1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 92 #include <linux/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/termios.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 #include <linux/ptp_clock_kernel.h> 110 #include <trace/events/sock.h> 111 112 #ifdef CONFIG_NET_RX_BUSY_POLL 113 unsigned int sysctl_net_busy_read __read_mostly; 114 unsigned int sysctl_net_busy_poll __read_mostly; 115 #endif 116 117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static __poll_t sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 static void sock_splice_eof(struct file *file); 134 135 #ifdef CONFIG_PROC_FS 136 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 137 { 138 struct socket *sock = f->private_data; 139 const struct proto_ops *ops = READ_ONCE(sock->ops); 140 141 if (ops->show_fdinfo) 142 ops->show_fdinfo(m, sock); 143 } 144 #else 145 #define sock_show_fdinfo NULL 146 #endif 147 148 /* 149 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 150 * in the operation structures but are done directly via the socketcall() multiplexor. 151 */ 152 153 static const struct file_operations socket_file_ops = { 154 .owner = THIS_MODULE, 155 .llseek = no_llseek, 156 .read_iter = sock_read_iter, 157 .write_iter = sock_write_iter, 158 .poll = sock_poll, 159 .unlocked_ioctl = sock_ioctl, 160 #ifdef CONFIG_COMPAT 161 .compat_ioctl = compat_sock_ioctl, 162 #endif 163 .mmap = sock_mmap, 164 .release = sock_close, 165 .fasync = sock_fasync, 166 .splice_write = splice_to_socket, 167 .splice_read = sock_splice_read, 168 .splice_eof = sock_splice_eof, 169 .show_fdinfo = sock_show_fdinfo, 170 }; 171 172 static const char * const pf_family_names[] = { 173 [PF_UNSPEC] = "PF_UNSPEC", 174 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 175 [PF_INET] = "PF_INET", 176 [PF_AX25] = "PF_AX25", 177 [PF_IPX] = "PF_IPX", 178 [PF_APPLETALK] = "PF_APPLETALK", 179 [PF_NETROM] = "PF_NETROM", 180 [PF_BRIDGE] = "PF_BRIDGE", 181 [PF_ATMPVC] = "PF_ATMPVC", 182 [PF_X25] = "PF_X25", 183 [PF_INET6] = "PF_INET6", 184 [PF_ROSE] = "PF_ROSE", 185 [PF_DECnet] = "PF_DECnet", 186 [PF_NETBEUI] = "PF_NETBEUI", 187 [PF_SECURITY] = "PF_SECURITY", 188 [PF_KEY] = "PF_KEY", 189 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 190 [PF_PACKET] = "PF_PACKET", 191 [PF_ASH] = "PF_ASH", 192 [PF_ECONET] = "PF_ECONET", 193 [PF_ATMSVC] = "PF_ATMSVC", 194 [PF_RDS] = "PF_RDS", 195 [PF_SNA] = "PF_SNA", 196 [PF_IRDA] = "PF_IRDA", 197 [PF_PPPOX] = "PF_PPPOX", 198 [PF_WANPIPE] = "PF_WANPIPE", 199 [PF_LLC] = "PF_LLC", 200 [PF_IB] = "PF_IB", 201 [PF_MPLS] = "PF_MPLS", 202 [PF_CAN] = "PF_CAN", 203 [PF_TIPC] = "PF_TIPC", 204 [PF_BLUETOOTH] = "PF_BLUETOOTH", 205 [PF_IUCV] = "PF_IUCV", 206 [PF_RXRPC] = "PF_RXRPC", 207 [PF_ISDN] = "PF_ISDN", 208 [PF_PHONET] = "PF_PHONET", 209 [PF_IEEE802154] = "PF_IEEE802154", 210 [PF_CAIF] = "PF_CAIF", 211 [PF_ALG] = "PF_ALG", 212 [PF_NFC] = "PF_NFC", 213 [PF_VSOCK] = "PF_VSOCK", 214 [PF_KCM] = "PF_KCM", 215 [PF_QIPCRTR] = "PF_QIPCRTR", 216 [PF_SMC] = "PF_SMC", 217 [PF_XDP] = "PF_XDP", 218 [PF_MCTP] = "PF_MCTP", 219 }; 220 221 /* 222 * The protocol list. Each protocol is registered in here. 223 */ 224 225 static DEFINE_SPINLOCK(net_family_lock); 226 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 227 228 /* 229 * Support routines. 230 * Move socket addresses back and forth across the kernel/user 231 * divide and look after the messy bits. 232 */ 233 234 /** 235 * move_addr_to_kernel - copy a socket address into kernel space 236 * @uaddr: Address in user space 237 * @kaddr: Address in kernel space 238 * @ulen: Length in user space 239 * 240 * The address is copied into kernel space. If the provided address is 241 * too long an error code of -EINVAL is returned. If the copy gives 242 * invalid addresses -EFAULT is returned. On a success 0 is returned. 243 */ 244 245 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 246 { 247 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 248 return -EINVAL; 249 if (ulen == 0) 250 return 0; 251 if (copy_from_user(kaddr, uaddr, ulen)) 252 return -EFAULT; 253 return audit_sockaddr(ulen, kaddr); 254 } 255 256 /** 257 * move_addr_to_user - copy an address to user space 258 * @kaddr: kernel space address 259 * @klen: length of address in kernel 260 * @uaddr: user space address 261 * @ulen: pointer to user length field 262 * 263 * The value pointed to by ulen on entry is the buffer length available. 264 * This is overwritten with the buffer space used. -EINVAL is returned 265 * if an overlong buffer is specified or a negative buffer size. -EFAULT 266 * is returned if either the buffer or the length field are not 267 * accessible. 268 * After copying the data up to the limit the user specifies, the true 269 * length of the data is written over the length limit the user 270 * specified. Zero is returned for a success. 271 */ 272 273 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 274 void __user *uaddr, int __user *ulen) 275 { 276 int err; 277 int len; 278 279 BUG_ON(klen > sizeof(struct sockaddr_storage)); 280 err = get_user(len, ulen); 281 if (err) 282 return err; 283 if (len > klen) 284 len = klen; 285 if (len < 0) 286 return -EINVAL; 287 if (len) { 288 if (audit_sockaddr(klen, kaddr)) 289 return -ENOMEM; 290 if (copy_to_user(uaddr, kaddr, len)) 291 return -EFAULT; 292 } 293 /* 294 * "fromlen shall refer to the value before truncation.." 295 * 1003.1g 296 */ 297 return __put_user(klen, ulen); 298 } 299 300 static struct kmem_cache *sock_inode_cachep __ro_after_init; 301 302 static struct inode *sock_alloc_inode(struct super_block *sb) 303 { 304 struct socket_alloc *ei; 305 306 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 307 if (!ei) 308 return NULL; 309 init_waitqueue_head(&ei->socket.wq.wait); 310 ei->socket.wq.fasync_list = NULL; 311 ei->socket.wq.flags = 0; 312 313 ei->socket.state = SS_UNCONNECTED; 314 ei->socket.flags = 0; 315 ei->socket.ops = NULL; 316 ei->socket.sk = NULL; 317 ei->socket.file = NULL; 318 319 return &ei->vfs_inode; 320 } 321 322 static void sock_free_inode(struct inode *inode) 323 { 324 struct socket_alloc *ei; 325 326 ei = container_of(inode, struct socket_alloc, vfs_inode); 327 kmem_cache_free(sock_inode_cachep, ei); 328 } 329 330 static void init_once(void *foo) 331 { 332 struct socket_alloc *ei = (struct socket_alloc *)foo; 333 334 inode_init_once(&ei->vfs_inode); 335 } 336 337 static void init_inodecache(void) 338 { 339 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 340 sizeof(struct socket_alloc), 341 0, 342 (SLAB_HWCACHE_ALIGN | 343 SLAB_RECLAIM_ACCOUNT | 344 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 345 init_once); 346 BUG_ON(sock_inode_cachep == NULL); 347 } 348 349 static const struct super_operations sockfs_ops = { 350 .alloc_inode = sock_alloc_inode, 351 .free_inode = sock_free_inode, 352 .statfs = simple_statfs, 353 }; 354 355 /* 356 * sockfs_dname() is called from d_path(). 357 */ 358 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 359 { 360 return dynamic_dname(buffer, buflen, "socket:[%lu]", 361 d_inode(dentry)->i_ino); 362 } 363 364 static const struct dentry_operations sockfs_dentry_operations = { 365 .d_dname = sockfs_dname, 366 }; 367 368 static int sockfs_xattr_get(const struct xattr_handler *handler, 369 struct dentry *dentry, struct inode *inode, 370 const char *suffix, void *value, size_t size) 371 { 372 if (value) { 373 if (dentry->d_name.len + 1 > size) 374 return -ERANGE; 375 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 376 } 377 return dentry->d_name.len + 1; 378 } 379 380 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 381 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 382 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 383 384 static const struct xattr_handler sockfs_xattr_handler = { 385 .name = XATTR_NAME_SOCKPROTONAME, 386 .get = sockfs_xattr_get, 387 }; 388 389 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 390 struct mnt_idmap *idmap, 391 struct dentry *dentry, struct inode *inode, 392 const char *suffix, const void *value, 393 size_t size, int flags) 394 { 395 /* Handled by LSM. */ 396 return -EAGAIN; 397 } 398 399 static const struct xattr_handler sockfs_security_xattr_handler = { 400 .prefix = XATTR_SECURITY_PREFIX, 401 .set = sockfs_security_xattr_set, 402 }; 403 404 static const struct xattr_handler *sockfs_xattr_handlers[] = { 405 &sockfs_xattr_handler, 406 &sockfs_security_xattr_handler, 407 NULL 408 }; 409 410 static int sockfs_init_fs_context(struct fs_context *fc) 411 { 412 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 413 if (!ctx) 414 return -ENOMEM; 415 ctx->ops = &sockfs_ops; 416 ctx->dops = &sockfs_dentry_operations; 417 ctx->xattr = sockfs_xattr_handlers; 418 return 0; 419 } 420 421 static struct vfsmount *sock_mnt __read_mostly; 422 423 static struct file_system_type sock_fs_type = { 424 .name = "sockfs", 425 .init_fs_context = sockfs_init_fs_context, 426 .kill_sb = kill_anon_super, 427 }; 428 429 /* 430 * Obtains the first available file descriptor and sets it up for use. 431 * 432 * These functions create file structures and maps them to fd space 433 * of the current process. On success it returns file descriptor 434 * and file struct implicitly stored in sock->file. 435 * Note that another thread may close file descriptor before we return 436 * from this function. We use the fact that now we do not refer 437 * to socket after mapping. If one day we will need it, this 438 * function will increment ref. count on file by 1. 439 * 440 * In any case returned fd MAY BE not valid! 441 * This race condition is unavoidable 442 * with shared fd spaces, we cannot solve it inside kernel, 443 * but we take care of internal coherence yet. 444 */ 445 446 /** 447 * sock_alloc_file - Bind a &socket to a &file 448 * @sock: socket 449 * @flags: file status flags 450 * @dname: protocol name 451 * 452 * Returns the &file bound with @sock, implicitly storing it 453 * in sock->file. If dname is %NULL, sets to "". 454 * 455 * On failure @sock is released, and an ERR pointer is returned. 456 * 457 * This function uses GFP_KERNEL internally. 458 */ 459 460 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 461 { 462 struct file *file; 463 464 if (!dname) 465 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 466 467 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 468 O_RDWR | (flags & O_NONBLOCK), 469 &socket_file_ops); 470 if (IS_ERR(file)) { 471 sock_release(sock); 472 return file; 473 } 474 475 file->f_mode |= FMODE_NOWAIT; 476 sock->file = file; 477 file->private_data = sock; 478 stream_open(SOCK_INODE(sock), file); 479 return file; 480 } 481 EXPORT_SYMBOL(sock_alloc_file); 482 483 static int sock_map_fd(struct socket *sock, int flags) 484 { 485 struct file *newfile; 486 int fd = get_unused_fd_flags(flags); 487 if (unlikely(fd < 0)) { 488 sock_release(sock); 489 return fd; 490 } 491 492 newfile = sock_alloc_file(sock, flags, NULL); 493 if (!IS_ERR(newfile)) { 494 fd_install(fd, newfile); 495 return fd; 496 } 497 498 put_unused_fd(fd); 499 return PTR_ERR(newfile); 500 } 501 502 /** 503 * sock_from_file - Return the &socket bounded to @file. 504 * @file: file 505 * 506 * On failure returns %NULL. 507 */ 508 509 struct socket *sock_from_file(struct file *file) 510 { 511 if (file->f_op == &socket_file_ops) 512 return file->private_data; /* set in sock_alloc_file */ 513 514 return NULL; 515 } 516 EXPORT_SYMBOL(sock_from_file); 517 518 /** 519 * sockfd_lookup - Go from a file number to its socket slot 520 * @fd: file handle 521 * @err: pointer to an error code return 522 * 523 * The file handle passed in is locked and the socket it is bound 524 * to is returned. If an error occurs the err pointer is overwritten 525 * with a negative errno code and NULL is returned. The function checks 526 * for both invalid handles and passing a handle which is not a socket. 527 * 528 * On a success the socket object pointer is returned. 