xref: /openbmc/linux/net/socket.c (revision 66b51b0a)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	ei->socket.wq = wq;
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	kfree_rcu(ei->socket.wq, rcu);
272 	kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
275 static void init_once(void *foo)
276 {
277 	struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279 	inode_init_once(&ei->vfs_inode);
280 }
281 
282 static void init_inodecache(void)
283 {
284 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 					      sizeof(struct socket_alloc),
286 					      0,
287 					      (SLAB_HWCACHE_ALIGN |
288 					       SLAB_RECLAIM_ACCOUNT |
289 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 					      init_once);
291 	BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode	= sock_alloc_inode,
296 	.destroy_inode	= sock_destroy_inode,
297 	.statfs		= simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 				d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310 	.d_dname  = sockfs_dname,
311 };
312 
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 			    struct dentry *dentry, struct inode *inode,
315 			    const char *suffix, void *value, size_t size)
316 {
317 	if (value) {
318 		if (dentry->d_name.len + 1 > size)
319 			return -ERANGE;
320 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 	}
322 	return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330 	.name = XATTR_NAME_SOCKPROTONAME,
331 	.get = sockfs_xattr_get,
332 };
333 
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 				     struct dentry *dentry, struct inode *inode,
336 				     const char *suffix, const void *value,
337 				     size_t size, int flags)
338 {
339 	/* Handled by LSM. */
340 	return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 	.prefix = XATTR_SECURITY_PREFIX,
345 	.set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 	&sockfs_xattr_handler,
350 	&sockfs_security_xattr_handler,
351 	NULL
352 };
353 
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 			 int flags, const char *dev_name, void *data)
356 {
357 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 				  sockfs_xattr_handlers,
359 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365 	.name =		"sockfs",
366 	.mount =	sockfs_mount,
367 	.kill_sb =	kill_anon_super,
368 };
369 
370 /*
371  *	Obtains the first available file descriptor and sets it up for use.
372  *
373  *	These functions create file structures and maps them to fd space
374  *	of the current process. On success it returns file descriptor
375  *	and file struct implicitly stored in sock->file.
376  *	Note that another thread may close file descriptor before we return
377  *	from this function. We use the fact that now we do not refer
378  *	to socket after mapping. If one day we will need it, this
379  *	function will increment ref. count on file by 1.
380  *
381  *	In any case returned fd MAY BE not valid!
382  *	This race condition is unavoidable
383  *	with shared fd spaces, we cannot solve it inside kernel,
384  *	but we take care of internal coherence yet.
385  */
386 
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
388 {
389 	struct qstr name = { .name = "" };
390 	struct path path;
391 	struct file *file;
392 
393 	if (dname) {
394 		name.name = dname;
395 		name.len = strlen(name.name);
396 	} else if (sock->sk) {
397 		name.name = sock->sk->sk_prot_creator->name;
398 		name.len = strlen(name.name);
399 	}
400 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
401 	if (unlikely(!path.dentry)) {
402 		sock_release(sock);
403 		return ERR_PTR(-ENOMEM);
404 	}
405 	path.mnt = mntget(sock_mnt);
406 
407 	d_instantiate(path.dentry, SOCK_INODE(sock));
408 
409 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
410 		  &socket_file_ops);
411 	if (IS_ERR(file)) {
412 		/* drop dentry, keep inode for a bit */
413 		ihold(d_inode(path.dentry));
414 		path_put(&path);
415 		/* ... and now kill it properly */
416 		sock_release(sock);
417 		return file;
418 	}
419 
420 	sock->file = file;
421 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
422 	file->private_data = sock;
423 	return file;
424 }
425 EXPORT_SYMBOL(sock_alloc_file);
426 
427 static int sock_map_fd(struct socket *sock, int flags)
428 {
429 	struct file *newfile;
430 	int fd = get_unused_fd_flags(flags);
431 	if (unlikely(fd < 0)) {
432 		sock_release(sock);
433 		return fd;
434 	}
435 
436 	newfile = sock_alloc_file(sock, flags, NULL);
437 	if (likely(!IS_ERR(newfile))) {
438 		fd_install(fd, newfile);
439 		return fd;
440 	}
441 
442 	put_unused_fd(fd);
443 	return PTR_ERR(newfile);
444 }
445 
446 struct socket *sock_from_file(struct file *file, int *err)
447 {
448 	if (file->f_op == &socket_file_ops)
449 		return file->private_data;	/* set in sock_map_fd */
450 
451 	*err = -ENOTSOCK;
452 	return NULL;
453 }
454 EXPORT_SYMBOL(sock_from_file);
455 
456 /**
457  *	sockfd_lookup - Go from a file number to its socket slot
458  *	@fd: file handle
459  *	@err: pointer to an error code return
460  *
461  *	The file handle passed in is locked and the socket it is bound
462  *	to is returned. If an error occurs the err pointer is overwritten
463  *	with a negative errno code and NULL is returned. The function checks
464  *	for both invalid handles and passing a handle which is not a socket.
465  *
466  *	On a success the socket object pointer is returned.
467  */
468 
469 struct socket *sockfd_lookup(int fd, int *err)
470 {
471 	struct file *file;
472 	struct socket *sock;
473 
474 	file = fget(fd);
475 	if (!file) {
476 		*err = -EBADF;
477 		return NULL;
478 	}
479 
480 	sock = sock_from_file(file, err);
481 	if (!sock)
482 		fput(file);
483 	return sock;
484 }
485 EXPORT_SYMBOL(sockfd_lookup);
486 
487 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
488 {
489 	struct fd f = fdget(fd);
490 	struct socket *sock;
491 
492 	*err = -EBADF;
493 	if (f.file) {
494 		sock = sock_from_file(f.file, err);
495 		if (likely(sock)) {
496 			*fput_needed = f.flags;
497 			return sock;
498 		}
499 		fdput(f);
500 	}
501 	return NULL;
502 }
503 
504 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
505 				size_t size)
506 {
507 	ssize_t len;
508 	ssize_t used = 0;
509 
510 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
511 	if (len < 0)
512 		return len;
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		buffer += len;
518 	}
519 
520 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
521 	used += len;
522 	if (buffer) {
523 		if (size < used)
524 			return -ERANGE;
525 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
526 		buffer += len;
527 	}
528 
529 	return used;
530 }
531 
532 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
533 {
534 	int err = simple_setattr(dentry, iattr);
535 
536 	if (!err && (iattr->ia_valid & ATTR_UID)) {
537 		struct socket *sock = SOCKET_I(d_inode(dentry));
538 
539 		if (sock->sk)
540 			sock->sk->sk_uid = iattr->ia_uid;
541 		else
542 			err = -ENOENT;
543 	}
544 
545 	return err;
546 }
547 
548 static const struct inode_operations sockfs_inode_ops = {
549 	.listxattr = sockfs_listxattr,
550 	.setattr = sockfs_setattr,
551 };
552 
553 /**
554  *	sock_alloc	-	allocate a socket
555  *
556  *	Allocate a new inode and socket object. The two are bound together
557  *	and initialised. The socket is then returned. If we are out of inodes
558  *	NULL is returned.
559  */
560 
561 struct socket *sock_alloc(void)
562 {
563 	struct inode *inode;
564 	struct socket *sock;
565 
566 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
567 	if (!inode)
568 		return NULL;
569 
570 	sock = SOCKET_I(inode);
571 
572 	inode->i_ino = get_next_ino();
573 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 	inode->i_uid = current_fsuid();
575 	inode->i_gid = current_fsgid();
576 	inode->i_op = &sockfs_inode_ops;
577 
578 	return sock;
579 }
580 EXPORT_SYMBOL(sock_alloc);
581 
582 /**
583  *	sock_release	-	close a socket
584  *	@sock: socket to close
585  *
586  *	The socket is released from the protocol stack if it has a release
587  *	callback, and the inode is then released if the socket is bound to
588  *	an inode not a file.
589  */
590 
591 static void __sock_release(struct socket *sock, struct inode *inode)
592 {
593 	if (sock->ops) {
594 		struct module *owner = sock->ops->owner;
595 
596 		if (inode)
597 			inode_lock(inode);
598 		sock->ops->release(sock);
599 		if (inode)
600 			inode_unlock(inode);
601 		sock->ops = NULL;
602 		module_put(owner);
603 	}
604 
605 	if (sock->wq->fasync_list)
606 		pr_err("%s: fasync list not empty!\n", __func__);
607 
608 	if (!sock->file) {
609 		iput(SOCK_INODE(sock));
610 		return;
611 	}
612 	sock->file = NULL;
613 }
614 
615 void sock_release(struct socket *sock)
616 {
617 	__sock_release(sock, NULL);
618 }
619 EXPORT_SYMBOL(sock_release);
620 
621 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
622 {
623 	u8 flags = *tx_flags;
624 
625 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
626 		flags |= SKBTX_HW_TSTAMP;
627 
628 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
629 		flags |= SKBTX_SW_TSTAMP;
630 
631 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
632 		flags |= SKBTX_SCHED_TSTAMP;
633 
634 	*tx_flags = flags;
635 }
636 EXPORT_SYMBOL(__sock_tx_timestamp);
637 
638 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
639 {
640 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
641 	BUG_ON(ret == -EIOCBQUEUED);
642 	return ret;
643 }
644 
645 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
646 {
647 	int err = security_socket_sendmsg(sock, msg,
648 					  msg_data_left(msg));
649 
650 	return err ?: sock_sendmsg_nosec(sock, msg);
651 }
652 EXPORT_SYMBOL(sock_sendmsg);
653 
654 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
655 		   struct kvec *vec, size_t num, size_t size)
656 {
657 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
658 	return sock_sendmsg(sock, msg);
659 }
660 EXPORT_SYMBOL(kernel_sendmsg);
661 
662 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
663 			  struct kvec *vec, size_t num, size_t size)
664 {
665 	struct socket *sock = sk->sk_socket;
666 
667 	if (!sock->ops->sendmsg_locked)
668 		return sock_no_sendmsg_locked(sk, msg, size);
669 
670 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
671 
672 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
673 }
674 EXPORT_SYMBOL(kernel_sendmsg_locked);
675 
676 static bool skb_is_err_queue(const struct sk_buff *skb)
677 {
678 	/* pkt_type of skbs enqueued on the error queue are set to
679 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
680 	 * in recvmsg, since skbs received on a local socket will never
681 	 * have a pkt_type of PACKET_OUTGOING.
682 	 */
683 	return skb->pkt_type == PACKET_OUTGOING;
684 }
685 
686 /* On transmit, software and hardware timestamps are returned independently.
687  * As the two skb clones share the hardware timestamp, which may be updated
688  * before the software timestamp is received, a hardware TX timestamp may be
689  * returned only if there is no software TX timestamp. Ignore false software
690  * timestamps, which may be made in the __sock_recv_timestamp() call when the
691  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
692  * hardware timestamp.
