1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 388 { 389 struct qstr name = { .name = "" }; 390 struct path path; 391 struct file *file; 392 393 if (dname) { 394 name.name = dname; 395 name.len = strlen(name.name); 396 } else if (sock->sk) { 397 name.name = sock->sk->sk_prot_creator->name; 398 name.len = strlen(name.name); 399 } 400 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 401 if (unlikely(!path.dentry)) { 402 sock_release(sock); 403 return ERR_PTR(-ENOMEM); 404 } 405 path.mnt = mntget(sock_mnt); 406 407 d_instantiate(path.dentry, SOCK_INODE(sock)); 408 409 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 410 &socket_file_ops); 411 if (IS_ERR(file)) { 412 /* drop dentry, keep inode for a bit */ 413 ihold(d_inode(path.dentry)); 414 path_put(&path); 415 /* ... and now kill it properly */ 416 sock_release(sock); 417 return file; 418 } 419 420 sock->file = file; 421 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 422 file->private_data = sock; 423 return file; 424 } 425 EXPORT_SYMBOL(sock_alloc_file); 426 427 static int sock_map_fd(struct socket *sock, int flags) 428 { 429 struct file *newfile; 430 int fd = get_unused_fd_flags(flags); 431 if (unlikely(fd < 0)) { 432 sock_release(sock); 433 return fd; 434 } 435 436 newfile = sock_alloc_file(sock, flags, NULL); 437 if (likely(!IS_ERR(newfile))) { 438 fd_install(fd, newfile); 439 return fd; 440 } 441 442 put_unused_fd(fd); 443 return PTR_ERR(newfile); 444 } 445 446 struct socket *sock_from_file(struct file *file, int *err) 447 { 448 if (file->f_op == &socket_file_ops) 449 return file->private_data; /* set in sock_map_fd */ 450 451 *err = -ENOTSOCK; 452 return NULL; 453 } 454 EXPORT_SYMBOL(sock_from_file); 455 456 /** 457 * sockfd_lookup - Go from a file number to its socket slot 458 * @fd: file handle 459 * @err: pointer to an error code return 460 * 461 * The file handle passed in is locked and the socket it is bound 462 * to is returned. If an error occurs the err pointer is overwritten 463 * with a negative errno code and NULL is returned. The function checks 464 * for both invalid handles and passing a handle which is not a socket. 465 * 466 * On a success the socket object pointer is returned. 467 */ 468 469 struct socket *sockfd_lookup(int fd, int *err) 470 { 471 struct file *file; 472 struct socket *sock; 473 474 file = fget(fd); 475 if (!file) { 476 *err = -EBADF; 477 return NULL; 478 } 479 480 sock = sock_from_file(file, err); 481 if (!sock) 482 fput(file); 483 return sock; 484 } 485 EXPORT_SYMBOL(sockfd_lookup); 486 487 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 488 { 489 struct fd f = fdget(fd); 490 struct socket *sock; 491 492 *err = -EBADF; 493 if (f.file) { 494 sock = sock_from_file(f.file, err); 495 if (likely(sock)) { 496 *fput_needed = f.flags; 497 return sock; 498 } 499 fdput(f); 500 } 501 return NULL; 502 } 503 504 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 505 size_t size) 506 { 507 ssize_t len; 508 ssize_t used = 0; 509 510 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 511 if (len < 0) 512 return len; 513 used += len; 514 if (buffer) { 515 if (size < used) 516 return -ERANGE; 517 buffer += len; 518 } 519 520 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 521 used += len; 522 if (buffer) { 523 if (size < used) 524 return -ERANGE; 525 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 526 buffer += len; 527 } 528 529 return used; 530 } 531 532 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 533 { 534 int err = simple_setattr(dentry, iattr); 535 536 if (!err && (iattr->ia_valid & ATTR_UID)) { 537 struct socket *sock = SOCKET_I(d_inode(dentry)); 538 539 if (sock->sk) 540 sock->sk->sk_uid = iattr->ia_uid; 541 else 542 err = -ENOENT; 543 } 544 545 return err; 546 } 547 548 static const struct inode_operations sockfs_inode_ops = { 549 .listxattr = sockfs_listxattr, 550 .setattr = sockfs_setattr, 551 }; 552 553 /** 554 * sock_alloc - allocate a socket 555 * 556 * Allocate a new inode and socket object. The two are bound together 557 * and initialised. The socket is then returned. If we are out of inodes 558 * NULL is returned. 559 */ 560 561 struct socket *sock_alloc(void) 562 { 563 struct inode *inode; 564 struct socket *sock; 565 566 inode = new_inode_pseudo(sock_mnt->mnt_sb); 567 if (!inode) 568 return NULL; 569 570 sock = SOCKET_I(inode); 571 572 inode->i_ino = get_next_ino(); 573 inode->i_mode = S_IFSOCK | S_IRWXUGO; 574 inode->i_uid = current_fsuid(); 575 inode->i_gid = current_fsgid(); 576 inode->i_op = &sockfs_inode_ops; 577 578 return sock; 579 } 580 EXPORT_SYMBOL(sock_alloc); 581 582 /** 583 * sock_release - close a socket 584 * @sock: socket to close 585 * 586 * The socket is released from the protocol stack if it has a release 587 * callback, and the inode is then released if the socket is bound to 588 * an inode not a file. 589 */ 590 591 static void __sock_release(struct socket *sock, struct inode *inode) 592 { 593 if (sock->ops) { 594 struct module *owner = sock->ops->owner; 595 596 if (inode) 597 inode_lock(inode); 598 sock->ops->release(sock); 599 if (inode) 600 inode_unlock(inode); 601 sock->ops = NULL; 602 module_put(owner); 603 } 604 605 if (sock->wq->fasync_list) 606 pr_err("%s: fasync list not empty!\n", __func__); 607 608 if (!sock->file) { 609 iput(SOCK_INODE(sock)); 610 return; 611 } 612 sock->file = NULL; 613 } 614 615 void sock_release(struct socket *sock) 616 { 617 __sock_release(sock, NULL); 618 } 619 EXPORT_SYMBOL(sock_release); 620 621 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 622 { 623 u8 flags = *tx_flags; 624 625 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 626 flags |= SKBTX_HW_TSTAMP; 627 628 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 629 flags |= SKBTX_SW_TSTAMP; 630 631 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 632 flags |= SKBTX_SCHED_TSTAMP; 633 634 *tx_flags = flags; 635 } 636 EXPORT_SYMBOL(__sock_tx_timestamp); 637 638 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 639 { 640 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 641 BUG_ON(ret == -EIOCBQUEUED); 642 return ret; 643 } 644 645 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 646 { 647 int err = security_socket_sendmsg(sock, msg, 648 msg_data_left(msg)); 649 650 return err ?: sock_sendmsg_nosec(sock, msg); 651 } 652 EXPORT_SYMBOL(sock_sendmsg); 653 654 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 655 struct kvec *vec, size_t num, size_t size) 656 { 657 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 658 return sock_sendmsg(sock, msg); 659 } 660 EXPORT_SYMBOL(kernel_sendmsg); 661 662 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 663 struct kvec *vec, size_t num, size_t size) 664 { 665 struct socket *sock = sk->sk_socket; 666 667 if (!sock->ops->sendmsg_locked) 668 return sock_no_sendmsg_locked(sk, msg, size); 669 670 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 671 672 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 673 } 674 EXPORT_SYMBOL(kernel_sendmsg_locked); 675 676 static bool skb_is_err_queue(const struct sk_buff *skb) 677 { 678 /* pkt_type of skbs enqueued on the error queue are set to 679 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 680 * in recvmsg, since skbs received on a local socket will never 681 * have a pkt_type of PACKET_OUTGOING. 682 */ 683 return skb->pkt_type == PACKET_OUTGOING; 684 } 685 686 /* On transmit, software and hardware timestamps are returned independently. 687 * As the two skb clones share the hardware timestamp, which may be updated 688 * before the software timestamp is received, a hardware TX timestamp may be 689 * returned only if there is no software TX timestamp. Ignore false software 690 * timestamps, which may be made in the __sock_recv_timestamp() call when the 691 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 692 * hardware timestamp. 693 */ 694 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 695 { 696 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 697 } 698 699 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 700 { 701 struct scm_ts_pktinfo ts_pktinfo; 702 struct net_device *orig_dev; 703 704 if (!skb_mac_header_was_set(skb)) 705 return; 706 707 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 708 709 rcu_read_lock(); 710 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 711 if (orig_dev) 712 ts_pktinfo.if_index = orig_dev->ifindex; 713 rcu_read_unlock(); 714 715 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 716 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 717 sizeof(ts_pktinfo), &ts_pktinfo); 718 } 719 720 /* 721 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 722 */ 723 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 724 struct sk_buff *skb) 725 { 726 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 727 struct scm_timestamping tss; 728 int empty = 1, false_tstamp = 0; 729 struct skb_shared_hwtstamps *shhwtstamps = 730 skb_hwtstamps(skb); 731 732 /* Race occurred between timestamp enabling and packet 733 receiving. Fill in the current time for now. */ 734 if (need_software_tstamp && skb->tstamp == 0) { 735 __net_timestamp(skb); 736 false_tstamp = 1; 737 } 738 739 if (need_software_tstamp) { 740 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 741 struct timeval tv; 742 skb_get_timestamp(skb, &tv); 743 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 744 sizeof(tv), &tv); 745 } else { 746 struct timespec ts; 747 skb_get_timestampns(skb, &ts); 748 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 749 sizeof(ts), &ts); 750 } 751 } 752 753 memset(&tss, 0, sizeof(tss)); 754 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 755 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 756 empty = 0; 757 if (shhwtstamps && 758 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 759 !skb_is_swtx_tstamp(skb, false_tstamp) && 760 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 761 empty = 0; 762 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 763 !skb_is_err_queue(skb)) 764 put_ts_pktinfo(msg, skb); 765 } 766 if (!empty) { 767 put_cmsg(msg, SOL_SOCKET, 768 SCM_TIMESTAMPING, sizeof(tss), &tss); 769 770 if (skb_is_err_queue(skb) && skb->len && 771 SKB_EXT_ERR(skb)->opt_stats) 772 