xref: /openbmc/linux/net/socket.c (revision 6a613ac6)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	RCU_INIT_POINTER(ei->socket.wq, wq);
261 
262 	ei->socket.state = SS_UNCONNECTED;
263 	ei->socket.flags = 0;
264 	ei->socket.ops = NULL;
265 	ei->socket.sk = NULL;
266 	ei->socket.file = NULL;
267 
268 	return &ei->vfs_inode;
269 }
270 
271 static void sock_destroy_inode(struct inode *inode)
272 {
273 	struct socket_alloc *ei;
274 	struct socket_wq *wq;
275 
276 	ei = container_of(inode, struct socket_alloc, vfs_inode);
277 	wq = rcu_dereference_protected(ei->socket.wq, 1);
278 	kfree_rcu(wq, rcu);
279 	kmem_cache_free(sock_inode_cachep, ei);
280 }
281 
282 static void init_once(void *foo)
283 {
284 	struct socket_alloc *ei = (struct socket_alloc *)foo;
285 
286 	inode_init_once(&ei->vfs_inode);
287 }
288 
289 static int init_inodecache(void)
290 {
291 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292 					      sizeof(struct socket_alloc),
293 					      0,
294 					      (SLAB_HWCACHE_ALIGN |
295 					       SLAB_RECLAIM_ACCOUNT |
296 					       SLAB_MEM_SPREAD),
297 					      init_once);
298 	if (sock_inode_cachep == NULL)
299 		return -ENOMEM;
300 	return 0;
301 }
302 
303 static const struct super_operations sockfs_ops = {
304 	.alloc_inode	= sock_alloc_inode,
305 	.destroy_inode	= sock_destroy_inode,
306 	.statfs		= simple_statfs,
307 };
308 
309 /*
310  * sockfs_dname() is called from d_path().
311  */
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 				d_inode(dentry)->i_ino);
316 }
317 
318 static const struct dentry_operations sockfs_dentry_operations = {
319 	.d_dname  = sockfs_dname,
320 };
321 
322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323 			 int flags, const char *dev_name, void *data)
324 {
325 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326 		&sockfs_dentry_operations, SOCKFS_MAGIC);
327 }
328 
329 static struct vfsmount *sock_mnt __read_mostly;
330 
331 static struct file_system_type sock_fs_type = {
332 	.name =		"sockfs",
333 	.mount =	sockfs_mount,
334 	.kill_sb =	kill_anon_super,
335 };
336 
337 /*
338  *	Obtains the first available file descriptor and sets it up for use.
339  *
340  *	These functions create file structures and maps them to fd space
341  *	of the current process. On success it returns file descriptor
342  *	and file struct implicitly stored in sock->file.
343  *	Note that another thread may close file descriptor before we return
344  *	from this function. We use the fact that now we do not refer
345  *	to socket after mapping. If one day we will need it, this
346  *	function will increment ref. count on file by 1.
347  *
348  *	In any case returned fd MAY BE not valid!
349  *	This race condition is unavoidable
350  *	with shared fd spaces, we cannot solve it inside kernel,
351  *	but we take care of internal coherence yet.
352  */
353 
354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
355 {
356 	struct qstr name = { .name = "" };
357 	struct path path;
358 	struct file *file;
359 
360 	if (dname) {
361 		name.name = dname;
362 		name.len = strlen(name.name);
363 	} else if (sock->sk) {
364 		name.name = sock->sk->sk_prot_creator->name;
365 		name.len = strlen(name.name);
366 	}
367 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368 	if (unlikely(!path.dentry))
369 		return ERR_PTR(-ENOMEM);
370 	path.mnt = mntget(sock_mnt);
371 
372 	d_instantiate(path.dentry, SOCK_INODE(sock));
373 
374 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 		  &socket_file_ops);
376 	if (IS_ERR(file)) {
377 		/* drop dentry, keep inode */
378 		ihold(d_inode(path.dentry));
379 		path_put(&path);
380 		return file;
381 	}
382 
383 	sock->file = file;
384 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
385 	file->private_data = sock;
386 	return file;
387 }
388 EXPORT_SYMBOL(sock_alloc_file);
389 
390 static int sock_map_fd(struct socket *sock, int flags)
391 {
392 	struct file *newfile;
393 	int fd = get_unused_fd_flags(flags);
394 	if (unlikely(fd < 0))
395 		return fd;
396 
397 	newfile = sock_alloc_file(sock, flags, NULL);
398 	if (likely(!IS_ERR(newfile))) {
399 		fd_install(fd, newfile);
400 		return fd;
401 	}
402 
403 	put_unused_fd(fd);
404 	return PTR_ERR(newfile);
405 }
406 
407 struct socket *sock_from_file(struct file *file, int *err)
408 {
409 	if (file->f_op == &socket_file_ops)
410 		return file->private_data;	/* set in sock_map_fd */
411 
412 	*err = -ENOTSOCK;
413 	return NULL;
414 }
415 EXPORT_SYMBOL(sock_from_file);
416 
417 /**
418  *	sockfd_lookup - Go from a file number to its socket slot
419  *	@fd: file handle
420  *	@err: pointer to an error code return
421  *
422  *	The file handle passed in is locked and the socket it is bound
423  *	too is returned. If an error occurs the err pointer is overwritten
424  *	with a negative errno code and NULL is returned. The function checks
425  *	for both invalid handles and passing a handle which is not a socket.
426  *
427  *	On a success the socket object pointer is returned.
428  */
429 
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 	struct file *file;
433 	struct socket *sock;
434 
435 	file = fget(fd);
436 	if (!file) {
437 		*err = -EBADF;
438 		return NULL;
439 	}
440 
441 	sock = sock_from_file(file, err);
442 	if (!sock)
443 		fput(file);
444 	return sock;
445 }
446 EXPORT_SYMBOL(sockfd_lookup);
447 
448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
449 {
450 	struct fd f = fdget(fd);
451 	struct socket *sock;
452 
453 	*err = -EBADF;
454 	if (f.file) {
455 		sock = sock_from_file(f.file, err);
456 		if (likely(sock)) {
457 			*fput_needed = f.flags;
458 			return sock;
459 		}
460 		fdput(f);
461 	}
462 	return NULL;
463 }
464 
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468 static ssize_t sockfs_getxattr(struct dentry *dentry,
469 			       const char *name, void *value, size_t size)
470 {
471 	const char *proto_name;
472 	size_t proto_size;
473 	int error;
474 
475 	error = -ENODATA;
476 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477 		proto_name = dentry->d_name.name;
478 		proto_size = strlen(proto_name);
479 
480 		if (value) {
481 			error = -ERANGE;
482 			if (proto_size + 1 > size)
483 				goto out;
484 
485 			strncpy(value, proto_name, proto_size + 1);
486 		}
487 		error = proto_size + 1;
488 	}
489 
490 out:
491 	return error;
492 }
493 
494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495 				size_t size)
496 {
497 	ssize_t len;
498 	ssize_t used = 0;
499 
500 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
501 	if (len < 0)
502 		return len;
503 	used += len;
504 	if (buffer) {
505 		if (size < used)
506 			return -ERANGE;
507 		buffer += len;
508 	}
509 
510 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511 	used += len;
512 	if (buffer) {
513 		if (size < used)
514 			return -ERANGE;
515 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516 		buffer += len;
517 	}
518 
519 	return used;
520 }
521 
522 static const struct inode_operations sockfs_inode_ops = {
523 	.getxattr = sockfs_getxattr,
524 	.listxattr = sockfs_listxattr,
525 };
526 
527 /**
528  *	sock_alloc	-	allocate a socket
529  *
530  *	Allocate a new inode and socket object. The two are bound together
531  *	and initialised. The socket is then returned. If we are out of inodes
532  *	NULL is returned.
533  */
534 
535 static struct socket *sock_alloc(void)
536 {
537 	struct inode *inode;
538 	struct socket *sock;
539 
540 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
541 	if (!inode)
542 		return NULL;
543 
544 	sock = SOCKET_I(inode);
545 
546 	kmemcheck_annotate_bitfield(sock, type);
547 	inode->i_ino = get_next_ino();
548 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
549 	inode->i_uid = current_fsuid();
550 	inode->i_gid = current_fsgid();
551 	inode->i_op = &sockfs_inode_ops;
552 
553 	this_cpu_add(sockets_in_use, 1);
554 	return sock;
555 }
556 
557 /**
558  *	sock_release	-	close a socket
559  *	@sock: socket to close
560  *
561  *	The socket is released from the protocol stack if it has a release
562  *	callback, and the inode is then released if the socket is bound to
563  *	an inode not a file.
564  */
565 
566 void sock_release(struct socket *sock)
567 {
568 	if (sock->ops) {
569 		struct module *owner = sock->ops->owner;
570 
571 		sock->ops->release(sock);
572 		sock->ops = NULL;
573 		module_put(owner);
574 	}
575 
576 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
577 		pr_err("%s: fasync list not empty!\n", __func__);
578 
579 	this_cpu_sub(sockets_in_use, 1);
580 	if (!sock->file) {
581 		iput(SOCK_INODE(sock));
582 		return;
583 	}
584 	sock->file = NULL;
585 }
586 EXPORT_SYMBOL(sock_release);
587 
588 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
589 {
590 	u8 flags = *tx_flags;
591 
592 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
593 		flags |= SKBTX_HW_TSTAMP;
594 
595 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
596 		flags |= SKBTX_SW_TSTAMP;
597 
598 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
599 		flags |= SKBTX_SCHED_TSTAMP;
600 
601 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
602 		flags |= SKBTX_ACK_TSTAMP;
603 
604 	*tx_flags = flags;
605 }
606 EXPORT_SYMBOL(__sock_tx_timestamp);
607 
608 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
609 {
610 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
611 	BUG_ON(ret == -EIOCBQUEUED);
612 	return ret;
613 }
614 
615 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
616 {
617 	int err = security_socket_sendmsg(sock, msg,
618 					  msg_data_left(msg));
619 
620 	return err ?: sock_sendmsg_nosec(sock, msg);
621 }
622 EXPORT_SYMBOL(sock_sendmsg);
623 
624 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
625 		   struct kvec *vec, size_t num, size_t size)
626 {
627 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
628 	return sock_sendmsg(sock, msg);
629 }
630 EXPORT_SYMBOL(kernel_sendmsg);
631 
632 /*
633  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
634  */
635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
636 	struct sk_buff *skb)
637 {
638 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
639 	struct scm_timestamping tss;
640 	int empty = 1;
641 	struct skb_shared_hwtstamps *shhwtstamps =
642 		skb_hwtstamps(skb);
643 
644 	/* Race occurred between timestamp enabling and packet
645 	   receiving.  Fill in the current time for now. */
646 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
647 		__net_timestamp(skb);
648 
649 	if (need_software_tstamp) {
650 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
651 			struct timeval tv;
652 			skb_get_timestamp(skb, &tv);
653 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
654 				 sizeof(tv), &tv);
655 		} else {
656 			struct timespec ts;
657 			skb_get_timestampns(skb, &ts);
658 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
659 				 sizeof(ts), &ts);
660 		}
661 	}
662 
663 	memset(&tss, 0, sizeof(tss));
664 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
665 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
666 		empty = 0;
667 	if (shhwtstamps &&
668 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
669 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
670 		empty = 0;
671 	if (!empty)
672 		put_cmsg(msg, SOL_SOCKET,
673 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
674 }
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
676 
677 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
678 	struct sk_buff *skb)
679 {
680 	int ack;
681 
682 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
683 		return;
684 	if (!skb->wifi_acked_valid)
685 		return;
686 
687 	ack = skb->wifi_acked;
688 
689 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
690 }
691 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
692 
693 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
694 				   struct sk_buff *skb)
695 {
696 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
697 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
698 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
699 }
700 
701 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
702 	struct sk_buff *skb)
703 {
704 	sock_recv_timestamp(msg, sk, skb);
705 	sock_recv_drops(msg, sk, skb);
706 }
707 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
708 
709 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
710 				     size_t size, int flags)
711 {
712 	return sock->ops->recvmsg(sock, msg, size, flags);
713 }
714 
715 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
716 		 int flags)
717 {
718 	int err = security_socket_recvmsg(sock, msg, size, flags);
719 
720 	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
721 }
722 EXPORT_SYMBOL(sock_recvmsg);
723 
724 /**
725  * kernel_recvmsg - Receive a message from a socket (kernel space)
726  * @sock:       The socket to receive the message from
727  * @msg:        Received message
728  * @vec:        Input s/g array for message data
729  * @num:        Size of input s/g array
730  * @size:       Number of bytes to read
731  * @flags:      Message flags (MSG_DONTWAIT, etc...)