693  */
694 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
695 {
696 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
697 }
698 
699 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
700 {
701 	struct scm_ts_pktinfo ts_pktinfo;
702 	struct net_device *orig_dev;
703 
704 	if (!skb_mac_header_was_set(skb))
705 		return;
706 
707 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
708 
709 	rcu_read_lock();
710 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
711 	if (orig_dev)
712 		ts_pktinfo.if_index = orig_dev->ifindex;
713 	rcu_read_unlock();
714 
715 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
716 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
717 		 sizeof(ts_pktinfo), &ts_pktinfo);
718 }
719 
720 /*
721  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
722  */
723 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
724 	struct sk_buff *skb)
725 {
726 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
727 	struct scm_timestamping tss;
728 	int empty = 1, false_tstamp = 0;
729 	struct skb_shared_hwtstamps *shhwtstamps =
730 		skb_hwtstamps(skb);
731 
732 	/* Race occurred between timestamp enabling and packet
733 	   receiving.  Fill in the current time for now. */
734 	if (need_software_tstamp && skb->tstamp == 0) {
735 		__net_timestamp(skb);
736 		false_tstamp = 1;
737 	}
738 
739 	if (need_software_tstamp) {
740 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
741 			struct timeval tv;
742 			skb_get_timestamp(skb, &tv);
743 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
744 				 sizeof(tv), &tv);
745 		} else {
746 			struct timespec ts;
747 			skb_get_timestampns(skb, &ts);
748 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
749 				 sizeof(ts), &ts);
750 		}
751 	}
752 
753 	memset(&tss, 0, sizeof(tss));
754 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
755 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
756 		empty = 0;
757 	if (shhwtstamps &&
758 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
759 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
760 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
761 		empty = 0;
762 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
763 		    !skb_is_err_queue(skb))
764 			put_ts_pktinfo(msg, skb);
765 	}
766 	if (!empty) {
767 		put_cmsg(msg, SOL_SOCKET,
768 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
769 
770 		if (skb_is_err_queue(skb) && skb->len &&
771 		    SKB_EXT_ERR(skb)->opt_stats)
772 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
773 				 skb->len, skb->data);
774 	}
775 }
776 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
777 
778 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
779 	struct sk_buff *skb)
780 {
781 	int ack;
782 
783 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
784 		return;
785 	if (!skb->wifi_acked_valid)
786 		return;
787 
788 	ack = skb->wifi_acked;
789 
790 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
791 }
792 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
793 
794 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
795 				   struct sk_buff *skb)
796 {
797 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
798 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
799 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
800 }
801 
802 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
803 	struct sk_buff *skb)
804 {
805 	sock_recv_timestamp(msg, sk, skb);
806 	sock_recv_drops(msg, sk, skb);
807 }
808 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
809 
810 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
811 				     int flags)
812 {
813 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
814 }
815 
816 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
817 {
818 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
819 
820 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
821 }
822 EXPORT_SYMBOL(sock_recvmsg);
823 
824 /**
825  * kernel_recvmsg - Receive a message from a socket (kernel space)
826  * @sock:       The socket to receive the message from
827  * @msg:        Received message
828  * @vec:        Input s/g array for message data
829  * @num:        Size of input s/g array
830  * @size:       Number of bytes to read
831  * @flags:      Message flags (MSG_DONTWAIT, etc...)
832  *
833  * On return the msg structure contains the scatter/gather array passed in the
834  * vec argument. The array is modified so that it consists of the unfilled
835  * portion of the original array.
836  *
837  * The returned value is the total number of bytes received, or an error.
838  */
839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
840 		   struct kvec *vec, size_t num, size_t size, int flags)
841 {
842 	mm_segment_t oldfs = get_fs();
843 	int result;
844 
845 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
846 	set_fs(KERNEL_DS);
847 	result = sock_recvmsg(sock, msg, flags);
848 	set_fs(oldfs);
849 	return result;
850 }
851 EXPORT_SYMBOL(kernel_recvmsg);
852 
853 static ssize_t sock_sendpage(struct file *file, struct page *page,
854 			     int offset, size_t size, loff_t *ppos, int more)
855 {
856 	struct socket *sock;
857 	int flags;
858 
859 	sock = file->private_data;
860 
861 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
862 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
863 	flags |= more;
864 
865 	return kernel_sendpage(sock, page, offset, size, flags);
866 }
867 
868 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
869 				struct pipe_inode_info *pipe, size_t len,
870 				unsigned int flags)
871 {
872 	struct socket *sock = file->private_data;
873 
874 	if (unlikely(!sock->ops->splice_read))
875 		return -EINVAL;
876 
877 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
878 }
879 
880 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
881 {
882 	struct file *file = iocb->ki_filp;
883 	struct socket *sock = file->private_data;
884 	struct msghdr msg = {.msg_iter = *to,
885 			     .msg_iocb = iocb};
886 	ssize_t res;
887 
888 	if (file->f_flags & O_NONBLOCK)
889 		msg.msg_flags = MSG_DONTWAIT;
890 
891 	if (iocb->ki_pos != 0)
892 		return -ESPIPE;
893 
894 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
895 		return 0;
896 
897 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
898 	*to = msg.msg_iter;
899 	return res;
900 }
901 
902 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
903 {
904 	struct file *file = iocb->ki_filp;
905 	struct socket *sock = file->private_data;
906 	struct msghdr msg = {.msg_iter = *from,
907 			     .msg_iocb = iocb};
908 	ssize_t res;
909 
910 	if (iocb->ki_pos != 0)
911 		return -ESPIPE;
912 
913 	if (file->f_flags & O_NONBLOCK)
914 		msg.msg_flags = MSG_DONTWAIT;
915 
916 	if (sock->type == SOCK_SEQPACKET)
917 		msg.msg_flags |= MSG_EOR;
918 
919 	res = sock_sendmsg(sock, &msg);
920 	*from = msg.msg_iter;
921 	return res;
922 }
923 
924 /*
925  * Atomic setting of ioctl hooks to avoid race
926  * with module unload.
927  */
928 
929 static DEFINE_MUTEX(br_ioctl_mutex);
930 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
931 
932 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
933 {
934 	mutex_lock(&br_ioctl_mutex);
935 	br_ioctl_hook = hook;
936 	mutex_unlock(&br_ioctl_mutex);
937 }
938 EXPORT_SYMBOL(brioctl_set);
939 
940 static DEFINE_MUTEX(vlan_ioctl_mutex);
941 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
942 
943 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
944 {
945 	mutex_lock(&vlan_ioctl_mutex);
946 	vlan_ioctl_hook = hook;
947 	mutex_unlock(&vlan_ioctl_mutex);
948 }
949 EXPORT_SYMBOL(vlan_ioctl_set);
950 
951 static DEFINE_MUTEX(dlci_ioctl_mutex);
952 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
953 
954 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
955 {
956 	mutex_lock(&dlci_ioctl_mutex);
957 	dlci_ioctl_hook = hook;
958 	mutex_unlock(&dlci_ioctl_mutex);
959 }
960 EXPORT_SYMBOL(dlci_ioctl_set);
961 
962 static long sock_do_ioctl(struct net *net, struct socket *sock,
963 				 unsigned int cmd, unsigned long arg)
964 {
965 	int err;
966 	void __user *argp = (void __user *)arg;
967 
968 	err = sock->ops->ioctl(sock, cmd, arg);
969 
970 	/*
971 	 * If this ioctl is unknown try to hand it down
972 	 * to the NIC driver.
973 	 */
974 	if (err != -ENOIOCTLCMD)
975 		return err;
976 
977 	if (cmd == SIOCGIFCONF) {
978 		struct ifconf ifc;
979 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
980 			return -EFAULT;
981 		rtnl_lock();
982 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
983 		rtnl_unlock();
984 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
985 			err = -EFAULT;
986 	} else {
987 		struct ifreq ifr;
988 		bool need_copyout;
989 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
990 			return -EFAULT;
991 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
992 		if (!err && need_copyout)
993 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
994 				return -EFAULT;
995 	}
996 	return err;
997 }
998 
999 /*
1000  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1001  *	what to do with it - that's up to the protocol still.
1002  */
1003 
1004 struct ns_common *get_net_ns(struct ns_common *ns)
1005 {
1006 	return &get_net(container_of(ns, struct net, ns))->ns;
1007 }
1008 EXPORT_SYMBOL_GPL(get_net_ns);
1009 
1010 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1011 {
1012 	struct socket *sock;
1013 	struct sock *sk;
1014 	void __user *argp = (void __user *)arg;
1015 	int pid, err;
1016 	struct net *net;
1017 
1018 	sock = file->private_data;
1019 	sk = sock->sk;
1020 	net = sock_net(sk);
1021 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1022 		struct ifreq ifr;
1023 		bool need_copyout;
1024 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1025 			return -EFAULT;
1026 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1027 		if (!err && need_copyout)
1028 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1029 				return -EFAULT;
1030 	} else
1031 #ifdef CONFIG_WEXT_CORE
1032 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1033 		err = wext_handle_ioctl(net, cmd, argp);
1034 	} else
1035 #endif
1036 		switch (cmd) {
1037 		case FIOSETOWN:
1038 		case SIOCSPGRP:
1039 			err = -EFAULT;
1040 			if (get_user(pid, (int __user *)argp))
1041 				break;
1042 			err = f_setown(sock->file, pid, 1);
1043 			break;
1044 		case FIOGETOWN:
1045 		case SIOCGPGRP:
1046 			err = put_user(f_getown(sock->file),
1047 				       (int __user *)argp);
1048 			break;
1049 		case SIOCGIFBR:
1050 		case SIOCSIFBR:
1051 		case SIOCBRADDBR:
1052 		case SIOCBRDELBR:
1053 			err = -ENOPKG;
1054 			if (!br_ioctl_hook)
1055 				request_module("bridge");
1056 
1057 			mutex_lock(&br_ioctl_mutex);
1058 			if (br_ioctl_hook)
1059 				err = br_ioctl_hook(net, cmd, argp);
1060 			mutex_unlock(&br_ioctl_mutex);
1061 			break;
1062 		case SIOCGIFVLAN:
1063 		case SIOCSIFVLAN:
1064 			err = -ENOPKG;
1065 			if (!vlan_ioctl_hook)
1066 				request_module("8021q");
1067 
1068 			mutex_lock(&vlan_ioctl_mutex);
1069 			if (vlan_ioctl_hook)
1070 				err = vlan_ioctl_hook(net, argp);
1071 			mutex_unlock(&vlan_ioctl_mutex);
1072 			break;
1073 		case SIOCADDDLCI:
1074 		case SIOCDELDLCI:
1075 			err = -ENOPKG;
1076 			if (!dlci_ioctl_hook)
1077 				request_module("dlci");
1078 
1079 			mutex_lock(&dlci_ioctl_mutex);
1080 			if (dlci_ioctl_hook)
1081 				err = dlci_ioctl_hook(cmd, argp);
1082 			mutex_unlock(&dlci_ioctl_mutex);
1083 			break;
1084 		case SIOCGSKNS:
1085 			err = -EPERM;
1086 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1087 				break;
1088 
1089 			err = open_related_ns(&net->ns, get_net_ns);
1090 			break;
1091 		default:
1092 			err = sock_do_ioctl(net, sock, cmd, arg);
1093 			break;
1094 		}
1095 	return err;
1096 }
1097 
1098 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1099 {
1100 	int err;
1101 	struct socket *sock = NULL;
1102 
1103 	err = security_socket_create(family, type, protocol, 1);
1104 	if (err)
1105 		goto out;
1106 
1107 	sock = sock_alloc();
1108 	if (!sock) {
1109 		err = -ENOMEM;
1110 		goto out;
1111 	}
1112 
1113 	sock->type = type;
1114 	err = security_socket_post_create(sock, family, type, protocol, 1);
1115 	if (err)
1116 		goto out_release;
1117 
1118 out:
1119 	*res = sock;
1120 	return err;
1121 out_release:
1122 	sock_release(sock);
1123 	sock = NULL;
1124 	goto out;
1125 }
1126 EXPORT_SYMBOL(sock_create_lite);
1127 
1128 /* No kernel lock held - perfect */
1129 static __poll_t sock_poll(struct file *file, poll_table *wait)
1130 {
1131 	struct socket *sock = file->private_data;
1132 	__poll_t events = poll_requested_events(wait), flag = 0;
1133 
1134 	if (!sock->ops->poll)
1135 		return 0;
1136 
1137 	if (sk_can_busy_loop(sock->sk)) {
1138 		/* poll once if requested by the syscall */
1139 		if (events & POLL_BUSY_LOOP)
1140 			sk_busy_loop(sock->sk, 1);
1141 
1142 		/* if this socket can poll_ll, tell the system call */
1143 		flag = POLL_BUSY_LOOP;
1144 	}
1145 
1146 	return sock->ops->poll(file, sock, wait) | flag;
1147 }
1148 
1149 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1150 {
1151 	struct socket *sock = file->private_data;
1152 
1153 	return sock->ops->mmap(file, sock, vma);
1154 }
1155 
1156 static int sock_close(struct inode *inode, struct file *filp)
1157 {
1158 	__sock_release(SOCKET_I(inode), inode);
1159 	return 0;
1160 }
1161 
1162 /*
1163  *	Update the socket async list
1164  *
1165  *	Fasync_list locking strategy.
