1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 108 #ifdef CONFIG_NET_RX_BUSY_POLL 109 unsigned int sysctl_net_busy_read __read_mostly; 110 unsigned int sysctl_net_busy_poll __read_mostly; 111 #endif 112 113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 115 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 116 117 static int sock_close(struct inode *inode, struct file *file); 118 static __poll_t sock_poll(struct file *file, 119 struct poll_table_struct *wait); 120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 121 #ifdef CONFIG_COMPAT 122 static long compat_sock_ioctl(struct file *file, 123 unsigned int cmd, unsigned long arg); 124 #endif 125 static int sock_fasync(int fd, struct file *filp, int on); 126 static ssize_t sock_sendpage(struct file *file, struct page *page, 127 int offset, size_t size, loff_t *ppos, int more); 128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 129 struct pipe_inode_info *pipe, size_t len, 130 unsigned int flags); 131 132 #ifdef CONFIG_PROC_FS 133 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 134 { 135 struct socket *sock = f->private_data; 136 137 if (sock->ops->show_fdinfo) 138 sock->ops->show_fdinfo(m, sock); 139 } 140 #else 141 #define sock_show_fdinfo NULL 142 #endif 143 144 /* 145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 146 * in the operation structures but are done directly via the socketcall() multiplexor. 147 */ 148 149 static const struct file_operations socket_file_ops = { 150 .owner = THIS_MODULE, 151 .llseek = no_llseek, 152 .read_iter = sock_read_iter, 153 .write_iter = sock_write_iter, 154 .poll = sock_poll, 155 .unlocked_ioctl = sock_ioctl, 156 #ifdef CONFIG_COMPAT 157 .compat_ioctl = compat_sock_ioctl, 158 #endif 159 .mmap = sock_mmap, 160 .release = sock_close, 161 .fasync = sock_fasync, 162 .sendpage = sock_sendpage, 163 .splice_write = generic_splice_sendpage, 164 .splice_read = sock_splice_read, 165 .show_fdinfo = sock_show_fdinfo, 166 }; 167 168 /* 169 * The protocol list. Each protocol is registered in here. 170 */ 171 172 static DEFINE_SPINLOCK(net_family_lock); 173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 174 175 /* 176 * Support routines. 177 * Move socket addresses back and forth across the kernel/user 178 * divide and look after the messy bits. 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 221 void __user *uaddr, int __user *ulen) 222 { 223 int err; 224 int len; 225 226 BUG_ON(klen > sizeof(struct sockaddr_storage)); 227 err = get_user(len, ulen); 228 if (err) 229 return err; 230 if (len > klen) 231 len = klen; 232 if (len < 0) 233 return -EINVAL; 234 if (len) { 235 if (audit_sockaddr(klen, kaddr)) 236 return -ENOMEM; 237 if (copy_to_user(uaddr, kaddr, len)) 238 return -EFAULT; 239 } 240 /* 241 * "fromlen shall refer to the value before truncation.." 242 * 1003.1g 243 */ 244 return __put_user(klen, ulen); 245 } 246 247 static struct kmem_cache *sock_inode_cachep __ro_after_init; 248 249 static struct inode *sock_alloc_inode(struct super_block *sb) 250 { 251 struct socket_alloc *ei; 252 253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 254 if (!ei) 255 return NULL; 256 init_waitqueue_head(&ei->socket.wq.wait); 257 ei->socket.wq.fasync_list = NULL; 258 ei->socket.wq.flags = 0; 259 260 ei->socket.state = SS_UNCONNECTED; 261 ei->socket.flags = 0; 262 ei->socket.ops = NULL; 263 ei->socket.sk = NULL; 264 ei->socket.file = NULL; 265 266 return &ei->vfs_inode; 267 } 268 269 static void sock_free_inode(struct inode *inode) 270 { 271 struct socket_alloc *ei; 272 273 ei = container_of(inode, struct socket_alloc, vfs_inode); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static void init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 292 init_once); 293 BUG_ON(sock_inode_cachep == NULL); 294 } 295 296 static const struct super_operations sockfs_ops = { 297 .alloc_inode = sock_alloc_inode, 298 .free_inode = sock_free_inode, 299 .statfs = simple_statfs, 300 }; 301 302 /* 303 * sockfs_dname() is called from d_path(). 304 */ 305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 306 { 307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 308 d_inode(dentry)->i_ino); 309 } 310 311 static const struct dentry_operations sockfs_dentry_operations = { 312 .d_dname = sockfs_dname, 313 }; 314 315 static int sockfs_xattr_get(const struct xattr_handler *handler, 316 struct dentry *dentry, struct inode *inode, 317 const char *suffix, void *value, size_t size) 318 { 319 if (value) { 320 if (dentry->d_name.len + 1 > size) 321 return -ERANGE; 322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 323 } 324 return dentry->d_name.len + 1; 325 } 326 327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 330 331 static const struct xattr_handler sockfs_xattr_handler = { 332 .name = XATTR_NAME_SOCKPROTONAME, 333 .get = sockfs_xattr_get, 334 }; 335 336 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 337 struct dentry *dentry, struct inode *inode, 338 const char *suffix, const void *value, 339 size_t size, int flags) 340 { 341 /* Handled by LSM. */ 342 return -EAGAIN; 343 } 344 345 static const struct xattr_handler sockfs_security_xattr_handler = { 346 .prefix = XATTR_SECURITY_PREFIX, 347 .set = sockfs_security_xattr_set, 348 }; 349 350 static const struct xattr_handler *sockfs_xattr_handlers[] = { 351 &sockfs_xattr_handler, 352 &sockfs_security_xattr_handler, 353 NULL 354 }; 355 356 static int sockfs_init_fs_context(struct fs_context *fc) 357 { 358 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 359 if (!ctx) 360 return -ENOMEM; 361 ctx->ops = &sockfs_ops; 362 ctx->dops = &sockfs_dentry_operations; 363 ctx->xattr = sockfs_xattr_handlers; 364 return 0; 365 } 366 367 static struct vfsmount *sock_mnt __read_mostly; 368 369 static struct file_system_type sock_fs_type = { 370 .name = "sockfs", 371 .init_fs_context = sockfs_init_fs_context, 372 .kill_sb = kill_anon_super, 373 }; 374 375 /* 376 * Obtains the first available file descriptor and sets it up for use. 377 * 378 * These functions create file structures and maps them to fd space 379 * of the current process. On success it returns file descriptor 380 * and file struct implicitly stored in sock->file. 381 * Note that another thread may close file descriptor before we return 382 * from this function. We use the fact that now we do not refer 383 * to socket after mapping. If one day we will need it, this 384 * function will increment ref. count on file by 1. 385 * 386 * In any case returned fd MAY BE not valid! 387 * This race condition is unavoidable 388 * with shared fd spaces, we cannot solve it inside kernel, 389 * but we take care of internal coherence yet. 390 */ 391 392 /** 393 * sock_alloc_file - Bind a &socket to a &file 394 * @sock: socket 395 * @flags: file status flags 396 * @dname: protocol name 397 * 398 * Returns the &file bound with @sock, implicitly storing it 399 * in sock->file. If dname is %NULL, sets to "". 400 * On failure the return is a ERR pointer (see linux/err.h). 401 * This function uses GFP_KERNEL internally. 402 */ 403 404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 405 { 406 struct file *file; 407 408 if (!dname) 409 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 410 411 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 412 O_RDWR | (flags & O_NONBLOCK), 413 &socket_file_ops); 414 if (IS_ERR(file)) { 415 sock_release(sock); 416 return file; 417 } 418 419 sock->file = file; 420 file->private_data = sock; 421 stream_open(SOCK_INODE(sock), file); 422 return file; 423 } 424 EXPORT_SYMBOL(sock_alloc_file); 425 426 static int sock_map_fd(struct socket *sock, int flags) 427 { 428 struct file *newfile; 429 int fd = get_unused_fd_flags(flags); 430 if (unlikely(fd < 0)) { 431 sock_release(sock); 432 return fd; 433 } 434 435 newfile = sock_alloc_file(sock, flags, NULL); 436 if (!IS_ERR(newfile)) { 437 fd_install(fd, newfile); 438 return fd; 439 } 440 441 put_unused_fd(fd); 442 return PTR_ERR(newfile); 443 } 444 445 /** 446 * sock_from_file - Return the &socket bounded to @file. 447 * @file: file 448 * @err: pointer to an error code return 449 * 450 * On failure returns %NULL and assigns -ENOTSOCK to @err. 451 */ 452 453 struct socket *sock_from_file(struct file *file, int *err) 454 { 455 if (file->f_op == &socket_file_ops) 456 return file->private_data; /* set in sock_map_fd */ 457 458 *err = -ENOTSOCK; 459 return NULL; 460 } 461 EXPORT_SYMBOL(sock_from_file); 462 463 /** 464 * sockfd_lookup - Go from a file number to its socket slot 465 * @fd: file handle 466 * @err: pointer to an error code return 467 * 468 * The file handle passed in is locked and the socket it is bound 469 * to is returned. If an error occurs the err pointer is overwritten 470 * with a negative errno code and NULL is returned. The function checks 471 * for both invalid handles and passing a handle which is not a socket. 472 * 473 * On a success the socket object pointer is returned. 474 */ 475 476 struct socket *sockfd_lookup(int fd, int *err) 477 { 478 struct file *file; 479 struct socket *sock; 480 481 file = fget(fd); 482 if (!file) { 483 *err = -EBADF; 484 return NULL; 485 } 486 487 sock = sock_from_file(file, err); 488 if (!sock) 489 fput(file); 490 return sock; 491 } 492 EXPORT_SYMBOL(sockfd_lookup); 493 494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 495 { 496 struct fd f = fdget(fd); 497 struct socket *sock; 498 499 *err = -EBADF; 500 if (f.file) { 501 sock = sock_from_file(f.file, err); 502 if (likely(sock)) { 503 *fput_needed = f.flags & FDPUT_FPUT; 504 return sock; 505 } 506 fdput(f); 507 } 508 return NULL; 509 } 510 511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 512 size_t size) 513 { 514 ssize_t len; 515 ssize_t used = 0; 516 517 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 518 if (len < 0) 519 return len; 520 used += len; 521 if (buffer) { 522 if (size < used) 523 return -ERANGE; 524 buffer += len; 525 } 526 527 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 528 used += len; 529 if (buffer) { 530 if (size < used) 531 return -ERANGE; 532 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 533 buffer += len; 534 } 535 536 return used; 537 } 538 539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 540 { 541 int err = simple_setattr(dentry, iattr); 542 543 if (!err && (iattr->ia_valid & ATTR_UID)) { 544 struct socket *sock = SOCKET_I(d_inode(dentry)); 545 546 if (sock->sk) 547 sock->sk->sk_uid = iattr->ia_uid; 548 else 549 err = -ENOENT; 550 } 551 552 return err; 553 } 554 555 static const struct inode_operations sockfs_inode_ops = { 556 .listxattr = sockfs_listxattr, 557 .setattr = sockfs_setattr, 558 }; 559 560 /** 561 * sock_alloc - allocate a socket 562 * 563 * Allocate a new inode and socket object. The two are bound together 564 * and initialised. The socket is then returned. If we are out of inodes 565 * NULL is returned. This functions uses GFP_KERNEL internally. 566 */ 567 568 struct socket *sock_alloc(void) 569 { 570 struct inode *inode; 571 struct socket *sock; 572 573 inode = new_inode_pseudo(sock_mnt->mnt_sb); 574 if (!inode) 575 return NULL; 576 577 sock = SOCKET_I(inode); 578 579 inode->i_ino = get_next_ino(); 580 inode->i_mode = S_IFSOCK | S_IRWXUGO; 581 inode->i_uid = current_fsuid(); 582 inode->i_gid = current_fsgid(); 583 inode->i_op = &sockfs_inode_ops; 584 585 return sock; 586 } 587 EXPORT_SYMBOL(sock_alloc); 588 589 static void __sock_release(struct socket *sock, struct inode *inode) 590 { 591 if (sock->ops) { 592 struct module *owner = sock->ops->owner; 593 594 if (inode) 595 inode_lock(inode); 596 sock->ops->release(sock); 597 sock->sk = NULL; 598 if (inode) 599 inode_unlock(inode); 600 sock->ops = NULL; 601 module_put(owner); 602 } 603 604 if (sock->wq.fasync_list) 605 pr_err("%s: fasync list not empty!