1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __read_mostly; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static void init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 292 init_once); 293 BUG_ON(sock_inode_cachep == NULL); 294 } 295 296 static const struct super_operations sockfs_ops = { 297 .alloc_inode = sock_alloc_inode, 298 .destroy_inode = sock_destroy_inode, 299 .statfs = simple_statfs, 300 }; 301 302 /* 303 * sockfs_dname() is called from d_path(). 304 */ 305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 306 { 307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 308 d_inode(dentry)->i_ino); 309 } 310 311 static const struct dentry_operations sockfs_dentry_operations = { 312 .d_dname = sockfs_dname, 313 }; 314 315 static int sockfs_xattr_get(const struct xattr_handler *handler, 316 struct dentry *dentry, struct inode *inode, 317 const char *suffix, void *value, size_t size) 318 { 319 if (value) { 320 if (dentry->d_name.len + 1 > size) 321 return -ERANGE; 322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 323 } 324 return dentry->d_name.len + 1; 325 } 326 327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 330 331 static const struct xattr_handler sockfs_xattr_handler = { 332 .name = XATTR_NAME_SOCKPROTONAME, 333 .get = sockfs_xattr_get, 334 }; 335 336 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 337 struct dentry *dentry, struct inode *inode, 338 const char *suffix, const void *value, 339 size_t size, int flags) 340 { 341 /* Handled by LSM. */ 342 return -EAGAIN; 343 } 344 345 static const struct xattr_handler sockfs_security_xattr_handler = { 346 .prefix = XATTR_SECURITY_PREFIX, 347 .set = sockfs_security_xattr_set, 348 }; 349 350 static const struct xattr_handler *sockfs_xattr_handlers[] = { 351 &sockfs_xattr_handler, 352 &sockfs_security_xattr_handler, 353 NULL 354 }; 355 356 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 357 int flags, const char *dev_name, void *data) 358 { 359 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 360 sockfs_xattr_handlers, 361 &sockfs_dentry_operations, SOCKFS_MAGIC); 362 } 363 364 static struct vfsmount *sock_mnt __read_mostly; 365 366 static struct file_system_type sock_fs_type = { 367 .name = "sockfs", 368 .mount = sockfs_mount, 369 .kill_sb = kill_anon_super, 370 }; 371 372 /* 373 * Obtains the first available file descriptor and sets it up for use. 374 * 375 * These functions create file structures and maps them to fd space 376 * of the current process. On success it returns file descriptor 377 * and file struct implicitly stored in sock->file. 378 * Note that another thread may close file descriptor before we return 379 * from this function. We use the fact that now we do not refer 380 * to socket after mapping. If one day we will need it, this 381 * function will increment ref. count on file by 1. 382 * 383 * In any case returned fd MAY BE not valid! 384 * This race condition is unavoidable 385 * with shared fd spaces, we cannot solve it inside kernel, 386 * but we take care of internal coherence yet. 387 */ 388 389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 390 { 391 struct qstr name = { .name = "" }; 392 struct path path; 393 struct file *file; 394 395 if (dname) { 396 name.name = dname; 397 name.len = strlen(name.name); 398 } else if (sock->sk) { 399 name.name = sock->sk->sk_prot_creator->name; 400 name.len = strlen(name.name); 401 } 402 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 403 if (unlikely(!path.dentry)) { 404 sock_release(sock); 405 return ERR_PTR(-ENOMEM); 406 } 407 path.mnt = mntget(sock_mnt); 408 409 d_instantiate(path.dentry, SOCK_INODE(sock)); 410 411 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 412 &socket_file_ops); 413 if (IS_ERR(file)) { 414 /* drop dentry, keep inode for a bit */ 415 ihold(d_inode(path.dentry)); 416 path_put(&path); 417 /* ... and now kill it properly */ 418 sock_release(sock); 419 return file; 420 } 421 422 sock->file = file; 423 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 424 file->private_data = sock; 425 return file; 426 } 427 EXPORT_SYMBOL(sock_alloc_file); 428 429 static int sock_map_fd(struct socket *sock, int flags) 430 { 431 struct file *newfile; 432 int fd = get_unused_fd_flags(flags); 433 if (unlikely(fd < 0)) { 434 sock_release(sock); 435 return fd; 436 } 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * to is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 inode->i_ino = get_next_ino(); 572 inode->i_mode = S_IFSOCK | S_IRWXUGO; 573 inode->i_uid = current_fsuid(); 574 inode->i_gid = current_fsgid(); 575 inode->i_op = &sockfs_inode_ops; 576 577 return sock; 578 } 579 EXPORT_SYMBOL(sock_alloc); 580 581 /** 582 * sock_release - close a socket 583 * @sock: socket to close 584 * 585 * The socket is released from the protocol stack if it has a release 586 * callback, and the inode is then released if the socket is bound to 587 * an inode not a file. 588 */ 589 590 void sock_release(struct socket *sock) 591 { 592 if (sock->ops) { 593 struct module *owner = sock->ops->owner; 594 595 sock->ops->release(sock); 596 sock->ops = NULL; 597 module_put(owner); 598 } 599 600 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 601 pr_err("%s: fasync list not empty!\n", __func__); 602 603 if (!sock->file) { 604 iput(SOCK_INODE(sock)); 605 return; 606 } 607 sock->file = NULL; 608 } 609 EXPORT_SYMBOL(sock_release); 610 611 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 612 { 613 u8 flags = *tx_flags; 614 615 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 616 flags |= SKBTX_HW_TSTAMP; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 619 flags |= SKBTX_SW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 622 flags |= SKBTX_SCHED_TSTAMP; 623 624 *tx_flags = flags; 625 } 626 EXPORT_SYMBOL(__sock_tx_timestamp); 627 628 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 629 { 630 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 631 BUG_ON(ret == -EIOCBQUEUED); 632 return ret; 633 } 634 635 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 636 { 637 int err = security_socket_sendmsg(sock, msg, 638 msg_data_left(msg)); 639 640 return err ?: sock_sendmsg_nosec(sock, msg); 641 } 642 EXPORT_SYMBOL(sock_sendmsg); 643 644 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 645 struct kvec *vec, size_t num, size_t size) 646 { 647 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 648 return sock_sendmsg(sock, msg); 649 } 650 EXPORT_SYMBOL(kernel_sendmsg); 651 652 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 653 struct kvec *vec, size_t num, size_t size) 654 { 655 struct socket *sock = sk->sk_socket; 656 657 if (!sock->ops->sendmsg_locked) 658 return sock_no_sendmsg_locked(sk, msg, size); 659 660 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 661 662 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 663 } 664 EXPORT_SYMBOL(kernel_sendmsg_locked); 665 666 static bool skb_is_err_queue(const struct sk_buff *skb) 667 { 668 /* pkt_type of skbs enqueued on the error queue are set to 669 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 670 * in recvmsg, since skbs received on a local socket will never 671 * have a pkt_type of PACKET_OUTGOING. 672 */ 673 return skb->pkt_type == PACKET_OUTGOING; 674 } 675 676 /* On transmit, software and hardware timestamps are returned independently. 677 * As the two skb clones share the hardware timestamp, which may be updated 678 * before the software timestamp is received, a hardware TX timestamp may be 679 * returned only if there is no software TX timestamp. Ignore false software 680 * timestamps, which may be made in the __sock_recv_timestamp() call when the 681 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 682 * hardware timestamp. 683 */ 684 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 685 { 686 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 687 } 688 689 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 690 { 691 struct scm_ts_pktinfo ts_pktinfo; 692 struct net_device *orig_dev; 693 694 if (!skb_mac_header_was_set(skb)) 695 return; 696 697 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 698 699 rcu_read_lock(); 700 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 701 if (orig_dev) 702 ts_pktinfo.if_index = orig_dev->ifindex; 703 rcu_read_unlock(); 704 705 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 706 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 707 sizeof(ts_pktinfo), &ts_pktinfo); 708 } 709 710 /* 711 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 712 */ 713 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 714 struct sk_buff *skb) 715 { 716 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 717 struct scm_timestamping tss; 718 int empty = 1, false_tstamp = 0; 719 struct skb_shared_hwtstamps *shhwtstamps = 720 skb_hwtstamps(skb); 721 722 /* Race occurred between timestamp enabling and packet 723 receiving. Fill in the current time for now. */ 724 if (need_software_tstamp && skb->tstamp == 0) { 725 __net_timestamp(skb); 726 false_tstamp = 1; 727 } 728 729 if (need_software_tstamp) { 730 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 731 struct timeval tv; 732 skb_get_timestamp(skb, &tv); 733 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 734 sizeof(tv), &tv); 735 } else { 736 struct timespec ts; 737 skb_get_timestampns(skb, &ts); 738 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 739 sizeof(ts), &ts); 740 } 741 } 742 743 memset(&tss, 0, sizeof(tss)); 744 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 745 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 746 empty = 0; 747 if (shhwtstamps && 748 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 749 !skb_is_swtx_tstamp(skb, false_tstamp) && 750 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 751 empty = 0; 752 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 