732  *
733  * On return the msg structure contains the scatter/gather array passed in the
734  * vec argument. The array is modified so that it consists of the unfilled
735  * portion of the original array.
736  *
737  * The returned value is the total number of bytes received, or an error.
738  */
739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
740 		   struct kvec *vec, size_t num, size_t size, int flags)
741 {
742 	mm_segment_t oldfs = get_fs();
743 	int result;
744 
745 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
746 	set_fs(KERNEL_DS);
747 	result = sock_recvmsg(sock, msg, size, flags);
748 	set_fs(oldfs);
749 	return result;
750 }
751 EXPORT_SYMBOL(kernel_recvmsg);
752 
753 static ssize_t sock_sendpage(struct file *file, struct page *page,
754 			     int offset, size_t size, loff_t *ppos, int more)
755 {
756 	struct socket *sock;
757 	int flags;
758 
759 	sock = file->private_data;
760 
761 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
762 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
763 	flags |= more;
764 
765 	return kernel_sendpage(sock, page, offset, size, flags);
766 }
767 
768 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
769 				struct pipe_inode_info *pipe, size_t len,
770 				unsigned int flags)
771 {
772 	struct socket *sock = file->private_data;
773 
774 	if (unlikely(!sock->ops->splice_read))
775 		return -EINVAL;
776 
777 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
778 }
779 
780 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
781 {
782 	struct file *file = iocb->ki_filp;
783 	struct socket *sock = file->private_data;
784 	struct msghdr msg = {.msg_iter = *to,
785 			     .msg_iocb = iocb};
786 	ssize_t res;
787 
788 	if (file->f_flags & O_NONBLOCK)
789 		msg.msg_flags = MSG_DONTWAIT;
790 
791 	if (iocb->ki_pos != 0)
792 		return -ESPIPE;
793 
794 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
795 		return 0;
796 
797 	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
798 	*to = msg.msg_iter;
799 	return res;
800 }
801 
802 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
803 {
804 	struct file *file = iocb->ki_filp;
805 	struct socket *sock = file->private_data;
806 	struct msghdr msg = {.msg_iter = *from,
807 			     .msg_iocb = iocb};
808 	ssize_t res;
809 
810 	if (iocb->ki_pos != 0)
811 		return -ESPIPE;
812 
813 	if (file->f_flags & O_NONBLOCK)
814 		msg.msg_flags = MSG_DONTWAIT;
815 
816 	if (sock->type == SOCK_SEQPACKET)
817 		msg.msg_flags |= MSG_EOR;
818 
819 	res = sock_sendmsg(sock, &msg);
820 	*from = msg.msg_iter;
821 	return res;
822 }
823 
824 /*
825  * Atomic setting of ioctl hooks to avoid race
826  * with module unload.
827  */
828 
829 static DEFINE_MUTEX(br_ioctl_mutex);
830 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
831 
832 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
833 {
834 	mutex_lock(&br_ioctl_mutex);
835 	br_ioctl_hook = hook;
836 	mutex_unlock(&br_ioctl_mutex);
837 }
838 EXPORT_SYMBOL(brioctl_set);
839 
840 static DEFINE_MUTEX(vlan_ioctl_mutex);
841 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
842 
843 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
844 {
845 	mutex_lock(&vlan_ioctl_mutex);
846 	vlan_ioctl_hook = hook;
847 	mutex_unlock(&vlan_ioctl_mutex);
848 }
849 EXPORT_SYMBOL(vlan_ioctl_set);
850 
851 static DEFINE_MUTEX(dlci_ioctl_mutex);
852 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
853 
854 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
855 {
856 	mutex_lock(&dlci_ioctl_mutex);
857 	dlci_ioctl_hook = hook;
858 	mutex_unlock(&dlci_ioctl_mutex);
859 }
860 EXPORT_SYMBOL(dlci_ioctl_set);
861 
862 static long sock_do_ioctl(struct net *net, struct socket *sock,
863 				 unsigned int cmd, unsigned long arg)
864 {
865 	int err;
866 	void __user *argp = (void __user *)arg;
867 
868 	err = sock->ops->ioctl(sock, cmd, arg);
869 
870 	/*
871 	 * If this ioctl is unknown try to hand it down
872 	 * to the NIC driver.
873 	 */
874 	if (err == -ENOIOCTLCMD)
875 		err = dev_ioctl(net, cmd, argp);
876 
877 	return err;
878 }
879 
880 /*
881  *	With an ioctl, arg may well be a user mode pointer, but we don't know
882  *	what to do with it - that's up to the protocol still.
883  */
884 
885 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
886 {
887 	struct socket *sock;
888 	struct sock *sk;
889 	void __user *argp = (void __user *)arg;
890 	int pid, err;
891 	struct net *net;
892 
893 	sock = file->private_data;
894 	sk = sock->sk;
895 	net = sock_net(sk);
896 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
897 		err = dev_ioctl(net, cmd, argp);
898 	} else
899 #ifdef CONFIG_WEXT_CORE
900 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
901 		err = dev_ioctl(net, cmd, argp);
902 	} else
903 #endif
904 		switch (cmd) {
905 		case FIOSETOWN:
906 		case SIOCSPGRP:
907 			err = -EFAULT;
908 			if (get_user(pid, (int __user *)argp))
909 				break;
910 			f_setown(sock->file, pid, 1);
911 			err = 0;
912 			break;
913 		case FIOGETOWN:
914 		case SIOCGPGRP:
915 			err = put_user(f_getown(sock->file),
916 				       (int __user *)argp);
917 			break;
918 		case SIOCGIFBR:
919 		case SIOCSIFBR:
920 		case SIOCBRADDBR:
921 		case SIOCBRDELBR:
922 			err = -ENOPKG;
923 			if (!br_ioctl_hook)
924 				request_module("bridge");
925 
926 			mutex_lock(&br_ioctl_mutex);
927 			if (br_ioctl_hook)
928 				err = br_ioctl_hook(net, cmd, argp);
929 			mutex_unlock(&br_ioctl_mutex);
930 			break;
931 		case SIOCGIFVLAN:
932 		case SIOCSIFVLAN:
933 			err = -ENOPKG;
934 			if (!vlan_ioctl_hook)
935 				request_module("8021q");
936 
937 			mutex_lock(&vlan_ioctl_mutex);
938 			if (vlan_ioctl_hook)
939 				err = vlan_ioctl_hook(net, argp);
940 			mutex_unlock(&vlan_ioctl_mutex);
941 			break;
942 		case SIOCADDDLCI:
943 		case SIOCDELDLCI:
944 			err = -ENOPKG;
945 			if (!dlci_ioctl_hook)
946 				request_module("dlci");
947 
948 			mutex_lock(&dlci_ioctl_mutex);
949 			if (dlci_ioctl_hook)
950 				err = dlci_ioctl_hook(cmd, argp);
951 			mutex_unlock(&dlci_ioctl_mutex);
952 			break;
953 		default:
954 			err = sock_do_ioctl(net, sock, cmd, arg);
955 			break;
956 		}
957 	return err;
958 }
959 
960 int sock_create_lite(int family, int type, int protocol, struct socket **res)
961 {
962 	int err;
963 	struct socket *sock = NULL;
964 
965 	err = security_socket_create(family, type, protocol, 1);
966 	if (err)
967 		goto out;
968 
969 	sock = sock_alloc();
970 	if (!sock) {
971 		err = -ENOMEM;
972 		goto out;
973 	}
974 
975 	sock->type = type;
976 	err = security_socket_post_create(sock, family, type, protocol, 1);
977 	if (err)
978 		goto out_release;
979 
980 out:
981 	*res = sock;
982 	return err;
983 out_release:
984 	sock_release(sock);
985 	sock = NULL;
986 	goto out;
987 }
988 EXPORT_SYMBOL(sock_create_lite);
989 
990 /* No kernel lock held - perfect */
991 static unsigned int sock_poll(struct file *file, poll_table *wait)
992 {
993 	unsigned int busy_flag = 0;
994 	struct socket *sock;
995 
996 	/*
997 	 *      We can't return errors to poll, so it's either yes or no.
998 	 */
999 	sock = file->private_data;
1000 
1001 	if (sk_can_busy_loop(sock->sk)) {
1002 		/* this socket can poll_ll so tell the system call */
1003 		busy_flag = POLL_BUSY_LOOP;
1004 
1005 		/* once, only if requested by syscall */
1006 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1007 			sk_busy_loop(sock->sk, 1);
1008 	}
1009 
1010 	return busy_flag | sock->ops->poll(file, sock, wait);
1011 }
1012 
1013 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1014 {
1015 	struct socket *sock = file->private_data;
1016 
1017 	return sock->ops->mmap(file, sock, vma);
1018 }
1019 
1020 static int sock_close(struct inode *inode, struct file *filp)
1021 {
1022 	sock_release(SOCKET_I(inode));
1023 	return 0;
1024 }
1025 
1026 /*
1027  *	Update the socket async list
1028  *
1029  *	Fasync_list locking strategy.
1030  *
1031  *	1. fasync_list is modified only under process context socket lock
1032  *	   i.e. under semaphore.