\n", __func__); 606 607 if (!sock->file) { 608 iput(SOCK_INODE(sock)); 609 return; 610 } 611 sock->file = NULL; 612 } 613 614 /** 615 * sock_release - close a socket 616 * @sock: socket to close 617 * 618 * The socket is released from the protocol stack if it has a release 619 * callback, and the inode is then released if the socket is bound to 620 * an inode not a file. 621 */ 622 void sock_release(struct socket *sock) 623 { 624 __sock_release(sock, NULL); 625 } 626 EXPORT_SYMBOL(sock_release); 627 628 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 629 { 630 u8 flags = *tx_flags; 631 632 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 633 flags |= SKBTX_HW_TSTAMP; 634 635 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 636 flags |= SKBTX_SW_TSTAMP; 637 638 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 639 flags |= SKBTX_SCHED_TSTAMP; 640 641 *tx_flags = flags; 642 } 643 EXPORT_SYMBOL(__sock_tx_timestamp); 644 645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 646 size_t)); 647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 648 size_t)); 649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 650 { 651 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 652 inet_sendmsg, sock, msg, 653 msg_data_left(msg)); 654 BUG_ON(ret == -EIOCBQUEUED); 655 return ret; 656 } 657 658 /** 659 * sock_sendmsg - send a message through @sock 660 * @sock: socket 661 * @msg: message to send 662 * 663 * Sends @msg through @sock, passing through LSM. 664 * Returns the number of bytes sent, or an error code. 665 */ 666 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 667 { 668 int err = security_socket_sendmsg(sock, msg, 669 msg_data_left(msg)); 670 671 return err ?: sock_sendmsg_nosec(sock, msg); 672 } 673 EXPORT_SYMBOL(sock_sendmsg); 674 675 /** 676 * kernel_sendmsg - send a message through @sock (kernel-space) 677 * @sock: socket 678 * @msg: message header 679 * @vec: kernel vec 680 * @num: vec array length 681 * @size: total message data size 682 * 683 * Builds the message data with @vec and sends it through @sock. 684 * Returns the number of bytes sent, or an error code. 685 */ 686 687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 688 struct kvec *vec, size_t num, size_t size) 689 { 690 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 691 return sock_sendmsg(sock, msg); 692 } 693 EXPORT_SYMBOL(kernel_sendmsg); 694 695 /** 696 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 697 * @sk: sock 698 * @msg: message header 699 * @vec: output s/g array 700 * @num: output s/g array length 701 * @size: total message data size 702 * 703 * Builds the message data with @vec and sends it through @sock. 704 * Returns the number of bytes sent, or an error code. 705 * Caller must hold @sk. 706 */ 707 708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 709 struct kvec *vec, size_t num, size_t size) 710 { 711 struct socket *sock = sk->sk_socket; 712 713 if (!sock->ops->sendmsg_locked) 714 return sock_no_sendmsg_locked(sk, msg, size); 715 716 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 717 718 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 719 } 720 EXPORT_SYMBOL(kernel_sendmsg_locked); 721 722 static bool skb_is_err_queue(const struct sk_buff *skb) 723 { 724 /* pkt_type of skbs enqueued on the error queue are set to 725 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 726 * in recvmsg, since skbs received on a local socket will never 727 * have a pkt_type of PACKET_OUTGOING. 728 */ 729 return skb->pkt_type == PACKET_OUTGOING; 730 } 731 732 /* On transmit, software and hardware timestamps are returned independently. 733 * As the two skb clones share the hardware timestamp, which may be updated 734 * before the software timestamp is received, a hardware TX timestamp may be 735 * returned only if there is no software TX timestamp. Ignore false software 736 * timestamps, which may be made in the __sock_recv_timestamp() call when the 737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 738 * hardware timestamp. 739 */ 740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 741 { 742 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 743 } 744 745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 746 { 747 struct scm_ts_pktinfo ts_pktinfo; 748 struct net_device *orig_dev; 749 750 if (!skb_mac_header_was_set(skb)) 751 return; 752 753 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 754 755 rcu_read_lock(); 756 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 757 if (orig_dev) 758 ts_pktinfo.if_index = orig_dev->ifindex; 759 rcu_read_unlock(); 760 761 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 763 sizeof(ts_pktinfo), &ts_pktinfo); 764 } 765 766 /* 767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 768 */ 769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 770 struct sk_buff *skb) 771 { 772 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 773 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 774 struct scm_timestamping_internal tss; 775 776 int empty = 1, false_tstamp = 0; 777 struct skb_shared_hwtstamps *shhwtstamps = 778 skb_hwtstamps(skb); 779 780 /* Race occurred between timestamp enabling and packet 781 receiving. Fill in the current time for now. */ 782 if (need_software_tstamp && skb->tstamp == 0) { 783 __net_timestamp(skb); 784 false_tstamp = 1; 785 } 786 787 if (need_software_tstamp) { 788 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 789 if (new_tstamp) { 790 struct __kernel_sock_timeval tv; 791 792 skb_get_new_timestamp(skb, &tv); 793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 794 sizeof(tv), &tv); 795 } else { 796 struct __kernel_old_timeval tv; 797 798 skb_get_timestamp(skb, &tv); 799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 800 sizeof(tv), &tv); 801 } 802 } else { 803 if (new_tstamp) { 804 struct __kernel_timespec ts; 805 806 skb_get_new_timestampns(skb, &ts); 807 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 808 sizeof(ts), &ts); 809 } else { 810 struct __kernel_old_timespec ts; 811 812 skb_get_timestampns(skb, &ts); 813 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 814 sizeof(ts), &ts); 815 } 816 } 817 } 818 819 memset(&tss, 0, sizeof(tss)); 820 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 821 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 822 empty = 0; 823 if (shhwtstamps && 824 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 825 !skb_is_swtx_tstamp(skb, false_tstamp) && 826 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 827 empty = 0; 828 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 829 !skb_is_err_queue(skb)) 830 put_ts_pktinfo(msg, skb); 831 } 832 if (!empty) { 833 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 834 put_cmsg_scm_timestamping64(msg, &tss); 835 else 836 put_cmsg_scm_timestamping(msg, &tss); 837 838 if (skb_is_err_queue(skb) && skb->len && 839 SKB_EXT_ERR(skb)->opt_stats) 840 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 841 skb->len, skb->data); 842 } 843 } 844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 845 846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 847 struct sk_buff *skb) 848 { 849 int ack; 850 851 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 852 return; 853 if (!skb->wifi_acked_valid) 854 return; 855 856 ack = skb->wifi_acked; 857 858 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 859 } 860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 861 862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 863 struct sk_buff *skb) 864 { 865 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 866 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 867 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 868 } 869 870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 871 struct sk_buff *skb) 872 { 873 sock_recv_timestamp(msg, sk, skb); 874 sock_recv_drops(msg, sk, skb); 875 } 876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 877 878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 879 size_t, int)); 880 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 881 size_t, int)); 882 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 883 int flags) 884 { 885 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 886 inet_recvmsg, sock, msg, msg_data_left(msg), 887 flags); 888 } 889 890 /** 891 * sock_recvmsg - receive a message from @sock 892 * @sock: socket 893 * @msg: message to receive 894 * @flags: message flags 895 * 896 * Receives @msg from @sock, passing through LSM. Returns the total number 897 * of bytes received, or an error. 898 */ 899 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 900 { 901 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 902 903 return err ?: sock_recvmsg_nosec(sock, msg, flags); 904 } 905 EXPORT_SYMBOL(sock_recvmsg); 906 907 /** 908 * kernel_recvmsg - Receive a message from a socket (kernel space) 909 * @sock: The socket to receive the message from 910 * @msg: Received message 911 * @vec: Input s/g array for message data 912 * @num: Size of input s/g array 913 * @size: Number of bytes to read 914 * @flags: Message flags (MSG_DONTWAIT, etc...) 915 * 916 * On return the msg structure contains the scatter/gather array passed in the 917 * vec argument. The array is modified so that it consists of the unfilled 918 * portion of the original array. 919 * 920 * The returned value is the total number of bytes received, or an error. 921 */ 922 923 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 924 struct kvec *vec, size_t num, size_t size, int flags) 925 { 926 msg->msg_control_is_user = false; 927 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 928 return sock_recvmsg(sock, msg, flags); 929 } 930 EXPORT_SYMBOL(kernel_recvmsg); 931 932 static ssize_t sock_sendpage(struct file *file, struct page *page, 933 int offset, size_t size, loff_t *ppos, int more) 934 { 935 struct socket *sock; 936 int flags; 937 938 sock = file->private_data; 939 940 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 941 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 942 flags |= more; 943 944 return kernel_sendpage(sock, page, offset, size, flags); 945 } 946 947 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 948 struct pipe_inode_info *pipe, size_t len, 949 unsigned int flags) 950 { 951 struct socket *sock = file->private_data; 952 953 if (unlikely(!sock->ops->splice_read)) 954 return generic_file_splice_read(file, ppos, pipe, len, flags); 955 956 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 957 } 958 959 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 960 { 961 struct file *file = iocb->ki_filp; 962 struct socket *sock = file->private_data; 963 struct msghdr msg = {.msg_iter = *to, 964 .msg_iocb = iocb}; 965 ssize_t res; 966 967 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 968 msg.msg_flags = MSG_DONTWAIT; 969 970 if (iocb->ki_pos != 0) 971 return -ESPIPE; 972 973 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 974 return 0; 975 976 res = sock_recvmsg(sock, &msg, msg.msg_flags); 977 *to = msg.msg_iter; 978 return res; 979 } 980 981 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 982 { 983 struct file *file = iocb->ki_filp; 984 struct socket *sock = file->private_data; 985 struct msghdr msg = {.msg_iter = *from, 986 .msg_iocb = iocb}; 987 ssize_t res; 988 989 if (iocb->ki_pos != 0) 990 return -ESPIPE; 991 992 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 993 msg.msg_flags = MSG_DONTWAIT; 994 995 if (sock->type == SOCK_SEQPACKET) 996 msg.msg_flags |= MSG_EOR; 997 998 res = sock_sendmsg(sock, &msg); 999 *from = msg.msg_iter; 1000 return res; 1001 } 1002 1003 /* 1004 * Atomic setting of ioctl hooks to avoid race 1005 * with module unload. 1006 */ 1007 1008 static DEFINE_MUTEX(br_ioctl_mutex); 1009 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1010 1011 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1012 { 1013 mutex_lock(&br_ioctl_mutex); 1014 br_ioctl_hook = hook; 1015 mutex_unlock(&br_ioctl_mutex); 1016 } 1017 EXPORT_SYMBOL(brioctl_set); 1018 1019 static DEFINE_MUTEX(vlan_ioctl_mutex); 1020 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1021 1022 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1023 { 1024 mutex_lock(&vlan_ioctl_mutex); 1025 vlan_ioctl_hook = hook; 1026 mutex_unlock(&vlan_ioctl_mutex); 1027 } 1028 EXPORT_SYMBOL(vlan_ioctl_set); 1029 1030 static DEFINE_MUTEX(dlci_ioctl_mutex); 1031 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1032 1033 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1034 { 1035 mutex_lock(&dlci_ioctl_mutex); 1036 dlci_ioctl_hook = hook; 1037 mutex_unlock(&dlci_ioctl_mutex); 1038 } 1039 EXPORT_SYMBOL(dlci_ioctl_set); 1040 1041 static long sock_do_ioctl(struct net *net, struct socket *sock, 1042 unsigned int cmd, unsigned long arg) 1043 { 1044 int err; 1045 void __user *argp = (void __user *)arg; 1046 1047 err = sock->ops->ioctl(sock, cmd, arg); 1048 1049 /* 1050 * If this ioctl is unknown try to hand it down 1051 * to the NIC driver. 