1166  *
1167  *	1. fasync_list is modified only under process context socket lock
1168  *	   i.e. under semaphore.
1169  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1170  *	   or under socket lock
1171  */
1172 
1173 static int sock_fasync(int fd, struct file *filp, int on)
1174 {
1175 	struct socket *sock = filp->private_data;
1176 	struct sock *sk = sock->sk;
1177 	struct socket_wq *wq;
1178 
1179 	if (sk == NULL)
1180 		return -EINVAL;
1181 
1182 	lock_sock(sk);
1183 	wq = sock->wq;
1184 	fasync_helper(fd, filp, on, &wq->fasync_list);
1185 
1186 	if (!wq->fasync_list)
1187 		sock_reset_flag(sk, SOCK_FASYNC);
1188 	else
1189 		sock_set_flag(sk, SOCK_FASYNC);
1190 
1191 	release_sock(sk);
1192 	return 0;
1193 }
1194 
1195 /* This function may be called only under rcu_lock */
1196 
1197 int sock_wake_async(struct socket_wq *wq, int how, int band)
1198 {
1199 	if (!wq || !wq->fasync_list)
1200 		return -1;
1201 
1202 	switch (how) {
1203 	case SOCK_WAKE_WAITD:
1204 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1205 			break;
1206 		goto call_kill;
1207 	case SOCK_WAKE_SPACE:
1208 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1209 			break;
1210 		/* fall through */
1211 	case SOCK_WAKE_IO:
1212 call_kill:
1213 		kill_fasync(&wq->fasync_list, SIGIO, band);
1214 		break;
1215 	case SOCK_WAKE_URG:
1216 		kill_fasync(&wq->fasync_list, SIGURG, band);
1217 	}
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL(sock_wake_async);
1222 
1223 int __sock_create(struct net *net, int family, int type, int protocol,
1224 			 struct socket **res, int kern)
1225 {
1226 	int err;
1227 	struct socket *sock;
1228 	const struct net_proto_family *pf;
1229 
1230 	/*
1231 	 *      Check protocol is in range
1232 	 */
1233 	if (family < 0 || family >= NPROTO)
1234 		return -EAFNOSUPPORT;
1235 	if (type < 0 || type >= SOCK_MAX)
1236 		return -EINVAL;
1237 
1238 	/* Compatibility.
1239 
1240 	   This uglymoron is moved from INET layer to here to avoid
1241 	   deadlock in module load.
1242 	 */
1243 	if (family == PF_INET && type == SOCK_PACKET) {
1244 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1245 			     current->comm);
1246 		family = PF_PACKET;
1247 	}
1248 
1249 	err = security_socket_create(family, type, protocol, kern);
1250 	if (err)
1251 		return err;
1252 
1253 	/*
1254 	 *	Allocate the socket and allow the family to set things up. if
1255 	 *	the protocol is 0, the family is instructed to select an appropriate
1256 	 *	default.
1257 	 */
1258 	sock = sock_alloc();
1259 	if (!sock) {
1260 		net_warn_ratelimited("socket: no more sockets\n");
1261 		return -ENFILE;	/* Not exactly a match, but its the
1262 				   closest posix thing */
1263 	}
1264 
1265 	sock->type = type;
1266 
1267 #ifdef CONFIG_MODULES
1268 	/* Attempt to load a protocol module if the find failed.
1269 	 *
1270 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1271 	 * requested real, full-featured networking support upon configuration.
1272 	 * Otherwise module support will break!
1273 	 */
1274 	if (rcu_access_pointer(net_families[family]) == NULL)
1275 		request_module("net-pf-%d", family);
1276 #endif
1277 
1278 	rcu_read_lock();
1279 	pf = rcu_dereference(net_families[family]);
1280 	err = -EAFNOSUPPORT;
1281 	if (!pf)
1282 		goto out_release;
1283 
1284 	/*
1285 	 * We will call the ->create function, that possibly is in a loadable
1286 	 * module, so we have to bump that loadable module refcnt first.
1287 	 */
1288 	if (!try_module_get(pf->owner))
1289 		goto out_release;
1290 
1291 	/* Now protected by module ref count */
1292 	rcu_read_unlock();
1293 
1294 	err = pf->create(net, sock, protocol, kern);
1295 	if (err < 0)
1296 		goto out_module_put;
1297 
1298 	/*
1299 	 * Now to bump the refcnt of the [loadable] module that owns this
1300 	 * socket at sock_release time we decrement its refcnt.
1301 	 */
1302 	if (!try_module_get(sock->ops->owner))
1303 		goto out_module_busy;
1304 
1305 	/*
1306 	 * Now that we're done with the ->create function, the [loadable]
1307 	 * module can have its refcnt decremented
1308 	 */
1309 	module_put(pf->owner);
1310 	err = security_socket_post_create(sock, family, type, protocol, kern);
1311 	if (err)
1312 		goto out_sock_release;
1313 	*res = sock;
1314 
1315 	return 0;
1316 
1317 out_module_busy:
1318 	err = -EAFNOSUPPORT;
1319 out_module_put:
1320 	sock->ops = NULL;
1321 	module_put(pf->owner);
1322 out_sock_release:
1323 	sock_release(sock);
1324 	return err;
1325 
1326 out_release:
1327 	rcu_read_unlock();
1328 	goto out_sock_release;
1329 }
1330 EXPORT_SYMBOL(__sock_create);
1331 
1332 int sock_create(int family, int type, int protocol, struct socket **res)
1333 {
1334 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1335 }
1336 EXPORT_SYMBOL(sock_create);
1337 
1338 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1339 {
1340 	return __sock_create(net, family, type, protocol, res, 1);
1341 }
1342 EXPORT_SYMBOL(sock_create_kern);
1343 
1344 int __sys_socket(int family, int type, int protocol)
1345 {
1346 	int retval;
1347 	struct socket *sock;
1348 	int flags;
1349 
1350 	/* Check the SOCK_* constants for consistency.  */
1351 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1352 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1353 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1354 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1355 
1356 	flags = type & ~SOCK_TYPE_MASK;
1357 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1358 		return -EINVAL;
1359 	type &= SOCK_TYPE_MASK;
1360 
1361 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1362 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1363 
1364 	retval = sock_create(family, type, protocol, &sock);
1365 	if (retval < 0)
1366 		return retval;
1367 
1368 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1369 }
1370 
1371 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372 {
1373 	return __sys_socket(family, type, protocol);
1374 }
1375 
1376 /*
1377  *	Create a pair of connected sockets.
1378  */
1379 
1380 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1381 {
1382 	struct socket *sock1, *sock2;
1383 	int fd1, fd2, err;
1384 	struct file *newfile1, *newfile2;
1385 	int flags;
1386 
1387 	flags = type & ~SOCK_TYPE_MASK;
1388 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1389 		return -EINVAL;
1390 	type &= SOCK_TYPE_MASK;
1391 
1392 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1393 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1394 
1395 	/*
1396 	 * reserve descriptors and make sure we won't fail
1397 	 * to return them to userland.
1398 	 */
1399 	fd1 = get_unused_fd_flags(flags);
1400 	if (unlikely(fd1 < 0))
1401 		return fd1;
1402 
1403 	fd2 = get_unused_fd_flags(flags);
1404 	if (unlikely(fd2 < 0)) {
1405 		put_unused_fd(fd1);
1406 		return fd2;
1407 	}
1408 
1409 	err = put_user(fd1, &usockvec[0]);
1410 	if (err)
1411 		goto out;
1412 
1413 	err = put_user(fd2, &usockvec[1]);
1414 	if (err)
1415 		goto out;
1416 
1417 	/*
1418 	 * Obtain the first socket and check if the underlying protocol
1419 	 * supports the socketpair call.
1420 	 */
1421 
1422 	err = sock_create(family, type, protocol, &sock1);
1423 	if (unlikely(err < 0))
1424 		goto out;
1425 
1426 	err = sock_create(family, type, protocol, &sock2);
1427 	if (unlikely(err < 0)) {
1428 		sock_release(sock1);
1429 		goto out;
1430 	}
1431 
1432 	err = security_socket_socketpair(sock1, sock2);
1433 	if (unlikely(err)) {
1434 		sock_release(sock2);
1435 		sock_release(sock1);
1436 		goto out;
1437 	}
1438 
1439 	err = sock1->ops->socketpair(sock1, sock2);
1440 	if (unlikely(err < 0)) {
1441 		sock_release(sock2);
1442 		sock_release(sock1);
1443 		goto out;
1444 	}
1445 
1446 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1447 	if (IS_ERR(newfile1)) {
1448 		err = PTR_ERR(newfile1);
1449 		sock_release(sock2);
1450 		goto out;
1451 	}
1452 
1453 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1454 	if (IS_ERR(newfile2)) {
1455 		err = PTR_ERR(newfile2);
1456 		fput(newfile1);
1457 		goto out;
1458 	}
1459 
1460 	audit_fd_pair(fd1, fd2);
1461 
1462 	fd_install(fd1, newfile1);
1463 	fd_install(fd2, newfile2);
1464 	return 0;
1465 
1466 out:
1467 	put_unused_fd(fd2);
1468 	put_unused_fd(fd1);
1469 	return err;
1470 }
1471 
1472 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1473 		int __user *, usockvec)
1474 {
1475 	return __sys_socketpair(family, type, protocol, usockvec);
1476 }
1477 
1478 /*
1479  *	Bind a name to a socket. Nothing much to do here since it's
1480  *	the protocol's responsibility to handle the local address.
1481  *
1482  *	We move the socket address to kernel space before we call
1483  *	the protocol layer (having also checked the address is ok).