529 */ 530 531 struct socket *sockfd_lookup(int fd, int *err) 532 { 533 struct file *file; 534 struct socket *sock; 535 536 file = fget(fd); 537 if (!file) { 538 *err = -EBADF; 539 return NULL; 540 } 541 542 sock = sock_from_file(file); 543 if (!sock) { 544 *err = -ENOTSOCK; 545 fput(file); 546 } 547 return sock; 548 } 549 EXPORT_SYMBOL(sockfd_lookup); 550 551 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 552 { 553 struct fd f = fdget(fd); 554 struct socket *sock; 555 556 *err = -EBADF; 557 if (f.file) { 558 sock = sock_from_file(f.file); 559 if (likely(sock)) { 560 *fput_needed = f.flags & FDPUT_FPUT; 561 return sock; 562 } 563 *err = -ENOTSOCK; 564 fdput(f); 565 } 566 return NULL; 567 } 568 569 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 570 size_t size) 571 { 572 ssize_t len; 573 ssize_t used = 0; 574 575 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 576 if (len < 0) 577 return len; 578 used += len; 579 if (buffer) { 580 if (size < used) 581 return -ERANGE; 582 buffer += len; 583 } 584 585 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 586 used += len; 587 if (buffer) { 588 if (size < used) 589 return -ERANGE; 590 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 591 buffer += len; 592 } 593 594 return used; 595 } 596 597 static int sockfs_setattr(struct mnt_idmap *idmap, 598 struct dentry *dentry, struct iattr *iattr) 599 { 600 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 601 602 if (!err && (iattr->ia_valid & ATTR_UID)) { 603 struct socket *sock = SOCKET_I(d_inode(dentry)); 604 605 if (sock->sk) 606 sock->sk->sk_uid = iattr->ia_uid; 607 else 608 err = -ENOENT; 609 } 610 611 return err; 612 } 613 614 static const struct inode_operations sockfs_inode_ops = { 615 .listxattr = sockfs_listxattr, 616 .setattr = sockfs_setattr, 617 }; 618 619 /** 620 * sock_alloc - allocate a socket 621 * 622 * Allocate a new inode and socket object. The two are bound together 623 * and initialised. The socket is then returned. If we are out of inodes 624 * NULL is returned. This functions uses GFP_KERNEL internally. 625 */ 626 627 struct socket *sock_alloc(void) 628 { 629 struct inode *inode; 630 struct socket *sock; 631 632 inode = new_inode_pseudo(sock_mnt->mnt_sb); 633 if (!inode) 634 return NULL; 635 636 sock = SOCKET_I(inode); 637 638 inode->i_ino = get_next_ino(); 639 inode->i_mode = S_IFSOCK | S_IRWXUGO; 640 inode->i_uid = current_fsuid(); 641 inode->i_gid = current_fsgid(); 642 inode->i_op = &sockfs_inode_ops; 643 644 return sock; 645 } 646 EXPORT_SYMBOL(sock_alloc); 647 648 static void __sock_release(struct socket *sock, struct inode *inode) 649 { 650 const struct proto_ops *ops = READ_ONCE(sock->ops); 651 652 if (ops) { 653 struct module *owner = ops->owner; 654 655 if (inode) 656 inode_lock(inode); 657 ops->release(sock); 658 sock->sk = NULL; 659 if (inode) 660 inode_unlock(inode); 661 sock->ops = NULL; 662 module_put(owner); 663 } 664 665 if (sock->wq.fasync_list) 666 pr_err("%s: fasync list not empty!\n", __func__); 667 668 if (!sock->file) { 669 iput(SOCK_INODE(sock)); 670 return; 671 } 672 sock->file = NULL; 673 } 674 675 /** 676 * sock_release - close a socket 677 * @sock: socket to close 678 * 679 * The socket is released from the protocol stack if it has a release 680 * callback, and the inode is then released if the socket is bound to 681 * an inode not a file. 682 */ 683 void sock_release(struct socket *sock) 684 { 685 __sock_release(sock, NULL); 686 } 687 EXPORT_SYMBOL(sock_release); 688 689 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 690 { 691 u8 flags = *tx_flags; 692 693 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 694 flags |= SKBTX_HW_TSTAMP; 695 696 /* PTP hardware clocks can provide a free running cycle counter 697 * as a time base for virtual clocks. Tell driver to use the 698 * free running cycle counter for timestamp if socket is bound 699 * to virtual clock. 700 */ 701 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 702 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 703 } 704 705 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 706 flags |= SKBTX_SW_TSTAMP; 707 708 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 709 flags |= SKBTX_SCHED_TSTAMP; 710 711 *tx_flags = flags; 712 } 713 EXPORT_SYMBOL(__sock_tx_timestamp); 714 715 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 716 size_t)); 717 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 718 size_t)); 719 720 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 721 int flags) 722 { 723 trace_sock_send_length(sk, ret, 0); 724 } 725 726 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 727 { 728 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 729 inet_sendmsg, sock, msg, 730 msg_data_left(msg)); 731 BUG_ON(ret == -EIOCBQUEUED); 732 733 if (trace_sock_send_length_enabled()) 734 call_trace_sock_send_length(sock->sk, ret, 0); 735 return ret; 736 } 737 738 /** 739 * sock_sendmsg - send a message through @sock 740 * @sock: socket 741 * @msg: message to send 742 * 743 * Sends @msg through @sock, passing through LSM. 744 * Returns the number of bytes sent, or an error code. 745 */ 746 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 747 { 748 int err = security_socket_sendmsg(sock, msg, 749 msg_data_left(msg)); 750 751 return err ?: sock_sendmsg_nosec(sock, msg); 752 } 753 EXPORT_SYMBOL(sock_sendmsg); 754 755 /** 756 * kernel_sendmsg - send a message through @sock (kernel-space) 757 * @sock: socket 758 * @msg: message header 759 * @vec: kernel vec 760 * @num: vec array length 761 * @size: total message data size 762 * 763 * Builds the message data with @vec and sends it through @sock. 764 * Returns the number of bytes sent, or an error code. 765 */ 766 767 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 768 struct kvec *vec, size_t num, size_t size) 769 { 770 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 771 return sock_sendmsg(sock, msg); 772 } 773 EXPORT_SYMBOL(kernel_sendmsg); 774 775 /** 776 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 777 * @sk: sock 778 * @msg: message header 779 * @vec: output s/g array 780 * @num: output s/g array length 781 * @size: total message data size 782 * 783 * Builds the message data with @vec and sends it through @sock. 784 * Returns the number of bytes sent, or an error code. 785 * Caller must hold @sk. 786 */ 787 788 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 789 struct kvec *vec, size_t num, size_t size) 790 { 791 struct socket *sock = sk->sk_socket; 792 const struct proto_ops *ops = READ_ONCE(sock->ops); 793 794 if (!ops->sendmsg_locked) 795 return sock_no_sendmsg_locked(sk, msg, size); 796 797 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 798 799 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 800 } 801 EXPORT_SYMBOL(kernel_sendmsg_locked); 802 803 static bool skb_is_err_queue(const struct sk_buff *skb) 804 { 805 /* pkt_type of skbs enqueued on the error queue are set to 806 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 807 * in recvmsg, since skbs received on a local socket will never 808 * have a pkt_type of PACKET_OUTGOING. 809 */ 810 return skb->pkt_type == PACKET_OUTGOING; 811 } 812 813 /* On transmit, software and hardware timestamps are returned independently. 814 * As the two skb clones share the hardware timestamp, which may be updated 815 * before the software timestamp is received, a hardware TX timestamp may be 816 * returned only if there is no software TX timestamp. Ignore false software 817 * timestamps, which may be made in the __sock_recv_timestamp() call when the 818 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 819 * hardware timestamp. 820 */ 821 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 822 { 823 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 824 } 825 826 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 827 { 828 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 829 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 830 struct net_device *orig_dev; 831 ktime_t hwtstamp; 832 833 rcu_read_lock(); 834 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 835 if (orig_dev) { 836 *if_index = orig_dev->ifindex; 837 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 838 } else { 839 hwtstamp = shhwtstamps->hwtstamp; 840 } 841 rcu_read_unlock(); 842 843 return hwtstamp; 844 } 845 846 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 847 int if_index) 848 { 849 struct scm_ts_pktinfo ts_pktinfo; 850 struct net_device *orig_dev; 851 852 if (!skb_mac_header_was_set(skb)) 853 return; 854 855 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 856 857 if (!if_index) { 858 rcu_read_lock(); 859 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 860 if (orig_dev) 861 if_index = orig_dev->ifindex; 862 rcu_read_unlock(); 863 } 864 ts_pktinfo.if_index = if_index; 865 866 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 867 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 868 sizeof(ts_pktinfo), &ts_pktinfo); 869 } 870 871 /* 872 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 873 */ 874 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 875 struct sk_buff *skb) 876 { 877 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 878 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 879 struct scm_timestamping_internal tss; 880 881 int empty = 1, false_tstamp = 0; 882 struct skb_shared_hwtstamps *shhwtstamps = 883 skb_hwtstamps(skb); 884 int if_index; 885 ktime_t hwtstamp; 886 887 /* Race occurred between timestamp enabling and packet 888 receiving. Fill in the current time for now. */ 889 if (need_software_tstamp && skb->tstamp == 0) { 890 __net_timestamp(skb); 891 false_tstamp = 1; 892 } 893 894 if (need_software_tstamp) { 895 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 896 if (new_tstamp) { 897 struct __kernel_sock_timeval tv; 898 899 skb_get_new_timestamp(skb, &tv); 900 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 901 sizeof(tv), &tv); 902 } else { 903 struct __kernel_old_timeval tv; 904 905 skb_get_timestamp(skb, &tv); 906 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 907 sizeof(tv), &tv); 908 } 909 } else { 910 if (new_tstamp) { 911 struct __kernel_timespec ts; 912 913 skb_get_new_timestampns(skb, &ts); 914 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 915 sizeof(ts), &ts); 916 } else { 917 struct __kernel_old_timespec ts; 918 919 skb_get_timestampns(skb, &ts); 920 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 921 sizeof(ts), &ts); 922 } 923 } 924 } 925 926 memset(&tss, 0, sizeof(tss)); 927 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 928 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 929 empty = 0; 930 if (shhwtstamps && 931 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 932 !skb_is_swtx_tstamp(skb, false_tstamp)) { 933 if_index = 0; 934 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 935 hwtstamp = get_timestamp(sk, skb, &if_index); 936 else 937 hwtstamp = shhwtstamps->hwtstamp; 938 939 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 940 hwtstamp = ptp_convert_timestamp(&hwtstamp, 941 sk->sk_bind_phc); 942 943 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 944 empty = 0; 945 946 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 947 !skb_is_err_queue(skb)) 948 put_ts_pktinfo(msg, skb, if_index); 949 } 950 } 951 if (!empty) { 952 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 953 put_cmsg_scm_timestamping64(msg, &tss); 954 else 955 put_cmsg_scm_timestamping(msg, &tss); 956 957 if (skb_is_err_queue(skb) && skb->len && 958 SKB_EXT_ERR(skb)->opt_stats) 959 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 960 skb->len, skb->data); 961 } 962 } 963 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 964 965 #ifdef CONFIG_WIRELESS 966 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 967 struct sk_buff *skb) 968 { 969 int ack; 970 971 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 972 return; 973 if (!skb->wifi_acked_valid) 974 return; 975 976 ack = skb->wifi_acked; 977 978 