xref: /openbmc/linux/net/socket.c (revision 78ccbf9ff89bd7a20d36be039cb3eab71081648c)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	if (sock_inode_cachep == NULL)
300 		return -ENOMEM;
301 	return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305 	.alloc_inode	= sock_alloc_inode,
306 	.destroy_inode	= sock_destroy_inode,
307 	.statfs		= simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 				d_inode(dentry)->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320 	.d_dname  = sockfs_dname,
321 };
322 
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 			    struct dentry *dentry, struct inode *inode,
325 			    const char *suffix, void *value, size_t size)
326 {
327 	if (value) {
328 		if (dentry->d_name.len + 1 > size)
329 			return -ERANGE;
330 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
331 	}
332 	return dentry->d_name.len + 1;
333 }
334 
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
338 
339 static const struct xattr_handler sockfs_xattr_handler = {
340 	.name = XATTR_NAME_SOCKPROTONAME,
341 	.get = sockfs_xattr_get,
342 };
343 
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 				     struct dentry *dentry, struct inode *inode,
346 				     const char *suffix, const void *value,
347 				     size_t size, int flags)
348 {
349 	/* Handled by LSM. */
350 	return -EAGAIN;
351 }
352 
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354 	.prefix = XATTR_SECURITY_PREFIX,
355 	.set = sockfs_security_xattr_set,
356 };
357 
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 	&sockfs_xattr_handler,
360 	&sockfs_security_xattr_handler,
361 	NULL
362 };
363 
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 			 int flags, const char *dev_name, void *data)
366 {
367 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 				  sockfs_xattr_handlers,
369 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
370 }
371 
372 static struct vfsmount *sock_mnt __read_mostly;
373 
374 static struct file_system_type sock_fs_type = {
375 	.name =		"sockfs",
376 	.mount =	sockfs_mount,
377 	.kill_sb =	kill_anon_super,
378 };
379 
380 /*
381  *	Obtains the first available file descriptor and sets it up for use.
382  *
383  *	These functions create file structures and maps them to fd space
384  *	of the current process. On success it returns file descriptor
385  *	and file struct implicitly stored in sock->file.
386  *	Note that another thread may close file descriptor before we return
387  *	from this function. We use the fact that now we do not refer
388  *	to socket after mapping. If one day we will need it, this
389  *	function will increment ref. count on file by 1.
390  *
391  *	In any case returned fd MAY BE not valid!
392  *	This race condition is unavoidable
393  *	with shared fd spaces, we cannot solve it inside kernel,
394  *	but we take care of internal coherence yet.
395  */
396 
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
398 {
399 	struct qstr name = { .name = "" };
400 	struct path path;
401 	struct file *file;
402 
403 	if (dname) {
404 		name.name = dname;
405 		name.len = strlen(name.name);
406 	} else if (sock->sk) {
407 		name.name = sock->sk->sk_prot_creator->name;
408 		name.len = strlen(name.name);
409 	}
410 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 	if (unlikely(!path.dentry))
412 		return ERR_PTR(-ENOMEM);
413 	path.mnt = mntget(sock_mnt);
414 
415 	d_instantiate(path.dentry, SOCK_INODE(sock));
416 
417 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 		  &socket_file_ops);
419 	if (IS_ERR(file)) {
420 		/* drop dentry, keep inode */
421 		ihold(d_inode(path.dentry));
422 		path_put(&path);
423 		return file;
424 	}
425 
426 	sock->file = file;
427 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 	file->private_data = sock;
429 	return file;
430 }
431 EXPORT_SYMBOL(sock_alloc_file);
432 
433 static int sock_map_fd(struct socket *sock, int flags)
434 {
435 	struct file *newfile;
436 	int fd = get_unused_fd_flags(flags);
437 	if (unlikely(fd < 0))
438 		return fd;
439 
440 	newfile = sock_alloc_file(sock, flags, NULL);
441 	if (likely(!IS_ERR(newfile))) {
442 		fd_install(fd, newfile);
443 		return fd;
444 	}
445 
446 	put_unused_fd(fd);
447 	return PTR_ERR(newfile);
448 }
449 
450 struct socket *sock_from_file(struct file *file, int *err)
451 {
452 	if (file->f_op == &socket_file_ops)
453 		return file->private_data;	/* set in sock_map_fd */
454 
455 	*err = -ENOTSOCK;
456 	return NULL;
457 }
458 EXPORT_SYMBOL(sock_from_file);
459 
460 /**
461  *	sockfd_lookup - Go from a file number to its socket slot
462  *	@fd: file handle
463  *	@err: pointer to an error code return
464  *
465  *	The file handle passed in is locked and the socket it is bound
466  *	too is returned. If an error occurs the err pointer is overwritten
467  *	with a negative errno code and NULL is returned. The function checks
468  *	for both invalid handles and passing a handle which is not a socket.
469  *
470  *	On a success the socket object pointer is returned.
471  */
472 
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475 	struct file *file;
476 	struct socket *sock;
477 
478 	file = fget(fd);
479 	if (!file) {
480 		*err = -EBADF;
481 		return NULL;
482 	}
483 
484 	sock = sock_from_file(file, err);
485 	if (!sock)
486 		fput(file);
487 	return sock;
488 }
489 EXPORT_SYMBOL(sockfd_lookup);
490 
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492 {
493 	struct fd f = fdget(fd);
494 	struct socket *sock;
495 
496 	*err = -EBADF;
497 	if (f.file) {
498 		sock = sock_from_file(f.file, err);
499 		if (likely(sock)) {
500 			*fput_needed = f.flags;
501 			return sock;
502 		}
503 		fdput(f);
504 	}
505 	return NULL;
506 }
507 
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 				size_t size)
510 {
511 	ssize_t len;
512 	ssize_t used = 0;
513 
514 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 	if (len < 0)
516 		return len;
517 	used += len;
518 	if (buffer) {
519 		if (size < used)
520 			return -ERANGE;
521 		buffer += len;
522 	}
523 
524 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 	used += len;
526 	if (buffer) {
527 		if (size < used)
528 			return -ERANGE;
529 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 		buffer += len;
531 	}
532 
533 	return used;
534 }
535 
536 static const struct inode_operations sockfs_inode_ops = {
537 	.listxattr = sockfs_listxattr,
538 };
539 
540 /**
541  *	sock_alloc	-	allocate a socket
542  *
543  *	Allocate a new inode and socket object. The two are bound together
544  *	and initialised. The socket is then returned. If we are out of inodes
545  *	NULL is returned.
546  */
547 
548 struct socket *sock_alloc(void)
549 {
550 	struct inode *inode;
551 	struct socket *sock;
552 
553 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
554 	if (!inode)
555 		return NULL;
556 
557 	sock = SOCKET_I(inode);
558 
559 	kmemcheck_annotate_bitfield(sock, type);
560 	inode->i_ino = get_next_ino();
561 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
562 	inode->i_uid = current_fsuid();
563 	inode->i_gid = current_fsgid();
564 	inode->i_op = &sockfs_inode_ops;
565 
566 	this_cpu_add(sockets_in_use, 1);
567 	return sock;
568 }
569 EXPORT_SYMBOL(sock_alloc);
570 
571 /**
572  *	sock_release	-	close a socket
573  *	@sock: socket to close
574  *
575  *	The socket is released from the protocol stack if it has a release
576  *	callback, and the inode is then released if the socket is bound to
577  *	an inode not a file.
578  */
579 
580 void sock_release(struct socket *sock)
581 {
582 	if (sock->ops) {
583 		struct module *owner = sock->ops->owner;
584 
585 		sock->ops->release(sock);
586 		sock->ops = NULL;
587 		module_put(owner);
588 	}
589 
590 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
591 		pr_err("%s: fasync list not empty!\n", __func__);
592 
593 	this_cpu_sub(sockets_in_use, 1);
594 	if (!sock->file) {
595 		iput(SOCK_INODE(sock));
596 		return;
597 	}
598 	sock->file = NULL;
599 }
600 EXPORT_SYMBOL(sock_release);
601 
602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
603 {
604 	u8 flags = *tx_flags;
605 
606 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 		flags |= SKBTX_HW_TSTAMP;
608 
609 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 		flags |= SKBTX_SW_TSTAMP;
611 
612 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 		flags |= SKBTX_SCHED_TSTAMP;
614 
615 	*tx_flags = flags;
616 }
617 EXPORT_SYMBOL(__sock_tx_timestamp);
618 
619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
620 {
621 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 	BUG_ON(ret == -EIOCBQUEUED);
623 	return ret;
624 }
625 
626 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
627 {
628 	int err = security_socket_sendmsg(sock, msg,
629 					  msg_data_left(msg));
630 
631 	return err ?: sock_sendmsg_nosec(sock, msg);
632 }
633 EXPORT_SYMBOL(sock_sendmsg);
634 
635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 		   struct kvec *vec, size_t num, size_t size)
637 {
638 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
639 	return sock_sendmsg(sock, msg);
640 }
641 EXPORT_SYMBOL(kernel_sendmsg);
642 
643 /*
644  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
645  */
646 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
647 	struct sk_buff *skb)
648 {
649 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
650 	struct scm_timestamping tss;
651 	int empty = 1;
652 	struct skb_shared_hwtstamps *shhwtstamps =
653 		skb_hwtstamps(skb);
654 
655 	/* Race occurred between timestamp enabling and packet
656 	   receiving.  Fill in the current time for now. */
657 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
658 		__net_timestamp(skb);
659 
660 	if (need_software_tstamp) {
661 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
662 			struct timeval tv;
663 			skb_get_timestamp(skb, &tv);
664 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
665 				 sizeof(tv), &tv);
666 		} else {
667 			struct timespec ts;
668 			skb_get_timestampns(skb, &ts);
669 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
670 				 sizeof(ts), &ts);
671 		}
672 	}
673 
674 	memset(&tss, 0, sizeof(tss));
675 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
676 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
677 		empty = 0;
678 	if (shhwtstamps &&
679 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
680 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
681 		empty = 0;
682 	if (!empty)
683 		put_cmsg(msg, SOL_SOCKET,
684 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
685 }
686 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
687 
688 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
689 	struct sk_buff *skb)
690 {
691 	int ack;
692 
693 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
694 		return;
695 	if (!skb->wifi_acked_valid)
696 		return;
697 
698 	ack = skb->wifi_acked;
699 
700 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
701 }
702 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
703 
704 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
705 				   struct sk_buff *skb)
706 {
707 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
708 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
709 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
710 }
711 
712 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
713 	struct sk_buff *skb)
714 {
715 	sock_recv_timestamp(msg, sk, skb);
716 	sock_recv_drops(msg, sk, skb);
717 }
718 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
719 
720 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721 				     int flags)
722 {
723 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
724 }
725 
726 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
727 {
728 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
729 
730 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
731 }
732 EXPORT_SYMBOL(sock_recvmsg);
733 
734 /**
735  * kernel_recvmsg - Receive a message from a socket (kernel space)
736  * @sock:       The socket to receive the message from
737  * @msg:        Received message
738  * @vec:        Input s/g array for message data
739  * @num:        Size of input s/g array
740  * @size:       Number of bytes to read
741  * @flags:      Message flags (MSG_DONTWAIT, etc...)
