1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 d_inode(dentry)->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static int sockfs_xattr_get(const struct xattr_handler *handler, 324 struct dentry *dentry, struct inode *inode, 325 const char *suffix, void *value, size_t size) 326 { 327 if (value) { 328 if (dentry->d_name.len + 1 > size) 329 return -ERANGE; 330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 331 } 332 return dentry->d_name.len + 1; 333 } 334 335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 338 339 static const struct xattr_handler sockfs_xattr_handler = { 340 .name = XATTR_NAME_SOCKPROTONAME, 341 .get = sockfs_xattr_get, 342 }; 343 344 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 345 struct dentry *dentry, struct inode *inode, 346 const char *suffix, const void *value, 347 size_t size, int flags) 348 { 349 /* Handled by LSM. */ 350 return -EAGAIN; 351 } 352 353 static const struct xattr_handler sockfs_security_xattr_handler = { 354 .prefix = XATTR_SECURITY_PREFIX, 355 .set = sockfs_security_xattr_set, 356 }; 357 358 static const struct xattr_handler *sockfs_xattr_handlers[] = { 359 &sockfs_xattr_handler, 360 &sockfs_security_xattr_handler, 361 NULL 362 }; 363 364 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 365 int flags, const char *dev_name, void *data) 366 { 367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 368 sockfs_xattr_handlers, 369 &sockfs_dentry_operations, SOCKFS_MAGIC); 370 } 371 372 static struct vfsmount *sock_mnt __read_mostly; 373 374 static struct file_system_type sock_fs_type = { 375 .name = "sockfs", 376 .mount = sockfs_mount, 377 .kill_sb = kill_anon_super, 378 }; 379 380 /* 381 * Obtains the first available file descriptor and sets it up for use. 382 * 383 * These functions create file structures and maps them to fd space 384 * of the current process. On success it returns file descriptor 385 * and file struct implicitly stored in sock->file. 386 * Note that another thread may close file descriptor before we return 387 * from this function. We use the fact that now we do not refer 388 * to socket after mapping. If one day we will need it, this 389 * function will increment ref. count on file by 1. 390 * 391 * In any case returned fd MAY BE not valid! 392 * This race condition is unavoidable 393 * with shared fd spaces, we cannot solve it inside kernel, 394 * but we take care of internal coherence yet. 395 */ 396 397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 398 { 399 struct qstr name = { .name = "" }; 400 struct path path; 401 struct file *file; 402 403 if (dname) { 404 name.name = dname; 405 name.len = strlen(name.name); 406 } else if (sock->sk) { 407 name.name = sock->sk->sk_prot_creator->name; 408 name.len = strlen(name.name); 409 } 410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 411 if (unlikely(!path.dentry)) 412 return ERR_PTR(-ENOMEM); 413 path.mnt = mntget(sock_mnt); 414 415 d_instantiate(path.dentry, SOCK_INODE(sock)); 416 417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 418 &socket_file_ops); 419 if (IS_ERR(file)) { 420 /* drop dentry, keep inode */ 421 ihold(d_inode(path.dentry)); 422 path_put(&path); 423 return file; 424 } 425 426 sock->file = file; 427 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 428 file->private_data = sock; 429 return file; 430 } 431 EXPORT_SYMBOL(sock_alloc_file); 432 433 static int sock_map_fd(struct socket *sock, int flags) 434 { 435 struct file *newfile; 436 int fd = get_unused_fd_flags(flags); 437 if (unlikely(fd < 0)) 438 return fd; 439 440 newfile = sock_alloc_file(sock, flags, NULL); 441 if (likely(!IS_ERR(newfile))) { 442 fd_install(fd, newfile); 443 return fd; 444 } 445 446 put_unused_fd(fd); 447 return PTR_ERR(newfile); 448 } 449 450 struct socket *sock_from_file(struct file *file, int *err) 451 { 452 if (file->f_op == &socket_file_ops) 453 return file->private_data; /* set in sock_map_fd */ 454 455 *err = -ENOTSOCK; 456 return NULL; 457 } 458 EXPORT_SYMBOL(sock_from_file); 459 460 /** 461 * sockfd_lookup - Go from a file number to its socket slot 462 * @fd: file handle 463 * @err: pointer to an error code return 464 * 465 * The file handle passed in is locked and the socket it is bound 466 * too is returned. If an error occurs the err pointer is overwritten 467 * with a negative errno code and NULL is returned. The function checks 468 * for both invalid handles and passing a handle which is not a socket. 469 * 470 * On a success the socket object pointer is returned. 471 */ 472 473 struct socket *sockfd_lookup(int fd, int *err) 474 { 475 struct file *file; 476 struct socket *sock; 477 478 file = fget(fd); 479 if (!file) { 480 *err = -EBADF; 481 return NULL; 482 } 483 484 sock = sock_from_file(file, err); 485 if (!sock) 486 fput(file); 487 return sock; 488 } 489 EXPORT_SYMBOL(sockfd_lookup); 490 491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 492 { 493 struct fd f = fdget(fd); 494 struct socket *sock; 495 496 *err = -EBADF; 497 if (f.file) { 498 sock = sock_from_file(f.file, err); 499 if (likely(sock)) { 500 *fput_needed = f.flags; 501 return sock; 502 } 503 fdput(f); 504 } 505 return NULL; 506 } 507 508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 509 size_t size) 510 { 511 ssize_t len; 512 ssize_t used = 0; 513 514 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 515 if (len < 0) 516 return len; 517 used += len; 518 if (buffer) { 519 if (size < used) 520 return -ERANGE; 521 buffer += len; 522 } 523 524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 525 used += len; 526 if (buffer) { 527 if (size < used) 528 return -ERANGE; 529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 530 buffer += len; 531 } 532 533 return used; 534 } 535 536 static const struct inode_operations sockfs_inode_ops = { 537 .listxattr = sockfs_listxattr, 538 }; 539 540 /** 541 * sock_alloc - allocate a socket 542 * 543 * Allocate a new inode and socket object. The two are bound together 544 * and initialised. The socket is then returned. If we are out of inodes 545 * NULL is returned. 546 */ 547 548 struct socket *sock_alloc(void) 549 { 550 struct inode *inode; 551 struct socket *sock; 552 553 inode = new_inode_pseudo(sock_mnt->mnt_sb); 554 if (!inode) 555 return NULL; 556 557 sock = SOCKET_I(inode); 558 559 kmemcheck_annotate_bitfield(sock, type); 560 inode->i_ino = get_next_ino(); 561 inode->i_mode = S_IFSOCK | S_IRWXUGO; 562 inode->i_uid = current_fsuid(); 563 inode->i_gid = current_fsgid(); 564 inode->i_op = &sockfs_inode_ops; 565 566 this_cpu_add(sockets_in_use, 1); 567 return sock; 568 } 569 EXPORT_SYMBOL(sock_alloc); 570 571 /** 572 * sock_release - close a socket 573 * @sock: socket to close 574 * 575 * The socket is released from the protocol stack if it has a release 576 * callback, and the inode is then released if the socket is bound to 577 * an inode not a file. 578 */ 579 580 void sock_release(struct socket *sock) 581 { 582 if (sock->ops) { 583 struct module *owner = sock->ops->owner; 584 585 sock->ops->release(sock); 586 sock->ops = NULL; 587 module_put(owner); 588 } 589 590 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 591 pr_err("%s: fasync list not empty!\n", __func__); 592 593 this_cpu_sub(sockets_in_use, 1); 594 if (!sock->file) { 595 iput(SOCK_INODE(sock)); 596 return; 597 } 598 sock->file = NULL; 599 } 600 EXPORT_SYMBOL(sock_release); 601 602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 603 { 604 u8 flags = *tx_flags; 605 606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 607 flags |= SKBTX_HW_TSTAMP; 608 609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 610 flags |= SKBTX_SW_TSTAMP; 611 612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 613 flags |= SKBTX_SCHED_TSTAMP; 614 615 *tx_flags = flags; 616 } 617 EXPORT_SYMBOL(__sock_tx_timestamp); 618 619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 620 { 621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 622 BUG_ON(ret == -EIOCBQUEUED); 623 return ret; 624 } 625 626 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 627 { 628 int err = security_socket_sendmsg(sock, msg, 629 msg_data_left(msg)); 630 631 return err ?: sock_sendmsg_nosec(sock, msg); 632 } 633 EXPORT_SYMBOL(sock_sendmsg); 634 635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 636 struct kvec *vec, size_t num, size_t size) 637 { 638 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 639 return sock_sendmsg(sock, msg); 640 } 641 EXPORT_SYMBOL(kernel_sendmsg); 642 643 /* 644 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 645 */ 646 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 647 struct sk_buff *skb) 648 { 649 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 650 struct scm_timestamping tss; 651 int empty = 1; 652 struct skb_shared_hwtstamps *shhwtstamps = 653 skb_hwtstamps(skb); 654 655 /* Race occurred between timestamp enabling and packet 656 receiving. Fill in the current time for now. */ 657 if (need_software_tstamp && skb->tstamp.tv64 == 0) 658 __net_timestamp(skb); 659 660 if (need_software_tstamp) { 661 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 662 struct timeval tv; 663 skb_get_timestamp(skb, &tv); 664 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 665 sizeof(tv), &tv); 666 } else { 667 struct timespec ts; 668 skb_get_timestampns(skb, &ts); 669 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 670 sizeof(ts), &ts); 671 } 672 } 673 674 memset(&tss, 0, sizeof(tss)); 675 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 676 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 677 empty = 0; 678 if (shhwtstamps && 679 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 680 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 681 empty = 0; 682 if (!empty) 683 put_cmsg(msg, SOL_SOCKET, 684 SCM_TIMESTAMPING, sizeof(tss), &tss); 685 } 686 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 687 688 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 689 struct sk_buff *skb) 690 { 691 int ack; 692 693 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 694 return; 695 if (!skb->wifi_acked_valid) 696 return; 697 698 ack = skb->wifi_acked; 699 700 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 701 } 702 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 703 704 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 705 struct sk_buff *skb) 706 { 707 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 708 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 709 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 710 } 711 712 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 713 struct sk_buff *skb) 714 { 715 sock_recv_timestamp(msg, sk, skb); 716 sock_recv_drops(msg, sk, skb); 717 } 718 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 719 720 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 721 int flags) 722 { 723 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 724 } 725 726 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 727 { 728 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 729 730 return err ?: sock_recvmsg_nosec(sock, msg, flags); 731 } 732 EXPORT_SYMBOL(sock_recvmsg); 733 734 /** 735 * kernel_recvmsg - Receive a message from a socket (kernel space) 736 * @sock: The socket to receive the message from 737 * @msg: Received message 738 * @vec: Input s/g array for message data 739 * @num: Size of input s/g array 740 * @size: Number of bytes to read 741 * @flags: Message flags (MSG_DONTWAIT, etc...) 742 * 743 * On return the msg structure contains the scatter/gather array passed in the 744 * vec argument. The array is modified so that it consists of the unfilled 745 * portion of the original array. 746 * 747 * The returned value is the total number of bytes received, or an error. 748 */ 749 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 750 struct kvec *vec, size_t num, size_t size, int flags) 751 { 752 mm_segment_t oldfs = get_fs(); 753 int result; 754 755 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 756 set_fs(KERNEL_DS); 757 result = sock_recvmsg(sock, msg, flags); 758 set_fs(oldfs); 759 return result; 760 } 761 EXPORT_SYMBOL(kernel_recvmsg); 762 763 static ssize_t sock_sendpage(struct file *file, struct page *page, 764 int offset, size_t size, loff_t *ppos, int more) 765 { 766 struct socket *sock; 767 int flags; 768 769 sock = file->private_data; 770 771 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 772 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 773 flags |= more; 774 775 return kernel_sendpage(sock, page, offset, size, flags); 776 } 777 778 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 779 struct pipe_inode_info *pipe, size_t len, 780 unsigned int flags) 781 { 782 struct socket *sock = file->private_data; 783 784 if (unlikely(!sock->ops->splice_read)) 785 return -EINVAL; 786 787 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 788 } 789 790 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 791 { 792 struct file *file = iocb->ki_filp; 793 struct socket *sock = file->private_data; 794 struct msghdr msg = {.msg_iter = *to, 795 .msg_iocb = iocb}; 796 ssize_t res; 797 798 if (file->f_flags & O_NONBLOCK) 799 msg.msg_flags = MSG_DONTWAIT; 800 801 if (iocb->ki_pos != 0) 802 return -ESPIPE; 803 804 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 805 return 0; 806 807 res = sock_recvmsg(sock, &msg, msg.msg_flags); 808 *to = msg.msg_iter; 809 return res; 810 } 811 812 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 813 { 814 struct file *file = iocb->ki_filp; 815 struct socket *sock = file->private_data; 816 struct msghdr msg = {.msg_iter = *from, 817 .msg_iocb = iocb}; 818 ssize_t res; 819 820 if (iocb->ki_pos != 0) 821 return -ESPIPE; 822 823 if (file->f_flags & O_NONBLOCK) 824 msg.msg_flags = MSG_DONTWAIT; 825 826 if (sock->type == SOCK_SEQPACKET) 827 msg.msg_flags |= MSG_EOR; 828 829 res = sock_sendmsg(sock, &msg); 830 *from = msg.msg_iter; 831 return res; 832 } 833 834 /* 835 * Atomic setting of ioctl hooks to avoid race 836 * with module unload. 837 */ 838 839 static DEFINE_MUTEX(br_ioctl_mutex); 840 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 841 842 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 843 { 844 mutex_lock(&br_ioctl_mutex); 845 br_ioctl_hook = hook; 846 mutex_unlock(&br_ioctl_mutex); 847 } 848 EXPORT_SYMBOL(brioctl_set); 849 850 static DEFINE_MUTEX(vlan_ioctl_mutex); 851 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 852 853 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 854 { 855 mutex_lock(&vlan_ioctl_mutex); 856 vlan_ioctl_hook = hook; 857 mutex_unlock(&vlan_ioctl_mutex); 858 } 859 EXPORT_SYMBOL(vlan_ioctl_set); 860 861 static DEFINE_MUTEX(dlci_ioctl_mutex); 862 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 863 864 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 865 { 866 mutex_lock(&dlci_ioctl_mutex); 867 dlci_ioctl_hook = hook; 868 mutex_unlock(&dlci_ioctl_mutex); 869 } 870 EXPORT_SYMBOL(dlci_ioctl_set); 871 872 static long sock_do_ioctl(struct net *net, struct socket *sock, 873 unsigned int cmd, unsigned long arg) 874 { 875 int err; 876 void __user *argp = (void __user *)arg; 877 878 err = sock->ops->ioctl(sock, cmd, arg); 879 880 /* 881 * If this ioctl is unknown try to hand it down 882 * to the NIC driver. 883 */ 884 if (err == -ENOIOCTLCMD) 885 err = dev_ioctl(net, cmd, argp); 886 887 return err; 888 } 889 890 /* 891 * With an ioctl, arg may well be a user mode pointer, but we don't know 892 * what to do with it - that's up to the protocol still. 893 */ 894 895 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 896 { 897 struct socket *sock; 898 struct sock *sk; 899 void __user *argp = (void __user *)arg; 900 int pid, err; 901 struct net *net; 902 903 sock = file->private_data; 904 sk = sock->sk; 905 net = sock_net(sk); 906 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 907 err = dev_ioctl(net, cmd, argp); 908 } else 909 #ifdef CONFIG_WEXT_CORE 910 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 911 err = dev_ioctl(net, cmd, argp); 912 } else 913 #endif 914 switch (cmd) { 915 case FIOSETOWN: 916 case SIOCSPGRP: 917 err = -EFAULT; 918 if (get_user(pid, (int __user *)argp)) 919 break; 920 f_setown(sock->file, pid, 1); 921 err = 0; 922 break; 923 case FIOGETOWN: 924 case SIOCGPGRP: 925 err = put_user(f_getown(sock->file), 926 (int __user *)argp); 927 break; 928 case SIOCGIFBR: 929 case SIOCSIFBR: 930 case SIOCBRADDBR: 931 case SIOCBRDELBR: 932 err = -ENOPKG; 933 if (!br_ioctl_hook) 934 request_module("bridge"); 935 936 mutex_lock(&br_ioctl_mutex); 937 if (br_ioctl_hook) 938 err = br_ioctl_hook(net, cmd, argp); 939 mutex_unlock(&br_ioctl_mutex); 940 break; 941 case SIOCGIFVLAN: 942 case SIOCSIFVLAN: 943 err = -ENOPKG; 944 if (!vlan_ioctl_hook) 945 request_module("8021q"); 946 947 mutex_lock(&vlan_ioctl_mutex); 948 if (vlan_ioctl_hook) 949 err = vlan_ioctl_hook(net, argp); 950 mutex_unlock(&vlan_ioctl_mutex); 951 break; 952 case SIOCADDDLCI: 953 case SIOCDELDLCI: 954 err = -ENOPKG; 955 if (!dlci_ioctl_hook) 956 request_module("dlci"); 957 958 mutex_lock(&dlci_ioctl_mutex); 959 if (dlci_ioctl_hook) 960 err = dlci_ioctl_hook(cmd, argp); 961 mutex_unlock(&dlci_ioctl_mutex); 962 break; 963 default: 964 err = sock_do_ioctl(net, sock, cmd, arg); 965 break; 966 } 967 return err; 968 } 969 970 int sock_create_lite(int family, int type, int protocol, struct socket **res) 971 { 972 int err; 973 struct socket *sock = NULL; 974 975 err = security_socket_create(family, type, protocol, 1); 976 if (err) 977 goto out; 978 979 sock = sock_alloc(); 980 if (!sock) { 981 err = -ENOMEM; 982 goto out; 983 } 984 985 sock->type = type; 986 err = security_socket_post_create(sock, family, type, protocol, 1); 987 if (err) 988 goto out_release; 989 990 out: 991 *res = sock; 992 return err; 993 out_release: 994 sock_release(sock); 995 sock = NULL; 996 goto out; 997 } 998 EXPORT_SYMBOL(sock_create_lite); 999 1000 /* No kernel lock held - perfect */ 1001 static unsigned int sock_poll(struct file *file, poll_table *wait) 1002 { 1003 unsigned int busy_flag = 0; 1004 struct socket *sock; 1005 1006 /* 1007 * We can't return errors to poll, so it's either yes or no. 1008 */ 1009 sock = file->private_data; 1010 1011 if (sk_can_busy_loop(sock->sk)) { 1012 /* this socket can poll_ll so tell the system call */ 1013 busy_flag = POLL_BUSY_LOOP; 1014 1015 /* once, only if requested by syscall */ 1016 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1017 sk_busy_loop(sock->sk, 1); 1018 } 1019 1020 return busy_flag | sock->ops->poll(file, sock, wait); 1021 } 1022 1023 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1024 { 1025 struct socket *sock = file->private_data; 1026 1027 return sock->ops->mmap(file, sock, vma); 1028 } 1029 1030 static int sock_close(struct inode *inode, struct file *filp) 1031 { 1032 sock_release(SOCKET_I(inode)); 1033 return 0; 1034 } 1035 1036 /* 1037 * Update the socket async list 1038 * 1039 * Fasync_list locking strategy. 1040 * 1041 * 1. fasync_list is modified only under process context socket lock 1042 * i.e. under semaphore. 1043 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1044 * or under socket lock 1045 */ 1046 1047 static int sock_fasync(int fd, struct file *filp, int on) 1048 { 1049 struct socket *sock = filp->private_data; 1050 struct sock *sk = sock->sk; 1051 struct socket_wq *wq; 1052 1053 if (sk == NULL) 1054 return -EINVAL; 1055 1056 lock_sock(sk); 1057 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1058 fasync_helper(fd, filp, on, &wq->fasync_list); 1059 1060 if (!wq->fasync_list) 1061 sock_reset_flag(sk, SOCK_FASYNC); 1062 else 1063 sock_set_flag(sk, SOCK_FASYNC); 1064 1065 release_sock(sk); 1066 return 0; 1067 } 1068 1069 /* This function may be called only under rcu_lock */ 1070 1071 int sock_wake_async(struct socket_wq *wq, int how, int band) 1072 { 1073 if (!wq || !wq->fasync_list) 1074 return -1; 1075 1076 switch (how) { 1077 case SOCK_WAKE_WAITD: 1078 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1079 break; 1080 goto call_kill; 1081 case SOCK_WAKE_SPACE: 1082 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1083 break; 1084 /* fall through */ 1085 case SOCK_WAKE_IO: 1086 call_kill: 1087 kill_fasync(&wq->fasync_list, SIGIO, band); 1088 break; 1089 case SOCK_WAKE_URG: 1090 kill_fasync(&wq->fasync_list, SIGURG, band); 1091 } 1092 1093 return 0; 1094 } 1095 EXPORT_SYMBOL(sock_wake_async); 1096 1097 int __sock_create(struct net *net, int family, int type, int protocol, 1098 struct socket **res, int kern) 1099 { 1100 int err; 1101 struct socket *sock; 1102 const struct net_proto_family *pf; 1103 1104 /* 1105 * Check protocol is in range 1106 */ 1107 if (family < 0 || family >= NPROTO) 1108 return -EAFNOSUPPORT; 1109 if (type < 0 || type >= SOCK_MAX) 1110 return -EINVAL; 1111 1112 /* Compatibility. 