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 979 } 980 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 981 #endif 982 983 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 984 struct sk_buff *skb) 985 { 986 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 987 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 988 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 989 } 990 991 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 992 struct sk_buff *skb) 993 { 994 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 995 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 996 __u32 mark = skb->mark; 997 998 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 999 } 1000 } 1001 1002 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1003 struct sk_buff *skb) 1004 { 1005 sock_recv_timestamp(msg, sk, skb); 1006 sock_recv_drops(msg, sk, skb); 1007 sock_recv_mark(msg, sk, skb); 1008 } 1009 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1010 1011 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1012 size_t, int)); 1013 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1014 size_t, int)); 1015 1016 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1017 { 1018 trace_sock_recv_length(sk, ret, flags); 1019 } 1020 1021 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1022 int flags) 1023 { 1024 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1025 inet6_recvmsg, 1026 inet_recvmsg, sock, msg, 1027 msg_data_left(msg), flags); 1028 if (trace_sock_recv_length_enabled()) 1029 call_trace_sock_recv_length(sock->sk, ret, flags); 1030 return ret; 1031 } 1032 1033 /** 1034 * sock_recvmsg - receive a message from @sock 1035 * @sock: socket 1036 * @msg: message to receive 1037 * @flags: message flags 1038 * 1039 * Receives @msg from @sock, passing through LSM. Returns the total number 1040 * of bytes received, or an error. 1041 */ 1042 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1043 { 1044 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1045 1046 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1047 } 1048 EXPORT_SYMBOL(sock_recvmsg); 1049 1050 /** 1051 * kernel_recvmsg - Receive a message from a socket (kernel space) 1052 * @sock: The socket to receive the message from 1053 * @msg: Received message 1054 * @vec: Input s/g array for message data 1055 * @num: Size of input s/g array 1056 * @size: Number of bytes to read 1057 * @flags: Message flags (MSG_DONTWAIT, etc...) 1058 * 1059 * On return the msg structure contains the scatter/gather array passed in the 1060 * vec argument. The array is modified so that it consists of the unfilled 1061 * portion of the original array. 1062 * 1063 * The returned value is the total number of bytes received, or an error. 1064 */ 1065 1066 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1067 struct kvec *vec, size_t num, size_t size, int flags) 1068 { 1069 msg->msg_control_is_user = false; 1070 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1071 return sock_recvmsg(sock, msg, flags); 1072 } 1073 EXPORT_SYMBOL(kernel_recvmsg); 1074 1075 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1076 struct pipe_inode_info *pipe, size_t len, 1077 unsigned int flags) 1078 { 1079 struct socket *sock = file->private_data; 1080 const struct proto_ops *ops; 1081 1082 ops = READ_ONCE(sock->ops); 1083 if (unlikely(!ops->splice_read)) 1084 return copy_splice_read(file, ppos, pipe, len, flags); 1085 1086 return ops->splice_read(sock, ppos, pipe, len, flags); 1087 } 1088 1089 static void sock_splice_eof(struct file *file) 1090 { 1091 struct socket *sock = file->private_data; 1092 const struct proto_ops *ops; 1093 1094 ops = READ_ONCE(sock->ops); 1095 if (ops->splice_eof) 1096 ops->splice_eof(sock); 1097 } 1098 1099 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1100 { 1101 struct file *file = iocb->ki_filp; 1102 struct socket *sock = file->private_data; 1103 struct msghdr msg = {.msg_iter = *to, 1104 .msg_iocb = iocb}; 1105 ssize_t res; 1106 1107 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1108 msg.msg_flags = MSG_DONTWAIT; 1109 1110 if (iocb->ki_pos != 0) 1111 return -ESPIPE; 1112 1113 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1114 return 0; 1115 1116 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1117 *to = msg.msg_iter; 1118 return res; 1119 } 1120 1121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1122 { 1123 struct file *file = iocb->ki_filp; 1124 struct socket *sock = file->private_data; 1125 struct msghdr msg = {.msg_iter = *from, 1126 .msg_iocb = iocb}; 1127 ssize_t res; 1128 1129 if (iocb->ki_pos != 0) 1130 return -ESPIPE; 1131 1132 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1133 msg.msg_flags = MSG_DONTWAIT; 1134 1135 if (sock->type == SOCK_SEQPACKET) 1136 msg.msg_flags |= MSG_EOR; 1137 1138 res = sock_sendmsg(sock, &msg); 1139 *from = msg.msg_iter; 1140 return res; 1141 } 1142 1143 /* 1144 * Atomic setting of ioctl hooks to avoid race 1145 * with module unload. 1146 */ 1147 1148 static DEFINE_MUTEX(br_ioctl_mutex); 1149 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1150 unsigned int cmd, struct ifreq *ifr, 1151 void __user *uarg); 1152 1153 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1154 unsigned int cmd, struct ifreq *ifr, 1155 void __user *uarg)) 1156 { 1157 mutex_lock(&br_ioctl_mutex); 1158 br_ioctl_hook = hook; 1159 mutex_unlock(&br_ioctl_mutex); 1160 } 1161 EXPORT_SYMBOL(brioctl_set); 1162 1163 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1164 struct ifreq *ifr, void __user *uarg) 1165 { 1166 int err = -ENOPKG; 1167 1168 if (!br_ioctl_hook) 1169 request_module("bridge"); 1170 1171 mutex_lock(&br_ioctl_mutex); 1172 if (br_ioctl_hook) 1173 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1174 mutex_unlock(&br_ioctl_mutex); 1175 1176 return err; 1177 } 1178 1179 static DEFINE_MUTEX(vlan_ioctl_mutex); 1180 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1181 1182 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1183 { 1184 mutex_lock(&vlan_ioctl_mutex); 1185 vlan_ioctl_hook = hook; 1186 mutex_unlock(&vlan_ioctl_mutex); 1187 } 1188 EXPORT_SYMBOL(vlan_ioctl_set); 1189 1190 static long sock_do_ioctl(struct net *net, struct socket *sock, 1191 unsigned int cmd, unsigned long arg) 1192 { 1193 const struct proto_ops *ops = READ_ONCE(sock->ops); 1194 struct ifreq ifr; 1195 bool need_copyout; 1196 int err; 1197 void __user *argp = (void __user *)arg; 1198 void __user *data; 1199 1200 err = ops->ioctl(sock, cmd, arg); 1201 1202 /* 1203 * If this ioctl is unknown try to hand it down 1204 * to the NIC driver. 1205 */ 1206 if (err != -ENOIOCTLCMD) 1207 return err; 1208 1209 if (!is_socket_ioctl_cmd(cmd)) 1210 return -ENOTTY; 1211 1212 if (get_user_ifreq(&ifr, &data, argp)) 1213 return -EFAULT; 1214 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1215 if (!err && need_copyout) 1216 if (put_user_ifreq(&ifr, argp)) 1217 return -EFAULT; 1218 1219 return err; 1220 } 1221 1222 /* 1223 * With an ioctl, arg may well be a user mode pointer, but we don't know 1224 * what to do with it - that's up to the protocol still. 1225 */ 1226 1227 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1228 { 1229 const struct proto_ops *ops; 1230 struct socket *sock; 1231 struct sock *sk; 1232 void __user *argp = (void __user *)arg; 1233 int pid, err; 1234 struct net *net; 1235 1236 sock = file->private_data; 1237 ops = READ_ONCE(sock->ops); 1238 sk = sock->sk; 1239 net = sock_net(sk); 1240 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1241 struct ifreq ifr; 1242 void __user *data; 1243 bool need_copyout; 1244 if (get_user_ifreq(&ifr, &data, argp)) 1245 return -EFAULT; 1246 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1247 if (!err && need_copyout) 1248 if (put_user_ifreq(&ifr, argp)) 1249 return -EFAULT; 1250 } else 1251 #ifdef CONFIG_WEXT_CORE 1252 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1253 err = wext_handle_ioctl(net, cmd, argp); 1254 } else 1255 #endif 1256 switch (cmd) { 1257 case FIOSETOWN: 1258 case SIOCSPGRP: 1259 err = -EFAULT; 1260 if (get_user(pid, (int __user *)argp)) 1261 break; 1262 err = f_setown(sock->file, pid, 1); 1263 break; 1264 case FIOGETOWN: 1265 case SIOCGPGRP: 1266 err = put_user(f_getown(sock->file), 1267 (int __user *)argp); 1268 break; 1269 case SIOCGIFBR: 1270 case SIOCSIFBR: 1271 case SIOCBRADDBR: 1272 case SIOCBRDELBR: 1273 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1274 break; 1275 case SIOCGIFVLAN: 1276 case SIOCSIFVLAN: 1277 err = -ENOPKG; 1278 if (!vlan_ioctl_hook) 1279 request_module("8021q"); 1280 1281 mutex_lock(&vlan_ioctl_mutex); 1282 if (vlan_ioctl_hook) 1283 err = vlan_ioctl_hook(net, argp); 1284 mutex_unlock(&vlan_ioctl_mutex); 1285 break; 1286 case SIOCGSKNS: 1287 err = -EPERM; 1288 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1289 break; 1290 1291 err = open_related_ns(&net->ns, get_net_ns); 1292 break; 1293 case SIOCGSTAMP_OLD: 1294 case SIOCGSTAMPNS_OLD: 1295 if (!ops->gettstamp) { 1296 err = -ENOIOCTLCMD; 1297 break; 1298 } 1299 err = ops->gettstamp(sock, argp, 1300 cmd == SIOCGSTAMP_OLD, 1301 !IS_ENABLED(CONFIG_64BIT)); 1302 break; 1303 case SIOCGSTAMP_NEW: 1304 case SIOCGSTAMPNS_NEW: 1305 if (!ops->gettstamp) { 1306 err = -ENOIOCTLCMD; 1307 break; 1308 } 1309 err = ops->gettstamp(sock, argp, 1310 cmd == SIOCGSTAMP_NEW, 1311 false); 1312 break; 1313 1314 case SIOCGIFCONF: 1315 err = dev_ifconf(net, argp); 1316 break; 1317 1318 default: 1319 err = sock_do_ioctl(net, sock, cmd, arg); 1320 break; 1321 } 1322 return err; 1323 } 1324 1325 /** 1326 * sock_create_lite - creates a socket 1327 * @family: protocol family (AF_INET, ...) 1328 * @type: communication type (SOCK_STREAM, ...) 1329 * @protocol: protocol (0, ...) 1330 * @res: new socket 1331 * 1332 * Creates a new socket and assigns it to @res, passing through LSM. 1333 * The new socket initialization is not complete, see kernel_accept(). 1334 * Returns 0 or an error. On failure @res is set to %NULL. 1335 * This function internally uses GFP_KERNEL. 1336 */ 1337 1338 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1339 { 1340 int err; 1341 struct socket *sock = NULL; 1342 1343 err = security_socket_create(family, type, protocol, 1); 1344 if (err) 1345 goto out; 1346 1347 sock = sock_alloc(); 1348 if (!sock) { 1349 err = -ENOMEM; 1350 goto out; 1351 } 1352 1353 sock->type = type; 1354 err = security_socket_post_create(sock, family, type, protocol, 1); 1355 if (err) 1356 goto out_release; 1357 1358 out: 1359 *res = sock; 1360 return err; 1361 out_release: 1362 sock_release(sock); 1363 sock = NULL; 1364 goto out; 1365 } 1366 EXPORT_SYMBOL(sock_create_lite); 1367 1368 /* No kernel lock held - perfect */ 1369 static __poll_t sock_poll(struct file *file, poll_table *wait) 1370 { 1371 struct socket *sock = file->private_data; 1372 const struct proto_ops *ops = READ_ONCE(sock->ops); 1373 __poll_t events = poll_requested_events(wait), flag = 0; 1374 1375 if (!ops->poll) 1376 return 0; 1377 1378 if (sk_can_busy_loop(sock->sk)) { 1379 /* poll once if requested by the syscall */ 1380 if (events & POLL_BUSY_LOOP) 1381 sk_busy_loop(sock->sk, 1); 1382 1383 /* if this socket can poll_ll, tell the system call */ 1384 flag = POLL_BUSY_LOOP; 1385 } 1386 1387 return ops->poll(file, sock, wait) | flag; 1388 } 1389 1390 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1391 { 1392 struct socket *sock = file->private_data; 1393 1394 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1395 } 1396 1397 static int sock_close(struct inode *inode, struct file *filp) 1398 { 1399 __sock_release(SOCKET_I(inode), inode); 1400 return 0; 1401 } 1402 1403 /* 1404 * Update the socket async list 1405 * 1406 * Fasync_list locking strategy. 1407 * 1408 * 1. fasync_list is modified only under process context socket lock 1409 * i.e. under semaphore. 