1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/config.h> 62 #include <linux/mm.h> 63 #include <linux/smp_lock.h> 64 #include <linux/socket.h> 65 #include <linux/file.h> 66 #include <linux/net.h> 67 #include <linux/interrupt.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/divert.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 88 #ifdef CONFIG_NET_RADIO 89 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 90 #endif /* CONFIG_NET_RADIO */ 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 101 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 102 size_t size, loff_t pos); 103 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 104 size_t size, loff_t pos); 105 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 106 107 static int sock_close(struct inode *inode, struct file *file); 108 static unsigned int sock_poll(struct file *file, 109 struct poll_table_struct *wait); 110 static long sock_ioctl(struct file *file, 111 unsigned int cmd, unsigned long arg); 112 static int sock_fasync(int fd, struct file *filp, int on); 113 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 114 unsigned long count, loff_t *ppos); 115 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 116 unsigned long count, loff_t *ppos); 117 static ssize_t sock_sendpage(struct file *file, struct page *page, 118 int offset, size_t size, loff_t *ppos, int more); 119 120 121 /* 122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 123 * in the operation structures but are done directly via the socketcall() multiplexor. 124 */ 125 126 static struct file_operations socket_file_ops = { 127 .owner = THIS_MODULE, 128 .llseek = no_llseek, 129 .aio_read = sock_aio_read, 130 .aio_write = sock_aio_write, 131 .poll = sock_poll, 132 .unlocked_ioctl = sock_ioctl, 133 .mmap = sock_mmap, 134 .open = sock_no_open, /* special open code to disallow open via /proc */ 135 .release = sock_close, 136 .fasync = sock_fasync, 137 .readv = sock_readv, 138 .writev = sock_writev, 139 .sendpage = sock_sendpage 140 }; 141 142 /* 143 * The protocol list. Each protocol is registered in here. 144 */ 145 146 static struct net_proto_family *net_families[NPROTO]; 147 148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 149 static atomic_t net_family_lockct = ATOMIC_INIT(0); 150 static DEFINE_SPINLOCK(net_family_lock); 151 152 /* The strategy is: modifications net_family vector are short, do not 153 sleep and veeery rare, but read access should be free of any exclusive 154 locks. 155 */ 156 157 static void net_family_write_lock(void) 158 { 159 spin_lock(&net_family_lock); 160 while (atomic_read(&net_family_lockct) != 0) { 161 spin_unlock(&net_family_lock); 162 163 yield(); 164 165 spin_lock(&net_family_lock); 166 } 167 } 168 169 static __inline__ void net_family_write_unlock(void) 170 { 171 spin_unlock(&net_family_lock); 172 } 173 174 static __inline__ void net_family_read_lock(void) 175 { 176 atomic_inc(&net_family_lockct); 177 spin_unlock_wait(&net_family_lock); 178 } 179 180 static __inline__ void net_family_read_unlock(void) 181 { 182 atomic_dec(&net_family_lockct); 183 } 184 185 #else 186 #define net_family_write_lock() do { } while(0) 187 #define net_family_write_unlock() do { } while(0) 188 #define net_family_read_lock() do { } while(0) 189 #define net_family_read_unlock() do { } while(0) 190 #endif 191 192 193 /* 194 * Statistics counters of the socket lists 195 */ 196 197 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 198 199 /* 200 * Support routines. Move socket addresses back and forth across the kernel/user 201 * divide and look after the messy bits. 202 */ 203 204 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 205 16 for IP, 16 for IPX, 206 24 for IPv6, 207 about 80 for AX.25 208 must be at least one bigger than 209 the AF_UNIX size (see net/unix/af_unix.c 210 :unix_mkname()). 211 */ 212 213 /** 214 * move_addr_to_kernel - copy a socket address into kernel space 215 * @uaddr: Address in user space 216 * @kaddr: Address in kernel space 217 * @ulen: Length in user space 218 * 219 * The address is copied into kernel space. If the provided address is 220 * too long an error code of -EINVAL is returned. If the copy gives 221 * invalid addresses -EFAULT is returned. On a success 0 is returned. 222 */ 223 224 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 225 { 226 if(ulen<0||ulen>MAX_SOCK_ADDR) 227 return -EINVAL; 228 if(ulen==0) 229 return 0; 230 if(copy_from_user(kaddr,uaddr,ulen)) 231 return -EFAULT; 232 return audit_sockaddr(ulen, kaddr); 233 } 234 235 /** 236 * move_addr_to_user - copy an address to user space 237 * @kaddr: kernel space address 238 * @klen: length of address in kernel 239 * @uaddr: user space address 240 * @ulen: pointer to user length field 241 * 242 * The value pointed to by ulen on entry is the buffer length available. 243 * This is overwritten with the buffer space used. -EINVAL is returned 244 * if an overlong buffer is specified or a negative buffer size. -EFAULT 245 * is returned if either the buffer or the length field are not 246 * accessible. 247 * After copying the data up to the limit the user specifies, the true 248 * length of the data is written over the length limit the user 249 * specified. Zero is returned for a success. 250 */ 251 252 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 253 { 254 int err; 255 int len; 256 257 if((err=get_user(len, ulen))) 258 return err; 259 if(len>klen) 260 len=klen; 261 if(len<0 || len> MAX_SOCK_ADDR) 262 return -EINVAL; 263 if(len) 264 { 265 if(copy_to_user(uaddr,kaddr,len)) 266 return -EFAULT; 267 } 268 /* 269 * "fromlen shall refer to the value before truncation.." 