753 !skb_is_err_queue(skb)) 754 put_ts_pktinfo(msg, skb); 755 } 756 if (!empty) { 757 put_cmsg(msg, SOL_SOCKET, 758 SCM_TIMESTAMPING, sizeof(tss), &tss); 759 760 if (skb_is_err_queue(skb) && skb->len && 761 SKB_EXT_ERR(skb)->opt_stats) 762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 763 skb->len, skb->data); 764 } 765 } 766 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 767 768 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 769 struct sk_buff *skb) 770 { 771 int ack; 772 773 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 774 return; 775 if (!skb->wifi_acked_valid) 776 return; 777 778 ack = skb->wifi_acked; 779 780 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 781 } 782 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 783 784 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 785 struct sk_buff *skb) 786 { 787 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 788 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 789 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 790 } 791 792 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 793 struct sk_buff *skb) 794 { 795 sock_recv_timestamp(msg, sk, skb); 796 sock_recv_drops(msg, sk, skb); 797 } 798 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 799 800 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 801 int flags) 802 { 803 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 804 } 805 806 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 807 { 808 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 809 810 return err ?: sock_recvmsg_nosec(sock, msg, flags); 811 } 812 EXPORT_SYMBOL(sock_recvmsg); 813 814 /** 815 * kernel_recvmsg - Receive a message from a socket (kernel space) 816 * @sock: The socket to receive the message from 817 * @msg: Received message 818 * @vec: Input s/g array for message data 819 * @num: Size of input s/g array 820 * @size: Number of bytes to read 821 * @flags: Message flags (MSG_DONTWAIT, etc...) 822 * 823 * On return the msg structure contains the scatter/gather array passed in the 824 * vec argument. The array is modified so that it consists of the unfilled 825 * portion of the original array. 826 * 827 * The returned value is the total number of bytes received, or an error. 828 */ 829 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 830 struct kvec *vec, size_t num, size_t size, int flags) 831 { 832 mm_segment_t oldfs = get_fs(); 833 int result; 834 835 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 836 set_fs(KERNEL_DS); 837 result = sock_recvmsg(sock, msg, flags); 838 set_fs(oldfs); 839 return result; 840 } 841 EXPORT_SYMBOL(kernel_recvmsg); 842 843 static ssize_t sock_sendpage(struct file *file, struct page *page, 844 int offset, size_t size, loff_t *ppos, int more) 845 { 846 struct socket *sock; 847 int flags; 848 849 sock = file->private_data; 850 851 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 852 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 853 flags |= more; 854 855 return kernel_sendpage(sock, page, offset, size, flags); 856 } 857 858 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 859 struct pipe_inode_info *pipe, size_t len, 860 unsigned int flags) 861 { 862 struct socket *sock = file->private_data; 863 864 if (unlikely(!sock->ops->splice_read)) 865 return -EINVAL; 866 867 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 868 } 869 870 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 871 { 872 struct file *file = iocb->ki_filp; 873 struct socket *sock = file->private_data; 874 struct msghdr msg = {.msg_iter = *to, 875 .msg_iocb = iocb}; 876 ssize_t res; 877 878 if (file->f_flags & O_NONBLOCK) 879 msg.msg_flags = MSG_DONTWAIT; 880 881 if (iocb->ki_pos != 0) 882 return -ESPIPE; 883 884 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 885 return 0; 886 887 res = sock_recvmsg(sock, &msg, msg.msg_flags); 888 *to = msg.msg_iter; 889 return res; 890 } 891 892 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 893 { 894 struct file *file = iocb->ki_filp; 895 struct socket *sock = file->private_data; 896 struct msghdr msg = {.msg_iter = *from, 897 .msg_iocb = iocb}; 898 ssize_t res; 899 900 if (iocb->ki_pos != 0) 901 return -ESPIPE; 902 903 if (file->f_flags & O_NONBLOCK) 904 msg.msg_flags = MSG_DONTWAIT; 905 906 if (sock->type == SOCK_SEQPACKET) 907 msg.msg_flags |= MSG_EOR; 908 909 res = sock_sendmsg(sock, &msg); 910 *from = msg.msg_iter; 911 return res; 912 } 913 914 /* 915 * Atomic setting of ioctl hooks to avoid race 916 * with module unload. 917 */ 918 919 static DEFINE_MUTEX(br_ioctl_mutex); 920 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 921 922 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 923 { 924 mutex_lock(&br_ioctl_mutex); 925 br_ioctl_hook = hook; 926 mutex_unlock(&br_ioctl_mutex); 927 } 928 EXPORT_SYMBOL(brioctl_set); 929 930 static DEFINE_MUTEX(vlan_ioctl_mutex); 931 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 932 933 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 934 { 935 mutex_lock(&vlan_ioctl_mutex); 936 vlan_ioctl_hook = hook; 937 mutex_unlock(&vlan_ioctl_mutex); 938 } 939 EXPORT_SYMBOL(vlan_ioctl_set); 940 941 static DEFINE_MUTEX(dlci_ioctl_mutex); 942 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 943 944 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 945 { 946 mutex_lock(&dlci_ioctl_mutex); 947 dlci_ioctl_hook = hook; 948 mutex_unlock(&dlci_ioctl_mutex); 949 } 950 EXPORT_SYMBOL(dlci_ioctl_set); 951 952 static long sock_do_ioctl(struct net *net, struct socket *sock, 953 unsigned int cmd, unsigned long arg) 954 { 955 int err; 956 void __user *argp = (void __user *)arg; 957 958 err = sock->ops->ioctl(sock, cmd, arg); 959 960 /* 961 * If this ioctl is unknown try to hand it down 962 * to the NIC driver. 963 */ 964 if (err != -ENOIOCTLCMD) 965 return err; 966 967 if (cmd == SIOCGIFCONF) { 968 struct ifconf ifc; 969 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 970 return -EFAULT; 971 rtnl_lock(); 972 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 973 rtnl_unlock(); 974 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 975 err = -EFAULT; 976 } else { 977 struct ifreq ifr; 978 bool need_copyout; 979 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 980 return -EFAULT; 981 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 982 if (!err && need_copyout) 983 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 984 return -EFAULT; 985 } 986 return err; 987 } 988 989 /* 990 * With an ioctl, arg may well be a user mode pointer, but we don't know 991 * what to do with it - that's up to the protocol still. 992 */ 993 994 static struct ns_common *get_net_ns(struct ns_common *ns) 995 { 996 return &get_net(container_of(ns, struct net, ns))->ns; 997 } 998 999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1000 { 1001 struct socket *sock; 1002 struct sock *sk; 1003 void __user *argp = (void __user *)arg; 1004 int pid, err; 1005 struct net *net; 1006 1007 sock = file->private_data; 1008 sk = sock->sk; 1009 net = sock_net(sk); 1010 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1011 struct ifreq ifr; 1012 bool need_copyout; 1013 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1014 return -EFAULT; 1015 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1016 if (!err && need_copyout) 1017 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1018 return -EFAULT; 1019 } else 1020 #ifdef CONFIG_WEXT_CORE 1021 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1022 err = wext_handle_ioctl(net, cmd, argp); 1023 } else 1024 #endif 1025 switch (cmd) { 1026 case FIOSETOWN: 1027 case SIOCSPGRP: 1028 err = -EFAULT; 1029 if (get_user(pid, (int __user *)argp)) 1030 break; 1031 err = f_setown(sock->file, pid, 1); 1032 break; 1033 case FIOGETOWN: 1034 case SIOCGPGRP: 1035 err = put_user(f_getown(sock->file), 1036 (int __user *)argp); 1037 break; 1038 case SIOCGIFBR: 1039 case SIOCSIFBR: 1040 case SIOCBRADDBR: 1041 case SIOCBRDELBR: 1042 err = -ENOPKG; 1043 if (!br_ioctl_hook) 1044 request_module("bridge"); 1045 1046 mutex_lock(&br_ioctl_mutex); 1047 if (br_ioctl_hook) 1048 err = br_ioctl_hook(net, cmd, argp); 1049 mutex_unlock(&br_ioctl_mutex); 1050 break; 1051 case SIOCGIFVLAN: 1052 case SIOCSIFVLAN: 1053 err = -ENOPKG; 1054 if (!vlan_ioctl_hook) 1055 request_module("8021q"); 1056 1057 mutex_lock(&vlan_ioctl_mutex); 1058 if (vlan_ioctl_hook) 1059 err = vlan_ioctl_hook(net, argp); 1060 mutex_unlock(&vlan_ioctl_mutex); 1061 break; 1062 case SIOCADDDLCI: 1063 case SIOCDELDLCI: 1064 err = -ENOPKG; 1065 if (!dlci_ioctl_hook) 1066 request_module("dlci"); 1067 1068 mutex_lock(&dlci_ioctl_mutex); 1069 if (dlci_ioctl_hook) 1070 err = dlci_ioctl_hook(cmd, argp); 1071 mutex_unlock(&dlci_ioctl_mutex); 1072 break; 1073 case SIOCGSKNS: 1074 err = -EPERM; 1075 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1076 break; 1077 1078 err = open_related_ns(&net->ns, get_net_ns); 1079 break; 1080 default: 1081 err = sock_do_ioctl(net, sock, cmd, arg); 1082 break; 1083 } 1084 return err; 1085 } 1086 1087 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1088 { 1089 int err; 1090 struct socket *sock = NULL; 1091 1092 err = security_socket_create(family, type, protocol, 1); 1093 if (err) 1094 goto out; 1095 1096 sock = sock_alloc(); 1097 if (!sock) { 1098 err = -ENOMEM; 1099 goto out; 1100 } 1101 1102 sock->type = type; 1103 err = security_socket_post_create(sock, family, type, protocol, 1); 1104 if (err) 1105 goto out_release; 1106 1107 out: 1108 *res = sock; 1109 return err; 1110 out_release: 1111 sock_release(sock); 1112 sock = NULL; 1113 goto out; 1114 } 1115 EXPORT_SYMBOL(sock_create_lite); 1116 1117 /* No kernel lock held - perfect */ 1118 static __poll_t sock_poll(struct file *file, poll_table *wait) 1119 { 1120 __poll_t busy_flag = 0; 1121 struct socket *sock; 1122 1123 /* 1124 * We can't return errors to poll, so it's either yes or no. 1125 */ 1126 sock = file->private_data; 1127 1128 if (sk_can_busy_loop(sock->sk)) { 1129 /* this socket can poll_ll so tell the system call */ 1130 busy_flag = POLL_BUSY_LOOP; 1131 1132 /* once, only if requested by syscall */ 1133 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1134 sk_busy_loop(sock->sk, 1); 1135 } 1136 1137 return busy_flag | sock->ops->poll(file, sock, wait); 1138 } 1139 1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1141 { 1142 struct socket *sock = file->private_data; 1143 1144 return sock->ops->mmap(file, sock, vma); 1145 } 1146 1147 static int sock_close(struct inode *inode, struct file *filp) 1148 { 1149 sock_release(SOCKET_I(inode)); 1150 return 0; 1151 } 1152 1153 /* 1154 * Update the socket async list 1155 * 1156 * Fasync_list locking strategy. 