1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 #include <linux/indirect_call_wrapper.h> 94 95 #include <linux/uaccess.h> 96 #include <asm/unistd.h> 97 98 #include <net/compat.h> 99 #include <net/wext.h> 100 #include <net/cls_cgroup.h> 101 102 #include <net/sock.h> 103 #include <linux/netfilter.h> 104 105 #include <linux/if_tun.h> 106 #include <linux/ipv6_route.h> 107 #include <linux/route.h> 108 #include <linux/sockios.h> 109 #include <net/busy_poll.h> 110 #include <linux/errqueue.h> 111 112 /* proto_ops for ipv4 and ipv6 use the same {recv,send}msg function */ 113 #if IS_ENABLED(CONFIG_INET) 114 #define INDIRECT_CALL_INET4(f, f1, ...) INDIRECT_CALL_1(f, f1, __VA_ARGS__) 115 #else 116 #define INDIRECT_CALL_INET4(f, f1, ...) f(__VA_ARGS__) 117 #endif 118 119 #ifdef CONFIG_NET_RX_BUSY_POLL 120 unsigned int sysctl_net_busy_read __read_mostly; 121 unsigned int sysctl_net_busy_poll __read_mostly; 122 #endif 123 124 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 125 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 126 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 127 128 static int sock_close(struct inode *inode, struct file *file); 129 static __poll_t sock_poll(struct file *file, 130 struct poll_table_struct *wait); 131 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 132 #ifdef CONFIG_COMPAT 133 static long compat_sock_ioctl(struct file *file, 134 unsigned int cmd, unsigned long arg); 135 #endif 136 static int sock_fasync(int fd, struct file *filp, int on); 137 static ssize_t sock_sendpage(struct file *file, struct page *page, 138 int offset, size_t size, loff_t *ppos, int more); 139 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 140 struct pipe_inode_info *pipe, size_t len, 141 unsigned int flags); 142 143 /* 144 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 145 * in the operation structures but are done directly via the socketcall() multiplexor. 146 */ 147 148 static const struct file_operations socket_file_ops = { 149 .owner = THIS_MODULE, 150 .llseek = no_llseek, 151 .read_iter = sock_read_iter, 152 .write_iter = sock_write_iter, 153 .poll = sock_poll, 154 .unlocked_ioctl = sock_ioctl, 155 #ifdef CONFIG_COMPAT 156 .compat_ioctl = compat_sock_ioctl, 157 #endif 158 .mmap = sock_mmap, 159 .release = sock_close, 160 .fasync = sock_fasync, 161 .sendpage = sock_sendpage, 162 .splice_write = generic_splice_sendpage, 163 .splice_read = sock_splice_read, 164 }; 165 166 /* 167 * The protocol list. Each protocol is registered in here. 168 */ 169 170 static DEFINE_SPINLOCK(net_family_lock); 171 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 BUG_ON(klen > sizeof(struct sockaddr_storage)); 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __ro_after_init; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 struct socket_wq *wq; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 256 if (!wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&wq->wait); 261 wq->fasync_list = NULL; 262 wq->flags = 0; 263 ei->socket.wq = wq; 264 265 ei->socket.state = SS_UNCONNECTED; 266 ei->socket.flags = 0; 267 ei->socket.ops = NULL; 268 ei->socket.sk = NULL; 269 ei->socket.file = NULL; 270 271 return &ei->vfs_inode; 272 } 273 274 static void sock_destroy_inode(struct inode *inode) 275 { 276 struct socket_alloc *ei; 277 278 ei = container_of(inode, struct socket_alloc, vfs_inode); 279 kfree_rcu(ei->socket.wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 /** 396 * sock_alloc_file - Bind a &socket to a &file 397 * @sock: socket 398 * @flags: file status flags 399 * @dname: protocol name 400 * 401 * Returns the &file bound with @sock, implicitly storing it 402 * in sock->file. If dname is %NULL, sets to "". 403 * On failure the return is a ERR pointer (see linux/err.h). 404 * This function uses GFP_KERNEL internally. 405 */ 406 407 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 408 { 409 struct file *file; 410 411 if (!dname) 412 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 413 414 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 415 O_RDWR | (flags & O_NONBLOCK), 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 sock_release(sock); 419 return file; 420 } 421 422 sock->file = file; 423 file->private_data = sock; 424 return file; 425 } 426 EXPORT_SYMBOL(sock_alloc_file); 427 428 static int sock_map_fd(struct socket *sock, int flags) 429 { 430 struct file *newfile; 431 int fd = get_unused_fd_flags(flags); 432 if (unlikely(fd < 0)) { 433 sock_release(sock); 434 return fd; 435 } 436 437 newfile = sock_alloc_file(sock, flags, NULL); 438 if (likely(!IS_ERR(newfile))) { 439 fd_install(fd, newfile); 440 return fd; 441 } 442 443 put_unused_fd(fd); 444 return PTR_ERR(newfile); 445 } 446 447 /** 448 * sock_from_file - Return the &socket bounded to @file. 449 * @file: file 450 * @err: pointer to an error code return 451 * 452 * On failure returns %NULL and assigns -ENOTSOCK to @err. 453 */ 454 455 struct socket *sock_from_file(struct file *file, int *err) 456 { 457 if (file->f_op == &socket_file_ops) 458 return file->private_data; /* set in sock_map_fd */ 459 460 *err = -ENOTSOCK; 461 return NULL; 462 } 463 EXPORT_SYMBOL(sock_from_file); 464 465 /** 466 * sockfd_lookup - Go from a file number to its socket slot 467 * @fd: file handle 468 * @err: pointer to an error code return 469 * 470 * The file handle passed in is locked and the socket it is bound 471 * to is returned. If an error occurs the err pointer is overwritten 472 * with a negative errno code and NULL is returned. The function checks 473 * for both invalid handles and passing a handle which is not a socket. 474 * 475 * On a success the socket object pointer is returned. 476 */ 477 478 struct socket *sockfd_lookup(int fd, int *err) 479 { 480 struct file *file; 481 struct socket *sock; 482 483 file = fget(fd); 484 if (!file) { 485 *err = -EBADF; 486 return NULL; 487 } 488 489 sock = sock_from_file(file, err); 490 if (!sock) 491 fput(file); 492 return sock; 493 } 494 EXPORT_SYMBOL(sockfd_lookup); 495 496 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 497 { 498 struct fd f = fdget(fd); 499 struct socket *sock; 500 501 *err = -EBADF; 502 if (f.file) { 503 sock = sock_from_file(f.file, err); 504 if (likely(sock)) { 505 *fput_needed = f.flags; 506 return sock; 507 } 508 fdput(f); 509 } 510 return NULL; 511 } 512 513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 514 size_t size) 515 { 516 ssize_t len; 517 ssize_t used = 0; 518 519 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 520 if (len < 0) 521 return len; 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 buffer += len; 527 } 528 529 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 530 used += len; 531 if (buffer) { 532 if (size < used) 533 return -ERANGE; 534 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 535 buffer += len; 536 } 537 538 return used; 539 } 540 541 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 542 { 543 int err = simple_setattr(dentry, iattr); 544 545 if (!err && (iattr->ia_valid & ATTR_UID)) { 546 struct socket *sock = SOCKET_I(d_inode(dentry)); 547 548 if (sock->sk) 549 sock->sk->sk_uid = iattr->ia_uid; 550 else 551 err = -ENOENT; 552 } 553 554 return err; 555 } 556 557 static const struct inode_operations sockfs_inode_ops = { 558 .listxattr = sockfs_listxattr, 559 .setattr = sockfs_setattr, 560 }; 561 562 /** 563 * sock_alloc - allocate a socket 564 * 565 * Allocate a new inode and socket object. The two are bound together 566 * and initialised. The socket is then returned. If we are out of inodes 567 * NULL is returned. This functions uses GFP_KERNEL internally. 568 */ 569 570 struct socket *sock_alloc(void) 571 { 572 struct inode *inode; 573 struct socket *sock; 574 575 inode = new_inode_pseudo(sock_mnt->mnt_sb); 576 if (!inode) 577 return NULL; 578 579 sock = SOCKET_I(inode); 580 581 inode->i_ino = get_next_ino(); 582 inode->i_mode = S_IFSOCK | S_IRWXUGO; 583 inode->i_uid = current_fsuid(); 584 inode->i_gid = current_fsgid(); 585 inode->i_op = &sockfs_inode_ops; 586 587 return sock; 588 } 589 EXPORT_SYMBOL(sock_alloc); 590 591 /** 592 * sock_release - close a socket 593 * @sock: socket to close 594 * 595 * The socket is released from the protocol stack if it has a release 596 * callback, and the inode is then released if the socket is bound to 597 * an inode not a file. 598 */ 599 600 static void __sock_release(struct socket *sock, struct inode *inode) 601 { 602 if (sock->ops) { 603 struct module *owner = sock->ops->owner; 604 605 if (inode) 606 inode_lock(inode); 607 sock->ops->release(sock); 608 sock->sk = NULL; 609 if (inode) 610 inode_unlock(inode); 611 sock->ops = NULL; 612 module_put(owner); 613 } 614 615 if (sock->wq->fasync_list) 616 pr_err("%s: fasync list not empty!\n", __func__); 617 618 if (!sock->file) { 619 iput(SOCK_INODE(sock)); 620 return; 621 } 622 sock->file = NULL; 623 } 624 625 void sock_release(struct socket *sock) 626 { 627 __sock_release(sock, NULL); 628 } 629 EXPORT_SYMBOL(sock_release); 630 631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 632 { 633 u8 flags = *tx_flags; 634 635 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 636 flags |= SKBTX_HW_TSTAMP; 637 638 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 639 flags |= SKBTX_SW_TSTAMP; 640 641 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 642 flags |= SKBTX_SCHED_TSTAMP; 643 644 *tx_flags = flags; 645 } 646 EXPORT_SYMBOL(__sock_tx_timestamp); 647 648 /** 649 * sock_sendmsg - send a message through @sock 650 * @sock: socket 651 * @msg: message to send 652 * 653 * Sends @msg through @sock, passing through LSM. 654 * Returns the number of bytes sent, or an error code. 655 */ 656 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 657 size_t)); 658 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 659 { 660 int ret = INDIRECT_CALL_INET4(sock->ops->sendmsg, inet_sendmsg, sock, 661 msg, msg_data_left(msg)); 662 BUG_ON(ret == -EIOCBQUEUED); 663 return ret; 664 } 665 666 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 667 { 668 int err = security_socket_sendmsg(sock, msg, 669 msg_data_left(msg)); 670 671 return err ?: sock_sendmsg_nosec(sock, msg); 672 } 673 EXPORT_SYMBOL(sock_sendmsg); 674 675 /** 676 * kernel_sendmsg - send a message through @sock (kernel-space) 677 * @sock: socket 678 * @msg: message header 679 * @vec: kernel vec 680 * @num: vec array length 681 * @size: total message data size 682 * 683 * Builds the message data with @vec and sends it through @sock. 684 * Returns the number of bytes sent, or an error code. 685 */ 686 687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 688 struct kvec *vec, size_t num, size_t size) 689 { 690 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 691 return sock_sendmsg(sock, msg); 692 } 693 EXPORT_SYMBOL(kernel_sendmsg); 694 695 /** 696 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 697 * @sk: sock 698 * @msg: message header 699 * @vec: output s/g array 700 * @num: output s/g array length 701 * @size: total message data size 702 * 703 * Builds the message data with @vec and sends it through @sock. 704 * Returns the number of bytes sent, or an error code. 705 * Caller must hold @sk. 706 */ 707 708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 709 struct kvec *vec, size_t num, size_t size) 710 { 711 struct socket *sock = sk->sk_socket; 712 713 if (!sock->ops->sendmsg_locked) 714 return sock_no_sendmsg_locked(sk, msg, size); 715 716 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 717 718 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 719 } 720 EXPORT_SYMBOL(kernel_sendmsg_locked); 721 722 static bool skb_is_err_queue(const struct sk_buff *skb) 723 { 724 /* pkt_type of skbs enqueued on the error queue are set to 725 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 726 * in recvmsg, since skbs received on a local socket will never 727 * have a pkt_type of PACKET_OUTGOING. 