1484  */
1485 
1486 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1487 {
1488 	struct socket *sock;
1489 	struct sockaddr_storage address;
1490 	int err, fput_needed;
1491 
1492 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1493 	if (sock) {
1494 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1495 		if (err >= 0) {
1496 			err = security_socket_bind(sock,
1497 						   (struct sockaddr *)&address,
1498 						   addrlen);
1499 			if (!err)
1500 				err = sock->ops->bind(sock,
1501 						      (struct sockaddr *)
1502 						      &address, addrlen);
1503 		}
1504 		fput_light(sock->file, fput_needed);
1505 	}
1506 	return err;
1507 }
1508 
1509 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1510 {
1511 	return __sys_bind(fd, umyaddr, addrlen);
1512 }
1513 
1514 /*
1515  *	Perform a listen. Basically, we allow the protocol to do anything
1516  *	necessary for a listen, and if that works, we mark the socket as
1517  *	ready for listening.
1518  */
1519 
1520 int __sys_listen(int fd, int backlog)
1521 {
1522 	struct socket *sock;
1523 	int err, fput_needed;
1524 	int somaxconn;
1525 
1526 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1527 	if (sock) {
1528 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1529 		if ((unsigned int)backlog > somaxconn)
1530 			backlog = somaxconn;
1531 
1532 		err = security_socket_listen(sock, backlog);
1533 		if (!err)
1534 			err = sock->ops->listen(sock, backlog);
1535 
1536 		fput_light(sock->file, fput_needed);
1537 	}
1538 	return err;
1539 }
1540 
1541 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1542 {
1543 	return __sys_listen(fd, backlog);
1544 }
1545 
1546 /*
1547  *	For accept, we attempt to create a new socket, set up the link
1548  *	with the client, wake up the client, then return the new
1549  *	connected fd. We collect the address of the connector in kernel
1550  *	space and move it to user at the very end. This is unclean because
1551  *	we open the socket then return an error.
1552  *
1553  *	1003.1g adds the ability to recvmsg() to query connection pending
1554  *	status to recvmsg. We need to add that support in a way thats
1555  *	clean when we restructure accept also.
1556  */
1557 
1558 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1559 		  int __user *upeer_addrlen, int flags)
1560 {
1561 	struct socket *sock, *newsock;
1562 	struct file *newfile;
1563 	int err, len, newfd, fput_needed;
1564 	struct sockaddr_storage address;
1565 
1566 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1567 		return -EINVAL;
1568 
1569 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1570 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1571 
1572 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1573 	if (!sock)
1574 		goto out;
1575 
1576 	err = -ENFILE;
1577 	newsock = sock_alloc();
1578 	if (!newsock)
1579 		goto out_put;
1580 
1581 	newsock->type = sock->type;
1582 	newsock->ops = sock->ops;
1583 
1584 	/*
1585 	 * We don't need try_module_get here, as the listening socket (sock)
1586 	 * has the protocol module (sock->ops->owner) held.
1587 	 */
1588 	__module_get(newsock->ops->owner);
1589 
1590 	newfd = get_unused_fd_flags(flags);
1591 	if (unlikely(newfd < 0)) {
1592 		err = newfd;
1593 		sock_release(newsock);
1594 		goto out_put;
1595 	}
1596 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1597 	if (IS_ERR(newfile)) {
1598 		err = PTR_ERR(newfile);
1599 		put_unused_fd(newfd);
1600 		goto out_put;
1601 	}
1602 
1603 	err = security_socket_accept(sock, newsock);
1604 	if (err)
1605 		goto out_fd;
1606 
1607 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1608 	if (err < 0)
1609 		goto out_fd;
1610 
1611 	if (upeer_sockaddr) {
1612 		len = newsock->ops->getname(newsock,
1613 					(struct sockaddr *)&address, 2);
1614 		if (len < 0) {
1615 			err = -ECONNABORTED;
1616 			goto out_fd;
1617 		}
1618 		err = move_addr_to_user(&address,
1619 					len, upeer_sockaddr, upeer_addrlen);
1620 		if (err < 0)
1621 			goto out_fd;
1622 	}
1623 
1624 	/* File flags are not inherited via accept() unlike another OSes. */
1625 
1626 	fd_install(newfd, newfile);
1627 	err = newfd;
1628 
1629 out_put:
1630 	fput_light(sock->file, fput_needed);
1631 out:
1632 	return err;
1633 out_fd:
1634 	fput(newfile);
1635 	put_unused_fd(newfd);
1636 	goto out_put;
1637 }
1638 
1639 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1640 		int __user *, upeer_addrlen, int, flags)
1641 {
1642 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1643 }
1644 
1645 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1646 		int __user *, upeer_addrlen)
1647 {
1648 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1649 }
1650 
1651 /*
1652  *	Attempt to connect to a socket with the server address.  The address
1653  *	is in user space so we verify it is OK and move it to kernel space.
1654  *
1655  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1656  *	break bindings
1657  *
1658  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1659  *	other SEQPACKET protocols that take time to connect() as it doesn't
1660  *	include the -EINPROGRESS status for such sockets.
1661  */
1662 
1663 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1664 {
1665 	struct socket *sock;
1666 	struct sockaddr_storage address;
1667 	int err, fput_needed;
1668 
1669 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670 	if (!sock)
1671 		goto out;
1672 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1673 	if (err < 0)
1674 		goto out_put;
1675 
1676 	err =
1677 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1678 	if (err)
1679 		goto out_put;
1680 
1681 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1682 				 sock->file->f_flags);
1683 out_put:
1684 	fput_light(sock->file, fput_needed);
1685 out:
1686 	return err;
1687 }
1688 
1689 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1690 		int, addrlen)
1691 {
1692 	return __sys_connect(fd, uservaddr, addrlen);
1693 }
1694 
1695 /*
1696  *	Get the local address ('name') of a socket object. Move the obtained
1697  *	name to user space.
1698  */
1699 
1700 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1701 		      int __user *usockaddr_len)
1702 {
1703 	struct socket *sock;
1704 	struct sockaddr_storage address;
1705 	int err, fput_needed;
1706 
1707 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 	if (!sock)
1709 		goto out;
1710 
1711 	err = security_socket_getsockname(sock);
1712 	if (err)
1713 		goto out_put;
1714 
1715 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1716 	if (err < 0)
1717 		goto out_put;
1718         /* "err" is actually length in this case */
1719 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1720 
1721 out_put:
1722 	fput_light(sock->file, fput_needed);
1723 out:
1724 	return err;
1725 }
1726 
1727 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1728 		int __user *, usockaddr_len)
1729 {
1730 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1731 }
1732 
1733 /*
1734  *	Get the remote address ('name') of a socket object. Move the obtained
1735  *	name to user space.
1736  */
1737 
1738 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1739 		      int __user *usockaddr_len)
1740 {
1741 	struct socket *sock;
1742 	struct sockaddr_storage address;
1743 	int err, fput_needed;
1744 
1745 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 	if (sock != NULL) {
1747 		err = security_socket_getpeername(sock);
1748 		if (err) {
1749 			fput_light(sock->file, fput_needed);
1750 			return err;
1751 		}
1752 
1753 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1754 		if (err >= 0)
1755 			/* "err" is actually length in this case */
1756 			err = move_addr_to_user(&address, err, usockaddr,
1757 						usockaddr_len);
1758 		fput_light(sock->file, fput_needed);
1759 	}
1760 	return err;
1761 }
1762 
1763 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1764 		int __user *, usockaddr_len)
1765 {
1766 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1767 }
1768 
1769 /*
1770  *	Send a datagram to a given address. We move the address into kernel
1771  *	space and check the user space data area is readable before invoking
1772  *	the protocol.
1773  */
1774 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1775 		 struct sockaddr __user *addr,  int addr_len)
1776 {
1777 	struct socket *sock;
1778 	struct sockaddr_storage address;
1779 	int err;
1780 	struct msghdr msg;
1781 	struct iovec iov;
1782 	int fput_needed;
1783 
1784 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1785 	if (unlikely(err))
1786 		return err;
1787 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1788 	if (!sock)
1789 		goto out;
1790 
1791 	msg.msg_name = NULL;
1792 	msg.msg_control = NULL;
1793 	msg.msg_controllen = 0;
1794 	msg.msg_namelen = 0;
1795 	if (addr) {
1796 		err = move_addr_to_kernel(addr, addr_len, &address);
1797 		if (err < 0)
1798 			goto out_put;
1799 		msg.msg_name = (struct sockaddr *)&address;
1800 		msg.msg_namelen = addr_len;
1801 	}
1802 	if (sock->file->f_flags & O_NONBLOCK)
1803 		flags |= MSG_DONTWAIT;
1804 	msg.msg_flags = flags;
1805 	err = sock_sendmsg(sock, &msg);
1806 
1807 out_put:
1808 	fput_light(sock->file, fput_needed);
1809 out:
1810 	return err;
1811 }
1812 
1813 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1814 		unsigned int, flags, struct sockaddr __user *, addr,
1815 		int, addr_len)
1816 {
1817 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1818 }
1819 
1820 /*
1821  *	Send a datagram down a socket.
1822  */
1823 
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 		unsigned int, flags)
1826 {
1827 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1828 }
1829 
1830 /*
1831  *	Receive a frame from the socket and optionally record the address of the
1832  *	sender. We verify the buffers are writable and if needed move the
1833  *	sender address from kernel to user space.
1834  */
1835 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1836 		   struct sockaddr __user *addr, int __user *addr_len)
1837 {
1838 	struct socket *sock;
1839 	struct iovec iov;
1840 	struct msghdr msg;
1841 	struct sockaddr_storage address;
1842 	int err, err2;
1843 	int fput_needed;
1844 
1845 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1846 	if (unlikely(err))
1847 		return err;
1848 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 	if (!sock)
1850 		goto out;
1851 
1852 	msg.msg_control = NULL;
1853 	msg.msg_controllen = 0;
1854 	/* Save some cycles and don't copy the address if not needed */
1855 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1856 	/* We assume all kernel code knows the size of sockaddr_storage */
1857 	msg.msg_namelen = 0;
1858 	msg.msg_iocb = NULL;
1859 	msg.msg_flags = 0;
1860 	if (sock->file->f_flags & O_NONBLOCK)
1861 		flags |= MSG_DONTWAIT;
1862 	err = sock_recvmsg(sock, &msg, flags);
1863 
1864 	if (err >= 0 && addr != NULL) {
1865 		err2 = move_addr_to_user(&address,
1866 					 msg.msg_namelen, addr, addr_len);
1867 		if (err2 < 0)
1868 			err = err2;
1869 	}
1870 
1871 	fput_light(sock->file, fput_needed);
1872 out:
1873 	return err;
1874 }
1875 
1876 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1877 		unsigned int, flags, struct sockaddr __user *, addr,
1878 		int __user *, addr_len)
1879 {
1880 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1881 }
1882 
1883 /*
1884  *	Receive a datagram from a socket.
1885  */
1886 
1887 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1888 		unsigned int, flags)
1889 {
1890 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1891 }
1892 
1893 /*
1894  *	Set a socket option. Because we don't know the option lengths we have
1895  *	to pass the user mode parameter for the protocols to sort out.