1410 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1411 * or under socket lock 1412 */ 1413 1414 static int sock_fasync(int fd, struct file *filp, int on) 1415 { 1416 struct socket *sock = filp->private_data; 1417 struct sock *sk = sock->sk; 1418 struct socket_wq *wq = &sock->wq; 1419 1420 if (sk == NULL) 1421 return -EINVAL; 1422 1423 lock_sock(sk); 1424 fasync_helper(fd, filp, on, &wq->fasync_list); 1425 1426 if (!wq->fasync_list) 1427 sock_reset_flag(sk, SOCK_FASYNC); 1428 else 1429 sock_set_flag(sk, SOCK_FASYNC); 1430 1431 release_sock(sk); 1432 return 0; 1433 } 1434 1435 /* This function may be called only under rcu_lock */ 1436 1437 int sock_wake_async(struct socket_wq *wq, int how, int band) 1438 { 1439 if (!wq || !wq->fasync_list) 1440 return -1; 1441 1442 switch (how) { 1443 case SOCK_WAKE_WAITD: 1444 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1445 break; 1446 goto call_kill; 1447 case SOCK_WAKE_SPACE: 1448 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1449 break; 1450 fallthrough; 1451 case SOCK_WAKE_IO: 1452 call_kill: 1453 kill_fasync(&wq->fasync_list, SIGIO, band); 1454 break; 1455 case SOCK_WAKE_URG: 1456 kill_fasync(&wq->fasync_list, SIGURG, band); 1457 } 1458 1459 return 0; 1460 } 1461 EXPORT_SYMBOL(sock_wake_async); 1462 1463 /** 1464 * __sock_create - creates a socket 1465 * @net: net namespace 1466 * @family: protocol family (AF_INET, ...) 1467 * @type: communication type (SOCK_STREAM, ...) 1468 * @protocol: protocol (0, ...) 1469 * @res: new socket 1470 * @kern: boolean for kernel space sockets 1471 * 1472 * Creates a new socket and assigns it to @res, passing through LSM. 1473 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1474 * be set to true if the socket resides in kernel space. 1475 * This function internally uses GFP_KERNEL. 1476 */ 1477 1478 int __sock_create(struct net *net, int family, int type, int protocol, 1479 struct socket **res, int kern) 1480 { 1481 int err; 1482 struct socket *sock; 1483 const struct net_proto_family *pf; 1484 1485 /* 1486 * Check protocol is in range 1487 */ 1488 if (family < 0 || family >= NPROTO) 1489 return -EAFNOSUPPORT; 1490 if (type < 0 || type >= SOCK_MAX) 1491 return -EINVAL; 1492 1493 /* Compatibility. 1494 1495 This uglymoron is moved from INET layer to here to avoid 1496 deadlock in module load. 1497 */ 1498 if (family == PF_INET && type == SOCK_PACKET) { 1499 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1500 current->comm); 1501 family = PF_PACKET; 1502 } 1503 1504 err = security_socket_create(family, type, protocol, kern); 1505 if (err) 1506 return err; 1507 1508 /* 1509 * Allocate the socket and allow the family to set things up. if 1510 * the protocol is 0, the family is instructed to select an appropriate 1511 * default. 1512 */ 1513 sock = sock_alloc(); 1514 if (!sock) { 1515 net_warn_ratelimited("socket: no more sockets\n"); 1516 return -ENFILE; /* Not exactly a match, but its the 1517 closest posix thing */ 1518 } 1519 1520 sock->type = type; 1521 1522 #ifdef CONFIG_MODULES 1523 /* Attempt to load a protocol module if the find failed. 1524 * 1525 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1526 * requested real, full-featured networking support upon configuration. 1527 * Otherwise module support will break! 1528 */ 1529 if (rcu_access_pointer(net_families[family]) == NULL) 1530 request_module("net-pf-%d", family); 1531 #endif 1532 1533 rcu_read_lock(); 1534 pf = rcu_dereference(net_families[family]); 1535 err = -EAFNOSUPPORT; 1536 if (!pf) 1537 goto out_release; 1538 1539 /* 1540 * We will call the ->create function, that possibly is in a loadable 1541 * module, so we have to bump that loadable module refcnt first. 1542 */ 1543 if (!try_module_get(pf->owner)) 1544 goto out_release; 1545 1546 /* Now protected by module ref count */ 1547 rcu_read_unlock(); 1548 1549 err = pf->create(net, sock, protocol, kern); 1550 if (err < 0) 1551 goto out_module_put; 1552 1553 /* 1554 * Now to bump the refcnt of the [loadable] module that owns this 1555 * socket at sock_release time we decrement its refcnt. 1556 */ 1557 if (!try_module_get(sock->ops->owner)) 1558 goto out_module_busy; 1559 1560 /* 1561 * Now that we're done with the ->create function, the [loadable] 1562 * module can have its refcnt decremented 1563 */ 1564 module_put(pf->owner); 1565 err = security_socket_post_create(sock, family, type, protocol, kern); 1566 if (err) 1567 goto out_sock_release; 1568 *res = sock; 1569 1570 return 0; 1571 1572 out_module_busy: 1573 err = -EAFNOSUPPORT; 1574 out_module_put: 1575 sock->ops = NULL; 1576 module_put(pf->owner); 1577 out_sock_release: 1578 sock_release(sock); 1579 return err; 1580 1581 out_release: 1582 rcu_read_unlock(); 1583 goto out_sock_release; 1584 } 1585 EXPORT_SYMBOL(__sock_create); 1586 1587 /** 1588 * sock_create - creates a socket 1589 * @family: protocol family (AF_INET, ...) 1590 * @type: communication type (SOCK_STREAM, ...) 1591 * @protocol: protocol (0, ...) 1592 * @res: new socket 1593 * 1594 * A wrapper around __sock_create(). 1595 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1596 */ 1597 1598 int sock_create(int family, int type, int protocol, struct socket **res) 1599 { 1600 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1601 } 1602 EXPORT_SYMBOL(sock_create); 1603 1604 /** 1605 * sock_create_kern - creates a socket (kernel space) 1606 * @net: net namespace 1607 * @family: protocol family (AF_INET, ...) 1608 * @type: communication type (SOCK_STREAM, ...) 1609 * @protocol: protocol (0, ...) 1610 * @res: new socket 1611 * 1612 * A wrapper around __sock_create(). 1613 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1614 */ 1615 1616 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1617 { 1618 return __sock_create(net, family, type, protocol, res, 1); 1619 } 1620 EXPORT_SYMBOL(sock_create_kern); 1621 1622 static struct socket *__sys_socket_create(int family, int type, int protocol) 1623 { 1624 struct socket *sock; 1625 int retval; 1626 1627 /* Check the SOCK_* constants for consistency. */ 1628 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1629 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1630 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1631 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1632 1633 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1634 return ERR_PTR(-EINVAL); 1635 type &= SOCK_TYPE_MASK; 1636 1637 retval = sock_create(family, type, protocol, &sock); 1638 if (retval < 0) 1639 return ERR_PTR(retval); 1640 1641 return sock; 1642 } 1643 1644 struct file *__sys_socket_file(int family, int type, int protocol) 1645 { 1646 struct socket *sock; 1647 int flags; 1648 1649 sock = __sys_socket_create(family, type, protocol); 1650 if (IS_ERR(sock)) 1651 return ERR_CAST(sock); 1652 1653 flags = type & ~SOCK_TYPE_MASK; 1654 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1655 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1656 1657 return sock_alloc_file(sock, flags, NULL); 1658 } 1659 1660 int __sys_socket(int family, int type, int protocol) 1661 { 1662 struct socket *sock; 1663 int flags; 1664 1665 sock = __sys_socket_create(family, type, protocol); 1666 if (IS_ERR(sock)) 1667 return PTR_ERR(sock); 1668 1669 flags = type & ~SOCK_TYPE_MASK; 1670 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1671 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1672 1673 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1674 } 1675 1676 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1677 { 1678 return __sys_socket(family, type, protocol); 1679 } 1680 1681 /* 1682 * Create a pair of connected sockets. 1683 */ 1684 1685 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1686 { 1687 struct socket *sock1, *sock2; 1688 int fd1, fd2, err; 1689 struct file *newfile1, *newfile2; 1690 int flags; 1691 1692 flags = type & ~SOCK_TYPE_MASK; 1693 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1694 return -EINVAL; 1695 type &= SOCK_TYPE_MASK; 1696 1697 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1698 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1699 1700 /* 1701 * reserve descriptors and make sure we won't fail 1702 * to return them to userland. 1703 */ 1704 fd1 = get_unused_fd_flags(flags); 1705 if (unlikely(fd1 < 0)) 1706 return fd1; 1707 1708 fd2 = get_unused_fd_flags(flags); 1709 if (unlikely(fd2 < 0)) { 1710 put_unused_fd(fd1); 1711 return fd2; 1712 } 1713 1714 err = put_user(fd1, &usockvec[0]); 1715 if (err) 1716 goto out; 1717 1718 err = put_user(fd2, &usockvec[1]); 1719 if (err) 1720 goto out; 1721 1722 /* 1723 * Obtain the first socket and check if the underlying protocol 1724 * supports the socketpair call. 1725 */ 1726 1727 err = sock_create(family, type, protocol, &sock1); 1728 if (unlikely(err < 0)) 1729 goto out; 1730 1731 err = sock_create(family, type, protocol, &sock2); 1732 if (unlikely(err < 0)) { 1733 sock_release(sock1); 1734 goto out; 1735 } 1736 1737 err = security_socket_socketpair(sock1, sock2); 1738 if (unlikely(err)) { 1739 sock_release(sock2); 1740 sock_release(sock1); 1741 goto out; 1742 } 1743 1744 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1745 if (unlikely(err < 0)) { 1746 sock_release(sock2); 1747 sock_release(sock1); 1748 goto out; 1749 } 1750 1751 newfile1 = sock_alloc_file(sock1, flags, NULL); 1752 if (IS_ERR(newfile1)) { 1753 err = PTR_ERR(newfile1); 1754 sock_release(sock2); 1755 goto out; 1756 } 1757 1758 newfile2 = sock_alloc_file(sock2, flags, NULL); 1759 if (IS_ERR(newfile2)) { 1760 err = PTR_ERR(newfile2); 1761 fput(newfile1); 1762 goto out; 1763 } 1764 1765 audit_fd_pair(fd1, fd2); 1766 1767 fd_install(fd1, newfile1); 1768 fd_install(fd2, newfile2); 1769 return 0; 1770 1771 out: 1772 put_unused_fd(fd2); 1773 put_unused_fd(fd1); 1774 return err; 1775 } 1776 1777 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1778 int __user *, usockvec) 1779 { 1780 return __sys_socketpair(family, type, protocol, usockvec); 1781 } 1782 1783 /* 1784 * Bind a name to a socket. Nothing much to do here since it's 1785 * the protocol's responsibility to handle the local address. 1786 * 1787 * We move the socket address to kernel space before we call 1788 * the protocol layer (having also checked the address is ok). 1789 */ 1790 1791 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1792 { 1793 struct socket *sock; 1794 struct sockaddr_storage address; 1795 int err, fput_needed; 1796 1797 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1798 if (sock) { 1799 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1800 if (!err) { 1801 err = security_socket_bind(sock, 1802 (struct sockaddr *)&address, 1803 addrlen); 1804 if (!err) 1805 err = READ_ONCE(sock->ops)->bind(sock, 1806 (struct sockaddr *) 1807 &address, addrlen); 1808 } 1809 fput_light(sock->file, fput_needed); 1810 } 1811 return err; 1812 } 1813 1814 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1815 { 1816 return __sys_bind(fd, umyaddr, addrlen); 1817 } 1818 1819 /* 1820 * Perform a listen. Basically, we allow the protocol to do anything 1821 * necessary for a listen, and if that works, we mark the socket as 1822 * ready for listening. 