728 */ 729 return skb->pkt_type == PACKET_OUTGOING; 730 } 731 732 /* On transmit, software and hardware timestamps are returned independently. 733 * As the two skb clones share the hardware timestamp, which may be updated 734 * before the software timestamp is received, a hardware TX timestamp may be 735 * returned only if there is no software TX timestamp. Ignore false software 736 * timestamps, which may be made in the __sock_recv_timestamp() call when the 737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 738 * hardware timestamp. 739 */ 740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 741 { 742 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 743 } 744 745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 746 { 747 struct scm_ts_pktinfo ts_pktinfo; 748 struct net_device *orig_dev; 749 750 if (!skb_mac_header_was_set(skb)) 751 return; 752 753 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 754 755 rcu_read_lock(); 756 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 757 if (orig_dev) 758 ts_pktinfo.if_index = orig_dev->ifindex; 759 rcu_read_unlock(); 760 761 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 763 sizeof(ts_pktinfo), &ts_pktinfo); 764 } 765 766 /* 767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 768 */ 769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 770 struct sk_buff *skb) 771 { 772 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 773 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 774 struct scm_timestamping_internal tss; 775 776 int empty = 1, false_tstamp = 0; 777 struct skb_shared_hwtstamps *shhwtstamps = 778 skb_hwtstamps(skb); 779 780 /* Race occurred between timestamp enabling and packet 781 receiving. Fill in the current time for now. */ 782 if (need_software_tstamp && skb->tstamp == 0) { 783 __net_timestamp(skb); 784 false_tstamp = 1; 785 } 786 787 if (need_software_tstamp) { 788 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 789 if (new_tstamp) { 790 struct __kernel_sock_timeval tv; 791 792 skb_get_new_timestamp(skb, &tv); 793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 794 sizeof(tv), &tv); 795 } else { 796 struct __kernel_old_timeval tv; 797 798 skb_get_timestamp(skb, &tv); 799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 800 sizeof(tv), &tv); 801 } 802 } else { 803 if (new_tstamp) { 804 struct __kernel_timespec ts; 805 806 skb_get_new_timestampns(skb, &ts); 807 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 808 sizeof(ts), &ts); 809 } else { 810 struct timespec ts; 811 812 skb_get_timestampns(skb, &ts); 813 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 814 sizeof(ts), &ts); 815 } 816 } 817 } 818 819 memset(&tss, 0, sizeof(tss)); 820 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 821 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 822 empty = 0; 823 if (shhwtstamps && 824 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 825 !skb_is_swtx_tstamp(skb, false_tstamp) && 826 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 827 empty = 0; 828 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 829 !skb_is_err_queue(skb)) 830 put_ts_pktinfo(msg, skb); 831 } 832 if (!empty) { 833 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 834 put_cmsg_scm_timestamping64(msg, &tss); 835 else 836 put_cmsg_scm_timestamping(msg, &tss); 837 838 if (skb_is_err_queue(skb) && skb->len && 839 SKB_EXT_ERR(skb)->opt_stats) 840 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 841 skb->len, skb->data); 842 } 843 } 844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 845 846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 847 struct sk_buff *skb) 848 { 849 int ack; 850 851 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 852 return; 853 if (!skb->wifi_acked_valid) 854 return; 855 856 ack = skb->wifi_acked; 857 858 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 859 } 860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 861 862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 863 struct sk_buff *skb) 864 { 865 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 866 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 867 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 868 } 869 870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 871 struct sk_buff *skb) 872 { 873 sock_recv_timestamp(msg, sk, skb); 874 sock_recv_drops(msg, sk, skb); 875 } 876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 877 878 /** 879 * sock_recvmsg - receive a message from @sock 880 * @sock: socket 881 * @msg: message to receive 882 * @flags: message flags 883 * 884 * Receives @msg from @sock, passing through LSM. Returns the total number 885 * of bytes received, or an error. 886 */ 887 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 888 size_t , int )); 889 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 890 int flags) 891 { 892 return INDIRECT_CALL_INET4(sock->ops->recvmsg, inet_recvmsg, sock, msg, 893 msg_data_left(msg), flags); 894 } 895 896 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 897 { 898 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 899 900 return err ?: sock_recvmsg_nosec(sock, msg, flags); 901 } 902 EXPORT_SYMBOL(sock_recvmsg); 903 904 /** 905 * kernel_recvmsg - Receive a message from a socket (kernel space) 906 * @sock: The socket to receive the message from 907 * @msg: Received message 908 * @vec: Input s/g array for message data 909 * @num: Size of input s/g array 910 * @size: Number of bytes to read 911 * @flags: Message flags (MSG_DONTWAIT, etc...) 912 * 913 * On return the msg structure contains the scatter/gather array passed in the 914 * vec argument. The array is modified so that it consists of the unfilled 915 * portion of the original array. 916 * 917 * The returned value is the total number of bytes received, or an error. 918 */ 919 920 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 921 struct kvec *vec, size_t num, size_t size, int flags) 922 { 923 mm_segment_t oldfs = get_fs(); 924 int result; 925 926 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 927 set_fs(KERNEL_DS); 928 result = sock_recvmsg(sock, msg, flags); 929 set_fs(oldfs); 930 return result; 931 } 932 EXPORT_SYMBOL(kernel_recvmsg); 933 934 static ssize_t sock_sendpage(struct file *file, struct page *page, 935 int offset, size_t size, loff_t *ppos, int more) 936 { 937 struct socket *sock; 938 int flags; 939 940 sock = file->private_data; 941 942 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 943 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 944 flags |= more; 945 946 return kernel_sendpage(sock, page, offset, size, flags); 947 } 948 949 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 950 struct pipe_inode_info *pipe, size_t len, 951 unsigned int flags) 952 { 953 struct socket *sock = file->private_data; 954 955 if (unlikely(!sock->ops->splice_read)) 956 return generic_file_splice_read(file, ppos, pipe, len, flags); 957 958 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 959 } 960 961 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 962 { 963 struct file *file = iocb->ki_filp; 964 struct socket *sock = file->private_data; 965 struct msghdr msg = {.msg_iter = *to, 966 .msg_iocb = iocb}; 967 ssize_t res; 968 969 if (file->f_flags & O_NONBLOCK) 970 msg.msg_flags = MSG_DONTWAIT; 971 972 if (iocb->ki_pos != 0) 973 return -ESPIPE; 974 975 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 976 return 0; 977 978 res = sock_recvmsg(sock, &msg, msg.msg_flags); 979 *to = msg.msg_iter; 980 return res; 981 } 982 983 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 984 { 985 struct file *file = iocb->ki_filp; 986 struct socket *sock = file->private_data; 987 struct msghdr msg = {.msg_iter = *from, 988 .msg_iocb = iocb}; 989 ssize_t res; 990 991 if (iocb->ki_pos != 0) 992 return -ESPIPE; 993 994 if (file->f_flags & O_NONBLOCK) 995 msg.msg_flags = MSG_DONTWAIT; 996 997 if (sock->type == SOCK_SEQPACKET) 998 msg.msg_flags |= MSG_EOR; 999 1000 res = sock_sendmsg(sock, &msg); 1001 *from = msg.msg_iter; 1002 return res; 1003 } 1004 1005 /* 1006 * Atomic setting of ioctl hooks to avoid race 1007 * with module unload. 1008 */ 1009 1010 static DEFINE_MUTEX(br_ioctl_mutex); 1011 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1012 1013 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1014 { 1015 mutex_lock(&br_ioctl_mutex); 1016 br_ioctl_hook = hook; 1017 mutex_unlock(&br_ioctl_mutex); 1018 } 1019 EXPORT_SYMBOL(brioctl_set); 1020 1021 static DEFINE_MUTEX(vlan_ioctl_mutex); 1022 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1023 1024 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1025 { 1026 mutex_lock(&vlan_ioctl_mutex); 1027 vlan_ioctl_hook = hook; 1028 mutex_unlock(&vlan_ioctl_mutex); 1029 } 1030 EXPORT_SYMBOL(vlan_ioctl_set); 1031 1032 static DEFINE_MUTEX(dlci_ioctl_mutex); 1033 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1034 1035 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1036 { 1037 mutex_lock(&dlci_ioctl_mutex); 1038 dlci_ioctl_hook = hook; 1039 mutex_unlock(&dlci_ioctl_mutex); 1040 } 1041 EXPORT_SYMBOL(dlci_ioctl_set); 1042 1043 static long sock_do_ioctl(struct net *net, struct socket *sock, 1044 unsigned int cmd, unsigned long arg) 1045 { 1046 int err; 1047 void __user *argp = (void __user *)arg; 1048 1049 err = sock->ops->ioctl(sock, cmd, arg); 1050 1051 /* 1052 * If this ioctl is unknown try to hand it down 1053 * to the NIC driver. 1054 */ 1055 if (err != -ENOIOCTLCMD) 1056 return err; 1057 1058 if (cmd == SIOCGIFCONF) { 1059 struct ifconf ifc; 1060 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1061 return -EFAULT; 1062 rtnl_lock(); 1063 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1064 rtnl_unlock(); 1065 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1066 err = -EFAULT; 1067 } else { 1068 struct ifreq ifr; 1069 bool need_copyout; 1070 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1071 return -EFAULT; 1072 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1073 if (!err && need_copyout) 1074 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1075 return -EFAULT; 1076 } 1077 return err; 1078 } 1079 1080 /* 1081 * With an ioctl, arg may well be a user mode pointer, but we don't know 1082 * what to do with it - that's up to the protocol still. 1083 */ 1084 1085 /** 1086 * get_net_ns - increment the refcount of the network namespace 1087 * @ns: common namespace (net) 1088 * 1089 * Returns the net's common namespace. 