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 773 skb->len, skb->data); 774 } 775 } 776 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 777 778 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 779 struct sk_buff *skb) 780 { 781 int ack; 782 783 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 784 return; 785 if (!skb->wifi_acked_valid) 786 return; 787 788 ack = skb->wifi_acked; 789 790 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 791 } 792 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 793 794 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 795 struct sk_buff *skb) 796 { 797 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 798 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 799 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 800 } 801 802 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 803 struct sk_buff *skb) 804 { 805 sock_recv_timestamp(msg, sk, skb); 806 sock_recv_drops(msg, sk, skb); 807 } 808 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 809 810 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 811 int flags) 812 { 813 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 814 } 815 816 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 817 { 818 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 819 820 return err ?: sock_recvmsg_nosec(sock, msg, flags); 821 } 822 EXPORT_SYMBOL(sock_recvmsg); 823 824 /** 825 * kernel_recvmsg - Receive a message from a socket (kernel space) 826 * @sock: The socket to receive the message from 827 * @msg: Received message 828 * @vec: Input s/g array for message data 829 * @num: Size of input s/g array 830 * @size: Number of bytes to read 831 * @flags: Message flags (MSG_DONTWAIT, etc...) 832 * 833 * On return the msg structure contains the scatter/gather array passed in the 834 * vec argument. The array is modified so that it consists of the unfilled 835 * portion of the original array. 836 * 837 * The returned value is the total number of bytes received, or an error. 838 */ 839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 840 struct kvec *vec, size_t num, size_t size, int flags) 841 { 842 mm_segment_t oldfs = get_fs(); 843 int result; 844 845 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 846 set_fs(KERNEL_DS); 847 result = sock_recvmsg(sock, msg, flags); 848 set_fs(oldfs); 849 return result; 850 } 851 EXPORT_SYMBOL(kernel_recvmsg); 852 853 static ssize_t sock_sendpage(struct file *file, struct page *page, 854 int offset, size_t size, loff_t *ppos, int more) 855 { 856 struct socket *sock; 857 int flags; 858 859 sock = file->private_data; 860 861 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 862 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 863 flags |= more; 864 865 return kernel_sendpage(sock, page, offset, size, flags); 866 } 867 868 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 869 struct pipe_inode_info *pipe, size_t len, 870 unsigned int flags) 871 { 872 struct socket *sock = file->private_data; 873 874 if (unlikely(!sock->ops->splice_read)) 875 return -EINVAL; 876 877 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 878 } 879 880 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 881 { 882 struct file *file = iocb->ki_filp; 883 struct socket *sock = file->private_data; 884 struct msghdr msg = {.msg_iter = *to, 885 .msg_iocb = iocb}; 886 ssize_t res; 887 888 if (file->f_flags & O_NONBLOCK) 889 msg.msg_flags = MSG_DONTWAIT; 890 891 if (iocb->ki_pos != 0) 892 return -ESPIPE; 893 894 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 895 return 0; 896 897 res = sock_recvmsg(sock, &msg, msg.msg_flags); 898 *to = msg.msg_iter; 899 return res; 900 } 901 902 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 903 { 904 struct file *file = iocb->ki_filp; 905 struct socket *sock = file->private_data; 906 struct msghdr msg = {.msg_iter = *from, 907 .msg_iocb = iocb}; 908 ssize_t res; 909 910 if (iocb->ki_pos != 0) 911 return -ESPIPE; 912 913 if (file->f_flags & O_NONBLOCK) 914 msg.msg_flags = MSG_DONTWAIT; 915 916 if (sock->type == SOCK_SEQPACKET) 917 msg.msg_flags |= MSG_EOR; 918 919 res = sock_sendmsg(sock, &msg); 920 *from = msg.msg_iter; 921 return res; 922 } 923 924 /* 925 * Atomic setting of ioctl hooks to avoid race 926 * with module unload. 927 */ 928 929 static DEFINE_MUTEX(br_ioctl_mutex); 930 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 931 932 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 933 { 934 mutex_lock(&br_ioctl_mutex); 935 br_ioctl_hook = hook; 936 mutex_unlock(&br_ioctl_mutex); 937 } 938 EXPORT_SYMBOL(brioctl_set); 939 940 static DEFINE_MUTEX(vlan_ioctl_mutex); 941 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 942 943 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 944 { 945 mutex_lock(&vlan_ioctl_mutex); 946 vlan_ioctl_hook = hook; 947 mutex_unlock(&vlan_ioctl_mutex); 948 } 949 EXPORT_SYMBOL(vlan_ioctl_set); 950 951 static DEFINE_MUTEX(dlci_ioctl_mutex); 952 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 953 954 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 955 { 956 mutex_lock(&dlci_ioctl_mutex); 957 dlci_ioctl_hook = hook; 958 mutex_unlock(&dlci_ioctl_mutex); 959 } 960 EXPORT_SYMBOL(dlci_ioctl_set); 961 962 static long sock_do_ioctl(struct net *net, struct socket *sock, 963 unsigned int cmd, unsigned long arg) 964 { 965 int err; 966 void __user *argp = (void __user *)arg; 967 968 err = sock->ops->ioctl(sock, cmd, arg); 969 970 /* 971 * If this ioctl is unknown try to hand it down 972 * to the NIC driver. 973 */ 974 if (err != -ENOIOCTLCMD) 975 return err; 976 977 if (cmd == SIOCGIFCONF) { 978 struct ifconf ifc; 979 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 980 return -EFAULT; 981 rtnl_lock(); 982 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 983 rtnl_unlock(); 984 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 985 err = -EFAULT; 986 } else { 987 struct ifreq ifr; 988 bool need_copyout; 989 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 990 return -EFAULT; 991 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 992 if (!err && need_copyout) 993 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 994 return -EFAULT; 995 } 996 return err; 997 } 998 999 /* 1000 * With an ioctl, arg may well be a user mode pointer, but we don't know 1001 * what to do with it - that's up to the protocol still. 1002 */ 1003 1004 struct ns_common *get_net_ns(struct ns_common *ns) 1005 { 1006 return &get_net(container_of(ns, struct net, ns))->ns; 1007 } 1008 EXPORT_SYMBOL_GPL(get_net_ns); 1009 1010 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1011 { 1012 struct socket *sock; 1013 struct sock *sk; 1014 void __user *argp = (void __user *)arg; 1015 int pid, err; 1016 struct net *net; 1017 1018 sock = file->private_data; 1019 sk = sock->sk; 1020 net = sock_net(sk); 1021 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1022 struct ifreq ifr; 1023 bool need_copyout; 1024 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1025 return -EFAULT; 1026 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1027 if (!err && need_copyout) 1028 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1029 return -EFAULT; 1030 } else 1031 #ifdef CONFIG_WEXT_CORE 1032 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1033 err = wext_handle_ioctl(net, cmd, argp); 1034 } else 1035 #endif 1036 switch (cmd) { 1037 case FIOSETOWN: 1038 case SIOCSPGRP: 1039 err = -EFAULT; 1040 if (get_user(pid, (int __user *)argp)) 1041 break; 1042 err = f_setown(sock->file, pid, 1); 1043 break; 1044 case FIOGETOWN: 1045 case SIOCGPGRP: 1046 err = put_user(f_getown(sock->file), 1047 (int __user *)argp); 1048 break; 1049 case SIOCGIFBR: 1050 case SIOCSIFBR: 1051 case SIOCBRADDBR: 1052 case SIOCBRDELBR: 1053 err = -ENOPKG; 1054 if (!br_ioctl_hook) 1055 request_module("bridge"); 1056 1057 mutex_lock(&br_ioctl_mutex); 1058 if (br_ioctl_hook) 1059 err = br_ioctl_hook(net, cmd, argp); 1060 mutex_unlock(&br_ioctl_mutex); 1061 break; 1062 case SIOCGIFVLAN: 1063 case SIOCSIFVLAN: 1064 err = -ENOPKG; 1065 if (!vlan_ioctl_hook) 1066 request_module("8021q"); 1067 1068 mutex_lock(&vlan_ioctl_mutex); 1069 if (vlan_ioctl_hook) 1070 err = vlan_ioctl_hook(net, argp); 1071 mutex_unlock(&vlan_ioctl_mutex); 1072 break; 1073 case SIOCADDDLCI: 1074 case SIOCDELDLCI: 1075 err = -ENOPKG; 1076 if (!dlci_ioctl_hook) 1077 request_module("dlci"); 1078 1079 mutex_lock(&dlci_ioctl_mutex); 1080 if (dlci_ioctl_hook) 1081 err = dlci_ioctl_hook(cmd, argp); 1082 mutex_unlock(&dlci_ioctl_mutex); 1083 break; 1084 case SIOCGSKNS: 1085 err = -EPERM; 1086 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1087 break; 1088 1089 err = open_related_ns(&net->ns, get_net_ns); 1090 break; 1091 default: 1092 err = sock_do_ioctl(net, sock, cmd, arg); 1093 break; 1094 } 1095 return err; 1096 } 1097 1098 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1099 { 1100 int err; 1101 struct socket *sock = NULL; 1102 1103 err = security_socket_create(family, type, protocol, 1); 1104 if (err) 1105 goto out; 1106 1107 sock = sock_alloc(); 1108 if (!sock) { 1109 err = -ENOMEM; 1110 goto out; 1111 } 1112 1113 sock->type = type; 1114 err = security_socket_post_create(sock, family, type, protocol, 1); 1115 if (err) 1116 goto out_release; 1117 1118 out: 1119 *res = sock; 1120 return err; 1121 out_release: 1122 sock_release(sock); 1123 sock = NULL; 1124 goto out; 1125 } 1126 EXPORT_SYMBOL(sock_create_lite); 1127 1128 /* No kernel lock held - perfect */ 1129 static __poll_t sock_poll(struct file *file, poll_table *wait) 1130 { 1131 struct socket *sock = file->private_data; 1132 __poll_t events = poll_requested_events(wait), flag = 0; 1133 1134 if (!sock->ops->poll) 1135 return 0; 1136 1137 if (sk_can_busy_loop(sock->sk)) { 1138 /* poll once if requested by the syscall */ 1139 if (events & POLL_BUSY_LOOP) 1140 sk_busy_loop(sock->sk, 1); 1141 1142 /* if this socket can poll_ll, tell the system call */ 1143 flag = POLL_BUSY_LOOP; 1144 } 1145 1146 return sock->ops->poll(file, sock, wait) | flag; 1147 } 1148 1149 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1150 { 1151 struct socket *sock = file->private_data; 1152 1153 return sock->ops->mmap(file, sock, vma); 1154 } 1155 1156 static int sock_close(struct inode *inode, struct file *filp) 1157 { 1158 __sock_release(SOCKET_I(inode), inode); 1159 return 0; 1160 } 1161 1162 /* 1163 * Update the socket async list 1164 * 1165 * Fasync_list locking strategy. 