1823 */ 1824 1825 int __sys_listen(int fd, int backlog) 1826 { 1827 struct socket *sock; 1828 int err, fput_needed; 1829 int somaxconn; 1830 1831 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1832 if (sock) { 1833 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1834 if ((unsigned int)backlog > somaxconn) 1835 backlog = somaxconn; 1836 1837 err = security_socket_listen(sock, backlog); 1838 if (!err) 1839 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1840 1841 fput_light(sock->file, fput_needed); 1842 } 1843 return err; 1844 } 1845 1846 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1847 { 1848 return __sys_listen(fd, backlog); 1849 } 1850 1851 struct file *do_accept(struct file *file, unsigned file_flags, 1852 struct sockaddr __user *upeer_sockaddr, 1853 int __user *upeer_addrlen, int flags) 1854 { 1855 struct socket *sock, *newsock; 1856 struct file *newfile; 1857 int err, len; 1858 struct sockaddr_storage address; 1859 const struct proto_ops *ops; 1860 1861 sock = sock_from_file(file); 1862 if (!sock) 1863 return ERR_PTR(-ENOTSOCK); 1864 1865 newsock = sock_alloc(); 1866 if (!newsock) 1867 return ERR_PTR(-ENFILE); 1868 ops = READ_ONCE(sock->ops); 1869 1870 newsock->type = sock->type; 1871 newsock->ops = ops; 1872 1873 /* 1874 * We don't need try_module_get here, as the listening socket (sock) 1875 * has the protocol module (sock->ops->owner) held. 1876 */ 1877 __module_get(ops->owner); 1878 1879 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1880 if (IS_ERR(newfile)) 1881 return newfile; 1882 1883 err = security_socket_accept(sock, newsock); 1884 if (err) 1885 goto out_fd; 1886 1887 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1888 false); 1889 if (err < 0) 1890 goto out_fd; 1891 1892 if (upeer_sockaddr) { 1893 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1894 if (len < 0) { 1895 err = -ECONNABORTED; 1896 goto out_fd; 1897 } 1898 err = move_addr_to_user(&address, 1899 len, upeer_sockaddr, upeer_addrlen); 1900 if (err < 0) 1901 goto out_fd; 1902 } 1903 1904 /* File flags are not inherited via accept() unlike another OSes. */ 1905 return newfile; 1906 out_fd: 1907 fput(newfile); 1908 return ERR_PTR(err); 1909 } 1910 1911 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1912 int __user *upeer_addrlen, int flags) 1913 { 1914 struct file *newfile; 1915 int newfd; 1916 1917 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1918 return -EINVAL; 1919 1920 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1921 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1922 1923 newfd = get_unused_fd_flags(flags); 1924 if (unlikely(newfd < 0)) 1925 return newfd; 1926 1927 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1928 flags); 1929 if (IS_ERR(newfile)) { 1930 put_unused_fd(newfd); 1931 return PTR_ERR(newfile); 1932 } 1933 fd_install(newfd, newfile); 1934 return newfd; 1935 } 1936 1937 /* 1938 * For accept, we attempt to create a new socket, set up the link 1939 * with the client, wake up the client, then return the new 1940 * connected fd. We collect the address of the connector in kernel 1941 * space and move it to user at the very end. This is unclean because 1942 * we open the socket then return an error. 1943 * 1944 * 1003.1g adds the ability to recvmsg() to query connection pending 1945 * status to recvmsg. We need to add that support in a way thats 1946 * clean when we restructure accept also. 1947 */ 1948 1949 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1950 int __user *upeer_addrlen, int flags) 1951 { 1952 int ret = -EBADF; 1953 struct fd f; 1954 1955 f = fdget(fd); 1956 if (f.file) { 1957 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1958 upeer_addrlen, flags); 1959 fdput(f); 1960 } 1961 1962 return ret; 1963 } 1964 1965 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1966 int __user *, upeer_addrlen, int, flags) 1967 { 1968 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1969 } 1970 1971 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1972 int __user *, upeer_addrlen) 1973 { 1974 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1975 } 1976 1977 /* 1978 * Attempt to connect to a socket with the server address. The address 1979 * is in user space so we verify it is OK and move it to kernel space. 1980 * 1981 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1982 * break bindings 1983 * 1984 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1985 * other SEQPACKET protocols that take time to connect() as it doesn't 1986 * include the -EINPROGRESS status for such sockets. 1987 */ 1988 1989 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1990 int addrlen, int file_flags) 1991 { 1992 struct socket *sock; 1993 int err; 1994 1995 sock = sock_from_file(file); 1996 if (!sock) { 1997 err = -ENOTSOCK; 1998 goto out; 1999 } 2000 2001 err = 2002 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2003 if (err) 2004 goto out; 2005 2006 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2007 addrlen, sock->file->f_flags | file_flags); 2008 out: 2009 return err; 2010 } 2011 2012 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2013 { 2014 int ret = -EBADF; 2015 struct fd f; 2016 2017 f = fdget(fd); 2018 if (f.file) { 2019 struct sockaddr_storage address; 2020 2021 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2022 if (!ret) 2023 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2024 fdput(f); 2025 } 2026 2027 return ret; 2028 } 2029 2030 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2031 int, addrlen) 2032 { 2033 return __sys_connect(fd, uservaddr, addrlen); 2034 } 2035 2036 /* 2037 * Get the local address ('name') of a socket object. Move the obtained 2038 * name to user space. 2039 */ 2040 2041 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2042 int __user *usockaddr_len) 2043 { 2044 struct socket *sock; 2045 struct sockaddr_storage address; 2046 int err, fput_needed; 2047 2048 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2049 if (!sock) 2050 goto out; 2051 2052 err = security_socket_getsockname(sock); 2053 if (err) 2054 goto out_put; 2055 2056 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2057 if (err < 0) 2058 goto out_put; 2059 /* "err" is actually length in this case */ 2060 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2061 2062 out_put: 2063 fput_light(sock->file, fput_needed); 2064 out: 2065 return err; 2066 } 2067 2068 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2069 int __user *, usockaddr_len) 2070 { 2071 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2072 } 2073 2074 /* 2075 * Get the remote address ('name') of a socket object. Move the obtained 2076 * name to user space. 2077 */ 2078 2079 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2080 int __user *usockaddr_len) 2081 { 2082 struct socket *sock; 2083 struct sockaddr_storage address; 2084 int err, fput_needed; 2085 2086 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2087 if (sock != NULL) { 2088 const struct proto_ops *ops = READ_ONCE(sock->ops); 2089 2090 err = security_socket_getpeername(sock); 2091 if (err) { 2092 fput_light(sock->file, fput_needed); 2093 return err; 2094 } 2095 2096 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2097 if (err >= 0) 2098 /* "err" is actually length in this case */ 2099 err = move_addr_to_user(&address, err, usockaddr, 2100 usockaddr_len); 2101 fput_light(sock->file, fput_needed); 2102 } 2103 return err; 2104 } 2105 2106 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2107 int __user *, usockaddr_len) 2108 { 2109 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2110 } 2111 2112 /* 2113 * Send a datagram to a given address. We move the address into kernel 2114 * space and check the user space data area is readable before invoking 2115 * the protocol. 2116 */ 2117 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2118 struct sockaddr __user *addr, int addr_len) 2119 { 2120 struct socket *sock; 2121 struct sockaddr_storage address; 2122 int err; 2123 struct msghdr msg; 2124 struct iovec iov; 2125 int fput_needed; 2126 2127 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2128 if (unlikely(err)) 2129 return err; 2130 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2131 if (!sock) 2132 goto out; 2133 2134 msg.msg_name = NULL; 2135 msg.msg_control = NULL; 2136 msg.msg_controllen = 0; 2137 msg.msg_namelen = 0; 2138 msg.msg_ubuf = NULL; 2139 if (addr) { 2140 err = move_addr_to_kernel(addr, addr_len, &address); 2141 if (err < 0) 2142 goto out_put; 2143 msg.msg_name = (struct sockaddr *)&address; 2144 msg.msg_namelen = addr_len; 2145 } 2146 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2147 if (sock->file->f_flags & O_NONBLOCK) 2148 flags |= MSG_DONTWAIT; 2149 msg.msg_flags = flags; 2150 err = sock_sendmsg(sock, &msg); 2151 2152 out_put: 2153 fput_light(sock->file, fput_needed); 2154 out: 2155 return err; 2156 } 2157 2158 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2159 unsigned int, flags, struct sockaddr __user *, addr, 2160 int, addr_len) 2161 { 2162 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2163 } 2164 2165 /* 2166 * Send a datagram down a socket. 2167 */ 2168 2169 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2170 unsigned int, flags) 2171 { 2172 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2173 } 2174 2175 /* 2176 * Receive a frame from the socket and optionally record the address of the 2177 * sender. We verify the buffers are writable and if needed move the 2178 * sender address from kernel to user space. 2179 */ 2180 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2181 struct sockaddr __user *addr, int __user *addr_len) 2182 { 2183 struct sockaddr_storage address; 2184 struct msghdr msg = { 2185 /* Save some cycles and don't copy the address if not needed */ 2186 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2187 }; 2188 struct socket *sock; 2189 struct iovec iov; 2190 int err, err2; 2191 int fput_needed; 2192 2193 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2194 if (unlikely(err)) 2195 return err; 2196 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2197 if (!sock) 2198 goto out; 2199 2200 if (sock->file->f_flags & O_NONBLOCK) 2201 flags |= MSG_DONTWAIT; 2202 err = sock_recvmsg(sock, &msg, flags); 2203 2204 if (err >= 0 && addr != NULL) { 2205 err2 = move_addr_to_user(&address, 2206 msg.msg_namelen, addr, addr_len); 2207 if (err2 < 0) 2208 err = err2; 2209 } 2210 2211 fput_light(sock->file, fput_needed); 2212 out: 2213 return err; 2214 } 2215 2216 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2217 unsigned int, flags, struct sockaddr __user *, addr, 2218 int __user *, addr_len) 2219 { 2220 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2221 } 2222 2223 /* 2224 * Receive a datagram from a socket. 2225 */ 2226 2227 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2228 unsigned int, flags) 2229 { 2230 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2231 } 2232 2233 static bool sock_use_custom_sol_socket(const struct socket *sock) 2234 { 2235 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2236 } 2237 2238 /* 2239 * Set a socket option. Because we don't know the option lengths we have 2240 * to pass the user mode parameter for the protocols to sort out. 2241 */ 2242 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2243 int optlen) 2244 { 2245 sockptr_t optval = USER_SOCKPTR(user_optval); 2246 const struct proto_ops *ops; 2247 char *kernel_optval = NULL; 2248 int err, fput_needed; 2249 struct socket *sock; 2250 2251 if (optlen < 0) 2252 return -EINVAL; 2253 2254 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2255 if (!sock) 2256 return err; 2257 2258 err = security_socket_setsockopt(sock, level, optname); 2259 if (err) 2260 goto out_put; 2261 2262 if (!in_compat_syscall()) 2263 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2264 user_optval, &optlen, 2265 &kernel_optval); 2266 if (err < 0) 2267 goto out_put; 2268 if (err > 0) { 2269 err = 0; 2270 goto out_put; 2271 } 2272 2273 if (kernel_optval) 2274 optval = KERNEL_SOCKPTR(kernel_optval); 2275 ops = READ_ONCE(sock->ops); 2276 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2277 err = sock_setsockopt(sock, level, optname, optval, optlen); 2278 else if (unlikely(!ops->setsockopt)) 2279 err = -EOPNOTSUPP; 2280 else 2281 err = ops->setsockopt(sock, level, optname, optval, 2282 optlen); 2283 kfree(kernel_optval); 2284 out_put: 2285 fput_light(sock->file, fput_needed); 2286 return err; 2287 } 2288 2289 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2290 char __user *, optval, int, optlen) 2291 { 2292 return __sys_setsockopt(fd, level, optname, optval, optlen); 2293 } 2294 2295 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2296 int optname)); 2297 2298 /* 2299 * Get a socket option. Because we don't know the option lengths we have 2300 * to pass a user mode parameter for the protocols to sort out. 2301 */ 2302 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2303 int __user *optlen) 2304 { 2305 int max_optlen __maybe_unused; 2306 const struct proto_ops *ops; 2307 int err, fput_needed; 2308 struct socket *sock; 2309 2310 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2311 if (!sock) 2312 return err; 2313 2314 err = security_socket_getsockopt(sock, level, optname); 2315 if (err) 2316 goto out_put; 2317 2318 if (!in_compat_syscall()) 2319 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2320 2321 ops = READ_ONCE(sock->ops); 2322 if (level == SOL_SOCKET) 2323 err = sock_getsockopt(sock, level, optname, optval, optlen); 2324 else if (unlikely(!ops->getsockopt)) 2325 err = -EOPNOTSUPP; 2326 else 2327 err = ops->getsockopt(sock, level, optname, optval, 2328 optlen); 2329 2330 if (!in_compat_syscall()) 2331 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2332 optval, optlen, max_optlen, 2333 err); 2334 out_put: 2335 fput_light(sock->file, fput_needed); 2336 return err; 2337 } 2338 2339 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2340 char __user *, optval, int __user *, optlen) 2341 { 2342 return __sys_getsockopt(fd, level, optname, optval, optlen); 2343 } 2344 2345 /* 2346 * Shutdown a socket. 