1090 */ 1091 1092 struct ns_common *get_net_ns(struct ns_common *ns) 1093 { 1094 return &get_net(container_of(ns, struct net, ns))->ns; 1095 } 1096 EXPORT_SYMBOL_GPL(get_net_ns); 1097 1098 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1099 { 1100 struct socket *sock; 1101 struct sock *sk; 1102 void __user *argp = (void __user *)arg; 1103 int pid, err; 1104 struct net *net; 1105 1106 sock = file->private_data; 1107 sk = sock->sk; 1108 net = sock_net(sk); 1109 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1110 struct ifreq ifr; 1111 bool need_copyout; 1112 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1113 return -EFAULT; 1114 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1115 if (!err && need_copyout) 1116 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1117 return -EFAULT; 1118 } else 1119 #ifdef CONFIG_WEXT_CORE 1120 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1121 err = wext_handle_ioctl(net, cmd, argp); 1122 } else 1123 #endif 1124 switch (cmd) { 1125 case FIOSETOWN: 1126 case SIOCSPGRP: 1127 err = -EFAULT; 1128 if (get_user(pid, (int __user *)argp)) 1129 break; 1130 err = f_setown(sock->file, pid, 1); 1131 break; 1132 case FIOGETOWN: 1133 case SIOCGPGRP: 1134 err = put_user(f_getown(sock->file), 1135 (int __user *)argp); 1136 break; 1137 case SIOCGIFBR: 1138 case SIOCSIFBR: 1139 case SIOCBRADDBR: 1140 case SIOCBRDELBR: 1141 err = -ENOPKG; 1142 if (!br_ioctl_hook) 1143 request_module("bridge"); 1144 1145 mutex_lock(&br_ioctl_mutex); 1146 if (br_ioctl_hook) 1147 err = br_ioctl_hook(net, cmd, argp); 1148 mutex_unlock(&br_ioctl_mutex); 1149 break; 1150 case SIOCGIFVLAN: 1151 case SIOCSIFVLAN: 1152 err = -ENOPKG; 1153 if (!vlan_ioctl_hook) 1154 request_module("8021q"); 1155 1156 mutex_lock(&vlan_ioctl_mutex); 1157 if (vlan_ioctl_hook) 1158 err = vlan_ioctl_hook(net, argp); 1159 mutex_unlock(&vlan_ioctl_mutex); 1160 break; 1161 case SIOCADDDLCI: 1162 case SIOCDELDLCI: 1163 err = -ENOPKG; 1164 if (!dlci_ioctl_hook) 1165 request_module("dlci"); 1166 1167 mutex_lock(&dlci_ioctl_mutex); 1168 if (dlci_ioctl_hook) 1169 err = dlci_ioctl_hook(cmd, argp); 1170 mutex_unlock(&dlci_ioctl_mutex); 1171 break; 1172 case SIOCGSKNS: 1173 err = -EPERM; 1174 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1175 break; 1176 1177 err = open_related_ns(&net->ns, get_net_ns); 1178 break; 1179 case SIOCGSTAMP_OLD: 1180 case SIOCGSTAMPNS_OLD: 1181 if (!sock->ops->gettstamp) { 1182 err = -ENOIOCTLCMD; 1183 break; 1184 } 1185 err = sock->ops->gettstamp(sock, argp, 1186 cmd == SIOCGSTAMP_OLD, 1187 !IS_ENABLED(CONFIG_64BIT)); 1188 break; 1189 case SIOCGSTAMP_NEW: 1190 case SIOCGSTAMPNS_NEW: 1191 if (!sock->ops->gettstamp) { 1192 err = -ENOIOCTLCMD; 1193 break; 1194 } 1195 err = sock->ops->gettstamp(sock, argp, 1196 cmd == SIOCGSTAMP_NEW, 1197 false); 1198 break; 1199 default: 1200 err = sock_do_ioctl(net, sock, cmd, arg); 1201 break; 1202 } 1203 return err; 1204 } 1205 1206 /** 1207 * sock_create_lite - creates a socket 1208 * @family: protocol family (AF_INET, ...) 1209 * @type: communication type (SOCK_STREAM, ...) 1210 * @protocol: protocol (0, ...) 1211 * @res: new socket 1212 * 1213 * Creates a new socket and assigns it to @res, passing through LSM. 1214 * The new socket initialization is not complete, see kernel_accept(). 1215 * Returns 0 or an error. On failure @res is set to %NULL. 1216 * This function internally uses GFP_KERNEL. 1217 */ 1218 1219 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1220 { 1221 int err; 1222 struct socket *sock = NULL; 1223 1224 err = security_socket_create(family, type, protocol, 1); 1225 if (err) 1226 goto out; 1227 1228 sock = sock_alloc(); 1229 if (!sock) { 1230 err = -ENOMEM; 1231 goto out; 1232 } 1233 1234 sock->type = type; 1235 err = security_socket_post_create(sock, family, type, protocol, 1); 1236 if (err) 1237 goto out_release; 1238 1239 out: 1240 *res = sock; 1241 return err; 1242 out_release: 1243 sock_release(sock); 1244 sock = NULL; 1245 goto out; 1246 } 1247 EXPORT_SYMBOL(sock_create_lite); 1248 1249 /* No kernel lock held - perfect */ 1250 static __poll_t sock_poll(struct file *file, poll_table *wait) 1251 { 1252 struct socket *sock = file->private_data; 1253 __poll_t events = poll_requested_events(wait), flag = 0; 1254 1255 if (!sock->ops->poll) 1256 return 0; 1257 1258 if (sk_can_busy_loop(sock->sk)) { 1259 /* poll once if requested by the syscall */ 1260 if (events & POLL_BUSY_LOOP) 1261 sk_busy_loop(sock->sk, 1); 1262 1263 /* if this socket can poll_ll, tell the system call */ 1264 flag = POLL_BUSY_LOOP; 1265 } 1266 1267 return sock->ops->poll(file, sock, wait) | flag; 1268 } 1269 1270 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1271 { 1272 struct socket *sock = file->private_data; 1273 1274 return sock->ops->mmap(file, sock, vma); 1275 } 1276 1277 static int sock_close(struct inode *inode, struct file *filp) 1278 { 1279 __sock_release(SOCKET_I(inode), inode); 1280 return 0; 1281 } 1282 1283 /* 1284 * Update the socket async list 1285 * 1286 * Fasync_list locking strategy. 1287 * 1288 * 1. fasync_list is modified only under process context socket lock 1289 * i.e. under semaphore. 1290 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1291 * or under socket lock 1292 */ 1293 1294 static int sock_fasync(int fd, struct file *filp, int on) 1295 { 1296 struct socket *sock = filp->private_data; 1297 struct sock *sk = sock->sk; 1298 struct socket_wq *wq; 1299 1300 if (sk == NULL) 1301 return -EINVAL; 1302 1303 lock_sock(sk); 1304 wq = sock->wq; 1305 fasync_helper(fd, filp, on, &wq->fasync_list); 1306 1307 if (!wq->fasync_list) 1308 sock_reset_flag(sk, SOCK_FASYNC); 1309 else 1310 sock_set_flag(sk, SOCK_FASYNC); 1311 1312 release_sock(sk); 1313 return 0; 1314 } 1315 1316 /* This function may be called only under rcu_lock */ 1317 1318 int sock_wake_async(struct socket_wq *wq, int how, int band) 1319 { 1320 if (!wq || !wq->fasync_list) 1321 return -1; 1322 1323 switch (how) { 1324 case SOCK_WAKE_WAITD: 1325 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1326 break; 1327 goto call_kill; 1328 case SOCK_WAKE_SPACE: 1329 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1330 break; 1331 /* fall through */ 1332 case SOCK_WAKE_IO: 1333 call_kill: 1334 kill_fasync(&wq->fasync_list, SIGIO, band); 1335 break; 1336 case SOCK_WAKE_URG: 1337 kill_fasync(&wq->fasync_list, SIGURG, band); 1338 } 1339 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(sock_wake_async); 1343 1344 /** 1345 * __sock_create - creates a socket 1346 * @net: net namespace 1347 * @family: protocol family (AF_INET, ...) 1348 * @type: communication type (SOCK_STREAM, ...) 1349 * @protocol: protocol (0, ...) 1350 * @res: new socket 1351 * @kern: boolean for kernel space sockets 1352 * 1353 * Creates a new socket and assigns it to @res, passing through LSM. 1354 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1355 * be set to true if the socket resides in kernel space. 1356 * This function internally uses GFP_KERNEL. 1357 */ 1358 1359 int __sock_create(struct net *net, int family, int type, int protocol, 1360 struct socket **res, int kern) 1361 { 1362 int err; 1363 struct socket *sock; 1364 const struct net_proto_family *pf; 1365 1366 /* 1367 * Check protocol is in range 1368 */ 1369 if (family < 0 || family >= NPROTO) 1370 return -EAFNOSUPPORT; 1371 if (type < 0 || type >= SOCK_MAX) 1372 return -EINVAL; 1373 1374 /* Compatibility. 1375 1376 This uglymoron is moved from INET layer to here to avoid 1377 deadlock in module load. 1378 */ 1379 if (family == PF_INET && type == SOCK_PACKET) { 1380 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1381 current->comm); 1382 family = PF_PACKET; 1383 } 1384 1385 err = security_socket_create(family, type, protocol, kern); 1386 if (err) 1387 return err; 1388 1389 /* 1390 * Allocate the socket and allow the family to set things up. if 1391 * the protocol is 0, the family is instructed to select an appropriate 1392 * default. 1393 */ 1394 sock = sock_alloc(); 1395 if (!sock) { 1396 net_warn_ratelimited("socket: no more sockets\n"); 1397 return -ENFILE; /* Not exactly a match, but its the 1398 closest posix thing */ 1399 } 1400 1401 sock->type = type; 1402 1403 #ifdef CONFIG_MODULES 1404 /* Attempt to load a protocol module if the find failed. 1405 * 1406 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1407 * requested real, full-featured networking support upon configuration. 1408 * Otherwise module support will break! 1409 */ 1410 if (rcu_access_pointer(net_families[family]) == NULL) 1411 request_module("net-pf-%d", family); 1412 #endif 1413 1414 rcu_read_lock(); 1415 pf = rcu_dereference(net_families[family]); 1416 err = -EAFNOSUPPORT; 1417 if (!pf) 1418 goto out_release; 1419 1420 /* 1421 * We will call the ->create function, that possibly is in a loadable 1422 * module, so we have to bump that loadable module refcnt first. 1423 */ 1424 if (!try_module_get(pf->owner)) 1425 goto out_release; 1426 1427 /* Now protected by module ref count */ 1428 rcu_read_unlock(); 1429 1430 err = pf->create(net, sock, protocol, kern); 1431 if (err < 0) 1432 goto out_module_put; 1433 1434 /* 1435 * Now to bump the refcnt of the [loadable] module that owns this 1436 * socket at sock_release time we decrement its refcnt. 1437 */ 1438 if (!try_module_get(sock->ops->owner)) 1439 goto out_module_busy; 1440 1441 /* 1442 * Now that we're done with the ->create function, the [loadable] 1443 * module can have its refcnt decremented 1444 */ 1445 module_put(pf->owner); 1446 err = security_socket_post_create(sock, family, type, protocol, kern); 1447 if (err) 1448 goto out_sock_release; 1449 *res = sock; 1450 1451 return 0; 1452 1453 out_module_busy: 1454 err = -EAFNOSUPPORT; 1455 out_module_put: 1456 sock->ops = NULL; 1457 module_put(pf->owner); 1458 out_sock_release: 1459 sock_release(sock); 1460 return err; 1461 1462 out_release: 1463 rcu_read_unlock(); 1464 goto out_sock_release; 1465 } 1466 EXPORT_SYMBOL(__sock_create); 1467 1468 /** 1469 * sock_create - creates a socket 1470 * @family: protocol family (AF_INET, ...) 1471 * @type: communication type (SOCK_STREAM, ...) 1472 * @protocol: protocol (0, ...) 1473 * @res: new socket 1474 * 1475 * A wrapper around __sock_create(). 1476 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1477 */ 1478 1479 int sock_create(int family, int type, int protocol, struct socket **res) 1480 { 1481 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1482 } 1483 EXPORT_SYMBOL(sock_create); 1484 1485 /** 1486 * sock_create_kern - creates a socket (kernel space) 1487 * @net: net namespace 1488 * @family: protocol family (AF_INET, ...) 1489 * @type: communication type (SOCK_STREAM, ...) 1490 * @protocol: protocol (0, ...) 1491 * @res: new socket 1492 * 1493 * A wrapper around __sock_create(). 1494 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1495 */ 1496 1497 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1498 { 1499 return __sock_create(net, family, type, protocol, res, 1); 1500 } 1501 EXPORT_SYMBOL(sock_create_kern); 1502 1503 int __sys_socket(int family, int type, int protocol) 1504 { 1505 int retval; 1506 struct socket *sock; 1507 int flags; 1508 1509 /* Check the SOCK_* constants for consistency. */ 1510 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1511 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1512 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1513 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1514 1515 flags = type & ~SOCK_TYPE_MASK; 1516 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1517 return -EINVAL; 1518 type &= SOCK_TYPE_MASK; 1519 1520 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1521 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1522 1523 retval = sock_create(family, type, protocol, &sock); 1524 if (retval < 0) 1525 return retval; 1526 1527 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1528 } 1529 1530 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1531 { 1532 return __sys_socket(family, type, protocol); 1533 } 1534 1535 /* 1536 * Create a pair of connected sockets. 1537 */ 1538 1539 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1540 { 1541 struct socket *sock1, *sock2; 1542 int fd1, fd2, err; 1543 struct file *newfile1, *newfile2; 1544 int flags; 1545 1546 flags = type & ~SOCK_TYPE_MASK; 1547 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1548 return -EINVAL; 1549 type &= SOCK_TYPE_MASK; 1550 1551 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1552 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1553 1554 /* 1555 * reserve descriptors and make sure we won't fail 1556 * to return them to userland. 