1166 * 1167 * 1. fasync_list is modified only under process context socket lock 1168 * i.e. under semaphore. 1169 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1170 * or under socket lock 1171 */ 1172 1173 static int sock_fasync(int fd, struct file *filp, int on) 1174 { 1175 struct socket *sock = filp->private_data; 1176 struct sock *sk = sock->sk; 1177 struct socket_wq *wq; 1178 1179 if (sk == NULL) 1180 return -EINVAL; 1181 1182 lock_sock(sk); 1183 wq = sock->wq; 1184 fasync_helper(fd, filp, on, &wq->fasync_list); 1185 1186 if (!wq->fasync_list) 1187 sock_reset_flag(sk, SOCK_FASYNC); 1188 else 1189 sock_set_flag(sk, SOCK_FASYNC); 1190 1191 release_sock(sk); 1192 return 0; 1193 } 1194 1195 /* This function may be called only under rcu_lock */ 1196 1197 int sock_wake_async(struct socket_wq *wq, int how, int band) 1198 { 1199 if (!wq || !wq->fasync_list) 1200 return -1; 1201 1202 switch (how) { 1203 case SOCK_WAKE_WAITD: 1204 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1205 break; 1206 goto call_kill; 1207 case SOCK_WAKE_SPACE: 1208 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1209 break; 1210 /* fall through */ 1211 case SOCK_WAKE_IO: 1212 call_kill: 1213 kill_fasync(&wq->fasync_list, SIGIO, band); 1214 break; 1215 case SOCK_WAKE_URG: 1216 kill_fasync(&wq->fasync_list, SIGURG, band); 1217 } 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL(sock_wake_async); 1222 1223 int __sock_create(struct net *net, int family, int type, int protocol, 1224 struct socket **res, int kern) 1225 { 1226 int err; 1227 struct socket *sock; 1228 const struct net_proto_family *pf; 1229 1230 /* 1231 * Check protocol is in range 1232 */ 1233 if (family < 0 || family >= NPROTO) 1234 return -EAFNOSUPPORT; 1235 if (type < 0 || type >= SOCK_MAX) 1236 return -EINVAL; 1237 1238 /* Compatibility. 1239 1240 This uglymoron is moved from INET layer to here to avoid 1241 deadlock in module load. 1242 */ 1243 if (family == PF_INET && type == SOCK_PACKET) { 1244 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1245 current->comm); 1246 family = PF_PACKET; 1247 } 1248 1249 err = security_socket_create(family, type, protocol, kern); 1250 if (err) 1251 return err; 1252 1253 /* 1254 * Allocate the socket and allow the family to set things up. if 1255 * the protocol is 0, the family is instructed to select an appropriate 1256 * default. 1257 */ 1258 sock = sock_alloc(); 1259 if (!sock) { 1260 net_warn_ratelimited("socket: no more sockets\n"); 1261 return -ENFILE; /* Not exactly a match, but its the 1262 closest posix thing */ 1263 } 1264 1265 sock->type = type; 1266 1267 #ifdef CONFIG_MODULES 1268 /* Attempt to load a protocol module if the find failed. 1269 * 1270 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1271 * requested real, full-featured networking support upon configuration. 1272 * Otherwise module support will break! 1273 */ 1274 if (rcu_access_pointer(net_families[family]) == NULL) 1275 request_module("net-pf-%d", family); 1276 #endif 1277 1278 rcu_read_lock(); 1279 pf = rcu_dereference(net_families[family]); 1280 err = -EAFNOSUPPORT; 1281 if (!pf) 1282 goto out_release; 1283 1284 /* 1285 * We will call the ->create function, that possibly is in a loadable 1286 * module, so we have to bump that loadable module refcnt first. 1287 */ 1288 if (!try_module_get(pf->owner)) 1289 goto out_release; 1290 1291 /* Now protected by module ref count */ 1292 rcu_read_unlock(); 1293 1294 err = pf->create(net, sock, protocol, kern); 1295 if (err < 0) 1296 goto out_module_put; 1297 1298 /* 1299 * Now to bump the refcnt of the [loadable] module that owns this 1300 * socket at sock_release time we decrement its refcnt. 1301 */ 1302 if (!try_module_get(sock->ops->owner)) 1303 goto out_module_busy; 1304 1305 /* 1306 * Now that we're done with the ->create function, the [loadable] 1307 * module can have its refcnt decremented 1308 */ 1309 module_put(pf->owner); 1310 err = security_socket_post_create(sock, family, type, protocol, kern); 1311 if (err) 1312 goto out_sock_release; 1313 *res = sock; 1314 1315 return 0; 1316 1317 out_module_busy: 1318 err = -EAFNOSUPPORT; 1319 out_module_put: 1320 sock->ops = NULL; 1321 module_put(pf->owner); 1322 out_sock_release: 1323 sock_release(sock); 1324 return err; 1325 1326 out_release: 1327 rcu_read_unlock(); 1328 goto out_sock_release; 1329 } 1330 EXPORT_SYMBOL(__sock_create); 1331 1332 int sock_create(int family, int type, int protocol, struct socket **res) 1333 { 1334 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1335 } 1336 EXPORT_SYMBOL(sock_create); 1337 1338 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1339 { 1340 return __sock_create(net, family, type, protocol, res, 1); 1341 } 1342 EXPORT_SYMBOL(sock_create_kern); 1343 1344 int __sys_socket(int family, int type, int protocol) 1345 { 1346 int retval; 1347 struct socket *sock; 1348 int flags; 1349 1350 /* Check the SOCK_* constants for consistency. */ 1351 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1352 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1353 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1354 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1355 1356 flags = type & ~SOCK_TYPE_MASK; 1357 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1358 return -EINVAL; 1359 type &= SOCK_TYPE_MASK; 1360 1361 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1362 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1363 1364 retval = sock_create(family, type, protocol, &sock); 1365 if (retval < 0) 1366 return retval; 1367 1368 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1369 } 1370 1371 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1372 { 1373 return __sys_socket(family, type, protocol); 1374 } 1375 1376 /* 1377 * Create a pair of connected sockets. 1378 */ 1379 1380 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1381 { 1382 struct socket *sock1, *sock2; 1383 int fd1, fd2, err; 1384 struct file *newfile1, *newfile2; 1385 int flags; 1386 1387 flags = type & ~SOCK_TYPE_MASK; 1388 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1389 return -EINVAL; 1390 type &= SOCK_TYPE_MASK; 1391 1392 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1393 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1394 1395 /* 1396 * reserve descriptors and make sure we won't fail 1397 * to return them to userland. 1398 */ 1399 fd1 = get_unused_fd_flags(flags); 1400 if (unlikely(fd1 < 0)) 1401 return fd1; 1402 1403 fd2 = get_unused_fd_flags(flags); 1404 if (unlikely(fd2 < 0)) { 1405 put_unused_fd(fd1); 1406 return fd2; 1407 } 1408 1409 err = put_user(fd1, &usockvec[0]); 1410 if (err) 1411 goto out; 1412 1413 err = put_user(fd2, &usockvec[1]); 1414 if (err) 1415 goto out; 1416 1417 /* 1418 * Obtain the first socket and check if the underlying protocol 1419 * supports the socketpair call. 1420 */ 1421 1422 err = sock_create(family, type, protocol, &sock1); 1423 if (unlikely(err < 0)) 1424 goto out; 1425 1426 err = sock_create(family, type, protocol, &sock2); 1427 if (unlikely(err < 0)) { 1428 sock_release(sock1); 1429 goto out; 1430 } 1431 1432 err = security_socket_socketpair(sock1, sock2); 1433 if (unlikely(err)) { 1434 sock_release(sock2); 1435 sock_release(sock1); 1436 goto out; 1437 } 1438 1439 err = sock1->ops->socketpair(sock1, sock2); 1440 if (unlikely(err < 0)) { 1441 sock_release(sock2); 1442 sock_release(sock1); 1443 goto out; 1444 } 1445 1446 newfile1 = sock_alloc_file(sock1, flags, NULL); 1447 if (IS_ERR(newfile1)) { 1448 err = PTR_ERR(newfile1); 1449 sock_release(sock2); 1450 goto out; 1451 } 1452 1453 newfile2 = sock_alloc_file(sock2, flags, NULL); 1454 if (IS_ERR(newfile2)) { 1455 err = PTR_ERR(newfile2); 1456 fput(newfile1); 1457 goto out; 1458 } 1459 1460 audit_fd_pair(fd1, fd2); 1461 1462 fd_install(fd1, newfile1); 1463 fd_install(fd2, newfile2); 1464 return 0; 1465 1466 out: 1467 put_unused_fd(fd2); 1468 put_unused_fd(fd1); 1469 return err; 1470 } 1471 1472 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1473 int __user *, usockvec) 1474 { 1475 return __sys_socketpair(family, type, protocol, usockvec); 1476 } 1477 1478 /* 1479 * Bind a name to a socket. Nothing much to do here since it's 1480 * the protocol's responsibility to handle the local address. 1481 * 1482 * We move the socket address to kernel space before we call 1483 * the protocol layer (having also checked the address is ok). 1484 */ 1485 1486 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1487 { 1488 struct socket *sock; 1489 struct sockaddr_storage address; 1490 int err, fput_needed; 1491 1492 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1493 if (sock) { 1494 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1495 if (err >= 0) { 1496 err = security_socket_bind(sock, 1497 (struct sockaddr *)&address, 1498 addrlen); 1499 if (!err) 1500 err = sock->ops->bind(sock, 1501 (struct sockaddr *) 1502 &address, addrlen); 1503 } 1504 fput_light(sock->file, fput_needed); 1505 } 1506 return err; 1507 } 1508 1509 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1510 { 1511 return __sys_bind(fd, umyaddr, addrlen); 1512 } 1513 1514 /* 1515 * Perform a listen. Basically, we allow the protocol to do anything 1516 * necessary for a listen, and if that works, we mark the socket as 1517 * ready for listening. 1518 */ 1519 1520 int __sys_listen(int fd, int backlog) 1521 { 1522 struct socket *sock; 1523 int err, fput_needed; 1524 int somaxconn; 1525 1526 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1527 if (sock) { 1528 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1529 if ((unsigned int)backlog > somaxconn) 1530 backlog = somaxconn; 1531 1532 err = security_socket_listen(sock, backlog); 1533 if (!err) 1534 err = sock->ops->listen(sock, backlog); 1535 1536 fput_light(sock->file, fput_needed); 1537 } 1538 return err; 1539 } 1540 1541 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1542 { 1543 return __sys_listen(fd, backlog); 1544 } 1545 1546 /* 1547 * For accept, we attempt to create a new socket, set up the link 1548 * with the client, wake up the client, then return the new 1549 * connected fd. We collect the address of the connector in kernel 1550 * space and move it to user at the very end. This is unclean because 1551 * we open the socket then return an error. 