270 * 1003.1g 271 */ 272 return __put_user(klen, ulen); 273 } 274 275 #define SOCKFS_MAGIC 0x534F434B 276 277 static kmem_cache_t * sock_inode_cachep __read_mostly; 278 279 static struct inode *sock_alloc_inode(struct super_block *sb) 280 { 281 struct socket_alloc *ei; 282 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 283 if (!ei) 284 return NULL; 285 init_waitqueue_head(&ei->socket.wait); 286 287 ei->socket.fasync_list = NULL; 288 ei->socket.state = SS_UNCONNECTED; 289 ei->socket.flags = 0; 290 ei->socket.ops = NULL; 291 ei->socket.sk = NULL; 292 ei->socket.file = NULL; 293 ei->socket.flags = 0; 294 295 return &ei->vfs_inode; 296 } 297 298 static void sock_destroy_inode(struct inode *inode) 299 { 300 kmem_cache_free(sock_inode_cachep, 301 container_of(inode, struct socket_alloc, vfs_inode)); 302 } 303 304 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 305 { 306 struct socket_alloc *ei = (struct socket_alloc *) foo; 307 308 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 309 SLAB_CTOR_CONSTRUCTOR) 310 inode_init_once(&ei->vfs_inode); 311 } 312 313 static int init_inodecache(void) 314 { 315 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 316 sizeof(struct socket_alloc), 317 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 318 init_once, NULL); 319 if (sock_inode_cachep == NULL) 320 return -ENOMEM; 321 return 0; 322 } 323 324 static struct super_operations sockfs_ops = { 325 .alloc_inode = sock_alloc_inode, 326 .destroy_inode =sock_destroy_inode, 327 .statfs = simple_statfs, 328 }; 329 330 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 331 int flags, const char *dev_name, void *data) 332 { 333 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 334 } 335 336 static struct vfsmount *sock_mnt __read_mostly; 337 338 static struct file_system_type sock_fs_type = { 339 .name = "sockfs", 340 .get_sb = sockfs_get_sb, 341 .kill_sb = kill_anon_super, 342 }; 343 static int sockfs_delete_dentry(struct dentry *dentry) 344 { 345 return 1; 346 } 347 static struct dentry_operations sockfs_dentry_operations = { 348 .d_delete = sockfs_delete_dentry, 349 }; 350 351 /* 352 * Obtains the first available file descriptor and sets it up for use. 353 * 354 * This function creates file structure and maps it to fd space 355 * of current process. On success it returns file descriptor 356 * and file struct implicitly stored in sock->file. 357 * Note that another thread may close file descriptor before we return 358 * from this function. We use the fact that now we do not refer 359 * to socket after mapping. If one day we will need it, this 360 * function will increment ref. count on file by 1. 361 * 362 * In any case returned fd MAY BE not valid! 363 * This race condition is unavoidable 364 * with shared fd spaces, we cannot solve it inside kernel, 365 * but we take care of internal coherence yet. 366 */ 367 368 int sock_map_fd(struct socket *sock) 369 { 370 int fd; 371 struct qstr this; 372 char name[32]; 373 374 /* 375 * Find a file descriptor suitable for return to the user. 376 */ 377 378 fd = get_unused_fd(); 379 if (fd >= 0) { 380 struct file *file = get_empty_filp(); 381 382 if (!file) { 383 put_unused_fd(fd); 384 fd = -ENFILE; 385 goto out; 386 } 387 388 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 389 this.name = name; 390 this.hash = SOCK_INODE(sock)->i_ino; 391 392 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 393 if (!file->f_dentry) { 394 put_filp(file); 395 put_unused_fd(fd); 396 fd = -ENOMEM; 397 goto out; 398 } 399 file->f_dentry->d_op = &sockfs_dentry_operations; 400 d_add(file->f_dentry, SOCK_INODE(sock)); 401 file->f_vfsmnt = mntget(sock_mnt); 402 file->f_mapping = file->f_dentry->d_inode->i_mapping; 403 404 sock->file = file; 405 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 406 file->f_mode = FMODE_READ | FMODE_WRITE; 407 file->f_flags = O_RDWR; 408 file->f_pos = 0; 409 file->private_data = sock; 410 fd_install(fd, file); 411 } 412 413 out: 414 return fd; 415 } 416 417 /** 418 * sockfd_lookup - Go from a file number to its socket slot 419 * @fd: file handle 420 * @err: pointer to an error code return 421 * 422 * The file handle passed in is locked and the socket it is bound 423 * too is returned. If an error occurs the err pointer is overwritten 424 * with a negative errno code and NULL is returned. The function checks 425 * for both invalid handles and passing a handle which is not a socket. 426 * 427 * On a success the socket object pointer is returned. 428 */ 429 430 struct socket *sockfd_lookup(int fd, int *err) 431 { 432 struct file *file; 433 struct inode *inode; 434 struct socket *sock; 435 436 if (!(file = fget(fd))) 437 { 438 *err = -EBADF; 439 return NULL; 440 } 441 442 if (file->f_op == &socket_file_ops) 443 return file->private_data; /* set in sock_map_fd */ 444 445 inode = file->f_dentry->d_inode; 446 if (!S_ISSOCK(inode->i_mode)) { 447 *err = -ENOTSOCK; 448 fput(file); 449 return NULL; 450 } 451 452 sock = SOCKET_I(inode); 453 if (sock->file != file) { 454 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 455 sock->file = file; 456 } 457 return sock; 458 } 459 460 /** 461 * sock_alloc - allocate a socket 462 * 463 * Allocate a new inode and socket object. The two are bound together 464 * and initialised. The socket is then returned. If we are out of inodes 465 * NULL is returned. 466 */ 467 468 static struct socket *sock_alloc(void) 469 { 470 struct inode * inode; 471 struct socket * sock; 472 473 inode = new_inode(sock_mnt->mnt_sb); 474 if (!inode) 475 return NULL; 476 477 sock = SOCKET_I(inode); 478 479 inode->i_mode = S_IFSOCK|S_IRWXUGO; 480 inode->i_uid = current->fsuid; 481 inode->i_gid = current->fsgid; 482 483 get_cpu_var(sockets_in_use)++; 484 put_cpu_var(sockets_in_use); 485 return sock; 486 } 487 488 /* 489 * In theory you can't get an open on this inode, but /proc provides 490 * a back door. Remember to keep it shut otherwise you'll let the 491 * creepy crawlies in. 492 */ 493 494 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 495 { 496 return -ENXIO; 497 } 498 499 struct file_operations bad_sock_fops = { 500 .owner = THIS_MODULE, 501 .open = sock_no_open, 502 }; 503 504 /** 505 * sock_release - close a socket 506 * @sock: socket to close 507 * 508 * The socket is released from the protocol stack if it has a release 509 * callback, and the inode is then released if the socket is bound to 510 * an inode not a file. 511 */ 512 513 void sock_release(struct socket *sock) 514 { 515 if (sock->ops) { 516 struct module *owner = sock->ops->owner; 517 518 sock->ops->release(sock); 519 sock->ops = NULL; 520 module_put(owner); 521 } 522 523 if (sock->fasync_list) 524 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 525 526 get_cpu_var(sockets_in_use)--; 527 put_cpu_var(sockets_in_use); 528 if (!sock->file) { 529 iput(SOCK_INODE(sock)); 530 return; 531 } 532 sock->file=NULL; 533 } 534 535 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 536 struct msghdr *msg, size_t size) 537 { 538 struct sock_iocb *si = kiocb_to_siocb(iocb); 539 int err; 540 541 si->sock = sock; 542 si->scm = NULL; 543 si->msg = msg; 544 si->size = size; 545 546 err = security_socket_sendmsg(sock, msg, size); 547 if (err) 548 return err; 549 550 return sock->ops->sendmsg(iocb, sock, msg, size); 551 } 552 553 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 554 { 555 struct kiocb iocb; 556 struct sock_iocb siocb; 557 int ret; 558 559 