1557 */ 1558 fd1 = get_unused_fd_flags(flags); 1559 if (unlikely(fd1 < 0)) 1560 return fd1; 1561 1562 fd2 = get_unused_fd_flags(flags); 1563 if (unlikely(fd2 < 0)) { 1564 put_unused_fd(fd1); 1565 return fd2; 1566 } 1567 1568 err = put_user(fd1, &usockvec[0]); 1569 if (err) 1570 goto out; 1571 1572 err = put_user(fd2, &usockvec[1]); 1573 if (err) 1574 goto out; 1575 1576 /* 1577 * Obtain the first socket and check if the underlying protocol 1578 * supports the socketpair call. 1579 */ 1580 1581 err = sock_create(family, type, protocol, &sock1); 1582 if (unlikely(err < 0)) 1583 goto out; 1584 1585 err = sock_create(family, type, protocol, &sock2); 1586 if (unlikely(err < 0)) { 1587 sock_release(sock1); 1588 goto out; 1589 } 1590 1591 err = security_socket_socketpair(sock1, sock2); 1592 if (unlikely(err)) { 1593 sock_release(sock2); 1594 sock_release(sock1); 1595 goto out; 1596 } 1597 1598 err = sock1->ops->socketpair(sock1, sock2); 1599 if (unlikely(err < 0)) { 1600 sock_release(sock2); 1601 sock_release(sock1); 1602 goto out; 1603 } 1604 1605 newfile1 = sock_alloc_file(sock1, flags, NULL); 1606 if (IS_ERR(newfile1)) { 1607 err = PTR_ERR(newfile1); 1608 sock_release(sock2); 1609 goto out; 1610 } 1611 1612 newfile2 = sock_alloc_file(sock2, flags, NULL); 1613 if (IS_ERR(newfile2)) { 1614 err = PTR_ERR(newfile2); 1615 fput(newfile1); 1616 goto out; 1617 } 1618 1619 audit_fd_pair(fd1, fd2); 1620 1621 fd_install(fd1, newfile1); 1622 fd_install(fd2, newfile2); 1623 return 0; 1624 1625 out: 1626 put_unused_fd(fd2); 1627 put_unused_fd(fd1); 1628 return err; 1629 } 1630 1631 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1632 int __user *, usockvec) 1633 { 1634 return __sys_socketpair(family, type, protocol, usockvec); 1635 } 1636 1637 /* 1638 * Bind a name to a socket. Nothing much to do here since it's 1639 * the protocol's responsibility to handle the local address. 1640 * 1641 * We move the socket address to kernel space before we call 1642 * the protocol layer (having also checked the address is ok). 1643 */ 1644 1645 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1646 { 1647 struct socket *sock; 1648 struct sockaddr_storage address; 1649 int err, fput_needed; 1650 1651 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1652 if (sock) { 1653 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1654 if (!err) { 1655 err = security_socket_bind(sock, 1656 (struct sockaddr *)&address, 1657 addrlen); 1658 if (!err) 1659 err = sock->ops->bind(sock, 1660 (struct sockaddr *) 1661 &address, addrlen); 1662 } 1663 fput_light(sock->file, fput_needed); 1664 } 1665 return err; 1666 } 1667 1668 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1669 { 1670 return __sys_bind(fd, umyaddr, addrlen); 1671 } 1672 1673 /* 1674 * Perform a listen. Basically, we allow the protocol to do anything 1675 * necessary for a listen, and if that works, we mark the socket as 1676 * ready for listening. 1677 */ 1678 1679 int __sys_listen(int fd, int backlog) 1680 { 1681 struct socket *sock; 1682 int err, fput_needed; 1683 int somaxconn; 1684 1685 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1686 if (sock) { 1687 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1688 if ((unsigned int)backlog > somaxconn) 1689 backlog = somaxconn; 1690 1691 err = security_socket_listen(sock, backlog); 1692 if (!err) 1693 err = sock->ops->listen(sock, backlog); 1694 1695 fput_light(sock->file, fput_needed); 1696 } 1697 return err; 1698 } 1699 1700 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1701 { 1702 return __sys_listen(fd, backlog); 1703 } 1704 1705 /* 1706 * For accept, we attempt to create a new socket, set up the link 1707 * with the client, wake up the client, then return the new 1708 * connected fd. We collect the address of the connector in kernel 1709 * space and move it to user at the very end. This is unclean because 1710 * we open the socket then return an error. 1711 * 1712 * 1003.1g adds the ability to recvmsg() to query connection pending 1713 * status to recvmsg. We need to add that support in a way thats 1714 * clean when we restructure accept also. 1715 */ 1716 1717 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1718 int __user *upeer_addrlen, int flags) 1719 { 1720 struct socket *sock, *newsock; 1721 struct file *newfile; 1722 int err, len, newfd, fput_needed; 1723 struct sockaddr_storage address; 1724 1725 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1726 return -EINVAL; 1727 1728 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1729 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1730 1731 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1732 if (!sock) 1733 goto out; 1734 1735 err = -ENFILE; 1736 newsock = sock_alloc(); 1737 if (!newsock) 1738 goto out_put; 1739 1740 newsock->type = sock->type; 1741 newsock->ops = sock->ops; 1742 1743 /* 1744 * We don't need try_module_get here, as the listening socket (sock) 1745 * has the protocol module (sock->ops->owner) held. 1746 */ 1747 __module_get(newsock->ops->owner); 1748 1749 newfd = get_unused_fd_flags(flags); 1750 if (unlikely(newfd < 0)) { 1751 err = newfd; 1752 sock_release(newsock); 1753 goto out_put; 1754 } 1755 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1756 if (IS_ERR(newfile)) { 1757 err = PTR_ERR(newfile); 1758 put_unused_fd(newfd); 1759 goto out_put; 1760 } 1761 1762 err = security_socket_accept(sock, newsock); 1763 if (err) 1764 goto out_fd; 1765 1766 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1767 if (err < 0) 1768 goto out_fd; 1769 1770 if (upeer_sockaddr) { 1771 len = newsock->ops->getname(newsock, 1772 (struct sockaddr *)&address, 2); 1773 if (len < 0) { 1774 err = -ECONNABORTED; 1775 goto out_fd; 1776 } 1777 err = move_addr_to_user(&address, 1778 len, upeer_sockaddr, upeer_addrlen); 1779 if (err < 0) 1780 goto out_fd; 1781 } 1782 1783 /* File flags are not inherited via accept() unlike another OSes. */ 1784 1785 fd_install(newfd, newfile); 1786 err = newfd; 1787 1788 out_put: 1789 fput_light(sock->file, fput_needed); 1790 out: 1791 return err; 1792 out_fd: 1793 fput(newfile); 1794 put_unused_fd(newfd); 1795 goto out_put; 1796 } 1797 1798 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1799 int __user *, upeer_addrlen, int, flags) 1800 { 1801 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1802 } 1803 1804 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1805 int __user *, upeer_addrlen) 1806 { 1807 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1808 } 1809 1810 /* 1811 * Attempt to connect to a socket with the server address. The address 1812 * is in user space so we verify it is OK and move it to kernel space. 1813 * 1814 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1815 * break bindings 1816 * 1817 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1818 * other SEQPACKET protocols that take time to connect() as it doesn't 1819 * include the -EINPROGRESS status for such sockets. 1820 */ 1821 1822 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1823 { 1824 struct socket *sock; 1825 struct sockaddr_storage address; 1826 int err, fput_needed; 1827 1828 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1829 if (!sock) 1830 goto out; 1831 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1832 if (err < 0) 1833 goto out_put; 1834 1835 err = 1836 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1837 if (err) 1838 goto out_put; 1839 1840 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1841 sock->file->f_flags); 1842 out_put: 1843 fput_light(sock->file, fput_needed); 1844 out: 1845 return err; 1846 } 1847 1848 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1849 int, addrlen) 1850 { 1851 return __sys_connect(fd, uservaddr, addrlen); 1852 } 1853 1854 /* 1855 * Get the local address ('name') of a socket object. Move the obtained 1856 * name to user space. 1857 */ 1858 1859 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1860 int __user *usockaddr_len) 1861 { 1862 struct socket *sock; 1863 struct sockaddr_storage address; 1864 int err, fput_needed; 1865 1866 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1867 if (!sock) 1868 goto out; 1869 1870 err = security_socket_getsockname(sock); 1871 if (err) 1872 goto out_put; 1873 1874 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1875 if (err < 0) 1876 goto out_put; 1877 /* "err" is actually length in this case */ 1878 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1879 1880 out_put: 1881 fput_light(sock->file, fput_needed); 1882 out: 1883 return err; 1884 } 1885 1886 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1887 int __user *, usockaddr_len) 1888 { 1889 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1890 } 1891 1892 /* 1893 * Get the remote address ('name') of a socket object. Move the obtained 1894 * name to user space. 1895 */ 1896 1897 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1898 int __user *usockaddr_len) 1899 { 1900 struct socket *sock; 1901 struct sockaddr_storage address; 1902 int err, fput_needed; 1903 1904 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1905 if (sock != NULL) { 1906 err = security_socket_getpeername(sock); 1907 if (err) { 1908 fput_light(sock->file, fput_needed); 1909 return err; 1910 } 1911 1912 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1913 if (err >= 0) 1914 /* "err" is actually length in this case */ 1915 err = move_addr_to_user(&address, err, usockaddr, 1916 usockaddr_len); 1917 fput_light(sock->file, fput_needed); 1918 } 1919 return err; 1920 } 1921 1922 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1923 int __user *, usockaddr_len) 1924 { 1925 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1926 } 1927 1928 /* 1929 * Send a datagram to a given address. We move the address into kernel 1930 * space and check the user space data area is readable before invoking 1931 * the protocol. 1932 */ 1933 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1934 struct sockaddr __user *addr, int addr_len) 1935 { 1936 struct socket *sock; 1937 struct sockaddr_storage address; 1938 int err; 1939 struct msghdr msg; 1940 struct iovec iov; 1941 int fput_needed; 1942 1943 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1944 if (unlikely(err)) 1945 return err; 1946 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1947 if (!sock) 1948 goto out; 1949 1950 msg.msg_name = NULL; 1951 msg.msg_control = NULL; 1952 msg.msg_controllen = 0; 1953 msg.msg_namelen = 0; 1954 if (addr) { 1955 err = move_addr_to_kernel(addr, addr_len, &address); 1956 if (err < 0) 1957 goto out_put; 1958 msg.msg_name = (struct sockaddr *)&address; 1959 msg.msg_namelen = addr_len; 1960 } 1961 if (sock->file->f_flags & O_NONBLOCK) 1962 flags |= MSG_DONTWAIT; 1963 msg.msg_flags = flags; 1964 err = sock_sendmsg(sock, &msg); 1965 1966 out_put: 1967 fput_light(sock->file, fput_needed); 1968 out: 1969 return err; 1970 } 1971 1972 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1973 unsigned int, flags, struct sockaddr __user *, addr, 1974 int, addr_len) 1975 { 1976 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1977 } 1978 1979 /* 1980 * Send a datagram down a socket. 1981 */ 1982 1983 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1984 unsigned int, flags) 1985 { 1986 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1987 } 1988 1989 /* 1990 * Receive a frame from the socket and optionally record the address of the 1991 * sender. We verify the buffers are writable and if needed move the 1992 * sender address from kernel to user space. 1993 */ 1994 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1995 struct sockaddr __user *addr, int __user *addr_len) 1996 { 1997 struct socket *sock; 1998 struct iovec iov; 1999 struct msghdr msg; 2000 struct sockaddr_storage address; 2001 int err, err2; 2002 int fput_needed; 2003 2004 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2005 if (unlikely(err)) 2006 return err; 2007 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2008 if (!sock) 2009 goto out; 2010 2011 msg.msg_control = NULL; 2012 msg.msg_controllen = 0; 2013 /* Save some cycles and don't copy the address if not needed */ 2014 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2015 /* We assume all kernel code knows the size of sockaddr_storage */ 2016 msg.msg_namelen = 0; 2017 msg.msg_iocb = NULL; 2018 msg.msg_flags = 0; 2019 if (sock->file->f_flags & O_NONBLOCK) 2020 flags |= MSG_DONTWAIT; 2021 err = sock_recvmsg(sock, &msg, flags); 2022 2023 if (err >= 0 && addr != NULL) { 2024 err2 = move_addr_to_user(&address, 2025 msg.msg_namelen, addr, addr_len); 2026 if (err2 < 0) 2027 err = err2; 2028 } 2029 2030 fput_light(sock->file, fput_needed); 2031 out: 2032 return err; 2033 } 2034 2035 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2036 unsigned int, flags, struct sockaddr __user *, addr, 2037 int __user *, addr_len) 2038 { 2039 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2040 } 2041 2042 /* 2043 * Receive a datagram from a socket. 