1552 * 1553 * 1003.1g adds the ability to recvmsg() to query connection pending 1554 * status to recvmsg. We need to add that support in a way thats 1555 * clean when we restructure accept also. 1556 */ 1557 1558 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1559 int __user *upeer_addrlen, int flags) 1560 { 1561 struct socket *sock, *newsock; 1562 struct file *newfile; 1563 int err, len, newfd, fput_needed; 1564 struct sockaddr_storage address; 1565 1566 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1567 return -EINVAL; 1568 1569 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1570 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1571 1572 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1573 if (!sock) 1574 goto out; 1575 1576 err = -ENFILE; 1577 newsock = sock_alloc(); 1578 if (!newsock) 1579 goto out_put; 1580 1581 newsock->type = sock->type; 1582 newsock->ops = sock->ops; 1583 1584 /* 1585 * We don't need try_module_get here, as the listening socket (sock) 1586 * has the protocol module (sock->ops->owner) held. 1587 */ 1588 __module_get(newsock->ops->owner); 1589 1590 newfd = get_unused_fd_flags(flags); 1591 if (unlikely(newfd < 0)) { 1592 err = newfd; 1593 sock_release(newsock); 1594 goto out_put; 1595 } 1596 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1597 if (IS_ERR(newfile)) { 1598 err = PTR_ERR(newfile); 1599 put_unused_fd(newfd); 1600 goto out_put; 1601 } 1602 1603 err = security_socket_accept(sock, newsock); 1604 if (err) 1605 goto out_fd; 1606 1607 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1608 if (err < 0) 1609 goto out_fd; 1610 1611 if (upeer_sockaddr) { 1612 len = newsock->ops->getname(newsock, 1613 (struct sockaddr *)&address, 2); 1614 if (len < 0) { 1615 err = -ECONNABORTED; 1616 goto out_fd; 1617 } 1618 err = move_addr_to_user(&address, 1619 len, upeer_sockaddr, upeer_addrlen); 1620 if (err < 0) 1621 goto out_fd; 1622 } 1623 1624 /* File flags are not inherited via accept() unlike another OSes. */ 1625 1626 fd_install(newfd, newfile); 1627 err = newfd; 1628 1629 out_put: 1630 fput_light(sock->file, fput_needed); 1631 out: 1632 return err; 1633 out_fd: 1634 fput(newfile); 1635 put_unused_fd(newfd); 1636 goto out_put; 1637 } 1638 1639 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1640 int __user *, upeer_addrlen, int, flags) 1641 { 1642 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1643 } 1644 1645 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1646 int __user *, upeer_addrlen) 1647 { 1648 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1649 } 1650 1651 /* 1652 * Attempt to connect to a socket with the server address. The address 1653 * is in user space so we verify it is OK and move it to kernel space. 1654 * 1655 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1656 * break bindings 1657 * 1658 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1659 * other SEQPACKET protocols that take time to connect() as it doesn't 1660 * include the -EINPROGRESS status for such sockets. 1661 */ 1662 1663 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1664 { 1665 struct socket *sock; 1666 struct sockaddr_storage address; 1667 int err, fput_needed; 1668 1669 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1670 if (!sock) 1671 goto out; 1672 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1673 if (err < 0) 1674 goto out_put; 1675 1676 err = 1677 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1678 if (err) 1679 goto out_put; 1680 1681 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1682 sock->file->f_flags); 1683 out_put: 1684 fput_light(sock->file, fput_needed); 1685 out: 1686 return err; 1687 } 1688 1689 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1690 int, addrlen) 1691 { 1692 return __sys_connect(fd, uservaddr, addrlen); 1693 } 1694 1695 /* 1696 * Get the local address ('name') of a socket object. Move the obtained 1697 * name to user space. 1698 */ 1699 1700 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1701 int __user *usockaddr_len) 1702 { 1703 struct socket *sock; 1704 struct sockaddr_storage address; 1705 int err, fput_needed; 1706 1707 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1708 if (!sock) 1709 goto out; 1710 1711 err = security_socket_getsockname(sock); 1712 if (err) 1713 goto out_put; 1714 1715 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1716 if (err < 0) 1717 goto out_put; 1718 /* "err" is actually length in this case */ 1719 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1720 1721 out_put: 1722 fput_light(sock->file, fput_needed); 1723 out: 1724 return err; 1725 } 1726 1727 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1728 int __user *, usockaddr_len) 1729 { 1730 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1731 } 1732 1733 /* 1734 * Get the remote address ('name') of a socket object. Move the obtained 1735 * name to user space. 1736 */ 1737 1738 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1739 int __user *usockaddr_len) 1740 { 1741 struct socket *sock; 1742 struct sockaddr_storage address; 1743 int err, fput_needed; 1744 1745 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1746 if (sock != NULL) { 1747 err = security_socket_getpeername(sock); 1748 if (err) { 1749 fput_light(sock->file, fput_needed); 1750 return err; 1751 } 1752 1753 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1754 if (err >= 0) 1755 /* "err" is actually length in this case */ 1756 err = move_addr_to_user(&address, err, usockaddr, 1757 usockaddr_len); 1758 fput_light(sock->file, fput_needed); 1759 } 1760 return err; 1761 } 1762 1763 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1764 int __user *, usockaddr_len) 1765 { 1766 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1767 } 1768 1769 /* 1770 * Send a datagram to a given address. We move the address into kernel 1771 * space and check the user space data area is readable before invoking 1772 * the protocol. 1773 */ 1774 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1775 struct sockaddr __user *addr, int addr_len) 1776 { 1777 struct socket *sock; 1778 struct sockaddr_storage address; 1779 int err; 1780 struct msghdr msg; 1781 struct iovec iov; 1782 int fput_needed; 1783 1784 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1785 if (unlikely(err)) 1786 return err; 1787 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1788 if (!sock) 1789 goto out; 1790 1791 msg.msg_name = NULL; 1792 msg.msg_control = NULL; 1793 msg.msg_controllen = 0; 1794 msg.msg_namelen = 0; 1795 if (addr) { 1796 err = move_addr_to_kernel(addr, addr_len, &address); 1797 if (err < 0) 1798 goto out_put; 1799 msg.msg_name = (struct sockaddr *)&address; 1800 msg.msg_namelen = addr_len; 1801 } 1802 if (sock->file->f_flags & O_NONBLOCK) 1803 flags |= MSG_DONTWAIT; 1804 msg.msg_flags = flags; 1805 err = sock_sendmsg(sock, &msg); 1806 1807 out_put: 1808 fput_light(sock->file, fput_needed); 1809 out: 1810 return err; 1811 } 1812 1813 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1814 unsigned int, flags, struct sockaddr __user *, addr, 1815 int, addr_len) 1816 { 1817 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1818 } 1819 1820 /* 1821 * Send a datagram down a socket. 1822 */ 1823 1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1825 unsigned int, flags) 1826 { 1827 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1828 } 1829 1830 /* 1831 * Receive a frame from the socket and optionally record the address of the 1832 * sender. We verify the buffers are writable and if needed move the 1833 * sender address from kernel to user space. 1834 */ 1835 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1836 struct sockaddr __user *addr, int __user *addr_len) 1837 { 1838 struct socket *sock; 1839 struct iovec iov; 1840 struct msghdr msg; 1841 struct sockaddr_storage address; 1842 int err, err2; 1843 int fput_needed; 1844 1845 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1846 if (unlikely(err)) 1847 return err; 1848 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1849 if (!sock) 1850 goto out; 1851 1852 msg.msg_control = NULL; 1853 msg.msg_controllen = 0; 1854 /* Save some cycles and don't copy the address if not needed */ 1855 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1856 /* We assume all kernel code knows the size of sockaddr_storage */ 1857 msg.msg_namelen = 0; 1858 msg.msg_iocb = NULL; 1859 msg.msg_flags = 0; 1860 if (sock->file->f_flags & O_NONBLOCK) 1861 flags |= MSG_DONTWAIT; 1862 err = sock_recvmsg(sock, &msg, flags); 1863 1864 if (err >= 0 && addr != NULL) { 1865 err2 = move_addr_to_user(&address, 1866 msg.msg_namelen, addr, addr_len); 1867 if (err2 < 0) 1868 err = err2; 1869 } 1870 1871 fput_light(sock->file, fput_needed); 1872 out: 1873 return err; 1874 } 1875 1876 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1877 unsigned int, flags, struct sockaddr __user *, addr, 1878 int __user *, addr_len) 1879 { 1880 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1881 } 1882 1883 /* 1884 * Receive a datagram from a socket. 