742  *
743  * On return the msg structure contains the scatter/gather array passed in the
744  * vec argument. The array is modified so that it consists of the unfilled
745  * portion of the original array.
746  *
747  * The returned value is the total number of bytes received, or an error.
748  */
749 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
750 		   struct kvec *vec, size_t num, size_t size, int flags)
751 {
752 	mm_segment_t oldfs = get_fs();
753 	int result;
754 
755 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
756 	set_fs(KERNEL_DS);
757 	result = sock_recvmsg(sock, msg, flags);
758 	set_fs(oldfs);
759 	return result;
760 }
761 EXPORT_SYMBOL(kernel_recvmsg);
762 
763 static ssize_t sock_sendpage(struct file *file, struct page *page,
764 			     int offset, size_t size, loff_t *ppos, int more)
765 {
766 	struct socket *sock;
767 	int flags;
768 
769 	sock = file->private_data;
770 
771 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
772 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
773 	flags |= more;
774 
775 	return kernel_sendpage(sock, page, offset, size, flags);
776 }
777 
778 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
779 				struct pipe_inode_info *pipe, size_t len,
780 				unsigned int flags)
781 {
782 	struct socket *sock = file->private_data;
783 
784 	if (unlikely(!sock->ops->splice_read))
785 		return -EINVAL;
786 
787 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
788 }
789 
790 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
791 {
792 	struct file *file = iocb->ki_filp;
793 	struct socket *sock = file->private_data;
794 	struct msghdr msg = {.msg_iter = *to,
795 			     .msg_iocb = iocb};
796 	ssize_t res;
797 
798 	if (file->f_flags & O_NONBLOCK)
799 		msg.msg_flags = MSG_DONTWAIT;
800 
801 	if (iocb->ki_pos != 0)
802 		return -ESPIPE;
803 
804 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
805 		return 0;
806 
807 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
808 	*to = msg.msg_iter;
809 	return res;
810 }
811 
812 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
813 {
814 	struct file *file = iocb->ki_filp;
815 	struct socket *sock = file->private_data;
816 	struct msghdr msg = {.msg_iter = *from,
817 			     .msg_iocb = iocb};
818 	ssize_t res;
819 
820 	if (iocb->ki_pos != 0)
821 		return -ESPIPE;
822 
823 	if (file->f_flags & O_NONBLOCK)
824 		msg.msg_flags = MSG_DONTWAIT;
825 
826 	if (sock->type == SOCK_SEQPACKET)
827 		msg.msg_flags |= MSG_EOR;
828 
829 	res = sock_sendmsg(sock, &msg);
830 	*from = msg.msg_iter;
831 	return res;
832 }
833 
834 /*
835  * Atomic setting of ioctl hooks to avoid race
836  * with module unload.
837  */
838 
839 static DEFINE_MUTEX(br_ioctl_mutex);
840 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
841 
842 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
843 {
844 	mutex_lock(&br_ioctl_mutex);
845 	br_ioctl_hook = hook;
846 	mutex_unlock(&br_ioctl_mutex);
847 }
848 EXPORT_SYMBOL(brioctl_set);
849 
850 static DEFINE_MUTEX(vlan_ioctl_mutex);
851 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
852 
853 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
854 {
855 	mutex_lock(&vlan_ioctl_mutex);
856 	vlan_ioctl_hook = hook;
857 	mutex_unlock(&vlan_ioctl_mutex);
858 }
859 EXPORT_SYMBOL(vlan_ioctl_set);
860 
861 static DEFINE_MUTEX(dlci_ioctl_mutex);
862 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
863 
864 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
865 {
866 	mutex_lock(&dlci_ioctl_mutex);
867 	dlci_ioctl_hook = hook;
868 	mutex_unlock(&dlci_ioctl_mutex);
869 }
870 EXPORT_SYMBOL(dlci_ioctl_set);
871 
872 static long sock_do_ioctl(struct net *net, struct socket *sock,
873 				 unsigned int cmd, unsigned long arg)
874 {
875 	int err;
876 	void __user *argp = (void __user *)arg;
877 
878 	err = sock->ops->ioctl(sock, cmd, arg);
879 
880 	/*
881 	 * If this ioctl is unknown try to hand it down
882 	 * to the NIC driver.
883 	 */
884 	if (err == -ENOIOCTLCMD)
885 		err = dev_ioctl(net, cmd, argp);
886 
887 	return err;
888 }
889 
890 /*
891  *	With an ioctl, arg may well be a user mode pointer, but we don't know
892  *	what to do with it - that's up to the protocol still.
893  */
894 
895 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
896 {
897 	struct socket *sock;
898 	struct sock *sk;
899 	void __user *argp = (void __user *)arg;
900 	int pid, err;
901 	struct net *net;
902 
903 	sock = file->private_data;
904 	sk = sock->sk;
905 	net = sock_net(sk);
906 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
907 		err = dev_ioctl(net, cmd, argp);
908 	} else
909 #ifdef CONFIG_WEXT_CORE
910 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
911 		err = dev_ioctl(net, cmd, argp);
912 	} else
913 #endif
914 		switch (cmd) {
915 		case FIOSETOWN:
916 		case SIOCSPGRP:
917 			err = -EFAULT;
918 			if (get_user(pid, (int __user *)argp))
919 				break;
920 			f_setown(sock->file, pid, 1);
921 			err = 0;
922 			break;
923 		case FIOGETOWN:
924 		case SIOCGPGRP:
925 			err = put_user(f_getown(sock->file),
926 				       (int __user *)argp);
927 			break;
928 		case SIOCGIFBR:
929 		case SIOCSIFBR:
930 		case SIOCBRADDBR:
931 		case SIOCBRDELBR:
932 			err = -ENOPKG;
933 			if (!br_ioctl_hook)
934 				request_module("bridge");
935 
936 			mutex_lock(&br_ioctl_mutex);
937 			if (br_ioctl_hook)
938 				err = br_ioctl_hook(net, cmd, argp);
939 			mutex_unlock(&br_ioctl_mutex);
940 			break;
941 		case SIOCGIFVLAN:
942 		case SIOCSIFVLAN:
943 			err = -ENOPKG;
944 			if (!vlan_ioctl_hook)
945 				request_module("8021q");
946 
947 			mutex_lock(&vlan_ioctl_mutex);
948 			if (vlan_ioctl_hook)
949 				err = vlan_ioctl_hook(net, argp);
950 			mutex_unlock(&vlan_ioctl_mutex);
951 			break;
952 		case SIOCADDDLCI:
953 		case SIOCDELDLCI:
954 			err = -ENOPKG;
955 			if (!dlci_ioctl_hook)
956 				request_module("dlci");
957 
958 			mutex_lock(&dlci_ioctl_mutex);
959 			if (dlci_ioctl_hook)
960 				err = dlci_ioctl_hook(cmd, argp);
961 			mutex_unlock(&dlci_ioctl_mutex);
962 			break;
963 		default:
964 			err = sock_do_ioctl(net, sock, cmd, arg);
965 			break;
966 		}
967 	return err;
968 }
969 
970 int sock_create_lite(int family, int type, int protocol, struct socket **res)
971 {
972 	int err;
973 	struct socket *sock = NULL;
974 
975 	err = security_socket_create(family, type, protocol, 1);
976 	if (err)
977 		goto out;
978 
979 	sock = sock_alloc();
980 	if (!sock) {
981 		err = -ENOMEM;
982 		goto out;
983 	}
984 
985 	sock->type = type;
986 	err = security_socket_post_create(sock, family, type, protocol, 1);
987 	if (err)
988 		goto out_release;
989 
990 out:
991 	*res = sock;
992 	return err;
993 out_release:
994 	sock_release(sock);
995 	sock = NULL;
996 	goto out;
997 }
998 EXPORT_SYMBOL(sock_create_lite);
999 
1000 /* No kernel lock held - perfect */
1001 static unsigned int sock_poll(struct file *file, poll_table *wait)
1002 {
1003 	unsigned int busy_flag = 0;
1004 	struct socket *sock;
1005 
1006 	/*
1007 	 *      We can't return errors to poll, so it's either yes or no.
1008 	 */
1009 	sock = file->private_data;
1010 
1011 	if (sk_can_busy_loop(sock->sk)) {
1012 		/* this socket can poll_ll so tell the system call */
1013 		busy_flag = POLL_BUSY_LOOP;
1014 
1015 		/* once, only if requested by syscall */
1016 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1017 			sk_busy_loop(sock->sk, 1);
1018 	}
1019 
1020 	return busy_flag | sock->ops->poll(file, sock, wait);
1021 }
1022 
1023 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1024 {
1025 	struct socket *sock = file->private_data;
1026 
1027 	return sock->ops->mmap(file, sock, vma);
1028 }
1029 
1030 static int sock_close(struct inode *inode, struct file *filp)
1031 {
1032 	sock_release(SOCKET_I(inode));
1033 	return 0;
1034 }
1035 
1036 /*
1037  *	Update the socket async list
1038  *
1039  *	Fasync_list locking strategy.
1040  *
1041  *	1. fasync_list is modified only under process context socket lock
1042  *	   i.e. under semaphore.
1043  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1044  *	   or under socket lock
1045  */
1046 
1047 static int sock_fasync(int fd, struct file *filp, int on)
1048 {
1049 	struct socket *sock = filp->private_data;
1050 	struct sock *sk = sock->sk;
1051 	struct socket_wq *wq;
1052 
1053 	if (sk == NULL)
1054 		return -EINVAL;
1055 
1056 	lock_sock(sk);
1057 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1058 	fasync_helper(fd, filp, on, &wq->fasync_list);
1059 
1060 	if (!wq->fasync_list)
1061 		sock_reset_flag(sk, SOCK_FASYNC);
1062 	else
1063 		sock_set_flag(sk, SOCK_FASYNC);
1064 
1065 	release_sock(sk);
1066 	return 0;
1067 }
1068 
1069 /* This function may be called only under rcu_lock */
1070 
1071 int sock_wake_async(struct socket_wq *wq, int how, int band)
1072 {
1073 	if (!wq || !wq->fasync_list)
1074 		return -1;
1075 
1076 	switch (how) {
1077 	case SOCK_WAKE_WAITD:
1078 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1079 			break;
1080 		goto call_kill;
1081 	case SOCK_WAKE_SPACE:
1082 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1083 			break;
1084 		/* fall through */
1085 	case SOCK_WAKE_IO:
1086 call_kill:
1087 		kill_fasync(&wq->fasync_list, SIGIO, band);
1088 		break;
1089 	case SOCK_WAKE_URG:
1090 		kill_fasync(&wq->fasync_list, SIGURG, band);
1091 	}
1092 
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL(sock_wake_async);
1096 
1097 int __sock_create(struct net *net, int family, int type, int protocol,
1098 			 struct socket **res, int kern)
1099 {
1100 	int err;
1101 	struct socket *sock;
1102 	const struct net_proto_family *pf;
1103 
1104 	/*
1105 	 *      Check protocol is in range
1106 	 */
1107 	if (family < 0 || family >= NPROTO)
1108 		return -EAFNOSUPPORT;
1109 	if (type < 0 || type >= SOCK_MAX)
1110 		return -EINVAL;
1111 
1112 	/* Compatibility.