init_sync_kiocb(&iocb, NULL); 560 iocb.private = &siocb; 561 ret = __sock_sendmsg(&iocb, sock, msg, size); 562 if (-EIOCBQUEUED == ret) 563 ret = wait_on_sync_kiocb(&iocb); 564 return ret; 565 } 566 567 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 568 struct kvec *vec, size_t num, size_t size) 569 { 570 mm_segment_t oldfs = get_fs(); 571 int result; 572 573 set_fs(KERNEL_DS); 574 /* 575 * the following is safe, since for compiler definitions of kvec and 576 * iovec are identical, yielding the same in-core layout and alignment 577 */ 578 msg->msg_iov = (struct iovec *)vec, 579 msg->msg_iovlen = num; 580 result = sock_sendmsg(sock, msg, size); 581 set_fs(oldfs); 582 return result; 583 } 584 585 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 586 struct msghdr *msg, size_t size, int flags) 587 { 588 int err; 589 struct sock_iocb *si = kiocb_to_siocb(iocb); 590 591 si->sock = sock; 592 si->scm = NULL; 593 si->msg = msg; 594 si->size = size; 595 si->flags = flags; 596 597 err = security_socket_recvmsg(sock, msg, size, flags); 598 if (err) 599 return err; 600 601 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 602 } 603 604 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 605 size_t size, int flags) 606 { 607 struct kiocb iocb; 608 struct sock_iocb siocb; 609 int ret; 610 611 init_sync_kiocb(&iocb, NULL); 612 iocb.private = &siocb; 613 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 614 if (-EIOCBQUEUED == ret) 615 ret = wait_on_sync_kiocb(&iocb); 616 return ret; 617 } 618 619 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 620 struct kvec *vec, size_t num, 621 size_t size, int flags) 622 { 623 mm_segment_t oldfs = get_fs(); 624 int result; 625 626 set_fs(KERNEL_DS); 627 /* 628 * the following is safe, since for compiler definitions of kvec and 629 * iovec are identical, yielding the same in-core layout and alignment 630 */ 631 msg->msg_iov = (struct iovec *)vec, 632 msg->msg_iovlen = num; 633 result = sock_recvmsg(sock, msg, size, flags); 634 set_fs(oldfs); 635 return result; 636 } 637 638 static void sock_aio_dtor(struct kiocb *iocb) 639 { 640 kfree(iocb->private); 641 } 642 643 /* 644 * Read data from a socket. ubuf is a user mode pointer. We make sure the user 645 * area ubuf...ubuf+size-1 is writable before asking the protocol. 646 */ 647 648 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 649 size_t size, loff_t pos) 650 { 651 struct sock_iocb *x, siocb; 652 struct socket *sock; 653 int flags; 654 655 if (pos != 0) 656 return -ESPIPE; 657 if (size==0) /* Match SYS5 behaviour */ 658 return 0; 659 660 if (is_sync_kiocb(iocb)) 661 x = &siocb; 662 else { 663 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 664 if (!x) 665 return -ENOMEM; 666 iocb->ki_dtor = sock_aio_dtor; 667 } 668 iocb->private = x; 669 x->kiocb = iocb; 670 sock = iocb->ki_filp->private_data; 671 672 x->async_msg.msg_name = NULL; 673 x->async_msg.msg_namelen = 0; 674 x->async_msg.msg_iov = &x->async_iov; 675 x->async_msg.msg_iovlen = 1; 676 x->async_msg.msg_control = NULL; 677 x->async_msg.msg_controllen = 0; 678 x->async_iov.iov_base = ubuf; 679 x->async_iov.iov_len = size; 680 flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 681 682 return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags); 683 } 684 685 686 /* 687 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1 688 * is readable by the user process. 689 */ 690 691 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 692 size_t size, loff_t pos) 693 { 694 struct sock_iocb *x, siocb; 695 struct socket *sock; 696 697 if (pos != 0) 698 return -ESPIPE; 699 if(size==0) /* Match SYS5 behaviour */ 700 return 0; 701 702 if (is_sync_kiocb(iocb)) 703 x = &siocb; 704 else { 705 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 706 if (!x) 707 return -ENOMEM; 708 iocb->ki_dtor = sock_aio_dtor; 709 } 710 iocb->private = x; 711 x->kiocb = iocb; 712 sock = iocb->ki_filp->private_data; 713 714 x->async_msg.msg_name = NULL; 715 x->async_msg.msg_namelen = 0; 716 x->async_msg.msg_iov = &x->async_iov; 717 x->async_msg.msg_iovlen = 1; 718 x->async_msg.msg_control = NULL; 719 x->async_msg.msg_controllen = 0; 720 x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 721 if (sock->type == SOCK_SEQPACKET) 722 x->async_msg.msg_flags |= MSG_EOR; 723 x->async_iov.iov_base = (void __user *)ubuf; 724 x->async_iov.iov_len = size; 725 726 return __sock_sendmsg(iocb, sock, &x->async_msg, size); 727 } 728 729 static ssize_t sock_sendpage(struct file *file, struct page *page, 730 int offset, size_t size, loff_t *ppos, int more) 731 { 732 struct socket *sock; 733 int flags; 734 735 sock = file->private_data; 736 737 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 738 if (more) 739 flags |= MSG_MORE; 740 741 return sock->ops->sendpage(sock, page, offset, size, flags); 742 } 743 744 static int sock_readv_writev(int type, 745 struct file * file, const struct iovec * iov, 746 long count, size_t size) 747 { 748 struct msghdr msg; 749 struct socket *sock; 750 751 sock = file->private_data; 752 753 msg.msg_name = NULL; 754 msg.msg_namelen = 0; 755 msg.msg_control = NULL; 756 msg.msg_controllen = 0; 757 msg.msg_iov = (struct iovec *) iov; 758 msg.msg_iovlen = count; 759 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 760 761 /* read() does a VERIFY_WRITE */ 762 if (type == VERIFY_WRITE) 763 return sock_recvmsg(sock, &msg, size, msg.msg_flags); 764 765 if (sock->type == SOCK_SEQPACKET) 766 msg.msg_flags |= MSG_EOR; 767 768 return sock_sendmsg(sock, &msg, size); 769 } 770 771 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 772 unsigned long count, loff_t *ppos) 773 { 774 size_t tot_len = 0; 775 int i; 776 for (i = 0 ; i < count ; i++) 777 tot_len += vector[i].iov_len; 778 return sock_readv_writev(VERIFY_WRITE, 779 file, vector, count, tot_len); 780 } 781 782 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 783 unsigned long count, loff_t *ppos) 784 { 785 size_t tot_len = 0; 786 int i; 787 for (i = 0 ; i < count ; i++) 788 tot_len += vector[i].iov_len; 789 return sock_readv_writev(VERIFY_READ, 790 file, vector, count, tot_len); 791 } 792 793 794 /* 795 * Atomic setting of ioctl hooks to avoid race 796 * with module unload. 