2347 */ 2348 2349 int __sys_shutdown_sock(struct socket *sock, int how) 2350 { 2351 int err; 2352 2353 err = security_socket_shutdown(sock, how); 2354 if (!err) 2355 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2356 2357 return err; 2358 } 2359 2360 int __sys_shutdown(int fd, int how) 2361 { 2362 int err, fput_needed; 2363 struct socket *sock; 2364 2365 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2366 if (sock != NULL) { 2367 err = __sys_shutdown_sock(sock, how); 2368 fput_light(sock->file, fput_needed); 2369 } 2370 return err; 2371 } 2372 2373 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2374 { 2375 return __sys_shutdown(fd, how); 2376 } 2377 2378 /* A couple of helpful macros for getting the address of the 32/64 bit 2379 * fields which are the same type (int / unsigned) on our platforms. 2380 */ 2381 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2382 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2383 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2384 2385 struct used_address { 2386 struct sockaddr_storage name; 2387 unsigned int name_len; 2388 }; 2389 2390 int __copy_msghdr(struct msghdr *kmsg, 2391 struct user_msghdr *msg, 2392 struct sockaddr __user **save_addr) 2393 { 2394 ssize_t err; 2395 2396 kmsg->msg_control_is_user = true; 2397 kmsg->msg_get_inq = 0; 2398 kmsg->msg_control_user = msg->msg_control; 2399 kmsg->msg_controllen = msg->msg_controllen; 2400 kmsg->msg_flags = msg->msg_flags; 2401 2402 kmsg->msg_namelen = msg->msg_namelen; 2403 if (!msg->msg_name) 2404 kmsg->msg_namelen = 0; 2405 2406 if (kmsg->msg_namelen < 0) 2407 return -EINVAL; 2408 2409 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2410 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2411 2412 if (save_addr) 2413 *save_addr = msg->msg_name; 2414 2415 if (msg->msg_name && kmsg->msg_namelen) { 2416 if (!save_addr) { 2417 err = move_addr_to_kernel(msg->msg_name, 2418 kmsg->msg_namelen, 2419 kmsg->msg_name); 2420 if (err < 0) 2421 return err; 2422 } 2423 } else { 2424 kmsg->msg_name = NULL; 2425 kmsg->msg_namelen = 0; 2426 } 2427 2428 if (msg->msg_iovlen > UIO_MAXIOV) 2429 return -EMSGSIZE; 2430 2431 kmsg->msg_iocb = NULL; 2432 kmsg->msg_ubuf = NULL; 2433 return 0; 2434 } 2435 2436 static int copy_msghdr_from_user(struct msghdr *kmsg, 2437 struct user_msghdr __user *umsg, 2438 struct sockaddr __user **save_addr, 2439 struct iovec **iov) 2440 { 2441 struct user_msghdr msg; 2442 ssize_t err; 2443 2444 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2445 return -EFAULT; 2446 2447 err = __copy_msghdr(kmsg, &msg, save_addr); 2448 if (err) 2449 return err; 2450 2451 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2452 msg.msg_iov, msg.msg_iovlen, 2453 UIO_FASTIOV, iov, &kmsg->msg_iter); 2454 return err < 0 ? err : 0; 2455 } 2456 2457 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2458 unsigned int flags, struct used_address *used_address, 2459 unsigned int allowed_msghdr_flags) 2460 { 2461 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2462 __aligned(sizeof(__kernel_size_t)); 2463 /* 20 is size of ipv6_pktinfo */ 2464 unsigned char *ctl_buf = ctl; 2465 int ctl_len; 2466 ssize_t err; 2467 2468 err = -ENOBUFS; 2469 2470 if (msg_sys->msg_controllen > INT_MAX) 2471 goto out; 2472 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2473 ctl_len = msg_sys->msg_controllen; 2474 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2475 err = 2476 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2477 sizeof(ctl)); 2478 if (err) 2479 goto out; 2480 ctl_buf = msg_sys->msg_control; 2481 ctl_len = msg_sys->msg_controllen; 2482 } else if (ctl_len) { 2483 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2484 CMSG_ALIGN(sizeof(struct cmsghdr))); 2485 if (ctl_len > sizeof(ctl)) { 2486 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2487 if (ctl_buf == NULL) 2488 goto out; 2489 } 2490 err = -EFAULT; 2491 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2492 goto out_freectl; 2493 msg_sys->msg_control = ctl_buf; 2494 msg_sys->msg_control_is_user = false; 2495 } 2496 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2497 msg_sys->msg_flags = flags; 2498 2499 if (sock->file->f_flags & O_NONBLOCK) 2500 msg_sys->msg_flags |= MSG_DONTWAIT; 2501 /* 2502 * If this is sendmmsg() and current destination address is same as 2503 * previously succeeded address, omit asking LSM's decision. 2504 * used_address->name_len is initialized to UINT_MAX so that the first 2505 * destination address never matches. 2506 */ 2507 if (used_address && msg_sys->msg_name && 2508 used_address->name_len == msg_sys->msg_namelen && 2509 !memcmp(&used_address->name, msg_sys->msg_name, 2510 used_address->name_len)) { 2511 err = sock_sendmsg_nosec(sock, msg_sys); 2512 goto out_freectl; 2513 } 2514 err = sock_sendmsg(sock, msg_sys); 2515 /* 2516 * If this is sendmmsg() and sending to current destination address was 2517 * successful, remember it. 2518 */ 2519 if (used_address && err >= 0) { 2520 used_address->name_len = msg_sys->msg_namelen; 2521 if (msg_sys->msg_name) 2522 memcpy(&used_address->name, msg_sys->msg_name, 2523 used_address->name_len); 2524 } 2525 2526 out_freectl: 2527 if (ctl_buf != ctl) 2528 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2529 out: 2530 return err; 2531 } 2532 2533 int sendmsg_copy_msghdr(struct msghdr *msg, 2534 struct user_msghdr __user *umsg, unsigned flags, 2535 struct iovec **iov) 2536 { 2537 int err; 2538 2539 if (flags & MSG_CMSG_COMPAT) { 2540 struct compat_msghdr __user *msg_compat; 2541 2542 msg_compat = (struct compat_msghdr __user *) umsg; 2543 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2544 } else { 2545 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2546 } 2547 if (err < 0) 2548 return err; 2549 2550 return 0; 2551 } 2552 2553 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2554 struct msghdr *msg_sys, unsigned int flags, 2555 struct used_address *used_address, 2556 unsigned int allowed_msghdr_flags) 2557 { 2558 struct sockaddr_storage address; 2559 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2560 ssize_t err; 2561 2562 msg_sys->msg_name = &address; 2563 2564 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2565 if (err < 0) 2566 return err; 2567 2568 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2569 allowed_msghdr_flags); 2570 kfree(iov); 2571 return err; 2572 } 2573 2574 /* 2575 * BSD sendmsg interface 2576 */ 2577 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2578 unsigned int flags) 2579 { 2580 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2581 } 2582 2583 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2584 bool forbid_cmsg_compat) 2585 { 2586 int fput_needed, err; 2587 struct msghdr msg_sys; 2588 struct socket *sock; 2589 2590 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2591 return -EINVAL; 2592 2593 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2594 if (!sock) 2595 goto out; 2596 2597 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2598 2599 fput_light(sock->file, fput_needed); 2600 out: 2601 return err; 2602 } 2603 2604 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2605 { 2606 return __sys_sendmsg(fd, msg, flags, true); 2607 } 2608 2609 /* 2610 * Linux sendmmsg interface 2611 */ 2612 2613 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2614 unsigned int flags, bool forbid_cmsg_compat) 2615 { 2616 int fput_needed, err, datagrams; 2617 struct socket *sock; 2618 struct mmsghdr __user *entry; 2619 struct compat_mmsghdr __user *compat_entry; 2620 struct msghdr msg_sys; 2621 struct used_address used_address; 2622 unsigned int oflags = flags; 2623 2624 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2625 return -EINVAL; 2626 2627 if (vlen > UIO_MAXIOV) 2628 vlen = UIO_MAXIOV; 2629 2630 datagrams = 0; 2631 2632 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2633 if (!sock) 2634 return err; 2635 2636 used_address.name_len = UINT_MAX; 2637 entry = mmsg; 2638 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2639 err = 0; 2640 flags |= MSG_BATCH; 2641 2642 while (datagrams < vlen) { 2643 if (datagrams == vlen - 1) 2644 flags = oflags; 2645 2646 if (MSG_CMSG_COMPAT & flags) { 2647 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2648 &msg_sys, flags, &used_address, MSG_EOR); 2649 if (err < 0) 2650 break; 2651 err = __put_user(err, &compat_entry->msg_len); 2652 ++compat_entry; 2653 } else { 2654 err = ___sys_sendmsg(sock, 2655 (struct user_msghdr __user *)entry, 2656 &msg_sys, flags, &used_address, MSG_EOR); 2657 if (err < 0) 2658 break; 2659 err = put_user(err, &entry->msg_len); 2660 ++entry; 2661 } 2662 2663 if (err) 2664 break; 2665 ++datagrams; 2666 if (msg_data_left(&msg_sys)) 2667 break; 2668 cond_resched(); 2669 } 2670 2671 fput_light(sock->file, fput_needed); 2672 2673 /* We only return an error if no datagrams were able to be sent */ 2674 if (datagrams != 0) 2675 return datagrams; 2676 2677 return err; 2678 } 2679 2680 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2681 unsigned int, vlen, unsigned int, flags) 2682 { 2683 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2684 } 2685 2686 int recvmsg_copy_msghdr(struct msghdr *msg, 2687 struct user_msghdr __user *umsg, unsigned flags, 2688 struct sockaddr __user **uaddr, 2689 struct iovec **iov) 2690 { 2691 ssize_t err; 2692 2693 if (MSG_CMSG_COMPAT & flags) { 2694 struct compat_msghdr __user *msg_compat; 2695 2696 msg_compat = (struct compat_msghdr __user *) umsg; 2697 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2698 } else { 2699 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2700 } 2701 if (err < 0) 2702 return err; 2703 2704 return 0; 2705 } 2706 2707 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2708 struct user_msghdr __user *msg, 2709 struct sockaddr __user *uaddr, 2710 unsigned int flags, int nosec) 2711 { 2712 struct compat_msghdr __user *msg_compat = 2713 (struct compat_msghdr __user *) msg; 2714 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2715 struct sockaddr_storage addr; 2716 unsigned long cmsg_ptr; 2717 int len; 2718 ssize_t err; 2719 2720 msg_sys->msg_name = &addr; 2721 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2722 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2723 2724 /* We assume all kernel code knows the size of sockaddr_storage */ 2725 msg_sys->msg_namelen = 0; 2726 2727 if (sock->file->f_flags & O_NONBLOCK) 2728 flags |= MSG_DONTWAIT; 2729 2730 if (unlikely(nosec)) 2731 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2732 else 2733 err = sock_recvmsg(sock, msg_sys, flags); 2734 2735 if (err < 0) 2736 goto out; 2737 len = err; 2738 2739 if (uaddr != NULL) { 2740 err = move_addr_to_user(&addr, 2741 msg_sys->msg_namelen, uaddr, 2742 uaddr_len); 2743 if (err < 0) 2744 goto out; 2745 } 2746 