk(sk); 3744 overhead += sizeof(struct iphdr); 3745 opt = rcu_dereference_protected(inet->inet_opt, 3746 sock_owned_by_user(sk)); 3747 if (opt) 3748 overhead += opt->opt.optlen; 3749 return overhead; 3750 #if IS_ENABLED(CONFIG_IPV6) 3751 case AF_INET6: 3752 np = inet6_sk(sk); 3753 overhead += sizeof(struct ipv6hdr); 3754 if (np) 3755 optv6 = rcu_dereference_protected(np->opt, 3756 sock_owned_by_user(sk)); 3757 if (optv6) 3758 overhead += (optv6->opt_flen + optv6->opt_nflen); 3759 return overhead; 3760 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3761 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3762 return overhead; 3763 } 3764 } 3765 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3766