797 */ 798 799 static DECLARE_MUTEX(br_ioctl_mutex); 800 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 801 802 void brioctl_set(int (*hook)(unsigned int, void __user *)) 803 { 804 down(&br_ioctl_mutex); 805 br_ioctl_hook = hook; 806 up(&br_ioctl_mutex); 807 } 808 EXPORT_SYMBOL(brioctl_set); 809 810 static DECLARE_MUTEX(vlan_ioctl_mutex); 811 static int (*vlan_ioctl_hook)(void __user *arg); 812 813 void vlan_ioctl_set(int (*hook)(void __user *)) 814 { 815 down(&vlan_ioctl_mutex); 816 vlan_ioctl_hook = hook; 817 up(&vlan_ioctl_mutex); 818 } 819 EXPORT_SYMBOL(vlan_ioctl_set); 820 821 static DECLARE_MUTEX(dlci_ioctl_mutex); 822 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 823 824 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 825 { 826 down(&dlci_ioctl_mutex); 827 dlci_ioctl_hook = hook; 828 up(&dlci_ioctl_mutex); 829 } 830 EXPORT_SYMBOL(dlci_ioctl_set); 831 832 /* 833 * With an ioctl, arg may well be a user mode pointer, but we don't know 834 * what to do with it - that's up to the protocol still. 835 */ 836 837 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 838 { 839 struct socket *sock; 840 void __user *argp = (void __user *)arg; 841 int pid, err; 842 843 sock = file->private_data; 844 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 845 err = dev_ioctl(cmd, argp); 846 } else 847 #ifdef WIRELESS_EXT 848 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 849 err = dev_ioctl(cmd, argp); 850 } else 851 #endif /* WIRELESS_EXT */ 852 switch (cmd) { 853 case FIOSETOWN: 854 case SIOCSPGRP: 855 err = -EFAULT; 856 if (get_user(pid, (int __user *)argp)) 857 break; 858 err = f_setown(sock->file, pid, 1); 859 break; 860 case FIOGETOWN: 861 case SIOCGPGRP: 862 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 863 break; 864 case SIOCGIFBR: 865 case SIOCSIFBR: 866 case SIOCBRADDBR: 867 case SIOCBRDELBR: 868 err = -ENOPKG; 869 if (!br_ioctl_hook) 870 request_module("bridge"); 871 872 down(&br_ioctl_mutex); 873 if (br_ioctl_hook) 874 err = br_ioctl_hook(cmd, argp); 875 up(&br_ioctl_mutex); 876 break; 877 case SIOCGIFVLAN: 878 case SIOCSIFVLAN: 879 err = -ENOPKG; 880 if (!vlan_ioctl_hook) 881 request_module("8021q"); 882 883 down(&vlan_ioctl_mutex); 884 if (vlan_ioctl_hook) 885 err = vlan_ioctl_hook(argp); 886 up(&vlan_ioctl_mutex); 887 break; 888 case SIOCGIFDIVERT: 889 case SIOCSIFDIVERT: 890 /* Convert this to call through a hook */ 891 err = divert_ioctl(cmd, argp); 892 break; 893 case SIOCADDDLCI: 894 case SIOCDELDLCI: 895 err = -ENOPKG; 896 if (!dlci_ioctl_hook) 897 request_module("dlci"); 898 899 if (dlci_ioctl_hook) { 900 down(&dlci_ioctl_mutex); 901 err = dlci_ioctl_hook(cmd, argp); 902 up(&dlci_ioctl_mutex); 903 } 904 break; 905 default: 906 err = sock->ops->ioctl(sock, cmd, arg); 907 break; 908 } 909 return err; 910 } 911 912 int sock_create_lite(int family, int type, int protocol, struct socket **res) 913 { 914 int err; 915 struct socket *sock = NULL; 916 917 err = security_socket_create(family, type, protocol, 1); 918 if (err) 919 goto out; 920 921 sock = sock_alloc(); 922 if (!sock) { 923 err = -ENOMEM; 924 goto out; 925 } 926 927 security_socket_post_create(sock, family, type, protocol, 1); 928 sock->type = type; 929 out: 930 *res = sock; 931 return err; 932 } 933 934 /* No kernel lock held - perfect */ 935 static unsigned int sock_poll(struct file *file, poll_table * wait) 936 { 937 struct socket *sock; 938 939 /* 940 * We can't return errors to poll, so it's either yes or no. 941 */ 942 sock = file->private_data; 943 return sock->ops->poll(file, sock, wait); 944 } 945 946 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 947 { 948 struct socket *sock = file->private_data; 949 950 return sock->ops->mmap(file, sock, vma); 951 } 952 953 static int sock_close(struct inode *inode, struct file *filp) 954 { 955 /* 956 * It was possible the inode is NULL we were 957 * closing an unfinished socket. 958 */ 959 960 if (!inode) 961 { 962 printk(KERN_DEBUG "sock_close: NULL inode\n"); 963 return 0; 964 } 965 sock_fasync(-1, filp, 0); 966 sock_release(SOCKET_I(inode)); 967 return 0; 968 } 969 970 /* 971 * Update the socket async list 972 * 973 * Fasync_list locking strategy. 974 * 975 * 1. fasync_list is modified only under process context socket lock 976 * i.e. under semaphore. 977 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 978 * or under socket lock. 979 * 3. fasync_list can be used from softirq context, so that 980 * modification under socket lock have to be enhanced with 981 * write_lock_bh(&sk->sk_callback_lock). 982 * --ANK (990710) 983 */ 984 985 static int sock_fasync(int fd, struct file *filp, int on) 986 { 987 struct fasync_struct *fa, *fna=NULL, **prev; 988 struct socket *sock; 989 struct sock *sk; 990 991 if (on) 992 { 993 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 994 if(fna==NULL) 995 return -ENOMEM; 996 } 997 998 sock = filp->private_data; 999 1000 if ((sk=sock->sk) == NULL) { 1001 kfree(fna); 1002 return -EINVAL; 1003 } 1004 1005 lock_sock(sk); 1006 1007 prev=&(sock->fasync_list); 1008 1009 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1010 if (fa->fa_file==filp) 1011 break; 1012 1013 if(on) 1014 { 1015 if(fa!=NULL) 1016 { 1017 write_lock_bh(&sk->sk_callback_lock); 1018 fa->fa_fd=fd; 1019 write_unlock_bh(&sk->sk_callback_lock); 1020 1021 kfree(fna); 1022 goto out; 1023 } 1024 fna->fa_file=filp; 1025 fna->fa_fd=fd; 1026 fna->magic=FASYNC_MAGIC; 1027 fna->fa_next=sock->fasync_list; 1028 write_lock_bh(&sk->sk_callback_lock); 1029 sock->fasync_list=fna; 1030 write_unlock_bh(&sk->sk_callback_lock); 1031 } 1032 else 1033 { 1034 if (fa!=NULL) 1035 { 1036 write_lock_bh(&sk->sk_callback_lock); 1037 *prev=fa->fa_next; 1038 write_unlock_bh(&sk->sk_callback_lock); 1039 kfree(fa); 1040 } 1041 } 1042 1043 out: 1044 release_sock(sock->sk); 1045 return 0; 1046 } 1047 1048 /* This function may be called only under socket lock or callback_lock */ 1049 1050 int sock_wake_async(struct socket *sock, int how, int band) 1051 { 1052 if (!sock || !sock->fasync_list) 1053 return -1; 1054 switch (how) 1055 { 1056 case 1: 1057 1058 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1059 break; 1060 goto call_kill; 1061 case 2: 1062 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1063 break; 1064 /* fall through */ 1065 case 0: 1066 call_kill: 1067 __kill_fasync(sock->fasync_list, SIGIO, band); 1068 break; 1069 case 3: 1070 __kill_fasync(sock->fasync_list, SIGURG, band); 1071 } 1072 return 0; 1073 } 1074 1075 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1076 { 1077 int err; 1078 struct socket *sock; 1079 1080 /* 1081 * Check protocol is in range 1082 */ 1083 if (family < 0 || family >= NPROTO) 1084 return -EAFNOSUPPORT; 1085 if (type < 0 || type >= SOCK_MAX) 1086 return -EINVAL; 1087 1088 /* Compatibility. 