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2747 COMPAT_FLAGS(msg)); 2748 if (err) 2749 goto out; 2750 if (MSG_CMSG_COMPAT & flags) 2751 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2752 &msg_compat->msg_controllen); 2753 else 2754 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2755 &msg->msg_controllen); 2756 if (err) 2757 goto out; 2758 err = len; 2759 out: 2760 return err; 2761 } 2762 2763 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2764 struct msghdr *msg_sys, unsigned int flags, int nosec) 2765 { 2766 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2767 /* user mode address pointers */ 2768 struct sockaddr __user *uaddr; 2769 ssize_t err; 2770 2771 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2772 if (err < 0) 2773 return err; 2774 2775 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2776 kfree(iov); 2777 return err; 2778 } 2779 2780 /* 2781 * BSD recvmsg interface 2782 */ 2783 2784 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2785 struct user_msghdr __user *umsg, 2786 struct sockaddr __user *uaddr, unsigned int flags) 2787 { 2788 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2789 } 2790 2791 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2792 bool forbid_cmsg_compat) 2793 { 2794 int fput_needed, err; 2795 struct msghdr msg_sys; 2796 struct socket *sock; 2797 2798 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2799 return -EINVAL; 2800 2801 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2802 if (!sock) 2803 goto out; 2804 2805 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2806 2807 fput_light(sock->file, fput_needed); 2808 out: 2809 return err; 2810 } 2811 2812 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2813 unsigned int, flags) 2814 { 2815 return __sys_recvmsg(fd, msg, flags, true); 2816 } 2817 2818 /* 2819 * Linux recvmmsg interface 2820 */ 2821 2822 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2823 unsigned int vlen, unsigned int flags, 2824 struct timespec64 *timeout) 2825 { 2826 int fput_needed, err, datagrams; 2827 struct socket *sock; 2828 struct mmsghdr __user *entry; 2829 struct compat_mmsghdr __user *compat_entry; 2830 struct msghdr msg_sys; 2831 struct timespec64 end_time; 2832 struct timespec64 timeout64; 2833 2834 if (timeout && 2835 poll_select_set_timeout(&end_time, timeout->tv_sec, 2836 timeout->tv_nsec)) 2837 return -EINVAL; 2838 2839 datagrams = 0; 2840 2841 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2842 if (!sock) 2843 return err; 2844 2845 if (likely(!(flags & MSG_ERRQUEUE))) { 2846 err = sock_error(sock->sk); 2847 if (err) { 2848 datagrams = err; 2849 goto out_put; 2850 } 2851 } 2852 2853 entry = mmsg; 2854 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2855 2856 while (datagrams < vlen) { 2857 /* 2858 * No need to ask LSM for more than the first datagram. 2859 */ 2860 if (MSG_CMSG_COMPAT & flags) { 2861 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2862 &msg_sys, flags & ~MSG_WAITFORONE, 2863 datagrams); 2864 if (err < 0) 2865 break; 2866 err = __put_user(err, &compat_entry->msg_len); 2867 ++compat_entry; 2868 } else { 2869 err = ___sys_recvmsg(sock, 2870 (struct user_msghdr __user *)entry, 2871 &msg_sys, flags & ~MSG_WAITFORONE, 2872 datagrams); 2873 if (err < 0) 2874 break; 2875 err = put_user(err, &entry->msg_len); 2876 ++entry; 2877 } 2878 2879 if (err) 2880 break; 2881 ++datagrams; 2882 2883 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2884 if (flags & MSG_WAITFORONE) 2885 flags |= MSG_DONTWAIT; 2886 2887 if (timeout) { 2888 ktime_get_ts64(&timeout64); 2889 *timeout = timespec64_sub(end_time, timeout64); 2890 if (timeout->tv_sec < 0) { 2891 timeout->tv_sec = timeout->tv_nsec = 0; 2892 break; 2893 } 2894 2895 /* Timeout, return less than vlen datagrams */ 2896 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2897 break; 2898 } 2899 2900 /* Out of band data, return right away */ 2901 if (msg_sys.msg_flags & MSG_OOB) 2902 break; 2903 cond_resched(); 2904 } 2905 2906 if (err == 0) 2907 goto out_put; 2908 2909 if (datagrams == 0) { 2910 datagrams = err; 2911 goto out_put; 2912 } 2913 2914 /* 2915 * We may return less entries than requested (vlen) if the 2916 * sock is non block and there aren't enough datagrams... 2917 */ 2918 if (err != -EAGAIN) { 2919 /* 2920 * ... or if recvmsg returns an error after we 2921 * received some datagrams, where we record the 2922 * error to return on the next call or if the 2923 * app asks about it using getsockopt(SO_ERROR). 2924 */ 2925 WRITE_ONCE(sock->sk->sk_err, -err); 2926 } 2927 out_put: 2928 fput_light(sock->file, fput_needed); 2929 2930 return datagrams; 2931 } 2932 2933 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2934 unsigned int vlen, unsigned int flags, 2935 struct __kernel_timespec __user *timeout, 2936 struct old_timespec32 __user *timeout32) 2937 { 2938 int datagrams; 2939 struct timespec64 timeout_sys; 2940 2941 if (timeout && get_timespec64(&timeout_sys, timeout)) 2942 return -EFAULT; 2943 2944 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2945 return -EFAULT; 2946 2947 if (!timeout && !timeout32) 2948 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2949 2950 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2951 2952 if (datagrams <= 0) 2953 return datagrams; 2954 2955 if (timeout && put_timespec64(&timeout_sys, timeout)) 2956 datagrams = -EFAULT; 2957 2958 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2959 datagrams = -EFAULT; 2960 2961 return datagrams; 2962 } 2963 2964 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2965 unsigned int, vlen, unsigned int, flags, 2966 struct __kernel_timespec __user *, timeout) 2967 { 2968 if (flags & MSG_CMSG_COMPAT) 2969 return -EINVAL; 2970 2971 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2972 } 2973 2974 #ifdef CONFIG_COMPAT_32BIT_TIME 2975 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2976 unsigned int, vlen, unsigned int, flags, 2977 struct old_timespec32 __user *, timeout) 2978 { 2979 if (flags & MSG_CMSG_COMPAT) 2980 return -EINVAL; 2981 2982 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2983 } 2984 #endif 2985 2986 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2987 /* Argument list sizes for sys_socketcall */ 2988 #define AL(x) ((x) * sizeof(unsigned long)) 2989 static const unsigned char nargs[21] = { 2990 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2991 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2992 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2993 AL(4), AL(5), AL(4) 2994 }; 2995 2996 #undef AL 2997 2998 /* 2999 * System call vectors. 3000 * 3001 * Argument checking cleaned up. Saved 20% in size. 3002 * This function doesn't need to set the kernel lock because 3003 * it is set by the callees. 3004 */ 3005 3006 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3007 { 3008 unsigned long a[AUDITSC_ARGS]; 3009 unsigned long a0, a1; 3010 int err; 3011 unsigned int len; 3012 3013 if (call < 1 || call > SYS_SENDMMSG) 3014 return -EINVAL; 3015 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3016 3017 len = nargs[call]; 3018 if (len > sizeof(a)) 3019 return -EINVAL; 3020 3021 /* copy_from_user should be SMP safe. */ 3022 if (copy_from_user(a, args, len)) 3023 return -EFAULT; 3024 3025 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3026 if (err) 3027 return err; 3028 3029 a0 = a[0]; 3030 a1 = a[1]; 3031 3032 switch (call) { 3033 case SYS_SOCKET: 3034 err = __sys_socket(a0, a1, a[2]); 3035 break; 3036 case SYS_BIND: 3037 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3038 break; 3039 case SYS_CONNECT: 3040 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3041 break; 3042 case SYS_LISTEN: 3043 err = __sys_listen(a0, a1); 3044 break; 3045 case SYS_ACCEPT: 3046 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3047 (int __user *)a[2], 0); 3048 break; 3049 case SYS_GETSOCKNAME: 3050 err = 3051 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3052 (int __user *)a[2]); 3053 break; 3054 case SYS_GETPEERNAME: 3055 err = 3056 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3057 (int __user *)a[2]); 3058 break; 3059 case SYS_SOCKETPAIR: 3060 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3061 break; 3062 case SYS_SEND: 3063 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3064 NULL, 0); 3065 break; 3066 case SYS_SENDTO: 3067 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3068 (struct sockaddr __user *)a[4], a[5]); 3069 break; 3070 case SYS_RECV: 3071 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3072 NULL, NULL); 3073 break; 3074 case SYS_RECVFROM: 3075 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3076 (struct sockaddr __user *)a[4], 3077 (int __user *)a[5]); 3078 break; 3079 case SYS_SHUTDOWN: 3080 err = __sys_shutdown(a0, a1); 3081 break; 3082 case SYS_SETSOCKOPT: 3083 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3084 a[4]); 3085 break; 3086 case SYS_GETSOCKOPT: 3087 err = 3088 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3089 (int __user *)a[4]); 3090 break; 3091 case SYS_SENDMSG: 3092 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3093 a[2], true); 3094 break; 3095 case SYS_SENDMMSG: 3096 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3097 a[3], true); 3098 break; 3099 case SYS_RECVMSG: 3100 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3101 a[2], true); 3102 break; 3103 case SYS_RECVMMSG: 3104 if (IS_ENABLED(CONFIG_64BIT)) 3105 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3106 a[2], a[3], 3107 (struct __kernel_timespec __user *)a[4], 3108 NULL); 3109 else 3110 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3111 a[2], a[3], NULL, 3112 (struct old_timespec32 __user *)a[4]); 3113 break; 3114 case SYS_ACCEPT4: 3115 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3116 (int __user *)a[2], a[3]); 3117 break; 3118 default: 3119 err = -EINVAL; 3120 break; 3121 } 3122 return err; 3123 } 3124 3125 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3126 3127 /** 3128 * sock_register - add a socket protocol handler 3129 * @ops: description of protocol 3130 * 3131 * This function is called by a protocol handler that wants to 3132 * advertise its address family, and have it linked into the 3133 * socket interface. The value ops->family corresponds to the 3134 * socket system call protocol family. 3135 */ 3136 int sock_register(const struct net_proto_family *ops) 3137 { 3138 int err; 3139 3140 if (ops->family >= NPROTO) { 3141 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3142 return -ENOBUFS; 3143 } 3144 3145 spin_lock(&net_family_lock); 3146 if (rcu_dereference_protected(net_families[ops->family], 3147 lockdep_is_held(&net_family_lock))) 3148 err = -EEXIST; 3149 else { 3150 rcu_assign_pointer(net_families[ops->family], ops); 3151 err = 0; 3152 } 3153 spin_unlock(&net_family_lock); 3154 3155 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3156 return err; 3157 } 3158 EXPORT_SYMBOL(sock_register); 3159 3160 /** 3161 * sock_unregister - remove a protocol handler 3162 * @family: protocol family to remove 3163 * 3164 * This function is called by a protocol handler that wants to 3165 * remove its address family, and have it unlinked from the 3166 * new socket creation. 3167 * 3168 * If protocol handler is a module, then it can use module reference 3169 * counts to protect against new references. If protocol handler is not 3170 * a module then it needs to provide its own protection in 3171 * the ops->create routine. 3172 */ 3173 void sock_unregister(int family) 3174 { 3175 BUG_ON(family < 0 || family >= NPROTO); 3176 3177 spin_lock(&net_family_lock); 3178 RCU_INIT_POINTER(net_families[family], NULL); 3179 spin_unlock(&net_family_lock); 3180 3181 synchronize_rcu(); 3182 3183 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3184 } 3185 EXPORT_SYMBOL(sock_unregister); 3186 3187 bool sock_is_registered(int family) 3188 { 3189 return family < NPROTO && rcu_access_pointer(net_families[family]); 3190 } 3191 3192 static int __init sock_init(void) 3193 { 3194 int err; 3195 /* 3196 * Initialize the network sysctl infrastructure. 