1157 * 1158 * 1. fasync_list is modified only under process context socket lock 1159 * i.e. under semaphore. 1160 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1161 * or under socket lock 1162 */ 1163 1164 static int sock_fasync(int fd, struct file *filp, int on) 1165 { 1166 struct socket *sock = filp->private_data; 1167 struct sock *sk = sock->sk; 1168 struct socket_wq *wq; 1169 1170 if (sk == NULL) 1171 return -EINVAL; 1172 1173 lock_sock(sk); 1174 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1175 fasync_helper(fd, filp, on, &wq->fasync_list); 1176 1177 if (!wq->fasync_list) 1178 sock_reset_flag(sk, SOCK_FASYNC); 1179 else 1180 sock_set_flag(sk, SOCK_FASYNC); 1181 1182 release_sock(sk); 1183 return 0; 1184 } 1185 1186 /* This function may be called only under rcu_lock */ 1187 1188 int sock_wake_async(struct socket_wq *wq, int how, int band) 1189 { 1190 if (!wq || !wq->fasync_list) 1191 return -1; 1192 1193 switch (how) { 1194 case SOCK_WAKE_WAITD: 1195 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1196 break; 1197 goto call_kill; 1198 case SOCK_WAKE_SPACE: 1199 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1200 break; 1201 /* fall through */ 1202 case SOCK_WAKE_IO: 1203 call_kill: 1204 kill_fasync(&wq->fasync_list, SIGIO, band); 1205 break; 1206 case SOCK_WAKE_URG: 1207 kill_fasync(&wq->fasync_list, SIGURG, band); 1208 } 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL(sock_wake_async); 1213 1214 int __sock_create(struct net *net, int family, int type, int protocol, 1215 struct socket **res, int kern) 1216 { 1217 int err; 1218 struct socket *sock; 1219 const struct net_proto_family *pf; 1220 1221 /* 1222 * Check protocol is in range 1223 */ 1224 if (family < 0 || family >= NPROTO) 1225 return -EAFNOSUPPORT; 1226 if (type < 0 || type >= SOCK_MAX) 1227 return -EINVAL; 1228 1229 /* Compatibility. 1230 1231 This uglymoron is moved from INET layer to here to avoid 1232 deadlock in module load. 1233 */ 1234 if (family == PF_INET && type == SOCK_PACKET) { 1235 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1236 current->comm); 1237 family = PF_PACKET; 1238 } 1239 1240 err = security_socket_create(family, type, protocol, kern); 1241 if (err) 1242 return err; 1243 1244 /* 1245 * Allocate the socket and allow the family to set things up. if 1246 * the protocol is 0, the family is instructed to select an appropriate 1247 * default. 1248 */ 1249 sock = sock_alloc(); 1250 if (!sock) { 1251 net_warn_ratelimited("socket: no more sockets\n"); 1252 return -ENFILE; /* Not exactly a match, but its the 1253 closest posix thing */ 1254 } 1255 1256 sock->type = type; 1257 1258 #ifdef CONFIG_MODULES 1259 /* Attempt to load a protocol module if the find failed. 1260 * 1261 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1262 * requested real, full-featured networking support upon configuration. 1263 * Otherwise module support will break! 1264 */ 1265 if (rcu_access_pointer(net_families[family]) == NULL) 1266 request_module("net-pf-%d", family); 1267 #endif 1268 1269 rcu_read_lock(); 1270 pf = rcu_dereference(net_families[family]); 1271 err = -EAFNOSUPPORT; 1272 if (!pf) 1273 goto out_release; 1274 1275 /* 1276 * We will call the ->create function, that possibly is in a loadable 1277 * module, so we have to bump that loadable module refcnt first. 1278 */ 1279 if (!try_module_get(pf->owner)) 1280 goto out_release; 1281 1282 /* Now protected by module ref count */ 1283 rcu_read_unlock(); 1284 1285 err = pf->create(net, sock, protocol, kern); 1286 if (err < 0) 1287 goto out_module_put; 1288 1289 /* 1290 * Now to bump the refcnt of the [loadable] module that owns this 1291 * socket at sock_release time we decrement its refcnt. 1292 */ 1293 if (!try_module_get(sock->ops->owner)) 1294 goto out_module_busy; 1295 1296 /* 1297 * Now that we're done with the ->create function, the [loadable] 1298 * module can have its refcnt decremented 1299 */ 1300 module_put(pf->owner); 1301 err = security_socket_post_create(sock, family, type, protocol, kern); 1302 if (err) 1303 goto out_sock_release; 1304 *res = sock; 1305 1306 return 0; 1307 1308 out_module_busy: 1309 err = -EAFNOSUPPORT; 1310 out_module_put: 1311 sock->ops = NULL; 1312 module_put(pf->owner); 1313 out_sock_release: 1314 sock_release(sock); 1315 return err; 1316 1317 out_release: 1318 rcu_read_unlock(); 1319 goto out_sock_release; 1320 } 1321 EXPORT_SYMBOL(__sock_create); 1322 1323 int sock_create(int family, int type, int protocol, struct socket **res) 1324 { 1325 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1326 } 1327 EXPORT_SYMBOL(sock_create); 1328 1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1330 { 1331 return __sock_create(net, family, type, protocol, res, 1); 1332 } 1333 EXPORT_SYMBOL(sock_create_kern); 1334 1335 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1336 { 1337 int retval; 1338 struct socket *sock; 1339 int flags; 1340 1341 /* Check the SOCK_* constants for consistency. */ 1342 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1343 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1344 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1345 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1346 1347 flags = type & ~SOCK_TYPE_MASK; 1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1349 return -EINVAL; 1350 type &= SOCK_TYPE_MASK; 1351 1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1354 1355 retval = sock_create(family, type, protocol, &sock); 1356 if (retval < 0) 1357 return retval; 1358 1359 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1360 } 1361 1362 /* 1363 * Create a pair of connected sockets. 1364 */ 1365 1366 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1367 int __user *, usockvec) 1368 { 1369 struct socket *sock1, *sock2; 1370 int fd1, fd2, err; 1371 struct file *newfile1, *newfile2; 1372 int flags; 1373 1374 flags = type & ~SOCK_TYPE_MASK; 1375 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1376 return -EINVAL; 1377 type &= SOCK_TYPE_MASK; 1378 1379 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1380 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1381 1382 /* 1383 * reserve descriptors and make sure we won't fail 1384 * to return them to userland. 1385 */ 1386 fd1 = get_unused_fd_flags(flags); 1387 if (unlikely(fd1 < 0)) 1388 return fd1; 1389 1390 fd2 = get_unused_fd_flags(flags); 1391 if (unlikely(fd2 < 0)) { 1392 put_unused_fd(fd1); 1393 return fd2; 1394 } 1395 1396 err = put_user(fd1, &usockvec[0]); 1397 if (err) 1398 goto out; 1399 1400 err = put_user(fd2, &usockvec[1]); 1401 if (err) 1402 goto out; 1403 1404 /* 1405 * Obtain the first socket and check if the underlying protocol 1406 * supports the socketpair call. 1407 */ 1408 1409 err = sock_create(family, type, protocol, &sock1); 1410 if (unlikely(err < 0)) 1411 goto out; 1412 1413 err = sock_create(family, type, protocol, &sock2); 1414 if (unlikely(err < 0)) { 1415 sock_release(sock1); 1416 goto out; 1417 } 1418 1419 err = sock1->ops->socketpair(sock1, sock2); 1420 if (unlikely(err < 0)) { 1421 sock_release(sock2); 1422 sock_release(sock1); 1423 goto out; 1424 } 1425 1426 newfile1 = sock_alloc_file(sock1, flags, NULL); 1427 if (IS_ERR(newfile1)) { 1428 err = PTR_ERR(newfile1); 1429 sock_release(sock2); 1430 goto out; 1431 } 1432 1433 newfile2 = sock_alloc_file(sock2, flags, NULL); 1434 if (IS_ERR(newfile2)) { 1435 err = PTR_ERR(newfile2); 1436 fput(newfile1); 1437 goto out; 1438 } 1439 1440 audit_fd_pair(fd1, fd2); 1441 1442 fd_install(fd1, newfile1); 1443 fd_install(fd2, newfile2); 1444 return 0; 1445 1446 out: 1447 put_unused_fd(fd2); 1448 put_unused_fd(fd1); 1449 return err; 1450 } 1451 1452 /* 1453 * Bind a name to a socket. Nothing much to do here since it's 1454 * the protocol's responsibility to handle the local address. 1455 * 1456 * We move the socket address to kernel space before we call 1457 * the protocol layer (having also checked the address is ok). 1458 */ 1459 1460 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1461 { 1462 struct socket *sock; 1463 struct sockaddr_storage address; 1464 int err, fput_needed; 1465 1466 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1467 if (sock) { 1468 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1469 if (err >= 0) { 1470 err = security_socket_bind(sock, 1471 (struct sockaddr *)&address, 1472 addrlen); 1473 if (!err) 1474 err = sock->ops->bind(sock, 1475 (struct sockaddr *) 1476 &address, addrlen); 1477 } 1478 fput_light(sock->file, fput_needed); 1479 } 1480 return err; 1481 } 1482 1483 /* 1484 * Perform a listen. Basically, we allow the protocol to do anything 1485 * necessary for a listen, and if that works, we mark the socket as 1486 * ready for listening. 