1033  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1034  *	   or under socket lock
1035  */
1036 
1037 static int sock_fasync(int fd, struct file *filp, int on)
1038 {
1039 	struct socket *sock = filp->private_data;
1040 	struct sock *sk = sock->sk;
1041 	struct socket_wq *wq;
1042 
1043 	if (sk == NULL)
1044 		return -EINVAL;
1045 
1046 	lock_sock(sk);
1047 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1048 	fasync_helper(fd, filp, on, &wq->fasync_list);
1049 
1050 	if (!wq->fasync_list)
1051 		sock_reset_flag(sk, SOCK_FASYNC);
1052 	else
1053 		sock_set_flag(sk, SOCK_FASYNC);
1054 
1055 	release_sock(sk);
1056 	return 0;
1057 }
1058 
1059 /* This function may be called only under rcu_lock */
1060 
1061 int sock_wake_async(struct socket_wq *wq, int how, int band)
1062 {
1063 	if (!wq || !wq->fasync_list)
1064 		return -1;
1065 
1066 	switch (how) {
1067 	case SOCK_WAKE_WAITD:
1068 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1069 			break;
1070 		goto call_kill;
1071 	case SOCK_WAKE_SPACE:
1072 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1073 			break;
1074 		/* fall through */
1075 	case SOCK_WAKE_IO:
1076 call_kill:
1077 		kill_fasync(&wq->fasync_list, SIGIO, band);
1078 		break;
1079 	case SOCK_WAKE_URG:
1080 		kill_fasync(&wq->fasync_list, SIGURG, band);
1081 	}
1082 
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL(sock_wake_async);
1086 
1087 int __sock_create(struct net *net, int family, int type, int protocol,
1088 			 struct socket **res, int kern)
1089 {
1090 	int err;
1091 	struct socket *sock;
1092 	const struct net_proto_family *pf;
1093 
1094 	/*
1095 	 *      Check protocol is in range
1096 	 */
1097 	if (family < 0 || family >= NPROTO)
1098 		return -EAFNOSUPPORT;
1099 	if (type < 0 || type >= SOCK_MAX)
1100 		return -EINVAL;
1101 
1102 	/* Compatibility.
1103 
1104 	   This uglymoron is moved from INET layer to here to avoid
1105 	   deadlock in module load.
1106 	 */
1107 	if (family == PF_INET && type == SOCK_PACKET) {
1108 		static int warned;
1109 		if (!warned) {
1110 			warned = 1;
1111 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1112 				current->comm);
1113 		}
1114 		family = PF_PACKET;
1115 	}
1116 
1117 	err = security_socket_create(family, type, protocol, kern);
1118 	if (err)
1119 		return err;
1120 
1121 	/*
1122 	 *	Allocate the socket and allow the family to set things up. if
1123 	 *	the protocol is 0, the family is instructed to select an appropriate
1124 	 *	default.
1125 	 */
1126 	sock = sock_alloc();
1127 	if (!sock) {
1128 		net_warn_ratelimited("socket: no more sockets\n");
1129 		return -ENFILE;	/* Not exactly a match, but its the
1130 				   closest posix thing */
1131 	}
1132 
1133 	sock->type = type;
1134 
1135 #ifdef CONFIG_MODULES
1136 	/* Attempt to load a protocol module if the find failed.
1137 	 *
1138 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1139 	 * requested real, full-featured networking support upon configuration.
1140 	 * Otherwise module support will break!
1141 	 */
1142 	if (rcu_access_pointer(net_families[family]) == NULL)
1143 		request_module("net-pf-%d", family);
1144 #endif
1145 
1146 	rcu_read_lock();
1147 	pf = rcu_dereference(net_families[family]);
1148 	err = -EAFNOSUPPORT;
1149 	if (!pf)
1150 		goto out_release;
1151 
1152 	/*
1153 	 * We will call the ->create function, that possibly is in a loadable
1154 	 * module, so we have to bump that loadable module refcnt first.
1155 	 */
1156 	if (!try_module_get(pf->owner))
1157 		goto out_release;
1158 
1159 	/* Now protected by module ref count */
1160 	rcu_read_unlock();
1161 
1162 	err = pf->create(net, sock, protocol, kern);
1163 	if (err < 0)
1164 		goto out_module_put;
1165 
1166 	/*
1167 	 * Now to bump the refcnt of the [loadable] module that owns this
1168 	 * socket at sock_release time we decrement its refcnt.
1169 	 */
1170 	if (!try_module_get(sock->ops->owner))
1171 		goto out_module_busy;
1172 
1173 	/*
1174 	 * Now that we're done with the ->create function, the [loadable]
1175 	 * module can have its refcnt decremented
1176 	 */
1177 	module_put(pf->owner);
1178 	err = security_socket_post_create(sock, family, type, protocol, kern);
1179 	if (err)
1180 		goto out_sock_release;
1181 	*res = sock;
1182 
1183 	return 0;
1184 
1185 out_module_busy:
1186 	err = -EAFNOSUPPORT;
1187 out_module_put:
1188 	sock->ops = NULL;
1189 	module_put(pf->owner);
1190 out_sock_release:
1191 	sock_release(sock);
1192 	return err;
1193 
1194 out_release:
1195 	rcu_read_unlock();
1196 	goto out_sock_release;
1197 }
1198 EXPORT_SYMBOL(__sock_create);
1199 
1200 int sock_create(int family, int type, int protocol, struct socket **res)
1201 {
1202 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1203 }
1204 EXPORT_SYMBOL(sock_create);
1205 
1206 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1207 {
1208 	return __sock_create(net, family, type, protocol, res, 1);
1209 }
1210 EXPORT_SYMBOL(sock_create_kern);
1211 
1212 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1213 {
1214 	int retval;
1215 	struct socket *sock;
1216 	int flags;
1217 
1218 	/* Check the SOCK_* constants for consistency.  */
1219 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1220 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1221 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1222 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1223 
1224 	flags = type & ~SOCK_TYPE_MASK;
1225 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1226 		return -EINVAL;
1227 	type &= SOCK_TYPE_MASK;
1228 
1229 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1230 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1231 
1232 	retval = sock_create(family, type, protocol, &sock);
1233 	if (retval < 0)
1234 		goto out;
1235 
1236 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1237 	if (retval < 0)
1238 		goto out_release;
1239 
1240 out:
1241 	/* It may be already another descriptor 8) Not kernel problem. */
1242 	return retval;
1243 
1244 out_release:
1245 	sock_release(sock);
1246 	return retval;
1247 }
1248 
1249 /*
1250  *	Create a pair of connected sockets.
1251  */
1252 
1253 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1254 		int __user *, usockvec)
1255 {
1256 	struct socket *sock1, *sock2;
1257 	int fd1, fd2, err;
1258 	struct file *newfile1, *newfile2;
1259 	int flags;
1260 
1261 	flags = type & ~SOCK_TYPE_MASK;
1262 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263 		return -EINVAL;
1264 	type &= SOCK_TYPE_MASK;
1265 
1266 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268 
1269 	/*
1270 	 * Obtain the first socket and check if the underlying protocol
1271 	 * supports the socketpair call.
1272 	 */
1273 
1274 	err = sock_create(family, type, protocol, &sock1);
1275 	if (err < 0)
1276 		goto out;
1277 
1278 	err = sock_create(family, type, protocol, &sock2);
1279 	if (err < 0)
1280 		goto out_release_1;
1281 
1282 	err = sock1->ops->socketpair(sock1, sock2);
1283 	if (err < 0)
1284 		goto out_release_both;
1285 
1286 	fd1 = get_unused_fd_flags(flags);
1287 	if (unlikely(fd1 < 0)) {
1288 		err = fd1;
1289 		goto out_release_both;
1290 	}
1291 
1292 	fd2 = get_unused_fd_flags(flags);
1293 	if (unlikely(fd2 < 0)) {
1294 		err = fd2;
1295 		goto out_put_unused_1;
1296 	}
1297 
1298 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1299 	if (IS_ERR(newfile1)) {
1300 		err = PTR_ERR(newfile1);
1301 		goto out_put_unused_both;
1302 	}
1303 
1304 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1305 	if (IS_ERR(newfile2)) {
1306 		err = PTR_ERR(newfile2);
1307 		goto out_fput_1;
1308 	}
1309 
1310 	err = put_user(fd1, &usockvec[0]);
1311 	if (err)
1312 		goto out_fput_both;
1313 
1314 	err = put_user(fd2, &usockvec[1]);
1315 	if (err)
1316 		goto out_fput_both;
1317 
1318 	audit_fd_pair(fd1, fd2);
1319 
1320 	fd_install(fd1, newfile1);
1321 	fd_install(fd2, newfile2);
1322 	/* fd1 and fd2 may be already another descriptors.
1323 	 * Not kernel problem.
1324 	 */
1325 
1326 	return 0;
1327 
1328 out_fput_both:
1329 	fput(newfile2);
1330 	fput(newfile1);
1331 	put_unused_fd(fd2);
1332 	put_unused_fd(fd1);
1333 	goto out;
1334 
1335 out_fput_1:
1336 	fput(newfile1);
1337 	put_unused_fd(fd2);
1338 	put_unused_fd(fd1);
1339 	sock_release(sock2);
1340 	goto out;
1341 
1342 out_put_unused_both:
1343 	put_unused_fd(fd2);
1344 out_put_unused_1:
1345 	put_unused_fd(fd1);
1346 out_release_both:
1347 	sock_release(sock2);
1348 out_release_1:
1349 	sock_release(sock1);
1350 out:
1351 	return err;
1352 }
1353 
1354 /*
1355  *	Bind a name to a socket. Nothing much to do here since it's
1356  *	the protocol's responsibility to handle the local address.
1357  *
1358  *	We move the socket address to kernel space before we call
1359  *	the protocol layer (having also checked the address is ok).
1360  */
1361 
1362 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1363 {
1364 	struct socket *sock;
1365 	struct sockaddr_storage address;
1366 	int err, fput_needed;
1367 
1368 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1369 	if (sock) {
1370 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1371 		if (err >= 0) {
1372 			err = security_socket_bind(sock,
1373 						   (struct sockaddr *)&address,
1374 						   addrlen);
1375 			if (!err)
1376 				err = sock->ops->bind(sock,
1377 						      (struct sockaddr *)
1378 						      &address, addrlen);
1379 		}
1380 		fput_light(sock->file, fput_needed);
1381 	}
1382 	return err;
1383 }
1384 
1385 /*
1386  *	Perform a listen. Basically, we allow the protocol to do anything
1387  *	necessary for a listen, and if that works, we mark the socket as
1388  *	ready for listening.
1389  */
1390 
1391 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1392 {
1393 	struct socket *sock;
1394 	int err, fput_needed;
1395 	int somaxconn;
1396 
1397 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1398 	if (sock) {
1399 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1400 		if ((unsigned int)backlog > somaxconn)
1401 			backlog = somaxconn;
1402 
1403 		err = security_socket_listen(sock, backlog);
1404 		if (!err)
1405 			err = sock->ops->listen(sock, backlog);
1406 
1407 		fput_light(sock->file, fput_needed);
1408 	}
1409 	return err;
1410 }
1411 
1412 /*
1413  *	For accept, we attempt to create a new socket, set up the link
1414  *	with the client, wake up the client, then return the new
1415  *	connected fd. We collect the address of the connector in kernel
1416  *	space and move it to user at the very end. This is unclean because
1417  *	we open the socket then return an error.