3197 */ 3198 err = net_sysctl_init(); 3199 if (err) 3200 goto out; 3201 3202 /* 3203 * Initialize skbuff SLAB cache 3204 */ 3205 skb_init(); 3206 3207 /* 3208 * Initialize the protocols module. 3209 */ 3210 3211 init_inodecache(); 3212 3213 err = register_filesystem(&sock_fs_type); 3214 if (err) 3215 goto out; 3216 sock_mnt = kern_mount(&sock_fs_type); 3217 if (IS_ERR(sock_mnt)) { 3218 err = PTR_ERR(sock_mnt); 3219 goto out_mount; 3220 } 3221 3222 /* The real protocol initialization is performed in later initcalls. 3223 */ 3224 3225 #ifdef CONFIG_NETFILTER 3226 err = netfilter_init(); 3227 if (err) 3228 goto out; 3229 #endif 3230 3231 ptp_classifier_init(); 3232 3233 out: 3234 return err; 3235 3236 out_mount: 3237 unregister_filesystem(&sock_fs_type); 3238 goto out; 3239 } 3240 3241 core_initcall(sock_init); /* early initcall */ 3242 3243 #ifdef CONFIG_PROC_FS 3244 void socket_seq_show(struct seq_file *seq) 3245 { 3246 seq_printf(seq, "sockets: used %d\n", 3247 sock_inuse_get(seq->private)); 3248 } 3249 #endif /* CONFIG_PROC_FS */ 3250 3251 /* Handle the fact that while struct ifreq has the same *layout* on 3252 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3253 * which are handled elsewhere, it still has different *size* due to 3254 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3255 * resulting in struct ifreq being 32 and 40 bytes respectively). 3256 * As a result, if the struct happens to be at the end of a page and 3257 * the next page isn't readable/writable, we get a fault. To prevent 3258 * that, copy back and forth to the full size. 3259 */ 3260 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3261 { 3262 if (in_compat_syscall()) { 3263 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3264 3265 memset(ifr, 0, sizeof(*ifr)); 3266 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3267 return -EFAULT; 3268 3269 if (ifrdata) 3270 *ifrdata = compat_ptr(ifr32->ifr_data); 3271 3272 return 0; 3273 } 3274 3275 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3276 return -EFAULT; 3277 3278 if (ifrdata) 3279 *ifrdata = ifr->ifr_data; 3280 3281 return 0; 3282 } 3283 EXPORT_SYMBOL(get_user_ifreq); 3284 3285 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3286 { 3287 size_t size = sizeof(*ifr); 3288 3289 if (in_compat_syscall()) 3290 size = sizeof(struct compat_ifreq); 3291 3292 if (copy_to_user(arg, ifr, size)) 3293 return -EFAULT; 3294 3295 return 0; 3296 } 3297 EXPORT_SYMBOL(put_user_ifreq); 3298 3299 #ifdef CONFIG_COMPAT 3300 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3301 { 3302 compat_uptr_t uptr32; 3303 struct ifreq ifr; 3304 void __user *saved; 3305 int err; 3306 3307 if (get_user_ifreq(&ifr, NULL, uifr32)) 3308 return -EFAULT; 3309 3310 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3311 return -EFAULT; 3312 3313 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3314 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3315 3316 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3317 if (!err) { 3318 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3319 if (put_user_ifreq(&ifr, uifr32)) 3320 err = -EFAULT; 3321 } 3322 return err; 3323 } 3324 3325 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3326 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3327 struct compat_ifreq __user *u_ifreq32) 3328 { 3329 struct ifreq ifreq; 3330 void __user *data; 3331 3332 if (!is_socket_ioctl_cmd(cmd)) 3333 return -ENOTTY; 3334 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3335 return -EFAULT; 3336 ifreq.ifr_data = data; 3337 3338 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3339 } 3340 3341 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3342 unsigned int cmd, unsigned long arg) 3343 { 3344 void __user *argp = compat_ptr(arg); 3345 struct sock *sk = sock->sk; 3346 struct net *net = sock_net(sk); 3347 const struct proto_ops *ops; 3348 3349 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3350 return sock_ioctl(file, cmd, (unsigned long)argp); 3351 3352 switch (cmd) { 3353 case SIOCWANDEV: 3354 return compat_siocwandev(net, argp); 3355 case SIOCGSTAMP_OLD: 3356 case SIOCGSTAMPNS_OLD: 3357 ops = READ_ONCE(sock->ops); 3358 if (!ops->gettstamp) 3359 return -ENOIOCTLCMD; 3360 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3361 !COMPAT_USE_64BIT_TIME); 3362 3363 case SIOCETHTOOL: 3364 case SIOCBONDSLAVEINFOQUERY: 3365 case SIOCBONDINFOQUERY: 3366 case SIOCSHWTSTAMP: 3367 case SIOCGHWTSTAMP: 3368 return compat_ifr_data_ioctl(net, cmd, argp); 3369 3370 case FIOSETOWN: 3371 case SIOCSPGRP: 3372 case FIOGETOWN: 3373 case SIOCGPGRP: 3374 case SIOCBRADDBR: 3375 case SIOCBRDELBR: 3376 case SIOCGIFVLAN: 3377 case SIOCSIFVLAN: 3378 case SIOCGSKNS: 3379 case SIOCGSTAMP_NEW: 3380 case SIOCGSTAMPNS_NEW: 3381 case SIOCGIFCONF: 3382 case SIOCSIFBR: 3383 case SIOCGIFBR: 3384 return sock_ioctl(file, cmd, arg); 3385 3386 case SIOCGIFFLAGS: 3387 case SIOCSIFFLAGS: 3388 case SIOCGIFMAP: 3389 case SIOCSIFMAP: 3390 case SIOCGIFMETRIC: 3391 case SIOCSIFMETRIC: 3392 case SIOCGIFMTU: 3393 case SIOCSIFMTU: 3394 case SIOCGIFMEM: 3395 case SIOCSIFMEM: 3396 case SIOCGIFHWADDR: 3397 case SIOCSIFHWADDR: 3398 case SIOCADDMULTI: 3399 case SIOCDELMULTI: 3400 case SIOCGIFINDEX: 3401 case SIOCGIFADDR: 3402 case SIOCSIFADDR: 3403 case SIOCSIFHWBROADCAST: 3404 case SIOCDIFADDR: 3405 case SIOCGIFBRDADDR: 3406 case SIOCSIFBRDADDR: 3407 case SIOCGIFDSTADDR: 3408 case SIOCSIFDSTADDR: 3409 case SIOCGIFNETMASK: 3410 case SIOCSIFNETMASK: 3411 case SIOCSIFPFLAGS: 3412 case SIOCGIFPFLAGS: 3413 case SIOCGIFTXQLEN: 3414 case SIOCSIFTXQLEN: 3415 case SIOCBRADDIF: 3416 case SIOCBRDELIF: 3417 case SIOCGIFNAME: 3418 case SIOCSIFNAME: 3419 case SIOCGMIIPHY: 3420 case SIOCGMIIREG: 3421 case SIOCSMIIREG: 3422 case SIOCBONDENSLAVE: 3423 case SIOCBONDRELEASE: 3424 case SIOCBONDSETHWADDR: 3425 case SIOCBONDCHANGEACTIVE: 3426 case SIOCSARP: 3427 case SIOCGARP: 3428 case SIOCDARP: 3429 case SIOCOUTQ: 3430 case SIOCOUTQNSD: 3431 case SIOCATMARK: 3432 return sock_do_ioctl(net, sock, cmd, arg); 3433 } 3434 3435 return -ENOIOCTLCMD; 3436 } 3437 3438 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3439 unsigned long arg) 3440 { 3441 struct socket *sock = file->private_data; 3442 const struct proto_ops *ops = READ_ONCE(sock->ops); 3443 int ret = -ENOIOCTLCMD; 3444 struct sock *sk; 3445 struct net *net; 3446 3447 sk = sock->sk; 3448 net = sock_net(sk); 3449 3450 if (ops->compat_ioctl) 3451 ret = ops->compat_ioctl(sock, cmd, arg); 3452 3453 if (ret == -ENOIOCTLCMD && 3454 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3455 ret = compat_wext_handle_ioctl(net, cmd, arg); 3456 3457 if (ret == -ENOIOCTLCMD) 3458 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3459 3460 return ret; 3461 } 3462 #endif 3463 3464 /** 3465 * kernel_bind - bind an address to a socket (kernel space) 3466 * @sock: socket 3467 * @addr: address 3468 * @addrlen: length of address 3469 * 3470 * Returns 0 or an error. 3471 */ 3472 3473 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3474 { 3475 return READ_ONCE(sock->ops)->bind(sock, addr, addrlen); 3476 } 3477 EXPORT_SYMBOL(kernel_bind); 3478 3479 /** 3480 * kernel_listen - move socket to listening state (kernel space) 3481 * @sock: socket 3482 * @backlog: pending connections queue size 3483 * 3484 * Returns 0 or an error. 3485 */ 3486 3487 int kernel_listen(struct socket *sock, int backlog) 3488 { 3489 return READ_ONCE(sock->ops)->listen(sock, backlog); 3490 } 3491 EXPORT_SYMBOL(kernel_listen); 3492 3493 /** 3494 * kernel_accept - accept a connection (kernel space) 3495 * @sock: listening socket 3496 * @newsock: new connected socket 3497 * @flags: flags 3498 * 3499 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3500 * If it fails, @newsock is guaranteed to be %NULL. 3501 * Returns 0 or an error. 3502 */ 3503 3504 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3505 { 3506 struct sock *sk = sock->sk; 3507 const struct proto_ops *ops = READ_ONCE(sock->ops); 3508 int err; 3509 3510 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3511 newsock); 3512 if (err < 0) 3513 goto done; 3514 3515 err = ops->accept(sock, *newsock, flags, true); 3516 if (err < 0) { 3517 sock_release(*newsock); 3518 *newsock = NULL; 3519 goto done; 3520 } 3521 3522 (*newsock)->ops = ops; 3523 __module_get(ops->owner); 3524 3525 done: 3526 return err; 3527 } 3528 EXPORT_SYMBOL(kernel_accept); 3529 3530 /** 3531 * kernel_connect - connect a socket (kernel space) 3532 * @sock: socket 3533 * @addr: address 3534 * @addrlen: address length 3535 * @flags: flags (O_NONBLOCK, ...) 3536 * 3537 * For datagram sockets, @addr is the address to which datagrams are sent 3538 * by default, and the only address from which datagrams are received. 3539 * For stream sockets, attempts to connect to @addr. 3540 * Returns 0 or an error code. 3541 */ 3542 3543 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3544 int flags) 3545 { 3546 return READ_ONCE(sock->ops)->connect(sock, addr, addrlen, flags); 3547 } 3548 EXPORT_SYMBOL(kernel_connect); 3549 3550 /** 3551 * kernel_getsockname - get the address which the socket is bound (kernel space) 3552 * @sock: socket 3553 * @addr: address holder 3554 * 3555 * Fills the @addr pointer with the address which the socket is bound. 3556 * Returns the length of the address in bytes or an error code. 3557 */ 3558 3559 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3560 { 3561 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3562 } 3563 EXPORT_SYMBOL(kernel_getsockname); 3564 3565 /** 3566 * kernel_getpeername - get the address which the socket is connected (kernel space) 3567 * @sock: socket 3568 * @addr: address holder 3569 * 3570 * Fills the @addr pointer with the address which the socket is connected. 3571 * Returns the length of the address in bytes or an error code. 3572 */ 3573 3574 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3575 { 3576 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3577 } 3578 EXPORT_SYMBOL(kernel_getpeername); 3579 3580 /** 3581 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3582 * @sock: socket 3583 * @how: connection part 3584 * 3585 * Returns 0 or an error. 3586 */ 3587 3588 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3589 { 3590 return READ_ONCE(sock->ops)->shutdown(sock, how); 3591 } 3592 EXPORT_SYMBOL(kernel_sock_shutdown); 3593 3594 /** 3595 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3596 * @sk: socket 3597 * 3598 * This routine returns the IP overhead imposed by a socket i.e. 3599 * the length of the underlying IP header, depending on whether 3600 * this is an IPv4 or IPv6 socket and the length from IP options turned 3601 * on at the socket. Assumes that the caller has a lock on the socket. 3602 */ 3603 3604 u32 kernel_sock_ip_overhead(struct sock *sk) 3605 { 3606 struct inet_sock *inet; 3607 struct ip_options_rcu *opt; 3608 u32 overhead = 0; 3609 #if IS_ENABLED(CONFIG_IPV6) 3610 struct ipv6_pinfo *np; 3611 struct ipv6_txoptions *optv6 = NULL; 3612 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3613 3614 if (!sk) 3615 return overhead; 3616 3617 switch (sk->sk_family) { 3618 case AF_INET: 3619 inet = inet_sk(sk); 3620 overhead += sizeof(struct iphdr); 3621 opt = rcu_dereference_protected(inet->inet_opt, 3622 sock_owned_by_user(sk)); 3623 if (opt) 3624 overhead += opt->opt.optlen; 3625 return overhead; 3626 #if IS_ENABLED(CONFIG_IPV6) 3627 case AF_INET6: 3628 np = inet6_sk(sk); 3629 overhead += sizeof(struct ipv6hdr); 3630 if (np) 3631 optv6 = rcu_dereference_protected(np->opt, 3632 sock_owned_by_user(sk)); 3633 if (optv6) 3634 overhead += (optv6->opt_flen + optv6->opt_nflen); 3635 return overhead; 3636 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3637 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3638 return overhead; 3639 } 3640 } 3641 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3642