xref: /openbmc/linux/net/socket.c (revision 648845ab)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __read_mostly;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.destroy_inode	= sock_destroy_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
356 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
357 			 int flags, const char *dev_name, void *data)
358 {
359 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
360 				  sockfs_xattr_handlers,
361 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
362 }
363 
364 static struct vfsmount *sock_mnt __read_mostly;
365 
366 static struct file_system_type sock_fs_type = {
367 	.name =		"sockfs",
368 	.mount =	sockfs_mount,
369 	.kill_sb =	kill_anon_super,
370 };
371 
372 /*
373  *	Obtains the first available file descriptor and sets it up for use.
374  *
375  *	These functions create file structures and maps them to fd space
376  *	of the current process. On success it returns file descriptor
377  *	and file struct implicitly stored in sock->file.
378  *	Note that another thread may close file descriptor before we return
379  *	from this function. We use the fact that now we do not refer
380  *	to socket after mapping. If one day we will need it, this
381  *	function will increment ref. count on file by 1.
382  *
383  *	In any case returned fd MAY BE not valid!
384  *	This race condition is unavoidable
385  *	with shared fd spaces, we cannot solve it inside kernel,
386  *	but we take care of internal coherence yet.
387  */
388 
389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
390 {
391 	struct qstr name = { .name = "" };
392 	struct path path;
393 	struct file *file;
394 
395 	if (dname) {
396 		name.name = dname;
397 		name.len = strlen(name.name);
398 	} else if (sock->sk) {
399 		name.name = sock->sk->sk_prot_creator->name;
400 		name.len = strlen(name.name);
401 	}
402 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
403 	if (unlikely(!path.dentry)) {
404 		sock_release(sock);
405 		return ERR_PTR(-ENOMEM);
406 	}
407 	path.mnt = mntget(sock_mnt);
408 
409 	d_instantiate(path.dentry, SOCK_INODE(sock));
410 
411 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
412 		  &socket_file_ops);
413 	if (IS_ERR(file)) {
414 		/* drop dentry, keep inode for a bit */
415 		ihold(d_inode(path.dentry));
416 		path_put(&path);
417 		/* ... and now kill it properly */
418 		sock_release(sock);
419 		return file;
420 	}
421 
422 	sock->file = file;
423 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
424 	file->private_data = sock;
425 	return file;
426 }
427 EXPORT_SYMBOL(sock_alloc_file);
428 
429 static int sock_map_fd(struct socket *sock, int flags)
430 {
431 	struct file *newfile;
432 	int fd = get_unused_fd_flags(flags);
433 	if (unlikely(fd < 0))
434 		return fd;
435 
436 	newfile = sock_alloc_file(sock, flags, NULL);
437 	if (likely(!IS_ERR(newfile))) {
438 		fd_install(fd, newfile);
439 		return fd;
440 	}
441 
442 	put_unused_fd(fd);
443 	return PTR_ERR(newfile);
444 }
445 
446 struct socket *sock_from_file(struct file *file, int *err)
447 {
448 	if (file->f_op == &socket_file_ops)
449 		return file->private_data;	/* set in sock_map_fd */
450 
451 	*err = -ENOTSOCK;
452 	return NULL;
453 }
454 EXPORT_SYMBOL(sock_from_file);
455 
456 /**
457  *	sockfd_lookup - Go from a file number to its socket slot
458  *	@fd: file handle
459  *	@err: pointer to an error code return
460  *
461  *	The file handle passed in is locked and the socket it is bound
462  *	to is returned. If an error occurs the err pointer is overwritten
463  *	with a negative errno code and NULL is returned. The function checks
464  *	for both invalid handles and passing a handle which is not a socket.
465  *
466  *	On a success the socket object pointer is returned.