1418  *
1419  *	1003.1g adds the ability to recvmsg() to query connection pending
1420  *	status to recvmsg. We need to add that support in a way thats
1421  *	clean when we restucture accept also.
1422  */
1423 
1424 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1425 		int __user *, upeer_addrlen, int, flags)
1426 {
1427 	struct socket *sock, *newsock;
1428 	struct file *newfile;
1429 	int err, len, newfd, fput_needed;
1430 	struct sockaddr_storage address;
1431 
1432 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1433 		return -EINVAL;
1434 
1435 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1436 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1437 
1438 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1439 	if (!sock)
1440 		goto out;
1441 
1442 	err = -ENFILE;
1443 	newsock = sock_alloc();
1444 	if (!newsock)
1445 		goto out_put;
1446 
1447 	newsock->type = sock->type;
1448 	newsock->ops = sock->ops;
1449 
1450 	/*
1451 	 * We don't need try_module_get here, as the listening socket (sock)
1452 	 * has the protocol module (sock->ops->owner) held.
1453 	 */
1454 	__module_get(newsock->ops->owner);
1455 
1456 	newfd = get_unused_fd_flags(flags);
1457 	if (unlikely(newfd < 0)) {
1458 		err = newfd;
1459 		sock_release(newsock);
1460 		goto out_put;
1461 	}
1462 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1463 	if (IS_ERR(newfile)) {
1464 		err = PTR_ERR(newfile);
1465 		put_unused_fd(newfd);
1466 		sock_release(newsock);
1467 		goto out_put;
1468 	}
1469 
1470 	err = security_socket_accept(sock, newsock);
1471 	if (err)
1472 		goto out_fd;
1473 
1474 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1475 	if (err < 0)
1476 		goto out_fd;
1477 
1478 	if (upeer_sockaddr) {
1479 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1480 					  &len, 2) < 0) {
1481 			err = -ECONNABORTED;
1482 			goto out_fd;
1483 		}
1484 		err = move_addr_to_user(&address,
1485 					len, upeer_sockaddr, upeer_addrlen);
1486 		if (err < 0)
1487 			goto out_fd;
1488 	}
1489 
1490 	/* File flags are not inherited via accept() unlike another OSes. */
1491 
1492 	fd_install(newfd, newfile);
1493 	err = newfd;
1494 
1495 out_put:
1496 	fput_light(sock->file, fput_needed);
1497 out:
1498 	return err;
1499 out_fd:
1500 	fput(newfile);
1501 	put_unused_fd(newfd);
1502 	goto out_put;
1503 }
1504 
1505 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1506 		int __user *, upeer_addrlen)
1507 {
1508 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1509 }
1510 
1511 /*
1512  *	Attempt to connect to a socket with the server address.  The address
1513  *	is in user space so we verify it is OK and move it to kernel space.
1514  *
1515  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1516  *	break bindings
1517  *
1518  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1519  *	other SEQPACKET protocols that take time to connect() as it doesn't
1520  *	include the -EINPROGRESS status for such sockets.
1521  */
1522 
1523 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1524 		int, addrlen)
1525 {
1526 	struct socket *sock;
1527 	struct sockaddr_storage address;
1528 	int err, fput_needed;
1529 
1530 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 	if (!sock)
1532 		goto out;
1533 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1534 	if (err < 0)
1535 		goto out_put;
1536 
1537 	err =
1538 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1539 	if (err)
1540 		goto out_put;
1541 
1542 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1543 				 sock->file->f_flags);
1544 out_put:
1545 	fput_light(sock->file, fput_needed);
1546 out:
1547 	return err;
1548 }
1549 
1550 /*
1551  *	Get the local address ('name') of a socket object. Move the obtained
1552  *	name to user space.
1553  */
1554 
1555 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1556 		int __user *, usockaddr_len)
1557 {
1558 	struct socket *sock;
1559 	struct sockaddr_storage address;
1560 	int len, err, fput_needed;
1561 
1562 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 	if (!sock)
1564 		goto out;
1565 
1566 	err = security_socket_getsockname(sock);
1567 	if (err)
1568 		goto out_put;
1569 
1570 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1571 	if (err)
1572 		goto out_put;
1573 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1574 
1575 out_put:
1576 	fput_light(sock->file, fput_needed);
1577 out:
1578 	return err;
1579 }
1580 
1581 /*
1582  *	Get the remote address ('name') of a socket object. Move the obtained
1583  *	name to user space.
1584  */
1585 
1586 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1587 		int __user *, usockaddr_len)
1588 {
1589 	struct socket *sock;
1590 	struct sockaddr_storage address;
1591 	int len, err, fput_needed;
1592 
1593 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1594 	if (sock != NULL) {
1595 		err = security_socket_getpeername(sock);
1596 		if (err) {
1597 			fput_light(sock->file, fput_needed);
1598 			return err;
1599 		}
1600 
1601 		err =
1602 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1603 				       1);
1604 		if (!err)
1605 			err = move_addr_to_user(&address, len, usockaddr,
1606 						usockaddr_len);
1607 		fput_light(sock->file, fput_needed);
1608 	}
1609 	return err;
1610 }
1611 
1612 /*
1613  *	Send a datagram to a given address. We move the address into kernel
1614  *	space and check the user space data area is readable before invoking
1615  *	the protocol.
1616  */
1617 
1618 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1619 		unsigned int, flags, struct sockaddr __user *, addr,
1620 		int, addr_len)
1621 {
1622 	struct socket *sock;
1623 	struct sockaddr_storage address;
1624 	int err;
1625 	struct msghdr msg;
1626 	struct iovec iov;
1627 	int fput_needed;
1628 
1629 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1630 	if (unlikely(err))
1631 		return err;
1632 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1633 	if (!sock)
1634 		goto out;
1635 
1636 	msg.msg_name = NULL;
1637 	msg.msg_control = NULL;
1638 	msg.msg_controllen = 0;
1639 	msg.msg_namelen = 0;
1640 	if (addr) {
1641 		err = move_addr_to_kernel(addr, addr_len, &address);
1642 		if (err < 0)
1643 			goto out_put;
1644 		msg.msg_name = (struct sockaddr *)&address;
1645 		msg.msg_namelen = addr_len;
1646 	}
1647 	if (sock->file->f_flags & O_NONBLOCK)
1648 		flags |= MSG_DONTWAIT;
1649 	msg.msg_flags = flags;
1650 	err = sock_sendmsg(sock, &msg);
1651 
1652 out_put:
1653 	fput_light(sock->file, fput_needed);
1654 out:
1655 	return err;
1656 }
1657 
1658 /*
1659  *	Send a datagram down a socket.
1660  */
1661 
1662 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1663 		unsigned int, flags)
1664 {
1665 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1666 }
1667 
1668 /*
1669  *	Receive a frame from the socket and optionally record the address of the
1670  *	sender. We verify the buffers are writable and if needed move the
1671  *	sender address from kernel to user space.
1672  */
1673 
1674 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1675 		unsigned int, flags, struct sockaddr __user *, addr,
1676 		int __user *, addr_len)
1677 {
1678 	struct socket *sock;
1679 	struct iovec iov;
1680 	struct msghdr msg;
1681 	struct sockaddr_storage address;
1682 	int err, err2;
1683 	int fput_needed;
1684 
1685 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1686 	if (unlikely(err))
1687 		return err;
1688 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 	if (!sock)
1690 		goto out;
1691 
1692 	msg.msg_control = NULL;
1693 	msg.msg_controllen = 0;
1694 	/* Save some cycles and don't copy the address if not needed */
1695 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1696 	/* We assume all kernel code knows the size of sockaddr_storage */
1697 	msg.msg_namelen = 0;
1698 	if (sock->file->f_flags & O_NONBLOCK)
1699 		flags |= MSG_DONTWAIT;
1700 	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1701 
1702 	if (err >= 0 && addr != NULL) {
1703 		err2 = move_addr_to_user(&address,
1704 					 msg.msg_namelen, addr, addr_len);
1705 		if (err2 < 0)
1706 			err = err2;
1707 	}
1708 
1709 	fput_light(sock->file, fput_needed);
1710 out:
1711 	return err;
1712 }
1713 
1714 /*
1715  *	Receive a datagram from a socket.
1716  */
1717 
1718 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1719 		unsigned int, flags)
1720 {
1721 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1722 }
1723 
1724 /*
1725  *	Set a socket option. Because we don't know the option lengths we have
1726  *	to pass the user mode parameter for the protocols to sort out.
1727  */
1728 
1729 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1730 		char __user *, optval, int, optlen)
1731 {
1732 	int err, fput_needed;
1733 	struct socket *sock;
1734 
1735 	if (optlen < 0)
1736 		return -EINVAL;
1737 
1738 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 	if (sock != NULL) {
1740 		err = security_socket_setsockopt(sock, level, optname);
1741 		if (err)
1742 			goto out_put;
1743 
1744 		if (level == SOL_SOCKET)
1745 			err =
1746 			    sock_setsockopt(sock, level, optname, optval,
1747 					    optlen);
1748 		else
1749 			err =
1750 			    sock->ops->setsockopt(sock, level, optname, optval,
1751 						  optlen);
1752 out_put:
1753 		fput_light(sock->file, fput_needed);
1754 	}
1755 	return err;
1756 }
1757 
1758 /*
1759  *	Get a socket option. Because we don't know the option lengths we have
1760  *	to pass a user mode parameter for the protocols to sort out.
1761  */
1762 
1763 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1764 		char __user *, optval, int __user *, optlen)
1765 {
1766 	int err, fput_needed;
1767 	struct socket *sock;
1768 
1769 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 	if (sock != NULL) {
1771 		err = security_socket_getsockopt(sock, level, optname);
1772 		if (err)
1773 			goto out_put;
1774 
1775 		if (level == SOL_SOCKET)
1776 			err =
1777 			    sock_getsockopt(sock, level, optname, optval,
1778 					    optlen);
1779 		else
1780 			err =
1781 			    sock->ops->getsockopt(sock, level, optname, optval,
1782 						  optlen);
1783 out_put:
1784 		fput_light(sock->file, fput_needed);
1785 	}
1786 	return err;
1787 }
1788 
1789 /*
1790  *	Shutdown a socket.
1791  */
1792 
1793 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1794 {
1795 	int err, fput_needed;
1796 	struct socket *sock;
1797 
1798 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799 	if (sock != NULL) {
1800 		err = security_socket_shutdown(sock, how);
1801 		if (!err)
1802 			err = sock->ops->shutdown(sock, how);
1803 		fput_light(sock->file, fput_needed);
1804 	}
1805 	return err;
1806 }
1807 
1808 /* A couple of helpful macros for getting the address of the 32/64 bit
1809  * fields which are the same type (int / unsigned) on our platforms.