2044 */ 2045 2046 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2047 unsigned int, flags) 2048 { 2049 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2050 } 2051 2052 /* 2053 * Set a socket option. Because we don't know the option lengths we have 2054 * to pass the user mode parameter for the protocols to sort out. 2055 */ 2056 2057 static int __sys_setsockopt(int fd, int level, int optname, 2058 char __user *optval, int optlen) 2059 { 2060 int err, fput_needed; 2061 struct socket *sock; 2062 2063 if (optlen < 0) 2064 return -EINVAL; 2065 2066 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2067 if (sock != NULL) { 2068 err = security_socket_setsockopt(sock, level, optname); 2069 if (err) 2070 goto out_put; 2071 2072 if (level == SOL_SOCKET) 2073 err = 2074 sock_setsockopt(sock, level, optname, optval, 2075 optlen); 2076 else 2077 err = 2078 sock->ops->setsockopt(sock, level, optname, optval, 2079 optlen); 2080 out_put: 2081 fput_light(sock->file, fput_needed); 2082 } 2083 return err; 2084 } 2085 2086 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2087 char __user *, optval, int, optlen) 2088 { 2089 return __sys_setsockopt(fd, level, optname, optval, optlen); 2090 } 2091 2092 /* 2093 * Get a socket option. Because we don't know the option lengths we have 2094 * to pass a user mode parameter for the protocols to sort out. 2095 */ 2096 2097 static int __sys_getsockopt(int fd, int level, int optname, 2098 char __user *optval, int __user *optlen) 2099 { 2100 int err, fput_needed; 2101 struct socket *sock; 2102 2103 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2104 if (sock != NULL) { 2105 err = security_socket_getsockopt(sock, level, optname); 2106 if (err) 2107 goto out_put; 2108 2109 if (level == SOL_SOCKET) 2110 err = 2111 sock_getsockopt(sock, level, optname, optval, 2112 optlen); 2113 else 2114 err = 2115 sock->ops->getsockopt(sock, level, optname, optval, 2116 optlen); 2117 out_put: 2118 fput_light(sock->file, fput_needed); 2119 } 2120 return err; 2121 } 2122 2123 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2124 char __user *, optval, int __user *, optlen) 2125 { 2126 return __sys_getsockopt(fd, level, optname, optval, optlen); 2127 } 2128 2129 /* 2130 * Shutdown a socket. 2131 */ 2132 2133 int __sys_shutdown(int fd, int how) 2134 { 2135 int err, fput_needed; 2136 struct socket *sock; 2137 2138 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2139 if (sock != NULL) { 2140 err = security_socket_shutdown(sock, how); 2141 if (!err) 2142 err = sock->ops->shutdown(sock, how); 2143 fput_light(sock->file, fput_needed); 2144 } 2145 return err; 2146 } 2147 2148 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2149 { 2150 return __sys_shutdown(fd, how); 2151 } 2152 2153 /* A couple of helpful macros for getting the address of the 32/64 bit 2154 * fields which are the same type (int / unsigned) on our platforms. 2155 */ 2156 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2157 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2158 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2159 2160 struct used_address { 2161 struct sockaddr_storage name; 2162 unsigned int name_len; 2163 }; 2164 2165 static int copy_msghdr_from_user(struct msghdr *kmsg, 2166 struct user_msghdr __user *umsg, 2167 struct sockaddr __user **save_addr, 2168 struct iovec **iov) 2169 { 2170 struct user_msghdr msg; 2171 ssize_t err; 2172 2173 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2174 return -EFAULT; 2175 2176 kmsg->msg_control = (void __force *)msg.msg_control; 2177 kmsg->msg_controllen = msg.msg_controllen; 2178 kmsg->msg_flags = msg.msg_flags; 2179 2180 kmsg->msg_namelen = msg.msg_namelen; 2181 if (!msg.msg_name) 2182 kmsg->msg_namelen = 0; 2183 2184 if (kmsg->msg_namelen < 0) 2185 return -EINVAL; 2186 2187 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2188 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2189 2190 if (save_addr) 2191 *save_addr = msg.msg_name; 2192 2193 if (msg.msg_name && kmsg->msg_namelen) { 2194 if (!save_addr) { 2195 err = move_addr_to_kernel(msg.msg_name, 2196 kmsg->msg_namelen, 2197 kmsg->msg_name); 2198 if (err < 0) 2199 return err; 2200 } 2201 } else { 2202 kmsg->msg_name = NULL; 2203 kmsg->msg_namelen = 0; 2204 } 2205 2206 if (msg.msg_iovlen > UIO_MAXIOV) 2207 return -EMSGSIZE; 2208 2209 kmsg->msg_iocb = NULL; 2210 2211 return import_iovec(save_addr ? READ : WRITE, 2212 msg.msg_iov, msg.msg_iovlen, 2213 UIO_FASTIOV, iov, &kmsg->msg_iter); 2214 } 2215 2216 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2217 struct msghdr *msg_sys, unsigned int flags, 2218 struct used_address *used_address, 2219 unsigned int allowed_msghdr_flags) 2220 { 2221 struct compat_msghdr __user *msg_compat = 2222 (struct compat_msghdr __user *)msg; 2223 struct sockaddr_storage address; 2224 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2225 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2226 __aligned(sizeof(__kernel_size_t)); 2227 /* 20 is size of ipv6_pktinfo */ 2228 unsigned char *ctl_buf = ctl; 2229 int ctl_len; 2230 ssize_t err; 2231 2232 msg_sys->msg_name = &address; 2233 2234 if (MSG_CMSG_COMPAT & flags) 2235 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2236 else 2237 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2238 if (err < 0) 2239 return err; 2240 2241 err = -ENOBUFS; 2242 2243 if (msg_sys->msg_controllen > INT_MAX) 2244 goto out_freeiov; 2245 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2246 ctl_len = msg_sys->msg_controllen; 2247 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2248 err = 2249 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2250 sizeof(ctl)); 2251 if (err) 2252 goto out_freeiov; 2253 ctl_buf = msg_sys->msg_control; 2254 ctl_len = msg_sys->msg_controllen; 2255 } else if (ctl_len) { 2256 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2257 CMSG_ALIGN(sizeof(struct cmsghdr))); 2258 if (ctl_len > sizeof(ctl)) { 2259 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2260 if (ctl_buf == NULL) 2261 goto out_freeiov; 2262 } 2263 err = -EFAULT; 2264 /* 2265 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2266 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2267 * checking falls down on this. 2268 */ 2269 if (copy_from_user(ctl_buf, 2270 (void __user __force *)msg_sys->msg_control, 2271 ctl_len)) 2272 goto out_freectl; 2273 msg_sys->msg_control = ctl_buf; 2274 } 2275 msg_sys->msg_flags = flags; 2276 2277 if (sock->file->f_flags & O_NONBLOCK) 2278 msg_sys->msg_flags |= MSG_DONTWAIT; 2279 /* 2280 * If this is sendmmsg() and current destination address is same as 2281 * previously succeeded address, omit asking LSM's decision. 2282 * used_address->name_len is initialized to UINT_MAX so that the first 2283 * destination address never matches. 2284 */ 2285 if (used_address && msg_sys->msg_name && 2286 used_address->name_len == msg_sys->msg_namelen && 2287 !memcmp(&used_address->name, msg_sys->msg_name, 2288 used_address->name_len)) { 2289 err = sock_sendmsg_nosec(sock, msg_sys); 2290 goto out_freectl; 2291 } 2292 err = sock_sendmsg(sock, msg_sys); 2293 /* 2294 * If this is sendmmsg() and sending to current destination address was 2295 * successful, remember it. 2296 */ 2297 if (used_address && err >= 0) { 2298 used_address->name_len = msg_sys->msg_namelen; 2299 if (msg_sys->msg_name) 2300 memcpy(&used_address->name, msg_sys->msg_name, 2301 used_address->name_len); 2302 } 2303 2304 out_freectl: 2305 if (ctl_buf != ctl) 2306 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2307 out_freeiov: 2308 kfree(iov); 2309 return err; 2310 } 2311 2312 /* 2313 * BSD sendmsg interface 2314 */ 2315 2316 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2317 bool forbid_cmsg_compat) 2318 { 2319 int fput_needed, err; 2320 struct msghdr msg_sys; 2321 struct socket *sock; 2322 2323 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2324 return -EINVAL; 2325 2326 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2327 if (!sock) 2328 goto out; 2329 2330 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2331 2332 fput_light(sock->file, fput_needed); 2333 out: 2334 return err; 2335 } 2336 2337 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2338 { 2339 return __sys_sendmsg(fd, msg, flags, true); 2340 } 2341 2342 /* 2343 * Linux sendmmsg interface 2344 */ 2345 2346 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2347 unsigned int flags, bool forbid_cmsg_compat) 2348 { 2349 int fput_needed, err, datagrams; 2350 struct socket *sock; 2351 struct mmsghdr __user *entry; 2352 struct compat_mmsghdr __user *compat_entry; 2353 struct msghdr msg_sys; 2354 struct used_address used_address; 2355 unsigned int oflags = flags; 2356 2357 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2358 return -EINVAL; 2359 2360 if (vlen > UIO_MAXIOV) 2361 vlen = UIO_MAXIOV; 2362 2363 datagrams = 0; 2364 2365 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2366 if (!sock) 2367 return err; 2368 2369 used_address.name_len = UINT_MAX; 2370 entry = mmsg; 2371 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2372 err = 0; 2373 flags |= MSG_BATCH; 2374 2375 while (datagrams < vlen) { 2376 if (datagrams == vlen - 1) 2377 flags = oflags; 2378 2379 if (MSG_CMSG_COMPAT & flags) { 2380 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2381 &msg_sys, flags, &used_address, MSG_EOR); 2382 if (err < 0) 2383 break; 2384 err = __put_user(err, &compat_entry->msg_len); 2385 ++compat_entry; 2386 } else { 2387 err = ___sys_sendmsg(sock, 2388 (struct user_msghdr __user *)entry, 2389 &msg_sys, flags, &used_address, MSG_EOR); 2390 if (err < 0) 2391 break; 2392 err = put_user(err, &entry->msg_len); 2393 ++entry; 2394 } 2395 2396 if (err) 2397 break; 2398 ++datagrams; 2399 if (msg_data_left(&msg_sys)) 2400 break; 2401 cond_resched(); 2402 } 2403 2404 fput_light(sock->file, fput_needed); 2405 2406 /* We only return an error if no datagrams were able to be sent */ 2407 if (datagrams != 0) 2408 return datagrams; 2409 2410 return err; 2411 } 2412 2413 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2414 unsigned int, vlen, unsigned int, flags) 2415 { 2416 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2417 } 2418 2419 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2420 struct msghdr *msg_sys, unsigned int flags, int nosec) 2421 { 2422 struct compat_msghdr __user *msg_compat = 2423 (struct compat_msghdr __user *)msg; 2424 struct iovec iovstack[UIO_FASTIOV]; 2425 struct iovec *iov = iovstack; 2426 unsigned long cmsg_ptr; 2427 int len; 2428 ssize_t err; 2429 2430 /* kernel mode address */ 2431 struct sockaddr_storage addr; 2432 2433 /* user mode address pointers */ 2434 struct sockaddr __user *uaddr; 2435 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2436 2437 msg_sys->msg_name = &addr; 2438 2439 if (MSG_CMSG_COMPAT & flags) 2440 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2441 else 2442 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2443 if (err < 0) 2444 return err; 2445 2446 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2447 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2448 2449 /* We assume all kernel code knows the size of sockaddr_storage */ 2450 msg_sys->msg_namelen = 0; 2451 2452 if (sock->file->f_flags & O_NONBLOCK) 2453 flags |= MSG_DONTWAIT; 2454 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2455 if (err < 0) 2456 goto out_freeiov; 2457 len = err; 2458 