1089 1090 This uglymoron is moved from INET layer to here to avoid 1091 deadlock in module load. 1092 */ 1093 if (family == PF_INET && type == SOCK_PACKET) { 1094 static int warned; 1095 if (!warned) { 1096 warned = 1; 1097 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1098 } 1099 family = PF_PACKET; 1100 } 1101 1102 err = security_socket_create(family, type, protocol, kern); 1103 if (err) 1104 return err; 1105 1106 #if defined(CONFIG_KMOD) 1107 /* Attempt to load a protocol module if the find failed. 1108 * 1109 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1110 * requested real, full-featured networking support upon configuration. 1111 * Otherwise module support will break! 1112 */ 1113 if (net_families[family]==NULL) 1114 { 1115 request_module("net-pf-%d",family); 1116 } 1117 #endif 1118 1119 net_family_read_lock(); 1120 if (net_families[family] == NULL) { 1121 err = -EAFNOSUPPORT; 1122 goto out; 1123 } 1124 1125 /* 1126 * Allocate the socket and allow the family to set things up. if 1127 * the protocol is 0, the family is instructed to select an appropriate 1128 * default. 1129 */ 1130 1131 if (!(sock = sock_alloc())) { 1132 printk(KERN_WARNING "socket: no more sockets\n"); 1133 err = -ENFILE; /* Not exactly a match, but its the 1134 closest posix thing */ 1135 goto out; 1136 } 1137 1138 sock->type = type; 1139 1140 /* 1141 * We will call the ->create function, that possibly is in a loadable 1142 * module, so we have to bump that loadable module refcnt first. 1143 */ 1144 err = -EAFNOSUPPORT; 1145 if (!try_module_get(net_families[family]->owner)) 1146 goto out_release; 1147 1148 if ((err = net_families[family]->create(sock, protocol)) < 0) { 1149 sock->ops = NULL; 1150 goto out_module_put; 1151 } 1152 1153 /* 1154 * Now to bump the refcnt of the [loadable] module that owns this 1155 * socket at sock_release time we decrement its refcnt. 1156 */ 1157 if (!try_module_get(sock->ops->owner)) { 1158 sock->ops = NULL; 1159 goto out_module_put; 1160 } 1161 /* 1162 * Now that we're done with the ->create function, the [loadable] 1163 * module can have its refcnt decremented 1164 */ 1165 module_put(net_families[family]->owner); 1166 *res = sock; 1167 security_socket_post_create(sock, family, type, protocol, kern); 1168 1169 out: 1170 net_family_read_unlock(); 1171 return err; 1172 out_module_put: 1173 module_put(net_families[family]->owner); 1174 out_release: 1175 sock_release(sock); 1176 goto out; 1177 } 1178 1179 int sock_create(int family, int type, int protocol, struct socket **res) 1180 { 1181 return __sock_create(family, type, protocol, res, 0); 1182 } 1183 1184 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1185 { 1186 return __sock_create(family, type, protocol, res, 1); 1187 } 1188 1189 asmlinkage long sys_socket(int family, int type, int protocol) 1190 { 1191 int retval; 1192 struct socket *sock; 1193 1194 retval = sock_create(family, type, protocol, &sock); 1195 if (retval < 0) 1196 goto out; 1197 1198 retval = sock_map_fd(sock); 1199 if (retval < 0) 1200 goto out_release; 1201 1202 out: 1203 /* It may be already another descriptor 8) Not kernel problem. */ 1204 return retval; 1205 1206 out_release: 1207 sock_release(sock); 1208 return retval; 1209 } 1210 1211 /* 1212 * Create a pair of connected sockets. 1213 */ 1214 1215 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1216 { 1217 struct socket *sock1, *sock2; 1218 int fd1, fd2, err; 1219 1220 /* 1221 * Obtain the first socket and check if the underlying protocol 1222 * supports the socketpair call. 1223 */ 1224 1225 err = sock_create(family, type, protocol, &sock1); 1226 if (err < 0) 1227 goto out; 1228 1229 err = sock_create(family, type, protocol, &sock2); 1230 if (err < 0) 1231 goto out_release_1; 1232 1233 err = sock1->ops->socketpair(sock1, sock2); 1234 if (err < 0) 1235 goto out_release_both; 1236 1237 fd1 = fd2 = -1; 1238 1239 err = sock_map_fd(sock1); 1240 if (err < 0) 1241 goto out_release_both; 1242 fd1 = err; 1243 1244 err = sock_map_fd(sock2); 1245 if (err < 0) 1246 goto out_close_1; 1247 fd2 = err; 1248 1249 /* fd1 and fd2 may be already another descriptors. 1250 * Not kernel problem. 1251 */ 1252 1253 err = put_user(fd1, &usockvec[0]); 1254 if (!err) 1255 err = put_user(fd2, &usockvec[1]); 1256 if (!err) 1257 return 0; 1258 1259 sys_close(fd2); 1260 sys_close(fd1); 1261 return err; 1262 1263 out_close_1: 1264 sock_release(sock2); 1265 sys_close(fd1); 1266 return err; 1267 1268 out_release_both: 1269 sock_release(sock2); 1270 out_release_1: 1271 sock_release(sock1); 1272 out: 1273 return err; 1274 } 1275 1276 1277 /* 1278 * Bind a name to a socket. Nothing much to do here since it's 1279 * the protocol's responsibility to handle the local address. 1280 * 1281 * We move the socket address to kernel space before we call 1282 * the protocol layer (having also checked the address is ok). 1283 */ 1284 1285 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1286 { 1287 struct socket *sock; 1288 char address[MAX_SOCK_ADDR]; 1289 int err; 1290 1291 if((sock = sockfd_lookup(fd,&err))!=NULL) 1292 { 1293 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1294 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1295 if (err) { 1296 sockfd_put(sock); 1297 return err; 1298 } 1299 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen); 1300 } 1301 sockfd_put(sock); 1302 } 1303 return err; 1304 } 1305 1306 1307 /* 1308 * Perform a listen. Basically, we allow the protocol to do anything 1309 * necessary for a listen, and if that works, we mark the socket as 1310 * ready for listening. 1311 */ 1312 1313 int sysctl_somaxconn = SOMAXCONN; 1314 1315 asmlinkage long sys_listen(int fd, int backlog) 1316 { 1317 struct socket *sock; 1318 int err; 1319 1320 if ((sock = sockfd_lookup(fd, &err)) != NULL) { 1321 if ((unsigned) backlog > sysctl_somaxconn) 1322 backlog = sysctl_somaxconn; 1323 1324 err = security_socket_listen(sock, backlog); 1325 if (err) { 1326 sockfd_put(sock); 1327 return err; 1328 } 1329 1330 err=sock->ops->listen(sock, backlog); 1331 sockfd_put(sock); 1332 } 1333 return err; 1334 } 1335 1336 1337 /* 1338 * For accept, we attempt to create a new socket, set up the link 1339 * with the client, wake up the client, then return the new 1340 * connected fd. We collect the address of the connector in kernel 1341 * space and move it to user at the very end. This is unclean because 1342 * we open the socket then return an error. 