1487 */ 1488 1489 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1490 { 1491 struct socket *sock; 1492 int err, fput_needed; 1493 int somaxconn; 1494 1495 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1496 if (sock) { 1497 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1498 if ((unsigned int)backlog > somaxconn) 1499 backlog = somaxconn; 1500 1501 err = security_socket_listen(sock, backlog); 1502 if (!err) 1503 err = sock->ops->listen(sock, backlog); 1504 1505 fput_light(sock->file, fput_needed); 1506 } 1507 return err; 1508 } 1509 1510 /* 1511 * For accept, we attempt to create a new socket, set up the link 1512 * with the client, wake up the client, then return the new 1513 * connected fd. We collect the address of the connector in kernel 1514 * space and move it to user at the very end. This is unclean because 1515 * we open the socket then return an error. 1516 * 1517 * 1003.1g adds the ability to recvmsg() to query connection pending 1518 * status to recvmsg. We need to add that support in a way thats 1519 * clean when we restucture accept also. 1520 */ 1521 1522 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1523 int __user *, upeer_addrlen, int, flags) 1524 { 1525 struct socket *sock, *newsock; 1526 struct file *newfile; 1527 int err, len, newfd, fput_needed; 1528 struct sockaddr_storage address; 1529 1530 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1531 return -EINVAL; 1532 1533 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1534 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1535 1536 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1537 if (!sock) 1538 goto out; 1539 1540 err = -ENFILE; 1541 newsock = sock_alloc(); 1542 if (!newsock) 1543 goto out_put; 1544 1545 newsock->type = sock->type; 1546 newsock->ops = sock->ops; 1547 1548 /* 1549 * We don't need try_module_get here, as the listening socket (sock) 1550 * has the protocol module (sock->ops->owner) held. 1551 */ 1552 __module_get(newsock->ops->owner); 1553 1554 newfd = get_unused_fd_flags(flags); 1555 if (unlikely(newfd < 0)) { 1556 err = newfd; 1557 sock_release(newsock); 1558 goto out_put; 1559 } 1560 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1561 if (IS_ERR(newfile)) { 1562 err = PTR_ERR(newfile); 1563 put_unused_fd(newfd); 1564 goto out_put; 1565 } 1566 1567 err = security_socket_accept(sock, newsock); 1568 if (err) 1569 goto out_fd; 1570 1571 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1572 if (err < 0) 1573 goto out_fd; 1574 1575 if (upeer_sockaddr) { 1576 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1577 &len, 2) < 0) { 1578 err = -ECONNABORTED; 1579 goto out_fd; 1580 } 1581 err = move_addr_to_user(&address, 1582 len, upeer_sockaddr, upeer_addrlen); 1583 if (err < 0) 1584 goto out_fd; 1585 } 1586 1587 /* File flags are not inherited via accept() unlike another OSes. */ 1588 1589 fd_install(newfd, newfile); 1590 err = newfd; 1591 1592 out_put: 1593 fput_light(sock->file, fput_needed); 1594 out: 1595 return err; 1596 out_fd: 1597 fput(newfile); 1598 put_unused_fd(newfd); 1599 goto out_put; 1600 } 1601 1602 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1603 int __user *, upeer_addrlen) 1604 { 1605 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1606 } 1607 1608 /* 1609 * Attempt to connect to a socket with the server address. The address 1610 * is in user space so we verify it is OK and move it to kernel space. 1611 * 1612 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1613 * break bindings 1614 * 1615 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1616 * other SEQPACKET protocols that take time to connect() as it doesn't 1617 * include the -EINPROGRESS status for such sockets. 1618 */ 1619 1620 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1621 int, addrlen) 1622 { 1623 struct socket *sock; 1624 struct sockaddr_storage address; 1625 int err, fput_needed; 1626 1627 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1628 if (!sock) 1629 goto out; 1630 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1631 if (err < 0) 1632 goto out_put; 1633 1634 err = 1635 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1636 if (err) 1637 goto out_put; 1638 1639 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1640 sock->file->f_flags); 1641 out_put: 1642 fput_light(sock->file, fput_needed); 1643 out: 1644 return err; 1645 } 1646 1647 /* 1648 * Get the local address ('name') of a socket object. Move the obtained 1649 * name to user space. 1650 */ 1651 1652 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1653 int __user *, usockaddr_len) 1654 { 1655 struct socket *sock; 1656 struct sockaddr_storage address; 1657 int len, err, fput_needed; 1658 1659 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1660 if (!sock) 1661 goto out; 1662 1663 err = security_socket_getsockname(sock); 1664 if (err) 1665 goto out_put; 1666 1667 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1668 if (err) 1669 goto out_put; 1670 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1671 1672 out_put: 1673 fput_light(sock->file, fput_needed); 1674 out: 1675 return err; 1676 } 1677 1678 /* 1679 * Get the remote address ('name') of a socket object. Move the obtained 1680 * name to user space. 1681 */ 1682 1683 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1684 int __user *, usockaddr_len) 1685 { 1686 struct socket *sock; 1687 struct sockaddr_storage address; 1688 int len, err, fput_needed; 1689 1690 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1691 if (sock != NULL) { 1692 err = security_socket_getpeername(sock); 1693 if (err) { 1694 fput_light(sock->file, fput_needed); 1695 return err; 1696 } 1697 1698 err = 1699 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1700 1); 1701 if (!err) 1702 err = move_addr_to_user(&address, len, usockaddr, 1703 usockaddr_len); 1704 fput_light(sock->file, fput_needed); 1705 } 1706 return err; 1707 } 1708 1709 /* 1710 * Send a datagram to a given address. We move the address into kernel 1711 * space and check the user space data area is readable before invoking 1712 * the protocol. 1713 */ 1714 1715 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1716 unsigned int, flags, struct sockaddr __user *, addr, 1717 int, addr_len) 1718 { 1719 struct socket *sock; 1720 struct sockaddr_storage address; 1721 int err; 1722 struct msghdr msg; 1723 struct iovec iov; 1724 int fput_needed; 1725 1726 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1727 if (unlikely(err)) 1728 return err; 1729 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1730 if (!sock) 1731 goto out; 1732 1733 msg.msg_name = NULL; 1734 msg.msg_control = NULL; 1735 msg.msg_controllen = 0; 1736 msg.msg_namelen = 0; 1737 if (addr) { 1738 err = move_addr_to_kernel(addr, addr_len, &address); 1739 if (err < 0) 1740 goto out_put; 1741 msg.msg_name = (struct sockaddr *)&address; 1742 msg.msg_namelen = addr_len; 1743 } 1744 if (sock->file->f_flags & O_NONBLOCK) 1745 flags |= MSG_DONTWAIT; 1746 msg.msg_flags = flags; 1747 err = sock_sendmsg(sock, &msg); 1748 1749 out_put: 1750 fput_light(sock->file, fput_needed); 1751 out: 1752 return err; 1753 } 1754 1755 /* 1756 * Send a datagram down a socket. 1757 */ 1758 1759 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1760 unsigned int, flags) 1761 { 1762 return sys_sendto(fd, buff, len, flags, NULL, 0); 1763 } 1764 1765 /* 1766 * Receive a frame from the socket and optionally record the address of the 1767 * sender. We verify the buffers are writable and if needed move the 1768 * sender address from kernel to user space. 1769 */ 1770 1771 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1772 unsigned int, flags, struct sockaddr __user *, addr, 1773 int __user *, addr_len) 1774 { 1775 struct socket *sock; 1776 struct iovec iov; 1777 struct msghdr msg; 1778 struct sockaddr_storage address; 1779 int err, err2; 1780 int fput_needed; 1781 1782 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1783 if (unlikely(err)) 1784 return err; 1785 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1786 if (!sock) 1787 goto out; 1788 1789 msg.msg_control = NULL; 1790 msg.msg_controllen = 0; 1791 /* Save some cycles and don't copy the address if not needed */ 1792 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1793 /* We assume all kernel code knows the size of sockaddr_storage */ 1794 msg.msg_namelen = 0; 1795 msg.msg_iocb = NULL; 1796 msg.msg_flags = 0; 1797 if (sock->file->f_flags & O_NONBLOCK) 1798 flags |= MSG_DONTWAIT; 1799 err = sock_recvmsg(sock, &msg, flags); 1800 1801 if (err >= 0 && addr != NULL) { 1802 err2 = move_addr_to_user(&address, 1803 msg.msg_namelen, addr, addr_len); 1804 if (err2 < 0) 1805 err = err2; 1806 } 1807 1808 fput_light(sock->file, fput_needed); 1809 out: 1810 return err; 1811 } 1812 1813 /* 1814 * Receive a datagram from a socket. 1815 */ 1816 1817 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1818 unsigned int, flags) 1819 { 1820 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1821 } 1822 1823 /* 1824 * Set a socket option. Because we don't know the option lengths we have 1825 * to pass the user mode parameter for the protocols to sort out. 1826 */ 1827 1828 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1829 char __user *, optval, int, optlen) 1830 { 1831 int err, fput_needed; 1832 struct socket *sock; 1833 1834 if (optlen < 0) 1835 return -EINVAL; 1836 1837 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1838 if (sock != NULL) { 1839 err = security_socket_setsockopt(sock, level, optname); 1840 if (err) 1841 goto out_put; 1842 1843 if (level == SOL_SOCKET) 1844 err = 1845 sock_setsockopt(sock, level, optname, optval, 1846 optlen); 1847 else 1848 err = 1849 sock->ops->setsockopt(sock, level, optname, optval, 1850 optlen); 1851 out_put: 1852 fput_light(sock->file, fput_needed); 1853 } 1854 return err; 1855 } 1856 1857 /* 1858 * Get a socket option. Because we don't know the option lengths we have 1859 * to pass a user mode parameter for the protocols to sort out. 1860 */ 1861 1862 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1863 char __user *, optval, int __user *, optlen) 1864 { 1865 int err, fput_needed; 1866 struct socket *sock; 1867 1868 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1869 if (sock != NULL) { 1870 err = security_socket_getsockopt(sock, level, optname); 1871 if (err) 1872 goto out_put; 1873 1874 if (level == SOL_SOCKET) 1875 err = 1876 sock_getsockopt(sock, level, optname, optval, 1877 optlen); 1878 else 1879 err = 1880 sock->ops->getsockopt(sock, level, optname, optval, 1881 optlen); 1882 out_put: 1883 fput_light(sock->file, fput_needed); 1884 } 1885 return err; 1886 } 1887 1888 /* 1889 * Shutdown a socket. 