2459 if (uaddr != NULL) { 2460 err = move_addr_to_user(&addr, 2461 msg_sys->msg_namelen, uaddr, 2462 uaddr_len); 2463 if (err < 0) 2464 goto out_freeiov; 2465 } 2466 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2467 COMPAT_FLAGS(msg)); 2468 if (err) 2469 goto out_freeiov; 2470 if (MSG_CMSG_COMPAT & flags) 2471 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2472 &msg_compat->msg_controllen); 2473 else 2474 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2475 &msg->msg_controllen); 2476 if (err) 2477 goto out_freeiov; 2478 err = len; 2479 2480 out_freeiov: 2481 kfree(iov); 2482 return err; 2483 } 2484 2485 /* 2486 * BSD recvmsg interface 2487 */ 2488 2489 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2490 bool forbid_cmsg_compat) 2491 { 2492 int fput_needed, err; 2493 struct msghdr msg_sys; 2494 struct socket *sock; 2495 2496 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2497 return -EINVAL; 2498 2499 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2500 if (!sock) 2501 goto out; 2502 2503 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2504 2505 fput_light(sock->file, fput_needed); 2506 out: 2507 return err; 2508 } 2509 2510 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2511 unsigned int, flags) 2512 { 2513 return __sys_recvmsg(fd, msg, flags, true); 2514 } 2515 2516 /* 2517 * Linux recvmmsg interface 2518 */ 2519 2520 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2521 unsigned int vlen, unsigned int flags, 2522 struct timespec64 *timeout) 2523 { 2524 int fput_needed, err, datagrams; 2525 struct socket *sock; 2526 struct mmsghdr __user *entry; 2527 struct compat_mmsghdr __user *compat_entry; 2528 struct msghdr msg_sys; 2529 struct timespec64 end_time; 2530 struct timespec64 timeout64; 2531 2532 if (timeout && 2533 poll_select_set_timeout(&end_time, timeout->tv_sec, 2534 timeout->tv_nsec)) 2535 return -EINVAL; 2536 2537 datagrams = 0; 2538 2539 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2540 if (!sock) 2541 return err; 2542 2543 if (likely(!(flags & MSG_ERRQUEUE))) { 2544 err = sock_error(sock->sk); 2545 if (err) { 2546 datagrams = err; 2547 goto out_put; 2548 } 2549 } 2550 2551 entry = mmsg; 2552 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2553 2554 while (datagrams < vlen) { 2555 /* 2556 * No need to ask LSM for more than the first datagram. 2557 */ 2558 if (MSG_CMSG_COMPAT & flags) { 2559 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2560 &msg_sys, flags & ~MSG_WAITFORONE, 2561 datagrams); 2562 if (err < 0) 2563 break; 2564 err = __put_user(err, &compat_entry->msg_len); 2565 ++compat_entry; 2566 } else { 2567 err = ___sys_recvmsg(sock, 2568 (struct user_msghdr __user *)entry, 2569 &msg_sys, flags & ~MSG_WAITFORONE, 2570 datagrams); 2571 if (err < 0) 2572 break; 2573 err = put_user(err, &entry->msg_len); 2574 ++entry; 2575 } 2576 2577 if (err) 2578 break; 2579 ++datagrams; 2580 2581 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2582 if (flags & MSG_WAITFORONE) 2583 flags |= MSG_DONTWAIT; 2584 2585 if (timeout) { 2586 ktime_get_ts64(&timeout64); 2587 *timeout = timespec64_sub(end_time, timeout64); 2588 if (timeout->tv_sec < 0) { 2589 timeout->tv_sec = timeout->tv_nsec = 0; 2590 break; 2591 } 2592 2593 /* Timeout, return less than vlen datagrams */ 2594 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2595 break; 2596 } 2597 2598 /* Out of band data, return right away */ 2599 if (msg_sys.msg_flags & MSG_OOB) 2600 break; 2601 cond_resched(); 2602 } 2603 2604 if (err == 0) 2605 goto out_put; 2606 2607 if (datagrams == 0) { 2608 datagrams = err; 2609 goto out_put; 2610 } 2611 2612 /* 2613 * We may return less entries than requested (vlen) if the 2614 * sock is non block and there aren't enough datagrams... 2615 */ 2616 if (err != -EAGAIN) { 2617 /* 2618 * ... or if recvmsg returns an error after we 2619 * received some datagrams, where we record the 2620 * error to return on the next call or if the 2621 * app asks about it using getsockopt(SO_ERROR). 2622 */ 2623 sock->sk->sk_err = -err; 2624 } 2625 out_put: 2626 fput_light(sock->file, fput_needed); 2627 2628 return datagrams; 2629 } 2630 2631 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2632 unsigned int vlen, unsigned int flags, 2633 struct __kernel_timespec __user *timeout, 2634 struct old_timespec32 __user *timeout32) 2635 { 2636 int datagrams; 2637 struct timespec64 timeout_sys; 2638 2639 if (timeout && get_timespec64(&timeout_sys, timeout)) 2640 return -EFAULT; 2641 2642 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2643 return -EFAULT; 2644 2645 if (!timeout && !timeout32) 2646 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2647 2648 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2649 2650 if (datagrams <= 0) 2651 return datagrams; 2652 2653 if (timeout && put_timespec64(&timeout_sys, timeout)) 2654 datagrams = -EFAULT; 2655 2656 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2657 datagrams = -EFAULT; 2658 2659 return datagrams; 2660 } 2661 2662 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2663 unsigned int, vlen, unsigned int, flags, 2664 struct __kernel_timespec __user *, timeout) 2665 { 2666 if (flags & MSG_CMSG_COMPAT) 2667 return -EINVAL; 2668 2669 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2670 } 2671 2672 #ifdef CONFIG_COMPAT_32BIT_TIME 2673 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2674 unsigned int, vlen, unsigned int, flags, 2675 struct old_timespec32 __user *, timeout) 2676 { 2677 if (flags & MSG_CMSG_COMPAT) 2678 return -EINVAL; 2679 2680 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2681 } 2682 #endif 2683 2684 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2685 /* Argument list sizes for sys_socketcall */ 2686 #define AL(x) ((x) * sizeof(unsigned long)) 2687 static const unsigned char nargs[21] = { 2688 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2689 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2690 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2691 AL(4), AL(5), AL(4) 2692 }; 2693 2694 #undef AL 2695 2696 /* 2697 * System call vectors. 2698 * 2699 * Argument checking cleaned up. Saved 20% in size. 2700 * This function doesn't need to set the kernel lock because 2701 * it is set by the callees. 2702 */ 2703 2704 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2705 { 2706 unsigned long a[AUDITSC_ARGS]; 2707 unsigned long a0, a1; 2708 int err; 2709 unsigned int len; 2710 2711 if (call < 1 || call > SYS_SENDMMSG) 2712 return -EINVAL; 2713 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2714 2715 len = nargs[call]; 2716 if (len > sizeof(a)) 2717 return -EINVAL; 2718 2719 /* copy_from_user should be SMP safe. */ 2720 if (copy_from_user(a, args, len)) 2721 return -EFAULT; 2722 2723 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2724 if (err) 2725 return err; 2726 2727 a0 = a[0]; 2728 a1 = a[1]; 2729 2730 switch (call) { 2731 case SYS_SOCKET: 2732 err = __sys_socket(a0, a1, a[2]); 2733 break; 2734 case SYS_BIND: 2735 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2736 break; 2737 case SYS_CONNECT: 2738 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2739 break; 2740 case SYS_LISTEN: 2741 err = __sys_listen(a0, a1); 2742 break; 2743 case SYS_ACCEPT: 2744 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2745 (int __user *)a[2], 0); 2746 break; 2747 case SYS_GETSOCKNAME: 2748 err = 2749 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2750 (int __user *)a[2]); 2751 break; 2752 case SYS_GETPEERNAME: 2753 err = 2754 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2755 (int __user *)a[2]); 2756 break; 2757 case SYS_SOCKETPAIR: 2758 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2759 break; 2760 case SYS_SEND: 2761 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2762 NULL, 0); 2763 break; 2764 case SYS_SENDTO: 2765 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2766 (struct sockaddr __user *)a[4], a[5]); 2767 break; 2768 case SYS_RECV: 2769 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2770 NULL, NULL); 2771 break; 2772 case SYS_RECVFROM: 2773 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2774 (struct sockaddr __user *)a[4], 2775 (int __user *)a[5]); 2776 break; 2777 case SYS_SHUTDOWN: 2778 err = __sys_shutdown(a0, a1); 2779 break; 2780 case SYS_SETSOCKOPT: 2781 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2782 a[4]); 2783 break; 2784 case SYS_GETSOCKOPT: 2785 err = 2786 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2787 (int __user *)a[4]); 2788 break; 2789 case SYS_SENDMSG: 2790 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2791 a[2], true); 2792 break; 2793 case SYS_SENDMMSG: 2794 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2795 a[3], true); 2796 break; 2797 case SYS_RECVMSG: 2798 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2799 a[2], true); 2800 break; 2801 case SYS_RECVMMSG: 2802 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2803 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2804 a[2], a[3], 2805 (struct __kernel_timespec __user *)a[4], 2806 NULL); 2807 else 2808 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2809 a[2], a[3], NULL, 2810 (struct old_timespec32 __user *)a[4]); 2811 break; 2812 case SYS_ACCEPT4: 2813 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2814 (int __user *)a[2], a[3]); 2815 break; 2816 default: 2817 err = -EINVAL; 2818 break; 2819 } 2820 return err; 2821 } 2822 2823 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2824 2825 /** 2826 * sock_register - add a socket protocol handler 2827 * @ops: description of protocol 2828 * 2829 * This function is called by a protocol handler that wants to 2830 * advertise its address family, and have it linked into the 2831 * socket interface. The value ops->family corresponds to the 2832 * socket system call protocol family. 2833 */ 2834 int sock_register(const struct net_proto_family *ops) 2835 { 2836 int err; 2837 2838 if (ops->family >= NPROTO) { 2839 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2840 return -ENOBUFS; 2841 } 2842 2843 spin_lock(&net_family_lock); 2844 if (rcu_dereference_protected(net_families[ops->family], 2845 lockdep_is_held(&net_family_lock))) 2846 err = -EEXIST; 2847 else { 2848 rcu_assign_pointer(net_families[ops->family], ops); 2849 err = 0; 2850 } 2851 spin_unlock(&net_family_lock); 2852 2853 pr_info("NET: Registered protocol family %d\n", ops->family); 2854 return err; 2855 } 2856 EXPORT_SYMBOL(sock_register); 2857 2858 /** 2859 * sock_unregister - remove a protocol handler 2860 * @family: protocol family to remove 2861 * 2862 * This function is called by a protocol handler that wants to 2863 * remove its address family, and have it unlinked from the 2864 * new socket creation. 2865 * 2866 * If protocol handler is a module, then it can use module reference 2867 * counts to protect against new references. If protocol handler is not 2868 * a module then it needs to provide its own protection in 2869 * the ops->create routine. 2870 */ 2871 void sock_unregister(int family) 2872 { 2873 BUG_ON(family < 0 || family >= NPROTO); 2874 2875 spin_lock(&net_family_lock); 2876 RCU_INIT_POINTER(net_families[family], NULL); 2877 spin_unlock(&net_family_lock); 2878 2879 synchronize_rcu(); 2880 2881 pr_info("NET: Unregistered protocol family %d\n", family); 2882 } 2883 EXPORT_SYMBOL(sock_unregister); 2884 2885 bool sock_is_registered(int family) 2886 { 2887 return family < NPROTO && rcu_access_pointer(net_families[family]); 2888 } 2889 2890 static int __init sock_init(void) 2891 { 2892 int err; 2893 /* 2894 * Initialize the network sysctl infrastructure. 2895 */ 2896 err = net_sysctl_init(); 2897 if (err) 2898 goto out; 2899 2900 /* 2901 * Initialize skbuff SLAB cache 2902 */ 2903 skb_init(); 2904 2905 /* 2906 * Initialize the protocols module. 