1052 */ 1053 if (err != -ENOIOCTLCMD) 1054 return err; 1055 1056 if (cmd == SIOCGIFCONF) { 1057 struct ifconf ifc; 1058 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1059 return -EFAULT; 1060 rtnl_lock(); 1061 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1062 rtnl_unlock(); 1063 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1064 err = -EFAULT; 1065 } else { 1066 struct ifreq ifr; 1067 bool need_copyout; 1068 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1069 return -EFAULT; 1070 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1071 if (!err && need_copyout) 1072 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1073 return -EFAULT; 1074 } 1075 return err; 1076 } 1077 1078 /* 1079 * With an ioctl, arg may well be a user mode pointer, but we don't know 1080 * what to do with it - that's up to the protocol still. 1081 */ 1082 1083 /** 1084 * get_net_ns - increment the refcount of the network namespace 1085 * @ns: common namespace (net) 1086 * 1087 * Returns the net's common namespace. 1088 */ 1089 1090 struct ns_common *get_net_ns(struct ns_common *ns) 1091 { 1092 return &get_net(container_of(ns, struct net, ns))->ns; 1093 } 1094 EXPORT_SYMBOL_GPL(get_net_ns); 1095 1096 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1097 { 1098 struct socket *sock; 1099 struct sock *sk; 1100 void __user *argp = (void __user *)arg; 1101 int pid, err; 1102 struct net *net; 1103 1104 sock = file->private_data; 1105 sk = sock->sk; 1106 net = sock_net(sk); 1107 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1108 struct ifreq ifr; 1109 bool need_copyout; 1110 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1111 return -EFAULT; 1112 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1113 if (!err && need_copyout) 1114 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1115 return -EFAULT; 1116 } else 1117 #ifdef CONFIG_WEXT_CORE 1118 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1119 err = wext_handle_ioctl(net, cmd, argp); 1120 } else 1121 #endif 1122 switch (cmd) { 1123 case FIOSETOWN: 1124 case SIOCSPGRP: 1125 err = -EFAULT; 1126 if (get_user(pid, (int __user *)argp)) 1127 break; 1128 err = f_setown(sock->file, pid, 1); 1129 break; 1130 case FIOGETOWN: 1131 case SIOCGPGRP: 1132 err = put_user(f_getown(sock->file), 1133 (int __user *)argp); 1134 break; 1135 case SIOCGIFBR: 1136 case SIOCSIFBR: 1137 case SIOCBRADDBR: 1138 case SIOCBRDELBR: 1139 err = -ENOPKG; 1140 if (!br_ioctl_hook) 1141 request_module("bridge"); 1142 1143 mutex_lock(&br_ioctl_mutex); 1144 if (br_ioctl_hook) 1145 err = br_ioctl_hook(net, cmd, argp); 1146 mutex_unlock(&br_ioctl_mutex); 1147 break; 1148 case SIOCGIFVLAN: 1149 case SIOCSIFVLAN: 1150 err = -ENOPKG; 1151 if (!vlan_ioctl_hook) 1152 request_module("8021q"); 1153 1154 mutex_lock(&vlan_ioctl_mutex); 1155 if (vlan_ioctl_hook) 1156 err = vlan_ioctl_hook(net, argp); 1157 mutex_unlock(&vlan_ioctl_mutex); 1158 break; 1159 case SIOCADDDLCI: 1160 case SIOCDELDLCI: 1161 err = -ENOPKG; 1162 if (!dlci_ioctl_hook) 1163 request_module("dlci"); 1164 1165 mutex_lock(&dlci_ioctl_mutex); 1166 if (dlci_ioctl_hook) 1167 err = dlci_ioctl_hook(cmd, argp); 1168 mutex_unlock(&dlci_ioctl_mutex); 1169 break; 1170 case SIOCGSKNS: 1171 err = -EPERM; 1172 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1173 break; 1174 1175 err = open_related_ns(&net->ns, get_net_ns); 1176 break; 1177 case SIOCGSTAMP_OLD: 1178 case SIOCGSTAMPNS_OLD: 1179 if (!sock->ops->gettstamp) { 1180 err = -ENOIOCTLCMD; 1181 break; 1182 } 1183 err = sock->ops->gettstamp(sock, argp, 1184 cmd == SIOCGSTAMP_OLD, 1185 !IS_ENABLED(CONFIG_64BIT)); 1186 break; 1187 case SIOCGSTAMP_NEW: 1188 case SIOCGSTAMPNS_NEW: 1189 if (!sock->ops->gettstamp) { 1190 err = -ENOIOCTLCMD; 1191 break; 1192 } 1193 err = sock->ops->gettstamp(sock, argp, 1194 cmd == SIOCGSTAMP_NEW, 1195 false); 1196 break; 1197 default: 1198 err = sock_do_ioctl(net, sock, cmd, arg); 1199 break; 1200 } 1201 return err; 1202 } 1203 1204 /** 1205 * sock_create_lite - creates a socket 1206 * @family: protocol family (AF_INET, ...) 1207 * @type: communication type (SOCK_STREAM, ...) 1208 * @protocol: protocol (0, ...) 1209 * @res: new socket 1210 * 1211 * Creates a new socket and assigns it to @res, passing through LSM. 1212 * The new socket initialization is not complete, see kernel_accept(). 1213 * Returns 0 or an error. On failure @res is set to %NULL. 1214 * This function internally uses GFP_KERNEL. 1215 */ 1216 1217 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1218 { 1219 int err; 1220 struct socket *sock = NULL; 1221 1222 err = security_socket_create(family, type, protocol, 1); 1223 if (err) 1224 goto out; 1225 1226 sock = sock_alloc(); 1227 if (!sock) { 1228 err = -ENOMEM; 1229 goto out; 1230 } 1231 1232 sock->type = type; 1233 err = security_socket_post_create(sock, family, type, protocol, 1); 1234 if (err) 1235 goto out_release; 1236 1237 out: 1238 *res = sock; 1239 return err; 1240 out_release: 1241 sock_release(sock); 1242 sock = NULL; 1243 goto out; 1244 } 1245 EXPORT_SYMBOL(sock_create_lite); 1246 1247 /* No kernel lock held - perfect */ 1248 static __poll_t sock_poll(struct file *file, poll_table *wait) 1249 { 1250 struct socket *sock = file->private_data; 1251 __poll_t events = poll_requested_events(wait), flag = 0; 1252 1253 if (!sock->ops->poll) 1254 return 0; 1255 1256 if (sk_can_busy_loop(sock->sk)) { 1257 /* poll once if requested by the syscall */ 1258 if (events & POLL_BUSY_LOOP) 1259 sk_busy_loop(sock->sk, 1); 1260 1261 /* if this socket can poll_ll, tell the system call */ 1262 flag = POLL_BUSY_LOOP; 1263 } 1264 1265 return sock->ops->poll(file, sock, wait) | flag; 1266 } 1267 1268 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1269 { 1270 struct socket *sock = file->private_data; 1271 1272 return sock->ops->mmap(file, sock, vma); 1273 } 1274 1275 static int sock_close(struct inode *inode, struct file *filp) 1276 { 1277 __sock_release(SOCKET_I(inode), inode); 1278 return 0; 1279 } 1280 1281 /* 1282 * Update the socket async list 1283 * 1284 * Fasync_list locking strategy. 1285 * 1286 * 1. fasync_list is modified only under process context socket lock 1287 * i.e. under semaphore. 1288 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1289 * or under socket lock 1290 */ 1291 1292 static int sock_fasync(int fd, struct file *filp, int on) 1293 { 1294 struct socket *sock = filp->private_data; 1295 struct sock *sk = sock->sk; 1296 struct socket_wq *wq = &sock->wq; 1297 1298 if (sk == NULL) 1299 return -EINVAL; 1300 1301 lock_sock(sk); 1302 fasync_helper(fd, filp, on, &wq->fasync_list); 1303 1304 if (!wq->fasync_list) 1305 sock_reset_flag(sk, SOCK_FASYNC); 1306 else 1307 sock_set_flag(sk, SOCK_FASYNC); 1308 1309 release_sock(sk); 1310 return 0; 1311 } 1312 1313 /* This function may be called only under rcu_lock */ 1314 1315 int sock_wake_async(struct socket_wq *wq, int how, int band) 1316 { 1317 if (!wq || !wq->fasync_list) 1318 return -1; 1319 1320 switch (how) { 1321 case SOCK_WAKE_WAITD: 1322 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1323 break; 1324 goto call_kill; 1325 case SOCK_WAKE_SPACE: 1326 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1327 break; 1328 fallthrough; 1329 case SOCK_WAKE_IO: 1330 call_kill: 1331 kill_fasync(&wq->fasync_list, SIGIO, band); 1332 break; 1333 case SOCK_WAKE_URG: 1334 kill_fasync(&wq->fasync_list, SIGURG, band); 1335 } 1336 1337 return 0; 1338 } 1339 EXPORT_SYMBOL(sock_wake_async); 1340 1341 /** 1342 * __sock_create - creates a socket 1343 * @net: net namespace 1344 * @family: protocol family (AF_INET, ...) 1345 * @type: communication type (SOCK_STREAM, ...) 1346 * @protocol: protocol (0, ...) 1347 * @res: new socket 1348 * @kern: boolean for kernel space sockets 1349 * 1350 * Creates a new socket and assigns it to @res, passing through LSM. 1351 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1352 * be set to true if the socket resides in kernel space. 1353 * This function internally uses GFP_KERNEL. 1354 */ 1355 1356 int __sock_create(struct net *net, int family, int type, int protocol, 1357 struct socket **res, int kern) 1358 { 1359 int err; 1360 struct socket *sock; 1361 const struct net_proto_family *pf; 1362 1363 /* 1364 * Check protocol is in range 1365 */ 1366 if (family < 0 || family >= NPROTO) 1367 return -EAFNOSUPPORT; 1368 if (type < 0 || type >= SOCK_MAX) 1369 return -EINVAL; 1370 1371 /* Compatibility. 1372 1373 This uglymoron is moved from INET layer to here to avoid 1374 deadlock in module load. 1375 */ 1376 if (family == PF_INET && type == SOCK_PACKET) { 1377 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1378 current->comm); 1379 family = PF_PACKET; 1380 } 1381 1382 err = security_socket_create(family, type, protocol, kern); 1383 if (err) 1384 return err; 1385 1386 /* 1387 * Allocate the socket and allow the family to set things up. if 1388 * the protocol is 0, the family is instructed to select an appropriate 1389 * default. 1390 */ 1391 sock = sock_alloc(); 1392 if (!sock) { 1393 net_warn_ratelimited("socket: no more sockets\n"); 1394 return -ENFILE; /* Not exactly a match, but its the 1395 closest posix thing */ 1396 } 1397 1398 sock->type = type; 1399 1400 #ifdef CONFIG_MODULES 1401 /* Attempt to load a protocol module if the find failed. 1402 * 1403 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1404 * requested real, full-featured networking support upon configuration. 1405 * Otherwise module support will break! 1406 */ 1407 if (rcu_access_pointer(net_families[family]) == NULL) 1408 request_module("net-pf-%d", family); 1409 #endif 1410 1411 rcu_read_lock(); 1412 pf = rcu_dereference(net_families[family]); 1413 err = -EAFNOSUPPORT; 1414 if (!pf) 1415 goto out_release; 1416 1417 /* 1418 * We will call the ->create function, that possibly is in a loadable 1419 * module, so we have to bump that loadable module refcnt first. 1420 */ 1421 if (!try_module_get(pf->owner)) 1422 goto out_release; 1423 1424 /* Now protected by module ref count */ 1425 rcu_read_unlock(); 1426 1427 err = pf->create(net, sock, protocol, kern); 1428 if (err < 0) 1429 goto out_module_put; 1430 1431 /* 1432 * Now to bump the refcnt of the [loadable] module that owns this 1433 * socket at sock_release time we decrement its refcnt. 1434 */ 1435 if (!try_module_get(sock->ops->owner)) 1436 goto out_module_busy; 1437 1438 /* 1439 * Now that we're done with the ->create function, the [loadable] 1440 * module can have its refcnt decremented 1441 */ 1442 module_put(pf->owner); 1443 err = security_socket_post_create(sock, family, type, protocol, kern); 1444 if (err) 1445 goto out_sock_release; 1446 *res = sock; 1447 1448 return 0; 1449 1450 out_module_busy: 1451 err = -EAFNOSUPPORT; 1452 out_module_put: 1453 sock->ops = NULL; 1454 module_put(pf->owner); 1455 out_sock_release: 1456 sock_release(sock); 1457 return err; 1458 1459 out_release: 1460 rcu_read_unlock(); 1461 goto out_sock_release; 1462 } 1463 EXPORT_SYMBOL(__sock_create); 1464 1465 /** 1466 * sock_create - creates a socket 1467 * @family: protocol family (AF_INET, ...) 1468 * @type: communication type (SOCK_STREAM, ...) 1469 * @protocol: protocol (0, ...) 1470 * @res: new socket 1471 * 1472 * A wrapper around __sock_create(). 1473 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1474 */ 1475 1476 int sock_create(int family, int type, int protocol, struct socket **res) 1477 { 1478 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1479 } 1480 EXPORT_SYMBOL(sock_create); 1481 1482 /** 1483 * sock_create_kern - creates a socket (kernel space) 1484 * @net: net namespace 1485 * @family: protocol family (AF_INET, ...) 1486 * @type: communication type (SOCK_STREAM, ...) 1487 * @protocol: protocol (0, ...) 1488 * @res: new socket 1489 * 1490 * A wrapper around __sock_create(). 