1113 
1114 	   This uglymoron is moved from INET layer to here to avoid
1115 	   deadlock in module load.
1116 	 */
1117 	if (family == PF_INET && type == SOCK_PACKET) {
1118 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 			     current->comm);
1120 		family = PF_PACKET;
1121 	}
1122 
1123 	err = security_socket_create(family, type, protocol, kern);
1124 	if (err)
1125 		return err;
1126 
1127 	/*
1128 	 *	Allocate the socket and allow the family to set things up. if
1129 	 *	the protocol is 0, the family is instructed to select an appropriate
1130 	 *	default.
1131 	 */
1132 	sock = sock_alloc();
1133 	if (!sock) {
1134 		net_warn_ratelimited("socket: no more sockets\n");
1135 		return -ENFILE;	/* Not exactly a match, but its the
1136 				   closest posix thing */
1137 	}
1138 
1139 	sock->type = type;
1140 
1141 #ifdef CONFIG_MODULES
1142 	/* Attempt to load a protocol module if the find failed.
1143 	 *
1144 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1145 	 * requested real, full-featured networking support upon configuration.
1146 	 * Otherwise module support will break!
1147 	 */
1148 	if (rcu_access_pointer(net_families[family]) == NULL)
1149 		request_module("net-pf-%d", family);
1150 #endif
1151 
1152 	rcu_read_lock();
1153 	pf = rcu_dereference(net_families[family]);
1154 	err = -EAFNOSUPPORT;
1155 	if (!pf)
1156 		goto out_release;
1157 
1158 	/*
1159 	 * We will call the ->create function, that possibly is in a loadable
1160 	 * module, so we have to bump that loadable module refcnt first.
1161 	 */
1162 	if (!try_module_get(pf->owner))
1163 		goto out_release;
1164 
1165 	/* Now protected by module ref count */
1166 	rcu_read_unlock();
1167 
1168 	err = pf->create(net, sock, protocol, kern);
1169 	if (err < 0)
1170 		goto out_module_put;
1171 
1172 	/*
1173 	 * Now to bump the refcnt of the [loadable] module that owns this
1174 	 * socket at sock_release time we decrement its refcnt.
1175 	 */
1176 	if (!try_module_get(sock->ops->owner))
1177 		goto out_module_busy;
1178 
1179 	/*
1180 	 * Now that we're done with the ->create function, the [loadable]
1181 	 * module can have its refcnt decremented
1182 	 */
1183 	module_put(pf->owner);
1184 	err = security_socket_post_create(sock, family, type, protocol, kern);
1185 	if (err)
1186 		goto out_sock_release;
1187 	*res = sock;
1188 
1189 	return 0;
1190 
1191 out_module_busy:
1192 	err = -EAFNOSUPPORT;
1193 out_module_put:
1194 	sock->ops = NULL;
1195 	module_put(pf->owner);
1196 out_sock_release:
1197 	sock_release(sock);
1198 	return err;
1199 
1200 out_release:
1201 	rcu_read_unlock();
1202 	goto out_sock_release;
1203 }
1204 EXPORT_SYMBOL(__sock_create);
1205 
1206 int sock_create(int family, int type, int protocol, struct socket **res)
1207 {
1208 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1209 }
1210 EXPORT_SYMBOL(sock_create);
1211 
1212 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1213 {
1214 	return __sock_create(net, family, type, protocol, res, 1);
1215 }
1216 EXPORT_SYMBOL(sock_create_kern);
1217 
1218 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1219 {
1220 	int retval;
1221 	struct socket *sock;
1222 	int flags;
1223 
1224 	/* Check the SOCK_* constants for consistency.  */
1225 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1226 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1227 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1228 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1229 
1230 	flags = type & ~SOCK_TYPE_MASK;
1231 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1232 		return -EINVAL;
1233 	type &= SOCK_TYPE_MASK;
1234 
1235 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1236 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1237 
1238 	retval = sock_create(family, type, protocol, &sock);
1239 	if (retval < 0)
1240 		goto out;
1241 
1242 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1243 	if (retval < 0)
1244 		goto out_release;
1245 
1246 out:
1247 	/* It may be already another descriptor 8) Not kernel problem. */
1248 	return retval;
1249 
1250 out_release:
1251 	sock_release(sock);
1252 	return retval;
1253 }
1254 
1255 /*
1256  *	Create a pair of connected sockets.
1257  */
1258 
1259 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1260 		int __user *, usockvec)
1261 {
1262 	struct socket *sock1, *sock2;
1263 	int fd1, fd2, err;
1264 	struct file *newfile1, *newfile2;
1265 	int flags;
1266 
1267 	flags = type & ~SOCK_TYPE_MASK;
1268 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1269 		return -EINVAL;
1270 	type &= SOCK_TYPE_MASK;
1271 
1272 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1273 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1274 
1275 	/*
1276 	 * Obtain the first socket and check if the underlying protocol
1277 	 * supports the socketpair call.
1278 	 */
1279 
1280 	err = sock_create(family, type, protocol, &sock1);
1281 	if (err < 0)
1282 		goto out;
1283 
1284 	err = sock_create(family, type, protocol, &sock2);
1285 	if (err < 0)
1286 		goto out_release_1;
1287 
1288 	err = sock1->ops->socketpair(sock1, sock2);
1289 	if (err < 0)
1290 		goto out_release_both;
1291 
1292 	fd1 = get_unused_fd_flags(flags);
1293 	if (unlikely(fd1 < 0)) {
1294 		err = fd1;
1295 		goto out_release_both;
1296 	}
1297 
1298 	fd2 = get_unused_fd_flags(flags);
1299 	if (unlikely(fd2 < 0)) {
1300 		err = fd2;
1301 		goto out_put_unused_1;
1302 	}
1303 
1304 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1305 	if (IS_ERR(newfile1)) {
1306 		err = PTR_ERR(newfile1);
1307 		goto out_put_unused_both;
1308 	}
1309 
1310 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1311 	if (IS_ERR(newfile2)) {
1312 		err = PTR_ERR(newfile2);
1313 		goto out_fput_1;
1314 	}
1315 
1316 	err = put_user(fd1, &usockvec[0]);
1317 	if (err)
1318 		goto out_fput_both;
1319 
1320 	err = put_user(fd2, &usockvec[1]);
1321 	if (err)
1322 		goto out_fput_both;
1323 
1324 	audit_fd_pair(fd1, fd2);
1325 
1326 	fd_install(fd1, newfile1);
1327 	fd_install(fd2, newfile2);
1328 	/* fd1 and fd2 may be already another descriptors.
1329 	 * Not kernel problem.
1330 	 */
1331 
1332 	return 0;
1333 
1334 out_fput_both:
1335 	fput(newfile2);
1336 	fput(newfile1);
1337 	put_unused_fd(fd2);
1338 	put_unused_fd(fd1);
1339 	goto out;
1340 
1341 out_fput_1:
1342 	fput(newfile1);
1343 	put_unused_fd(fd2);
1344 	put_unused_fd(fd1);
1345 	sock_release(sock2);
1346 	goto out;
1347 
1348 out_put_unused_both:
1349 	put_unused_fd(fd2);
1350 out_put_unused_1:
1351 	put_unused_fd(fd1);
1352 out_release_both:
1353 	sock_release(sock2);
1354 out_release_1:
1355 	sock_release(sock1);
1356 out:
1357 	return err;
1358 }
1359 
1360 /*
1361  *	Bind a name to a socket. Nothing much to do here since it's
1362  *	the protocol's responsibility to handle the local address.
1363  *
1364  *	We move the socket address to kernel space before we call
1365  *	the protocol layer (having also checked the address is ok).
1366  */
1367 
1368 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1369 {
1370 	struct socket *sock;
1371 	struct sockaddr_storage address;
1372 	int err, fput_needed;
1373 
1374 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1375 	if (sock) {
1376 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1377 		if (err >= 0) {
1378 			err = security_socket_bind(sock,
1379 						   (struct sockaddr *)&address,
1380 						   addrlen);
1381 			if (!err)
1382 				err = sock->ops->bind(sock,
1383 						      (struct sockaddr *)
1384 						      &address, addrlen);
1385 		}
1386 		fput_light(sock->file, fput_needed);
1387 	}
1388 	return err;
1389 }
1390 
1391 /*
1392  *	Perform a listen. Basically, we allow the protocol to do anything
1393  *	necessary for a listen, and if that works, we mark the socket as
1394  *	ready for listening.
1395  */
1396 
1397 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1398 {
1399 	struct socket *sock;
1400 	int err, fput_needed;
1401 	int somaxconn;
1402 
1403 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404 	if (sock) {
1405 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1406 		if ((unsigned int)backlog > somaxconn)
1407 			backlog = somaxconn;
1408 
1409 		err = security_socket_listen(sock, backlog);
1410 		if (!err)
1411 			err = sock->ops->listen(sock, backlog);
1412 
1413 		fput_light(sock->file, fput_needed);
1414 	}
1415 	return err;
1416 }
1417 
1418 /*
1419  *	For accept, we attempt to create a new socket, set up the link
1420  *	with the client, wake up the client, then return the new
1421  *	connected fd. We collect the address of the connector in kernel
1422  *	space and move it to user at the very end. This is unclean because
1423  *	we open the socket then return an error.
1424  *
1425  *	1003.1g adds the ability to recvmsg() to query connection pending
1426  *	status to recvmsg. We need to add that support in a way thats
1427  *	clean when we restucture accept also.
1428  */
1429 
1430 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1431 		int __user *, upeer_addrlen, int, flags)
1432 {
1433 	struct socket *sock, *newsock;
1434 	struct file *newfile;
1435 	int err, len, newfd, fput_needed;
1436 	struct sockaddr_storage address;
1437 
1438 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1439 		return -EINVAL;
1440 
1441 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1442 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1443 
1444 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1445 	if (!sock)
1446 		goto out;
1447 
1448 	err = -ENFILE;
1449 	newsock = sock_alloc();
1450 	if (!newsock)
1451 		goto out_put;
1452 
1453 	newsock->type = sock->type;
1454 	newsock->ops = sock->ops;
1455 
1456 	/*
1457 	 * We don't need try_module_get here, as the listening socket (sock)
1458 	 * has the protocol module (sock->ops->owner) held.