1810  */
1811 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1812 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1813 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1814 
1815 struct used_address {
1816 	struct sockaddr_storage name;
1817 	unsigned int name_len;
1818 };
1819 
1820 static int copy_msghdr_from_user(struct msghdr *kmsg,
1821 				 struct user_msghdr __user *umsg,
1822 				 struct sockaddr __user **save_addr,
1823 				 struct iovec **iov)
1824 {
1825 	struct sockaddr __user *uaddr;
1826 	struct iovec __user *uiov;
1827 	size_t nr_segs;
1828 	ssize_t err;
1829 
1830 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1831 	    __get_user(uaddr, &umsg->msg_name) ||
1832 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1833 	    __get_user(uiov, &umsg->msg_iov) ||
1834 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1835 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1836 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1837 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1838 		return -EFAULT;
1839 
1840 	if (!uaddr)
1841 		kmsg->msg_namelen = 0;
1842 
1843 	if (kmsg->msg_namelen < 0)
1844 		return -EINVAL;
1845 
1846 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1847 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1848 
1849 	if (save_addr)
1850 		*save_addr = uaddr;
1851 
1852 	if (uaddr && kmsg->msg_namelen) {
1853 		if (!save_addr) {
1854 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1855 						  kmsg->msg_name);
1856 			if (err < 0)
1857 				return err;
1858 		}
1859 	} else {
1860 		kmsg->msg_name = NULL;
1861 		kmsg->msg_namelen = 0;
1862 	}
1863 
1864 	if (nr_segs > UIO_MAXIOV)
1865 		return -EMSGSIZE;
1866 
1867 	kmsg->msg_iocb = NULL;
1868 
1869 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1870 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1871 }
1872 
1873 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1874 			 struct msghdr *msg_sys, unsigned int flags,
1875 			 struct used_address *used_address)
1876 {
1877 	struct compat_msghdr __user *msg_compat =
1878 	    (struct compat_msghdr __user *)msg;
1879 	struct sockaddr_storage address;
1880 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1881 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1882 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1883 	/* 20 is size of ipv6_pktinfo */
1884 	unsigned char *ctl_buf = ctl;
1885 	int ctl_len;
1886 	ssize_t err;
1887 
1888 	msg_sys->msg_name = &address;
1889 
1890 	if (MSG_CMSG_COMPAT & flags)
1891 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1892 	else
1893 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1894 	if (err < 0)
1895 		return err;
1896 
1897 	err = -ENOBUFS;
1898 
1899 	if (msg_sys->msg_controllen > INT_MAX)
1900 		goto out_freeiov;
1901 	ctl_len = msg_sys->msg_controllen;
1902 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1903 		err =
1904 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1905 						     sizeof(ctl));
1906 		if (err)
1907 			goto out_freeiov;
1908 		ctl_buf = msg_sys->msg_control;
1909 		ctl_len = msg_sys->msg_controllen;
1910 	} else if (ctl_len) {
1911 		if (ctl_len > sizeof(ctl)) {
1912 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1913 			if (ctl_buf == NULL)
1914 				goto out_freeiov;
1915 		}
1916 		err = -EFAULT;
1917 		/*
1918 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1919 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1920 		 * checking falls down on this.
1921 		 */
1922 		if (copy_from_user(ctl_buf,
1923 				   (void __user __force *)msg_sys->msg_control,
1924 				   ctl_len))
1925 			goto out_freectl;
1926 		msg_sys->msg_control = ctl_buf;
1927 	}
1928 	msg_sys->msg_flags = flags;
1929 
1930 	if (sock->file->f_flags & O_NONBLOCK)
1931 		msg_sys->msg_flags |= MSG_DONTWAIT;
1932 	/*
1933 	 * If this is sendmmsg() and current destination address is same as
1934 	 * previously succeeded address, omit asking LSM's decision.
1935 	 * used_address->name_len is initialized to UINT_MAX so that the first
1936 	 * destination address never matches.
1937 	 */
1938 	if (used_address && msg_sys->msg_name &&
1939 	    used_address->name_len == msg_sys->msg_namelen &&
1940 	    !memcmp(&used_address->name, msg_sys->msg_name,
1941 		    used_address->name_len)) {
1942 		err = sock_sendmsg_nosec(sock, msg_sys);
1943 		goto out_freectl;
1944 	}
1945 	err = sock_sendmsg(sock, msg_sys);
1946 	/*
1947 	 * If this is sendmmsg() and sending to current destination address was
1948 	 * successful, remember it.
1949 	 */
1950 	if (used_address && err >= 0) {
1951 		used_address->name_len = msg_sys->msg_namelen;
1952 		if (msg_sys->msg_name)
1953 			memcpy(&used_address->name, msg_sys->msg_name,
1954 			       used_address->name_len);
1955 	}
1956 
1957 out_freectl:
1958 	if (ctl_buf != ctl)
1959 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1960 out_freeiov:
1961 	kfree(iov);
1962 	return err;
1963 }
1964 
1965 /*
1966  *	BSD sendmsg interface
1967  */
1968 
1969 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1970 {
1971 	int fput_needed, err;
1972 	struct msghdr msg_sys;
1973 	struct socket *sock;
1974 
1975 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1976 	if (!sock)
1977 		goto out;
1978 
1979 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1980 
1981 	fput_light(sock->file, fput_needed);
1982 out:
1983 	return err;
1984 }
1985 
1986 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1987 {
1988 	if (flags & MSG_CMSG_COMPAT)
1989 		return -EINVAL;
1990 	return __sys_sendmsg(fd, msg, flags);
1991 }
1992 
1993 /*
1994  *	Linux sendmmsg interface
1995  */
1996 
1997 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1998 		   unsigned int flags)
1999 {
2000 	int fput_needed, err, datagrams;
2001 	struct socket *sock;
2002 	struct mmsghdr __user *entry;
2003 	struct compat_mmsghdr __user *compat_entry;
2004 	struct msghdr msg_sys;
2005 	struct used_address used_address;
2006 
2007 	if (vlen > UIO_MAXIOV)
2008 		vlen = UIO_MAXIOV;
2009 
2010 	datagrams = 0;
2011 
2012 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2013 	if (!sock)
2014 		return err;
2015 
2016 	used_address.name_len = UINT_MAX;
2017 	entry = mmsg;
2018 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2019 	err = 0;
2020 
2021 	while (datagrams < vlen) {
2022 		if (MSG_CMSG_COMPAT & flags) {
2023 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2024 					     &msg_sys, flags, &used_address);
2025 			if (err < 0)
2026 				break;
2027 			err = __put_user(err, &compat_entry->msg_len);
2028 			++compat_entry;
2029 		} else {
2030 			err = ___sys_sendmsg(sock,
2031 					     (struct user_msghdr __user *)entry,
2032 					     &msg_sys, flags, &used_address);
2033 			if (err < 0)
2034 				break;
2035 			err = put_user(err, &entry->msg_len);
2036 			++entry;
2037 		}
2038 
2039 		if (err)
2040 			break;
2041 		++datagrams;
2042 	}
2043 
2044 	fput_light(sock->file, fput_needed);
2045 
2046 	/* We only return an error if no datagrams were able to be sent */
2047 	if (datagrams != 0)
2048 		return datagrams;
2049 
2050 	return err;
2051 }
2052 
2053 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2054 		unsigned int, vlen, unsigned int, flags)
2055 {
2056 	if (flags & MSG_CMSG_COMPAT)
2057 		return -EINVAL;
2058 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2059 }
2060 
2061 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2062 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2063 {
2064 	struct compat_msghdr __user *msg_compat =
2065 	    (struct compat_msghdr __user *)msg;
2066 	struct iovec iovstack[UIO_FASTIOV];
2067 	struct iovec *iov = iovstack;
2068 	unsigned long cmsg_ptr;
2069 	int total_len, len;
2070 	ssize_t err;
2071 
2072 	/* kernel mode address */
2073 	struct sockaddr_storage addr;
2074 
2075 	/* user mode address pointers */
2076 	struct sockaddr __user *uaddr;
2077 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2078 
2079 	msg_sys->msg_name = &addr;
2080 
2081 	if (MSG_CMSG_COMPAT & flags)
2082 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2083 	else
2084 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2085 	if (err < 0)
2086 		return err;
2087 	total_len = iov_iter_count(&msg_sys->msg_iter);
2088 
2089 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2090 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2091 
2092 	/* We assume all kernel code knows the size of sockaddr_storage */
2093 	msg_sys->msg_namelen = 0;
2094 
2095 	if (sock->file->f_flags & O_NONBLOCK)
2096 		flags |= MSG_DONTWAIT;
2097 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2098 							  total_len, flags);
2099 	if (err < 0)
2100 		goto out_freeiov;
2101 	len = err;
2102 
2103 	if (uaddr != NULL) {
2104 		err = move_addr_to_user(&addr,
2105 					msg_sys->msg_namelen, uaddr,
2106 					uaddr_len);
2107 		if (err < 0)
2108 			goto out_freeiov;
2109 	}
2110 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2111 			 COMPAT_FLAGS(msg));
2112 	if (err)
2113 		goto out_freeiov;
2114 	if (MSG_CMSG_COMPAT & flags)
2115 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2116 				 &msg_compat->msg_controllen);
2117 	else
2118 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2119 				 &msg->msg_controllen);
2120 	if (err)
2121 		goto out_freeiov;
2122 	err = len;
2123 
2124 out_freeiov:
2125 	kfree(iov);
2126 	return err;
2127 }
2128 
2129 /*
2130  *	BSD recvmsg interface
2131  */
2132 
2133 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2134 {
2135 	int fput_needed, err;
2136 	struct msghdr msg_sys;
2137 	struct socket *sock;
2138 
2139 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2140 	if (!sock)
2141 		goto out;
2142 
2143 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2144 
2145 	fput_light(sock->file, fput_needed);
2146 out:
2147 	return err;
2148 }
2149 
2150 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2151 		unsigned int, flags)
2152 {
2153 	if (flags & MSG_CMSG_COMPAT)
2154 		return -EINVAL;
2155 	return __sys_recvmsg(fd, msg, flags);
2156 }
2157 
2158 /*
2159  *     Linux recvmmsg interface
2160  */
2161 
2162 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2163 		   unsigned int flags, struct timespec *timeout)
2164 {
2165 	int fput_needed, err, datagrams;
2166 	struct socket *sock;
2167 	struct mmsghdr __user *entry;
2168 	struct compat_mmsghdr __user *compat_entry;
2169 	struct msghdr msg_sys;
2170 	struct timespec end_time;
2171 
2172 	if (timeout &&
2173 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2174 				    timeout->tv_nsec))
2175 		return -EINVAL;
2176 
2177 	datagrams = 0;
2178 
2179 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2180 	if (!sock)
2181 		return err;
2182 
2183 	err = sock_error(sock->sk);
2184 	if (err)
2185 		goto out_put;
2186 
2187 	entry = mmsg;
2188 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2189 
2190 	while (datagrams < vlen) {
2191 		/*
2192 		 * No need to ask LSM for more than the first datagram.