1890 */ 1891 1892 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1893 { 1894 int err, fput_needed; 1895 struct socket *sock; 1896 1897 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1898 if (sock != NULL) { 1899 err = security_socket_shutdown(sock, how); 1900 if (!err) 1901 err = sock->ops->shutdown(sock, how); 1902 fput_light(sock->file, fput_needed); 1903 } 1904 return err; 1905 } 1906 1907 /* A couple of helpful macros for getting the address of the 32/64 bit 1908 * fields which are the same type (int / unsigned) on our platforms. 1909 */ 1910 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1911 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1912 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1913 1914 struct used_address { 1915 struct sockaddr_storage name; 1916 unsigned int name_len; 1917 }; 1918 1919 static int copy_msghdr_from_user(struct msghdr *kmsg, 1920 struct user_msghdr __user *umsg, 1921 struct sockaddr __user **save_addr, 1922 struct iovec **iov) 1923 { 1924 struct user_msghdr msg; 1925 ssize_t err; 1926 1927 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1928 return -EFAULT; 1929 1930 kmsg->msg_control = (void __force *)msg.msg_control; 1931 kmsg->msg_controllen = msg.msg_controllen; 1932 kmsg->msg_flags = msg.msg_flags; 1933 1934 kmsg->msg_namelen = msg.msg_namelen; 1935 if (!msg.msg_name) 1936 kmsg->msg_namelen = 0; 1937 1938 if (kmsg->msg_namelen < 0) 1939 return -EINVAL; 1940 1941 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1942 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1943 1944 if (save_addr) 1945 *save_addr = msg.msg_name; 1946 1947 if (msg.msg_name && kmsg->msg_namelen) { 1948 if (!save_addr) { 1949 err = move_addr_to_kernel(msg.msg_name, 1950 kmsg->msg_namelen, 1951 kmsg->msg_name); 1952 if (err < 0) 1953 return err; 1954 } 1955 } else { 1956 kmsg->msg_name = NULL; 1957 kmsg->msg_namelen = 0; 1958 } 1959 1960 if (msg.msg_iovlen > UIO_MAXIOV) 1961 return -EMSGSIZE; 1962 1963 kmsg->msg_iocb = NULL; 1964 1965 return import_iovec(save_addr ? READ : WRITE, 1966 msg.msg_iov, msg.msg_iovlen, 1967 UIO_FASTIOV, iov, &kmsg->msg_iter); 1968 } 1969 1970 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1971 struct msghdr *msg_sys, unsigned int flags, 1972 struct used_address *used_address, 1973 unsigned int allowed_msghdr_flags) 1974 { 1975 struct compat_msghdr __user *msg_compat = 1976 (struct compat_msghdr __user *)msg; 1977 struct sockaddr_storage address; 1978 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1979 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1980 __aligned(sizeof(__kernel_size_t)); 1981 /* 20 is size of ipv6_pktinfo */ 1982 unsigned char *ctl_buf = ctl; 1983 int ctl_len; 1984 ssize_t err; 1985 1986 msg_sys->msg_name = &address; 1987 1988 if (MSG_CMSG_COMPAT & flags) 1989 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1990 else 1991 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1992 if (err < 0) 1993 return err; 1994 1995 err = -ENOBUFS; 1996 1997 if (msg_sys->msg_controllen > INT_MAX) 1998 goto out_freeiov; 1999 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2000 ctl_len = msg_sys->msg_controllen; 2001 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2002 err = 2003 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2004 sizeof(ctl)); 2005 if (err) 2006 goto out_freeiov; 2007 ctl_buf = msg_sys->msg_control; 2008 ctl_len = msg_sys->msg_controllen; 2009 } else if (ctl_len) { 2010 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2011 CMSG_ALIGN(sizeof(struct cmsghdr))); 2012 if (ctl_len > sizeof(ctl)) { 2013 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2014 if (ctl_buf == NULL) 2015 goto out_freeiov; 2016 } 2017 err = -EFAULT; 2018 /* 2019 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2020 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2021 * checking falls down on this. 2022 */ 2023 if (copy_from_user(ctl_buf, 2024 (void __user __force *)msg_sys->msg_control, 2025 ctl_len)) 2026 goto out_freectl; 2027 msg_sys->msg_control = ctl_buf; 2028 } 2029 msg_sys->msg_flags = flags; 2030 2031 if (sock->file->f_flags & O_NONBLOCK) 2032 msg_sys->msg_flags |= MSG_DONTWAIT; 2033 /* 2034 * If this is sendmmsg() and current destination address is same as 2035 * previously succeeded address, omit asking LSM's decision. 2036 * used_address->name_len is initialized to UINT_MAX so that the first 2037 * destination address never matches. 2038 */ 2039 if (used_address && msg_sys->msg_name && 2040 used_address->name_len == msg_sys->msg_namelen && 2041 !memcmp(&used_address->name, msg_sys->msg_name, 2042 used_address->name_len)) { 2043 err = sock_sendmsg_nosec(sock, msg_sys); 2044 goto out_freectl; 2045 } 2046 err = sock_sendmsg(sock, msg_sys); 2047 /* 2048 * If this is sendmmsg() and sending to current destination address was 2049 * successful, remember it. 2050 */ 2051 if (used_address && err >= 0) { 2052 used_address->name_len = msg_sys->msg_namelen; 2053 if (msg_sys->msg_name) 2054 memcpy(&used_address->name, msg_sys->msg_name, 2055 used_address->name_len); 2056 } 2057 2058 out_freectl: 2059 if (ctl_buf != ctl) 2060 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2061 out_freeiov: 2062 kfree(iov); 2063 return err; 2064 } 2065 2066 /* 2067 * BSD sendmsg interface 2068 */ 2069 2070 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2071 { 2072 int fput_needed, err; 2073 struct msghdr msg_sys; 2074 struct socket *sock; 2075 2076 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2077 if (!sock) 2078 goto out; 2079 2080 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2081 2082 fput_light(sock->file, fput_needed); 2083 out: 2084 return err; 2085 } 2086 2087 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2088 { 2089 if (flags & MSG_CMSG_COMPAT) 2090 return -EINVAL; 2091 return __sys_sendmsg(fd, msg, flags); 2092 } 2093 2094 /* 2095 * Linux sendmmsg interface 2096 */ 2097 2098 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2099 unsigned int flags) 2100 { 2101 int fput_needed, err, datagrams; 2102 struct socket *sock; 2103 struct mmsghdr __user *entry; 2104 struct compat_mmsghdr __user *compat_entry; 2105 struct msghdr msg_sys; 2106 struct used_address used_address; 2107 unsigned int oflags = flags; 2108 2109 if (vlen > UIO_MAXIOV) 2110 vlen = UIO_MAXIOV; 2111 2112 datagrams = 0; 2113 2114 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2115 if (!sock) 2116 return err; 2117 2118 used_address.name_len = UINT_MAX; 2119 entry = mmsg; 2120 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2121 err = 0; 2122 flags |= MSG_BATCH; 2123 2124 while (datagrams < vlen) { 2125 if (datagrams == vlen - 1) 2126 flags = oflags; 2127 2128 if (MSG_CMSG_COMPAT & flags) { 2129 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2130 &msg_sys, flags, &used_address, MSG_EOR); 2131 if (err < 0) 2132 break; 2133 err = __put_user(err, &compat_entry->msg_len); 2134 ++compat_entry; 2135 } else { 2136 err = ___sys_sendmsg(sock, 2137 (struct user_msghdr __user *)entry, 2138 &msg_sys, flags, &used_address, MSG_EOR); 2139 if (err < 0) 2140 break; 2141 err = put_user(err, &entry->msg_len); 2142 ++entry; 2143 } 2144 2145 if (err) 2146 break; 2147 ++datagrams; 2148 if (msg_data_left(&msg_sys)) 2149 break; 2150 cond_resched(); 2151 } 2152 2153 fput_light(sock->file, fput_needed); 2154 2155 /* We only return an error if no datagrams were able to be sent */ 2156 if (datagrams != 0) 2157 return datagrams; 2158 2159 return err; 2160 } 2161 2162 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2163 unsigned int, vlen, unsigned int, flags) 2164 { 2165 if (flags & MSG_CMSG_COMPAT) 2166 return -EINVAL; 2167 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2168 } 2169 2170 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2171 struct msghdr *msg_sys, unsigned int flags, int nosec) 2172 { 2173 struct compat_msghdr __user *msg_compat = 2174 (struct compat_msghdr __user *)msg; 2175 struct iovec iovstack[UIO_FASTIOV]; 2176 struct iovec *iov = iovstack; 2177 unsigned long cmsg_ptr; 2178 int len; 2179 ssize_t err; 2180 2181 /* kernel mode address */ 2182 struct sockaddr_storage addr; 2183 2184 /* user mode address pointers */ 2185 struct sockaddr __user *uaddr; 2186 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2187 2188 msg_sys->msg_name = &addr; 2189 2190 if (MSG_CMSG_COMPAT & flags) 2191 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2192 else 2193 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2194 if (err < 0) 2195 return err; 2196 2197 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2198 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2199 2200 /* We assume all kernel code knows the size of sockaddr_storage */ 2201 msg_sys->msg_namelen = 0; 2202 2203 if (sock->file->f_flags & O_NONBLOCK) 2204 flags |= MSG_DONTWAIT; 2205 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2206 if (err < 0) 2207 goto out_freeiov; 2208 len = err; 2209 2210 if (uaddr != NULL) { 2211 err = move_addr_to_user(&addr, 2212 msg_sys->msg_namelen, uaddr, 2213 uaddr_len); 2214 if (err < 0) 2215 goto out_freeiov; 2216 } 2217 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2218 COMPAT_FLAGS(msg)); 2219 if (err) 2220 goto out_freeiov; 2221 if (MSG_CMSG_COMPAT & flags) 2222 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2223 &msg_compat->msg_controllen); 2224 else 2225 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2226 &msg->msg_controllen); 2227 if (err) 2228 goto out_freeiov; 2229 err = len; 2230 2231 out_freeiov: 2232 kfree(iov); 2233 return err; 2234 } 2235 2236 /* 2237 * BSD recvmsg interface 2238 */ 2239 2240 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2241 { 2242 int fput_needed, err; 2243 struct msghdr msg_sys; 2244 struct socket *sock; 2245 2246 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2247 if (!sock) 2248 goto out; 2249 2250 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2251 2252 fput_light(sock->file, fput_needed); 2253 out: 2254 return err; 2255 } 2256 2257 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2258 unsigned int, flags) 2259 { 2260 if (flags & MSG_CMSG_COMPAT) 2261 return -EINVAL; 2262 return __sys_recvmsg(fd, msg, flags); 2263 } 2264 2265 /* 2266 * Linux recvmmsg interface 2267 */ 2268 2269 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2270 unsigned int flags, struct timespec *timeout) 2271 { 2272 int fput_needed, err, datagrams; 2273 struct socket *sock; 2274 struct mmsghdr __user *entry; 2275 struct compat_mmsghdr __user *compat_entry; 2276 struct msghdr msg_sys; 2277 struct timespec64 end_time; 2278 struct timespec64 timeout64; 2279 2280 if (timeout && 2281 poll_select_set_timeout(&end_time, timeout->tv_sec, 2282 timeout->tv_nsec)) 2283 return -EINVAL; 2284 2285 datagrams = 0; 2286 2287 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2288 if (!sock) 2289 return err; 2290 2291 err = sock_error(sock->sk); 2292 if (err) { 2293 datagrams = err; 2294 goto out_put; 2295 } 2296 2297 entry = mmsg; 2298 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2299 2300 while (datagrams < vlen) { 2301 /* 2302 * No need to ask LSM for more than the first datagram. 2303 */ 2304 if (MSG_CMSG_COMPAT & flags) { 2305 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2306 &msg_sys, flags & ~MSG_WAITFORONE, 2307 datagrams); 2308 if (err < 0) 2309 break; 2310 err = __put_user(err, &compat_entry->msg_len); 2311 ++compat_entry; 2312 } else { 2313 err = ___sys_recvmsg(sock, 2314 (struct user_msghdr __user *)entry, 2315 &msg_sys, flags & ~MSG_WAITFORONE, 2316 datagrams); 2317 if (err < 0) 2318 break; 2319 err = put_user(err, &entry->msg_len); 2320 ++entry; 2321 } 2322 2323 if (err) 2324 break; 2325 ++datagrams; 2326 2327 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2328 if (flags & MSG_WAITFORONE) 2329 flags |= MSG_DONTWAIT; 2330 2331 if (timeout) { 2332 ktime_get_ts64(&timeout64); 2333 *timeout = timespec64_to_timespec( 2334 timespec64_sub(end_time, timeout64)); 2335 if (timeout->tv_sec < 0) { 2336 timeout->tv_sec = timeout->tv_nsec = 0; 2337 break; 2338 } 2339 2340 /* Timeout, return less than vlen datagrams */ 2341 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2342 break; 2343 } 2344 2345 /* Out of band data, return right away */ 2346 if (msg_sys.msg_flags & MSG_OOB) 2347 break; 2348 cond_resched(); 2349 } 2350 2351 if (err == 0) 2352 goto out_put; 2353 2354 if (datagrams == 0) { 2355 datagrams = err; 2356 goto out_put; 2357 } 2358 2359 /* 2360 * We may return less entries than requested (vlen) if the 2361 * sock is non block and there aren't enough datagrams... 2362 */ 2363 if (err != -EAGAIN) { 2364 /* 2365 * ... or if recvmsg returns an error after we 2366 * received some datagrams, where we record the 2367 * error to return on the next call or if the 2368 * app asks about it using getsockopt(SO_ERROR). 2369 */ 2370 sock->sk->sk_err = -err; 2371 } 2372 out_put: 2373 fput_light(sock->file, fput_needed); 2374 2375 return datagrams; 2376 } 2377 2378 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2379 unsigned int, vlen, unsigned int, flags, 2380 struct timespec __user *, timeout) 2381 { 2382 int datagrams; 2383 struct timespec timeout_sys; 2384 2385 if (flags & MSG_CMSG_COMPAT) 2386 return -EINVAL; 2387 2388 if (!timeout) 2389 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2390 2391 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2392 return -EFAULT; 2393 2394 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2395 2396 if (datagrams > 0 && 2397 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2398 datagrams = -EFAULT; 2399 2400 return datagrams; 2401 } 2402 2403 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2404 /* Argument list sizes for sys_socketcall */ 2405 #define AL(x) ((x) * sizeof(unsigned long)) 2406 static const unsigned char nargs[21] = { 2407 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2408 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2409 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2410 AL(4), AL(5), AL(4) 2411 }; 2412 2413 #undef AL 2414 2415 /* 2416 * System call vectors. 2417 * 2418 * Argument checking cleaned up. Saved 20% in size. 2419 * This function doesn't need to set the kernel lock because 2420 * it is set by the callees. 2421 */ 2422 2423 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2424 { 2425 unsigned long a[AUDITSC_ARGS]; 2426 unsigned long a0, a1; 2427 int err; 2428 unsigned int len; 2429 2430 if (call < 1 || call > SYS_SENDMMSG) 2431 return -EINVAL; 2432 2433 len = nargs[call]; 2434 if (len > sizeof(a)) 2435 return -EINVAL; 2436 2437 /* copy_from_user should be SMP safe. */ 2438 if (copy_from_user(a, args, len)) 2439 return -EFAULT; 2440 2441 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2442 if (err) 2443 return err; 2444 2445 a0 = a[0]; 2446 a1 = a[1]; 2447 2448 switch (call) { 2449 case SYS_SOCKET: 2450 err = sys_socket(a0, a1, a[2]); 2451 break; 2452 case SYS_BIND: 2453 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2454 break; 2455 case SYS_CONNECT: 2456 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2457 break; 2458 case SYS_LISTEN: 2459 err = sys_listen(a0, a1); 2460 break; 2461 case SYS_ACCEPT: 2462 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2463 (int __user *)a[2], 0); 2464 break; 2465 case SYS_GETSOCKNAME: 2466 err = 2467 sys_getsockname(a0, (struct sockaddr __user *)a1, 2468 (int __user *)a[2]); 2469 break; 2470 case SYS_GETPEERNAME: 2471 err = 2472 sys_getpeername(a0, (struct sockaddr __user *)a1, 2473 (int __user *)a[2]); 2474 break; 2475 case SYS_SOCKETPAIR: 2476 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2477 break; 2478 case SYS_SEND: 2479 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2480 break; 2481 case SYS_SENDTO: 2482 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2483 (struct sockaddr __user *)a[4], a[5]); 2484 break; 2485 case SYS_RECV: 2486 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2487 break; 2488 case SYS_RECVFROM: 2489 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2490 (struct sockaddr __user *)a[4], 2491 (int __user *)a[5]); 2492 break; 2493 case SYS_SHUTDOWN: 2494 err = sys_shutdown(a0, a1); 2495 break; 2496 case SYS_SETSOCKOPT: 2497 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2498 break; 2499 case SYS_GETSOCKOPT: 2500 err = 2501 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2502 (int __user *)a[4]); 2503 break; 2504 case SYS_SENDMSG: 2505 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2506 break; 2507 case SYS_SENDMMSG: 2508 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2509 break; 2510 case SYS_RECVMSG: 2511 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2512 break; 2513 case SYS_RECVMMSG: 2514 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2515 (struct timespec __user *)a[4]); 2516 break; 2517 case SYS_ACCEPT4: 2518 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2519 (int __user *)a[2], a[3]); 2520 break; 2521 default: 2522 err = -EINVAL; 2523 break; 2524 } 2525 return err; 2526 } 2527 2528 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2529 2530 /** 2531 * sock_register - add a socket protocol handler 2532 * @ops: description of protocol 2533 * 2534 * This function is called by a protocol handler that wants to 2535 * advertise its address family, and have it linked into the 2536 * socket interface. The value ops->family corresponds to the 2537 * socket system call protocol family. 2538 */ 2539 int sock_register(const struct net_proto_family *ops) 2540 { 2541 int err; 2542 2543 if (ops->family >= NPROTO) { 2544 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2545 return -ENOBUFS; 2546 } 2547 2548 spin_lock(&net_family_lock); 2549 if (rcu_dereference_protected(net_families[ops->family], 2550 lockdep_is_held(&net_family_lock))) 2551 err = -EEXIST; 2552 else { 2553 rcu_assign_pointer(net_families[ops->family], ops); 2554 err = 0; 2555 } 2556 spin_unlock(&net_family_lock); 2557 2558 pr_info("NET: Registered protocol family %d\n", ops->family); 2559 return err; 2560 } 2561 EXPORT_SYMBOL(sock_register); 2562 2563 /** 2564 * sock_unregister - remove a protocol handler 2565 * @family: protocol family to remove 2566 * 2567 * This function is called by a protocol handler that wants to 2568 * remove its address family, and have it unlinked from the 2569 * new socket creation. 2570 * 2571 * If protocol handler is a module, then it can use module reference 2572 * counts to protect against new references. If protocol handler is not 2573 * a module then it needs to provide its own protection in 2574 * the ops->create routine. 2575 */ 2576 void sock_unregister(int family) 2577 { 2578 BUG_ON(family < 0 || family >= NPROTO); 2579 2580 spin_lock(&net_family_lock); 2581 RCU_INIT_POINTER(net_families[family], NULL); 2582 spin_unlock(&net_family_lock); 2583 2584 synchronize_rcu(); 2585 2586 pr_info("NET: Unregistered protocol family %d\n", family); 2587 } 2588 EXPORT_SYMBOL(sock_unregister); 2589 2590 static int __init sock_init(void) 2591 { 2592 int err; 2593 /* 2594 * Initialize the network sysctl infrastructure. 