1459 	 */
1460 	__module_get(newsock->ops->owner);
1461 
1462 	newfd = get_unused_fd_flags(flags);
1463 	if (unlikely(newfd < 0)) {
1464 		err = newfd;
1465 		sock_release(newsock);
1466 		goto out_put;
1467 	}
1468 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1469 	if (IS_ERR(newfile)) {
1470 		err = PTR_ERR(newfile);
1471 		put_unused_fd(newfd);
1472 		sock_release(newsock);
1473 		goto out_put;
1474 	}
1475 
1476 	err = security_socket_accept(sock, newsock);
1477 	if (err)
1478 		goto out_fd;
1479 
1480 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1481 	if (err < 0)
1482 		goto out_fd;
1483 
1484 	if (upeer_sockaddr) {
1485 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1486 					  &len, 2) < 0) {
1487 			err = -ECONNABORTED;
1488 			goto out_fd;
1489 		}
1490 		err = move_addr_to_user(&address,
1491 					len, upeer_sockaddr, upeer_addrlen);
1492 		if (err < 0)
1493 			goto out_fd;
1494 	}
1495 
1496 	/* File flags are not inherited via accept() unlike another OSes. */
1497 
1498 	fd_install(newfd, newfile);
1499 	err = newfd;
1500 
1501 out_put:
1502 	fput_light(sock->file, fput_needed);
1503 out:
1504 	return err;
1505 out_fd:
1506 	fput(newfile);
1507 	put_unused_fd(newfd);
1508 	goto out_put;
1509 }
1510 
1511 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1512 		int __user *, upeer_addrlen)
1513 {
1514 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1515 }
1516 
1517 /*
1518  *	Attempt to connect to a socket with the server address.  The address
1519  *	is in user space so we verify it is OK and move it to kernel space.
1520  *
1521  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1522  *	break bindings
1523  *
1524  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1525  *	other SEQPACKET protocols that take time to connect() as it doesn't
1526  *	include the -EINPROGRESS status for such sockets.
1527  */
1528 
1529 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1530 		int, addrlen)
1531 {
1532 	struct socket *sock;
1533 	struct sockaddr_storage address;
1534 	int err, fput_needed;
1535 
1536 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 	if (!sock)
1538 		goto out;
1539 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1540 	if (err < 0)
1541 		goto out_put;
1542 
1543 	err =
1544 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1545 	if (err)
1546 		goto out_put;
1547 
1548 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1549 				 sock->file->f_flags);
1550 out_put:
1551 	fput_light(sock->file, fput_needed);
1552 out:
1553 	return err;
1554 }
1555 
1556 /*
1557  *	Get the local address ('name') of a socket object. Move the obtained
1558  *	name to user space.
1559  */
1560 
1561 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1562 		int __user *, usockaddr_len)
1563 {
1564 	struct socket *sock;
1565 	struct sockaddr_storage address;
1566 	int len, err, fput_needed;
1567 
1568 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1569 	if (!sock)
1570 		goto out;
1571 
1572 	err = security_socket_getsockname(sock);
1573 	if (err)
1574 		goto out_put;
1575 
1576 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1577 	if (err)
1578 		goto out_put;
1579 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1580 
1581 out_put:
1582 	fput_light(sock->file, fput_needed);
1583 out:
1584 	return err;
1585 }
1586 
1587 /*
1588  *	Get the remote address ('name') of a socket object. Move the obtained
1589  *	name to user space.
1590  */
1591 
1592 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1593 		int __user *, usockaddr_len)
1594 {
1595 	struct socket *sock;
1596 	struct sockaddr_storage address;
1597 	int len, err, fput_needed;
1598 
1599 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600 	if (sock != NULL) {
1601 		err = security_socket_getpeername(sock);
1602 		if (err) {
1603 			fput_light(sock->file, fput_needed);
1604 			return err;
1605 		}
1606 
1607 		err =
1608 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1609 				       1);
1610 		if (!err)
1611 			err = move_addr_to_user(&address, len, usockaddr,
1612 						usockaddr_len);
1613 		fput_light(sock->file, fput_needed);
1614 	}
1615 	return err;
1616 }
1617 
1618 /*
1619  *	Send a datagram to a given address. We move the address into kernel
1620  *	space and check the user space data area is readable before invoking
1621  *	the protocol.
1622  */
1623 
1624 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1625 		unsigned int, flags, struct sockaddr __user *, addr,
1626 		int, addr_len)
1627 {
1628 	struct socket *sock;
1629 	struct sockaddr_storage address;
1630 	int err;
1631 	struct msghdr msg;
1632 	struct iovec iov;
1633 	int fput_needed;
1634 
1635 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1636 	if (unlikely(err))
1637 		return err;
1638 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 	if (!sock)
1640 		goto out;
1641 
1642 	msg.msg_name = NULL;
1643 	msg.msg_control = NULL;
1644 	msg.msg_controllen = 0;
1645 	msg.msg_namelen = 0;
1646 	if (addr) {
1647 		err = move_addr_to_kernel(addr, addr_len, &address);
1648 		if (err < 0)
1649 			goto out_put;
1650 		msg.msg_name = (struct sockaddr *)&address;
1651 		msg.msg_namelen = addr_len;
1652 	}
1653 	if (sock->file->f_flags & O_NONBLOCK)
1654 		flags |= MSG_DONTWAIT;
1655 	msg.msg_flags = flags;
1656 	err = sock_sendmsg(sock, &msg);
1657 
1658 out_put:
1659 	fput_light(sock->file, fput_needed);
1660 out:
1661 	return err;
1662 }
1663 
1664 /*
1665  *	Send a datagram down a socket.
1666  */
1667 
1668 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1669 		unsigned int, flags)
1670 {
1671 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1672 }
1673 
1674 /*
1675  *	Receive a frame from the socket and optionally record the address of the
1676  *	sender. We verify the buffers are writable and if needed move the
1677  *	sender address from kernel to user space.
1678  */
1679 
1680 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1681 		unsigned int, flags, struct sockaddr __user *, addr,
1682 		int __user *, addr_len)
1683 {
1684 	struct socket *sock;
1685 	struct iovec iov;
1686 	struct msghdr msg;
1687 	struct sockaddr_storage address;
1688 	int err, err2;
1689 	int fput_needed;
1690 
1691 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1692 	if (unlikely(err))
1693 		return err;
1694 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 	if (!sock)
1696 		goto out;
1697 
1698 	msg.msg_control = NULL;
1699 	msg.msg_controllen = 0;
1700 	/* Save some cycles and don't copy the address if not needed */
1701 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1702 	/* We assume all kernel code knows the size of sockaddr_storage */
1703 	msg.msg_namelen = 0;
1704 	msg.msg_iocb = NULL;
1705 	if (sock->file->f_flags & O_NONBLOCK)
1706 		flags |= MSG_DONTWAIT;
1707 	err = sock_recvmsg(sock, &msg, flags);
1708 
1709 	if (err >= 0 && addr != NULL) {
1710 		err2 = move_addr_to_user(&address,
1711 					 msg.msg_namelen, addr, addr_len);
1712 		if (err2 < 0)
1713 			err = err2;
1714 	}
1715 
1716 	fput_light(sock->file, fput_needed);
1717 out:
1718 	return err;
1719 }
1720 
1721 /*
1722  *	Receive a datagram from a socket.
1723  */
1724 
1725 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1726 		unsigned int, flags)
1727 {
1728 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1729 }
1730 
1731 /*
1732  *	Set a socket option. Because we don't know the option lengths we have
1733  *	to pass the user mode parameter for the protocols to sort out.
1734  */
1735 
1736 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1737 		char __user *, optval, int, optlen)
1738 {
1739 	int err, fput_needed;
1740 	struct socket *sock;
1741 
1742 	if (optlen < 0)
1743 		return -EINVAL;
1744 
1745 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 	if (sock != NULL) {
1747 		err = security_socket_setsockopt(sock, level, optname);
1748 		if (err)
1749 			goto out_put;
1750 
1751 		if (level == SOL_SOCKET)
1752 			err =
1753 			    sock_setsockopt(sock, level, optname, optval,
1754 					    optlen);
1755 		else
1756 			err =
1757 			    sock->ops->setsockopt(sock, level, optname, optval,
1758 						  optlen);
1759 out_put:
1760 		fput_light(sock->file, fput_needed);
1761 	}
1762 	return err;
1763 }
1764 
1765 /*
1766  *	Get a socket option. Because we don't know the option lengths we have
1767  *	to pass a user mode parameter for the protocols to sort out.
1768  */
1769 
1770 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1771 		char __user *, optval, int __user *, optlen)
1772 {
1773 	int err, fput_needed;
1774 	struct socket *sock;
1775 
1776 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777 	if (sock != NULL) {
1778 		err = security_socket_getsockopt(sock, level, optname);
1779 		if (err)
1780 			goto out_put;
1781 
1782 		if (level == SOL_SOCKET)
1783 			err =
1784 			    sock_getsockopt(sock, level, optname, optval,
1785 					    optlen);
1786 		else
1787 			err =
1788 			    sock->ops->getsockopt(sock, level, optname, optval,
1789 						  optlen);
1790 out_put:
1791 		fput_light(sock->file, fput_needed);
1792 	}
1793 	return err;
1794 }
1795 
1796 /*
1797  *	Shutdown a socket.
1798  */
1799 
1800 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1801 {
1802 	int err, fput_needed;
1803 	struct socket *sock;
1804 
1805 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 	if (sock != NULL) {
1807 		err = security_socket_shutdown(sock, how);
1808 		if (!err)
1809 			err = sock->ops->shutdown(sock, how);
1810 		fput_light(sock->file, fput_needed);
1811 	}
1812 	return err;
1813 }
1814 
1815 /* A couple of helpful macros for getting the address of the 32/64 bit
1816  * fields which are the same type (int / unsigned) on our platforms.