1113 1114 This uglymoron is moved from INET layer to here to avoid 1115 deadlock in module load. 1116 */ 1117 if (family == PF_INET && type == SOCK_PACKET) { 1118 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1119 current->comm); 1120 family = PF_PACKET; 1121 } 1122 1123 err = security_socket_create(family, type, protocol, kern); 1124 if (err) 1125 return err; 1126 1127 /* 1128 * Allocate the socket and allow the family to set things up. if 1129 * the protocol is 0, the family is instructed to select an appropriate 1130 * default. 1131 */ 1132 sock = sock_alloc(); 1133 if (!sock) { 1134 net_warn_ratelimited("socket: no more sockets\n"); 1135 return -ENFILE; /* Not exactly a match, but its the 1136 closest posix thing */ 1137 } 1138 1139 sock->type = type; 1140 1141 #ifdef CONFIG_MODULES 1142 /* Attempt to load a protocol module if the find failed. 1143 * 1144 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1145 * requested real, full-featured networking support upon configuration. 1146 * Otherwise module support will break! 1147 */ 1148 if (rcu_access_pointer(net_families[family]) == NULL) 1149 request_module("net-pf-%d", family); 1150 #endif 1151 1152 rcu_read_lock(); 1153 pf = rcu_dereference(net_families[family]); 1154 err = -EAFNOSUPPORT; 1155 if (!pf) 1156 goto out_release; 1157 1158 /* 1159 * We will call the ->create function, that possibly is in a loadable 1160 * module, so we have to bump that loadable module refcnt first. 1161 */ 1162 if (!try_module_get(pf->owner)) 1163 goto out_release; 1164 1165 /* Now protected by module ref count */ 1166 rcu_read_unlock(); 1167 1168 err = pf->create(net, sock, protocol, kern); 1169 if (err < 0) 1170 goto out_module_put; 1171 1172 /* 1173 * Now to bump the refcnt of the [loadable] module that owns this 1174 * socket at sock_release time we decrement its refcnt. 1175 */ 1176 if (!try_module_get(sock->ops->owner)) 1177 goto out_module_busy; 1178 1179 /* 1180 * Now that we're done with the ->create function, the [loadable] 1181 * module can have its refcnt decremented 1182 */ 1183 module_put(pf->owner); 1184 err = security_socket_post_create(sock, family, type, protocol, kern); 1185 if (err) 1186 goto out_sock_release; 1187 *res = sock; 1188 1189 return 0; 1190 1191 out_module_busy: 1192 err = -EAFNOSUPPORT; 1193 out_module_put: 1194 sock->ops = NULL; 1195 module_put(pf->owner); 1196 out_sock_release: 1197 sock_release(sock); 1198 return err; 1199 1200 out_release: 1201 rcu_read_unlock(); 1202 goto out_sock_release; 1203 } 1204 EXPORT_SYMBOL(__sock_create); 1205 1206 int sock_create(int family, int type, int protocol, struct socket **res) 1207 { 1208 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1209 } 1210 EXPORT_SYMBOL(sock_create); 1211 1212 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1213 { 1214 return __sock_create(net, family, type, protocol, res, 1); 1215 } 1216 EXPORT_SYMBOL(sock_create_kern); 1217 1218 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1219 { 1220 int retval; 1221 struct socket *sock; 1222 int flags; 1223 1224 /* Check the SOCK_* constants for consistency. */ 1225 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1226 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1227 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1228 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1229 1230 flags = type & ~SOCK_TYPE_MASK; 1231 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1232 return -EINVAL; 1233 type &= SOCK_TYPE_MASK; 1234 1235 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1236 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1237 1238 retval = sock_create(family, type, protocol, &sock); 1239 if (retval < 0) 1240 goto out; 1241 1242 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1243 if (retval < 0) 1244 goto out_release; 1245 1246 out: 1247 /* It may be already another descriptor 8) Not kernel problem. */ 1248 return retval; 1249 1250 out_release: 1251 sock_release(sock); 1252 return retval; 1253 } 1254 1255 /* 1256 * Create a pair of connected sockets. 1257 */ 1258 1259 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1260 int __user *, usockvec) 1261 { 1262 struct socket *sock1, *sock2; 1263 int fd1, fd2, err; 1264 struct file *newfile1, *newfile2; 1265 int flags; 1266 1267 flags = type & ~SOCK_TYPE_MASK; 1268 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1269 return -EINVAL; 1270 type &= SOCK_TYPE_MASK; 1271 1272 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1273 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1274 1275 /* 1276 * Obtain the first socket and check if the underlying protocol 1277 * supports the socketpair call. 1278 */ 1279 1280 err = sock_create(family, type, protocol, &sock1); 1281 if (err < 0) 1282 goto out; 1283 1284 err = sock_create(family, type, protocol, &sock2); 1285 if (err < 0) 1286 goto out_release_1; 1287 1288 err = sock1->ops->socketpair(sock1, sock2); 1289 if (err < 0) 1290 goto out_release_both; 1291 1292 fd1 = get_unused_fd_flags(flags); 1293 if (unlikely(fd1 < 0)) { 1294 err = fd1; 1295 goto out_release_both; 1296 } 1297 1298 fd2 = get_unused_fd_flags(flags); 1299 if (unlikely(fd2 < 0)) { 1300 err = fd2; 1301 goto out_put_unused_1; 1302 } 1303 1304 newfile1 = sock_alloc_file(sock1, flags, NULL); 1305 if (IS_ERR(newfile1)) { 1306 err = PTR_ERR(newfile1); 1307 goto out_put_unused_both; 1308 } 1309 1310 newfile2 = sock_alloc_file(sock2, flags, NULL); 1311 if (IS_ERR(newfile2)) { 1312 err = PTR_ERR(newfile2); 1313 goto out_fput_1; 1314 } 1315 1316 err = put_user(fd1, &usockvec[0]); 1317 if (err) 1318 goto out_fput_both; 1319 1320 err = put_user(fd2, &usockvec[1]); 1321 if (err) 1322 goto out_fput_both; 1323 1324 audit_fd_pair(fd1, fd2); 1325 1326 fd_install(fd1, newfile1); 1327 fd_install(fd2, newfile2); 1328 /* fd1 and fd2 may be already another descriptors. 1329 * Not kernel problem. 1330 */ 1331 1332 return 0; 1333 1334 out_fput_both: 1335 fput(newfile2); 1336 fput(newfile1); 1337 put_unused_fd(fd2); 1338 put_unused_fd(fd1); 1339 goto out; 1340 1341 out_fput_1: 1342 fput(newfile1); 1343 put_unused_fd(fd2); 1344 put_unused_fd(fd1); 1345 sock_release(sock2); 1346 goto out; 1347 1348 out_put_unused_both: 1349 put_unused_fd(fd2); 1350 out_put_unused_1: 1351 put_unused_fd(fd1); 1352 out_release_both: 1353 sock_release(sock2); 1354 out_release_1: 1355 sock_release(sock1); 1356 out: 1357 return err; 1358 } 1359 1360 /* 1361 * Bind a name to a socket. Nothing much to do here since it's 1362 * the protocol's responsibility to handle the local address. 1363 * 1364 * We move the socket address to kernel space before we call 1365 * the protocol layer (having also checked the address is ok). 1366 */ 1367 1368 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1369 { 1370 struct socket *sock; 1371 struct sockaddr_storage address; 1372 int err, fput_needed; 1373 1374 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1375 if (sock) { 1376 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1377 if (err >= 0) { 1378 err = security_socket_bind(sock, 1379 (struct sockaddr *)&address, 1380 addrlen); 1381 if (!err) 1382 err = sock->ops->bind(sock, 1383 (struct sockaddr *) 1384 &address, addrlen); 1385 } 1386 fput_light(sock->file, fput_needed); 1387 } 1388 return err; 1389 } 1390 1391 /* 1392 * Perform a listen. Basically, we allow the protocol to do anything 1393 * necessary for a listen, and if that works, we mark the socket as 1394 * ready for listening. 1395 */ 1396 1397 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1398 { 1399 struct socket *sock; 1400 int err, fput_needed; 1401 int somaxconn; 1402 1403 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1404 if (sock) { 1405 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1406 if ((unsigned int)backlog > somaxconn) 1407 backlog = somaxconn; 1408 1409 err = security_socket_listen(sock, backlog); 1410 if (!err) 1411 err = sock->ops->listen(sock, backlog); 1412 1413 fput_light(sock->file, fput_needed); 1414 } 1415 return err; 1416 } 1417 1418 /* 1419 * For accept, we attempt to create a new socket, set up the link 1420 * with the client, wake up the client, then return the new 1421 * connected fd. We collect the address of the connector in kernel 1422 * space and move it to user at the very end. This is unclean because 1423 * we open the socket then return an error. 