1896  */
1897 
1898 static int __sys_setsockopt(int fd, int level, int optname,
1899 			    char __user *optval, int optlen)
1900 {
1901 	int err, fput_needed;
1902 	struct socket *sock;
1903 
1904 	if (optlen < 0)
1905 		return -EINVAL;
1906 
1907 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908 	if (sock != NULL) {
1909 		err = security_socket_setsockopt(sock, level, optname);
1910 		if (err)
1911 			goto out_put;
1912 
1913 		if (level == SOL_SOCKET)
1914 			err =
1915 			    sock_setsockopt(sock, level, optname, optval,
1916 					    optlen);
1917 		else
1918 			err =
1919 			    sock->ops->setsockopt(sock, level, optname, optval,
1920 						  optlen);
1921 out_put:
1922 		fput_light(sock->file, fput_needed);
1923 	}
1924 	return err;
1925 }
1926 
1927 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1928 		char __user *, optval, int, optlen)
1929 {
1930 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1931 }
1932 
1933 /*
1934  *	Get a socket option. Because we don't know the option lengths we have
1935  *	to pass a user mode parameter for the protocols to sort out.
1936  */
1937 
1938 static int __sys_getsockopt(int fd, int level, int optname,
1939 			    char __user *optval, int __user *optlen)
1940 {
1941 	int err, fput_needed;
1942 	struct socket *sock;
1943 
1944 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1945 	if (sock != NULL) {
1946 		err = security_socket_getsockopt(sock, level, optname);
1947 		if (err)
1948 			goto out_put;
1949 
1950 		if (level == SOL_SOCKET)
1951 			err =
1952 			    sock_getsockopt(sock, level, optname, optval,
1953 					    optlen);
1954 		else
1955 			err =
1956 			    sock->ops->getsockopt(sock, level, optname, optval,
1957 						  optlen);
1958 out_put:
1959 		fput_light(sock->file, fput_needed);
1960 	}
1961 	return err;
1962 }
1963 
1964 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1965 		char __user *, optval, int __user *, optlen)
1966 {
1967 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1968 }
1969 
1970 /*
1971  *	Shutdown a socket.
1972  */
1973 
1974 int __sys_shutdown(int fd, int how)
1975 {
1976 	int err, fput_needed;
1977 	struct socket *sock;
1978 
1979 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1980 	if (sock != NULL) {
1981 		err = security_socket_shutdown(sock, how);
1982 		if (!err)
1983 			err = sock->ops->shutdown(sock, how);
1984 		fput_light(sock->file, fput_needed);
1985 	}
1986 	return err;
1987 }
1988 
1989 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1990 {
1991 	return __sys_shutdown(fd, how);
1992 }
1993 
1994 /* A couple of helpful macros for getting the address of the 32/64 bit
1995  * fields which are the same type (int / unsigned) on our platforms.
1996  */
1997 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1998 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1999 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2000 
2001 struct used_address {
2002 	struct sockaddr_storage name;
2003 	unsigned int name_len;
2004 };
2005 
2006 static int copy_msghdr_from_user(struct msghdr *kmsg,
2007 				 struct user_msghdr __user *umsg,
2008 				 struct sockaddr __user **save_addr,
2009 				 struct iovec **iov)
2010 {
2011 	struct user_msghdr msg;
2012 	ssize_t err;
2013 
2014 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2015 		return -EFAULT;
2016 
2017 	kmsg->msg_control = (void __force *)msg.msg_control;
2018 	kmsg->msg_controllen = msg.msg_controllen;
2019 	kmsg->msg_flags = msg.msg_flags;
2020 
2021 	kmsg->msg_namelen = msg.msg_namelen;
2022 	if (!msg.msg_name)
2023 		kmsg->msg_namelen = 0;
2024 
2025 	if (kmsg->msg_namelen < 0)
2026 		return -EINVAL;
2027 
2028 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2029 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2030 
2031 	if (save_addr)
2032 		*save_addr = msg.msg_name;
2033 
2034 	if (msg.msg_name && kmsg->msg_namelen) {
2035 		if (!save_addr) {
2036 			err = move_addr_to_kernel(msg.msg_name,
2037 						  kmsg->msg_namelen,
2038 						  kmsg->msg_name);
2039 			if (err < 0)
2040 				return err;
2041 		}
2042 	} else {
2043 		kmsg->msg_name = NULL;
2044 		kmsg->msg_namelen = 0;
2045 	}
2046 
2047 	if (msg.msg_iovlen > UIO_MAXIOV)
2048 		return -EMSGSIZE;
2049 
2050 	kmsg->msg_iocb = NULL;
2051 
2052 	return import_iovec(save_addr ? READ : WRITE,
2053 			    msg.msg_iov, msg.msg_iovlen,
2054 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2055 }
2056 
2057 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2058 			 struct msghdr *msg_sys, unsigned int flags,
2059 			 struct used_address *used_address,
2060 			 unsigned int allowed_msghdr_flags)
2061 {
2062 	struct compat_msghdr __user *msg_compat =
2063 	    (struct compat_msghdr __user *)msg;
2064 	struct sockaddr_storage address;
2065 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2066 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2067 				__aligned(sizeof(__kernel_size_t));
2068 	/* 20 is size of ipv6_pktinfo */
2069 	unsigned char *ctl_buf = ctl;
2070 	int ctl_len;
2071 	ssize_t err;
2072 
2073 	msg_sys->msg_name = &address;
2074 
2075 	if (MSG_CMSG_COMPAT & flags)
2076 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2077 	else
2078 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2079 	if (err < 0)
2080 		return err;
2081 
2082 	err = -ENOBUFS;
2083 
2084 	if (msg_sys->msg_controllen > INT_MAX)
2085 		goto out_freeiov;
2086 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2087 	ctl_len = msg_sys->msg_controllen;
2088 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2089 		err =
2090 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2091 						     sizeof(ctl));
2092 		if (err)
2093 			goto out_freeiov;
2094 		ctl_buf = msg_sys->msg_control;
2095 		ctl_len = msg_sys->msg_controllen;
2096 	} else if (ctl_len) {
2097 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2098 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2099 		if (ctl_len > sizeof(ctl)) {
2100 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2101 			if (ctl_buf == NULL)
2102 				goto out_freeiov;
2103 		}
2104 		err = -EFAULT;
2105 		/*
2106 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2107 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2108 		 * checking falls down on this.
2109 		 */
2110 		if (copy_from_user(ctl_buf,
2111 				   (void __user __force *)msg_sys->msg_control,
2112 				   ctl_len))
2113 			goto out_freectl;
2114 		msg_sys->msg_control = ctl_buf;
2115 	}
2116 	msg_sys->msg_flags = flags;
2117 
2118 	if (sock->file->f_flags & O_NONBLOCK)
2119 		msg_sys->msg_flags |= MSG_DONTWAIT;
2120 	/*
2121 	 * If this is sendmmsg() and current destination address is same as
2122 	 * previously succeeded address, omit asking LSM's decision.
2123 	 * used_address->name_len is initialized to UINT_MAX so that the first
2124 	 * destination address never matches.
2125 	 */
2126 	if (used_address && msg_sys->msg_name &&
2127 	    used_address->name_len == msg_sys->msg_namelen &&
2128 	    !memcmp(&used_address->name, msg_sys->msg_name,
2129 		    used_address->name_len)) {
2130 		err = sock_sendmsg_nosec(sock, msg_sys);
2131 		goto out_freectl;
2132 	}
2133 	err = sock_sendmsg(sock, msg_sys);
2134 	/*
2135 	 * If this is sendmmsg() and sending to current destination address was
2136 	 * successful, remember it.
2137 	 */
2138 	if (used_address && err >= 0) {
2139 		used_address->name_len = msg_sys->msg_namelen;
2140 		if (msg_sys->msg_name)
2141 			memcpy(&used_address->name, msg_sys->msg_name,
2142 			       used_address->name_len);
2143 	}
2144 
2145 out_freectl:
2146 	if (ctl_buf != ctl)
2147 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2148 out_freeiov:
2149 	kfree(iov);
2150 	return err;
2151 }
2152 
2153 /*
2154  *	BSD sendmsg interface
2155  */
2156 
2157 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2158 		   bool forbid_cmsg_compat)
2159 {
2160 	int fput_needed, err;
2161 	struct msghdr msg_sys;
2162 	struct socket *sock;
2163 
2164 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2165 		return -EINVAL;
2166 
2167 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2168 	if (!sock)
2169 		goto out;
2170 
2171 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2172 
2173 	fput_light(sock->file, fput_needed);
2174 out:
2175 	return err;
2176 }
2177 
2178 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2179 {
2180 	return __sys_sendmsg(fd, msg, flags, true);
2181 }
2182 
2183 /*
2184  *	Linux sendmmsg interface
2185  */
2186 
2187 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2188 		   unsigned int flags, bool forbid_cmsg_compat)
2189 {
2190 	int fput_needed, err, datagrams;
2191 	struct socket *sock;
2192 	struct mmsghdr __user *entry;
2193 	struct compat_mmsghdr __user *compat_entry;
2194 	struct msghdr msg_sys;
2195 	struct used_address used_address;
2196 	unsigned int oflags = flags;
2197 
2198 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2199 		return -EINVAL;
2200 
2201 	if (vlen > UIO_MAXIOV)
2202 		vlen = UIO_MAXIOV;
2203 
2204 	datagrams = 0;
2205 
2206 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2207 	if (!sock)
2208 		return err;
2209 
2210 	used_address.name_len = UINT_MAX;
2211 	entry = mmsg;
2212 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2213 	err = 0;
2214 	flags |= MSG_BATCH;
2215 
2216 	while (datagrams < vlen) {
2217 		if (datagrams == vlen - 1)
2218 			flags = oflags;
2219 
2220 		if (MSG_CMSG_COMPAT & flags) {
2221 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2222 					     &msg_sys, flags, &used_address, MSG_EOR);
2223 			if (err < 0)
2224 				break;
2225 			err = __put_user(err, &compat_entry->msg_len);
2226 			++compat_entry;
2227 		} else {
2228 			err = ___sys_sendmsg(sock,
2229 					     (struct user_msghdr __user *)entry,
2230 					     &msg_sys, flags, &used_address, MSG_EOR);
2231 			if (err < 0)
2232 				break;
2233 			err = put_user(err, &entry->msg_len);
2234 			++entry;
2235 		}
2236 
2237 		if (err)
2238 			break;
2239 		++datagrams;
2240 		if (msg_data_left(&msg_sys))
2241 			break;
2242 		cond_resched();
2243 	}
2244 
2245 	fput_light(sock->file, fput_needed);
2246 
2247 	/* We only return an error if no datagrams were able to be sent */
2248 	if (datagrams != 0)
2249 		return datagrams;
2250 
2251 	return err;
2252 }
2253 
2254 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2255 		unsigned int, vlen, unsigned int, flags)
2256 {
2257 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2258 }
2259 
2260 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2261 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2262 {
2263 	struct compat_msghdr __user *msg_compat =
2264 	    (struct compat_msghdr __user *)msg;
2265 	struct iovec iovstack[UIO_FASTIOV];
2266 	struct iovec *iov = iovstack;
2267 	unsigned long cmsg_ptr;
2268 	int len;
2269 	ssize_t err;
2270 
2271 	/* kernel mode address */
2272 	struct sockaddr_storage addr;
2273 
2274 	/* user mode address pointers */
2275 	struct sockaddr __user *uaddr;
2276 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2277 
2278 	msg_sys->msg_name = &addr;
2279 
2280 	if (MSG_CMSG_COMPAT & flags)
2281 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2282 	else
2283 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2284 	if (err < 0)
2285 		return err;
2286 
2287 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2288 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2289 
2290 	/* We assume all kernel code knows the size of sockaddr_storage */
2291 	msg_sys->msg_namelen = 0;
2292 
2293 	if (sock->file->f_flags & O_NONBLOCK)
2294 		flags |= MSG_DONTWAIT;
2295 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2296 	if (err < 0)
2297 		goto out_freeiov;
2298 	len = err;
2299 
2300 	if (uaddr != NULL) {
2301 		err = move_addr_to_user(&addr,
2302 					msg_sys->msg_namelen, uaddr,
2303 					uaddr_len);
2304 		if (err < 0)
2305 			goto out_freeiov;
2306 	}
2307 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2308 			 COMPAT_FLAGS(msg));
2309 	if (err)
2310 		goto out_freeiov;
2311 	if (MSG_CMSG_COMPAT & flags)
2312 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2313 				 &msg_compat->msg_controllen);
2314 	else
2315 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2316 				 &msg->msg_controllen);
2317 	if (err)
2318 		goto out_freeiov;
2319 	err = len;
2320 
2321 out_freeiov:
2322 	kfree(iov);
2323 	return err;
2324 }
2325 
2326 /*
2327  *	BSD recvmsg interface
2328  */
2329 
2330 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2331 		   bool forbid_cmsg_compat)
2332 {
2333 	int fput_needed, err;
2334 	struct msghdr msg_sys;
2335 	struct socket *sock;
2336 
2337 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2338 		return -EINVAL;
2339 
2340 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2341 	if (!sock)
2342 		goto out;
2343 
2344 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2345 
2346 	fput_light(sock->file, fput_needed);
2347 out:
2348 	return err;
2349 }
2350 
2351 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2352 		unsigned int, flags)
2353 {
2354 	return __sys_recvmsg(fd, msg, flags, true);
2355 }
2356 
2357 /*
2358  *     Linux recvmmsg interface
2359  */
2360 
2361 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2362 		   unsigned int flags, struct timespec *timeout)
2363 {
2364 	int fput_needed, err, datagrams;
2365 	struct socket *sock;
2366 	struct mmsghdr __user *entry;
2367 	struct compat_mmsghdr __user *compat_entry;
2368 	struct msghdr msg_sys;
2369 	struct timespec64 end_time;
2370 	struct timespec64 timeout64;
2371 
2372 	if (timeout &&
2373 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2374 				    timeout->tv_nsec))
2375 		return -EINVAL;
2376 
2377 	datagrams = 0;
2378 
2379 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2380 	if (!sock)
2381 		return err;
2382 
2383 	if (likely(!(flags & MSG_ERRQUEUE))) {
2384 		err = sock_error(sock->sk);
2385 		if (err) {
2386 			datagrams = err;
2387 			goto out_put;
2388 		}
2389 	}
2390 
2391 	entry = mmsg;
2392 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2393 
2394 	while (datagrams < vlen) {
2395 		/*
2396 		 * No need to ask LSM for more than the first datagram.