2907 */ 2908 2909 init_inodecache(); 2910 2911 err = register_filesystem(&sock_fs_type); 2912 if (err) 2913 goto out_fs; 2914 sock_mnt = kern_mount(&sock_fs_type); 2915 if (IS_ERR(sock_mnt)) { 2916 err = PTR_ERR(sock_mnt); 2917 goto out_mount; 2918 } 2919 2920 /* The real protocol initialization is performed in later initcalls. 2921 */ 2922 2923 #ifdef CONFIG_NETFILTER 2924 err = netfilter_init(); 2925 if (err) 2926 goto out; 2927 #endif 2928 2929 ptp_classifier_init(); 2930 2931 out: 2932 return err; 2933 2934 out_mount: 2935 unregister_filesystem(&sock_fs_type); 2936 out_fs: 2937 goto out; 2938 } 2939 2940 core_initcall(sock_init); /* early initcall */ 2941 2942 #ifdef CONFIG_PROC_FS 2943 void socket_seq_show(struct seq_file *seq) 2944 { 2945 seq_printf(seq, "sockets: used %d\n", 2946 sock_inuse_get(seq->private)); 2947 } 2948 #endif /* CONFIG_PROC_FS */ 2949 2950 #ifdef CONFIG_COMPAT 2951 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2952 { 2953 struct compat_ifconf ifc32; 2954 struct ifconf ifc; 2955 int err; 2956 2957 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2958 return -EFAULT; 2959 2960 ifc.ifc_len = ifc32.ifc_len; 2961 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2962 2963 rtnl_lock(); 2964 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2965 rtnl_unlock(); 2966 if (err) 2967 return err; 2968 2969 ifc32.ifc_len = ifc.ifc_len; 2970 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2971 return -EFAULT; 2972 2973 return 0; 2974 } 2975 2976 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2977 { 2978 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2979 bool convert_in = false, convert_out = false; 2980 size_t buf_size = 0; 2981 struct ethtool_rxnfc __user *rxnfc = NULL; 2982 struct ifreq ifr; 2983 u32 rule_cnt = 0, actual_rule_cnt; 2984 u32 ethcmd; 2985 u32 data; 2986 int ret; 2987 2988 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2989 return -EFAULT; 2990 2991 compat_rxnfc = compat_ptr(data); 2992 2993 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2994 return -EFAULT; 2995 2996 /* Most ethtool structures are defined without padding. 2997 * Unfortunately struct ethtool_rxnfc is an exception. 2998 */ 2999 switch (ethcmd) { 3000 default: 3001 break; 3002 case ETHTOOL_GRXCLSRLALL: 3003 /* Buffer size is variable */ 3004 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3005 return -EFAULT; 3006 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3007 return -ENOMEM; 3008 buf_size += rule_cnt * sizeof(u32); 3009 /* fall through */ 3010 case ETHTOOL_GRXRINGS: 3011 case ETHTOOL_GRXCLSRLCNT: 3012 case ETHTOOL_GRXCLSRULE: 3013 case ETHTOOL_SRXCLSRLINS: 3014 convert_out = true; 3015 /* fall through */ 3016 case ETHTOOL_SRXCLSRLDEL: 3017 buf_size += sizeof(struct ethtool_rxnfc); 3018 convert_in = true; 3019 rxnfc = compat_alloc_user_space(buf_size); 3020 break; 3021 } 3022 3023 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3024 return -EFAULT; 3025 3026 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3027 3028 if (convert_in) { 3029 /* We expect there to be holes between fs.m_ext and 3030 * fs.ring_cookie and at the end of fs, but nowhere else. 3031 */ 3032 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3033 sizeof(compat_rxnfc->fs.m_ext) != 3034 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3035 sizeof(rxnfc->fs.m_ext)); 3036 BUILD_BUG_ON( 3037 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3038 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3039 offsetof(struct ethtool_rxnfc, fs.location) - 3040 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3041 3042 if (copy_in_user(rxnfc, compat_rxnfc, 3043 (void __user *)(&rxnfc->fs.m_ext + 1) - 3044 (void __user *)rxnfc) || 3045 copy_in_user(&rxnfc->fs.ring_cookie, 3046 &compat_rxnfc->fs.ring_cookie, 3047 (void __user *)(&rxnfc->fs.location + 1) - 3048 (void __user *)&rxnfc->fs.ring_cookie)) 3049 return -EFAULT; 3050 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3051 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3052 return -EFAULT; 3053 } else if (copy_in_user(&rxnfc->rule_cnt, 3054 &compat_rxnfc->rule_cnt, 3055 sizeof(rxnfc->rule_cnt))) 3056 return -EFAULT; 3057 } 3058 3059 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3060 if (ret) 3061 return ret; 3062 3063 if (convert_out) { 3064 if (copy_in_user(compat_rxnfc, rxnfc, 3065 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3066 (const void __user *)rxnfc) || 3067 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3068 &rxnfc->fs.ring_cookie, 3069 (const void __user *)(&rxnfc->fs.location + 1) - 3070 (const void __user *)&rxnfc->fs.ring_cookie) || 3071 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3072 sizeof(rxnfc->rule_cnt))) 3073 return -EFAULT; 3074 3075 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3076 /* As an optimisation, we only copy the actual 3077 * number of rules that the underlying 3078 * function returned. Since Mallory might 3079 * change the rule count in user memory, we 3080 * check that it is less than the rule count 3081 * originally given (as the user buffer size), 3082 * which has been range-checked. 3083 */ 3084 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3085 return -EFAULT; 3086 if (actual_rule_cnt < rule_cnt) 3087 rule_cnt = actual_rule_cnt; 3088 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3089 &rxnfc->rule_locs[0], 3090 rule_cnt * sizeof(u32))) 3091 return -EFAULT; 3092 } 3093 } 3094 3095 return 0; 3096 } 3097 3098 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3099 { 3100 compat_uptr_t uptr32; 3101 struct ifreq ifr; 3102 void __user *saved; 3103 int err; 3104 3105 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3106 return -EFAULT; 3107 3108 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3109 return -EFAULT; 3110 3111 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3112 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3113 3114 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3115 if (!err) { 3116 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3117 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3118 err = -EFAULT; 3119 } 3120 return err; 3121 } 3122 3123 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3124 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3125 struct compat_ifreq __user *u_ifreq32) 3126 { 3127 struct ifreq ifreq; 3128 u32 data32; 3129 3130 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3131 return -EFAULT; 3132 if (get_user(data32, &u_ifreq32->ifr_data)) 3133 return -EFAULT; 3134 ifreq.ifr_data = compat_ptr(data32); 3135 3136 return dev_ioctl(net, cmd, &ifreq, NULL); 3137 } 3138 3139 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3140 unsigned int cmd, 3141 struct compat_ifreq __user *uifr32) 3142 { 3143 struct ifreq __user *uifr; 3144 int err; 3145 3146 /* Handle the fact that while struct ifreq has the same *layout* on 3147 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3148 * which are handled elsewhere, it still has different *size* due to 3149 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3150 * resulting in struct ifreq being 32 and 40 bytes respectively). 3151 * As a result, if the struct happens to be at the end of a page and 3152 * the next page isn't readable/writable, we get a fault. To prevent 3153 * that, copy back and forth to the full size. 3154 */ 3155 3156 uifr = compat_alloc_user_space(sizeof(*uifr)); 3157 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3158 return -EFAULT; 3159 3160 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3161 3162 if (!err) { 3163 switch (cmd) { 3164 case SIOCGIFFLAGS: 3165 case SIOCGIFMETRIC: 3166 case SIOCGIFMTU: 3167 case SIOCGIFMEM: 3168 case SIOCGIFHWADDR: 3169 case SIOCGIFINDEX: 3170 case SIOCGIFADDR: 3171 case SIOCGIFBRDADDR: 3172 case SIOCGIFDSTADDR: 3173 case SIOCGIFNETMASK: 3174 case SIOCGIFPFLAGS: 3175 case SIOCGIFTXQLEN: 3176 case SIOCGMIIPHY: 3177 case SIOCGMIIREG: 3178 case SIOCGIFNAME: 3179 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3180 err = -EFAULT; 3181 break; 3182 } 3183 } 3184 return err; 3185 } 3186 3187 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3188 struct compat_ifreq __user *uifr32) 3189 { 3190 struct ifreq ifr; 3191 struct compat_ifmap __user *uifmap32; 3192 int err; 3193 3194 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3195 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3196 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3197 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3198 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3199 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3200 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3201 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3202 if (err) 3203 return -EFAULT; 3204 3205 err = dev_ioctl(net, cmd, &ifr, NULL); 3206 3207 if (cmd == SIOCGIFMAP && !err) { 3208 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3209 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3210 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3211 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3212 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3213 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3214 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3215 if (err) 3216 err = -EFAULT; 3217 } 3218 return err; 3219 } 3220 3221 struct rtentry32 { 3222 u32 rt_pad1; 3223 struct sockaddr rt_dst; /* target address */ 3224 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3225 struct sockaddr rt_genmask; /* target network mask (IP) */ 3226 unsigned short rt_flags; 3227 short rt_pad2; 3228 u32 rt_pad3; 3229 unsigned char rt_tos; 3230 unsigned char rt_class; 3231 short rt_pad4; 3232 short rt_metric; /* +1 for binary compatibility! */ 3233 /* char * */ u32 rt_dev; /* forcing the device at add */ 3234 u32 rt_mtu; /* per route MTU/Window */ 3235 u32 rt_window; /* Window clamping */ 3236 unsigned short rt_irtt; /* Initial RTT */ 3237 }; 3238 3239 struct in6_rtmsg32 { 3240 struct in6_addr rtmsg_dst; 3241 struct in6_addr rtmsg_src; 3242 struct in6_addr rtmsg_gateway; 3243 u32 rtmsg_type; 3244 u16 rtmsg_dst_len; 3245 u16 rtmsg_src_len; 3246 u32 rtmsg_metric; 3247 u32 rtmsg_info; 3248 u32 rtmsg_flags; 3249 s32 rtmsg_ifindex; 3250 }; 3251 3252 static int routing_ioctl(struct net *net, struct socket *sock, 3253 unsigned int cmd, void __user *argp) 3254 { 3255 int ret; 3256 void *r = NULL; 3257 struct in6_rtmsg r6; 3258 struct rtentry r4; 3259 char devname[16]; 3260 u32 rtdev; 3261 mm_segment_t old_fs = get_fs(); 3262 3263 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3264 struct in6_rtmsg32 __user *ur6 = argp; 3265 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3266 3 * sizeof(struct in6_addr)); 3267 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3268 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3269 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3270 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3271 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3272 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3273 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3274 3275 r = (void *) &r6; 3276 } else { /* ipv4 */ 3277 struct rtentry32 __user *ur4 = argp; 3278 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3279 3 * sizeof(struct sockaddr)); 3280 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3281 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3282 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3283 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3284 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3285 ret |= get_user(rtdev, &(ur4->rt_dev)); 3286 if (rtdev) { 3287 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3288 r4.rt_dev = (char __user __force *)devname; 3289 devname[15] = 0; 3290 } else 3291 r4.rt_dev = NULL; 3292 3293 r = (void *) &r4; 3294 } 3295 3296 if (ret) { 3297 ret = -EFAULT; 3298 