1424 * 1425 * 1003.1g adds the ability to recvmsg() to query connection pending 1426 * status to recvmsg. We need to add that support in a way thats 1427 * clean when we restucture accept also. 1428 */ 1429 1430 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1431 int __user *, upeer_addrlen, int, flags) 1432 { 1433 struct socket *sock, *newsock; 1434 struct file *newfile; 1435 int err, len, newfd, fput_needed; 1436 struct sockaddr_storage address; 1437 1438 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1439 return -EINVAL; 1440 1441 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1442 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1443 1444 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1445 if (!sock) 1446 goto out; 1447 1448 err = -ENFILE; 1449 newsock = sock_alloc(); 1450 if (!newsock) 1451 goto out_put; 1452 1453 newsock->type = sock->type; 1454 newsock->ops = sock->ops; 1455 1456 /* 1457 * We don't need try_module_get here, as the listening socket (sock) 1458 * has the protocol module (sock->ops->owner) held. 1459 */ 1460 __module_get(newsock->ops->owner); 1461 1462 newfd = get_unused_fd_flags(flags); 1463 if (unlikely(newfd < 0)) { 1464 err = newfd; 1465 sock_release(newsock); 1466 goto out_put; 1467 } 1468 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1469 if (IS_ERR(newfile)) { 1470 err = PTR_ERR(newfile); 1471 put_unused_fd(newfd); 1472 sock_release(newsock); 1473 goto out_put; 1474 } 1475 1476 err = security_socket_accept(sock, newsock); 1477 if (err) 1478 goto out_fd; 1479 1480 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1481 if (err < 0) 1482 goto out_fd; 1483 1484 if (upeer_sockaddr) { 1485 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1486 &len, 2) < 0) { 1487 err = -ECONNABORTED; 1488 goto out_fd; 1489 } 1490 err = move_addr_to_user(&address, 1491 len, upeer_sockaddr, upeer_addrlen); 1492 if (err < 0) 1493 goto out_fd; 1494 } 1495 1496 /* File flags are not inherited via accept() unlike another OSes. */ 1497 1498 fd_install(newfd, newfile); 1499 err = newfd; 1500 1501 out_put: 1502 fput_light(sock->file, fput_needed); 1503 out: 1504 return err; 1505 out_fd: 1506 fput(newfile); 1507 put_unused_fd(newfd); 1508 goto out_put; 1509 } 1510 1511 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1512 int __user *, upeer_addrlen) 1513 { 1514 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1515 } 1516 1517 /* 1518 * Attempt to connect to a socket with the server address. The address 1519 * is in user space so we verify it is OK and move it to kernel space. 1520 * 1521 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1522 * break bindings 1523 * 1524 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1525 * other SEQPACKET protocols that take time to connect() as it doesn't 1526 * include the -EINPROGRESS status for such sockets. 1527 */ 1528 1529 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1530 int, addrlen) 1531 { 1532 struct socket *sock; 1533 struct sockaddr_storage address; 1534 int err, fput_needed; 1535 1536 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1537 if (!sock) 1538 goto out; 1539 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1540 if (err < 0) 1541 goto out_put; 1542 1543 err = 1544 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1545 if (err) 1546 goto out_put; 1547 1548 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1549 sock->file->f_flags); 1550 out_put: 1551 fput_light(sock->file, fput_needed); 1552 out: 1553 return err; 1554 } 1555 1556 /* 1557 * Get the local address ('name') of a socket object. Move the obtained 1558 * name to user space. 1559 */ 1560 1561 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1562 int __user *, usockaddr_len) 1563 { 1564 struct socket *sock; 1565 struct sockaddr_storage address; 1566 int len, err, fput_needed; 1567 1568 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1569 if (!sock) 1570 goto out; 1571 1572 err = security_socket_getsockname(sock); 1573 if (err) 1574 goto out_put; 1575 1576 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1577 if (err) 1578 goto out_put; 1579 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1580 1581 out_put: 1582 fput_light(sock->file, fput_needed); 1583 out: 1584 return err; 1585 } 1586 1587 /* 1588 * Get the remote address ('name') of a socket object. Move the obtained 1589 * name to user space. 1590 */ 1591 1592 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1593 int __user *, usockaddr_len) 1594 { 1595 struct socket *sock; 1596 struct sockaddr_storage address; 1597 int len, err, fput_needed; 1598 1599 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1600 if (sock != NULL) { 1601 err = security_socket_getpeername(sock); 1602 if (err) { 1603 fput_light(sock->file, fput_needed); 1604 return err; 1605 } 1606 1607 err = 1608 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1609 1); 1610 if (!err) 1611 err = move_addr_to_user(&address, len, usockaddr, 1612 usockaddr_len); 1613 fput_light(sock->file, fput_needed); 1614 } 1615 return err; 1616 } 1617 1618 /* 1619 * Send a datagram to a given address. We move the address into kernel 1620 * space and check the user space data area is readable before invoking 1621 * the protocol. 1622 */ 1623 1624 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1625 unsigned int, flags, struct sockaddr __user *, addr, 1626 int, addr_len) 1627 { 1628 struct socket *sock; 1629 struct sockaddr_storage address; 1630 int err; 1631 struct msghdr msg; 1632 struct iovec iov; 1633 int fput_needed; 1634 1635 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1636 if (unlikely(err)) 1637 return err; 1638 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1639 if (!sock) 1640 goto out; 1641 1642 msg.msg_name = NULL; 1643 msg.msg_control = NULL; 1644 msg.msg_controllen = 0; 1645 msg.msg_namelen = 0; 1646 if (addr) { 1647 err = move_addr_to_kernel(addr, addr_len, &address); 1648 if (err < 0) 1649 goto out_put; 1650 msg.msg_name = (struct sockaddr *)&address; 1651 msg.msg_namelen = addr_len; 1652 } 1653 if (sock->file->f_flags & O_NONBLOCK) 1654 flags |= MSG_DONTWAIT; 1655 msg.msg_flags = flags; 1656 err = sock_sendmsg(sock, &msg); 1657 1658 out_put: 1659 fput_light(sock->file, fput_needed); 1660 out: 1661 return err; 1662 } 1663 1664 /* 1665 * Send a datagram down a socket. 1666 */ 1667 1668 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1669 unsigned int, flags) 1670 { 1671 return sys_sendto(fd, buff, len, flags, NULL, 0); 1672 } 1673 1674 /* 1675 * Receive a frame from the socket and optionally record the address of the 1676 * sender. We verify the buffers are writable and if needed move the 1677 * sender address from kernel to user space. 1678 */ 1679 1680 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1681 unsigned int, flags, struct sockaddr __user *, addr, 1682 int __user *, addr_len) 1683 { 1684 struct socket *sock; 1685 struct iovec iov; 1686 struct msghdr msg; 1687 struct sockaddr_storage address; 1688 int err, err2; 1689 int fput_needed; 1690 1691 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1692 if (unlikely(err)) 1693 return err; 1694 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1695 if (!sock) 1696 goto out; 1697 1698 msg.msg_control = NULL; 1699 msg.msg_controllen = 0; 1700 /* Save some cycles and don't copy the address if not needed */ 1701 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1702 /* We assume all kernel code knows the size of sockaddr_storage */ 1703 msg.msg_namelen = 0; 1704 msg.msg_iocb = NULL; 1705 if (sock->file->f_flags & O_NONBLOCK) 1706 flags |= MSG_DONTWAIT; 1707 err = sock_recvmsg(sock, &msg, flags); 1708 1709 if (err >= 0 && addr != NULL) { 1710 err2 = move_addr_to_user(&address, 1711 msg.msg_namelen, addr, addr_len); 1712 if (err2 < 0) 1713 err = err2; 1714 } 1715 1716 fput_light(sock->file, fput_needed); 1717 out: 1718 return err; 1719 } 1720 1721 /* 1722 * Receive a datagram from a socket. 1723 */ 1724 1725 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1726 unsigned int, flags) 1727 { 1728 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1729 } 1730 1731 /* 1732 * Set a socket option. Because we don't know the option lengths we have 1733 * to pass the user mode parameter for the protocols to sort out. 1734 */ 1735 1736 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1737 char __user *, optval, int, optlen) 1738 { 1739 int err, fput_needed; 1740 struct socket *sock; 1741 1742 if (optlen < 0) 1743 return -EINVAL; 1744 1745 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1746 if (sock != NULL) { 1747 err = security_socket_setsockopt(sock, level, optname); 1748 if (err) 1749 goto out_put; 1750 1751 if (level == SOL_SOCKET) 1752 err = 1753 sock_setsockopt(sock, level, optname, optval, 1754 optlen); 1755 else 1756 err = 1757 sock->ops->setsockopt(sock, level, optname, optval, 1758 optlen); 1759 out_put: 1760 fput_light(sock->file, fput_needed); 1761 } 1762 return err; 1763 } 1764 1765 /* 1766 * Get a socket option. Because we don't know the option lengths we have 1767 * to pass a user mode parameter for the protocols to sort out. 1768 */ 1769 1770 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1771 char __user *, optval, int __user *, optlen) 1772 { 1773 int err, fput_needed; 1774 struct socket *sock; 1775 1776 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1777 if (sock != NULL) { 1778 err = security_socket_getsockopt(sock, level, optname); 1779 if (err) 1780 goto out_put; 1781 1782 if (level == SOL_SOCKET) 1783 err = 1784 sock_getsockopt(sock, level, optname, optval, 1785 optlen); 1786 else 1787 err = 1788 sock->ops->getsockopt(sock, level, optname, optval, 1789 optlen); 1790 out_put: 1791 fput_light(sock->file, fput_needed); 1792 } 1793 return err; 1794 } 1795 1796 /* 1797 * Shutdown a socket. 1798 */ 1799 1800 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1801 { 1802 int err, fput_needed; 1803 struct socket *sock; 1804 1805 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1806 if (sock != NULL) { 1807 err = security_socket_shutdown(sock, how); 1808 if (!err) 1809 err = sock->ops->shutdown(sock, how); 1810 fput_light(sock->file, fput_needed); 1811 } 1812 return err; 1813 } 1814 1815 /* A couple of helpful macros for getting the address of the 32/64 bit 1816 * fields which are the same type (int / unsigned) on our platforms. 