1491 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1492 */ 1493 1494 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1495 { 1496 return __sock_create(net, family, type, protocol, res, 1); 1497 } 1498 EXPORT_SYMBOL(sock_create_kern); 1499 1500 int __sys_socket(int family, int type, int protocol) 1501 { 1502 int retval; 1503 struct socket *sock; 1504 int flags; 1505 1506 /* Check the SOCK_* constants for consistency. */ 1507 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1508 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1509 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1510 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1511 1512 flags = type & ~SOCK_TYPE_MASK; 1513 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1514 return -EINVAL; 1515 type &= SOCK_TYPE_MASK; 1516 1517 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1518 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1519 1520 retval = sock_create(family, type, protocol, &sock); 1521 if (retval < 0) 1522 return retval; 1523 1524 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1525 } 1526 1527 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1528 { 1529 return __sys_socket(family, type, protocol); 1530 } 1531 1532 /* 1533 * Create a pair of connected sockets. 1534 */ 1535 1536 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1537 { 1538 struct socket *sock1, *sock2; 1539 int fd1, fd2, err; 1540 struct file *newfile1, *newfile2; 1541 int flags; 1542 1543 flags = type & ~SOCK_TYPE_MASK; 1544 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1545 return -EINVAL; 1546 type &= SOCK_TYPE_MASK; 1547 1548 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1549 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1550 1551 /* 1552 * reserve descriptors and make sure we won't fail 1553 * to return them to userland. 1554 */ 1555 fd1 = get_unused_fd_flags(flags); 1556 if (unlikely(fd1 < 0)) 1557 return fd1; 1558 1559 fd2 = get_unused_fd_flags(flags); 1560 if (unlikely(fd2 < 0)) { 1561 put_unused_fd(fd1); 1562 return fd2; 1563 } 1564 1565 err = put_user(fd1, &usockvec[0]); 1566 if (err) 1567 goto out; 1568 1569 err = put_user(fd2, &usockvec[1]); 1570 if (err) 1571 goto out; 1572 1573 /* 1574 * Obtain the first socket and check if the underlying protocol 1575 * supports the socketpair call. 1576 */ 1577 1578 err = sock_create(family, type, protocol, &sock1); 1579 if (unlikely(err < 0)) 1580 goto out; 1581 1582 err = sock_create(family, type, protocol, &sock2); 1583 if (unlikely(err < 0)) { 1584 sock_release(sock1); 1585 goto out; 1586 } 1587 1588 err = security_socket_socketpair(sock1, sock2); 1589 if (unlikely(err)) { 1590 sock_release(sock2); 1591 sock_release(sock1); 1592 goto out; 1593 } 1594 1595 err = sock1->ops->socketpair(sock1, sock2); 1596 if (unlikely(err < 0)) { 1597 sock_release(sock2); 1598 sock_release(sock1); 1599 goto out; 1600 } 1601 1602 newfile1 = sock_alloc_file(sock1, flags, NULL); 1603 if (IS_ERR(newfile1)) { 1604 err = PTR_ERR(newfile1); 1605 sock_release(sock2); 1606 goto out; 1607 } 1608 1609 newfile2 = sock_alloc_file(sock2, flags, NULL); 1610 if (IS_ERR(newfile2)) { 1611 err = PTR_ERR(newfile2); 1612 fput(newfile1); 1613 goto out; 1614 } 1615 1616 audit_fd_pair(fd1, fd2); 1617 1618 fd_install(fd1, newfile1); 1619 fd_install(fd2, newfile2); 1620 return 0; 1621 1622 out: 1623 put_unused_fd(fd2); 1624 put_unused_fd(fd1); 1625 return err; 1626 } 1627 1628 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1629 int __user *, usockvec) 1630 { 1631 return __sys_socketpair(family, type, protocol, usockvec); 1632 } 1633 1634 /* 1635 * Bind a name to a socket. Nothing much to do here since it's 1636 * the protocol's responsibility to handle the local address. 1637 * 1638 * We move the socket address to kernel space before we call 1639 * the protocol layer (having also checked the address is ok). 1640 */ 1641 1642 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1643 { 1644 struct socket *sock; 1645 struct sockaddr_storage address; 1646 int err, fput_needed; 1647 1648 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1649 if (sock) { 1650 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1651 if (!err) { 1652 err = security_socket_bind(sock, 1653 (struct sockaddr *)&address, 1654 addrlen); 1655 if (!err) 1656 err = sock->ops->bind(sock, 1657 (struct sockaddr *) 1658 &address, addrlen); 1659 } 1660 fput_light(sock->file, fput_needed); 1661 } 1662 return err; 1663 } 1664 1665 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1666 { 1667 return __sys_bind(fd, umyaddr, addrlen); 1668 } 1669 1670 /* 1671 * Perform a listen. Basically, we allow the protocol to do anything 1672 * necessary for a listen, and if that works, we mark the socket as 1673 * ready for listening. 1674 */ 1675 1676 int __sys_listen(int fd, int backlog) 1677 { 1678 struct socket *sock; 1679 int err, fput_needed; 1680 int somaxconn; 1681 1682 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1683 if (sock) { 1684 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1685 if ((unsigned int)backlog > somaxconn) 1686 backlog = somaxconn; 1687 1688 err = security_socket_listen(sock, backlog); 1689 if (!err) 1690 err = sock->ops->listen(sock, backlog); 1691 1692 fput_light(sock->file, fput_needed); 1693 } 1694 return err; 1695 } 1696 1697 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1698 { 1699 return __sys_listen(fd, backlog); 1700 } 1701 1702 int __sys_accept4_file(struct file *file, unsigned file_flags, 1703 struct sockaddr __user *upeer_sockaddr, 1704 int __user *upeer_addrlen, int flags, 1705 unsigned long nofile) 1706 { 1707 struct socket *sock, *newsock; 1708 struct file *newfile; 1709 int err, len, newfd; 1710 struct sockaddr_storage address; 1711 1712 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1713 return -EINVAL; 1714 1715 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1716 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1717 1718 sock = sock_from_file(file, &err); 1719 if (!sock) 1720 goto out; 1721 1722 err = -ENFILE; 1723 newsock = sock_alloc(); 1724 if (!newsock) 1725 goto out; 1726 1727 newsock->type = sock->type; 1728 newsock->ops = sock->ops; 1729 1730 /* 1731 * We don't need try_module_get here, as the listening socket (sock) 1732 * has the protocol module (sock->ops->owner) held. 1733 */ 1734 __module_get(newsock->ops->owner); 1735 1736 newfd = __get_unused_fd_flags(flags, nofile); 1737 if (unlikely(newfd < 0)) { 1738 err = newfd; 1739 sock_release(newsock); 1740 goto out; 1741 } 1742 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1743 if (IS_ERR(newfile)) { 1744 err = PTR_ERR(newfile); 1745 put_unused_fd(newfd); 1746 goto out; 1747 } 1748 1749 err = security_socket_accept(sock, newsock); 1750 if (err) 1751 goto out_fd; 1752 1753 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1754 false); 1755 if (err < 0) 1756 goto out_fd; 1757 1758 if (upeer_sockaddr) { 1759 len = newsock->ops->getname(newsock, 1760 (struct sockaddr *)&address, 2); 1761 if (len < 0) { 1762 err = -ECONNABORTED; 1763 goto out_fd; 1764 } 1765 err = move_addr_to_user(&address, 1766 len, upeer_sockaddr, upeer_addrlen); 1767 if (err < 0) 1768 goto out_fd; 1769 } 1770 1771 /* File flags are not inherited via accept() unlike another OSes. */ 1772 1773 fd_install(newfd, newfile); 1774 err = newfd; 1775 out: 1776 return err; 1777 out_fd: 1778 fput(newfile); 1779 put_unused_fd(newfd); 1780 goto out; 1781 1782 } 1783 1784 /* 1785 * For accept, we attempt to create a new socket, set up the link 1786 * with the client, wake up the client, then return the new 1787 * connected fd. We collect the address of the connector in kernel 1788 * space and move it to user at the very end. This is unclean because 1789 * we open the socket then return an error. 1790 * 1791 * 1003.1g adds the ability to recvmsg() to query connection pending 1792 * status to recvmsg. We need to add that support in a way thats 1793 * clean when we restructure accept also. 1794 */ 1795 1796 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1797 int __user *upeer_addrlen, int flags) 1798 { 1799 int ret = -EBADF; 1800 struct fd f; 1801 1802 f = fdget(fd); 1803 if (f.file) { 1804 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1805 upeer_addrlen, flags, 1806 rlimit(RLIMIT_NOFILE)); 1807 fdput(f); 1808 } 1809 1810 return ret; 1811 } 1812 1813 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1814 int __user *, upeer_addrlen, int, flags) 1815 { 1816 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1817 } 1818 1819 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1820 int __user *, upeer_addrlen) 1821 { 1822 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1823 } 1824 1825 /* 1826 * Attempt to connect to a socket with the server address. The address 1827 * is in user space so we verify it is OK and move it to kernel space. 1828 * 1829 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1830 * break bindings 1831 * 1832 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1833 * other SEQPACKET protocols that take time to connect() as it doesn't 1834 * include the -EINPROGRESS status for such sockets. 1835 */ 1836 1837 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1838 int addrlen, int file_flags) 1839 { 1840 struct socket *sock; 1841 int err; 1842 1843 sock = sock_from_file(file, &err); 1844 if (!sock) 1845 goto out; 1846 1847 err = 1848 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1849 if (err) 1850 goto out; 1851 1852 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1853 sock->file->f_flags | file_flags); 1854 out: 1855 return err; 1856 } 1857 1858 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1859 { 1860 int ret = -EBADF; 1861 struct fd f; 1862 1863 f = fdget(fd); 1864 if (f.file) { 1865 struct sockaddr_storage address; 1866 1867 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1868 if (!ret) 1869 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1870 fdput(f); 1871 } 1872 1873 return ret; 1874 } 1875 1876 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1877 int, addrlen) 1878 { 1879 return __sys_connect(fd, uservaddr, addrlen); 1880 } 1881 1882 /* 1883 * Get the local address ('name') of a socket object. Move the obtained 1884 * name to user space. 1885 */ 1886 1887 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1888 int __user *usockaddr_len) 1889 { 1890 struct socket *sock; 1891 struct sockaddr_storage address; 1892 int err, fput_needed; 1893 1894 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1895 if (!sock) 1896 goto out; 1897 1898 err = security_socket_getsockname(sock); 1899 if (err) 1900 goto out_put; 1901 1902 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1903 if (err < 0) 1904 goto out_put; 1905 /* "err" is actually length in this case */ 1906 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1907 1908 out_put: 1909 fput_light(sock->file, fput_needed); 1910 out: 1911 return err; 1912 } 1913 1914 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1915 int __user *, usockaddr_len) 1916 { 1917 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1918 } 1919 1920 /* 1921 * Get the remote address ('name') of a socket object. Move the obtained 1922 * name to user space. 1923 */ 1924 1925 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1926 int __user *usockaddr_len) 1927 { 1928 struct socket *sock; 1929 struct sockaddr_storage address; 1930 int err, fput_needed; 1931 1932 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1933 if (sock != NULL) { 1934 err = security_socket_getpeername(sock); 1935 if (err) { 1936 fput_light(sock->file, fput_needed); 1937 return err; 1938 } 1939 1940 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1941 if (err >= 0) 1942 /* "err" is actually length in this case */ 1943 err = move_addr_to_user(&address, err, usockaddr, 1944 usockaddr_len); 1945 fput_light(sock->file, fput_needed); 1946 } 1947 return err; 1948 } 1949 1950 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1951 int __user *, usockaddr_len) 1952 { 1953 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1954 } 1955 1956 /* 1957 * Send a datagram to a given address. We move the address into kernel 1958 * space and check the user space data area is readable before invoking 1959 * the protocol. 