2193 		 */
2194 		if (MSG_CMSG_COMPAT & flags) {
2195 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2196 					     &msg_sys, flags & ~MSG_WAITFORONE,
2197 					     datagrams);
2198 			if (err < 0)
2199 				break;
2200 			err = __put_user(err, &compat_entry->msg_len);
2201 			++compat_entry;
2202 		} else {
2203 			err = ___sys_recvmsg(sock,
2204 					     (struct user_msghdr __user *)entry,
2205 					     &msg_sys, flags & ~MSG_WAITFORONE,
2206 					     datagrams);
2207 			if (err < 0)
2208 				break;
2209 			err = put_user(err, &entry->msg_len);
2210 			++entry;
2211 		}
2212 
2213 		if (err)
2214 			break;
2215 		++datagrams;
2216 
2217 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2218 		if (flags & MSG_WAITFORONE)
2219 			flags |= MSG_DONTWAIT;
2220 
2221 		if (timeout) {
2222 			ktime_get_ts(timeout);
2223 			*timeout = timespec_sub(end_time, *timeout);
2224 			if (timeout->tv_sec < 0) {
2225 				timeout->tv_sec = timeout->tv_nsec = 0;
2226 				break;
2227 			}
2228 
2229 			/* Timeout, return less than vlen datagrams */
2230 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2231 				break;
2232 		}
2233 
2234 		/* Out of band data, return right away */
2235 		if (msg_sys.msg_flags & MSG_OOB)
2236 			break;
2237 	}
2238 
2239 out_put:
2240 	fput_light(sock->file, fput_needed);
2241 
2242 	if (err == 0)
2243 		return datagrams;
2244 
2245 	if (datagrams != 0) {
2246 		/*
2247 		 * We may return less entries than requested (vlen) if the
2248 		 * sock is non block and there aren't enough datagrams...
2249 		 */
2250 		if (err != -EAGAIN) {
2251 			/*
2252 			 * ... or  if recvmsg returns an error after we
2253 			 * received some datagrams, where we record the
2254 			 * error to return on the next call or if the
2255 			 * app asks about it using getsockopt(SO_ERROR).
2256 			 */
2257 			sock->sk->sk_err = -err;
2258 		}
2259 
2260 		return datagrams;
2261 	}
2262 
2263 	return err;
2264 }
2265 
2266 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2267 		unsigned int, vlen, unsigned int, flags,
2268 		struct timespec __user *, timeout)
2269 {
2270 	int datagrams;
2271 	struct timespec timeout_sys;
2272 
2273 	if (flags & MSG_CMSG_COMPAT)
2274 		return -EINVAL;
2275 
2276 	if (!timeout)
2277 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2278 
2279 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2280 		return -EFAULT;
2281 
2282 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2283 
2284 	if (datagrams > 0 &&
2285 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2286 		datagrams = -EFAULT;
2287 
2288 	return datagrams;
2289 }
2290 
2291 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2292 /* Argument list sizes for sys_socketcall */
2293 #define AL(x) ((x) * sizeof(unsigned long))
2294 static const unsigned char nargs[21] = {
2295 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2296 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2297 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2298 	AL(4), AL(5), AL(4)
2299 };
2300 
2301 #undef AL
2302 
2303 /*
2304  *	System call vectors.
2305  *
2306  *	Argument checking cleaned up. Saved 20% in size.
2307  *  This function doesn't need to set the kernel lock because
2308  *  it is set by the callees.
2309  */
2310 
2311 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2312 {
2313 	unsigned long a[AUDITSC_ARGS];
2314 	unsigned long a0, a1;
2315 	int err;
2316 	unsigned int len;
2317 
2318 	if (call < 1 || call > SYS_SENDMMSG)
2319 		return -EINVAL;
2320 
2321 	len = nargs[call];
2322 	if (len > sizeof(a))
2323 		return -EINVAL;
2324 
2325 	/* copy_from_user should be SMP safe. */
2326 	if (copy_from_user(a, args, len))
2327 		return -EFAULT;
2328 
2329 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2330 	if (err)
2331 		return err;
2332 
2333 	a0 = a[0];
2334 	a1 = a[1];
2335 
2336 	switch (call) {
2337 	case SYS_SOCKET:
2338 		err = sys_socket(a0, a1, a[2]);
2339 		break;
2340 	case SYS_BIND:
2341 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2342 		break;
2343 	case SYS_CONNECT:
2344 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2345 		break;
2346 	case SYS_LISTEN:
2347 		err = sys_listen(a0, a1);
2348 		break;
2349 	case SYS_ACCEPT:
2350 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2351 				  (int __user *)a[2], 0);
2352 		break;
2353 	case SYS_GETSOCKNAME:
2354 		err =
2355 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2356 				    (int __user *)a[2]);
2357 		break;
2358 	case SYS_GETPEERNAME:
2359 		err =
2360 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2361 				    (int __user *)a[2]);
2362 		break;
2363 	case SYS_SOCKETPAIR:
2364 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2365 		break;
2366 	case SYS_SEND:
2367 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2368 		break;
2369 	case SYS_SENDTO:
2370 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2371 				 (struct sockaddr __user *)a[4], a[5]);
2372 		break;
2373 	case SYS_RECV:
2374 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2375 		break;
2376 	case SYS_RECVFROM:
2377 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2378 				   (struct sockaddr __user *)a[4],
2379 				   (int __user *)a[5]);
2380 		break;
2381 	case SYS_SHUTDOWN:
2382 		err = sys_shutdown(a0, a1);
2383 		break;
2384 	case SYS_SETSOCKOPT:
2385 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2386 		break;
2387 	case SYS_GETSOCKOPT:
2388 		err =
2389 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2390 				   (int __user *)a[4]);
2391 		break;
2392 	case SYS_SENDMSG:
2393 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2394 		break;
2395 	case SYS_SENDMMSG:
2396 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2397 		break;
2398 	case SYS_RECVMSG:
2399 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2400 		break;
2401 	case SYS_RECVMMSG:
2402 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2403 				   (struct timespec __user *)a[4]);
2404 		break;
2405 	case SYS_ACCEPT4:
2406 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2407 				  (int __user *)a[2], a[3]);
2408 		break;
2409 	default:
2410 		err = -EINVAL;
2411 		break;
2412 	}
2413 	return err;
2414 }
2415 
2416 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2417 
2418 /**
2419  *	sock_register - add a socket protocol handler
2420  *	@ops: description of protocol
2421  *
2422  *	This function is called by a protocol handler that wants to
2423  *	advertise its address family, and have it linked into the
2424  *	socket interface. The value ops->family corresponds to the
2425  *	socket system call protocol family.
2426  */
2427 int sock_register(const struct net_proto_family *ops)
2428 {
2429 	int err;
2430 
2431 	if (ops->family >= NPROTO) {
2432 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2433 		return -ENOBUFS;
2434 	}
2435 
2436 	spin_lock(&net_family_lock);
2437 	if (rcu_dereference_protected(net_families[ops->family],
2438 				      lockdep_is_held(&net_family_lock)))
2439 		err = -EEXIST;
2440 	else {
2441 		rcu_assign_pointer(net_families[ops->family], ops);
2442 		err = 0;
2443 	}
2444 	spin_unlock(&net_family_lock);
2445 
2446 	pr_info("NET: Registered protocol family %d\n", ops->family);
2447 	return err;
2448 }
2449 EXPORT_SYMBOL(sock_register);
2450 
2451 /**
2452  *	sock_unregister - remove a protocol handler
2453  *	@family: protocol family to remove
2454  *
2455  *	This function is called by a protocol handler that wants to
2456  *	remove its address family, and have it unlinked from the
2457  *	new socket creation.
2458  *
2459  *	If protocol handler is a module, then it can use module reference
2460  *	counts to protect against new references. If protocol handler is not
2461  *	a module then it needs to provide its own protection in
2462  *	the ops->create routine.
2463  */
2464 void sock_unregister(int family)
2465 {
2466 	BUG_ON(family < 0 || family >= NPROTO);
2467 
2468 	spin_lock(&net_family_lock);
2469 	RCU_INIT_POINTER(net_families[family], NULL);
2470 	spin_unlock(&net_family_lock);
2471 
2472 	synchronize_rcu();
2473 
2474 	pr_info("NET: Unregistered protocol family %d\n", family);
2475 }
2476 EXPORT_SYMBOL(sock_unregister);
2477 
2478 static int __init sock_init(void)
2479 {
2480 	int err;
2481 	/*
2482 	 *      Initialize the network sysctl infrastructure.
2483 	 */
2484 	err = net_sysctl_init();
2485 	if (err)
2486 		goto out;
2487 
2488 	/*
2489 	 *      Initialize skbuff SLAB cache
2490 	 */
2491 	skb_init();
2492 
2493 	/*
2494 	 *      Initialize the protocols module.
2495 	 */
2496 
2497 	init_inodecache();
2498 
2499 	err = register_filesystem(&sock_fs_type);
2500 	if (err)
2501 		goto out_fs;
2502 	sock_mnt = kern_mount(&sock_fs_type);
2503 	if (IS_ERR(sock_mnt)) {
2504 		err = PTR_ERR(sock_mnt);
2505 		goto out_mount;
2506 	}
2507 
2508 	/* The real protocol initialization is performed in later initcalls.