1817 */ 1818 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1819 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1820 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1821 1822 struct used_address { 1823 struct sockaddr_storage name; 1824 unsigned int name_len; 1825 }; 1826 1827 static int copy_msghdr_from_user(struct msghdr *kmsg, 1828 struct user_msghdr __user *umsg, 1829 struct sockaddr __user **save_addr, 1830 struct iovec **iov) 1831 { 1832 struct sockaddr __user *uaddr; 1833 struct iovec __user *uiov; 1834 size_t nr_segs; 1835 ssize_t err; 1836 1837 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1838 __get_user(uaddr, &umsg->msg_name) || 1839 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1840 __get_user(uiov, &umsg->msg_iov) || 1841 __get_user(nr_segs, &umsg->msg_iovlen) || 1842 __get_user(kmsg->msg_control, &umsg->msg_control) || 1843 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1844 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1845 return -EFAULT; 1846 1847 if (!uaddr) 1848 kmsg->msg_namelen = 0; 1849 1850 if (kmsg->msg_namelen < 0) 1851 return -EINVAL; 1852 1853 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1854 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1855 1856 if (save_addr) 1857 *save_addr = uaddr; 1858 1859 if (uaddr && kmsg->msg_namelen) { 1860 if (!save_addr) { 1861 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1862 kmsg->msg_name); 1863 if (err < 0) 1864 return err; 1865 } 1866 } else { 1867 kmsg->msg_name = NULL; 1868 kmsg->msg_namelen = 0; 1869 } 1870 1871 if (nr_segs > UIO_MAXIOV) 1872 return -EMSGSIZE; 1873 1874 kmsg->msg_iocb = NULL; 1875 1876 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1877 UIO_FASTIOV, iov, &kmsg->msg_iter); 1878 } 1879 1880 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1881 struct msghdr *msg_sys, unsigned int flags, 1882 struct used_address *used_address, 1883 unsigned int allowed_msghdr_flags) 1884 { 1885 struct compat_msghdr __user *msg_compat = 1886 (struct compat_msghdr __user *)msg; 1887 struct sockaddr_storage address; 1888 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1889 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1890 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1891 /* 20 is size of ipv6_pktinfo */ 1892 unsigned char *ctl_buf = ctl; 1893 int ctl_len; 1894 ssize_t err; 1895 1896 msg_sys->msg_name = &address; 1897 1898 if (MSG_CMSG_COMPAT & flags) 1899 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1900 else 1901 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1902 if (err < 0) 1903 return err; 1904 1905 err = -ENOBUFS; 1906 1907 if (msg_sys->msg_controllen > INT_MAX) 1908 goto out_freeiov; 1909 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1910 ctl_len = msg_sys->msg_controllen; 1911 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1912 err = 1913 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1914 sizeof(ctl)); 1915 if (err) 1916 goto out_freeiov; 1917 ctl_buf = msg_sys->msg_control; 1918 ctl_len = msg_sys->msg_controllen; 1919 } else if (ctl_len) { 1920 if (ctl_len > sizeof(ctl)) { 1921 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1922 if (ctl_buf == NULL) 1923 goto out_freeiov; 1924 } 1925 err = -EFAULT; 1926 /* 1927 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1928 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1929 * checking falls down on this. 1930 */ 1931 if (copy_from_user(ctl_buf, 1932 (void __user __force *)msg_sys->msg_control, 1933 ctl_len)) 1934 goto out_freectl; 1935 msg_sys->msg_control = ctl_buf; 1936 } 1937 msg_sys->msg_flags = flags; 1938 1939 if (sock->file->f_flags & O_NONBLOCK) 1940 msg_sys->msg_flags |= MSG_DONTWAIT; 1941 /* 1942 * If this is sendmmsg() and current destination address is same as 1943 * previously succeeded address, omit asking LSM's decision. 1944 * used_address->name_len is initialized to UINT_MAX so that the first 1945 * destination address never matches. 1946 */ 1947 if (used_address && msg_sys->msg_name && 1948 used_address->name_len == msg_sys->msg_namelen && 1949 !memcmp(&used_address->name, msg_sys->msg_name, 1950 used_address->name_len)) { 1951 err = sock_sendmsg_nosec(sock, msg_sys); 1952 goto out_freectl; 1953 } 1954 err = sock_sendmsg(sock, msg_sys); 1955 /* 1956 * If this is sendmmsg() and sending to current destination address was 1957 * successful, remember it. 1958 */ 1959 if (used_address && err >= 0) { 1960 used_address->name_len = msg_sys->msg_namelen; 1961 if (msg_sys->msg_name) 1962 memcpy(&used_address->name, msg_sys->msg_name, 1963 used_address->name_len); 1964 } 1965 1966 out_freectl: 1967 if (ctl_buf != ctl) 1968 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1969 out_freeiov: 1970 kfree(iov); 1971 return err; 1972 } 1973 1974 /* 1975 * BSD sendmsg interface 1976 */ 1977 1978 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1979 { 1980 int fput_needed, err; 1981 struct msghdr msg_sys; 1982 struct socket *sock; 1983 1984 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1985 if (!sock) 1986 goto out; 1987 1988 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 1989 1990 fput_light(sock->file, fput_needed); 1991 out: 1992 return err; 1993 } 1994 1995 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1996 { 1997 if (flags & MSG_CMSG_COMPAT) 1998 return -EINVAL; 1999 return __sys_sendmsg(fd, msg, flags); 2000 } 2001 2002 /* 2003 * Linux sendmmsg interface 2004 */ 2005 2006 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2007 unsigned int flags) 2008 { 2009 int fput_needed, err, datagrams; 2010 struct socket *sock; 2011 struct mmsghdr __user *entry; 2012 struct compat_mmsghdr __user *compat_entry; 2013 struct msghdr msg_sys; 2014 struct used_address used_address; 2015 unsigned int oflags = flags; 2016 2017 if (vlen > UIO_MAXIOV) 2018 vlen = UIO_MAXIOV; 2019 2020 datagrams = 0; 2021 2022 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2023 if (!sock) 2024 return err; 2025 2026 used_address.name_len = UINT_MAX; 2027 entry = mmsg; 2028 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2029 err = 0; 2030 flags |= MSG_BATCH; 2031 2032 while (datagrams < vlen) { 2033 if (datagrams == vlen - 1) 2034 flags = oflags; 2035 2036 if (MSG_CMSG_COMPAT & flags) { 2037 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2038 &msg_sys, flags, &used_address, MSG_EOR); 2039 if (err < 0) 2040 break; 2041 err = __put_user(err, &compat_entry->msg_len); 2042 ++compat_entry; 2043 } else { 2044 err = ___sys_sendmsg(sock, 2045 (struct user_msghdr __user *)entry, 2046 &msg_sys, flags, &used_address, MSG_EOR); 2047 if (err < 0) 2048 break; 2049 err = put_user(err, &entry->msg_len); 2050 ++entry; 2051 } 2052 2053 if (err) 2054 break; 2055 ++datagrams; 2056 if (msg_data_left(&msg_sys)) 2057 break; 2058 cond_resched(); 2059 } 2060 2061 fput_light(sock->file, fput_needed); 2062 2063 /* We only return an error if no datagrams were able to be sent */ 2064 if (datagrams != 0) 2065 return datagrams; 2066 2067 return err; 2068 } 2069 2070 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2071 unsigned int, vlen, unsigned int, flags) 2072 { 2073 if (flags & MSG_CMSG_COMPAT) 2074 return -EINVAL; 2075 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2076 } 2077 2078 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2079 struct msghdr *msg_sys, unsigned int flags, int nosec) 2080 { 2081 struct compat_msghdr __user *msg_compat = 2082 (struct compat_msghdr __user *)msg; 2083 struct iovec iovstack[UIO_FASTIOV]; 2084 struct iovec *iov = iovstack; 2085 unsigned long cmsg_ptr; 2086 int len; 2087 ssize_t err; 2088 2089 /* kernel mode address */ 2090 struct sockaddr_storage addr; 2091 2092 /* user mode address pointers */ 2093 struct sockaddr __user *uaddr; 2094 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2095 2096 msg_sys->msg_name = &addr; 2097 2098 if (MSG_CMSG_COMPAT & flags) 2099 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2100 else 2101 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2102 if (err < 0) 2103 return err; 2104 2105 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2106 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2107 2108 /* We assume all kernel code knows the size of sockaddr_storage */ 2109 msg_sys->msg_namelen = 0; 2110 2111 if (sock->file->f_flags & O_NONBLOCK) 2112 flags |= MSG_DONTWAIT; 2113 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2114 if (err < 0) 2115 goto out_freeiov; 2116 len = err; 2117 2118 if (uaddr != NULL) { 2119 err = move_addr_to_user(&addr, 2120 msg_sys->msg_namelen, uaddr, 2121 uaddr_len); 2122 if (err < 0) 2123 goto out_freeiov; 2124 } 2125 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2126 COMPAT_FLAGS(msg)); 2127 if (err) 2128 goto out_freeiov; 2129 if (MSG_CMSG_COMPAT & flags) 2130 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2131 &msg_compat->msg_controllen); 2132 else 2133 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2134 &msg->msg_controllen); 2135 if (err) 2136 goto out_freeiov; 2137 err = len; 2138 2139 out_freeiov: 2140 kfree(iov); 2141 return err; 2142 } 2143 2144 /* 2145 * BSD recvmsg interface 2146 */ 2147 2148 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2149 { 2150 int fput_needed, err; 2151 struct msghdr msg_sys; 2152 struct socket *sock; 2153 2154 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2155 if (!sock) 2156 goto out; 2157 2158 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2159 2160 fput_light(sock->file, fput_needed); 2161 out: 2162 return err; 2163 } 2164 2165 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2166 unsigned int, flags) 2167 { 2168 if (flags & MSG_CMSG_COMPAT) 2169 return -EINVAL; 2170 return __sys_recvmsg(fd, msg, flags); 2171 } 2172 2173 /* 2174 * Linux recvmmsg interface 2175 */ 2176 2177 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2178 unsigned int flags, struct timespec *timeout) 2179 { 2180 int fput_needed, err, datagrams; 2181 struct socket *sock; 2182 struct mmsghdr __user *entry; 2183 struct compat_mmsghdr __user *compat_entry; 2184 struct msghdr msg_sys; 2185 struct timespec64 end_time; 2186 struct timespec64 timeout64; 2187 2188 if (timeout && 2189 poll_select_set_timeout(&end_time, timeout->tv_sec, 2190 timeout->tv_nsec)) 2191 return -EINVAL; 2192 2193 datagrams = 0; 2194 2195 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2196 if (!sock) 2197 return err; 2198 2199 err = sock_error(sock->sk); 2200 if (err) 2201 goto out_put; 2202 2203 entry = mmsg; 2204 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2205 2206 while (datagrams < vlen) { 2207 /* 2208 * No need to ask LSM for more than the first datagram. 