1817  */
1818 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1819 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1820 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1821 
1822 struct used_address {
1823 	struct sockaddr_storage name;
1824 	unsigned int name_len;
1825 };
1826 
1827 static int copy_msghdr_from_user(struct msghdr *kmsg,
1828 				 struct user_msghdr __user *umsg,
1829 				 struct sockaddr __user **save_addr,
1830 				 struct iovec **iov)
1831 {
1832 	struct sockaddr __user *uaddr;
1833 	struct iovec __user *uiov;
1834 	size_t nr_segs;
1835 	ssize_t err;
1836 
1837 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1838 	    __get_user(uaddr, &umsg->msg_name) ||
1839 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1840 	    __get_user(uiov, &umsg->msg_iov) ||
1841 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1842 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1843 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1844 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1845 		return -EFAULT;
1846 
1847 	if (!uaddr)
1848 		kmsg->msg_namelen = 0;
1849 
1850 	if (kmsg->msg_namelen < 0)
1851 		return -EINVAL;
1852 
1853 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1854 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1855 
1856 	if (save_addr)
1857 		*save_addr = uaddr;
1858 
1859 	if (uaddr && kmsg->msg_namelen) {
1860 		if (!save_addr) {
1861 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1862 						  kmsg->msg_name);
1863 			if (err < 0)
1864 				return err;
1865 		}
1866 	} else {
1867 		kmsg->msg_name = NULL;
1868 		kmsg->msg_namelen = 0;
1869 	}
1870 
1871 	if (nr_segs > UIO_MAXIOV)
1872 		return -EMSGSIZE;
1873 
1874 	kmsg->msg_iocb = NULL;
1875 
1876 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1877 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1878 }
1879 
1880 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1881 			 struct msghdr *msg_sys, unsigned int flags,
1882 			 struct used_address *used_address,
1883 			 unsigned int allowed_msghdr_flags)
1884 {
1885 	struct compat_msghdr __user *msg_compat =
1886 	    (struct compat_msghdr __user *)msg;
1887 	struct sockaddr_storage address;
1888 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1889 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1890 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1891 	/* 20 is size of ipv6_pktinfo */
1892 	unsigned char *ctl_buf = ctl;
1893 	int ctl_len;
1894 	ssize_t err;
1895 
1896 	msg_sys->msg_name = &address;
1897 
1898 	if (MSG_CMSG_COMPAT & flags)
1899 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1900 	else
1901 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1902 	if (err < 0)
1903 		return err;
1904 
1905 	err = -ENOBUFS;
1906 
1907 	if (msg_sys->msg_controllen > INT_MAX)
1908 		goto out_freeiov;
1909 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1910 	ctl_len = msg_sys->msg_controllen;
1911 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1912 		err =
1913 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1914 						     sizeof(ctl));
1915 		if (err)
1916 			goto out_freeiov;
1917 		ctl_buf = msg_sys->msg_control;
1918 		ctl_len = msg_sys->msg_controllen;
1919 	} else if (ctl_len) {
1920 		if (ctl_len > sizeof(ctl)) {
1921 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1922 			if (ctl_buf == NULL)
1923 				goto out_freeiov;
1924 		}
1925 		err = -EFAULT;
1926 		/*
1927 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1928 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1929 		 * checking falls down on this.
1930 		 */
1931 		if (copy_from_user(ctl_buf,
1932 				   (void __user __force *)msg_sys->msg_control,
1933 				   ctl_len))
1934 			goto out_freectl;
1935 		msg_sys->msg_control = ctl_buf;
1936 	}
1937 	msg_sys->msg_flags = flags;
1938 
1939 	if (sock->file->f_flags & O_NONBLOCK)
1940 		msg_sys->msg_flags |= MSG_DONTWAIT;
1941 	/*
1942 	 * If this is sendmmsg() and current destination address is same as
1943 	 * previously succeeded address, omit asking LSM's decision.
1944 	 * used_address->name_len is initialized to UINT_MAX so that the first
1945 	 * destination address never matches.
1946 	 */
1947 	if (used_address && msg_sys->msg_name &&
1948 	    used_address->name_len == msg_sys->msg_namelen &&
1949 	    !memcmp(&used_address->name, msg_sys->msg_name,
1950 		    used_address->name_len)) {
1951 		err = sock_sendmsg_nosec(sock, msg_sys);
1952 		goto out_freectl;
1953 	}
1954 	err = sock_sendmsg(sock, msg_sys);
1955 	/*
1956 	 * If this is sendmmsg() and sending to current destination address was
1957 	 * successful, remember it.
1958 	 */
1959 	if (used_address && err >= 0) {
1960 		used_address->name_len = msg_sys->msg_namelen;
1961 		if (msg_sys->msg_name)
1962 			memcpy(&used_address->name, msg_sys->msg_name,
1963 			       used_address->name_len);
1964 	}
1965 
1966 out_freectl:
1967 	if (ctl_buf != ctl)
1968 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1969 out_freeiov:
1970 	kfree(iov);
1971 	return err;
1972 }
1973 
1974 /*
1975  *	BSD sendmsg interface
1976  */
1977 
1978 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1979 {
1980 	int fput_needed, err;
1981 	struct msghdr msg_sys;
1982 	struct socket *sock;
1983 
1984 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1985 	if (!sock)
1986 		goto out;
1987 
1988 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1989 
1990 	fput_light(sock->file, fput_needed);
1991 out:
1992 	return err;
1993 }
1994 
1995 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1996 {
1997 	if (flags & MSG_CMSG_COMPAT)
1998 		return -EINVAL;
1999 	return __sys_sendmsg(fd, msg, flags);
2000 }
2001 
2002 /*
2003  *	Linux sendmmsg interface
2004  */
2005 
2006 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2007 		   unsigned int flags)
2008 {
2009 	int fput_needed, err, datagrams;
2010 	struct socket *sock;
2011 	struct mmsghdr __user *entry;
2012 	struct compat_mmsghdr __user *compat_entry;
2013 	struct msghdr msg_sys;
2014 	struct used_address used_address;
2015 	unsigned int oflags = flags;
2016 
2017 	if (vlen > UIO_MAXIOV)
2018 		vlen = UIO_MAXIOV;
2019 
2020 	datagrams = 0;
2021 
2022 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2023 	if (!sock)
2024 		return err;
2025 
2026 	used_address.name_len = UINT_MAX;
2027 	entry = mmsg;
2028 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2029 	err = 0;
2030 	flags |= MSG_BATCH;
2031 
2032 	while (datagrams < vlen) {
2033 		if (datagrams == vlen - 1)
2034 			flags = oflags;
2035 
2036 		if (MSG_CMSG_COMPAT & flags) {
2037 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2038 					     &msg_sys, flags, &used_address, MSG_EOR);
2039 			if (err < 0)
2040 				break;
2041 			err = __put_user(err, &compat_entry->msg_len);
2042 			++compat_entry;
2043 		} else {
2044 			err = ___sys_sendmsg(sock,
2045 					     (struct user_msghdr __user *)entry,
2046 					     &msg_sys, flags, &used_address, MSG_EOR);
2047 			if (err < 0)
2048 				break;
2049 			err = put_user(err, &entry->msg_len);
2050 			++entry;
2051 		}
2052 
2053 		if (err)
2054 			break;
2055 		++datagrams;
2056 		if (msg_data_left(&msg_sys))
2057 			break;
2058 		cond_resched();
2059 	}
2060 
2061 	fput_light(sock->file, fput_needed);
2062 
2063 	/* We only return an error if no datagrams were able to be sent */
2064 	if (datagrams != 0)
2065 		return datagrams;
2066 
2067 	return err;
2068 }
2069 
2070 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2071 		unsigned int, vlen, unsigned int, flags)
2072 {
2073 	if (flags & MSG_CMSG_COMPAT)
2074 		return -EINVAL;
2075 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2076 }
2077 
2078 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2079 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2080 {
2081 	struct compat_msghdr __user *msg_compat =
2082 	    (struct compat_msghdr __user *)msg;
2083 	struct iovec iovstack[UIO_FASTIOV];
2084 	struct iovec *iov = iovstack;
2085 	unsigned long cmsg_ptr;
2086 	int len;
2087 	ssize_t err;
2088 
2089 	/* kernel mode address */
2090 	struct sockaddr_storage addr;
2091 
2092 	/* user mode address pointers */
2093 	struct sockaddr __user *uaddr;
2094 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2095 
2096 	msg_sys->msg_name = &addr;
2097 
2098 	if (MSG_CMSG_COMPAT & flags)
2099 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2100 	else
2101 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2102 	if (err < 0)
2103 		return err;
2104 
2105 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2106 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2107 
2108 	/* We assume all kernel code knows the size of sockaddr_storage */
2109 	msg_sys->msg_namelen = 0;
2110 
2111 	if (sock->file->f_flags & O_NONBLOCK)
2112 		flags |= MSG_DONTWAIT;
2113 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2114 	if (err < 0)
2115 		goto out_freeiov;
2116 	len = err;
2117 
2118 	if (uaddr != NULL) {
2119 		err = move_addr_to_user(&addr,
2120 					msg_sys->msg_namelen, uaddr,
2121 					uaddr_len);
2122 		if (err < 0)
2123 			goto out_freeiov;
2124 	}
2125 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2126 			 COMPAT_FLAGS(msg));
2127 	if (err)
2128 		goto out_freeiov;
2129 	if (MSG_CMSG_COMPAT & flags)
2130 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2131 				 &msg_compat->msg_controllen);
2132 	else
2133 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2134 				 &msg->msg_controllen);
2135 	if (err)
2136 		goto out_freeiov;
2137 	err = len;
2138 
2139 out_freeiov:
2140 	kfree(iov);
2141 	return err;
2142 }
2143 
2144 /*
2145  *	BSD recvmsg interface
2146  */
2147 
2148 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2149 {
2150 	int fput_needed, err;
2151 	struct msghdr msg_sys;
2152 	struct socket *sock;
2153 
2154 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2155 	if (!sock)
2156 		goto out;
2157 
2158 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2159 
2160 	fput_light(sock->file, fput_needed);
2161 out:
2162 	return err;
2163 }
2164 
2165 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2166 		unsigned int, flags)
2167 {
2168 	if (flags & MSG_CMSG_COMPAT)
2169 		return -EINVAL;
2170 	return __sys_recvmsg(fd, msg, flags);
2171 }
2172 
2173 /*
2174  *     Linux recvmmsg interface
2175  */
2176 
2177 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2178 		   unsigned int flags, struct timespec *timeout)
2179 {
2180 	int fput_needed, err, datagrams;
2181 	struct socket *sock;
2182 	struct mmsghdr __user *entry;
2183 	struct compat_mmsghdr __user *compat_entry;
2184 	struct msghdr msg_sys;
2185 	struct timespec64 end_time;
2186 	struct timespec64 timeout64;
2187 
2188 	if (timeout &&
2189 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2190 				    timeout->tv_nsec))
2191 		return -EINVAL;
2192 
2193 	datagrams = 0;
2194 
2195 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2196 	if (!sock)
2197 		return err;
2198 
2199 	err = sock_error(sock->sk);
2200 	if (err)
2201 		goto out_put;
2202 
2203 	entry = mmsg;
2204 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2205 
2206 	while (datagrams < vlen) {
2207 		/*
2208 		 * No need to ask LSM for more than the first datagram.