2509 	 */
2510 
2511 #ifdef CONFIG_NETFILTER
2512 	err = netfilter_init();
2513 	if (err)
2514 		goto out;
2515 #endif
2516 
2517 	ptp_classifier_init();
2518 
2519 out:
2520 	return err;
2521 
2522 out_mount:
2523 	unregister_filesystem(&sock_fs_type);
2524 out_fs:
2525 	goto out;
2526 }
2527 
2528 core_initcall(sock_init);	/* early initcall */
2529 
2530 #ifdef CONFIG_PROC_FS
2531 void socket_seq_show(struct seq_file *seq)
2532 {
2533 	int cpu;
2534 	int counter = 0;
2535 
2536 	for_each_possible_cpu(cpu)
2537 	    counter += per_cpu(sockets_in_use, cpu);
2538 
2539 	/* It can be negative, by the way. 8) */
2540 	if (counter < 0)
2541 		counter = 0;
2542 
2543 	seq_printf(seq, "sockets: used %d\n", counter);
2544 }
2545 #endif				/* CONFIG_PROC_FS */
2546 
2547 #ifdef CONFIG_COMPAT
2548 static int do_siocgstamp(struct net *net, struct socket *sock,
2549 			 unsigned int cmd, void __user *up)
2550 {
2551 	mm_segment_t old_fs = get_fs();
2552 	struct timeval ktv;
2553 	int err;
2554 
2555 	set_fs(KERNEL_DS);
2556 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2557 	set_fs(old_fs);
2558 	if (!err)
2559 		err = compat_put_timeval(&ktv, up);
2560 
2561 	return err;
2562 }
2563 
2564 static int do_siocgstampns(struct net *net, struct socket *sock,
2565 			   unsigned int cmd, void __user *up)
2566 {
2567 	mm_segment_t old_fs = get_fs();
2568 	struct timespec kts;
2569 	int err;
2570 
2571 	set_fs(KERNEL_DS);
2572 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2573 	set_fs(old_fs);
2574 	if (!err)
2575 		err = compat_put_timespec(&kts, up);
2576 
2577 	return err;
2578 }
2579 
2580 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2581 {
2582 	struct ifreq __user *uifr;
2583 	int err;
2584 
2585 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2586 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2587 		return -EFAULT;
2588 
2589 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2590 	if (err)
2591 		return err;
2592 
2593 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2594 		return -EFAULT;
2595 
2596 	return 0;
2597 }
2598 
2599 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2600 {
2601 	struct compat_ifconf ifc32;
2602 	struct ifconf ifc;
2603 	struct ifconf __user *uifc;
2604 	struct compat_ifreq __user *ifr32;
2605 	struct ifreq __user *ifr;
2606 	unsigned int i, j;
2607 	int err;
2608 
2609 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2610 		return -EFAULT;
2611 
2612 	memset(&ifc, 0, sizeof(ifc));
2613 	if (ifc32.ifcbuf == 0) {
2614 		ifc32.ifc_len = 0;
2615 		ifc.ifc_len = 0;
2616 		ifc.ifc_req = NULL;
2617 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2618 	} else {
2619 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2620 			sizeof(struct ifreq);
2621 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2622 		ifc.ifc_len = len;
2623 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2624 		ifr32 = compat_ptr(ifc32.ifcbuf);
2625 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2626 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2627 				return -EFAULT;
2628 			ifr++;
2629 			ifr32++;
2630 		}
2631 	}
2632 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2633 		return -EFAULT;
2634 
2635 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2636 	if (err)
2637 		return err;
2638 
2639 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2640 		return -EFAULT;
2641 
2642 	ifr = ifc.ifc_req;
2643 	ifr32 = compat_ptr(ifc32.ifcbuf);
2644 	for (i = 0, j = 0;
2645 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2646 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2647 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2648 			return -EFAULT;
2649 		ifr32++;
2650 		ifr++;
2651 	}
2652 
2653 	if (ifc32.ifcbuf == 0) {
2654 		/* Translate from 64-bit structure multiple to
2655 		 * a 32-bit one.
2656 		 */
2657 		i = ifc.ifc_len;
2658 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2659 		ifc32.ifc_len = i;
2660 	} else {
2661 		ifc32.ifc_len = i;
2662 	}
2663 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2664 		return -EFAULT;
2665 
2666 	return 0;
2667 }
2668 
2669 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2670 {
2671 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2672 	bool convert_in = false, convert_out = false;
2673 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2674 	struct ethtool_rxnfc __user *rxnfc;
2675 	struct ifreq __user *ifr;
2676 	u32 rule_cnt = 0, actual_rule_cnt;
2677 	u32 ethcmd;
2678 	u32 data;
2679 	int ret;
2680 
2681 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2682 		return -EFAULT;
2683 
2684 	compat_rxnfc = compat_ptr(data);
2685 
2686 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2687 		return -EFAULT;
2688 
2689 	/* Most ethtool structures are defined without padding.
2690 	 * Unfortunately struct ethtool_rxnfc is an exception.
2691 	 */
2692 	switch (ethcmd) {
2693 	default:
2694 		break;
2695 	case ETHTOOL_GRXCLSRLALL:
2696 		/* Buffer size is variable */
2697 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2698 			return -EFAULT;
2699 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2700 			return -ENOMEM;
2701 		buf_size += rule_cnt * sizeof(u32);
2702 		/* fall through */
2703 	case ETHTOOL_GRXRINGS:
2704 	case ETHTOOL_GRXCLSRLCNT:
2705 	case ETHTOOL_GRXCLSRULE:
2706 	case ETHTOOL_SRXCLSRLINS:
2707 		convert_out = true;
2708 		/* fall through */
2709 	case ETHTOOL_SRXCLSRLDEL:
2710 		buf_size += sizeof(struct ethtool_rxnfc);
2711 		convert_in = true;
2712 		break;
2713 	}
2714 
2715 	ifr = compat_alloc_user_space(buf_size);
2716 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2717 
2718 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2719 		return -EFAULT;
2720 
2721 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2722 		     &ifr->ifr_ifru.ifru_data))
2723 		return -EFAULT;
2724 
2725 	if (convert_in) {
2726 		/* We expect there to be holes between fs.m_ext and
2727 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2728 		 */
2729 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2730 			     sizeof(compat_rxnfc->fs.m_ext) !=
2731 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2732 			     sizeof(rxnfc->fs.m_ext));
2733 		BUILD_BUG_ON(
2734 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2735 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2736 			offsetof(struct ethtool_rxnfc, fs.location) -
2737 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2738 
2739 		if (copy_in_user(rxnfc, compat_rxnfc,
2740 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2741 				 (void __user *)rxnfc) ||
2742 		    copy_in_user(&rxnfc->fs.ring_cookie,
2743 				 &compat_rxnfc->fs.ring_cookie,
2744 				 (void __user *)(&rxnfc->fs.location + 1) -
2745 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2746 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2747 				 sizeof(rxnfc->rule_cnt)))
2748 			return -EFAULT;
2749 	}
2750 
2751 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2752 	if (ret)
2753 		return ret;
2754 
2755 	if (convert_out) {
2756 		if (copy_in_user(compat_rxnfc, rxnfc,
2757 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2758 				 (const void __user *)rxnfc) ||
2759 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2760 				 &rxnfc->fs.ring_cookie,
2761 				 (const void __user *)(&rxnfc->fs.location + 1) -
2762 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2763 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2764 				 sizeof(rxnfc->rule_cnt)))
2765 			return -EFAULT;
2766 
2767 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2768 			/* As an optimisation, we only copy the actual
2769 			 * number of rules that the underlying
2770 			 * function returned.  Since Mallory might
2771 			 * change the rule count in user memory, we
2772 			 * check that it is less than the rule count
2773 			 * originally given (as the user buffer size),
2774 			 * which has been range-checked.
2775 			 */
2776 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2777 				return -EFAULT;
2778 			if (actual_rule_cnt < rule_cnt)
2779 				rule_cnt = actual_rule_cnt;
2780 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2781 					 &rxnfc->rule_locs[0],
2782 					 rule_cnt * sizeof(u32)))
2783 				return -EFAULT;
2784 		}
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2791 {
2792 	void __user *uptr;
2793 	compat_uptr_t uptr32;
2794 	struct ifreq __user *uifr;
2795 
2796 	uifr = compat_alloc_user_space(sizeof(*uifr));
2797 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2798 		return -EFAULT;
2799 
2800 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2801 		return -EFAULT;
2802 
2803 	uptr = compat_ptr(uptr32);
2804 
2805 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2806 		return -EFAULT;
2807 
2808 	return dev_ioctl(net, SIOCWANDEV, uifr);
2809 }
2810 
2811 static int bond_ioctl(struct net *net, unsigned int cmd,
2812 			 struct compat_ifreq __user *ifr32)
2813 {
2814 	struct ifreq kifr;
2815 	mm_segment_t old_fs;
2816 	int err;
2817 
2818 	switch (cmd) {
2819 	case SIOCBONDENSLAVE:
2820 	case SIOCBONDRELEASE:
2821 	case SIOCBONDSETHWADDR:
2822 	case SIOCBONDCHANGEACTIVE:
2823 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2824 			return -EFAULT;
2825 
2826 		old_fs = get_fs();
2827 		set_fs(KERNEL_DS);
2828 		err = dev_ioctl(net, cmd,
2829 				(struct ifreq __user __force *) &kifr);
2830 		set_fs(old_fs);
2831 
2832 		return err;
2833 	default:
2834 		return -ENOIOCTLCMD;
2835 	}
2836 }
2837 
2838 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2839 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2840 				 struct compat_ifreq __user *u_ifreq32)
2841 {
2842 	struct ifreq __user *u_ifreq64;
2843 	char tmp_buf[IFNAMSIZ];
2844 	void __user *data64;
2845 	u32 data32;
2846 
2847 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2848 			   IFNAMSIZ))
2849 		return -EFAULT;
2850 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2851 		return -EFAULT;
2852 	data64 = compat_ptr(data32);
2853 
2854 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2855 
2856 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2857 			 IFNAMSIZ))
2858 		return -EFAULT;
2859 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2860 		return -EFAULT;
2861 
2862 	return dev_ioctl(net, cmd, u_ifreq64);
2863 }
2864 
2865 static int dev_ifsioc(struct net *net, struct socket *sock,
2866 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2867 {
2868 	struct ifreq __user *uifr;
2869 	int err;
2870 
2871 	uifr = compat_alloc_user_space(sizeof(*uifr));
2872 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2873 		return -EFAULT;
2874 
2875 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2876 
2877 	if (!err) {
2878 		switch (cmd) {
2879 		case SIOCGIFFLAGS:
2880 		case SIOCGIFMETRIC:
2881 		case SIOCGIFMTU:
2882 		case SIOCGIFMEM:
2883 		case SIOCGIFHWADDR:
2884 		case SIOCGIFINDEX:
2885 		case SIOCGIFADDR:
2886 		case SIOCGIFBRDADDR:
2887 		case SIOCGIFDSTADDR:
2888 		case SIOCGIFNETMASK:
2889 		case SIOCGIFPFLAGS:
2890 		case SIOCGIFTXQLEN:
2891 		case SIOCGMIIPHY:
2892 		case SIOCGMIIREG:
2893 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2894 				err = -EFAULT;
2895 			break;
2896 		}
2897 	}
2898 	return err;
2899 }
2900 
2901 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2902 			struct compat_ifreq __user *uifr32)
2903 {
2904 	struct ifreq ifr;
2905 	struct compat_ifmap __user *uifmap32;