2397 		 */
2398 		if (MSG_CMSG_COMPAT & flags) {
2399 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2400 					     &msg_sys, flags & ~MSG_WAITFORONE,
2401 					     datagrams);
2402 			if (err < 0)
2403 				break;
2404 			err = __put_user(err, &compat_entry->msg_len);
2405 			++compat_entry;
2406 		} else {
2407 			err = ___sys_recvmsg(sock,
2408 					     (struct user_msghdr __user *)entry,
2409 					     &msg_sys, flags & ~MSG_WAITFORONE,
2410 					     datagrams);
2411 			if (err < 0)
2412 				break;
2413 			err = put_user(err, &entry->msg_len);
2414 			++entry;
2415 		}
2416 
2417 		if (err)
2418 			break;
2419 		++datagrams;
2420 
2421 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2422 		if (flags & MSG_WAITFORONE)
2423 			flags |= MSG_DONTWAIT;
2424 
2425 		if (timeout) {
2426 			ktime_get_ts64(&timeout64);
2427 			*timeout = timespec64_to_timespec(
2428 					timespec64_sub(end_time, timeout64));
2429 			if (timeout->tv_sec < 0) {
2430 				timeout->tv_sec = timeout->tv_nsec = 0;
2431 				break;
2432 			}
2433 
2434 			/* Timeout, return less than vlen datagrams */
2435 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2436 				break;
2437 		}
2438 
2439 		/* Out of band data, return right away */
2440 		if (msg_sys.msg_flags & MSG_OOB)
2441 			break;
2442 		cond_resched();
2443 	}
2444 
2445 	if (err == 0)
2446 		goto out_put;
2447 
2448 	if (datagrams == 0) {
2449 		datagrams = err;
2450 		goto out_put;
2451 	}
2452 
2453 	/*
2454 	 * We may return less entries than requested (vlen) if the
2455 	 * sock is non block and there aren't enough datagrams...
2456 	 */
2457 	if (err != -EAGAIN) {
2458 		/*
2459 		 * ... or  if recvmsg returns an error after we
2460 		 * received some datagrams, where we record the
2461 		 * error to return on the next call or if the
2462 		 * app asks about it using getsockopt(SO_ERROR).
2463 		 */
2464 		sock->sk->sk_err = -err;
2465 	}
2466 out_put:
2467 	fput_light(sock->file, fput_needed);
2468 
2469 	return datagrams;
2470 }
2471 
2472 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2473 			   unsigned int vlen, unsigned int flags,
2474 			   struct timespec __user *timeout)
2475 {
2476 	int datagrams;
2477 	struct timespec timeout_sys;
2478 
2479 	if (flags & MSG_CMSG_COMPAT)
2480 		return -EINVAL;
2481 
2482 	if (!timeout)
2483 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2484 
2485 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2486 		return -EFAULT;
2487 
2488 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2489 
2490 	if (datagrams > 0 &&
2491 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2492 		datagrams = -EFAULT;
2493 
2494 	return datagrams;
2495 }
2496 
2497 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2498 		unsigned int, vlen, unsigned int, flags,
2499 		struct timespec __user *, timeout)
2500 {
2501 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2502 }
2503 
2504 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2505 /* Argument list sizes for sys_socketcall */
2506 #define AL(x) ((x) * sizeof(unsigned long))
2507 static const unsigned char nargs[21] = {
2508 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2509 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2510 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2511 	AL(4), AL(5), AL(4)
2512 };
2513 
2514 #undef AL
2515 
2516 /*
2517  *	System call vectors.
2518  *
2519  *	Argument checking cleaned up. Saved 20% in size.
2520  *  This function doesn't need to set the kernel lock because
2521  *  it is set by the callees.
2522  */
2523 
2524 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2525 {
2526 	unsigned long a[AUDITSC_ARGS];
2527 	unsigned long a0, a1;
2528 	int err;
2529 	unsigned int len;
2530 
2531 	if (call < 1 || call > SYS_SENDMMSG)
2532 		return -EINVAL;
2533 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2534 
2535 	len = nargs[call];
2536 	if (len > sizeof(a))
2537 		return -EINVAL;
2538 
2539 	/* copy_from_user should be SMP safe. */
2540 	if (copy_from_user(a, args, len))
2541 		return -EFAULT;
2542 
2543 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2544 	if (err)
2545 		return err;
2546 
2547 	a0 = a[0];
2548 	a1 = a[1];
2549 
2550 	switch (call) {
2551 	case SYS_SOCKET:
2552 		err = __sys_socket(a0, a1, a[2]);
2553 		break;
2554 	case SYS_BIND:
2555 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2556 		break;
2557 	case SYS_CONNECT:
2558 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2559 		break;
2560 	case SYS_LISTEN:
2561 		err = __sys_listen(a0, a1);
2562 		break;
2563 	case SYS_ACCEPT:
2564 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2565 				    (int __user *)a[2], 0);
2566 		break;
2567 	case SYS_GETSOCKNAME:
2568 		err =
2569 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2570 				      (int __user *)a[2]);
2571 		break;
2572 	case SYS_GETPEERNAME:
2573 		err =
2574 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2575 				      (int __user *)a[2]);
2576 		break;
2577 	case SYS_SOCKETPAIR:
2578 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2579 		break;
2580 	case SYS_SEND:
2581 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2582 				   NULL, 0);
2583 		break;
2584 	case SYS_SENDTO:
2585 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2586 				   (struct sockaddr __user *)a[4], a[5]);
2587 		break;
2588 	case SYS_RECV:
2589 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2590 				     NULL, NULL);
2591 		break;
2592 	case SYS_RECVFROM:
2593 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2594 				     (struct sockaddr __user *)a[4],
2595 				     (int __user *)a[5]);
2596 		break;
2597 	case SYS_SHUTDOWN:
2598 		err = __sys_shutdown(a0, a1);
2599 		break;
2600 	case SYS_SETSOCKOPT:
2601 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2602 				       a[4]);
2603 		break;
2604 	case SYS_GETSOCKOPT:
2605 		err =
2606 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2607 				     (int __user *)a[4]);
2608 		break;
2609 	case SYS_SENDMSG:
2610 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2611 				    a[2], true);
2612 		break;
2613 	case SYS_SENDMMSG:
2614 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2615 				     a[3], true);
2616 		break;
2617 	case SYS_RECVMSG:
2618 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2619 				    a[2], true);
2620 		break;
2621 	case SYS_RECVMMSG:
2622 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2623 				      a[3], (struct timespec __user *)a[4]);
2624 		break;
2625 	case SYS_ACCEPT4:
2626 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2627 				    (int __user *)a[2], a[3]);
2628 		break;
2629 	default:
2630 		err = -EINVAL;
2631 		break;
2632 	}
2633 	return err;
2634 }
2635 
2636 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2637 
2638 /**
2639  *	sock_register - add a socket protocol handler
2640  *	@ops: description of protocol
2641  *
2642  *	This function is called by a protocol handler that wants to
2643  *	advertise its address family, and have it linked into the
2644  *	socket interface. The value ops->family corresponds to the
2645  *	socket system call protocol family.
2646  */
2647 int sock_register(const struct net_proto_family *ops)
2648 {
2649 	int err;
2650 
2651 	if (ops->family >= NPROTO) {
2652 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2653 		return -ENOBUFS;
2654 	}
2655 
2656 	spin_lock(&net_family_lock);
2657 	if (rcu_dereference_protected(net_families[ops->family],
2658 				      lockdep_is_held(&net_family_lock)))
2659 		err = -EEXIST;
2660 	else {
2661 		rcu_assign_pointer(net_families[ops->family], ops);
2662 		err = 0;
2663 	}
2664 	spin_unlock(&net_family_lock);
2665 
2666 	pr_info("NET: Registered protocol family %d\n", ops->family);
2667 	return err;
2668 }
2669 EXPORT_SYMBOL(sock_register);
2670 
2671 /**
2672  *	sock_unregister - remove a protocol handler
2673  *	@family: protocol family to remove
2674  *
2675  *	This function is called by a protocol handler that wants to
2676  *	remove its address family, and have it unlinked from the
2677  *	new socket creation.
2678  *
2679  *	If protocol handler is a module, then it can use module reference
2680  *	counts to protect against new references. If protocol handler is not
2681  *	a module then it needs to provide its own protection in
2682  *	the ops->create routine.