1960 */ 1961 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1962 struct sockaddr __user *addr, int addr_len) 1963 { 1964 struct socket *sock; 1965 struct sockaddr_storage address; 1966 int err; 1967 struct msghdr msg; 1968 struct iovec iov; 1969 int fput_needed; 1970 1971 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1972 if (unlikely(err)) 1973 return err; 1974 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1975 if (!sock) 1976 goto out; 1977 1978 msg.msg_name = NULL; 1979 msg.msg_control = NULL; 1980 msg.msg_controllen = 0; 1981 msg.msg_namelen = 0; 1982 if (addr) { 1983 err = move_addr_to_kernel(addr, addr_len, &address); 1984 if (err < 0) 1985 goto out_put; 1986 msg.msg_name = (struct sockaddr *)&address; 1987 msg.msg_namelen = addr_len; 1988 } 1989 if (sock->file->f_flags & O_NONBLOCK) 1990 flags |= MSG_DONTWAIT; 1991 msg.msg_flags = flags; 1992 err = sock_sendmsg(sock, &msg); 1993 1994 out_put: 1995 fput_light(sock->file, fput_needed); 1996 out: 1997 return err; 1998 } 1999 2000 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2001 unsigned int, flags, struct sockaddr __user *, addr, 2002 int, addr_len) 2003 { 2004 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2005 } 2006 2007 /* 2008 * Send a datagram down a socket. 2009 */ 2010 2011 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2012 unsigned int, flags) 2013 { 2014 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2015 } 2016 2017 /* 2018 * Receive a frame from the socket and optionally record the address of the 2019 * sender. We verify the buffers are writable and if needed move the 2020 * sender address from kernel to user space. 2021 */ 2022 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2023 struct sockaddr __user *addr, int __user *addr_len) 2024 { 2025 struct socket *sock; 2026 struct iovec iov; 2027 struct msghdr msg; 2028 struct sockaddr_storage address; 2029 int err, err2; 2030 int fput_needed; 2031 2032 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2033 if (unlikely(err)) 2034 return err; 2035 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2036 if (!sock) 2037 goto out; 2038 2039 msg.msg_control = NULL; 2040 msg.msg_controllen = 0; 2041 /* Save some cycles and don't copy the address if not needed */ 2042 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2043 /* We assume all kernel code knows the size of sockaddr_storage */ 2044 msg.msg_namelen = 0; 2045 msg.msg_iocb = NULL; 2046 msg.msg_flags = 0; 2047 if (sock->file->f_flags & O_NONBLOCK) 2048 flags |= MSG_DONTWAIT; 2049 err = sock_recvmsg(sock, &msg, flags); 2050 2051 if (err >= 0 && addr != NULL) { 2052 err2 = move_addr_to_user(&address, 2053 msg.msg_namelen, addr, addr_len); 2054 if (err2 < 0) 2055 err = err2; 2056 } 2057 2058 fput_light(sock->file, fput_needed); 2059 out: 2060 return err; 2061 } 2062 2063 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2064 unsigned int, flags, struct sockaddr __user *, addr, 2065 int __user *, addr_len) 2066 { 2067 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2068 } 2069 2070 /* 2071 * Receive a datagram from a socket. 2072 */ 2073 2074 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2075 unsigned int, flags) 2076 { 2077 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2078 } 2079 2080 static bool sock_use_custom_sol_socket(const struct socket *sock) 2081 { 2082 const struct sock *sk = sock->sk; 2083 2084 /* Use sock->ops->setsockopt() for MPTCP */ 2085 return IS_ENABLED(CONFIG_MPTCP) && 2086 sk->sk_protocol == IPPROTO_MPTCP && 2087 sk->sk_type == SOCK_STREAM && 2088 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2089 } 2090 2091 /* 2092 * Set a socket option. Because we don't know the option lengths we have 2093 * to pass the user mode parameter for the protocols to sort out. 2094 */ 2095 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2096 int optlen) 2097 { 2098 sockptr_t optval; 2099 char *kernel_optval = NULL; 2100 int err, fput_needed; 2101 struct socket *sock; 2102 2103 if (optlen < 0) 2104 return -EINVAL; 2105 2106 err = init_user_sockptr(&optval, user_optval, optlen); 2107 if (err) 2108 return err; 2109 2110 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2111 if (!sock) 2112 return err; 2113 2114 err = security_socket_setsockopt(sock, level, optname); 2115 if (err) 2116 goto out_put; 2117 2118 if (!in_compat_syscall()) 2119 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2120 user_optval, &optlen, 2121 &kernel_optval); 2122 if (err < 0) 2123 goto out_put; 2124 if (err > 0) { 2125 err = 0; 2126 goto out_put; 2127 } 2128 2129 if (kernel_optval) 2130 optval = KERNEL_SOCKPTR(kernel_optval); 2131 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2132 err = sock_setsockopt(sock, level, optname, optval, optlen); 2133 else if (unlikely(!sock->ops->setsockopt)) 2134 err = -EOPNOTSUPP; 2135 else 2136 err = sock->ops->setsockopt(sock, level, optname, optval, 2137 optlen); 2138 kfree(kernel_optval); 2139 out_put: 2140 fput_light(sock->file, fput_needed); 2141 return err; 2142 } 2143 2144 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2145 char __user *, optval, int, optlen) 2146 { 2147 return __sys_setsockopt(fd, level, optname, optval, optlen); 2148 } 2149 2150 /* 2151 * Get a socket option. Because we don't know the option lengths we have 2152 * to pass a user mode parameter for the protocols to sort out. 2153 */ 2154 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2155 int __user *optlen) 2156 { 2157 int err, fput_needed; 2158 struct socket *sock; 2159 int max_optlen; 2160 2161 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2162 if (!sock) 2163 return err; 2164 2165 err = security_socket_getsockopt(sock, level, optname); 2166 if (err) 2167 goto out_put; 2168 2169 if (!in_compat_syscall()) 2170 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2171 2172 if (level == SOL_SOCKET) 2173 err = sock_getsockopt(sock, level, optname, optval, optlen); 2174 else if (unlikely(!sock->ops->getsockopt)) 2175 err = -EOPNOTSUPP; 2176 else 2177 err = sock->ops->getsockopt(sock, level, optname, optval, 2178 optlen); 2179 2180 if (!in_compat_syscall()) 2181 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2182 optval, optlen, max_optlen, 2183 err); 2184 out_put: 2185 fput_light(sock->file, fput_needed); 2186 return err; 2187 } 2188 2189 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2190 char __user *, optval, int __user *, optlen) 2191 { 2192 return __sys_getsockopt(fd, level, optname, optval, optlen); 2193 } 2194 2195 /* 2196 * Shutdown a socket. 2197 */ 2198 2199 int __sys_shutdown(int fd, int how) 2200 { 2201 int err, fput_needed; 2202 struct socket *sock; 2203 2204 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2205 if (sock != NULL) { 2206 err = security_socket_shutdown(sock, how); 2207 if (!err) 2208 err = sock->ops->shutdown(sock, how); 2209 fput_light(sock->file, fput_needed); 2210 } 2211 return err; 2212 } 2213 2214 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2215 { 2216 return __sys_shutdown(fd, how); 2217 } 2218 2219 /* A couple of helpful macros for getting the address of the 32/64 bit 2220 * fields which are the same type (int / unsigned) on our platforms. 2221 */ 2222 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2223 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2224 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2225 2226 struct used_address { 2227 struct sockaddr_storage name; 2228 unsigned int name_len; 2229 }; 2230 2231 int __copy_msghdr_from_user(struct msghdr *kmsg, 2232 struct user_msghdr __user *umsg, 2233 struct sockaddr __user **save_addr, 2234 struct iovec __user **uiov, size_t *nsegs) 2235 { 2236 struct user_msghdr msg; 2237 ssize_t err; 2238 2239 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2240 return -EFAULT; 2241 2242 kmsg->msg_control_is_user = true; 2243 kmsg->msg_control_user = msg.msg_control; 2244 kmsg->msg_controllen = msg.msg_controllen; 2245 kmsg->msg_flags = msg.msg_flags; 2246 2247 kmsg->msg_namelen = msg.msg_namelen; 2248 if (!msg.msg_name) 2249 kmsg->msg_namelen = 0; 2250 2251 if (kmsg->msg_namelen < 0) 2252 return -EINVAL; 2253 2254 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2255 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2256 2257 if (save_addr) 2258 *save_addr = msg.msg_name; 2259 2260 if (msg.msg_name && kmsg->msg_namelen) { 2261 if (!save_addr) { 2262 err = move_addr_to_kernel(msg.msg_name, 2263 kmsg->msg_namelen, 2264 kmsg->msg_name); 2265 if (err < 0) 2266 return err; 2267 } 2268 } else { 2269 kmsg->msg_name = NULL; 2270 kmsg->msg_namelen = 0; 2271 } 2272 2273 if (msg.msg_iovlen > UIO_MAXIOV) 2274 return -EMSGSIZE; 2275 2276 kmsg->msg_iocb = NULL; 2277 *uiov = msg.msg_iov; 2278 *nsegs = msg.msg_iovlen; 2279 return 0; 2280 } 2281 2282 static int copy_msghdr_from_user(struct msghdr *kmsg, 2283 struct user_msghdr __user *umsg, 2284 struct sockaddr __user **save_addr, 2285 struct iovec **iov) 2286 { 2287 struct user_msghdr msg; 2288 ssize_t err; 2289 2290 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2291 &msg.msg_iovlen); 2292 if (err) 2293 return err; 2294 2295 err = import_iovec(save_addr ? READ : WRITE, 2296 msg.msg_iov, msg.msg_iovlen, 2297 UIO_FASTIOV, iov, &kmsg->msg_iter); 2298 return err < 0 ? err : 0; 2299 } 2300 2301 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2302 unsigned int flags, struct used_address *used_address, 2303 unsigned int allowed_msghdr_flags) 2304 { 2305 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2306 __aligned(sizeof(__kernel_size_t)); 2307 /* 20 is size of ipv6_pktinfo */ 2308 unsigned char *ctl_buf = ctl; 2309 int ctl_len; 2310 ssize_t err; 2311 2312 err = -ENOBUFS; 2313 2314 if (msg_sys->msg_controllen > INT_MAX) 2315 goto out; 2316 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2317 ctl_len = msg_sys->msg_controllen; 2318 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2319 err = 2320 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2321 sizeof(ctl)); 2322 if (err) 2323 goto out; 2324 ctl_buf = msg_sys->msg_control; 2325 ctl_len = msg_sys->msg_controllen; 2326 } else if (ctl_len) { 2327 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2328 CMSG_ALIGN(sizeof(struct cmsghdr))); 2329 if (ctl_len > sizeof(ctl)) { 2330 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2331 if (ctl_buf == NULL) 2332 goto out; 2333 } 2334 err = -EFAULT; 2335 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2336 goto out_freectl; 2337 msg_sys->msg_control = ctl_buf; 2338 msg_sys->msg_control_is_user = false; 2339 } 2340 msg_sys->msg_flags = flags; 2341 2342 if (sock->file->f_flags & O_NONBLOCK) 2343 msg_sys->msg_flags |= MSG_DONTWAIT; 2344 /* 2345 * If this is sendmmsg() and current destination address is same as 2346 * previously succeeded address, omit asking LSM's decision. 2347 * used_address->name_len is initialized to UINT_MAX so that the first 2348 * destination address never matches. 