1885 */ 1886 1887 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1888 unsigned int, flags) 1889 { 1890 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1891 } 1892 1893 /* 1894 * Set a socket option. Because we don't know the option lengths we have 1895 * to pass the user mode parameter for the protocols to sort out. 1896 */ 1897 1898 static int __sys_setsockopt(int fd, int level, int optname, 1899 char __user *optval, int optlen) 1900 { 1901 int err, fput_needed; 1902 struct socket *sock; 1903 1904 if (optlen < 0) 1905 return -EINVAL; 1906 1907 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1908 if (sock != NULL) { 1909 err = security_socket_setsockopt(sock, level, optname); 1910 if (err) 1911 goto out_put; 1912 1913 if (level == SOL_SOCKET) 1914 err = 1915 sock_setsockopt(sock, level, optname, optval, 1916 optlen); 1917 else 1918 err = 1919 sock->ops->setsockopt(sock, level, optname, optval, 1920 optlen); 1921 out_put: 1922 fput_light(sock->file, fput_needed); 1923 } 1924 return err; 1925 } 1926 1927 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1928 char __user *, optval, int, optlen) 1929 { 1930 return __sys_setsockopt(fd, level, optname, optval, optlen); 1931 } 1932 1933 /* 1934 * Get a socket option. Because we don't know the option lengths we have 1935 * to pass a user mode parameter for the protocols to sort out. 1936 */ 1937 1938 static int __sys_getsockopt(int fd, int level, int optname, 1939 char __user *optval, int __user *optlen) 1940 { 1941 int err, fput_needed; 1942 struct socket *sock; 1943 1944 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1945 if (sock != NULL) { 1946 err = security_socket_getsockopt(sock, level, optname); 1947 if (err) 1948 goto out_put; 1949 1950 if (level == SOL_SOCKET) 1951 err = 1952 sock_getsockopt(sock, level, optname, optval, 1953 optlen); 1954 else 1955 err = 1956 sock->ops->getsockopt(sock, level, optname, optval, 1957 optlen); 1958 out_put: 1959 fput_light(sock->file, fput_needed); 1960 } 1961 return err; 1962 } 1963 1964 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1965 char __user *, optval, int __user *, optlen) 1966 { 1967 return __sys_getsockopt(fd, level, optname, optval, optlen); 1968 } 1969 1970 /* 1971 * Shutdown a socket. 1972 */ 1973 1974 int __sys_shutdown(int fd, int how) 1975 { 1976 int err, fput_needed; 1977 struct socket *sock; 1978 1979 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1980 if (sock != NULL) { 1981 err = security_socket_shutdown(sock, how); 1982 if (!err) 1983 err = sock->ops->shutdown(sock, how); 1984 fput_light(sock->file, fput_needed); 1985 } 1986 return err; 1987 } 1988 1989 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1990 { 1991 return __sys_shutdown(fd, how); 1992 } 1993 1994 /* A couple of helpful macros for getting the address of the 32/64 bit 1995 * fields which are the same type (int / unsigned) on our platforms. 1996 */ 1997 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1998 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1999 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2000 2001 struct used_address { 2002 struct sockaddr_storage name; 2003 unsigned int name_len; 2004 }; 2005 2006 static int copy_msghdr_from_user(struct msghdr *kmsg, 2007 struct user_msghdr __user *umsg, 2008 struct sockaddr __user **save_addr, 2009 struct iovec **iov) 2010 { 2011 struct user_msghdr msg; 2012 ssize_t err; 2013 2014 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2015 return -EFAULT; 2016 2017 kmsg->msg_control = (void __force *)msg.msg_control; 2018 kmsg->msg_controllen = msg.msg_controllen; 2019 kmsg->msg_flags = msg.msg_flags; 2020 2021 kmsg->msg_namelen = msg.msg_namelen; 2022 if (!msg.msg_name) 2023 kmsg->msg_namelen = 0; 2024 2025 if (kmsg->msg_namelen < 0) 2026 return -EINVAL; 2027 2028 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2029 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2030 2031 if (save_addr) 2032 *save_addr = msg.msg_name; 2033 2034 if (msg.msg_name && kmsg->msg_namelen) { 2035 if (!save_addr) { 2036 err = move_addr_to_kernel(msg.msg_name, 2037 kmsg->msg_namelen, 2038 kmsg->msg_name); 2039 if (err < 0) 2040 return err; 2041 } 2042 } else { 2043 kmsg->msg_name = NULL; 2044 kmsg->msg_namelen = 0; 2045 } 2046 2047 if (msg.msg_iovlen > UIO_MAXIOV) 2048 return -EMSGSIZE; 2049 2050 kmsg->msg_iocb = NULL; 2051 2052 return import_iovec(save_addr ? READ : WRITE, 2053 msg.msg_iov, msg.msg_iovlen, 2054 UIO_FASTIOV, iov, &kmsg->msg_iter); 2055 } 2056 2057 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2058 struct msghdr *msg_sys, unsigned int flags, 2059 struct used_address *used_address, 2060 unsigned int allowed_msghdr_flags) 2061 { 2062 struct compat_msghdr __user *msg_compat = 2063 (struct compat_msghdr __user *)msg; 2064 struct sockaddr_storage address; 2065 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2066 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2067 __aligned(sizeof(__kernel_size_t)); 2068 /* 20 is size of ipv6_pktinfo */ 2069 unsigned char *ctl_buf = ctl; 2070 int ctl_len; 2071 ssize_t err; 2072 2073 msg_sys->msg_name = &address; 2074 2075 if (MSG_CMSG_COMPAT & flags) 2076 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2077 else 2078 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2079 if (err < 0) 2080 return err; 2081 2082 err = -ENOBUFS; 2083 2084 if (msg_sys->msg_controllen > INT_MAX) 2085 goto out_freeiov; 2086 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2087 ctl_len = msg_sys->msg_controllen; 2088 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2089 err = 2090 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2091 sizeof(ctl)); 2092 if (err) 2093 goto out_freeiov; 2094 ctl_buf = msg_sys->msg_control; 2095 ctl_len = msg_sys->msg_controllen; 2096 } else if (ctl_len) { 2097 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2098 CMSG_ALIGN(sizeof(struct cmsghdr))); 2099 if (ctl_len > sizeof(ctl)) { 2100 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2101 if (ctl_buf == NULL) 2102 goto out_freeiov; 2103 } 2104 err = -EFAULT; 2105 /* 2106 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2107 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2108 * checking falls down on this. 2109 */ 2110 if (copy_from_user(ctl_buf, 2111 (void __user __force *)msg_sys->msg_control, 2112 ctl_len)) 2113 goto out_freectl; 2114 msg_sys->msg_control = ctl_buf; 2115 } 2116 msg_sys->msg_flags = flags; 2117 2118 if (sock->file->f_flags & O_NONBLOCK) 2119 msg_sys->msg_flags |= MSG_DONTWAIT; 2120 /* 2121 * If this is sendmmsg() and current destination address is same as 2122 * previously succeeded address, omit asking LSM's decision. 2123 * used_address->name_len is initialized to UINT_MAX so that the first 2124 * destination address never matches. 2125 */ 2126 if (used_address && msg_sys->msg_name && 2127 used_address->name_len == msg_sys->msg_namelen && 2128 !memcmp(&used_address->name, msg_sys->msg_name, 2129 used_address->name_len)) { 2130 err = sock_sendmsg_nosec(sock, msg_sys); 2131 goto out_freectl; 2132 } 2133 err = sock_sendmsg(sock, msg_sys); 2134 /* 2135 * If this is sendmmsg() and sending to current destination address was 2136 * successful, remember it. 2137 */ 2138 if (used_address && err >= 0) { 2139 used_address->name_len = msg_sys->msg_namelen; 2140 if (msg_sys->msg_name) 2141 memcpy(&used_address->name, msg_sys->msg_name, 2142 used_address->name_len); 2143 } 2144 2145 out_freectl: 2146 if (ctl_buf != ctl) 2147 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2148 out_freeiov: 2149 kfree(iov); 2150 return err; 2151 } 2152 2153 /* 2154 * BSD sendmsg interface 2155 */ 2156 2157 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2158 bool forbid_cmsg_compat) 2159 { 2160 int fput_needed, err; 2161 struct msghdr msg_sys; 2162 struct socket *sock; 2163 2164 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2165 return -EINVAL; 2166 2167 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2168 if (!sock) 2169 goto out; 2170 2171 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2172 2173 fput_light(sock->file, fput_needed); 2174 out: 2175 return err; 2176 } 2177 2178 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2179 { 2180 return __sys_sendmsg(fd, msg, flags, true); 2181 } 2182 2183 /* 2184 * Linux sendmmsg interface 2185 */ 2186 2187 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2188 unsigned int flags, bool forbid_cmsg_compat) 2189 { 2190 int fput_needed, err, datagrams; 2191 struct socket *sock; 2192 struct mmsghdr __user *entry; 2193 struct compat_mmsghdr __user *compat_entry; 2194 struct msghdr msg_sys; 2195 struct used_address used_address; 2196 unsigned int oflags = flags; 2197 2198 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2199 return -EINVAL; 2200 2201 if (vlen > UIO_MAXIOV) 2202 vlen = UIO_MAXIOV; 2203 2204 datagrams = 0; 2205 2206 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2207 if (!sock) 2208 return err; 2209 2210 used_address.name_len = UINT_MAX; 2211 entry = mmsg; 2212 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2213 err = 0; 2214 flags |= MSG_BATCH; 2215 2216 while (datagrams < vlen) { 2217 if (datagrams == vlen - 1) 2218 flags = oflags; 2219 2220 if (MSG_CMSG_COMPAT & flags) { 2221 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2222 &msg_sys, flags, &used_address, MSG_EOR); 2223 if (err < 0) 2224 break; 2225 err = __put_user(err, &compat_entry->msg_len); 2226 ++compat_entry; 2227 } else { 2228 err = ___sys_sendmsg(sock, 2229 (struct user_msghdr __user *)entry, 2230 &msg_sys, flags, &used_address, MSG_EOR); 2231 if (err < 0) 2232 break; 2233 err = put_user(err, &entry->msg_len); 2234 ++entry; 2235 } 2236 2237 if (err) 2238 break; 2239 ++datagrams; 2240 if (msg_data_left(&msg_sys)) 2241 break; 2242 cond_resched(); 2243 } 2244 2245 fput_light(sock->file, fput_needed); 2246 2247 /* We only return an error if no datagrams were able to be sent */ 2248 if (datagrams != 0) 2249 return datagrams; 2250 2251 return err; 2252 } 2253 2254 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2255 unsigned int, vlen, unsigned int, flags) 2256 { 2257 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2258 } 2259 2260 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2261 struct msghdr *msg_sys, unsigned int flags, int nosec) 2262 { 2263 struct compat_msghdr __user *msg_compat = 2264 (struct compat_msghdr __user *)msg; 2265 struct iovec iovstack[UIO_FASTIOV]; 2266 struct iovec *iov = iovstack; 2267 unsigned long cmsg_ptr; 2268 int len; 2269 ssize_t err; 2270 2271 /* kernel mode address */ 2272 struct sockaddr_storage addr; 2273 2274 /* user mode address pointers */ 2275 struct sockaddr __user *uaddr; 2276 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2277 2278 msg_sys->msg_name = &addr; 2279 2280 if (MSG_CMSG_COMPAT & flags) 2281 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2282 else 2283 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2284 if (err < 0) 2285 return err; 2286 2287 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2288 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2289 2290 /* We assume all kernel code knows the size of sockaddr_storage */ 2291 msg_sys->msg_namelen = 0; 2292 2293 if (sock->file->f_flags & O_NONBLOCK) 