2595 */ 2596 err = net_sysctl_init(); 2597 if (err) 2598 goto out; 2599 2600 /* 2601 * Initialize skbuff SLAB cache 2602 */ 2603 skb_init(); 2604 2605 /* 2606 * Initialize the protocols module. 2607 */ 2608 2609 init_inodecache(); 2610 2611 err = register_filesystem(&sock_fs_type); 2612 if (err) 2613 goto out_fs; 2614 sock_mnt = kern_mount(&sock_fs_type); 2615 if (IS_ERR(sock_mnt)) { 2616 err = PTR_ERR(sock_mnt); 2617 goto out_mount; 2618 } 2619 2620 /* The real protocol initialization is performed in later initcalls. 2621 */ 2622 2623 #ifdef CONFIG_NETFILTER 2624 err = netfilter_init(); 2625 if (err) 2626 goto out; 2627 #endif 2628 2629 ptp_classifier_init(); 2630 2631 out: 2632 return err; 2633 2634 out_mount: 2635 unregister_filesystem(&sock_fs_type); 2636 out_fs: 2637 goto out; 2638 } 2639 2640 core_initcall(sock_init); /* early initcall */ 2641 2642 #ifdef CONFIG_PROC_FS 2643 void socket_seq_show(struct seq_file *seq) 2644 { 2645 seq_printf(seq, "sockets: used %d\n", 2646 sock_inuse_get(seq->private)); 2647 } 2648 #endif /* CONFIG_PROC_FS */ 2649 2650 #ifdef CONFIG_COMPAT 2651 static int do_siocgstamp(struct net *net, struct socket *sock, 2652 unsigned int cmd, void __user *up) 2653 { 2654 mm_segment_t old_fs = get_fs(); 2655 struct timeval ktv; 2656 int err; 2657 2658 set_fs(KERNEL_DS); 2659 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2660 set_fs(old_fs); 2661 if (!err) 2662 err = compat_put_timeval(&ktv, up); 2663 2664 return err; 2665 } 2666 2667 static int do_siocgstampns(struct net *net, struct socket *sock, 2668 unsigned int cmd, void __user *up) 2669 { 2670 mm_segment_t old_fs = get_fs(); 2671 struct timespec kts; 2672 int err; 2673 2674 set_fs(KERNEL_DS); 2675 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2676 set_fs(old_fs); 2677 if (!err) 2678 err = compat_put_timespec(&kts, up); 2679 2680 return err; 2681 } 2682 2683 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2684 { 2685 struct compat_ifconf ifc32; 2686 struct ifconf ifc; 2687 int err; 2688 2689 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2690 return -EFAULT; 2691 2692 ifc.ifc_len = ifc32.ifc_len; 2693 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2694 2695 rtnl_lock(); 2696 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2697 rtnl_unlock(); 2698 if (err) 2699 return err; 2700 2701 ifc32.ifc_len = ifc.ifc_len; 2702 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2703 return -EFAULT; 2704 2705 return 0; 2706 } 2707 2708 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2709 { 2710 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2711 bool convert_in = false, convert_out = false; 2712 size_t buf_size = 0; 2713 struct ethtool_rxnfc __user *rxnfc = NULL; 2714 struct ifreq ifr; 2715 u32 rule_cnt = 0, actual_rule_cnt; 2716 u32 ethcmd; 2717 u32 data; 2718 int ret; 2719 2720 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2721 return -EFAULT; 2722 2723 compat_rxnfc = compat_ptr(data); 2724 2725 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2726 return -EFAULT; 2727 2728 /* Most ethtool structures are defined without padding. 2729 * Unfortunately struct ethtool_rxnfc is an exception. 2730 */ 2731 switch (ethcmd) { 2732 default: 2733 break; 2734 case ETHTOOL_GRXCLSRLALL: 2735 /* Buffer size is variable */ 2736 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2737 return -EFAULT; 2738 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2739 return -ENOMEM; 2740 buf_size += rule_cnt * sizeof(u32); 2741 /* fall through */ 2742 case ETHTOOL_GRXRINGS: 2743 case ETHTOOL_GRXCLSRLCNT: 2744 case ETHTOOL_GRXCLSRULE: 2745 case ETHTOOL_SRXCLSRLINS: 2746 convert_out = true; 2747 /* fall through */ 2748 case ETHTOOL_SRXCLSRLDEL: 2749 buf_size += sizeof(struct ethtool_rxnfc); 2750 convert_in = true; 2751 rxnfc = compat_alloc_user_space(buf_size); 2752 break; 2753 } 2754 2755 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2756 return -EFAULT; 2757 2758 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2759 2760 if (convert_in) { 2761 /* We expect there to be holes between fs.m_ext and 2762 * fs.ring_cookie and at the end of fs, but nowhere else. 2763 */ 2764 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2765 sizeof(compat_rxnfc->fs.m_ext) != 2766 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2767 sizeof(rxnfc->fs.m_ext)); 2768 BUILD_BUG_ON( 2769 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2770 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2771 offsetof(struct ethtool_rxnfc, fs.location) - 2772 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2773 2774 if (copy_in_user(rxnfc, compat_rxnfc, 2775 (void __user *)(&rxnfc->fs.m_ext + 1) - 2776 (void __user *)rxnfc) || 2777 copy_in_user(&rxnfc->fs.ring_cookie, 2778 &compat_rxnfc->fs.ring_cookie, 2779 (void __user *)(&rxnfc->fs.location + 1) - 2780 (void __user *)&rxnfc->fs.ring_cookie) || 2781 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2782 sizeof(rxnfc->rule_cnt))) 2783 return -EFAULT; 2784 } 2785 2786 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2787 if (ret) 2788 return ret; 2789 2790 if (convert_out) { 2791 if (copy_in_user(compat_rxnfc, rxnfc, 2792 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2793 (const void __user *)rxnfc) || 2794 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2795 &rxnfc->fs.ring_cookie, 2796 (const void __user *)(&rxnfc->fs.location + 1) - 2797 (const void __user *)&rxnfc->fs.ring_cookie) || 2798 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2799 sizeof(rxnfc->rule_cnt))) 2800 return -EFAULT; 2801 2802 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2803 /* As an optimisation, we only copy the actual 2804 * number of rules that the underlying 2805 * function returned. Since Mallory might 2806 * change the rule count in user memory, we 2807 * check that it is less than the rule count 2808 * originally given (as the user buffer size), 2809 * which has been range-checked. 2810 */ 2811 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2812 return -EFAULT; 2813 if (actual_rule_cnt < rule_cnt) 2814 rule_cnt = actual_rule_cnt; 2815 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2816 &rxnfc->rule_locs[0], 2817 rule_cnt * sizeof(u32))) 2818 return -EFAULT; 2819 } 2820 } 2821 2822 return 0; 2823 } 2824 2825 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2826 { 2827 compat_uptr_t uptr32; 2828 struct ifreq ifr; 2829 void __user *saved; 2830 int err; 2831 2832 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2833 return -EFAULT; 2834 2835 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2836 return -EFAULT; 2837 2838 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2839 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2840 2841 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2842 if (!err) { 2843 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2844 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2845 err = -EFAULT; 2846 } 2847 return err; 2848 } 2849 2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2852 struct compat_ifreq __user *u_ifreq32) 2853 { 2854 struct ifreq ifreq; 2855 u32 data32; 2856 2857 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2858 return -EFAULT; 2859 if (get_user(data32, &u_ifreq32->ifr_data)) 2860 return -EFAULT; 2861 ifreq.ifr_data = compat_ptr(data32); 2862 2863 return dev_ioctl(net, cmd, &ifreq, NULL); 2864 } 2865 2866 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2867 struct compat_ifreq __user *uifr32) 2868 { 2869 struct ifreq ifr; 2870 struct compat_ifmap __user *uifmap32; 2871 int err; 2872 2873 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2874 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2875 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2876 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2877 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2878 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2879 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2880 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2881 if (err) 2882 return -EFAULT; 2883 2884 err = dev_ioctl(net, cmd, &ifr, NULL); 2885 2886 if (cmd == SIOCGIFMAP && !err) { 2887 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2888 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2889 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2890 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2891 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2892 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2893 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2894 if (err) 2895 err = -EFAULT; 2896 } 2897 return err; 2898 } 2899 2900 struct rtentry32 { 2901 u32 rt_pad1; 2902 struct sockaddr rt_dst; /* target address */ 2903 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2904 struct sockaddr rt_genmask; /* target network mask (IP) */ 2905 unsigned short rt_flags; 2906 short rt_pad2; 2907 u32 rt_pad3; 2908 unsigned char rt_tos; 2909 unsigned char rt_class; 2910 short rt_pad4; 2911 short rt_metric; /* +1 for binary compatibility! */ 2912 /* char * */ u32 rt_dev; /* forcing the device at add */ 2913 u32 rt_mtu; /* per route MTU/Window */ 2914 u32 rt_window; /* Window clamping */ 2915 unsigned short rt_irtt; /* Initial RTT */ 2916 }; 2917 2918 struct in6_rtmsg32 { 2919 struct in6_addr rtmsg_dst; 2920 struct in6_addr rtmsg_src; 2921 struct in6_addr rtmsg_gateway; 2922 u32 rtmsg_type; 2923 u16 rtmsg_dst_len; 2924 u16 rtmsg_src_len; 2925 u32 rtmsg_metric; 2926 u32 rtmsg_info; 2927 u32 rtmsg_flags; 2928 s32 rtmsg_ifindex; 2929 }; 2930 2931 static int routing_ioctl(struct net *net, struct socket *sock, 2932 unsigned int cmd, void __user *argp) 2933 { 2934 int ret; 2935 void *r = NULL; 2936 struct in6_rtmsg r6; 2937 struct rtentry r4; 2938 char devname[16]; 2939 u32 rtdev; 2940 mm_segment_t old_fs = get_fs(); 2941 2942 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2943 struct in6_rtmsg32 __user *ur6 = argp; 2944 