2209 		 */
2210 		if (MSG_CMSG_COMPAT & flags) {
2211 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2212 					     &msg_sys, flags & ~MSG_WAITFORONE,
2213 					     datagrams);
2214 			if (err < 0)
2215 				break;
2216 			err = __put_user(err, &compat_entry->msg_len);
2217 			++compat_entry;
2218 		} else {
2219 			err = ___sys_recvmsg(sock,
2220 					     (struct user_msghdr __user *)entry,
2221 					     &msg_sys, flags & ~MSG_WAITFORONE,
2222 					     datagrams);
2223 			if (err < 0)
2224 				break;
2225 			err = put_user(err, &entry->msg_len);
2226 			++entry;
2227 		}
2228 
2229 		if (err)
2230 			break;
2231 		++datagrams;
2232 
2233 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2234 		if (flags & MSG_WAITFORONE)
2235 			flags |= MSG_DONTWAIT;
2236 
2237 		if (timeout) {
2238 			ktime_get_ts64(&timeout64);
2239 			*timeout = timespec64_to_timespec(
2240 					timespec64_sub(end_time, timeout64));
2241 			if (timeout->tv_sec < 0) {
2242 				timeout->tv_sec = timeout->tv_nsec = 0;
2243 				break;
2244 			}
2245 
2246 			/* Timeout, return less than vlen datagrams */
2247 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2248 				break;
2249 		}
2250 
2251 		/* Out of band data, return right away */
2252 		if (msg_sys.msg_flags & MSG_OOB)
2253 			break;
2254 		cond_resched();
2255 	}
2256 
2257 	if (err == 0)
2258 		goto out_put;
2259 
2260 	if (datagrams == 0) {
2261 		datagrams = err;
2262 		goto out_put;
2263 	}
2264 
2265 	/*
2266 	 * We may return less entries than requested (vlen) if the
2267 	 * sock is non block and there aren't enough datagrams...
2268 	 */
2269 	if (err != -EAGAIN) {
2270 		/*
2271 		 * ... or  if recvmsg returns an error after we
2272 		 * received some datagrams, where we record the
2273 		 * error to return on the next call or if the
2274 		 * app asks about it using getsockopt(SO_ERROR).
2275 		 */
2276 		sock->sk->sk_err = -err;
2277 	}
2278 out_put:
2279 	fput_light(sock->file, fput_needed);
2280 
2281 	return datagrams;
2282 }
2283 
2284 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2285 		unsigned int, vlen, unsigned int, flags,
2286 		struct timespec __user *, timeout)
2287 {
2288 	int datagrams;
2289 	struct timespec timeout_sys;
2290 
2291 	if (flags & MSG_CMSG_COMPAT)
2292 		return -EINVAL;
2293 
2294 	if (!timeout)
2295 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2296 
2297 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2298 		return -EFAULT;
2299 
2300 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2301 
2302 	if (datagrams > 0 &&
2303 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2304 		datagrams = -EFAULT;
2305 
2306 	return datagrams;
2307 }
2308 
2309 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2310 /* Argument list sizes for sys_socketcall */
2311 #define AL(x) ((x) * sizeof(unsigned long))
2312 static const unsigned char nargs[21] = {
2313 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2314 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2315 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2316 	AL(4), AL(5), AL(4)
2317 };
2318 
2319 #undef AL
2320 
2321 /*
2322  *	System call vectors.
2323  *
2324  *	Argument checking cleaned up. Saved 20% in size.
2325  *  This function doesn't need to set the kernel lock because
2326  *  it is set by the callees.
2327  */
2328 
2329 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2330 {
2331 	unsigned long a[AUDITSC_ARGS];
2332 	unsigned long a0, a1;
2333 	int err;
2334 	unsigned int len;
2335 
2336 	if (call < 1 || call > SYS_SENDMMSG)
2337 		return -EINVAL;
2338 
2339 	len = nargs[call];
2340 	if (len > sizeof(a))
2341 		return -EINVAL;
2342 
2343 	/* copy_from_user should be SMP safe. */
2344 	if (copy_from_user(a, args, len))
2345 		return -EFAULT;
2346 
2347 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2348 	if (err)
2349 		return err;
2350 
2351 	a0 = a[0];
2352 	a1 = a[1];
2353 
2354 	switch (call) {
2355 	case SYS_SOCKET:
2356 		err = sys_socket(a0, a1, a[2]);
2357 		break;
2358 	case SYS_BIND:
2359 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2360 		break;
2361 	case SYS_CONNECT:
2362 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2363 		break;
2364 	case SYS_LISTEN:
2365 		err = sys_listen(a0, a1);
2366 		break;
2367 	case SYS_ACCEPT:
2368 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2369 				  (int __user *)a[2], 0);
2370 		break;
2371 	case SYS_GETSOCKNAME:
2372 		err =
2373 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2374 				    (int __user *)a[2]);
2375 		break;
2376 	case SYS_GETPEERNAME:
2377 		err =
2378 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2379 				    (int __user *)a[2]);
2380 		break;
2381 	case SYS_SOCKETPAIR:
2382 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2383 		break;
2384 	case SYS_SEND:
2385 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2386 		break;
2387 	case SYS_SENDTO:
2388 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2389 				 (struct sockaddr __user *)a[4], a[5]);
2390 		break;
2391 	case SYS_RECV:
2392 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2393 		break;
2394 	case SYS_RECVFROM:
2395 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2396 				   (struct sockaddr __user *)a[4],
2397 				   (int __user *)a[5]);
2398 		break;
2399 	case SYS_SHUTDOWN:
2400 		err = sys_shutdown(a0, a1);
2401 		break;
2402 	case SYS_SETSOCKOPT:
2403 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2404 		break;
2405 	case SYS_GETSOCKOPT:
2406 		err =
2407 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2408 				   (int __user *)a[4]);
2409 		break;
2410 	case SYS_SENDMSG:
2411 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2412 		break;
2413 	case SYS_SENDMMSG:
2414 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2415 		break;
2416 	case SYS_RECVMSG:
2417 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2418 		break;
2419 	case SYS_RECVMMSG:
2420 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2421 				   (struct timespec __user *)a[4]);
2422 		break;
2423 	case SYS_ACCEPT4:
2424 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2425 				  (int __user *)a[2], a[3]);
2426 		break;
2427 	default:
2428 		err = -EINVAL;
2429 		break;
2430 	}
2431 	return err;
2432 }
2433 
2434 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2435 
2436 /**
2437  *	sock_register - add a socket protocol handler
2438  *	@ops: description of protocol
2439  *
2440  *	This function is called by a protocol handler that wants to
2441  *	advertise its address family, and have it linked into the
2442  *	socket interface. The value ops->family corresponds to the
2443  *	socket system call protocol family.
2444  */
2445 int sock_register(const struct net_proto_family *ops)
2446 {
2447 	int err;
2448 
2449 	if (ops->family >= NPROTO) {
2450 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2451 		return -ENOBUFS;
2452 	}
2453 
2454 	spin_lock(&net_family_lock);
2455 	if (rcu_dereference_protected(net_families[ops->family],
2456 				      lockdep_is_held(&net_family_lock)))
2457 		err = -EEXIST;
2458 	else {
2459 		rcu_assign_pointer(net_families[ops->family], ops);
2460 		err = 0;
2461 	}
2462 	spin_unlock(&net_family_lock);
2463 
2464 	pr_info("NET: Registered protocol family %d\n", ops->family);
2465 	return err;
2466 }
2467 EXPORT_SYMBOL(sock_register);
2468 
2469 /**
2470  *	sock_unregister - remove a protocol handler
2471  *	@family: protocol family to remove
2472  *
2473  *	This function is called by a protocol handler that wants to
2474  *	remove its address family, and have it unlinked from the
2475  *	new socket creation.
2476  *
2477  *	If protocol handler is a module, then it can use module reference
2478  *	counts to protect against new references. If protocol handler is not
2479  *	a module then it needs to provide its own protection in
2480  *	the ops->create routine.
2481  */
2482 void sock_unregister(int family)
2483 {
2484 	BUG_ON(family < 0 || family >= NPROTO);
2485 
2486 	spin_lock(&net_family_lock);
2487 	RCU_INIT_POINTER(net_families[family], NULL);
2488 	spin_unlock(&net_family_lock);
2489 
2490 	synchronize_rcu();
2491 
2492 	pr_info("NET: Unregistered protocol family %d\n", family);
2493 }
2494 EXPORT_SYMBOL(sock_unregister);
2495 
2496 static int __init sock_init(void)
2497 {
2498 	int err;
2499 	/*
2500 	 *      Initialize the network sysctl infrastructure.
2501 	 */
2502 	err = net_sysctl_init();
2503 	if (err)
2504 		goto out;
2505 
2506 	/*
2507 	 *      Initialize skbuff SLAB cache
2508 	 */
2509 	skb_init();
2510 
2511 	/*
2512 	 *      Initialize the protocols module.
2513 	 */
2514 
2515 	init_inodecache();
2516 
2517 	err = register_filesystem(&sock_fs_type);
2518 	if (err)
2519 		goto out_fs;
2520 	sock_mnt = kern_mount(&sock_fs_type);
2521 	if (IS_ERR(sock_mnt)) {
2522 		err = PTR_ERR(sock_mnt);
2523 		goto out_mount;
2524 	}
2525 
2526 	/* The real protocol initialization is performed in later initcalls.
2527 	 */
2528 
2529 #ifdef CONFIG_NETFILTER
2530 	err = netfilter_init();
2531 	if (err)
2532 		goto out;
2533 #endif
2534 
2535 	ptp_classifier_init();
2536 
2537 out:
2538 	return err;
2539 
2540 out_mount:
2541 	unregister_filesystem(&sock_fs_type);
2542 out_fs:
2543 	goto out;
2544 }
2545 
2546 core_initcall(sock_init);	/* early initcall */
2547 
2548 #ifdef CONFIG_PROC_FS
2549 void socket_seq_show(struct seq_file *seq)
2550 {
2551 	int cpu;
2552 	int counter = 0;
2553 
2554 	for_each_possible_cpu(cpu)
2555 	    counter += per_cpu(sockets_in_use, cpu);
2556 
2557 	/* It can be negative, by the way. 8) */
2558 	if (counter < 0)
2559 		counter = 0;
2560 
2561 	seq_printf(seq, "sockets: used %d\n", counter);
2562 }
2563 #endif				/* CONFIG_PROC_FS */
2564 
2565 #ifdef CONFIG_COMPAT
2566 static int do_siocgstamp(struct net *net, struct socket *sock,
2567 			 unsigned int cmd, void __user *up)
2568 {
2569 	mm_segment_t old_fs = get_fs();
2570 	struct timeval ktv;
2571 	int err;
2572 
2573 	set_fs(KERNEL_DS);
2574 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2575 	set_fs(old_fs);
2576 	if (!err)
2577 		err = compat_put_timeval(&ktv, up);
2578 
2579 	return err;
2580 }
2581 
2582 static int do_siocgstampns(struct net *net, struct socket *sock,
2583 			   unsigned int cmd, void __user *up)
2584 {
2585 	mm_segment_t old_fs = get_fs();
2586 	struct timespec kts;
2587 	int err;
2588 
2589 	set_fs(KERNEL_DS);
2590 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2591 	set_fs(old_fs);
2592 	if (!err)
2593 		err = compat_put_timespec(&kts, up);
2594 
2595 	return err;
2596 }
2597 
2598 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2599 {
2600 	struct ifreq __user *uifr;
2601 	int err;
2602 
2603 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2604 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2605 		return -EFAULT;
2606 
2607 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2608 	if (err)
2609 		return err;
2610 
2611 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2612 		return -EFAULT;
2613 
2614 	return 0;
2615 }
2616 
2617 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2618 {
2619 	struct compat_ifconf ifc32;
2620 	struct ifconf ifc;
2621 	struct ifconf __user *uifc;
2622 	struct compat_ifreq __user *ifr32;
2623 	struct ifreq __user *ifr;
2624 	unsigned int i, j;
2625 	int err;
2626 
2627 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2628 		return -EFAULT;
2629 
2630 	memset(&ifc, 0, sizeof(ifc));
2631 	if (ifc32.ifcbuf == 0) {
2632 		ifc32.ifc_len = 0;
2633 		ifc.ifc_len = 0;
2634 		ifc.ifc_req = NULL;
2635 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2636 	} else {
2637 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2638 			sizeof(struct ifreq);
2639 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2640 		ifc.ifc_len = len;
2641 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2642 		ifr32 = compat_ptr(ifc32.ifcbuf);
2643 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2644 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2645 				return -EFAULT;
2646 			ifr++;
2647 			ifr32++;
2648 		}
2649 	}
2650 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2651 		return -EFAULT;
2652 
2653 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2654 	if (err)
2655 		return err;
2656 
2657 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2658 		return -EFAULT;
2659 
2660 	ifr = ifc.ifc_req;
2661 	ifr32 = compat_ptr(ifc32.ifcbuf);
2662 	for (i = 0, j = 0;
2663 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2664 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2665 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2666 			return -EFAULT;
2667 		ifr32++;
2668 		ifr++;
2669 	}
2670 
2671 	if (ifc32.ifcbuf == 0) {
2672 		/* Translate from 64-bit structure multiple to
2673 		 * a 32-bit one.