2349 */ 2350 if (used_address && msg_sys->msg_name && 2351 used_address->name_len == msg_sys->msg_namelen && 2352 !memcmp(&used_address->name, msg_sys->msg_name, 2353 used_address->name_len)) { 2354 err = sock_sendmsg_nosec(sock, msg_sys); 2355 goto out_freectl; 2356 } 2357 err = sock_sendmsg(sock, msg_sys); 2358 /* 2359 * If this is sendmmsg() and sending to current destination address was 2360 * successful, remember it. 2361 */ 2362 if (used_address && err >= 0) { 2363 used_address->name_len = msg_sys->msg_namelen; 2364 if (msg_sys->msg_name) 2365 memcpy(&used_address->name, msg_sys->msg_name, 2366 used_address->name_len); 2367 } 2368 2369 out_freectl: 2370 if (ctl_buf != ctl) 2371 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2372 out: 2373 return err; 2374 } 2375 2376 int sendmsg_copy_msghdr(struct msghdr *msg, 2377 struct user_msghdr __user *umsg, unsigned flags, 2378 struct iovec **iov) 2379 { 2380 int err; 2381 2382 if (flags & MSG_CMSG_COMPAT) { 2383 struct compat_msghdr __user *msg_compat; 2384 2385 msg_compat = (struct compat_msghdr __user *) umsg; 2386 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2387 } else { 2388 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2389 } 2390 if (err < 0) 2391 return err; 2392 2393 return 0; 2394 } 2395 2396 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2397 struct msghdr *msg_sys, unsigned int flags, 2398 struct used_address *used_address, 2399 unsigned int allowed_msghdr_flags) 2400 { 2401 struct sockaddr_storage address; 2402 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2403 ssize_t err; 2404 2405 msg_sys->msg_name = &address; 2406 2407 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2408 if (err < 0) 2409 return err; 2410 2411 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2412 allowed_msghdr_flags); 2413 kfree(iov); 2414 return err; 2415 } 2416 2417 /* 2418 * BSD sendmsg interface 2419 */ 2420 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2421 unsigned int flags) 2422 { 2423 /* disallow ancillary data requests from this path */ 2424 if (msg->msg_control || msg->msg_controllen) 2425 return -EINVAL; 2426 2427 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2428 } 2429 2430 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2431 bool forbid_cmsg_compat) 2432 { 2433 int fput_needed, err; 2434 struct msghdr msg_sys; 2435 struct socket *sock; 2436 2437 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2438 return -EINVAL; 2439 2440 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2441 if (!sock) 2442 goto out; 2443 2444 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2445 2446 fput_light(sock->file, fput_needed); 2447 out: 2448 return err; 2449 } 2450 2451 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2452 { 2453 return __sys_sendmsg(fd, msg, flags, true); 2454 } 2455 2456 /* 2457 * Linux sendmmsg interface 2458 */ 2459 2460 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2461 unsigned int flags, bool forbid_cmsg_compat) 2462 { 2463 int fput_needed, err, datagrams; 2464 struct socket *sock; 2465 struct mmsghdr __user *entry; 2466 struct compat_mmsghdr __user *compat_entry; 2467 struct msghdr msg_sys; 2468 struct used_address used_address; 2469 unsigned int oflags = flags; 2470 2471 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2472 return -EINVAL; 2473 2474 if (vlen > UIO_MAXIOV) 2475 vlen = UIO_MAXIOV; 2476 2477 datagrams = 0; 2478 2479 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2480 if (!sock) 2481 return err; 2482 2483 used_address.name_len = UINT_MAX; 2484 entry = mmsg; 2485 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2486 err = 0; 2487 flags |= MSG_BATCH; 2488 2489 while (datagrams < vlen) { 2490 if (datagrams == vlen - 1) 2491 flags = oflags; 2492 2493 if (MSG_CMSG_COMPAT & flags) { 2494 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2495 &msg_sys, flags, &used_address, MSG_EOR); 2496 if (err < 0) 2497 break; 2498 err = __put_user(err, &compat_entry->msg_len); 2499 ++compat_entry; 2500 } else { 2501 err = ___sys_sendmsg(sock, 2502 (struct user_msghdr __user *)entry, 2503 &msg_sys, flags, &used_address, MSG_EOR); 2504 if (err < 0) 2505 break; 2506 err = put_user(err, &entry->msg_len); 2507 ++entry; 2508 } 2509 2510 if (err) 2511 break; 2512 ++datagrams; 2513 if (msg_data_left(&msg_sys)) 2514 break; 2515 cond_resched(); 2516 } 2517 2518 fput_light(sock->file, fput_needed); 2519 2520 /* We only return an error if no datagrams were able to be sent */ 2521 if (datagrams != 0) 2522 return datagrams; 2523 2524 return err; 2525 } 2526 2527 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2528 unsigned int, vlen, unsigned int, flags) 2529 { 2530 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2531 } 2532 2533 int recvmsg_copy_msghdr(struct msghdr *msg, 2534 struct user_msghdr __user *umsg, unsigned flags, 2535 struct sockaddr __user **uaddr, 2536 struct iovec **iov) 2537 { 2538 ssize_t err; 2539 2540 if (MSG_CMSG_COMPAT & flags) { 2541 struct compat_msghdr __user *msg_compat; 2542 2543 msg_compat = (struct compat_msghdr __user *) umsg; 2544 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2545 } else { 2546 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2547 } 2548 if (err < 0) 2549 return err; 2550 2551 return 0; 2552 } 2553 2554 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2555 struct user_msghdr __user *msg, 2556 struct sockaddr __user *uaddr, 2557 unsigned int flags, int nosec) 2558 { 2559 struct compat_msghdr __user *msg_compat = 2560 (struct compat_msghdr __user *) msg; 2561 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2562 struct sockaddr_storage addr; 2563 unsigned long cmsg_ptr; 2564 int len; 2565 ssize_t err; 2566 2567 msg_sys->msg_name = &addr; 2568 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2569 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2570 2571 /* We assume all kernel code knows the size of sockaddr_storage */ 2572 msg_sys->msg_namelen = 0; 2573 2574 if (sock->file->f_flags & O_NONBLOCK) 2575 flags |= MSG_DONTWAIT; 2576 2577 if (unlikely(nosec)) 2578 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2579 else 2580 err = sock_recvmsg(sock, msg_sys, flags); 2581 2582 if (err < 0) 2583 goto out; 2584 len = err; 2585 2586 if (uaddr != NULL) { 2587 err = move_addr_to_user(&addr, 2588 msg_sys->msg_namelen, uaddr, 2589 uaddr_len); 2590 if (err < 0) 2591 goto out; 2592 } 2593 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2594 COMPAT_FLAGS(msg)); 2595 if (err) 2596 goto out; 2597 if (MSG_CMSG_COMPAT & flags) 2598 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2599 &msg_compat->msg_controllen); 2600 else 2601 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2602 &msg->msg_controllen); 2603 if (err) 2604 goto out; 2605 err = len; 2606 out: 2607 return err; 2608 } 2609 2610 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2611 struct msghdr *msg_sys, unsigned int flags, int nosec) 2612 { 2613 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2614 /* user mode address pointers */ 2615 struct sockaddr __user *uaddr; 2616 ssize_t err; 2617 2618 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2619 if (err < 0) 2620 return err; 2621 2622 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2623 kfree(iov); 2624 return err; 2625 } 2626 2627 /* 2628 * BSD recvmsg interface 2629 */ 2630 2631 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2632 struct user_msghdr __user *umsg, 2633 struct sockaddr __user *uaddr, unsigned int flags) 2634 { 2635 /* disallow ancillary data requests from this path */ 2636 if (msg->msg_control || msg->msg_controllen) 2637 return -EINVAL; 2638 2639 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2640 } 2641 2642 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2643 bool forbid_cmsg_compat) 2644 { 2645 int fput_needed, err; 2646 struct msghdr msg_sys; 2647 struct socket *sock; 2648 2649 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2650 return -EINVAL; 2651 2652 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2653 if (!sock) 2654 goto out; 2655 2656 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2657 2658 fput_light(sock->file, fput_needed); 2659 out: 2660 return err; 2661 } 2662 2663 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2664 unsigned int, flags) 2665 { 2666 return __sys_recvmsg(fd, msg, flags, true); 2667 } 2668 2669 /* 2670 * Linux recvmmsg interface 2671 */ 2672 2673 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2674 unsigned int vlen, unsigned int flags, 2675 struct timespec64 *timeout) 2676 { 2677 int fput_needed, err, datagrams; 2678 struct socket *sock; 2679 struct mmsghdr __user *entry; 2680 struct compat_mmsghdr __user *compat_entry; 2681 struct msghdr msg_sys; 2682 struct timespec64 end_time; 2683 struct timespec64 timeout64; 2684 2685 if (timeout && 2686 poll_select_set_timeout(&end_time, timeout->tv_sec, 2687 timeout->tv_nsec)) 2688 return -EINVAL; 2689 2690 datagrams = 0; 2691 2692 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2693 if (!sock) 2694 return err; 2695 2696 if (likely(!(flags & MSG_ERRQUEUE))) { 2697 err = sock_error(sock->sk); 2698 if (err) { 2699 datagrams = err; 2700 goto out_put; 2701 } 2702 } 2703 2704 entry = mmsg; 2705 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2706 2707 while (datagrams < vlen) { 2708 /* 2709 * No need to ask LSM for more than the first datagram. 2710 */ 2711 if (MSG_CMSG_COMPAT & flags) { 2712 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2713 &msg_sys, flags & ~MSG_WAITFORONE, 2714 datagrams); 2715 if (err < 0) 2716 break; 2717 err = __put_user(err, &compat_entry->msg_len); 2718 ++compat_entry; 2719 } else { 2720 err = ___sys_recvmsg(sock, 2721 (struct user_msghdr __user *)entry, 2722 &msg_sys, flags & ~MSG_WAITFORONE, 2723 datagrams); 2724 if (err < 0) 2725 break; 2726 err = put_user(err, &entry->msg_len); 2727 ++entry; 2728 } 2729 2730 if (err) 2731 break; 2732 ++datagrams; 2733 2734 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2735 if (flags & MSG_WAITFORONE) 2736 flags |= MSG_DONTWAIT; 2737 2738 if (timeout) { 2739 ktime_get_ts64(&timeout64); 2740 *timeout = timespec64_sub(end_time, timeout64); 2741 if (timeout->tv_sec < 0) { 2742 timeout->tv_sec = timeout->tv_nsec = 0; 2743 break; 2744 } 2745 2746 /* Timeout, return less than vlen datagrams */ 2747 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2748 break; 2749 } 2750 2751 /* Out of band data, return right away */ 2752 if (msg_sys.msg_flags & MSG_OOB) 2753 break; 2754 cond_resched(); 2755 } 2756 2757 if (err == 0) 2758 goto out_put; 2759 2760 if (datagrams == 0) { 2761 datagrams = err; 2762 goto out_put; 2763 } 2764 2765 /* 2766 * We may return less entries than requested (vlen) if the 2767 * sock is non block and there aren't enough datagrams... 2768 */ 2769 if (err != -EAGAIN) { 2770 /* 2771 * ... or if recvmsg returns an error after we 2772 * received some datagrams, where we record the 2773 * error to return on the next call or if the 2774 * app asks about it using getsockopt(SO_ERROR). 2775 */ 2776 sock->sk->sk_err = -err; 2777 } 2778 out_put: 2779 fput_light(sock->file, fput_needed); 2780 2781 return datagrams; 2782 } 2783 2784 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2785 unsigned int vlen, unsigned int flags, 2786 struct __kernel_timespec __user *timeout, 2787 struct old_timespec32 __user *timeout32) 2788 { 2789 int datagrams; 2790 struct timespec64 timeout_sys; 2791 2792 if (timeout && get_timespec64(&timeout_sys, timeout)) 2793 return -EFAULT; 2794 2795 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2796 return -EFAULT; 2797 2798 if (!timeout && !timeout32) 2799 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2800 2801 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2802 2803 if (datagrams <= 0) 2804 return datagrams; 2805 2806 if (timeout && put_timespec64(&timeout_sys, timeout)) 2807 datagrams = -EFAULT; 2808 2809 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2810 datagrams = -EFAULT; 2811 2812 return datagrams; 2813 } 2814 2815 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2816 unsigned int, vlen, unsigned int, flags, 2817 struct __kernel_timespec __user *, timeout) 2818 { 2819 if (flags & MSG_CMSG_COMPAT) 2820 return -EINVAL; 2821 2822 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2823 } 2824 2825 #ifdef CONFIG_COMPAT_32BIT_TIME 2826 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2827 unsigned int, vlen, unsigned int, flags, 2828 struct old_timespec32 __user *, timeout) 2829 { 2830 if (flags & MSG_CMSG_COMPAT) 2831 return -EINVAL; 2832 2833 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2834 } 2835 #endif 2836 2837 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2838 /* Argument list sizes for sys_socketcall */ 2839 #define AL(x) ((x) * sizeof(unsigned long)) 2840 static const unsigned char nargs[21] = { 2841 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2842 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2843 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2844 AL(4), AL(5), AL(4) 2845 }; 2846 2847 #undef AL 2848 2849 /* 2850 * System call vectors. 2851 * 2852 * Argument checking cleaned up. Saved 20% in size. 2853 * This function doesn't need to set the kernel lock because 2854 * it is set by the callees. 