1343 * 1344 * 1003.1g adds the ability to recvmsg() to query connection pending 1345 * status to recvmsg. We need to add that support in a way thats 1346 * clean when we restucture accept also. 1347 */ 1348 1349 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1350 { 1351 struct socket *sock, *newsock; 1352 int err, len; 1353 char address[MAX_SOCK_ADDR]; 1354 1355 sock = sockfd_lookup(fd, &err); 1356 if (!sock) 1357 goto out; 1358 1359 err = -ENFILE; 1360 if (!(newsock = sock_alloc())) 1361 goto out_put; 1362 1363 newsock->type = sock->type; 1364 newsock->ops = sock->ops; 1365 1366 /* 1367 * We don't need try_module_get here, as the listening socket (sock) 1368 * has the protocol module (sock->ops->owner) held. 1369 */ 1370 __module_get(newsock->ops->owner); 1371 1372 err = security_socket_accept(sock, newsock); 1373 if (err) 1374 goto out_release; 1375 1376 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1377 if (err < 0) 1378 goto out_release; 1379 1380 if (upeer_sockaddr) { 1381 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1382 err = -ECONNABORTED; 1383 goto out_release; 1384 } 1385 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1386 if (err < 0) 1387 goto out_release; 1388 } 1389 1390 /* File flags are not inherited via accept() unlike another OSes. */ 1391 1392 if ((err = sock_map_fd(newsock)) < 0) 1393 goto out_release; 1394 1395 security_socket_post_accept(sock, newsock); 1396 1397 out_put: 1398 sockfd_put(sock); 1399 out: 1400 return err; 1401 out_release: 1402 sock_release(newsock); 1403 goto out_put; 1404 } 1405 1406 1407 /* 1408 * Attempt to connect to a socket with the server address. The address 1409 * is in user space so we verify it is OK and move it to kernel space. 1410 * 1411 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1412 * break bindings 1413 * 1414 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1415 * other SEQPACKET protocols that take time to connect() as it doesn't 1416 * include the -EINPROGRESS status for such sockets. 1417 */ 1418 1419 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1420 { 1421 struct socket *sock; 1422 char address[MAX_SOCK_ADDR]; 1423 int err; 1424 1425 sock = sockfd_lookup(fd, &err); 1426 if (!sock) 1427 goto out; 1428 err = move_addr_to_kernel(uservaddr, addrlen, address); 1429 if (err < 0) 1430 goto out_put; 1431 1432 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1433 if (err) 1434 goto out_put; 1435 1436 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1437 sock->file->f_flags); 1438 out_put: 1439 sockfd_put(sock); 1440 out: 1441 return err; 1442 } 1443 1444 /* 1445 * Get the local address ('name') of a socket object. Move the obtained 1446 * name to user space. 1447 */ 1448 1449 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1450 { 1451 struct socket *sock; 1452 char address[MAX_SOCK_ADDR]; 1453 int len, err; 1454 1455 sock = sockfd_lookup(fd, &err); 1456 if (!sock) 1457 goto out; 1458 1459 err = security_socket_getsockname(sock); 1460 if (err) 1461 goto out_put; 1462 1463 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1464 if (err) 1465 goto out_put; 1466 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1467 1468 out_put: 1469 sockfd_put(sock); 1470 out: 1471 return err; 1472 } 1473 1474 /* 1475 * Get the remote address ('name') of a socket object. Move the obtained 1476 * name to user space. 1477 */ 1478 1479 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1480 { 1481 struct socket *sock; 1482 char address[MAX_SOCK_ADDR]; 1483 int len, err; 1484 1485 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1486 { 1487 err = security_socket_getpeername(sock); 1488 if (err) { 1489 sockfd_put(sock); 1490 return err; 1491 } 1492 1493 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1494 if (!err) 1495 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1496 sockfd_put(sock); 1497 } 1498 return err; 1499 } 1500 1501 /* 1502 * Send a datagram to a given address. We move the address into kernel 1503 * space and check the user space data area is readable before invoking 1504 * the protocol. 1505 */ 1506 1507 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1508 struct sockaddr __user *addr, int addr_len) 1509 { 1510 struct socket *sock; 1511 char address[MAX_SOCK_ADDR]; 1512 int err; 1513 struct msghdr msg; 1514 struct iovec iov; 1515 1516 sock = sockfd_lookup(fd, &err); 1517 if (!sock) 1518 goto out; 1519 iov.iov_base=buff; 1520 iov.iov_len=len; 1521 msg.msg_name=NULL; 1522 msg.msg_iov=&iov; 1523 msg.msg_iovlen=1; 1524 msg.msg_control=NULL; 1525 msg.msg_controllen=0; 1526 msg.msg_namelen=0; 1527 if(addr) 1528 { 1529 err = move_addr_to_kernel(addr, addr_len, address); 1530 if (err < 0) 1531 goto out_put; 1532 msg.msg_name=address; 1533 msg.msg_namelen=addr_len; 1534 } 1535 if (sock->file->f_flags & O_NONBLOCK) 1536 flags |= MSG_DONTWAIT; 1537 msg.msg_flags = flags; 1538 err = sock_sendmsg(sock, &msg, len); 1539 1540 out_put: 1541 sockfd_put(sock); 1542 out: 1543 return err; 1544 } 1545 1546 /* 1547 * Send a datagram down a socket. 1548 */ 1549 1550 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1551 { 1552 return sys_sendto(fd, buff, len, flags, NULL, 0); 1553 } 1554 1555 /* 1556 * Receive a frame from the socket and optionally record the address of the 1557 * sender. We verify the buffers are writable and if needed move the 1558 * sender address from kernel to user space. 1559 */ 1560 1561 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1562 struct sockaddr __user *addr, int __user *addr_len) 1563 { 1564 struct socket *sock; 1565 struct iovec iov; 1566 struct msghdr msg; 1567 char address[MAX_SOCK_ADDR]; 1568 int err,err2; 1569 1570 sock = sockfd_lookup(fd, &err); 1571 if (!sock) 1572 goto out; 1573 1574 msg.msg_control=NULL; 1575 msg.msg_controllen=0; 1576 msg.msg_iovlen=1; 1577 msg.msg_iov=&iov; 1578 iov.iov_len=size; 1579 iov.iov_base=ubuf; 1580 msg.msg_name=address; 1581 msg.msg_namelen=MAX_SOCK_ADDR; 1582 if (sock->file->f_flags & O_NONBLOCK) 1583 flags |= MSG_DONTWAIT; 1584 err=sock_recvmsg(sock, &msg, size, flags); 1585 1586 if(err >= 0 && addr != NULL) 1587 { 1588 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1589 if(err2<0) 1590 err=err2; 1591 } 1592 sockfd_put(sock); 1593 out: 1594 return err; 1595 } 1596 1597 /* 1598 * Receive a datagram from a socket. 