2674 		 */
2675 		i = ifc.ifc_len;
2676 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2677 		ifc32.ifc_len = i;
2678 	} else {
2679 		ifc32.ifc_len = i;
2680 	}
2681 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2682 		return -EFAULT;
2683 
2684 	return 0;
2685 }
2686 
2687 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2688 {
2689 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2690 	bool convert_in = false, convert_out = false;
2691 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2692 	struct ethtool_rxnfc __user *rxnfc;
2693 	struct ifreq __user *ifr;
2694 	u32 rule_cnt = 0, actual_rule_cnt;
2695 	u32 ethcmd;
2696 	u32 data;
2697 	int ret;
2698 
2699 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2700 		return -EFAULT;
2701 
2702 	compat_rxnfc = compat_ptr(data);
2703 
2704 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2705 		return -EFAULT;
2706 
2707 	/* Most ethtool structures are defined without padding.
2708 	 * Unfortunately struct ethtool_rxnfc is an exception.
2709 	 */
2710 	switch (ethcmd) {
2711 	default:
2712 		break;
2713 	case ETHTOOL_GRXCLSRLALL:
2714 		/* Buffer size is variable */
2715 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2716 			return -EFAULT;
2717 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2718 			return -ENOMEM;
2719 		buf_size += rule_cnt * sizeof(u32);
2720 		/* fall through */
2721 	case ETHTOOL_GRXRINGS:
2722 	case ETHTOOL_GRXCLSRLCNT:
2723 	case ETHTOOL_GRXCLSRULE:
2724 	case ETHTOOL_SRXCLSRLINS:
2725 		convert_out = true;
2726 		/* fall through */
2727 	case ETHTOOL_SRXCLSRLDEL:
2728 		buf_size += sizeof(struct ethtool_rxnfc);
2729 		convert_in = true;
2730 		break;
2731 	}
2732 
2733 	ifr = compat_alloc_user_space(buf_size);
2734 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2735 
2736 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2737 		return -EFAULT;
2738 
2739 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2740 		     &ifr->ifr_ifru.ifru_data))
2741 		return -EFAULT;
2742 
2743 	if (convert_in) {
2744 		/* We expect there to be holes between fs.m_ext and
2745 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2746 		 */
2747 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2748 			     sizeof(compat_rxnfc->fs.m_ext) !=
2749 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2750 			     sizeof(rxnfc->fs.m_ext));
2751 		BUILD_BUG_ON(
2752 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2753 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2754 			offsetof(struct ethtool_rxnfc, fs.location) -
2755 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2756 
2757 		if (copy_in_user(rxnfc, compat_rxnfc,
2758 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2759 				 (void __user *)rxnfc) ||
2760 		    copy_in_user(&rxnfc->fs.ring_cookie,
2761 				 &compat_rxnfc->fs.ring_cookie,
2762 				 (void __user *)(&rxnfc->fs.location + 1) -
2763 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2764 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2765 				 sizeof(rxnfc->rule_cnt)))
2766 			return -EFAULT;
2767 	}
2768 
2769 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2770 	if (ret)
2771 		return ret;
2772 
2773 	if (convert_out) {
2774 		if (copy_in_user(compat_rxnfc, rxnfc,
2775 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2776 				 (const void __user *)rxnfc) ||
2777 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2778 				 &rxnfc->fs.ring_cookie,
2779 				 (const void __user *)(&rxnfc->fs.location + 1) -
2780 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2781 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2782 				 sizeof(rxnfc->rule_cnt)))
2783 			return -EFAULT;
2784 
2785 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2786 			/* As an optimisation, we only copy the actual
2787 			 * number of rules that the underlying
2788 			 * function returned.  Since Mallory might
2789 			 * change the rule count in user memory, we
2790 			 * check that it is less than the rule count
2791 			 * originally given (as the user buffer size),
2792 			 * which has been range-checked.
2793 			 */
2794 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2795 				return -EFAULT;
2796 			if (actual_rule_cnt < rule_cnt)
2797 				rule_cnt = actual_rule_cnt;
2798 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2799 					 &rxnfc->rule_locs[0],
2800 					 rule_cnt * sizeof(u32)))
2801 				return -EFAULT;
2802 		}
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2809 {
2810 	void __user *uptr;
2811 	compat_uptr_t uptr32;
2812 	struct ifreq __user *uifr;
2813 
2814 	uifr = compat_alloc_user_space(sizeof(*uifr));
2815 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2816 		return -EFAULT;
2817 
2818 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2819 		return -EFAULT;
2820 
2821 	uptr = compat_ptr(uptr32);
2822 
2823 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2824 		return -EFAULT;
2825 
2826 	return dev_ioctl(net, SIOCWANDEV, uifr);
2827 }
2828 
2829 static int bond_ioctl(struct net *net, unsigned int cmd,
2830 			 struct compat_ifreq __user *ifr32)
2831 {
2832 	struct ifreq kifr;
2833 	mm_segment_t old_fs;
2834 	int err;
2835 
2836 	switch (cmd) {
2837 	case SIOCBONDENSLAVE:
2838 	case SIOCBONDRELEASE:
2839 	case SIOCBONDSETHWADDR:
2840 	case SIOCBONDCHANGEACTIVE:
2841 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2842 			return -EFAULT;
2843 
2844 		old_fs = get_fs();
2845 		set_fs(KERNEL_DS);
2846 		err = dev_ioctl(net, cmd,
2847 				(struct ifreq __user __force *) &kifr);
2848 		set_fs(old_fs);
2849 
2850 		return err;
2851 	default:
2852 		return -ENOIOCTLCMD;
2853 	}
2854 }
2855 
2856 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2857 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2858 				 struct compat_ifreq __user *u_ifreq32)
2859 {
2860 	struct ifreq __user *u_ifreq64;
2861 	char tmp_buf[IFNAMSIZ];
2862 	void __user *data64;
2863 	u32 data32;
2864 
2865 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2866 			   IFNAMSIZ))
2867 		return -EFAULT;
2868 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2869 		return -EFAULT;
2870 	data64 = compat_ptr(data32);
2871 
2872 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2873 
2874 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2875 			 IFNAMSIZ))
2876 		return -EFAULT;
2877 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2878 		return -EFAULT;
2879 
2880 	return dev_ioctl(net, cmd, u_ifreq64);
2881 }
2882 
2883 static int dev_ifsioc(struct net *net, struct socket *sock,
2884 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2885 {
2886 	struct ifreq __user *uifr;
2887 	int err;
2888 
2889 	uifr = compat_alloc_user_space(sizeof(*uifr));
2890 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2891 		return -EFAULT;
2892 
2893 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2894 
2895 	if (!err) {
2896 		switch (cmd) {
2897 		case SIOCGIFFLAGS:
2898 		case SIOCGIFMETRIC:
2899 		case SIOCGIFMTU:
2900 		case SIOCGIFMEM:
2901 		case SIOCGIFHWADDR:
2902 		case SIOCGIFINDEX:
2903 		case SIOCGIFADDR:
2904 		case SIOCGIFBRDADDR:
2905 		case SIOCGIFDSTADDR:
2906 		case SIOCGIFNETMASK:
2907 		case SIOCGIFPFLAGS:
2908 		case SIOCGIFTXQLEN:
2909 		case SIOCGMIIPHY:
2910 		case SIOCGMIIREG:
2911 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2912 				err = -EFAULT;
2913 			break;
2914 		}
2915 	}
2916 	return err;
2917 }
2918 
2919 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2920 			struct compat_ifreq __user *uifr32)
2921 {
2922 	struct ifreq ifr;
2923 	struct compat_ifmap __user *uifmap32;
2924 	mm_segment_t old_fs;
2925 	int err;
2926 
2927 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2928 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2929 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2930 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2931 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2932 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2933 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2934 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2935 	if (err)
2936 		return -EFAULT;
2937 
2938 	old_fs = get_fs();
2939 	set_fs(KERNEL_DS);
2940 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2941 	set_fs(old_fs);
2942 
2943 	if (cmd == SIOCGIFMAP && !err) {
2944 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2945 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2946 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2947 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2948 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2949 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2950 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2951 		if (err)
2952 			err = -EFAULT;
2953 	}
2954 	return err;
2955 }
2956 
2957 struct rtentry32 {
2958 	u32		rt_pad1;
2959 	struct sockaddr rt_dst;         /* target address               */
2960 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2961 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2962 	unsigned short	rt_flags;
2963 	short		rt_pad2;
2964 	u32		rt_pad3;
2965 	unsigned char	rt_tos;
2966 	unsigned char	rt_class;
2967 	short		rt_pad4;
2968 	short		rt_metric;      /* +1 for binary compatibility! */
2969 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2970 	u32		rt_mtu;         /* per route MTU/Window         */
2971 	u32		rt_window;      /* Window clamping              */
2972 	unsigned short  rt_irtt;        /* Initial RTT                  */