2209 */ 2210 if (MSG_CMSG_COMPAT & flags) { 2211 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2212 &msg_sys, flags & ~MSG_WAITFORONE, 2213 datagrams); 2214 if (err < 0) 2215 break; 2216 err = __put_user(err, &compat_entry->msg_len); 2217 ++compat_entry; 2218 } else { 2219 err = ___sys_recvmsg(sock, 2220 (struct user_msghdr __user *)entry, 2221 &msg_sys, flags & ~MSG_WAITFORONE, 2222 datagrams); 2223 if (err < 0) 2224 break; 2225 err = put_user(err, &entry->msg_len); 2226 ++entry; 2227 } 2228 2229 if (err) 2230 break; 2231 ++datagrams; 2232 2233 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2234 if (flags & MSG_WAITFORONE) 2235 flags |= MSG_DONTWAIT; 2236 2237 if (timeout) { 2238 ktime_get_ts64(&timeout64); 2239 *timeout = timespec64_to_timespec( 2240 timespec64_sub(end_time, timeout64)); 2241 if (timeout->tv_sec < 0) { 2242 timeout->tv_sec = timeout->tv_nsec = 0; 2243 break; 2244 } 2245 2246 /* Timeout, return less than vlen datagrams */ 2247 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2248 break; 2249 } 2250 2251 /* Out of band data, return right away */ 2252 if (msg_sys.msg_flags & MSG_OOB) 2253 break; 2254 cond_resched(); 2255 } 2256 2257 if (err == 0) 2258 goto out_put; 2259 2260 if (datagrams == 0) { 2261 datagrams = err; 2262 goto out_put; 2263 } 2264 2265 /* 2266 * We may return less entries than requested (vlen) if the 2267 * sock is non block and there aren't enough datagrams... 2268 */ 2269 if (err != -EAGAIN) { 2270 /* 2271 * ... or if recvmsg returns an error after we 2272 * received some datagrams, where we record the 2273 * error to return on the next call or if the 2274 * app asks about it using getsockopt(SO_ERROR). 2275 */ 2276 sock->sk->sk_err = -err; 2277 } 2278 out_put: 2279 fput_light(sock->file, fput_needed); 2280 2281 return datagrams; 2282 } 2283 2284 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2285 unsigned int, vlen, unsigned int, flags, 2286 struct timespec __user *, timeout) 2287 { 2288 int datagrams; 2289 struct timespec timeout_sys; 2290 2291 if (flags & MSG_CMSG_COMPAT) 2292 return -EINVAL; 2293 2294 if (!timeout) 2295 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2296 2297 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2298 return -EFAULT; 2299 2300 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2301 2302 if (datagrams > 0 && 2303 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2304 datagrams = -EFAULT; 2305 2306 return datagrams; 2307 } 2308 2309 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2310 /* Argument list sizes for sys_socketcall */ 2311 #define AL(x) ((x) * sizeof(unsigned long)) 2312 static const unsigned char nargs[21] = { 2313 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2314 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2315 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2316 AL(4), AL(5), AL(4) 2317 }; 2318 2319 #undef AL 2320 2321 /* 2322 * System call vectors. 2323 * 2324 * Argument checking cleaned up. Saved 20% in size. 2325 * This function doesn't need to set the kernel lock because 2326 * it is set by the callees. 2327 */ 2328 2329 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2330 { 2331 unsigned long a[AUDITSC_ARGS]; 2332 unsigned long a0, a1; 2333 int err; 2334 unsigned int len; 2335 2336 if (call < 1 || call > SYS_SENDMMSG) 2337 return -EINVAL; 2338 2339 len = nargs[call]; 2340 if (len > sizeof(a)) 2341 return -EINVAL; 2342 2343 /* copy_from_user should be SMP safe. */ 2344 if (copy_from_user(a, args, len)) 2345 return -EFAULT; 2346 2347 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2348 if (err) 2349 return err; 2350 2351 a0 = a[0]; 2352 a1 = a[1]; 2353 2354 switch (call) { 2355 case SYS_SOCKET: 2356 err = sys_socket(a0, a1, a[2]); 2357 break; 2358 case SYS_BIND: 2359 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2360 break; 2361 case SYS_CONNECT: 2362 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2363 break; 2364 case SYS_LISTEN: 2365 err = sys_listen(a0, a1); 2366 break; 2367 case SYS_ACCEPT: 2368 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2369 (int __user *)a[2], 0); 2370 break; 2371 case SYS_GETSOCKNAME: 2372 err = 2373 sys_getsockname(a0, (struct sockaddr __user *)a1, 2374 (int __user *)a[2]); 2375 break; 2376 case SYS_GETPEERNAME: 2377 err = 2378 sys_getpeername(a0, (struct sockaddr __user *)a1, 2379 (int __user *)a[2]); 2380 break; 2381 case SYS_SOCKETPAIR: 2382 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2383 break; 2384 case SYS_SEND: 2385 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2386 break; 2387 case SYS_SENDTO: 2388 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2389 (struct sockaddr __user *)a[4], a[5]); 2390 break; 2391 case SYS_RECV: 2392 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2393 break; 2394 case SYS_RECVFROM: 2395 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2396 (struct sockaddr __user *)a[4], 2397 (int __user *)a[5]); 2398 break; 2399 case SYS_SHUTDOWN: 2400 err = sys_shutdown(a0, a1); 2401 break; 2402 case SYS_SETSOCKOPT: 2403 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2404 break; 2405 case SYS_GETSOCKOPT: 2406 err = 2407 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2408 (int __user *)a[4]); 2409 break; 2410 case SYS_SENDMSG: 2411 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2412 break; 2413 case SYS_SENDMMSG: 2414 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2415 break; 2416 case SYS_RECVMSG: 2417 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2418 break; 2419 case SYS_RECVMMSG: 2420 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2421 (struct timespec __user *)a[4]); 2422 break; 2423 case SYS_ACCEPT4: 2424 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2425 (int __user *)a[2], a[3]); 2426 break; 2427 default: 2428 err = -EINVAL; 2429 break; 2430 } 2431 return err; 2432 } 2433 2434 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2435 2436 /** 2437 * sock_register - add a socket protocol handler 2438 * @ops: description of protocol 2439 * 2440 * This function is called by a protocol handler that wants to 2441 * advertise its address family, and have it linked into the 2442 * socket interface. The value ops->family corresponds to the 2443 * socket system call protocol family. 2444 */ 2445 int sock_register(const struct net_proto_family *ops) 2446 { 2447 int err; 2448 2449 if (ops->family >= NPROTO) { 2450 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2451 return -ENOBUFS; 2452 } 2453 2454 spin_lock(&net_family_lock); 2455 if (rcu_dereference_protected(net_families[ops->family], 2456 lockdep_is_held(&net_family_lock))) 2457 err = -EEXIST; 2458 else { 2459 rcu_assign_pointer(net_families[ops->family], ops); 2460 err = 0; 2461 } 2462 spin_unlock(&net_family_lock); 2463 2464 pr_info("NET: Registered protocol family %d\n", ops->family); 2465 return err; 2466 } 2467 EXPORT_SYMBOL(sock_register); 2468 2469 /** 2470 * sock_unregister - remove a protocol handler 2471 * @family: protocol family to remove 2472 * 2473 * This function is called by a protocol handler that wants to 2474 * remove its address family, and have it unlinked from the 2475 * new socket creation. 2476 * 2477 * If protocol handler is a module, then it can use module reference 2478 * counts to protect against new references. If protocol handler is not 2479 * a module then it needs to provide its own protection in 2480 * the ops->create routine. 2481 */ 2482 void sock_unregister(int family) 2483 { 2484 BUG_ON(family < 0 || family >= NPROTO); 2485 2486 spin_lock(&net_family_lock); 2487 RCU_INIT_POINTER(net_families[family], NULL); 2488 spin_unlock(&net_family_lock); 2489 2490 synchronize_rcu(); 2491 2492 pr_info("NET: Unregistered protocol family %d\n", family); 2493 } 2494 EXPORT_SYMBOL(sock_unregister); 2495 2496 static int __init sock_init(void) 2497 { 2498 int err; 2499 /* 2500 * Initialize the network sysctl infrastructure. 2501 */ 2502 err = net_sysctl_init(); 2503 if (err) 2504 goto out; 2505 2506 /* 2507 * Initialize skbuff SLAB cache 2508 */ 2509 skb_init(); 2510 2511 /* 2512 * Initialize the protocols module. 2513 */ 2514 2515 init_inodecache(); 2516 2517 err = register_filesystem(&sock_fs_type); 2518 if (err) 2519 goto out_fs; 2520 sock_mnt = kern_mount(&sock_fs_type); 2521 if (IS_ERR(sock_mnt)) { 2522 err = PTR_ERR(sock_mnt); 2523 goto out_mount; 2524 } 2525 2526 /* The real protocol initialization is performed in later initcalls. 2527 */ 2528 2529 #ifdef CONFIG_NETFILTER 2530 err = netfilter_init(); 2531 if (err) 2532 goto out; 2533 #endif 2534 2535 ptp_classifier_init(); 2536 2537 out: 2538 return err; 2539 2540 out_mount: 2541 unregister_filesystem(&sock_fs_type); 2542 out_fs: 2543 goto out; 2544 } 2545 2546 core_initcall(sock_init); /* early initcall */ 2547 2548 #ifdef CONFIG_PROC_FS 2549 void socket_seq_show(struct seq_file *seq) 2550 { 2551 int cpu; 2552 int counter = 0; 2553 2554 for_each_possible_cpu(cpu) 2555 counter += per_cpu(sockets_in_use, cpu); 2556 2557 /* It can be negative, by the way. 8) */ 2558 if (counter < 0) 2559 counter = 0; 2560 2561 seq_printf(seq, "sockets: used %d\n", counter); 2562 } 2563 #endif /* CONFIG_PROC_FS */ 2564 2565 #ifdef CONFIG_COMPAT 2566 static int do_siocgstamp(struct net *net, struct socket *sock, 2567 unsigned int cmd, void __user *up) 2568 { 2569 mm_segment_t old_fs = get_fs(); 2570 struct timeval ktv; 2571 int err; 2572 2573 set_fs(KERNEL_DS); 2574 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2575 set_fs(old_fs); 2576 if (!err) 2577 err = compat_put_timeval(&ktv, up); 2578 2579 return err; 2580 } 2581 2582 static int do_siocgstampns(struct net *net, struct socket *sock, 2583 unsigned int cmd, void __user *up) 2584 { 2585 mm_segment_t old_fs = get_fs(); 2586 struct timespec kts; 2587 int err; 2588 2589 set_fs(KERNEL_DS); 2590 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2591 set_fs(old_fs); 2592 if (!err) 2593 err = compat_put_timespec(&kts, up); 2594 2595 return err; 2596 } 2597 2598 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2599 { 2600 struct ifreq __user *uifr; 2601 int err; 2602 2603 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2604 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2605 