2294 flags |= MSG_DONTWAIT; 2295 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2296 if (err < 0) 2297 goto out_freeiov; 2298 len = err; 2299 2300 if (uaddr != NULL) { 2301 err = move_addr_to_user(&addr, 2302 msg_sys->msg_namelen, uaddr, 2303 uaddr_len); 2304 if (err < 0) 2305 goto out_freeiov; 2306 } 2307 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2308 COMPAT_FLAGS(msg)); 2309 if (err) 2310 goto out_freeiov; 2311 if (MSG_CMSG_COMPAT & flags) 2312 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2313 &msg_compat->msg_controllen); 2314 else 2315 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2316 &msg->msg_controllen); 2317 if (err) 2318 goto out_freeiov; 2319 err = len; 2320 2321 out_freeiov: 2322 kfree(iov); 2323 return err; 2324 } 2325 2326 /* 2327 * BSD recvmsg interface 2328 */ 2329 2330 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2331 bool forbid_cmsg_compat) 2332 { 2333 int fput_needed, err; 2334 struct msghdr msg_sys; 2335 struct socket *sock; 2336 2337 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2338 return -EINVAL; 2339 2340 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2341 if (!sock) 2342 goto out; 2343 2344 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2345 2346 fput_light(sock->file, fput_needed); 2347 out: 2348 return err; 2349 } 2350 2351 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2352 unsigned int, flags) 2353 { 2354 return __sys_recvmsg(fd, msg, flags, true); 2355 } 2356 2357 /* 2358 * Linux recvmmsg interface 2359 */ 2360 2361 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2362 unsigned int flags, struct timespec *timeout) 2363 { 2364 int fput_needed, err, datagrams; 2365 struct socket *sock; 2366 struct mmsghdr __user *entry; 2367 struct compat_mmsghdr __user *compat_entry; 2368 struct msghdr msg_sys; 2369 struct timespec64 end_time; 2370 struct timespec64 timeout64; 2371 2372 if (timeout && 2373 poll_select_set_timeout(&end_time, timeout->tv_sec, 2374 timeout->tv_nsec)) 2375 return -EINVAL; 2376 2377 datagrams = 0; 2378 2379 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2380 if (!sock) 2381 return err; 2382 2383 if (likely(!(flags & MSG_ERRQUEUE))) { 2384 err = sock_error(sock->sk); 2385 if (err) { 2386 datagrams = err; 2387 goto out_put; 2388 } 2389 } 2390 2391 entry = mmsg; 2392 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2393 2394 while (datagrams < vlen) { 2395 /* 2396 * No need to ask LSM for more than the first datagram. 2397 */ 2398 if (MSG_CMSG_COMPAT & flags) { 2399 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2400 &msg_sys, flags & ~MSG_WAITFORONE, 2401 datagrams); 2402 if (err < 0) 2403 break; 2404 err = __put_user(err, &compat_entry->msg_len); 2405 ++compat_entry; 2406 } else { 2407 err = ___sys_recvmsg(sock, 2408 (struct user_msghdr __user *)entry, 2409 &msg_sys, flags & ~MSG_WAITFORONE, 2410 datagrams); 2411 if (err < 0) 2412 break; 2413 err = put_user(err, &entry->msg_len); 2414 ++entry; 2415 } 2416 2417 if (err) 2418 break; 2419 ++datagrams; 2420 2421 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2422 if (flags & MSG_WAITFORONE) 2423 flags |= MSG_DONTWAIT; 2424 2425 if (timeout) { 2426 ktime_get_ts64(&timeout64); 2427 *timeout = timespec64_to_timespec( 2428 timespec64_sub(end_time, timeout64)); 2429 if (timeout->tv_sec < 0) { 2430 timeout->tv_sec = timeout->tv_nsec = 0; 2431 break; 2432 } 2433 2434 /* Timeout, return less than vlen datagrams */ 2435 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2436 break; 2437 } 2438 2439 /* Out of band data, return right away */ 2440 if (msg_sys.msg_flags & MSG_OOB) 2441 break; 2442 cond_resched(); 2443 } 2444 2445 if (err == 0) 2446 goto out_put; 2447 2448 if (datagrams == 0) { 2449 datagrams = err; 2450 goto out_put; 2451 } 2452 2453 /* 2454 * We may return less entries than requested (vlen) if the 2455 * sock is non block and there aren't enough datagrams... 2456 */ 2457 if (err != -EAGAIN) { 2458 /* 2459 * ... or if recvmsg returns an error after we 2460 * received some datagrams, where we record the 2461 * error to return on the next call or if the 2462 * app asks about it using getsockopt(SO_ERROR). 2463 */ 2464 sock->sk->sk_err = -err; 2465 } 2466 out_put: 2467 fput_light(sock->file, fput_needed); 2468 2469 return datagrams; 2470 } 2471 2472 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2473 unsigned int vlen, unsigned int flags, 2474 struct timespec __user *timeout) 2475 { 2476 int datagrams; 2477 struct timespec timeout_sys; 2478 2479 if (flags & MSG_CMSG_COMPAT) 2480 return -EINVAL; 2481 2482 if (!timeout) 2483 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2484 2485 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2486 return -EFAULT; 2487 2488 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2489 2490 if (datagrams > 0 && 2491 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2492 datagrams = -EFAULT; 2493 2494 return datagrams; 2495 } 2496 2497 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2498 unsigned int, vlen, unsigned int, flags, 2499 struct timespec __user *, timeout) 2500 { 2501 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2502 } 2503 2504 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2505 /* Argument list sizes for sys_socketcall */ 2506 #define AL(x) ((x) * sizeof(unsigned long)) 2507 static const unsigned char nargs[21] = { 2508 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2509 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2510 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2511 AL(4), AL(5), AL(4) 2512 }; 2513 2514 #undef AL 2515 2516 /* 2517 * System call vectors. 2518 * 2519 * Argument checking cleaned up. Saved 20% in size. 2520 * This function doesn't need to set the kernel lock because 2521 * it is set by the callees. 2522 */ 2523 2524 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2525 { 2526 unsigned long a[AUDITSC_ARGS]; 2527 unsigned long a0, a1; 2528 int err; 2529 unsigned int len; 2530 2531 if (call < 1 || call > SYS_SENDMMSG) 2532 return -EINVAL; 2533 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2534 2535 len = nargs[call]; 2536 if (len > sizeof(a)) 2537 return -EINVAL; 2538 2539 /* copy_from_user should be SMP safe. */ 2540 if (copy_from_user(a, args, len)) 2541 return -EFAULT; 2542 2543 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2544 if (err) 2545 return err; 2546 2547 a0 = a[0]; 2548 a1 = a[1]; 2549 2550 switch (call) { 2551 case SYS_SOCKET: 2552 err = __sys_socket(a0, a1, a[2]); 2553 break; 2554 case SYS_BIND: 2555 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2556 break; 2557 case SYS_CONNECT: 2558 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2559 break; 2560 case SYS_LISTEN: 2561 err = __sys_listen(a0, a1); 2562 break; 2563 case SYS_ACCEPT: 2564 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2565 (int __user *)a[2], 0); 2566 break; 2567 case SYS_GETSOCKNAME: 2568 err = 2569 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2570 (int __user *)a[2]); 2571 break; 2572 case SYS_GETPEERNAME: 2573 err = 2574 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2575 (int __user *)a[2]); 2576 break; 2577 case SYS_SOCKETPAIR: 2578 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2579 break; 2580 case SYS_SEND: 2581 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2582 NULL, 0); 2583 break; 2584 case SYS_SENDTO: 2585 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2586 (struct sockaddr __user *)a[4], a[5]); 2587 break; 2588 case SYS_RECV: 2589 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2590 NULL, NULL); 2591 break; 2592 case SYS_RECVFROM: 2593 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2594 (struct sockaddr __user *)a[4], 2595 (int __user *)a[5]); 2596 break; 2597 case SYS_SHUTDOWN: 2598 err = __sys_shutdown(a0, a1); 2599 break; 2600 case SYS_SETSOCKOPT: 2601 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2602 a[4]); 2603 break; 2604 case SYS_GETSOCKOPT: 2605 err = 2606 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2607 (int __user *)a[4]); 2608 break; 2609 case SYS_SENDMSG: 2610 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2611 a[2], true); 2612 break; 2613 case SYS_SENDMMSG: 2614 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2615 a[3], true); 2616 break; 2617 case SYS_RECVMSG: 2618 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2619 a[2], true); 2620 break; 2621 case SYS_RECVMMSG: 2622 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2623 a[3], (struct timespec __user *)a[4]); 2624 break; 2625 case SYS_ACCEPT4: 2626 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2627 (int __user *)a[2], a[3]); 2628 break; 2629 default: 2630 err = -EINVAL; 2631 break; 2632 } 2633 return err; 2634 } 2635 2636 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2637 2638 /** 2639 * sock_register - add a socket protocol handler 2640 * @ops: description of protocol 2641 * 2642 * This function is called by a protocol handler that wants to 2643 * advertise its address family, and have it linked into the 2644 * socket interface. The value ops->family corresponds to the 2645 * socket system call protocol family. 2646 */ 2647 int sock_register(const struct net_proto_family *ops) 2648 { 2649 int err; 2650 2651 if (ops->family >= NPROTO) { 2652 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2653 return -ENOBUFS; 2654 } 2655 2656 spin_lock(&net_family_lock); 2657 if (rcu_dereference_protected(net_families[ops->family], 2658 lockdep_is_held(&net_family_lock))) 2659 err = -EEXIST; 2660 else { 2661 rcu_assign_pointer(net_families[ops->family], ops); 2662 err = 0; 2663 } 2664 spin_unlock(&net_family_lock); 2665 2666 pr_info("NET: Registered protocol family %d\n", ops->family); 2667 return err; 2668 } 2669 EXPORT_SYMBOL(sock_register); 2670 2671 /** 2672 * sock_unregister - remove a protocol handler 2673 * @family: protocol family to remove 2674 * 2675 * This function is called by a protocol handler that wants to 2676 * remove its address family, and have it unlinked from the 2677 * new socket creation. 2678 * 2679 * If protocol handler is a module, then it can use module reference 2680 * counts to protect against new references. If protocol handler is not 2681 * a module then it needs to provide its own protection in 2682 * the ops->create routine. 