2855 */ 2856 2857 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2858 { 2859 unsigned long a[AUDITSC_ARGS]; 2860 unsigned long a0, a1; 2861 int err; 2862 unsigned int len; 2863 2864 if (call < 1 || call > SYS_SENDMMSG) 2865 return -EINVAL; 2866 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2867 2868 len = nargs[call]; 2869 if (len > sizeof(a)) 2870 return -EINVAL; 2871 2872 /* copy_from_user should be SMP safe. */ 2873 if (copy_from_user(a, args, len)) 2874 return -EFAULT; 2875 2876 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2877 if (err) 2878 return err; 2879 2880 a0 = a[0]; 2881 a1 = a[1]; 2882 2883 switch (call) { 2884 case SYS_SOCKET: 2885 err = __sys_socket(a0, a1, a[2]); 2886 break; 2887 case SYS_BIND: 2888 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2889 break; 2890 case SYS_CONNECT: 2891 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2892 break; 2893 case SYS_LISTEN: 2894 err = __sys_listen(a0, a1); 2895 break; 2896 case SYS_ACCEPT: 2897 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2898 (int __user *)a[2], 0); 2899 break; 2900 case SYS_GETSOCKNAME: 2901 err = 2902 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2903 (int __user *)a[2]); 2904 break; 2905 case SYS_GETPEERNAME: 2906 err = 2907 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2908 (int __user *)a[2]); 2909 break; 2910 case SYS_SOCKETPAIR: 2911 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2912 break; 2913 case SYS_SEND: 2914 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2915 NULL, 0); 2916 break; 2917 case SYS_SENDTO: 2918 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2919 (struct sockaddr __user *)a[4], a[5]); 2920 break; 2921 case SYS_RECV: 2922 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2923 NULL, NULL); 2924 break; 2925 case SYS_RECVFROM: 2926 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2927 (struct sockaddr __user *)a[4], 2928 (int __user *)a[5]); 2929 break; 2930 case SYS_SHUTDOWN: 2931 err = __sys_shutdown(a0, a1); 2932 break; 2933 case SYS_SETSOCKOPT: 2934 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2935 a[4]); 2936 break; 2937 case SYS_GETSOCKOPT: 2938 err = 2939 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2940 (int __user *)a[4]); 2941 break; 2942 case SYS_SENDMSG: 2943 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2944 a[2], true); 2945 break; 2946 case SYS_SENDMMSG: 2947 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2948 a[3], true); 2949 break; 2950 case SYS_RECVMSG: 2951 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2952 a[2], true); 2953 break; 2954 case SYS_RECVMMSG: 2955 if (IS_ENABLED(CONFIG_64BIT)) 2956 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2957 a[2], a[3], 2958 (struct __kernel_timespec __user *)a[4], 2959 NULL); 2960 else 2961 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2962 a[2], a[3], NULL, 2963 (struct old_timespec32 __user *)a[4]); 2964 break; 2965 case SYS_ACCEPT4: 2966 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2967 (int __user *)a[2], a[3]); 2968 break; 2969 default: 2970 err = -EINVAL; 2971 break; 2972 } 2973 return err; 2974 } 2975 2976 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2977 2978 /** 2979 * sock_register - add a socket protocol handler 2980 * @ops: description of protocol 2981 * 2982 * This function is called by a protocol handler that wants to 2983 * advertise its address family, and have it linked into the 2984 * socket interface. The value ops->family corresponds to the 2985 * socket system call protocol family. 2986 */ 2987 int sock_register(const struct net_proto_family *ops) 2988 { 2989 int err; 2990 2991 if (ops->family >= NPROTO) { 2992 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2993 return -ENOBUFS; 2994 } 2995 2996 spin_lock(&net_family_lock); 2997 if (rcu_dereference_protected(net_families[ops->family], 2998 lockdep_is_held(&net_family_lock))) 2999 err = -EEXIST; 3000 else { 3001 rcu_assign_pointer(net_families[ops->family], ops); 3002 err = 0; 3003 } 3004 spin_unlock(&net_family_lock); 3005 3006 pr_info("NET: Registered protocol family %d\n", ops->family); 3007 return err; 3008 } 3009 EXPORT_SYMBOL(sock_register); 3010 3011 /** 3012 * sock_unregister - remove a protocol handler 3013 * @family: protocol family to remove 3014 * 3015 * This function is called by a protocol handler that wants to 3016 * remove its address family, and have it unlinked from the 3017 * new socket creation. 3018 * 3019 * If protocol handler is a module, then it can use module reference 3020 * counts to protect against new references. If protocol handler is not 3021 * a module then it needs to provide its own protection in 3022 * the ops->create routine. 3023 */ 3024 void sock_unregister(int family) 3025 { 3026 BUG_ON(family < 0 || family >= NPROTO); 3027 3028 spin_lock(&net_family_lock); 3029 RCU_INIT_POINTER(net_families[family], NULL); 3030 spin_unlock(&net_family_lock); 3031 3032 synchronize_rcu(); 3033 3034 pr_info("NET: Unregistered protocol family %d\n", family); 3035 } 3036 EXPORT_SYMBOL(sock_unregister); 3037 3038 bool sock_is_registered(int family) 3039 { 3040 return family < NPROTO && rcu_access_pointer(net_families[family]); 3041 } 3042 3043 static int __init sock_init(void) 3044 { 3045 int err; 3046 /* 3047 * Initialize the network sysctl infrastructure. 3048 */ 3049 err = net_sysctl_init(); 3050 if (err) 3051 goto out; 3052 3053 /* 3054 * Initialize skbuff SLAB cache 3055 */ 3056 skb_init(); 3057 3058 /* 3059 * Initialize the protocols module. 3060 */ 3061 3062 init_inodecache(); 3063 3064 err = register_filesystem(&sock_fs_type); 3065 if (err) 3066 goto out; 3067 sock_mnt = kern_mount(&sock_fs_type); 3068 if (IS_ERR(sock_mnt)) { 3069 err = PTR_ERR(sock_mnt); 3070 goto out_mount; 3071 } 3072 3073 /* The real protocol initialization is performed in later initcalls. 3074 */ 3075 3076 #ifdef CONFIG_NETFILTER 3077 err = netfilter_init(); 3078 if (err) 3079 goto out; 3080 #endif 3081 3082 ptp_classifier_init(); 3083 3084 out: 3085 return err; 3086 3087 out_mount: 3088 unregister_filesystem(&sock_fs_type); 3089 goto out; 3090 } 3091 3092 core_initcall(sock_init); /* early initcall */ 3093 3094 #ifdef CONFIG_PROC_FS 3095 void socket_seq_show(struct seq_file *seq) 3096 { 3097 seq_printf(seq, "sockets: used %d\n", 3098 sock_inuse_get(seq->private)); 3099 } 3100 #endif /* CONFIG_PROC_FS */ 3101 3102 #ifdef CONFIG_COMPAT 3103 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3104 { 3105 struct compat_ifconf ifc32; 3106 struct ifconf ifc; 3107 int err; 3108 3109 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3110 return -EFAULT; 3111 3112 ifc.ifc_len = ifc32.ifc_len; 3113 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3114 3115 rtnl_lock(); 3116 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3117 rtnl_unlock(); 3118 if (err) 3119 return err; 3120 3121 ifc32.ifc_len = ifc.ifc_len; 3122 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3123 return -EFAULT; 3124 3125 return 0; 3126 } 3127 3128 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3129 { 3130 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3131 bool convert_in = false, convert_out = false; 3132 size_t buf_size = 0; 3133 struct ethtool_rxnfc __user *rxnfc = NULL; 3134 struct ifreq ifr; 3135 u32 rule_cnt = 0, actual_rule_cnt; 3136 u32 ethcmd; 3137 u32 data; 3138 int ret; 3139 3140 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3141 return -EFAULT; 3142 3143 compat_rxnfc = compat_ptr(data); 3144 3145 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3146 return -EFAULT; 3147 3148 /* Most ethtool structures are defined without padding. 3149 * Unfortunately struct ethtool_rxnfc is an exception. 3150 */ 3151 switch (ethcmd) { 3152 default: 3153 break; 3154 case ETHTOOL_GRXCLSRLALL: 3155 /* Buffer size is variable */ 3156 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3157 return -EFAULT; 3158 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3159 return -ENOMEM; 3160 buf_size += rule_cnt * sizeof(u32); 3161 fallthrough; 3162 case ETHTOOL_GRXRINGS: 3163 case ETHTOOL_GRXCLSRLCNT: 3164 case ETHTOOL_GRXCLSRULE: 3165 case ETHTOOL_SRXCLSRLINS: 3166 convert_out = true; 3167 fallthrough; 3168 case ETHTOOL_SRXCLSRLDEL: 3169 buf_size += sizeof(struct ethtool_rxnfc); 3170 convert_in = true; 3171 rxnfc = compat_alloc_user_space(buf_size); 3172 break; 3173 } 3174 3175 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3176 return -EFAULT; 3177 3178 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3179 3180 if (convert_in) { 3181 /* We expect there to be holes between fs.m_ext and 3182 * fs.ring_cookie and at the end of fs, but nowhere else. 3183 */ 3184 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3185 sizeof(compat_rxnfc->fs.m_ext) != 3186 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3187 sizeof(rxnfc->fs.m_ext)); 3188 BUILD_BUG_ON( 3189 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3190 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3191 offsetof(struct ethtool_rxnfc, fs.location) - 3192 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3193 3194 if (copy_in_user(rxnfc, compat_rxnfc, 3195 (void __user *)(&rxnfc->fs.m_ext + 1) - 3196 (void __user *)rxnfc) || 3197 copy_in_user(&rxnfc->fs.ring_cookie, 3198 &compat_rxnfc->fs.ring_cookie, 3199 (void __user *)(&rxnfc->fs.location + 1) - 3200 (void __user *)&rxnfc->fs.ring_cookie)) 3201 return -EFAULT; 3202 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3203 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3204 return -EFAULT; 3205 } else if (copy_in_user(&rxnfc->rule_cnt, 3206 &compat_rxnfc->rule_cnt, 3207 sizeof(rxnfc->rule_cnt))) 3208 return -EFAULT; 3209 } 3210 3211 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3212 if (ret) 3213 return ret; 3214 3215 if (convert_out) { 3216 if (copy_in_user(compat_rxnfc, rxnfc, 3217 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3218 (const void __user *)rxnfc) || 3219 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3220 &rxnfc->fs.ring_cookie, 3221 (const void __user *)(&rxnfc->fs.location + 1) - 3222 (const void __user *)&rxnfc->fs.ring_cookie) || 3223 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3224 sizeof(rxnfc->rule_cnt))) 3225 return -EFAULT; 3226 3227 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3228 /* As an optimisation, we only copy the actual 3229 * number of rules that the underlying 3230 * function returned. Since Mallory might 3231 * change the rule count in user memory, we 3232 * check that it is less than the rule count 3233 * originally given (as the user buffer size), 3234 * which has been range-checked. 3235 */ 3236 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3237 return -EFAULT; 3238 if (actual_rule_cnt < rule_cnt) 3239 rule_cnt = actual_rule_cnt; 3240 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3241 &rxnfc->rule_locs[0], 3242 rule_cnt * sizeof(u32))) 3243 return -EFAULT; 3244 } 3245 } 3246 3247 return 0; 3248 } 3249 3250 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3251 { 3252 compat_uptr_t uptr32; 3253 struct ifreq ifr; 3254 void __user *saved; 3255 int err; 3256 3257 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3258 return -EFAULT; 3259 3260 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3261 return -EFAULT; 3262 3263 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3264 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3265 3266 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3267 if (!err) { 3268 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3269 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3270 err = -EFAULT; 3271 } 3272 return err; 3273 } 3274 3275 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3276 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3277 struct compat_ifreq __user *u_ifreq32) 3278 { 3279 struct ifreq ifreq; 3280 u32 data32; 3281 3282 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3283 return -EFAULT; 3284 if (get_user(data32, &u_ifreq32->ifr_data)) 3285 return -EFAULT; 3286 ifreq.ifr_data = compat_ptr(data32); 3287 3288 return dev_ioctl(net, cmd, &ifreq, NULL); 3289 } 3290 3291 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3292 unsigned int cmd, 3293 struct compat_ifreq __user *uifr32) 3294 { 3295 struct ifreq __user *uifr; 3296 int err; 3297 3298 /* Handle the fact that while struct ifreq has the same *layout* on 3299 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3300 * which are handled elsewhere, it still has different *size* due to 3301 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3302 * resulting in struct ifreq being 32 and 40 bytes respectively). 