2683  */
2684 void sock_unregister(int family)
2685 {
2686 	BUG_ON(family < 0 || family >= NPROTO);
2687 
2688 	spin_lock(&net_family_lock);
2689 	RCU_INIT_POINTER(net_families[family], NULL);
2690 	spin_unlock(&net_family_lock);
2691 
2692 	synchronize_rcu();
2693 
2694 	pr_info("NET: Unregistered protocol family %d\n", family);
2695 }
2696 EXPORT_SYMBOL(sock_unregister);
2697 
2698 bool sock_is_registered(int family)
2699 {
2700 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2701 }
2702 
2703 static int __init sock_init(void)
2704 {
2705 	int err;
2706 	/*
2707 	 *      Initialize the network sysctl infrastructure.
2708 	 */
2709 	err = net_sysctl_init();
2710 	if (err)
2711 		goto out;
2712 
2713 	/*
2714 	 *      Initialize skbuff SLAB cache
2715 	 */
2716 	skb_init();
2717 
2718 	/*
2719 	 *      Initialize the protocols module.
2720 	 */
2721 
2722 	init_inodecache();
2723 
2724 	err = register_filesystem(&sock_fs_type);
2725 	if (err)
2726 		goto out_fs;
2727 	sock_mnt = kern_mount(&sock_fs_type);
2728 	if (IS_ERR(sock_mnt)) {
2729 		err = PTR_ERR(sock_mnt);
2730 		goto out_mount;
2731 	}
2732 
2733 	/* The real protocol initialization is performed in later initcalls.
2734 	 */
2735 
2736 #ifdef CONFIG_NETFILTER
2737 	err = netfilter_init();
2738 	if (err)
2739 		goto out;
2740 #endif
2741 
2742 	ptp_classifier_init();
2743 
2744 out:
2745 	return err;
2746 
2747 out_mount:
2748 	unregister_filesystem(&sock_fs_type);
2749 out_fs:
2750 	goto out;
2751 }
2752 
2753 core_initcall(sock_init);	/* early initcall */
2754 
2755 #ifdef CONFIG_PROC_FS
2756 void socket_seq_show(struct seq_file *seq)
2757 {
2758 	seq_printf(seq, "sockets: used %d\n",
2759 		   sock_inuse_get(seq->private));
2760 }
2761 #endif				/* CONFIG_PROC_FS */
2762 
2763 #ifdef CONFIG_COMPAT
2764 static int do_siocgstamp(struct net *net, struct socket *sock,
2765 			 unsigned int cmd, void __user *up)
2766 {
2767 	mm_segment_t old_fs = get_fs();
2768 	struct timeval ktv;
2769 	int err;
2770 
2771 	set_fs(KERNEL_DS);
2772 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2773 	set_fs(old_fs);
2774 	if (!err)
2775 		err = compat_put_timeval(&ktv, up);
2776 
2777 	return err;
2778 }
2779 
2780 static int do_siocgstampns(struct net *net, struct socket *sock,
2781 			   unsigned int cmd, void __user *up)
2782 {
2783 	mm_segment_t old_fs = get_fs();
2784 	struct timespec kts;
2785 	int err;
2786 
2787 	set_fs(KERNEL_DS);
2788 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2789 	set_fs(old_fs);
2790 	if (!err)
2791 		err = compat_put_timespec(&kts, up);
2792 
2793 	return err;
2794 }
2795 
2796 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2797 {
2798 	struct compat_ifconf ifc32;
2799 	struct ifconf ifc;
2800 	int err;
2801 
2802 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2803 		return -EFAULT;
2804 
2805 	ifc.ifc_len = ifc32.ifc_len;
2806 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2807 
2808 	rtnl_lock();
2809 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2810 	rtnl_unlock();
2811 	if (err)
2812 		return err;
2813 
2814 	ifc32.ifc_len = ifc.ifc_len;
2815 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2816 		return -EFAULT;
2817 
2818 	return 0;
2819 }
2820 
2821 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2822 {
2823 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2824 	bool convert_in = false, convert_out = false;
2825 	size_t buf_size = 0;
2826 	struct ethtool_rxnfc __user *rxnfc = NULL;
2827 	struct ifreq ifr;
2828 	u32 rule_cnt = 0, actual_rule_cnt;
2829 	u32 ethcmd;
2830 	u32 data;
2831 	int ret;
2832 
2833 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2834 		return -EFAULT;
2835 
2836 	compat_rxnfc = compat_ptr(data);
2837 
2838 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2839 		return -EFAULT;
2840 
2841 	/* Most ethtool structures are defined without padding.
2842 	 * Unfortunately struct ethtool_rxnfc is an exception.
2843 	 */
2844 	switch (ethcmd) {
2845 	default:
2846 		break;
2847 	case ETHTOOL_GRXCLSRLALL:
2848 		/* Buffer size is variable */
2849 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2850 			return -EFAULT;
2851 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2852 			return -ENOMEM;
2853 		buf_size += rule_cnt * sizeof(u32);
2854 		/* fall through */
2855 	case ETHTOOL_GRXRINGS:
2856 	case ETHTOOL_GRXCLSRLCNT:
2857 	case ETHTOOL_GRXCLSRULE:
2858 	case ETHTOOL_SRXCLSRLINS:
2859 		convert_out = true;
2860 		/* fall through */
2861 	case ETHTOOL_SRXCLSRLDEL:
2862 		buf_size += sizeof(struct ethtool_rxnfc);
2863 		convert_in = true;
2864 		rxnfc = compat_alloc_user_space(buf_size);
2865 		break;
2866 	}
2867 
2868 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2869 		return -EFAULT;
2870 
2871 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2872 
2873 	if (convert_in) {
2874 		/* We expect there to be holes between fs.m_ext and
2875 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2876 		 */
2877 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2878 			     sizeof(compat_rxnfc->fs.m_ext) !=
2879 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2880 			     sizeof(rxnfc->fs.m_ext));
2881 		BUILD_BUG_ON(
2882 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2883 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2884 			offsetof(struct ethtool_rxnfc, fs.location) -
2885 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2886 
2887 		if (copy_in_user(rxnfc, compat_rxnfc,
2888 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2889 				 (void __user *)rxnfc) ||
2890 		    copy_in_user(&rxnfc->fs.ring_cookie,
2891 				 &compat_rxnfc->fs.ring_cookie,
2892 				 (void __user *)(&rxnfc->fs.location + 1) -
2893 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2894 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2895 				 sizeof(rxnfc->rule_cnt)))
2896 			return -EFAULT;
2897 	}
2898 
2899 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2900 	if (ret)
2901 		return ret;
2902 
2903 	if (convert_out) {
2904 		if (copy_in_user(compat_rxnfc, rxnfc,
2905 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2906 				 (const void __user *)rxnfc) ||
2907 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2908 				 &rxnfc->fs.ring_cookie,
2909 				 (const void __user *)(&rxnfc->fs.location + 1) -
2910 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2911 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2912 				 sizeof(rxnfc->rule_cnt)))
2913 			return -EFAULT;
2914 
2915 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2916 			/* As an optimisation, we only copy the actual
2917 			 * number of rules that the underlying
2918 			 * function returned.  Since Mallory might
2919 			 * change the rule count in user memory, we
2920 			 * check that it is less than the rule count
2921 			 * originally given (as the user buffer size),
2922 			 * which has been range-checked.
2923 			 */
2924 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2925 				return -EFAULT;
2926 			if (actual_rule_cnt < rule_cnt)
2927 				rule_cnt = actual_rule_cnt;
2928 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2929 					 &rxnfc->rule_locs[0],
2930 					 rule_cnt * sizeof(u32)))
2931 				return -EFAULT;
2932 		}
2933 	}
2934 
2935 	return 0;
2936 }
2937 
2938 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2939 {
2940 	compat_uptr_t uptr32;
2941 	struct ifreq ifr;
2942 	void __user *saved;
2943 	int err;
2944 
2945 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2946 		return -EFAULT;
2947 
2948 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2949 		return -EFAULT;
2950 
2951 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2952 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2953 
2954 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2955 	if (!err) {
2956 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2957 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2958 			err = -EFAULT;
2959 	}
2960 	return err;
2961 }
2962 
2963 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2964 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2965 				 struct compat_ifreq __user *u_ifreq32)
2966 {
2967 	struct ifreq ifreq;
2968 	u32 data32;
2969 
2970 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2971 		return -EFAULT;
2972 	if (get_user(data32, &u_ifreq32->ifr_data))
2973 		return -EFAULT;
2974 	ifreq.ifr_data = compat_ptr(data32);
2975 
2976 	return dev_ioctl(net, cmd, &ifreq, NULL);
2977 }
2978 
2979 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2980 			struct compat_ifreq __user *uifr32)
2981 {
2982 	struct ifreq ifr;
2983 	struct compat_ifmap __user *uifmap32;
2984 	int err;
2985 
2986 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2987 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2988 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2989 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2990 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2991 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2992 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2993 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2994 	if (err)
2995 		return -EFAULT;
2996 
2997 	err = dev_ioctl(net, cmd, &ifr, NULL);
2998 
2999 	if (cmd == SIOCGIFMAP && !err) {
3000 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3001 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3002 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3003 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3004 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3005 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3006 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3007 		if (err)
3008 			err = -EFAULT;
3009 	}
3010 	return err;
3011 }
3012 
3013 struct rtentry32 {
3014 	u32		rt_pad1;
3015 	struct sockaddr rt_dst;         /* target address               */
3016 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3017 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3018 	unsigned short	rt_flags;
3019 	short		rt_pad2;
3020 	u32		rt_pad3;
3021 	unsigned char	rt_tos;
3022 	unsigned char	rt_class;
3023 	short		rt_pad4;
3024 	short		rt_metric;      /* +1 for binary compatibility! */
3025 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3026 	u32		rt_mtu;         /* per route MTU/Window         */
3027 	u32		rt_window;      /* Window clamping              */
3028 	unsigned short  rt_irtt;        /* Initial RTT                  */
3029 };
3030 
3031 struct in6_rtmsg32 {
3032 	struct in6_addr		rtmsg_dst;
3033 	struct in6_addr		rtmsg_src;
3034 	struct in6_addr		rtmsg_gateway;
3035 	u32			rtmsg_type;
3036 	u16			rtmsg_dst_len;
3037 	u16			rtmsg_src_len;