2683 */ 2684 void sock_unregister(int family) 2685 { 2686 BUG_ON(family < 0 || family >= NPROTO); 2687 2688 spin_lock(&net_family_lock); 2689 RCU_INIT_POINTER(net_families[family], NULL); 2690 spin_unlock(&net_family_lock); 2691 2692 synchronize_rcu(); 2693 2694 pr_info("NET: Unregistered protocol family %d\n", family); 2695 } 2696 EXPORT_SYMBOL(sock_unregister); 2697 2698 bool sock_is_registered(int family) 2699 { 2700 return family < NPROTO && rcu_access_pointer(net_families[family]); 2701 } 2702 2703 static int __init sock_init(void) 2704 { 2705 int err; 2706 /* 2707 * Initialize the network sysctl infrastructure. 2708 */ 2709 err = net_sysctl_init(); 2710 if (err) 2711 goto out; 2712 2713 /* 2714 * Initialize skbuff SLAB cache 2715 */ 2716 skb_init(); 2717 2718 /* 2719 * Initialize the protocols module. 2720 */ 2721 2722 init_inodecache(); 2723 2724 err = register_filesystem(&sock_fs_type); 2725 if (err) 2726 goto out_fs; 2727 sock_mnt = kern_mount(&sock_fs_type); 2728 if (IS_ERR(sock_mnt)) { 2729 err = PTR_ERR(sock_mnt); 2730 goto out_mount; 2731 } 2732 2733 /* The real protocol initialization is performed in later initcalls. 2734 */ 2735 2736 #ifdef CONFIG_NETFILTER 2737 err = netfilter_init(); 2738 if (err) 2739 goto out; 2740 #endif 2741 2742 ptp_classifier_init(); 2743 2744 out: 2745 return err; 2746 2747 out_mount: 2748 unregister_filesystem(&sock_fs_type); 2749 out_fs: 2750 goto out; 2751 } 2752 2753 core_initcall(sock_init); /* early initcall */ 2754 2755 #ifdef CONFIG_PROC_FS 2756 void socket_seq_show(struct seq_file *seq) 2757 { 2758 seq_printf(seq, "sockets: used %d\n", 2759 sock_inuse_get(seq->private)); 2760 } 2761 #endif /* CONFIG_PROC_FS */ 2762 2763 #ifdef CONFIG_COMPAT 2764 static int do_siocgstamp(struct net *net, struct socket *sock, 2765 unsigned int cmd, void __user *up) 2766 { 2767 mm_segment_t old_fs = get_fs(); 2768 struct timeval ktv; 2769 int err; 2770 2771 set_fs(KERNEL_DS); 2772 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2773 set_fs(old_fs); 2774 if (!err) 2775 err = compat_put_timeval(&ktv, up); 2776 2777 return err; 2778 } 2779 2780 static int do_siocgstampns(struct net *net, struct socket *sock, 2781 unsigned int cmd, void __user *up) 2782 { 2783 mm_segment_t old_fs = get_fs(); 2784 struct timespec kts; 2785 int err; 2786 2787 set_fs(KERNEL_DS); 2788 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2789 set_fs(old_fs); 2790 if (!err) 2791 err = compat_put_timespec(&kts, up); 2792 2793 return err; 2794 } 2795 2796 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2797 { 2798 struct compat_ifconf ifc32; 2799 struct ifconf ifc; 2800 int err; 2801 2802 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2803 return -EFAULT; 2804 2805 ifc.ifc_len = ifc32.ifc_len; 2806 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2807 2808 rtnl_lock(); 2809 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2810 rtnl_unlock(); 2811 if (err) 2812 return err; 2813 2814 ifc32.ifc_len = ifc.ifc_len; 2815 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2816 return -EFAULT; 2817 2818 return 0; 2819 } 2820 2821 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2822 { 2823 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2824 bool convert_in = false, convert_out = false; 2825 size_t buf_size = 0; 2826 struct ethtool_rxnfc __user *rxnfc = NULL; 2827 struct ifreq ifr; 2828 u32 rule_cnt = 0, actual_rule_cnt; 2829 u32 ethcmd; 2830 u32 data; 2831 int ret; 2832 2833 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2834 return -EFAULT; 2835 2836 compat_rxnfc = compat_ptr(data); 2837 2838 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2839 return -EFAULT; 2840 2841 /* Most ethtool structures are defined without padding. 2842 * Unfortunately struct ethtool_rxnfc is an exception. 2843 */ 2844 switch (ethcmd) { 2845 default: 2846 break; 2847 case ETHTOOL_GRXCLSRLALL: 2848 /* Buffer size is variable */ 2849 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2850 return -EFAULT; 2851 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2852 return -ENOMEM; 2853 buf_size += rule_cnt * sizeof(u32); 2854 /* fall through */ 2855 case ETHTOOL_GRXRINGS: 2856 case ETHTOOL_GRXCLSRLCNT: 2857 case ETHTOOL_GRXCLSRULE: 2858 case ETHTOOL_SRXCLSRLINS: 2859 convert_out = true; 2860 /* fall through */ 2861 case ETHTOOL_SRXCLSRLDEL: 2862 buf_size += sizeof(struct ethtool_rxnfc); 2863 convert_in = true; 2864 rxnfc = compat_alloc_user_space(buf_size); 2865 break; 2866 } 2867 2868 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2869 return -EFAULT; 2870 2871 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2872 2873 if (convert_in) { 2874 /* We expect there to be holes between fs.m_ext and 2875 * fs.ring_cookie and at the end of fs, but nowhere else. 2876 */ 2877 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2878 sizeof(compat_rxnfc->fs.m_ext) != 2879 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2880 sizeof(rxnfc->fs.m_ext)); 2881 BUILD_BUG_ON( 2882 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2883 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2884 offsetof(struct ethtool_rxnfc, fs.location) - 2885 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2886 2887 if (copy_in_user(rxnfc, compat_rxnfc, 2888 (void __user *)(&rxnfc->fs.m_ext + 1) - 2889 (void __user *)rxnfc) || 2890 copy_in_user(&rxnfc->fs.ring_cookie, 2891 &compat_rxnfc->fs.ring_cookie, 2892 (void __user *)(&rxnfc->fs.location + 1) - 2893 (void __user *)&rxnfc->fs.ring_cookie) || 2894 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2895 sizeof(rxnfc->rule_cnt))) 2896 return -EFAULT; 2897 } 2898 2899 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2900 if (ret) 2901 return ret; 2902 2903 if (convert_out) { 2904 if (copy_in_user(compat_rxnfc, rxnfc, 2905 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2906 (const void __user *)rxnfc) || 2907 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2908 &rxnfc->fs.ring_cookie, 2909 (const void __user *)(&rxnfc->fs.location + 1) - 2910 (const void __user *)&rxnfc->fs.ring_cookie) || 2911 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2912 sizeof(rxnfc->rule_cnt))) 2913 return -EFAULT; 2914 2915 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2916 /* As an optimisation, we only copy the actual 2917 * number of rules that the underlying 2918 * function returned. Since Mallory might 2919 * change the rule count in user memory, we 2920 * check that it is less than the rule count 2921 * originally given (as the user buffer size), 2922 * which has been range-checked. 2923 */ 2924 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2925 return -EFAULT; 2926 if (actual_rule_cnt < rule_cnt) 2927 rule_cnt = actual_rule_cnt; 2928 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2929 &rxnfc->rule_locs[0], 2930 rule_cnt * sizeof(u32))) 2931 return -EFAULT; 2932 } 2933 } 2934 2935 return 0; 2936 } 2937 2938 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2939 { 2940 compat_uptr_t uptr32; 2941 struct ifreq ifr; 2942 void __user *saved; 2943 int err; 2944 2945 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2946 return -EFAULT; 2947 2948 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2949 return -EFAULT; 2950 2951 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2952 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2953 2954 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2955 if (!err) { 2956 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2957 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2958 err = -EFAULT; 2959 } 2960 return err; 2961 } 2962 2963 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2964 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2965 struct compat_ifreq __user *u_ifreq32) 2966 { 2967 struct ifreq ifreq; 2968 u32 data32; 2969 2970 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2971 return -EFAULT; 2972 if (get_user(data32, &u_ifreq32->ifr_data)) 2973 return -EFAULT; 2974 ifreq.ifr_data = compat_ptr(data32); 2975 2976 return dev_ioctl(net, cmd, &ifreq, NULL); 2977 } 2978 2979 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2980 struct compat_ifreq __user *uifr32) 2981 { 2982 struct ifreq ifr; 2983 struct compat_ifmap __user *uifmap32; 2984 int err; 2985 2986 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2987 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2988 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2989 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2990 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2991 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2992 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2993 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2994 if (err) 2995 return -EFAULT; 2996 2997 err = dev_ioctl(net, cmd, &ifr, NULL); 2998 2999 if (cmd == SIOCGIFMAP && !err) { 3000 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3001 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3002 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3003 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3004 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3005 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3006 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3007 if (err) 3008 err = -EFAULT; 3009 } 3010 return err; 3011 } 3012 3013 struct rtentry32 { 3014 u32 rt_pad1; 3015 struct sockaddr rt_dst; /* target address */ 3016 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3017 struct sockaddr rt_genmask; /* target network mask (IP) */ 3018 unsigned short rt_flags; 3019 short rt_pad2; 3020 u32 rt_pad3; 3021 unsigned char rt_tos; 3022 unsigned char rt_class; 3023 short rt_pad4; 3024 short rt_metric; /* +1 for binary compatibility! */ 3025 /* char * */ u32 rt_dev; /* forcing the device at add */ 3026 u32 rt_mtu; /* per route MTU/Window */ 3027 u32 rt_window; /* Window clamping */ 3028 unsigned short rt_irtt; /* Initial RTT */ 3029 }; 3030 3031 struct in6_rtmsg32 { 3032 struct in6_addr rtmsg_dst; 3033 struct in6_addr rtmsg_src; 3034 struct in6_addr rtmsg_gateway; 3035 u32 rtmsg_type; 3036 u16 rtmsg_dst_len; 3037 u16 rtmsg_src_len; 3038 u32 rtmsg_metric; 3039 u32 rtmsg_info; 3040 