1599 */ 1600 1601 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1602 { 1603 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1604 } 1605 1606 /* 1607 * Set a socket option. Because we don't know the option lengths we have 1608 * to pass the user mode parameter for the protocols to sort out. 1609 */ 1610 1611 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1612 { 1613 int err; 1614 struct socket *sock; 1615 1616 if (optlen < 0) 1617 return -EINVAL; 1618 1619 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1620 { 1621 err = security_socket_setsockopt(sock,level,optname); 1622 if (err) { 1623 sockfd_put(sock); 1624 return err; 1625 } 1626 1627 if (level == SOL_SOCKET) 1628 err=sock_setsockopt(sock,level,optname,optval,optlen); 1629 else 1630 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1631 sockfd_put(sock); 1632 } 1633 return err; 1634 } 1635 1636 /* 1637 * Get a socket option. Because we don't know the option lengths we have 1638 * to pass a user mode parameter for the protocols to sort out. 1639 */ 1640 1641 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1642 { 1643 int err; 1644 struct socket *sock; 1645 1646 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1647 { 1648 err = security_socket_getsockopt(sock, level, 1649 optname); 1650 if (err) { 1651 sockfd_put(sock); 1652 return err; 1653 } 1654 1655 if (level == SOL_SOCKET) 1656 err=sock_getsockopt(sock,level,optname,optval,optlen); 1657 else 1658 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1659 sockfd_put(sock); 1660 } 1661 return err; 1662 } 1663 1664 1665 /* 1666 * Shutdown a socket. 1667 */ 1668 1669 asmlinkage long sys_shutdown(int fd, int how) 1670 { 1671 int err; 1672 struct socket *sock; 1673 1674 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1675 { 1676 err = security_socket_shutdown(sock, how); 1677 if (err) { 1678 sockfd_put(sock); 1679 return err; 1680 } 1681 1682 err=sock->ops->shutdown(sock, how); 1683 sockfd_put(sock); 1684 } 1685 return err; 1686 } 1687 1688 /* A couple of helpful macros for getting the address of the 32/64 bit 1689 * fields which are the same type (int / unsigned) on our platforms. 1690 */ 1691 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1692 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1693 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1694 1695 1696 /* 1697 * BSD sendmsg interface 1698 */ 1699 1700 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1701 { 1702 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1703 struct socket *sock; 1704 char address[MAX_SOCK_ADDR]; 1705 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1706 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1707 __attribute__ ((aligned (sizeof(__kernel_size_t)))); 1708 /* 20 is size of ipv6_pktinfo */ 1709 unsigned char *ctl_buf = ctl; 1710 struct msghdr msg_sys; 1711 int err, ctl_len, iov_size, total_len; 1712 1713 err = -EFAULT; 1714 if (MSG_CMSG_COMPAT & flags) { 1715 if (get_compat_msghdr(&msg_sys, msg_compat)) 1716 return -EFAULT; 1717 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1718 return -EFAULT; 1719 1720 sock = sockfd_lookup(fd, &err); 1721 if (!sock) 1722 goto out; 1723 1724 /* do not move before msg_sys is valid */ 1725 err = -EMSGSIZE; 1726 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1727 goto out_put; 1728 1729 /* Check whether to allocate the iovec area*/ 1730 err = -ENOMEM; 1731 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1732 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1733 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1734 if (!iov) 1735 goto out_put; 1736 } 1737 1738 /* This will also move the address data into kernel space */ 1739 if (MSG_CMSG_COMPAT & flags) { 1740 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1741 } else 1742 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1743 if (err < 0) 1744 goto out_freeiov; 1745 total_len = err; 1746 1747 err = -ENOBUFS; 1748 1749 if (msg_sys.msg_controllen > INT_MAX) 1750 goto out_freeiov; 1751 ctl_len = msg_sys.msg_controllen; 1752 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1753 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl)); 1754 if (err) 1755 goto out_freeiov; 1756 ctl_buf = msg_sys.msg_control; 1757 ctl_len = msg_sys.msg_controllen; 1758 } else if (ctl_len) { 1759 if (ctl_len > sizeof(ctl)) 1760 { 1761 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1762 if (ctl_buf == NULL) 1763 goto out_freeiov; 1764 } 1765 err = -EFAULT; 1766 /* 1767 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1768 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1769 * checking falls down on this. 1770 */ 1771 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1772 goto out_freectl; 1773 msg_sys.msg_control = ctl_buf; 1774 } 1775 msg_sys.msg_flags = flags; 1776 1777 if (sock->file->f_flags & O_NONBLOCK) 1778 msg_sys.msg_flags |= MSG_DONTWAIT; 1779 err = sock_sendmsg(sock, &msg_sys, total_len); 1780 1781 out_freectl: 1782 if (ctl_buf != ctl) 1783 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1784 out_freeiov: 1785 if (iov != iovstack) 1786 sock_kfree_s(sock->sk, iov, iov_size); 1787 out_put: 1788 sockfd_put(sock); 1789 out: 1790 return err; 1791 } 1792 1793 /* 1794 * BSD recvmsg interface 1795 */ 1796 1797 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1798 { 1799 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1800 struct socket *sock; 1801 struct iovec iovstack[UIO_FASTIOV]; 1802 struct iovec *iov=iovstack; 1803 struct msghdr msg_sys; 1804 unsigned long cmsg_ptr; 1805 int err, iov_size, total_len, len; 1806 1807 /* kernel mode address */ 1808 char addr[MAX_SOCK_ADDR]; 1809 1810 /* user mode address pointers */ 1811 struct sockaddr __user *uaddr; 1812 int __user *uaddr_len; 1813 1814 if (MSG_CMSG_COMPAT & flags) { 1815 if (get_compat_msghdr(&msg_sys, msg_compat)) 1816 return -EFAULT; 1817 } else 1818 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1819 return -EFAULT; 1820 1821 sock = sockfd_lookup(fd, &err); 1822 if (!sock) 1823 goto out; 1824 1825 err = -EMSGSIZE; 1826 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1827 goto out_put; 1828 1829 /* Check whether to allocate the iovec area*/ 1830 err = -ENOMEM; 1831 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1832 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1833 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1834 if (!iov) 1835 goto out_put; 1836 } 1837 1838 /* 1839 * Save the user-mode address (verify_iovec will change the 1840 * kernel msghdr to use the kernel address space) 1841 */ 1842 1843 uaddr = (void __user *) msg_sys.msg_name; 1844 uaddr_len = COMPAT_NAMELEN(msg); 1845 if (MSG_CMSG_COMPAT & flags) { 1846 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1847 } else 1848 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1849 if (err < 0) 1850 goto out_freeiov; 1851 total_len=err; 1852 1853 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1854 