return -EFAULT; 2606 2607 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2608 if (err) 2609 return err; 2610 2611 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2612 return -EFAULT; 2613 2614 return 0; 2615 } 2616 2617 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2618 { 2619 struct compat_ifconf ifc32; 2620 struct ifconf ifc; 2621 struct ifconf __user *uifc; 2622 struct compat_ifreq __user *ifr32; 2623 struct ifreq __user *ifr; 2624 unsigned int i, j; 2625 int err; 2626 2627 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2628 return -EFAULT; 2629 2630 memset(&ifc, 0, sizeof(ifc)); 2631 if (ifc32.ifcbuf == 0) { 2632 ifc32.ifc_len = 0; 2633 ifc.ifc_len = 0; 2634 ifc.ifc_req = NULL; 2635 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2636 } else { 2637 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2638 sizeof(struct ifreq); 2639 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2640 ifc.ifc_len = len; 2641 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2642 ifr32 = compat_ptr(ifc32.ifcbuf); 2643 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2644 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2645 return -EFAULT; 2646 ifr++; 2647 ifr32++; 2648 } 2649 } 2650 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2651 return -EFAULT; 2652 2653 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2654 if (err) 2655 return err; 2656 2657 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2658 return -EFAULT; 2659 2660 ifr = ifc.ifc_req; 2661 ifr32 = compat_ptr(ifc32.ifcbuf); 2662 for (i = 0, j = 0; 2663 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2664 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2665 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2666 return -EFAULT; 2667 ifr32++; 2668 ifr++; 2669 } 2670 2671 if (ifc32.ifcbuf == 0) { 2672 /* Translate from 64-bit structure multiple to 2673 * a 32-bit one. 2674 */ 2675 i = ifc.ifc_len; 2676 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2677 ifc32.ifc_len = i; 2678 } else { 2679 ifc32.ifc_len = i; 2680 } 2681 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2682 return -EFAULT; 2683 2684 return 0; 2685 } 2686 2687 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2688 { 2689 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2690 bool convert_in = false, convert_out = false; 2691 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2692 struct ethtool_rxnfc __user *rxnfc; 2693 struct ifreq __user *ifr; 2694 u32 rule_cnt = 0, actual_rule_cnt; 2695 u32 ethcmd; 2696 u32 data; 2697 int ret; 2698 2699 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2700 return -EFAULT; 2701 2702 compat_rxnfc = compat_ptr(data); 2703 2704 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2705 return -EFAULT; 2706 2707 /* Most ethtool structures are defined without padding. 2708 * Unfortunately struct ethtool_rxnfc is an exception. 2709 */ 2710 switch (ethcmd) { 2711 default: 2712 break; 2713 case ETHTOOL_GRXCLSRLALL: 2714 /* Buffer size is variable */ 2715 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2716 return -EFAULT; 2717 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2718 return -ENOMEM; 2719 buf_size += rule_cnt * sizeof(u32); 2720 /* fall through */ 2721 case ETHTOOL_GRXRINGS: 2722 case ETHTOOL_GRXCLSRLCNT: 2723 case ETHTOOL_GRXCLSRULE: 2724 case ETHTOOL_SRXCLSRLINS: 2725 convert_out = true; 2726 /* fall through */ 2727 case ETHTOOL_SRXCLSRLDEL: 2728 buf_size += sizeof(struct ethtool_rxnfc); 2729 convert_in = true; 2730 break; 2731 } 2732 2733 ifr = compat_alloc_user_space(buf_size); 2734 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2735 2736 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2737 return -EFAULT; 2738 2739 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2740 &ifr->ifr_ifru.ifru_data)) 2741 return -EFAULT; 2742 2743 if (convert_in) { 2744 /* We expect there to be holes between fs.m_ext and 2745 * fs.ring_cookie and at the end of fs, but nowhere else. 2746 */ 2747 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2748 sizeof(compat_rxnfc->fs.m_ext) != 2749 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2750 sizeof(rxnfc->fs.m_ext)); 2751 BUILD_BUG_ON( 2752 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2753 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2754 offsetof(struct ethtool_rxnfc, fs.location) - 2755 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2756 2757 if (copy_in_user(rxnfc, compat_rxnfc, 2758 (void __user *)(&rxnfc->fs.m_ext + 1) - 2759 (void __user *)rxnfc) || 2760 copy_in_user(&rxnfc->fs.ring_cookie, 2761 &compat_rxnfc->fs.ring_cookie, 2762 (void __user *)(&rxnfc->fs.location + 1) - 2763 (void __user *)&rxnfc->fs.ring_cookie) || 2764 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2765 sizeof(rxnfc->rule_cnt))) 2766 return -EFAULT; 2767 } 2768 2769 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2770 if (ret) 2771 return ret; 2772 2773 if (convert_out) { 2774 if (copy_in_user(compat_rxnfc, rxnfc, 2775 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2776 (const void __user *)rxnfc) || 2777 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2778 &rxnfc->fs.ring_cookie, 2779 (const void __user *)(&rxnfc->fs.location + 1) - 2780 (const void __user *)&rxnfc->fs.ring_cookie) || 2781 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2782 sizeof(rxnfc->rule_cnt))) 2783 return -EFAULT; 2784 2785 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2786 /* As an optimisation, we only copy the actual 2787 * number of rules that the underlying 2788 * function returned. Since Mallory might 2789 * change the rule count in user memory, we 2790 * check that it is less than the rule count 2791 * originally given (as the user buffer size), 2792 * which has been range-checked. 2793 */ 2794 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2795 return -EFAULT; 2796 if (actual_rule_cnt < rule_cnt) 2797 rule_cnt = actual_rule_cnt; 2798 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2799 &rxnfc->rule_locs[0], 2800 rule_cnt * sizeof(u32))) 2801 return -EFAULT; 2802 } 2803 } 2804 2805 return 0; 2806 } 2807 2808 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2809 { 2810 void __user *uptr; 2811 compat_uptr_t uptr32; 2812 struct ifreq __user *uifr; 2813 2814 uifr = compat_alloc_user_space(sizeof(*uifr)); 2815 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2816 return -EFAULT; 2817 2818 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2819 return -EFAULT; 2820 2821 uptr = compat_ptr(uptr32); 2822 2823 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2824 return -EFAULT; 2825 2826 return dev_ioctl(net, SIOCWANDEV, uifr); 2827 } 2828 2829 static int bond_ioctl(struct net *net, unsigned int cmd, 2830 struct compat_ifreq __user *ifr32) 2831 { 2832 struct ifreq kifr; 2833 mm_segment_t old_fs; 2834 int err; 2835 2836 switch (cmd) { 2837 case SIOCBONDENSLAVE: 2838 case SIOCBONDRELEASE: 2839 case SIOCBONDSETHWADDR: 2840 case SIOCBONDCHANGEACTIVE: 2841 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2842 return -EFAULT; 2843 2844 old_fs = get_fs(); 2845 set_fs(KERNEL_DS); 2846 err = dev_ioctl(net, cmd, 2847 (struct ifreq __user __force *) &kifr); 2848 set_fs(old_fs); 2849 2850 return err; 2851 default: 2852 return -ENOIOCTLCMD; 2853 } 2854 } 2855 2856 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2857 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2858 struct compat_ifreq __user *u_ifreq32) 2859 { 2860 struct ifreq __user *u_ifreq64; 2861 char tmp_buf[IFNAMSIZ]; 2862 void __user *data64; 2863 u32 data32; 2864 2865 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2866 IFNAMSIZ)) 2867 return -EFAULT; 2868 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2869 return -EFAULT; 2870 data64 = compat_ptr(data32); 2871 2872 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2873 2874 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2875 IFNAMSIZ)) 2876 return -EFAULT; 2877 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2878 return -EFAULT; 2879 2880 return dev_ioctl(net, cmd, u_ifreq64); 2881 } 2882 2883 static int dev_ifsioc(struct net *net, struct socket *sock, 2884 unsigned int cmd, struct compat_ifreq __user *uifr32) 2885 { 2886 struct ifreq __user *uifr; 2887 int err; 2888 2889 uifr = compat_alloc_user_space(sizeof(*uifr)); 2890 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2891 return -EFAULT; 2892 2893 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2894 2895 if (!err) { 2896 switch (cmd) { 2897 case SIOCGIFFLAGS: 2898 case SIOCGIFMETRIC: 2899 case SIOCGIFMTU: 2900 case SIOCGIFMEM: 2901 case SIOCGIFHWADDR: 2902 case SIOCGIFINDEX: 2903 case SIOCGIFADDR: 2904 case SIOCGIFBRDADDR: 2905 case SIOCGIFDSTADDR: 2906 case SIOCGIFNETMASK: 2907 case SIOCGIFPFLAGS: 2908 case SIOCGIFTXQLEN: 2909 case SIOCGMIIPHY: 2910 case SIOCGMIIREG: 2911 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2912 err = -EFAULT; 2913 break; 2914 } 2915 } 2916 return err; 2917 } 2918 2919 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2920 struct compat_ifreq __user *uifr32) 2921 { 2922 struct ifreq ifr; 2923 struct compat_ifmap __user *uifmap32; 2924 mm_segment_t old_fs; 2925 int err; 2926 2927 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2928 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2929 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2930 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2931 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2932 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2933 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2934 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2935 if (err) 2936 return -EFAULT; 2937 2938 old_fs = get_fs(); 2939 set_fs(KERNEL_DS); 2940 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2941 set_fs(old_fs); 2942 2943 if (cmd == SIOCGIFMAP && !err) { 2944 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2945 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2946 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2947 