u32 rtmsg_flags; 3041 s32 rtmsg_ifindex; 3042 }; 3043 3044 static int routing_ioctl(struct net *net, struct socket *sock, 3045 unsigned int cmd, void __user *argp) 3046 { 3047 int ret; 3048 void *r = NULL; 3049 struct in6_rtmsg r6; 3050 struct rtentry r4; 3051 char devname[16]; 3052 u32 rtdev; 3053 mm_segment_t old_fs = get_fs(); 3054 3055 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3056 struct in6_rtmsg32 __user *ur6 = argp; 3057 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3058 3 * sizeof(struct in6_addr)); 3059 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3060 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3061 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3062 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3063 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3064 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3065 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3066 3067 r = (void *) &r6; 3068 } else { /* ipv4 */ 3069 struct rtentry32 __user *ur4 = argp; 3070 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3071 3 * sizeof(struct sockaddr)); 3072 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3073 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3074 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3075 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3076 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3077 ret |= get_user(rtdev, &(ur4->rt_dev)); 3078 if (rtdev) { 3079 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3080 r4.rt_dev = (char __user __force *)devname; 3081 devname[15] = 0; 3082 } else 3083 r4.rt_dev = NULL; 3084 3085 r = (void *) &r4; 3086 } 3087 3088 if (ret) { 3089 ret = -EFAULT; 3090 goto out; 3091 } 3092 3093 set_fs(KERNEL_DS); 3094 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3095 set_fs(old_fs); 3096 3097 out: 3098 return ret; 3099 } 3100 3101 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3102 * for some operations; this forces use of the newer bridge-utils that 3103 * use compatible ioctls 3104 */ 3105 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3106 { 3107 compat_ulong_t tmp; 3108 3109 if (get_user(tmp, argp)) 3110 return -EFAULT; 3111 if (tmp == BRCTL_GET_VERSION) 3112 return BRCTL_VERSION + 1; 3113 return -EINVAL; 3114 } 3115 3116 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3117 unsigned int cmd, unsigned long arg) 3118 { 3119 void __user *argp = compat_ptr(arg); 3120 struct sock *sk = sock->sk; 3121 struct net *net = sock_net(sk); 3122 3123 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3124 return compat_ifr_data_ioctl(net, cmd, argp); 3125 3126 switch (cmd) { 3127 case SIOCSIFBR: 3128 case SIOCGIFBR: 3129 return old_bridge_ioctl(argp); 3130 case SIOCGIFCONF: 3131 return compat_dev_ifconf(net, argp); 3132 case SIOCETHTOOL: 3133 return ethtool_ioctl(net, argp); 3134 case SIOCWANDEV: 3135 return compat_siocwandev(net, argp); 3136 case SIOCGIFMAP: 3137 case SIOCSIFMAP: 3138 return compat_sioc_ifmap(net, cmd, argp); 3139 case SIOCADDRT: 3140 case SIOCDELRT: 3141 return routing_ioctl(net, sock, cmd, argp); 3142 case SIOCGSTAMP: 3143 return do_siocgstamp(net, sock, cmd, argp); 3144 case SIOCGSTAMPNS: 3145 return do_siocgstampns(net, sock, cmd, argp); 3146 case SIOCBONDSLAVEINFOQUERY: 3147 case SIOCBONDINFOQUERY: 3148 case SIOCSHWTSTAMP: 3149 case SIOCGHWTSTAMP: 3150 return compat_ifr_data_ioctl(net, cmd, argp); 3151 3152 case FIOSETOWN: 3153 case SIOCSPGRP: 3154 case FIOGETOWN: 3155 case SIOCGPGRP: 3156 case SIOCBRADDBR: 3157 case SIOCBRDELBR: 3158 case SIOCGIFVLAN: 3159 case SIOCSIFVLAN: 3160 case SIOCADDDLCI: 3161 case SIOCDELDLCI: 3162 case SIOCGSKNS: 3163 return sock_ioctl(file, cmd, arg); 3164 3165 case SIOCGIFFLAGS: 3166 case SIOCSIFFLAGS: 3167 case SIOCGIFMETRIC: 3168 case SIOCSIFMETRIC: 3169 case SIOCGIFMTU: 3170 case SIOCSIFMTU: 3171 case SIOCGIFMEM: 3172 case SIOCSIFMEM: 3173 case SIOCGIFHWADDR: 3174 case SIOCSIFHWADDR: 3175 case SIOCADDMULTI: 3176 case SIOCDELMULTI: 3177 case SIOCGIFINDEX: 3178 case SIOCGIFADDR: 3179 case SIOCSIFADDR: 3180 case SIOCSIFHWBROADCAST: 3181 case SIOCDIFADDR: 3182 case SIOCGIFBRDADDR: 3183 case SIOCSIFBRDADDR: 3184 case SIOCGIFDSTADDR: 3185 case SIOCSIFDSTADDR: 3186 case SIOCGIFNETMASK: 3187 case SIOCSIFNETMASK: 3188 case SIOCSIFPFLAGS: 3189 case SIOCGIFPFLAGS: 3190 case SIOCGIFTXQLEN: 3191 case SIOCSIFTXQLEN: 3192 case SIOCBRADDIF: 3193 case SIOCBRDELIF: 3194 case SIOCSIFNAME: 3195 case SIOCGMIIPHY: 3196 case SIOCGMIIREG: 3197 case SIOCSMIIREG: 3198 case SIOCSARP: 3199 case SIOCGARP: 3200 case SIOCDARP: 3201 case SIOCATMARK: 3202 case SIOCBONDENSLAVE: 3203 case SIOCBONDRELEASE: 3204 case SIOCBONDSETHWADDR: 3205 case SIOCBONDCHANGEACTIVE: 3206 case SIOCGIFNAME: 3207 return sock_do_ioctl(net, sock, cmd, arg); 3208 } 3209 3210 return -ENOIOCTLCMD; 3211 } 3212 3213 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3214 unsigned long arg) 3215 { 3216 struct socket *sock = file->private_data; 3217 int ret = -ENOIOCTLCMD; 3218 struct sock *sk; 3219 struct net *net; 3220 3221 sk = sock->sk; 3222 net = sock_net(sk); 3223 3224 if (sock->ops->compat_ioctl) 3225 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3226 3227 if (ret == -ENOIOCTLCMD && 3228 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3229 ret = compat_wext_handle_ioctl(net, cmd, arg); 3230 3231 if (ret == -ENOIOCTLCMD) 3232 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3233 3234 return ret; 3235 } 3236 #endif 3237 3238 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3239 { 3240 return sock->ops->bind(sock, addr, addrlen); 3241 } 3242 EXPORT_SYMBOL(kernel_bind); 3243 3244 int kernel_listen(struct socket *sock, int backlog) 3245 { 3246 return sock->ops->listen(sock, backlog); 3247 } 3248 EXPORT_SYMBOL(kernel_listen); 3249 3250 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3251 { 3252 struct sock *sk = sock->sk; 3253 int err; 3254 3255 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3256 newsock); 3257 if (err < 0) 3258 goto done; 3259 3260 err = sock->ops->accept(sock, *newsock, flags, true); 3261 if (err < 0) { 3262 sock_release(*newsock); 3263 *newsock = NULL; 3264 goto done; 3265 } 3266 3267 (*newsock)->ops = sock->ops; 3268 __module_get((*newsock)->ops->owner); 3269 3270 done: 3271 return err; 3272 } 3273 EXPORT_SYMBOL(kernel_accept); 3274 3275 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3276 int flags) 3277 { 3278 return sock->ops->connect(sock, addr, addrlen, flags); 3279 } 3280 EXPORT_SYMBOL(kernel_connect); 3281 3282 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3283 { 3284 return sock->ops->getname(sock, addr, 0); 3285 } 3286 EXPORT_SYMBOL(kernel_getsockname); 3287 3288 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3289 { 3290 return sock->ops->getname(sock, addr, 1); 3291 } 3292 EXPORT_SYMBOL(kernel_getpeername); 3293 3294 int kernel_getsockopt(struct socket *sock, int level, int optname, 3295 char *optval, int *optlen) 3296 { 3297 mm_segment_t oldfs = get_fs(); 3298 char __user *uoptval; 3299 int __user *uoptlen; 3300 int err; 3301 3302 uoptval = (char __user __force *) optval; 3303 uoptlen = (int __user __force *) optlen; 3304 3305 set_fs(KERNEL_DS); 3306 if (level == SOL_SOCKET) 3307 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3308 else 3309 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3310 uoptlen); 3311 set_fs(oldfs); 3312 return err; 3313 } 3314 EXPORT_SYMBOL(kernel_getsockopt); 3315 3316 int kernel_setsockopt(struct socket *sock, int level, int optname, 3317 char *optval, unsigned int optlen) 3318 { 3319 mm_segment_t oldfs = get_fs(); 3320 char __user *uoptval; 3321 int err; 3322 3323 uoptval = (char __user __force *) optval; 3324 3325 set_fs(KERNEL_DS); 3326 if (level == SOL_SOCKET) 3327 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3328 else 3329 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3330 optlen); 3331 set_fs(oldfs); 3332 return err; 3333 } 3334 EXPORT_SYMBOL(kernel_setsockopt); 3335 3336 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3337 size_t size, int flags) 3338 { 3339 if (sock->ops->sendpage) 3340 return sock->ops->sendpage(sock, page, offset, size, flags); 3341 3342 return sock_no_sendpage(sock, page, offset, size, flags); 3343 } 3344 EXPORT_SYMBOL(kernel_sendpage); 3345 3346 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3347 size_t size, int flags) 3348 { 3349 struct socket *sock = sk->sk_socket; 3350 3351 if (sock->ops->sendpage_locked) 3352 return sock->ops->sendpage_locked(sk, page, offset, size, 3353 flags); 3354 3355 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3356 } 3357 EXPORT_SYMBOL(kernel_sendpage_locked); 3358 3359 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3360 { 3361 return sock->ops->shutdown(sock, how); 3362 } 3363 EXPORT_SYMBOL(kernel_sock_shutdown); 3364 3365 /* This routine returns the IP overhead imposed by a socket i.e. 3366 * the length of the underlying IP header, depending on whether 3367 * this is an IPv4 or IPv6 socket and the length from IP options turned 3368 * on at the socket. Assumes that the caller has a lock on the socket. 3369 */ 3370 u32 kernel_sock_ip_overhead(struct sock *sk) 3371 { 3372 struct inet_sock *inet; 3373 struct ip_options_rcu *opt; 3374 u32 overhead = 0; 3375 #if IS_ENABLED(CONFIG_IPV6) 3376 struct ipv6_pinfo *np; 3377 struct ipv6_txoptions *optv6 = NULL; 3378 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3379 3380 if (!sk) 3381 return overhead; 3382 3383 switch (sk->sk_family) { 3384 case AF_INET: 3385 inet = inet_sk(sk); 3386 overhead += sizeof(struct iphdr); 3387 opt = rcu_dereference_protected(inet->inet_opt, 3388 sock_owned_by_user(sk)); 3389 if (opt) 3390 overhead += opt->opt.optlen; 3391 return overhead; 3392 #if IS_ENABLED(CONFIG_IPV6) 3393 case AF_INET6: 3394 np = inet6_sk(sk); 3395 overhead += sizeof(struct ipv6hdr); 3396 if (np) 3397 optv6 = rcu_dereference_protected(np->opt, 3398 sock_owned_by_user(sk)); 3399 if (optv6) 3400 overhead += (optv6->opt_flen + optv6->opt_nflen); 3401 return overhead; 3402 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3403 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3404 return overhead; 3405 } 3406 } 3407 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3408