2906 	mm_segment_t old_fs;
2907 	int err;
2908 
2909 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2910 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2911 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2912 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2913 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2914 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2915 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2916 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2917 	if (err)
2918 		return -EFAULT;
2919 
2920 	old_fs = get_fs();
2921 	set_fs(KERNEL_DS);
2922 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2923 	set_fs(old_fs);
2924 
2925 	if (cmd == SIOCGIFMAP && !err) {
2926 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2927 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2928 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2929 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2930 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2931 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2932 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2933 		if (err)
2934 			err = -EFAULT;
2935 	}
2936 	return err;
2937 }
2938 
2939 struct rtentry32 {
2940 	u32		rt_pad1;
2941 	struct sockaddr rt_dst;         /* target address               */
2942 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2943 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2944 	unsigned short	rt_flags;
2945 	short		rt_pad2;
2946 	u32		rt_pad3;
2947 	unsigned char	rt_tos;
2948 	unsigned char	rt_class;
2949 	short		rt_pad4;
2950 	short		rt_metric;      /* +1 for binary compatibility! */
2951 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2952 	u32		rt_mtu;         /* per route MTU/Window         */
2953 	u32		rt_window;      /* Window clamping              */
2954 	unsigned short  rt_irtt;        /* Initial RTT                  */
2955 };
2956 
2957 struct in6_rtmsg32 {
2958 	struct in6_addr		rtmsg_dst;
2959 	struct in6_addr		rtmsg_src;
2960 	struct in6_addr		rtmsg_gateway;
2961 	u32			rtmsg_type;
2962 	u16			rtmsg_dst_len;
2963 	u16			rtmsg_src_len;
2964 	u32			rtmsg_metric;
2965 	u32			rtmsg_info;
2966 	u32			rtmsg_flags;
2967 	s32			rtmsg_ifindex;
2968 };
2969 
2970 static int routing_ioctl(struct net *net, struct socket *sock,
2971 			 unsigned int cmd, void __user *argp)
2972 {
2973 	int ret;
2974 	void *r = NULL;
2975 	struct in6_rtmsg r6;
2976 	struct rtentry r4;
2977 	char devname[16];
2978 	u32 rtdev;
2979 	mm_segment_t old_fs = get_fs();
2980 
2981 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2982 		struct in6_rtmsg32 __user *ur6 = argp;
2983 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2984 			3 * sizeof(struct in6_addr));
2985 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2986 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2987 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2988 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2989 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2990 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2991 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2992 
2993 		r = (void *) &r6;
2994 	} else { /* ipv4 */
2995 		struct rtentry32 __user *ur4 = argp;
2996 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2997 					3 * sizeof(struct sockaddr));
2998 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
2999 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3000 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3001 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3002 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3003 		ret |= get_user(rtdev, &(ur4->rt_dev));
3004 		if (rtdev) {
3005 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3006 			r4.rt_dev = (char __user __force *)devname;
3007 			devname[15] = 0;
3008 		} else
3009 			r4.rt_dev = NULL;
3010 
3011 		r = (void *) &r4;
3012 	}
3013 
3014 	if (ret) {
3015 		ret = -EFAULT;
3016 		goto out;
3017 	}
3018 
3019 	set_fs(KERNEL_DS);
3020 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3021 	set_fs(old_fs);
3022 
3023 out:
3024 	return ret;
3025 }
3026 
3027 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3028  * for some operations; this forces use of the newer bridge-utils that
3029  * use compatible ioctls
3030  */
3031 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3032 {
3033 	compat_ulong_t tmp;
3034 
3035 	if (get_user(tmp, argp))
3036 		return -EFAULT;
3037 	if (tmp == BRCTL_GET_VERSION)
3038 		return BRCTL_VERSION + 1;
3039 	return -EINVAL;
3040 }
3041 
3042 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3043 			 unsigned int cmd, unsigned long arg)
3044 {
3045 	void __user *argp = compat_ptr(arg);
3046 	struct sock *sk = sock->sk;
3047 	struct net *net = sock_net(sk);
3048 
3049 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3050 		return compat_ifr_data_ioctl(net, cmd, argp);
3051 
3052 	switch (cmd) {
3053 	case SIOCSIFBR:
3054 	case SIOCGIFBR:
3055 		return old_bridge_ioctl(argp);
3056 	case SIOCGIFNAME:
3057 		return dev_ifname32(net, argp);
3058 	case SIOCGIFCONF:
3059 		return dev_ifconf(net, argp);
3060 	case SIOCETHTOOL:
3061 		return ethtool_ioctl(net, argp);
3062 	case SIOCWANDEV:
3063 		return compat_siocwandev(net, argp);
3064 	case SIOCGIFMAP:
3065 	case SIOCSIFMAP:
3066 		return compat_sioc_ifmap(net, cmd, argp);
3067 	case SIOCBONDENSLAVE:
3068 	case SIOCBONDRELEASE:
3069 	case SIOCBONDSETHWADDR:
3070 	case SIOCBONDCHANGEACTIVE:
3071 		return bond_ioctl(net, cmd, argp);
3072 	case SIOCADDRT:
3073 	case SIOCDELRT:
3074 		return routing_ioctl(net, sock, cmd, argp);
3075 	case SIOCGSTAMP:
3076 		return do_siocgstamp(net, sock, cmd, argp);
3077 	case SIOCGSTAMPNS:
3078 		return do_siocgstampns(net, sock, cmd, argp);
3079 	case SIOCBONDSLAVEINFOQUERY:
3080 	case SIOCBONDINFOQUERY:
3081 	case SIOCSHWTSTAMP:
3082 	case SIOCGHWTSTAMP:
3083 		return compat_ifr_data_ioctl(net, cmd, argp);
3084 
3085 	case FIOSETOWN:
3086 	case SIOCSPGRP:
3087 	case FIOGETOWN:
3088 	case SIOCGPGRP:
3089 	case SIOCBRADDBR:
3090 	case SIOCBRDELBR:
3091 	case SIOCGIFVLAN:
3092 	case SIOCSIFVLAN:
3093 	case SIOCADDDLCI:
3094 	case SIOCDELDLCI:
3095 		return sock_ioctl(file, cmd, arg);
3096 
3097 	case SIOCGIFFLAGS:
3098 	case SIOCSIFFLAGS:
3099 	case SIOCGIFMETRIC:
3100 	case SIOCSIFMETRIC:
3101 	case SIOCGIFMTU:
3102 	case SIOCSIFMTU:
3103 	case SIOCGIFMEM:
3104 	case SIOCSIFMEM:
3105 	case SIOCGIFHWADDR:
3106 	case SIOCSIFHWADDR:
3107 	case SIOCADDMULTI:
3108 	case SIOCDELMULTI:
3109 	case SIOCGIFINDEX:
3110 	case SIOCGIFADDR:
3111 	case SIOCSIFADDR:
3112 	case SIOCSIFHWBROADCAST:
3113 	case SIOCDIFADDR:
3114 	case SIOCGIFBRDADDR:
3115 	case SIOCSIFBRDADDR:
3116 	case SIOCGIFDSTADDR:
3117 	case SIOCSIFDSTADDR:
3118 	case SIOCGIFNETMASK:
3119 	case SIOCSIFNETMASK:
3120 	case SIOCSIFPFLAGS:
3121 	case SIOCGIFPFLAGS:
3122 	case SIOCGIFTXQLEN:
3123 	case SIOCSIFTXQLEN:
3124 	case SIOCBRADDIF:
3125 	case SIOCBRDELIF:
3126 	case SIOCSIFNAME:
3127 	case SIOCGMIIPHY:
3128 	case SIOCGMIIREG:
3129 	case SIOCSMIIREG:
3130 		return dev_ifsioc(net, sock, cmd, argp);
3131 
3132 	case SIOCSARP:
3133 	case SIOCGARP:
3134 	case SIOCDARP:
3135 	case SIOCATMARK:
3136 		return sock_do_ioctl(net, sock, cmd, arg);
3137 	}
3138 
3139 	return -ENOIOCTLCMD;
3140 }
3141 
3142 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3143 			      unsigned long arg)
3144 {
3145 	struct socket *sock = file->private_data;
3146 	int ret = -ENOIOCTLCMD;
3147 	struct sock *sk;
3148 	struct net *net;
3149 
3150 	sk = sock->sk;
3151 	net = sock_net(sk);
3152 
3153 	if (sock->ops->compat_ioctl)
3154 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3155 
3156 	if (ret == -ENOIOCTLCMD &&
3157 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3158 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3159 
3160 	if (ret == -ENOIOCTLCMD)
3161 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3162 
3163 	return ret;
3164 }
3165 #endif
3166 
3167 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3168 {
3169 	return sock->ops->bind(sock, addr, addrlen);
3170 }
3171 EXPORT_SYMBOL(kernel_bind);
3172 
3173 int kernel_listen(struct socket *sock, int backlog)
3174 {
3175 	return sock->ops->listen(sock, backlog);
3176 }
3177 EXPORT_SYMBOL(kernel_listen);
3178 
3179 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3180 {
3181 	struct sock *sk = sock->sk;
3182 	int err;
3183 
3184 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3185 			       newsock);
3186 	if (err < 0)
3187 		goto done;
3188 
3189 	err = sock->ops->accept(sock, *newsock, flags);
3190 	if (err < 0) {
3191 		sock_release(*newsock);
3192 		*newsock = NULL;
3193 		goto done;
3194 	}
3195 
3196 	(*newsock)->ops = sock->ops;
3197 	__module_get((*newsock)->ops->owner);
3198 
3199 done:
3200 	return err;
3201 }
3202 EXPORT_SYMBOL(kernel_accept);
3203 
3204 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3205 		   int flags)
3206 {
3207 	return sock->ops->connect(sock, addr, addrlen, flags);
3208 }
3209 EXPORT_SYMBOL(kernel_connect);
3210 
3211 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3212 			 int *addrlen)
3213 {
3214 	return sock->ops->getname(sock, addr, addrlen, 0);
3215 }
3216 EXPORT_SYMBOL(kernel_getsockname);
3217 
3218 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3219 			 int *addrlen)
3220 {
3221 	return sock->ops->getname(sock, addr, addrlen, 1);
3222 }
3223 EXPORT_SYMBOL(kernel_getpeername);
3224 
3225 int kernel_getsockopt(struct socket *sock, int level, int optname,
3226 			char *optval, int *optlen)
3227 {
3228 	mm_segment_t oldfs = get_fs();
3229 	char __user *uoptval;
3230 	int __user *uoptlen;
3231 	int err;
3232 
3233 	uoptval = (char __user __force *) optval;
3234 	uoptlen = (int __user __force *) optlen;
3235 
3236 	set_fs(KERNEL_DS);
3237 	if (level == SOL_SOCKET)
3238 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3239 	else
3240 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3241 					    uoptlen);
3242 	set_fs(oldfs);
3243 	return err;
3244 }
3245 EXPORT_SYMBOL(kernel_getsockopt);
3246 
3247 int kernel_setsockopt(struct socket *sock, int level, int optname,
3248 			char *optval, unsigned int optlen)
3249 {
3250 	mm_segment_t oldfs = get_fs();
3251 	char __user *uoptval;
3252 	int err;
3253 
3254 	uoptval = (char __user __force *) optval;
3255 
3256 	set_fs(KERNEL_DS);
3257 	if (level == SOL_SOCKET)
3258 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3259 	else
3260 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3261 					    optlen);
3262 	set_fs(oldfs);
3263 	return err;
3264 }
3265 EXPORT_SYMBOL(kernel_setsockopt);
3266 
3267 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3268 		    size_t size, int flags)
3269 {
3270 	if (sock->ops->sendpage)
3271 		return sock->ops->sendpage(sock, page, offset, size, flags);
3272 
3273 	return sock_no_sendpage(sock, page, offset, size, flags);
3274 }
3275 EXPORT_SYMBOL(kernel_sendpage);
3276 
3277 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3278 {
3279 	mm_segment_t oldfs = get_fs();
3280 	int err;
3281 
3282 	set_fs(KERNEL_DS);
3283 	err = sock->ops->ioctl(sock, cmd, arg);
3284 	set_fs(oldfs);
3285 
3286 	return err;
3287 }
3288 EXPORT_SYMBOL(kernel_sock_ioctl);
3289 
3290 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3291 {
3292 	return sock->ops->shutdown(sock, how);
3293 }
3294 EXPORT_SYMBOL(kernel_sock_shutdown);
3295