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2948 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2949 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2950 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2951 if (err) 2952 err = -EFAULT; 2953 } 2954 return err; 2955 } 2956 2957 struct rtentry32 { 2958 u32 rt_pad1; 2959 struct sockaddr rt_dst; /* target address */ 2960 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2961 struct sockaddr rt_genmask; /* target network mask (IP) */ 2962 unsigned short rt_flags; 2963 short rt_pad2; 2964 u32 rt_pad3; 2965 unsigned char rt_tos; 2966 unsigned char rt_class; 2967 short rt_pad4; 2968 short rt_metric; /* +1 for binary compatibility! */ 2969 /* char * */ u32 rt_dev; /* forcing the device at add */ 2970 u32 rt_mtu; /* per route MTU/Window */ 2971 u32 rt_window; /* Window clamping */ 2972 unsigned short rt_irtt; /* Initial RTT */ 2973 }; 2974 2975 struct in6_rtmsg32 { 2976 struct in6_addr rtmsg_dst; 2977 struct in6_addr rtmsg_src; 2978 struct in6_addr rtmsg_gateway; 2979 u32 rtmsg_type; 2980 u16 rtmsg_dst_len; 2981 u16 rtmsg_src_len; 2982 u32 rtmsg_metric; 2983 u32 rtmsg_info; 2984 u32 rtmsg_flags; 2985 s32 rtmsg_ifindex; 2986 }; 2987 2988 static int routing_ioctl(struct net *net, struct socket *sock, 2989 unsigned int cmd, void __user *argp) 2990 { 2991 int ret; 2992 void *r = NULL; 2993 struct in6_rtmsg r6; 2994 struct rtentry r4; 2995 char devname[16]; 2996 u32 rtdev; 2997 mm_segment_t old_fs = get_fs(); 2998 2999 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3000 struct in6_rtmsg32 __user *ur6 = argp; 3001 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3002 3 * sizeof(struct in6_addr)); 3003 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3004 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3005 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3006 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3007 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3008 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3009 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3010 3011 r = (void *) &r6; 3012 } else { /* ipv4 */ 3013 struct rtentry32 __user *ur4 = argp; 3014 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3015 3 * sizeof(struct sockaddr)); 3016 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3017 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3018 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3019 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3020 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3021 ret |= get_user(rtdev, &(ur4->rt_dev)); 3022 if (rtdev) { 3023 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3024 r4.rt_dev = (char __user __force *)devname; 3025 devname[15] = 0; 3026 } else 3027 r4.rt_dev = NULL; 3028 3029 r = (void *) &r4; 3030 } 3031 3032 if (ret) { 3033 ret = -EFAULT; 3034 goto out; 3035 } 3036 3037 set_fs(KERNEL_DS); 3038 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3039 set_fs(old_fs); 3040 3041 out: 3042 return ret; 3043 } 3044 3045 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3046 * for some operations; this forces use of the newer bridge-utils that 3047 * use compatible ioctls 3048 */ 3049 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3050 { 3051 compat_ulong_t tmp; 3052 3053 if (get_user(tmp, argp)) 3054 return -EFAULT; 3055 if (tmp == BRCTL_GET_VERSION) 3056 return BRCTL_VERSION + 1; 3057 return -EINVAL; 3058 } 3059 3060 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3061 unsigned int cmd, unsigned long arg) 3062 { 3063 void __user *argp = compat_ptr(arg); 3064 struct sock *sk = sock->sk; 3065 struct net *net = sock_net(sk); 3066 3067 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3068 return compat_ifr_data_ioctl(net, cmd, argp); 3069 3070 switch (cmd) { 3071 case SIOCSIFBR: 3072 case SIOCGIFBR: 3073 return old_bridge_ioctl(argp); 3074 case SIOCGIFNAME: 3075 return dev_ifname32(net, argp); 3076 case SIOCGIFCONF: 3077 return dev_ifconf(net, argp); 3078 case SIOCETHTOOL: 3079 return ethtool_ioctl(net, argp); 3080 case SIOCWANDEV: 3081 return compat_siocwandev(net, argp); 3082 case SIOCGIFMAP: 3083 case SIOCSIFMAP: 3084 return compat_sioc_ifmap(net, cmd, argp); 3085 case SIOCBONDENSLAVE: 3086 case SIOCBONDRELEASE: 3087 case SIOCBONDSETHWADDR: 3088 case SIOCBONDCHANGEACTIVE: 3089 return bond_ioctl(net, cmd, argp); 3090 case SIOCADDRT: 3091 case SIOCDELRT: 3092 return routing_ioctl(net, sock, cmd, argp); 3093 case SIOCGSTAMP: 3094 return do_siocgstamp(net, sock, cmd, argp); 3095 case SIOCGSTAMPNS: 3096 return do_siocgstampns(net, sock, cmd, argp); 3097 case SIOCBONDSLAVEINFOQUERY: 3098 case SIOCBONDINFOQUERY: 3099 case SIOCSHWTSTAMP: 3100 case SIOCGHWTSTAMP: 3101 return compat_ifr_data_ioctl(net, cmd, argp); 3102 3103 case FIOSETOWN: 3104 case SIOCSPGRP: 3105 case FIOGETOWN: 3106 case SIOCGPGRP: 3107 case SIOCBRADDBR: 3108 case SIOCBRDELBR: 3109 case SIOCGIFVLAN: 3110 case SIOCSIFVLAN: 3111 case SIOCADDDLCI: 3112 case SIOCDELDLCI: 3113 return sock_ioctl(file, cmd, arg); 3114 3115 case SIOCGIFFLAGS: 3116 case SIOCSIFFLAGS: 3117 case SIOCGIFMETRIC: 3118 case SIOCSIFMETRIC: 3119 case SIOCGIFMTU: 3120 case SIOCSIFMTU: 3121 case SIOCGIFMEM: 3122 case SIOCSIFMEM: 3123 case SIOCGIFHWADDR: 3124 case SIOCSIFHWADDR: 3125 case SIOCADDMULTI: 3126 case SIOCDELMULTI: 3127 case SIOCGIFINDEX: 3128 case SIOCGIFADDR: 3129 case SIOCSIFADDR: 3130 case SIOCSIFHWBROADCAST: 3131 case SIOCDIFADDR: 3132 case SIOCGIFBRDADDR: 3133 case SIOCSIFBRDADDR: 3134 case SIOCGIFDSTADDR: 3135 case SIOCSIFDSTADDR: 3136 case SIOCGIFNETMASK: 3137 case SIOCSIFNETMASK: 3138 case SIOCSIFPFLAGS: 3139 case SIOCGIFPFLAGS: 3140 case SIOCGIFTXQLEN: 3141 case SIOCSIFTXQLEN: 3142 case SIOCBRADDIF: 3143 case SIOCBRDELIF: 3144 case SIOCSIFNAME: 3145 case SIOCGMIIPHY: 3146 case SIOCGMIIREG: 3147 case SIOCSMIIREG: 3148 return dev_ifsioc(net, sock, cmd, argp); 3149 3150 case SIOCSARP: 3151 case SIOCGARP: 3152 case SIOCDARP: 3153 case SIOCATMARK: 3154 return sock_do_ioctl(net, sock, cmd, arg); 3155 } 3156 3157 return -ENOIOCTLCMD; 3158 } 3159 3160 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3161 unsigned long arg) 3162 { 3163 struct socket *sock = file->private_data; 3164 int ret = -ENOIOCTLCMD; 3165 struct sock *sk; 3166 struct net *net; 3167 3168 sk = sock->sk; 3169 net = sock_net(sk); 3170 3171 if (sock->ops->compat_ioctl) 3172 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3173 3174 if (ret == -ENOIOCTLCMD && 3175 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3176 ret = compat_wext_handle_ioctl(net, cmd, arg); 3177 3178 if (ret == -ENOIOCTLCMD) 3179 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3180 3181 return ret; 3182 } 3183 #endif 3184 3185 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3186 { 3187 return sock->ops->bind(sock, addr, addrlen); 3188 } 3189 EXPORT_SYMBOL(kernel_bind); 3190 3191 int kernel_listen(struct socket *sock, int backlog) 3192 { 3193 return sock->ops->listen(sock, backlog); 3194 } 3195 EXPORT_SYMBOL(kernel_listen); 3196 3197 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3198 { 3199 struct sock *sk = sock->sk; 3200 int err; 3201 3202 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3203 newsock); 3204 if (err < 0) 3205 goto done; 3206 3207 err = sock->ops->accept(sock, *newsock, flags); 3208 if (err < 0) { 3209 sock_release(*newsock); 3210 *newsock = NULL; 3211 goto done; 3212 } 3213 3214 (*newsock)->ops = sock->ops; 3215 __module_get((*newsock)->ops->owner); 3216 3217 done: 3218 return err; 3219 } 3220 EXPORT_SYMBOL(kernel_accept); 3221 3222 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3223 int flags) 3224 { 3225 return sock->ops->connect(sock, addr, addrlen, flags); 3226 } 3227 EXPORT_SYMBOL(kernel_connect); 3228 3229 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3230 int *addrlen) 3231 { 3232 return sock->ops->getname(sock, addr, addrlen, 0); 3233 } 3234 EXPORT_SYMBOL(kernel_getsockname); 3235 3236 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3237 int *addrlen) 3238 { 3239 return sock->ops->getname(sock, addr, addrlen, 1); 3240 } 3241 EXPORT_SYMBOL(kernel_getpeername); 3242 3243 int kernel_getsockopt(struct socket *sock, int level, int optname, 3244 char *optval, int *optlen) 3245 { 3246 mm_segment_t oldfs = get_fs(); 3247 char __user *uoptval; 3248 int __user *uoptlen; 3249 int err; 3250 3251 uoptval = (char __user __force *) optval; 3252 uoptlen = (int __user __force *) optlen; 3253 3254 set_fs(KERNEL_DS); 3255 if (level == SOL_SOCKET) 3256 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3257 else 3258 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3259 uoptlen); 3260 set_fs(oldfs); 3261 return err; 3262 } 3263 EXPORT_SYMBOL(kernel_getsockopt); 3264 3265 int kernel_setsockopt(struct socket *sock, int level, int optname, 3266 char *optval, unsigned int optlen) 3267 { 3268 mm_segment_t oldfs = get_fs(); 3269 char __user *uoptval; 3270 int err; 3271 3272 uoptval = (char __user __force *) optval; 3273 3274 set_fs(KERNEL_DS); 3275 if (level == SOL_SOCKET) 3276 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3277 else 3278 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3279 optlen); 3280 set_fs(oldfs); 3281 return err; 3282 } 3283 EXPORT_SYMBOL(kernel_setsockopt); 3284 3285 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3286 size_t size, int flags) 3287 { 3288 if (sock->ops->sendpage) 3289 return sock->ops->sendpage(sock, page, offset, size, flags); 3290 3291 return sock_no_sendpage(sock, page, offset, size, flags); 3292 } 3293 EXPORT_SYMBOL(kernel_sendpage); 3294 3295 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3296 { 3297 mm_segment_t oldfs = get_fs(); 3298 int err; 3299 3300 set_fs(KERNEL_DS); 3301 err = sock->ops->ioctl(sock, cmd, arg); 3302 set_fs(oldfs); 3303 3304 return err; 3305 } 3306 EXPORT_SYMBOL(kernel_sock_ioctl); 3307 3308 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3309 { 3310 return sock->ops->shutdown(sock, how); 3311 } 3312 EXPORT_SYMBOL(kernel_sock_shutdown); 3313