3303 * As a result, if the struct happens to be at the end of a page and 3304 * the next page isn't readable/writable, we get a fault. To prevent 3305 * that, copy back and forth to the full size. 3306 */ 3307 3308 uifr = compat_alloc_user_space(sizeof(*uifr)); 3309 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3310 return -EFAULT; 3311 3312 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3313 3314 if (!err) { 3315 switch (cmd) { 3316 case SIOCGIFFLAGS: 3317 case SIOCGIFMETRIC: 3318 case SIOCGIFMTU: 3319 case SIOCGIFMEM: 3320 case SIOCGIFHWADDR: 3321 case SIOCGIFINDEX: 3322 case SIOCGIFADDR: 3323 case SIOCGIFBRDADDR: 3324 case SIOCGIFDSTADDR: 3325 case SIOCGIFNETMASK: 3326 case SIOCGIFPFLAGS: 3327 case SIOCGIFTXQLEN: 3328 case SIOCGMIIPHY: 3329 case SIOCGMIIREG: 3330 case SIOCGIFNAME: 3331 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3332 err = -EFAULT; 3333 break; 3334 } 3335 } 3336 return err; 3337 } 3338 3339 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3340 struct compat_ifreq __user *uifr32) 3341 { 3342 struct ifreq ifr; 3343 struct compat_ifmap __user *uifmap32; 3344 int err; 3345 3346 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3347 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3348 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3349 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3350 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3351 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3352 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3353 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3354 if (err) 3355 return -EFAULT; 3356 3357 err = dev_ioctl(net, cmd, &ifr, NULL); 3358 3359 if (cmd == SIOCGIFMAP && !err) { 3360 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3361 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3362 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3363 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3364 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3365 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3366 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3367 if (err) 3368 err = -EFAULT; 3369 } 3370 return err; 3371 } 3372 3373 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3374 * for some operations; this forces use of the newer bridge-utils that 3375 * use compatible ioctls 3376 */ 3377 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3378 { 3379 compat_ulong_t tmp; 3380 3381 if (get_user(tmp, argp)) 3382 return -EFAULT; 3383 if (tmp == BRCTL_GET_VERSION) 3384 return BRCTL_VERSION + 1; 3385 return -EINVAL; 3386 } 3387 3388 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3389 unsigned int cmd, unsigned long arg) 3390 { 3391 void __user *argp = compat_ptr(arg); 3392 struct sock *sk = sock->sk; 3393 struct net *net = sock_net(sk); 3394 3395 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3396 return compat_ifr_data_ioctl(net, cmd, argp); 3397 3398 switch (cmd) { 3399 case SIOCSIFBR: 3400 case SIOCGIFBR: 3401 return old_bridge_ioctl(argp); 3402 case SIOCGIFCONF: 3403 return compat_dev_ifconf(net, argp); 3404 case SIOCETHTOOL: 3405 return ethtool_ioctl(net, argp); 3406 case SIOCWANDEV: 3407 return compat_siocwandev(net, argp); 3408 case SIOCGIFMAP: 3409 case SIOCSIFMAP: 3410 return compat_sioc_ifmap(net, cmd, argp); 3411 case SIOCGSTAMP_OLD: 3412 case SIOCGSTAMPNS_OLD: 3413 if (!sock->ops->gettstamp) 3414 return -ENOIOCTLCMD; 3415 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3416 !COMPAT_USE_64BIT_TIME); 3417 3418 case SIOCBONDSLAVEINFOQUERY: 3419 case SIOCBONDINFOQUERY: 3420 case SIOCSHWTSTAMP: 3421 case SIOCGHWTSTAMP: 3422 return compat_ifr_data_ioctl(net, cmd, argp); 3423 3424 case FIOSETOWN: 3425 case SIOCSPGRP: 3426 case FIOGETOWN: 3427 case SIOCGPGRP: 3428 case SIOCBRADDBR: 3429 case SIOCBRDELBR: 3430 case SIOCGIFVLAN: 3431 case SIOCSIFVLAN: 3432 case SIOCADDDLCI: 3433 case SIOCDELDLCI: 3434 case SIOCGSKNS: 3435 case SIOCGSTAMP_NEW: 3436 case SIOCGSTAMPNS_NEW: 3437 return sock_ioctl(file, cmd, arg); 3438 3439 case SIOCGIFFLAGS: 3440 case SIOCSIFFLAGS: 3441 case SIOCGIFMETRIC: 3442 case SIOCSIFMETRIC: 3443 case SIOCGIFMTU: 3444 case SIOCSIFMTU: 3445 case SIOCGIFMEM: 3446 case SIOCSIFMEM: 3447 case SIOCGIFHWADDR: 3448 case SIOCSIFHWADDR: 3449 case SIOCADDMULTI: 3450 case SIOCDELMULTI: 3451 case SIOCGIFINDEX: 3452 case SIOCGIFADDR: 3453 case SIOCSIFADDR: 3454 case SIOCSIFHWBROADCAST: 3455 case SIOCDIFADDR: 3456 case SIOCGIFBRDADDR: 3457 case SIOCSIFBRDADDR: 3458 case SIOCGIFDSTADDR: 3459 case SIOCSIFDSTADDR: 3460 case SIOCGIFNETMASK: 3461 case SIOCSIFNETMASK: 3462 case SIOCSIFPFLAGS: 3463 case SIOCGIFPFLAGS: 3464 case SIOCGIFTXQLEN: 3465 case SIOCSIFTXQLEN: 3466 case SIOCBRADDIF: 3467 case SIOCBRDELIF: 3468 case SIOCGIFNAME: 3469 case SIOCSIFNAME: 3470 case SIOCGMIIPHY: 3471 case SIOCGMIIREG: 3472 case SIOCSMIIREG: 3473 case SIOCBONDENSLAVE: 3474 case SIOCBONDRELEASE: 3475 case SIOCBONDSETHWADDR: 3476 case SIOCBONDCHANGEACTIVE: 3477 return compat_ifreq_ioctl(net, sock, cmd, argp); 3478 3479 case SIOCSARP: 3480 case SIOCGARP: 3481 case SIOCDARP: 3482 case SIOCOUTQ: 3483 case SIOCOUTQNSD: 3484 case SIOCATMARK: 3485 return sock_do_ioctl(net, sock, cmd, arg); 3486 } 3487 3488 return -ENOIOCTLCMD; 3489 } 3490 3491 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3492 unsigned long arg) 3493 { 3494 struct socket *sock = file->private_data; 3495 int ret = -ENOIOCTLCMD; 3496 struct sock *sk; 3497 struct net *net; 3498 3499 sk = sock->sk; 3500 net = sock_net(sk); 3501 3502 if (sock->ops->compat_ioctl) 3503 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3504 3505 if (ret == -ENOIOCTLCMD && 3506 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3507 ret = compat_wext_handle_ioctl(net, cmd, arg); 3508 3509 if (ret == -ENOIOCTLCMD) 3510 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3511 3512 return ret; 3513 } 3514 #endif 3515 3516 /** 3517 * kernel_bind - bind an address to a socket (kernel space) 3518 * @sock: socket 3519 * @addr: address 3520 * @addrlen: length of address 3521 * 3522 * Returns 0 or an error. 3523 */ 3524 3525 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3526 { 3527 return sock->ops->bind(sock, addr, addrlen); 3528 } 3529 EXPORT_SYMBOL(kernel_bind); 3530 3531 /** 3532 * kernel_listen - move socket to listening state (kernel space) 3533 * @sock: socket 3534 * @backlog: pending connections queue size 3535 * 3536 * Returns 0 or an error. 3537 */ 3538 3539 int kernel_listen(struct socket *sock, int backlog) 3540 { 3541 return sock->ops->listen(sock, backlog); 3542 } 3543 EXPORT_SYMBOL(kernel_listen); 3544 3545 /** 3546 * kernel_accept - accept a connection (kernel space) 3547 * @sock: listening socket 3548 * @newsock: new connected socket 3549 * @flags: flags 3550 * 3551 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3552 * If it fails, @newsock is guaranteed to be %NULL. 3553 * Returns 0 or an error. 3554 */ 3555 3556 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3557 { 3558 struct sock *sk = sock->sk; 3559 int err; 3560 3561 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3562 newsock); 3563 if (err < 0) 3564 goto done; 3565 3566 err = sock->ops->accept(sock, *newsock, flags, true); 3567 if (err < 0) { 3568 sock_release(*newsock); 3569 *newsock = NULL; 3570 goto done; 3571 } 3572 3573 (*newsock)->ops = sock->ops; 3574 __module_get((*newsock)->ops->owner); 3575 3576 done: 3577 return err; 3578 } 3579 EXPORT_SYMBOL(kernel_accept); 3580 3581 /** 3582 * kernel_connect - connect a socket (kernel space) 3583 * @sock: socket 3584 * @addr: address 3585 * @addrlen: address length 3586 * @flags: flags (O_NONBLOCK, ...) 3587 * 3588 * For datagram sockets, @addr is the addres to which datagrams are sent 3589 * by default, and the only address from which datagrams are received. 3590 * For stream sockets, attempts to connect to @addr. 3591 * Returns 0 or an error code. 3592 */ 3593 3594 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3595 int flags) 3596 { 3597 return sock->ops->connect(sock, addr, addrlen, flags); 3598 } 3599 EXPORT_SYMBOL(kernel_connect); 3600 3601 /** 3602 * kernel_getsockname - get the address which the socket is bound (kernel space) 3603 * @sock: socket 3604 * @addr: address holder 3605 * 3606 * Fills the @addr pointer with the address which the socket is bound. 3607 * Returns 0 or an error code. 3608 */ 3609 3610 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3611 { 3612 return sock->ops->getname(sock, addr, 0); 3613 } 3614 EXPORT_SYMBOL(kernel_getsockname); 3615 3616 /** 3617 * kernel_peername - get the address which the socket is connected (kernel space) 3618 * @sock: socket 3619 * @addr: address holder 3620 * 3621 * Fills the @addr pointer with the address which the socket is connected. 3622 * Returns 0 or an error code. 3623 */ 3624 3625 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3626 { 3627 return sock->ops->getname(sock, addr, 1); 3628 } 3629 EXPORT_SYMBOL(kernel_getpeername); 3630 3631 /** 3632 * kernel_sendpage - send a &page through a socket (kernel space) 3633 * @sock: socket 3634 * @page: page 3635 * @offset: page offset 3636 * @size: total size in bytes 3637 * @flags: flags (MSG_DONTWAIT, ...) 3638 * 3639 * Returns the total amount sent in bytes or an error. 3640 */ 3641 3642 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3643 size_t size, int flags) 3644 { 3645 if (sock->ops->sendpage) 3646 return sock->ops->sendpage(sock, page, offset, size, flags); 3647 3648 return sock_no_sendpage(sock, page, offset, size, flags); 3649 } 3650 EXPORT_SYMBOL(kernel_sendpage); 3651 3652 /** 3653 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3654 * @sk: sock 3655 * @page: page 3656 * @offset: page offset 3657 * @size: total size in bytes 3658 * @flags: flags (MSG_DONTWAIT, ...) 3659 * 3660 * Returns the total amount sent in bytes or an error. 3661 * Caller must hold @sk. 3662 */ 3663 3664 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3665 size_t size, int flags) 3666 { 3667 struct socket *sock = sk->sk_socket; 3668 3669 if (sock->ops->sendpage_locked) 3670 return sock->ops->sendpage_locked(sk, page, offset, size, 3671 flags); 3672 3673 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3674 } 3675 EXPORT_SYMBOL(kernel_sendpage_locked); 3676 3677 /** 3678 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3679 * @sock: socket 3680 * @how: connection part 3681 * 3682 * Returns 0 or an error. 3683 */ 3684 3685 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3686 { 3687 return sock->ops->shutdown(sock, how); 3688 } 3689 EXPORT_SYMBOL(kernel_sock_shutdown); 3690 3691 /** 3692 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3693 * @sk: socket 3694 * 3695 * This routine returns the IP overhead imposed by a socket i.e. 3696 * the length of the underlying IP header, depending on whether 3697 * this is an IPv4 or IPv6 socket and the length from IP options turned 3698 * on at the socket. Assumes that the caller has a lock on the socket. 3699 */ 3700 3701 u32 kernel_sock_ip_overhead(struct sock *sk) 3702 { 3703 struct inet_sock *inet; 3704 struct ip_options_rcu *opt; 3705 u32 overhead = 0; 3706 #if IS_ENABLED(CONFIG_IPV6) 3707 struct ipv6_pinfo *np; 3708 struct ipv6_txoptions *optv6 = NULL; 3709 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3710 3711 if (!sk) 3712 return overhead; 3713 3714 switch (sk->sk_family) { 3715 case AF_INET: 3716 inet = inet_sk(sk); 3717 overhead += sizeof(struct iphdr); 3718 opt = rcu_dereference_protected(inet->inet_opt, 3719 sock_owned_by_user(sk)); 3720 if (opt) 3721 overhead += opt->opt.optlen; 3722 return overhead; 3723 #if IS_ENABLED(CONFIG_IPV6) 3724 case AF_INET6: 3725 np = inet6_sk(sk); 3726 overhead += sizeof(struct ipv6hdr); 3727 if (np) 3728 optv6 = rcu_dereference_protected(np->opt, 3729 sock_owned_by_user(sk)); 3730 if (optv6) 3731 overhead += (optv6->opt_flen + optv6->opt_nflen); 3732 return overhead; 3733 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3734 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3735 return overhead; 3736 } 3737 } 3738 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3739