msg_sys.msg_flags = 0; 1855 if (MSG_CMSG_COMPAT & flags) 1856 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1857 1858 if (sock->file->f_flags & O_NONBLOCK) 1859 flags |= MSG_DONTWAIT; 1860 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1861 if (err < 0) 1862 goto out_freeiov; 1863 len = err; 1864 1865 if (uaddr != NULL) { 1866 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1867 if (err < 0) 1868 goto out_freeiov; 1869 } 1870 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1871 COMPAT_FLAGS(msg)); 1872 if (err) 1873 goto out_freeiov; 1874 if (MSG_CMSG_COMPAT & flags) 1875 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1876 &msg_compat->msg_controllen); 1877 else 1878 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1879 &msg->msg_controllen); 1880 if (err) 1881 goto out_freeiov; 1882 err = len; 1883 1884 out_freeiov: 1885 if (iov != iovstack) 1886 sock_kfree_s(sock->sk, iov, iov_size); 1887 out_put: 1888 sockfd_put(sock); 1889 out: 1890 return err; 1891 } 1892 1893 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1894 1895 /* Argument list sizes for sys_socketcall */ 1896 #define AL(x) ((x) * sizeof(unsigned long)) 1897 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1898 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1899 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1900 #undef AL 1901 1902 /* 1903 * System call vectors. 1904 * 1905 * Argument checking cleaned up. Saved 20% in size. 1906 * This function doesn't need to set the kernel lock because 1907 * it is set by the callees. 1908 */ 1909 1910 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1911 { 1912 unsigned long a[6]; 1913 unsigned long a0,a1; 1914 int err; 1915 1916 if(call<1||call>SYS_RECVMSG) 1917 return -EINVAL; 1918 1919 /* copy_from_user should be SMP safe. */ 1920 if (copy_from_user(a, args, nargs[call])) 1921 return -EFAULT; 1922 1923 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1924 if (err) 1925 return err; 1926 1927 a0=a[0]; 1928 a1=a[1]; 1929 1930 switch(call) 1931 { 1932 case SYS_SOCKET: 1933 err = sys_socket(a0,a1,a[2]); 1934 break; 1935 case SYS_BIND: 1936 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1937 break; 1938 case SYS_CONNECT: 1939 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1940 break; 1941 case SYS_LISTEN: 1942 err = sys_listen(a0,a1); 1943 break; 1944 case SYS_ACCEPT: 1945 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1946 break; 1947 case SYS_GETSOCKNAME: 1948 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1949 break; 1950 case SYS_GETPEERNAME: 1951 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 1952 break; 1953 case SYS_SOCKETPAIR: 1954 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 1955 break; 1956 case SYS_SEND: 1957 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1958 break; 1959 case SYS_SENDTO: 1960 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 1961 (struct sockaddr __user *)a[4], a[5]); 1962 break; 1963 case SYS_RECV: 1964 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 1965 break; 1966 case SYS_RECVFROM: 1967 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 1968 (struct sockaddr __user *)a[4], (int __user *)a[5]); 1969 break; 1970 case SYS_SHUTDOWN: 1971 err = sys_shutdown(a0,a1); 1972 break; 1973 case SYS_SETSOCKOPT: 1974 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 1975 break; 1976 case SYS_GETSOCKOPT: 1977 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 1978 break; 1979 case SYS_SENDMSG: 1980 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 1981 break; 1982 case SYS_RECVMSG: 1983 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 1984 break; 1985 default: 1986 err = -EINVAL; 1987 break; 1988 } 1989 return err; 1990 } 1991 1992 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 1993 1994 /* 1995 * This function is called by a protocol handler that wants to 1996 * advertise its address family, and have it linked into the 1997 * SOCKET module. 1998 */ 1999 2000 int sock_register(struct net_proto_family *ops) 2001 { 2002 int err; 2003 2004 if (ops->family >= NPROTO) { 2005 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2006 return -ENOBUFS; 2007 } 2008 net_family_write_lock(); 2009 err = -EEXIST; 2010 if (net_families[ops->family] == NULL) { 2011 net_families[ops->family]=ops; 2012 err = 0; 2013 } 2014 net_family_write_unlock(); 2015 printk(KERN_INFO "NET: Registered protocol family %d\n", 2016 ops->family); 2017 return err; 2018 } 2019 2020 /* 2021 * This function is called by a protocol handler that wants to 2022 * remove its address family, and have it unlinked from the 2023 * SOCKET module. 2024 */ 2025 2026 int sock_unregister(int family) 2027 { 2028 if (family < 0 || family >= NPROTO) 2029 return -1; 2030 2031 net_family_write_lock(); 2032 net_families[family]=NULL; 2033 net_family_write_unlock(); 2034 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2035 family); 2036 return 0; 2037 } 2038 2039 static int __init sock_init(void) 2040 { 2041 /* 2042 * Initialize sock SLAB cache. 2043 */ 2044 2045 sk_init(); 2046 2047 /* 2048 * Initialize skbuff SLAB cache 2049 */ 2050 skb_init(); 2051 2052 /* 2053 * Initialize the protocols module. 2054 */ 2055 2056 init_inodecache(); 2057 register_filesystem(&sock_fs_type); 2058 sock_mnt = kern_mount(&sock_fs_type); 2059 2060 /* The real protocol initialization is performed in later initcalls. 2061 */ 2062 2063 #ifdef CONFIG_NETFILTER 2064 netfilter_init(); 2065 #endif 2066 } 2067 2068 core_initcall(sock_init); /* early initcall */ 2069 2070 #ifdef CONFIG_PROC_FS 2071 void socket_seq_show(struct seq_file *seq) 2072 { 2073 int cpu; 2074 int counter = 0; 2075 2076 for (cpu = 0; cpu < NR_CPUS; cpu++) 2077 counter += per_cpu(sockets_in_use, cpu); 2078 2079 /* It can be negative, by the way. 8) */ 2080 if (counter < 0) 2081 counter = 0; 2082 2083 seq_printf(seq, "sockets: used %d\n", counter); 2084 } 2085 #endif /* CONFIG_PROC_FS */ 2086 2087 /* ABI emulation layers need these two */ 2088 EXPORT_SYMBOL(move_addr_to_kernel); 2089 EXPORT_SYMBOL(move_addr_to_user); 2090 EXPORT_SYMBOL(sock_create); 2091 EXPORT_SYMBOL(sock_create_kern); 2092 EXPORT_SYMBOL(sock_create_lite); 2093 EXPORT_SYMBOL(sock_map_fd); 2094 EXPORT_SYMBOL(sock_recvmsg); 2095 EXPORT_SYMBOL(sock_register); 2096 EXPORT_SYMBOL(sock_release); 2097 EXPORT_SYMBOL(sock_sendmsg); 2098 EXPORT_SYMBOL(sock_unregister); 2099 EXPORT_SYMBOL(sock_wake_async); 2100 EXPORT_SYMBOL(sockfd_lookup); 2101 EXPORT_SYMBOL(kernel_sendmsg); 2102 EXPORT_SYMBOL(kernel_recvmsg); 2103