467  */
468 
469 struct socket *sockfd_lookup(int fd, int *err)
470 {
471 	struct file *file;
472 	struct socket *sock;
473 
474 	file = fget(fd);
475 	if (!file) {
476 		*err = -EBADF;
477 		return NULL;
478 	}
479 
480 	sock = sock_from_file(file, err);
481 	if (!sock)
482 		fput(file);
483 	return sock;
484 }
485 EXPORT_SYMBOL(sockfd_lookup);
486 
487 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
488 {
489 	struct fd f = fdget(fd);
490 	struct socket *sock;
491 
492 	*err = -EBADF;
493 	if (f.file) {
494 		sock = sock_from_file(f.file, err);
495 		if (likely(sock)) {
496 			*fput_needed = f.flags;
497 			return sock;
498 		}
499 		fdput(f);
500 	}
501 	return NULL;
502 }
503 
504 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
505 				size_t size)
506 {
507 	ssize_t len;
508 	ssize_t used = 0;
509 
510 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
511 	if (len < 0)
512 		return len;
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		buffer += len;
518 	}
519 
520 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
521 	used += len;
522 	if (buffer) {
523 		if (size < used)
524 			return -ERANGE;
525 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
526 		buffer += len;
527 	}
528 
529 	return used;
530 }
531 
532 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
533 {
534 	int err = simple_setattr(dentry, iattr);
535 
536 	if (!err && (iattr->ia_valid & ATTR_UID)) {
537 		struct socket *sock = SOCKET_I(d_inode(dentry));
538 
539 		sock->sk->sk_uid = iattr->ia_uid;
540 	}
541 
542 	return err;
543 }
544 
545 static const struct inode_operations sockfs_inode_ops = {
546 	.listxattr = sockfs_listxattr,
547 	.setattr = sockfs_setattr,
548 };
549 
550 /**
551  *	sock_alloc	-	allocate a socket
552  *
553  *	Allocate a new inode and socket object. The two are bound together
554  *	and initialised. The socket is then returned. If we are out of inodes
555  *	NULL is returned.
556  */
557 
558 struct socket *sock_alloc(void)
559 {
560 	struct inode *inode;
561 	struct socket *sock;
562 
563 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
564 	if (!inode)
565 		return NULL;
566 
567 	sock = SOCKET_I(inode);
568 
569 	inode->i_ino = get_next_ino();
570 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
571 	inode->i_uid = current_fsuid();
572 	inode->i_gid = current_fsgid();
573 	inode->i_op = &sockfs_inode_ops;
574 
575 	return sock;
576 }
577 EXPORT_SYMBOL(sock_alloc);
578 
579 /**
580  *	sock_release	-	close a socket
581  *	@sock: socket to close
582  *
583  *	The socket is released from the protocol stack if it has a release
584  *	callback, and the inode is then released if the socket is bound to
585  *	an inode not a file.
586  */
587 
588 void sock_release(struct socket *sock)
589 {
590 	if (sock->ops) {
591 		struct module *owner = sock->ops->owner;
592 
593 		sock->ops->release(sock);
594 		sock->ops = NULL;
595 		module_put(owner);
596 	}
597 
598 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 		pr_err("%s: fasync list not empty!\n", __func__);
600 
601 	if (!sock->file) {
602 		iput(SOCK_INODE(sock));
603 		return;
604 	}
605 	sock->file = NULL;
606 }
607 EXPORT_SYMBOL(sock_release);
608 
609 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
610 {
611 	u8 flags = *tx_flags;
612 
613 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
614 		flags |= SKBTX_HW_TSTAMP;
615 
616 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
617 		flags |= SKBTX_SW_TSTAMP;
618 
619 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
620 		flags |= SKBTX_SCHED_TSTAMP;
621 
622 	*tx_flags = flags;
623 }
624 EXPORT_SYMBOL(__sock_tx_timestamp);
625 
626 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
627 {
628 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
629 	BUG_ON(ret == -EIOCBQUEUED);
630 	return ret;
631 }
632 
633 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
634 {
635 	int err = security_socket_sendmsg(sock, msg,
636 					  msg_data_left(msg));
637 
638 	return err ?: sock_sendmsg_nosec(sock, msg);
639 }
640 EXPORT_SYMBOL(sock_sendmsg);
641 
642 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
643 		   struct kvec *vec, size_t num, size_t size)
644 {
645 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
646 	return sock_sendmsg(sock, msg);
647 }
648 EXPORT_SYMBOL(kernel_sendmsg);
649 
650 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
651 			  struct kvec *vec, size_t num, size_t size)
652 {
653 	struct socket *sock = sk->sk_socket;
654 
655 	if (!sock->ops->sendmsg_locked)
656 		return sock_no_sendmsg_locked(sk, msg, size);
657 
658 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
659 
660 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
661 }
662 EXPORT_SYMBOL(kernel_sendmsg_locked);
663 
664 static bool skb_is_err_queue(const struct sk_buff *skb)
665 {
666 	/* pkt_type of skbs enqueued on the error queue are set to
667 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
668 	 * in recvmsg, since skbs received on a local socket will never
669 	 * have a pkt_type of PACKET_OUTGOING.