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2945 3 * sizeof(struct in6_addr)); 2946 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2947 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2948 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2949 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2950 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2951 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2952 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2953 2954 r = (void *) &r6; 2955 } else { /* ipv4 */ 2956 struct rtentry32 __user *ur4 = argp; 2957 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2958 3 * sizeof(struct sockaddr)); 2959 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 2960 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 2961 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2962 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 2963 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2964 ret |= get_user(rtdev, &(ur4->rt_dev)); 2965 if (rtdev) { 2966 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2967 r4.rt_dev = (char __user __force *)devname; 2968 devname[15] = 0; 2969 } else 2970 r4.rt_dev = NULL; 2971 2972 r = (void *) &r4; 2973 } 2974 2975 if (ret) { 2976 ret = -EFAULT; 2977 goto out; 2978 } 2979 2980 set_fs(KERNEL_DS); 2981 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2982 set_fs(old_fs); 2983 2984 out: 2985 return ret; 2986 } 2987 2988 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2989 * for some operations; this forces use of the newer bridge-utils that 2990 * use compatible ioctls 2991 */ 2992 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2993 { 2994 compat_ulong_t tmp; 2995 2996 if (get_user(tmp, argp)) 2997 return -EFAULT; 2998 if (tmp == BRCTL_GET_VERSION) 2999 return BRCTL_VERSION + 1; 3000 return -EINVAL; 3001 } 3002 3003 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3004 unsigned int cmd, unsigned long arg) 3005 { 3006 void __user *argp = compat_ptr(arg); 3007 struct sock *sk = sock->sk; 3008 struct net *net = sock_net(sk); 3009 3010 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3011 return compat_ifr_data_ioctl(net, cmd, argp); 3012 3013 switch (cmd) { 3014 case SIOCSIFBR: 3015 case SIOCGIFBR: 3016 return old_bridge_ioctl(argp); 3017 case SIOCGIFCONF: 3018 return compat_dev_ifconf(net, argp); 3019 case SIOCETHTOOL: 3020 return ethtool_ioctl(net, argp); 3021 case SIOCWANDEV: 3022 return compat_siocwandev(net, argp); 3023 case SIOCGIFMAP: 3024 case SIOCSIFMAP: 3025 return compat_sioc_ifmap(net, cmd, argp); 3026 case SIOCADDRT: 3027 case SIOCDELRT: 3028 return routing_ioctl(net, sock, cmd, argp); 3029 case SIOCGSTAMP: 3030 return do_siocgstamp(net, sock, cmd, argp); 3031 case SIOCGSTAMPNS: 3032 return do_siocgstampns(net, sock, cmd, argp); 3033 case SIOCBONDSLAVEINFOQUERY: 3034 case SIOCBONDINFOQUERY: 3035 case SIOCSHWTSTAMP: 3036 case SIOCGHWTSTAMP: 3037 return compat_ifr_data_ioctl(net, cmd, argp); 3038 3039 case FIOSETOWN: 3040 case SIOCSPGRP: 3041 case FIOGETOWN: 3042 case SIOCGPGRP: 3043 case SIOCBRADDBR: 3044 case SIOCBRDELBR: 3045 case SIOCGIFVLAN: 3046 case SIOCSIFVLAN: 3047 case SIOCADDDLCI: 3048 case SIOCDELDLCI: 3049 case SIOCGSKNS: 3050 return sock_ioctl(file, cmd, arg); 3051 3052 case SIOCGIFFLAGS: 3053 case SIOCSIFFLAGS: 3054 case SIOCGIFMETRIC: 3055 case SIOCSIFMETRIC: 3056 case SIOCGIFMTU: 3057 case SIOCSIFMTU: 3058 case SIOCGIFMEM: 3059 case SIOCSIFMEM: 3060 case SIOCGIFHWADDR: 3061 case SIOCSIFHWADDR: 3062 case SIOCADDMULTI: 3063 case SIOCDELMULTI: 3064 case SIOCGIFINDEX: 3065 case SIOCGIFADDR: 3066 case SIOCSIFADDR: 3067 case SIOCSIFHWBROADCAST: 3068 case SIOCDIFADDR: 3069 case SIOCGIFBRDADDR: 3070 case SIOCSIFBRDADDR: 3071 case SIOCGIFDSTADDR: 3072 case SIOCSIFDSTADDR: 3073 case SIOCGIFNETMASK: 3074 case SIOCSIFNETMASK: 3075 case SIOCSIFPFLAGS: 3076 case SIOCGIFPFLAGS: 3077 case SIOCGIFTXQLEN: 3078 case SIOCSIFTXQLEN: 3079 case SIOCBRADDIF: 3080 case SIOCBRDELIF: 3081 case SIOCSIFNAME: 3082 case SIOCGMIIPHY: 3083 case SIOCGMIIREG: 3084 case SIOCSMIIREG: 3085 case SIOCSARP: 3086 case SIOCGARP: 3087 case SIOCDARP: 3088 case SIOCATMARK: 3089 case SIOCBONDENSLAVE: 3090 case SIOCBONDRELEASE: 3091 case SIOCBONDSETHWADDR: 3092 case SIOCBONDCHANGEACTIVE: 3093 case SIOCGIFNAME: 3094 return sock_do_ioctl(net, sock, cmd, arg); 3095 } 3096 3097 return -ENOIOCTLCMD; 3098 } 3099 3100 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3101 unsigned long arg) 3102 { 3103 struct socket *sock = file->private_data; 3104 int ret = -ENOIOCTLCMD; 3105 struct sock *sk; 3106 struct net *net; 3107 3108 sk = sock->sk; 3109 net = sock_net(sk); 3110 3111 if (sock->ops->compat_ioctl) 3112 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3113 3114 if (ret == -ENOIOCTLCMD && 3115 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3116 ret = compat_wext_handle_ioctl(net, cmd, arg); 3117 3118 if (ret == -ENOIOCTLCMD) 3119 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3120 3121 return ret; 3122 } 3123 #endif 3124 3125 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3126 { 3127 return sock->ops->bind(sock, addr, addrlen); 3128 } 3129 EXPORT_SYMBOL(kernel_bind); 3130 3131 int kernel_listen(struct socket *sock, int backlog) 3132 { 3133 return sock->ops->listen(sock, backlog); 3134 } 3135 EXPORT_SYMBOL(kernel_listen); 3136 3137 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3138 { 3139 struct sock *sk = sock->sk; 3140 int err; 3141 3142 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3143 newsock); 3144 if (err < 0) 3145 goto done; 3146 3147 err = sock->ops->accept(sock, *newsock, flags, true); 3148 if (err < 0) { 3149 sock_release(*newsock); 3150 *newsock = NULL; 3151 goto done; 3152 } 3153 3154 (*newsock)->ops = sock->ops; 3155 __module_get((*newsock)->ops->owner); 3156 3157 done: 3158 return err; 3159 } 3160 EXPORT_SYMBOL(kernel_accept); 3161 3162 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3163 int flags) 3164 { 3165 return sock->ops->connect(sock, addr, addrlen, flags); 3166 } 3167 EXPORT_SYMBOL(kernel_connect); 3168 3169 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3170 int *addrlen) 3171 { 3172 return sock->ops->getname(sock, addr, addrlen, 0); 3173 } 3174 EXPORT_SYMBOL(kernel_getsockname); 3175 3176 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3177 int *addrlen) 3178 { 3179 return sock->ops->getname(sock, addr, addrlen, 1); 3180 } 3181 EXPORT_SYMBOL(kernel_getpeername); 3182 3183 int kernel_getsockopt(struct socket *sock, int level, int optname, 3184 char *optval, int *optlen) 3185 { 3186 mm_segment_t oldfs = get_fs(); 3187 char __user *uoptval; 3188 int __user *uoptlen; 3189 int err; 3190 3191 uoptval = (char __user __force *) optval; 3192 uoptlen = (int __user __force *) optlen; 3193 3194 set_fs(KERNEL_DS); 3195 if (level == SOL_SOCKET) 3196 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3197 else 3198 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3199 uoptlen); 3200 set_fs(oldfs); 3201 return err; 3202 } 3203 EXPORT_SYMBOL(kernel_getsockopt); 3204 3205 int kernel_setsockopt(struct socket *sock, int level, int optname, 3206 char *optval, unsigned int optlen) 3207 { 3208 mm_segment_t oldfs = get_fs(); 3209 char __user *uoptval; 3210 int err; 3211 3212 uoptval = (char __user __force *) optval; 3213 3214 set_fs(KERNEL_DS); 3215 if (level == SOL_SOCKET) 3216 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3217 else 3218 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3219 optlen); 3220 set_fs(oldfs); 3221 return err; 3222 } 3223 EXPORT_SYMBOL(kernel_setsockopt); 3224 3225 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3226 size_t size, int flags) 3227 { 3228 if (sock->ops->sendpage) 3229 return sock->ops->sendpage(sock, page, offset, size, flags); 3230 3231 return sock_no_sendpage(sock, page, offset, size, flags); 3232 } 3233 EXPORT_SYMBOL(kernel_sendpage); 3234 3235 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3236 size_t size, int flags) 3237 { 3238 struct socket *sock = sk->sk_socket; 3239 3240 if (sock->ops->sendpage_locked) 3241 return sock->ops->sendpage_locked(sk, page, offset, size, 3242 flags); 3243 3244 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3245 } 3246 EXPORT_SYMBOL(kernel_sendpage_locked); 3247 3248 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3249 { 3250 return sock->ops->shutdown(sock, how); 3251 } 3252 EXPORT_SYMBOL(kernel_sock_shutdown); 3253 3254 /* This routine returns the IP overhead imposed by a socket i.e. 3255 * the length of the underlying IP header, depending on whether 3256 * this is an IPv4 or IPv6 socket and the length from IP options turned 3257 * on at the socket. Assumes that the caller has a lock on the socket. 3258 */ 3259 u32 kernel_sock_ip_overhead(struct sock *sk) 3260 { 3261 struct inet_sock *inet; 3262 struct ip_options_rcu *opt; 3263 u32 overhead = 0; 3264 #if IS_ENABLED(CONFIG_IPV6) 3265 struct ipv6_pinfo *np; 3266 struct ipv6_txoptions *optv6 = NULL; 3267 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3268 3269 if (!sk) 3270 return overhead; 3271 3272 switch (sk->sk_family) { 3273 case AF_INET: 3274 inet = inet_sk(sk); 3275 overhead += sizeof(struct iphdr); 3276 opt = rcu_dereference_protected(inet->inet_opt, 3277 sock_owned_by_user(sk)); 3278 if (opt) 3279 overhead += opt->opt.optlen; 3280 return overhead; 3281 #if IS_ENABLED(CONFIG_IPV6) 3282 case AF_INET6: 3283 np = inet6_sk(sk); 3284 overhead += sizeof(struct ipv6hdr); 3285 if (np) 3286 optv6 = rcu_dereference_protected(np->opt, 3287 sock_owned_by_user(sk)); 3288 if (optv6) 3289 overhead += (optv6->opt_flen + optv6->opt_nflen); 3290 return overhead; 3291 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3292 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3293 return overhead; 3294 } 3295 } 3296 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3297