goto out; 3299 } 3300 3301 set_fs(KERNEL_DS); 3302 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3303 set_fs(old_fs); 3304 3305 out: 3306 return ret; 3307 } 3308 3309 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3310 * for some operations; this forces use of the newer bridge-utils that 3311 * use compatible ioctls 3312 */ 3313 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3314 { 3315 compat_ulong_t tmp; 3316 3317 if (get_user(tmp, argp)) 3318 return -EFAULT; 3319 if (tmp == BRCTL_GET_VERSION) 3320 return BRCTL_VERSION + 1; 3321 return -EINVAL; 3322 } 3323 3324 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3325 unsigned int cmd, unsigned long arg) 3326 { 3327 void __user *argp = compat_ptr(arg); 3328 struct sock *sk = sock->sk; 3329 struct net *net = sock_net(sk); 3330 3331 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3332 return compat_ifr_data_ioctl(net, cmd, argp); 3333 3334 switch (cmd) { 3335 case SIOCSIFBR: 3336 case SIOCGIFBR: 3337 return old_bridge_ioctl(argp); 3338 case SIOCGIFCONF: 3339 return compat_dev_ifconf(net, argp); 3340 case SIOCETHTOOL: 3341 return ethtool_ioctl(net, argp); 3342 case SIOCWANDEV: 3343 return compat_siocwandev(net, argp); 3344 case SIOCGIFMAP: 3345 case SIOCSIFMAP: 3346 return compat_sioc_ifmap(net, cmd, argp); 3347 case SIOCADDRT: 3348 case SIOCDELRT: 3349 return routing_ioctl(net, sock, cmd, argp); 3350 case SIOCGSTAMP_OLD: 3351 case SIOCGSTAMPNS_OLD: 3352 if (!sock->ops->gettstamp) 3353 return -ENOIOCTLCMD; 3354 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3355 !COMPAT_USE_64BIT_TIME); 3356 3357 case SIOCBONDSLAVEINFOQUERY: 3358 case SIOCBONDINFOQUERY: 3359 case SIOCSHWTSTAMP: 3360 case SIOCGHWTSTAMP: 3361 return compat_ifr_data_ioctl(net, cmd, argp); 3362 3363 case FIOSETOWN: 3364 case SIOCSPGRP: 3365 case FIOGETOWN: 3366 case SIOCGPGRP: 3367 case SIOCBRADDBR: 3368 case SIOCBRDELBR: 3369 case SIOCGIFVLAN: 3370 case SIOCSIFVLAN: 3371 case SIOCADDDLCI: 3372 case SIOCDELDLCI: 3373 case SIOCGSKNS: 3374 case SIOCGSTAMP_NEW: 3375 case SIOCGSTAMPNS_NEW: 3376 return sock_ioctl(file, cmd, arg); 3377 3378 case SIOCGIFFLAGS: 3379 case SIOCSIFFLAGS: 3380 case SIOCGIFMETRIC: 3381 case SIOCSIFMETRIC: 3382 case SIOCGIFMTU: 3383 case SIOCSIFMTU: 3384 case SIOCGIFMEM: 3385 case SIOCSIFMEM: 3386 case SIOCGIFHWADDR: 3387 case SIOCSIFHWADDR: 3388 case SIOCADDMULTI: 3389 case SIOCDELMULTI: 3390 case SIOCGIFINDEX: 3391 case SIOCGIFADDR: 3392 case SIOCSIFADDR: 3393 case SIOCSIFHWBROADCAST: 3394 case SIOCDIFADDR: 3395 case SIOCGIFBRDADDR: 3396 case SIOCSIFBRDADDR: 3397 case SIOCGIFDSTADDR: 3398 case SIOCSIFDSTADDR: 3399 case SIOCGIFNETMASK: 3400 case SIOCSIFNETMASK: 3401 case SIOCSIFPFLAGS: 3402 case SIOCGIFPFLAGS: 3403 case SIOCGIFTXQLEN: 3404 case SIOCSIFTXQLEN: 3405 case SIOCBRADDIF: 3406 case SIOCBRDELIF: 3407 case SIOCGIFNAME: 3408 case SIOCSIFNAME: 3409 case SIOCGMIIPHY: 3410 case SIOCGMIIREG: 3411 case SIOCSMIIREG: 3412 case SIOCBONDENSLAVE: 3413 case SIOCBONDRELEASE: 3414 case SIOCBONDSETHWADDR: 3415 case SIOCBONDCHANGEACTIVE: 3416 return compat_ifreq_ioctl(net, sock, cmd, argp); 3417 3418 case SIOCSARP: 3419 case SIOCGARP: 3420 case SIOCDARP: 3421 case SIOCATMARK: 3422 return sock_do_ioctl(net, sock, cmd, arg); 3423 } 3424 3425 return -ENOIOCTLCMD; 3426 } 3427 3428 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3429 unsigned long arg) 3430 { 3431 struct socket *sock = file->private_data; 3432 int ret = -ENOIOCTLCMD; 3433 struct sock *sk; 3434 struct net *net; 3435 3436 sk = sock->sk; 3437 net = sock_net(sk); 3438 3439 if (sock->ops->compat_ioctl) 3440 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3441 3442 if (ret == -ENOIOCTLCMD && 3443 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3444 ret = compat_wext_handle_ioctl(net, cmd, arg); 3445 3446 if (ret == -ENOIOCTLCMD) 3447 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3448 3449 return ret; 3450 } 3451 #endif 3452 3453 /** 3454 * kernel_bind - bind an address to a socket (kernel space) 3455 * @sock: socket 3456 * @addr: address 3457 * @addrlen: length of address 3458 * 3459 * Returns 0 or an error. 3460 */ 3461 3462 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3463 { 3464 return sock->ops->bind(sock, addr, addrlen); 3465 } 3466 EXPORT_SYMBOL(kernel_bind); 3467 3468 /** 3469 * kernel_listen - move socket to listening state (kernel space) 3470 * @sock: socket 3471 * @backlog: pending connections queue size 3472 * 3473 * Returns 0 or an error. 3474 */ 3475 3476 int kernel_listen(struct socket *sock, int backlog) 3477 { 3478 return sock->ops->listen(sock, backlog); 3479 } 3480 EXPORT_SYMBOL(kernel_listen); 3481 3482 /** 3483 * kernel_accept - accept a connection (kernel space) 3484 * @sock: listening socket 3485 * @newsock: new connected socket 3486 * @flags: flags 3487 * 3488 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3489 * If it fails, @newsock is guaranteed to be %NULL. 3490 * Returns 0 or an error. 3491 */ 3492 3493 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3494 { 3495 struct sock *sk = sock->sk; 3496 int err; 3497 3498 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3499 newsock); 3500 if (err < 0) 3501 goto done; 3502 3503 err = sock->ops->accept(sock, *newsock, flags, true); 3504 if (err < 0) { 3505 sock_release(*newsock); 3506 *newsock = NULL; 3507 goto done; 3508 } 3509 3510 (*newsock)->ops = sock->ops; 3511 __module_get((*newsock)->ops->owner); 3512 3513 done: 3514 return err; 3515 } 3516 EXPORT_SYMBOL(kernel_accept); 3517 3518 /** 3519 * kernel_connect - connect a socket (kernel space) 3520 * @sock: socket 3521 * @addr: address 3522 * @addrlen: address length 3523 * @flags: flags (O_NONBLOCK, ...) 3524 * 3525 * For datagram sockets, @addr is the addres to which datagrams are sent 3526 * by default, and the only address from which datagrams are received. 3527 * For stream sockets, attempts to connect to @addr. 3528 * Returns 0 or an error code. 3529 */ 3530 3531 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3532 int flags) 3533 { 3534 return sock->ops->connect(sock, addr, addrlen, flags); 3535 } 3536 EXPORT_SYMBOL(kernel_connect); 3537 3538 /** 3539 * kernel_getsockname - get the address which the socket is bound (kernel space) 3540 * @sock: socket 3541 * @addr: address holder 3542 * 3543 * Fills the @addr pointer with the address which the socket is bound. 3544 * Returns 0 or an error code. 3545 */ 3546 3547 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3548 { 3549 return sock->ops->getname(sock, addr, 0); 3550 } 3551 EXPORT_SYMBOL(kernel_getsockname); 3552 3553 /** 3554 * kernel_peername - get the address which the socket is connected (kernel space) 3555 * @sock: socket 3556 * @addr: address holder 3557 * 3558 * Fills the @addr pointer with the address which the socket is connected. 3559 * Returns 0 or an error code. 3560 */ 3561 3562 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3563 { 3564 return sock->ops->getname(sock, addr, 1); 3565 } 3566 EXPORT_SYMBOL(kernel_getpeername); 3567 3568 /** 3569 * kernel_getsockopt - get a socket option (kernel space) 3570 * @sock: socket 3571 * @level: API level (SOL_SOCKET, ...) 3572 * @optname: option tag 3573 * @optval: option value 3574 * @optlen: option length 3575 * 3576 * Assigns the option length to @optlen. 3577 * Returns 0 or an error. 3578 */ 3579 3580 int kernel_getsockopt(struct socket *sock, int level, int optname, 3581 char *optval, int *optlen) 3582 { 3583 mm_segment_t oldfs = get_fs(); 3584 char __user *uoptval; 3585 int __user *uoptlen; 3586 int err; 3587 3588 uoptval = (char __user __force *) optval; 3589 uoptlen = (int __user __force *) optlen; 3590 3591 set_fs(KERNEL_DS); 3592 if (level == SOL_SOCKET) 3593 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3594 else 3595 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3596 uoptlen); 3597 set_fs(oldfs); 3598 return err; 3599 } 3600 EXPORT_SYMBOL(kernel_getsockopt); 3601 3602 /** 3603 * kernel_setsockopt - set a socket option (kernel space) 3604 * @sock: socket 3605 * @level: API level (SOL_SOCKET, ...) 3606 * @optname: option tag 3607 * @optval: option value 3608 * @optlen: option length 3609 * 3610 * Returns 0 or an error. 3611 */ 3612 3613 int kernel_setsockopt(struct socket *sock, int level, int optname, 3614 char *optval, unsigned int optlen) 3615 { 3616 mm_segment_t oldfs = get_fs(); 3617 char __user *uoptval; 3618 int err; 3619 3620 uoptval = (char __user __force *) optval; 3621 3622 set_fs(KERNEL_DS); 3623 if (level == SOL_SOCKET) 3624 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3625 else 3626 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3627 optlen); 3628 set_fs(oldfs); 3629 return err; 3630 } 3631 EXPORT_SYMBOL(kernel_setsockopt); 3632 3633 /** 3634 * kernel_sendpage - send a &page through a socket (kernel space) 3635 * @sock: socket 3636 * @page: page 3637 * @offset: page offset 3638 * @size: total size in bytes 3639 * @flags: flags (MSG_DONTWAIT, ...) 3640 * 3641 * Returns the total amount sent in bytes or an error. 3642 */ 3643 3644 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3645 size_t size, int flags) 3646 { 3647 if (sock->ops->sendpage) 3648 return sock->ops->sendpage(sock, page, offset, size, flags); 3649 3650 return sock_no_sendpage(sock, page, offset, size, flags); 3651 } 3652 EXPORT_SYMBOL(kernel_sendpage); 3653 3654 /** 3655 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3656 * @sk: sock 3657 * @page: page 3658 * @offset: page offset 3659 * @size: total size in bytes 3660 * @flags: flags (MSG_DONTWAIT, ...) 3661 * 3662 * Returns the total amount sent in bytes or an error. 3663 * Caller must hold @sk. 3664 */ 3665 3666 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3667 size_t size, int flags) 3668 { 3669 struct socket *sock = sk->sk_socket; 3670 3671 if (sock->ops->sendpage_locked) 3672 return sock->ops->sendpage_locked(sk, page, offset, size, 3673 flags); 3674 3675 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3676 } 3677 EXPORT_SYMBOL(kernel_sendpage_locked); 3678 3679 /** 3680 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3681 * @sock: socket 3682 * @how: connection part 3683 * 3684 * Returns 0 or an error. 3685 */ 3686 3687 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3688 { 3689 return sock->ops->shutdown(sock, how); 3690 } 3691 EXPORT_SYMBOL(kernel_sock_shutdown); 3692 3693 /** 3694 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3695 * @sk: socket 3696 * 3697 * This routine returns the IP overhead imposed by a socket i.e. 3698 * the length of the underlying IP header, depending on whether 3699 * this is an IPv4 or IPv6 socket and the length from IP options turned 3700 * on at the socket. Assumes that the caller has a lock on the socket. 3701 */ 3702 3703 u32 kernel_sock_ip_overhead(struct sock *sk) 3704 { 3705 struct inet_sock *inet; 3706 struct ip_options_rcu *opt; 3707 u32 overhead = 0; 3708 #if IS_ENABLED(CONFIG_IPV6) 3709 struct ipv6_pinfo *np; 3710 struct ipv6_txoptions *optv6 = NULL; 3711 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3712 3713 if (!sk) 3714 return overhead; 3715 3716 switch (sk->sk_family) { 3717 case AF_INET: 3718 inet = inet_sk(sk); 3719 overhead += sizeof(struct iphdr); 3720 opt = rcu_dereference_protected(inet->inet_opt, 3721 sock_owned_by_user(sk)); 3722 if (opt) 3723 overhead += opt->opt.optlen; 3724 return overhead; 3725 #if IS_ENABLED(CONFIG_IPV6) 3726 case AF_INET6: 3727 np = inet6_sk(sk); 3728 overhead += sizeof(struct ipv6hdr); 3729 if (np) 3730 optv6 = rcu_dereference_protected(np->opt, 3731 sock_owned_by_user(sk)); 3732 if (optv6) 3733 overhead += (optv6->opt_flen + optv6->opt_nflen); 3734 return overhead; 3735 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3736 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3737 return overhead; 3738 } 3739 } 3740 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3741