3038 	u32			rtmsg_metric;
3039 	u32			rtmsg_info;
3040 	u32			rtmsg_flags;
3041 	s32			rtmsg_ifindex;
3042 };
3043 
3044 static int routing_ioctl(struct net *net, struct socket *sock,
3045 			 unsigned int cmd, void __user *argp)
3046 {
3047 	int ret;
3048 	void *r = NULL;
3049 	struct in6_rtmsg r6;
3050 	struct rtentry r4;
3051 	char devname[16];
3052 	u32 rtdev;
3053 	mm_segment_t old_fs = get_fs();
3054 
3055 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3056 		struct in6_rtmsg32 __user *ur6 = argp;
3057 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3058 			3 * sizeof(struct in6_addr));
3059 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3060 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3061 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3062 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3063 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3064 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3065 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3066 
3067 		r = (void *) &r6;
3068 	} else { /* ipv4 */
3069 		struct rtentry32 __user *ur4 = argp;
3070 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3071 					3 * sizeof(struct sockaddr));
3072 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3073 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3074 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3075 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3076 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3077 		ret |= get_user(rtdev, &(ur4->rt_dev));
3078 		if (rtdev) {
3079 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3080 			r4.rt_dev = (char __user __force *)devname;
3081 			devname[15] = 0;
3082 		} else
3083 			r4.rt_dev = NULL;
3084 
3085 		r = (void *) &r4;
3086 	}
3087 
3088 	if (ret) {
3089 		ret = -EFAULT;
3090 		goto out;
3091 	}
3092 
3093 	set_fs(KERNEL_DS);
3094 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3095 	set_fs(old_fs);
3096 
3097 out:
3098 	return ret;
3099 }
3100 
3101 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3102  * for some operations; this forces use of the newer bridge-utils that
3103  * use compatible ioctls
3104  */
3105 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3106 {
3107 	compat_ulong_t tmp;
3108 
3109 	if (get_user(tmp, argp))
3110 		return -EFAULT;
3111 	if (tmp == BRCTL_GET_VERSION)
3112 		return BRCTL_VERSION + 1;
3113 	return -EINVAL;
3114 }
3115 
3116 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3117 			 unsigned int cmd, unsigned long arg)
3118 {
3119 	void __user *argp = compat_ptr(arg);
3120 	struct sock *sk = sock->sk;
3121 	struct net *net = sock_net(sk);
3122 
3123 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3124 		return compat_ifr_data_ioctl(net, cmd, argp);
3125 
3126 	switch (cmd) {
3127 	case SIOCSIFBR:
3128 	case SIOCGIFBR:
3129 		return old_bridge_ioctl(argp);
3130 	case SIOCGIFCONF:
3131 		return compat_dev_ifconf(net, argp);
3132 	case SIOCETHTOOL:
3133 		return ethtool_ioctl(net, argp);
3134 	case SIOCWANDEV:
3135 		return compat_siocwandev(net, argp);
3136 	case SIOCGIFMAP:
3137 	case SIOCSIFMAP:
3138 		return compat_sioc_ifmap(net, cmd, argp);
3139 	case SIOCADDRT:
3140 	case SIOCDELRT:
3141 		return routing_ioctl(net, sock, cmd, argp);
3142 	case SIOCGSTAMP:
3143 		return do_siocgstamp(net, sock, cmd, argp);
3144 	case SIOCGSTAMPNS:
3145 		return do_siocgstampns(net, sock, cmd, argp);
3146 	case SIOCBONDSLAVEINFOQUERY:
3147 	case SIOCBONDINFOQUERY:
3148 	case SIOCSHWTSTAMP:
3149 	case SIOCGHWTSTAMP:
3150 		return compat_ifr_data_ioctl(net, cmd, argp);
3151 
3152 	case FIOSETOWN:
3153 	case SIOCSPGRP:
3154 	case FIOGETOWN:
3155 	case SIOCGPGRP:
3156 	case SIOCBRADDBR:
3157 	case SIOCBRDELBR:
3158 	case SIOCGIFVLAN:
3159 	case SIOCSIFVLAN:
3160 	case SIOCADDDLCI:
3161 	case SIOCDELDLCI:
3162 	case SIOCGSKNS:
3163 		return sock_ioctl(file, cmd, arg);
3164 
3165 	case SIOCGIFFLAGS:
3166 	case SIOCSIFFLAGS:
3167 	case SIOCGIFMETRIC:
3168 	case SIOCSIFMETRIC:
3169 	case SIOCGIFMTU:
3170 	case SIOCSIFMTU:
3171 	case SIOCGIFMEM:
3172 	case SIOCSIFMEM:
3173 	case SIOCGIFHWADDR:
3174 	case SIOCSIFHWADDR:
3175 	case SIOCADDMULTI:
3176 	case SIOCDELMULTI:
3177 	case SIOCGIFINDEX:
3178 	case SIOCGIFADDR:
3179 	case SIOCSIFADDR:
3180 	case SIOCSIFHWBROADCAST:
3181 	case SIOCDIFADDR:
3182 	case SIOCGIFBRDADDR:
3183 	case SIOCSIFBRDADDR:
3184 	case SIOCGIFDSTADDR:
3185 	case SIOCSIFDSTADDR:
3186 	case SIOCGIFNETMASK:
3187 	case SIOCSIFNETMASK:
3188 	case SIOCSIFPFLAGS:
3189 	case SIOCGIFPFLAGS:
3190 	case SIOCGIFTXQLEN:
3191 	case SIOCSIFTXQLEN:
3192 	case SIOCBRADDIF:
3193 	case SIOCBRDELIF:
3194 	case SIOCSIFNAME:
3195 	case SIOCGMIIPHY:
3196 	case SIOCGMIIREG:
3197 	case SIOCSMIIREG:
3198 	case SIOCSARP:
3199 	case SIOCGARP:
3200 	case SIOCDARP:
3201 	case SIOCATMARK:
3202 	case SIOCBONDENSLAVE:
3203 	case SIOCBONDRELEASE:
3204 	case SIOCBONDSETHWADDR:
3205 	case SIOCBONDCHANGEACTIVE:
3206 	case SIOCGIFNAME:
3207 		return sock_do_ioctl(net, sock, cmd, arg);
3208 	}
3209 
3210 	return -ENOIOCTLCMD;
3211 }
3212 
3213 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3214 			      unsigned long arg)
3215 {
3216 	struct socket *sock = file->private_data;
3217 	int ret = -ENOIOCTLCMD;
3218 	struct sock *sk;
3219 	struct net *net;
3220 
3221 	sk = sock->sk;
3222 	net = sock_net(sk);
3223 
3224 	if (sock->ops->compat_ioctl)
3225 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3226 
3227 	if (ret == -ENOIOCTLCMD &&
3228 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3229 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3230 
3231 	if (ret == -ENOIOCTLCMD)
3232 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3233 
3234 	return ret;
3235 }
3236 #endif
3237 
3238 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3239 {
3240 	return sock->ops->bind(sock, addr, addrlen);
3241 }
3242 EXPORT_SYMBOL(kernel_bind);
3243 
3244 int kernel_listen(struct socket *sock, int backlog)
3245 {
3246 	return sock->ops->listen(sock, backlog);
3247 }
3248 EXPORT_SYMBOL(kernel_listen);
3249 
3250 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3251 {
3252 	struct sock *sk = sock->sk;
3253 	int err;
3254 
3255 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3256 			       newsock);
3257 	if (err < 0)
3258 		goto done;
3259 
3260 	err = sock->ops->accept(sock, *newsock, flags, true);
3261 	if (err < 0) {
3262 		sock_release(*newsock);
3263 		*newsock = NULL;
3264 		goto done;
3265 	}
3266 
3267 	(*newsock)->ops = sock->ops;
3268 	__module_get((*newsock)->ops->owner);
3269 
3270 done:
3271 	return err;
3272 }
3273 EXPORT_SYMBOL(kernel_accept);
3274 
3275 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3276 		   int flags)
3277 {
3278 	return sock->ops->connect(sock, addr, addrlen, flags);
3279 }
3280 EXPORT_SYMBOL(kernel_connect);
3281 
3282 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3283 {
3284 	return sock->ops->getname(sock, addr, 0);
3285 }
3286 EXPORT_SYMBOL(kernel_getsockname);
3287 
3288 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3289 {
3290 	return sock->ops->getname(sock, addr, 1);
3291 }
3292 EXPORT_SYMBOL(kernel_getpeername);
3293 
3294 int kernel_getsockopt(struct socket *sock, int level, int optname,
3295 			char *optval, int *optlen)
3296 {
3297 	mm_segment_t oldfs = get_fs();
3298 	char __user *uoptval;
3299 	int __user *uoptlen;
3300 	int err;
3301 
3302 	uoptval = (char __user __force *) optval;
3303 	uoptlen = (int __user __force *) optlen;
3304 
3305 	set_fs(KERNEL_DS);
3306 	if (level == SOL_SOCKET)
3307 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3308 	else
3309 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3310 					    uoptlen);
3311 	set_fs(oldfs);
3312 	return err;
3313 }
3314 EXPORT_SYMBOL(kernel_getsockopt);
3315 
3316 int kernel_setsockopt(struct socket *sock, int level, int optname,
3317 			char *optval, unsigned int optlen)
3318 {
3319 	mm_segment_t oldfs = get_fs();
3320 	char __user *uoptval;
3321 	int err;
3322 
3323 	uoptval = (char __user __force *) optval;
3324 
3325 	set_fs(KERNEL_DS);
3326 	if (level == SOL_SOCKET)
3327 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3328 	else
3329 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3330 					    optlen);
3331 	set_fs(oldfs);
3332 	return err;
3333 }
3334 EXPORT_SYMBOL(kernel_setsockopt);
3335 
3336 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3337 		    size_t size, int flags)
3338 {
3339 	if (sock->ops->sendpage)
3340 		return sock->ops->sendpage(sock, page, offset, size, flags);
3341 
3342 	return sock_no_sendpage(sock, page, offset, size, flags);
3343 }
3344 EXPORT_SYMBOL(kernel_sendpage);
3345 
3346 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3347 			   size_t size, int flags)
3348 {
3349 	struct socket *sock = sk->sk_socket;
3350 
3351 	if (sock->ops->sendpage_locked)
3352 		return sock->ops->sendpage_locked(sk, page, offset, size,
3353 						  flags);
3354 
3355 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3356 }
3357 EXPORT_SYMBOL(kernel_sendpage_locked);
3358 
3359 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3360 {
3361 	return sock->ops->shutdown(sock, how);
3362 }
3363 EXPORT_SYMBOL(kernel_sock_shutdown);
3364 
3365 /* This routine returns the IP overhead imposed by a socket i.e.
3366  * the length of the underlying IP header, depending on whether
3367  * this is an IPv4 or IPv6 socket and the length from IP options turned
3368  * on at the socket. Assumes that the caller has a lock on the socket.
3369  */
3370 u32 kernel_sock_ip_overhead(struct sock *sk)
3371 {
3372 	struct inet_sock *inet;
3373 	struct ip_options_rcu *opt;
3374 	u32 overhead = 0;
3375 #if IS_ENABLED(CONFIG_IPV6)
3376 	struct ipv6_pinfo *np;
3377 	struct ipv6_txoptions *optv6 = NULL;
3378 #endif /* IS_ENABLED(CONFIG_IPV6) */
3379 
3380 	if (!sk)
3381 		return overhead;
3382 
3383 	switch (sk->sk_family) {
3384 	case AF_INET:
3385 		inet = inet_sk(sk);
3386 		overhead += sizeof(struct iphdr);
3387 		opt = rcu_dereference_protected(inet->inet_opt,
3388 						sock_owned_by_user(sk));
3389 		if (opt)
3390 			overhead += opt->opt.optlen;
3391 		return overhead;
3392 #if IS_ENABLED(CONFIG_IPV6)
3393 	case AF_INET6:
3394 		np = inet6_sk(sk);
3395 		overhead += sizeof(struct ipv6hdr);
3396 		if (np)
3397 			optv6 = rcu_dereference_protected(np->opt,
3398 							  sock_owned_by_user(sk));
3399 		if (optv6)
3400 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3401 		return overhead;
3402 #endif /* IS_ENABLED(CONFIG_IPV6) */
3403 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3404 		return overhead;
3405 	}
3406 }
3407 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3408