2973 };
2974 
2975 struct in6_rtmsg32 {
2976 	struct in6_addr		rtmsg_dst;
2977 	struct in6_addr		rtmsg_src;
2978 	struct in6_addr		rtmsg_gateway;
2979 	u32			rtmsg_type;
2980 	u16			rtmsg_dst_len;
2981 	u16			rtmsg_src_len;
2982 	u32			rtmsg_metric;
2983 	u32			rtmsg_info;
2984 	u32			rtmsg_flags;
2985 	s32			rtmsg_ifindex;
2986 };
2987 
2988 static int routing_ioctl(struct net *net, struct socket *sock,
2989 			 unsigned int cmd, void __user *argp)
2990 {
2991 	int ret;
2992 	void *r = NULL;
2993 	struct in6_rtmsg r6;
2994 	struct rtentry r4;
2995 	char devname[16];
2996 	u32 rtdev;
2997 	mm_segment_t old_fs = get_fs();
2998 
2999 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3000 		struct in6_rtmsg32 __user *ur6 = argp;
3001 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3002 			3 * sizeof(struct in6_addr));
3003 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3004 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3005 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3006 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3007 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3008 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3009 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3010 
3011 		r = (void *) &r6;
3012 	} else { /* ipv4 */
3013 		struct rtentry32 __user *ur4 = argp;
3014 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3015 					3 * sizeof(struct sockaddr));
3016 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3017 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3018 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3019 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3020 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3021 		ret |= get_user(rtdev, &(ur4->rt_dev));
3022 		if (rtdev) {
3023 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3024 			r4.rt_dev = (char __user __force *)devname;
3025 			devname[15] = 0;
3026 		} else
3027 			r4.rt_dev = NULL;
3028 
3029 		r = (void *) &r4;
3030 	}
3031 
3032 	if (ret) {
3033 		ret = -EFAULT;
3034 		goto out;
3035 	}
3036 
3037 	set_fs(KERNEL_DS);
3038 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3039 	set_fs(old_fs);
3040 
3041 out:
3042 	return ret;
3043 }
3044 
3045 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3046  * for some operations; this forces use of the newer bridge-utils that
3047  * use compatible ioctls
3048  */
3049 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3050 {
3051 	compat_ulong_t tmp;
3052 
3053 	if (get_user(tmp, argp))
3054 		return -EFAULT;
3055 	if (tmp == BRCTL_GET_VERSION)
3056 		return BRCTL_VERSION + 1;
3057 	return -EINVAL;
3058 }
3059 
3060 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3061 			 unsigned int cmd, unsigned long arg)
3062 {
3063 	void __user *argp = compat_ptr(arg);
3064 	struct sock *sk = sock->sk;
3065 	struct net *net = sock_net(sk);
3066 
3067 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3068 		return compat_ifr_data_ioctl(net, cmd, argp);
3069 
3070 	switch (cmd) {
3071 	case SIOCSIFBR:
3072 	case SIOCGIFBR:
3073 		return old_bridge_ioctl(argp);
3074 	case SIOCGIFNAME:
3075 		return dev_ifname32(net, argp);
3076 	case SIOCGIFCONF:
3077 		return dev_ifconf(net, argp);
3078 	case SIOCETHTOOL:
3079 		return ethtool_ioctl(net, argp);
3080 	case SIOCWANDEV:
3081 		return compat_siocwandev(net, argp);
3082 	case SIOCGIFMAP:
3083 	case SIOCSIFMAP:
3084 		return compat_sioc_ifmap(net, cmd, argp);
3085 	case SIOCBONDENSLAVE:
3086 	case SIOCBONDRELEASE:
3087 	case SIOCBONDSETHWADDR:
3088 	case SIOCBONDCHANGEACTIVE:
3089 		return bond_ioctl(net, cmd, argp);
3090 	case SIOCADDRT:
3091 	case SIOCDELRT:
3092 		return routing_ioctl(net, sock, cmd, argp);
3093 	case SIOCGSTAMP:
3094 		return do_siocgstamp(net, sock, cmd, argp);
3095 	case SIOCGSTAMPNS:
3096 		return do_siocgstampns(net, sock, cmd, argp);
3097 	case SIOCBONDSLAVEINFOQUERY:
3098 	case SIOCBONDINFOQUERY:
3099 	case SIOCSHWTSTAMP:
3100 	case SIOCGHWTSTAMP:
3101 		return compat_ifr_data_ioctl(net, cmd, argp);
3102 
3103 	case FIOSETOWN:
3104 	case SIOCSPGRP:
3105 	case FIOGETOWN:
3106 	case SIOCGPGRP:
3107 	case SIOCBRADDBR:
3108 	case SIOCBRDELBR:
3109 	case SIOCGIFVLAN:
3110 	case SIOCSIFVLAN:
3111 	case SIOCADDDLCI:
3112 	case SIOCDELDLCI:
3113 		return sock_ioctl(file, cmd, arg);
3114 
3115 	case SIOCGIFFLAGS:
3116 	case SIOCSIFFLAGS:
3117 	case SIOCGIFMETRIC:
3118 	case SIOCSIFMETRIC:
3119 	case SIOCGIFMTU:
3120 	case SIOCSIFMTU:
3121 	case SIOCGIFMEM:
3122 	case SIOCSIFMEM:
3123 	case SIOCGIFHWADDR:
3124 	case SIOCSIFHWADDR:
3125 	case SIOCADDMULTI:
3126 	case SIOCDELMULTI:
3127 	case SIOCGIFINDEX:
3128 	case SIOCGIFADDR:
3129 	case SIOCSIFADDR:
3130 	case SIOCSIFHWBROADCAST:
3131 	case SIOCDIFADDR:
3132 	case SIOCGIFBRDADDR:
3133 	case SIOCSIFBRDADDR:
3134 	case SIOCGIFDSTADDR:
3135 	case SIOCSIFDSTADDR:
3136 	case SIOCGIFNETMASK:
3137 	case SIOCSIFNETMASK:
3138 	case SIOCSIFPFLAGS:
3139 	case SIOCGIFPFLAGS:
3140 	case SIOCGIFTXQLEN:
3141 	case SIOCSIFTXQLEN:
3142 	case SIOCBRADDIF:
3143 	case SIOCBRDELIF:
3144 	case SIOCSIFNAME:
3145 	case SIOCGMIIPHY:
3146 	case SIOCGMIIREG:
3147 	case SIOCSMIIREG:
3148 		return dev_ifsioc(net, sock, cmd, argp);
3149 
3150 	case SIOCSARP:
3151 	case SIOCGARP:
3152 	case SIOCDARP:
3153 	case SIOCATMARK:
3154 		return sock_do_ioctl(net, sock, cmd, arg);
3155 	}
3156 
3157 	return -ENOIOCTLCMD;
3158 }
3159 
3160 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3161 			      unsigned long arg)
3162 {
3163 	struct socket *sock = file->private_data;
3164 	int ret = -ENOIOCTLCMD;
3165 	struct sock *sk;
3166 	struct net *net;
3167 
3168 	sk = sock->sk;
3169 	net = sock_net(sk);
3170 
3171 	if (sock->ops->compat_ioctl)
3172 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3173 
3174 	if (ret == -ENOIOCTLCMD &&
3175 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3176 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3177 
3178 	if (ret == -ENOIOCTLCMD)
3179 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3180 
3181 	return ret;
3182 }
3183 #endif
3184 
3185 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3186 {
3187 	return sock->ops->bind(sock, addr, addrlen);
3188 }
3189 EXPORT_SYMBOL(kernel_bind);
3190 
3191 int kernel_listen(struct socket *sock, int backlog)
3192 {
3193 	return sock->ops->listen(sock, backlog);
3194 }
3195 EXPORT_SYMBOL(kernel_listen);
3196 
3197 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3198 {
3199 	struct sock *sk = sock->sk;
3200 	int err;
3201 
3202 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3203 			       newsock);
3204 	if (err < 0)
3205 		goto done;
3206 
3207 	err = sock->ops->accept(sock, *newsock, flags);
3208 	if (err < 0) {
3209 		sock_release(*newsock);
3210 		*newsock = NULL;
3211 		goto done;
3212 	}
3213 
3214 	(*newsock)->ops = sock->ops;
3215 	__module_get((*newsock)->ops->owner);
3216 
3217 done:
3218 	return err;
3219 }
3220 EXPORT_SYMBOL(kernel_accept);
3221 
3222 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3223 		   int flags)
3224 {
3225 	return sock->ops->connect(sock, addr, addrlen, flags);
3226 }
3227 EXPORT_SYMBOL(kernel_connect);
3228 
3229 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3230 			 int *addrlen)
3231 {
3232 	return sock->ops->getname(sock, addr, addrlen, 0);
3233 }
3234 EXPORT_SYMBOL(kernel_getsockname);
3235 
3236 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3237 			 int *addrlen)
3238 {
3239 	return sock->ops->getname(sock, addr, addrlen, 1);
3240 }
3241 EXPORT_SYMBOL(kernel_getpeername);
3242 
3243 int kernel_getsockopt(struct socket *sock, int level, int optname,
3244 			char *optval, int *optlen)
3245 {
3246 	mm_segment_t oldfs = get_fs();
3247 	char __user *uoptval;
3248 	int __user *uoptlen;
3249 	int err;
3250 
3251 	uoptval = (char __user __force *) optval;
3252 	uoptlen = (int __user __force *) optlen;
3253 
3254 	set_fs(KERNEL_DS);
3255 	if (level == SOL_SOCKET)
3256 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3257 	else
3258 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3259 					    uoptlen);
3260 	set_fs(oldfs);
3261 	return err;
3262 }
3263 EXPORT_SYMBOL(kernel_getsockopt);
3264 
3265 int kernel_setsockopt(struct socket *sock, int level, int optname,
3266 			char *optval, unsigned int optlen)
3267 {
3268 	mm_segment_t oldfs = get_fs();
3269 	char __user *uoptval;
3270 	int err;
3271 
3272 	uoptval = (char __user __force *) optval;
3273 
3274 	set_fs(KERNEL_DS);
3275 	if (level == SOL_SOCKET)
3276 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3277 	else
3278 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3279 					    optlen);
3280 	set_fs(oldfs);
3281 	return err;
3282 }
3283 EXPORT_SYMBOL(kernel_setsockopt);
3284 
3285 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3286 		    size_t size, int flags)
3287 {
3288 	if (sock->ops->sendpage)
3289 		return sock->ops->sendpage(sock, page, offset, size, flags);
3290 
3291 	return sock_no_sendpage(sock, page, offset, size, flags);
3292 }
3293 EXPORT_SYMBOL(kernel_sendpage);
3294 
3295 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3296 {
3297 	mm_segment_t oldfs = get_fs();
3298 	int err;
3299 
3300 	set_fs(KERNEL_DS);
3301 	err = sock->ops->ioctl(sock, cmd, arg);
3302 	set_fs(oldfs);
3303 
3304 	return err;
3305 }
3306 EXPORT_SYMBOL(kernel_sock_ioctl);
3307 
3308 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3309 {
3310 	return sock->ops->shutdown(sock, how);
3311 }
3312 EXPORT_SYMBOL(kernel_sock_shutdown);
3313