670 	 */
671 	return skb->pkt_type == PACKET_OUTGOING;
672 }
673 
674 /* On transmit, software and hardware timestamps are returned independently.
675  * As the two skb clones share the hardware timestamp, which may be updated
676  * before the software timestamp is received, a hardware TX timestamp may be
677  * returned only if there is no software TX timestamp. Ignore false software
678  * timestamps, which may be made in the __sock_recv_timestamp() call when the
679  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
680  * hardware timestamp.
681  */
682 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
683 {
684 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
685 }
686 
687 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
688 {
689 	struct scm_ts_pktinfo ts_pktinfo;
690 	struct net_device *orig_dev;
691 
692 	if (!skb_mac_header_was_set(skb))
693 		return;
694 
695 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
696 
697 	rcu_read_lock();
698 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
699 	if (orig_dev)
700 		ts_pktinfo.if_index = orig_dev->ifindex;
701 	rcu_read_unlock();
702 
703 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
704 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
705 		 sizeof(ts_pktinfo), &ts_pktinfo);
706 }
707 
708 /*
709  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
710  */
711 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
712 	struct sk_buff *skb)
713 {
714 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
715 	struct scm_timestamping tss;
716 	int empty = 1, false_tstamp = 0;
717 	struct skb_shared_hwtstamps *shhwtstamps =
718 		skb_hwtstamps(skb);
719 
720 	/* Race occurred between timestamp enabling and packet
721 	   receiving.  Fill in the current time for now. */
722 	if (need_software_tstamp && skb->tstamp == 0) {
723 		__net_timestamp(skb);
724 		false_tstamp = 1;
725 	}
726 
727 	if (need_software_tstamp) {
728 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
729 			struct timeval tv;
730 			skb_get_timestamp(skb, &tv);
731 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
732 				 sizeof(tv), &tv);
733 		} else {
734 			struct timespec ts;
735 			skb_get_timestampns(skb, &ts);
736 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
737 				 sizeof(ts), &ts);
738 		}
739 	}
740 
741 	memset(&tss, 0, sizeof(tss));
742 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
743 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
744 		empty = 0;
745 	if (shhwtstamps &&
746 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
747 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
748 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
749 		empty = 0;
750 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
751 		    !skb_is_err_queue(skb))
752 			put_ts_pktinfo(msg, skb);
753 	}
754 	if (!empty) {
755 		put_cmsg(msg, SOL_SOCKET,
756 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
757 
758 		if (skb_is_err_queue(skb) && skb->len &&
759 		    SKB_EXT_ERR(skb)->opt_stats)
760 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
761 				 skb->len, skb->data);
762 	}
763 }
764 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
765 
766 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
767 	struct sk_buff *skb)
768 {
769 	int ack;
770 
771 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
772 		return;
773 	if (!skb->wifi_acked_valid)
774 		return;
775 
776 	ack = skb->wifi_acked;
777 
778 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
779 }
780 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
781 
782 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
783 				   struct sk_buff *skb)
784 {
785 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
786 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
787 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
788 }
789 
790 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
791 	struct sk_buff *skb)
792 {
793 	sock_recv_timestamp(msg, sk, skb);
794 	sock_recv_drops(msg, sk, skb);
795 }
796 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
797 
798 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
799 				     int flags)
800 {
801 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
802 }
803 
804 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
805 {
806 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
807 
808 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
809 }
810 EXPORT_SYMBOL(sock_recvmsg);
811 
812 /**
813  * kernel_recvmsg - Receive a message from a socket (kernel space)
814  * @sock:       The socket to receive the message from
815  * @msg:        Received message
816  * @vec:        Input s/g array for message data
817  * @num:        Size of input s/g array
818  * @size:       Number of bytes to read
819  * @flags:      Message flags (MSG_DONTWAIT, etc...)
820  *
821  * On return the msg structure contains the scatter/gather array passed in the
822  * vec argument. The array is modified so that it consists of the unfilled
823  * portion of the original array.
824  *
825  * The returned value is the total number of bytes received, or an error.
826  */
827 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
828 		   struct kvec *vec, size_t num, size_t size, int flags)
829 {
830 	mm_segment_t oldfs = get_fs();
831 	int result;
832 
833 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
834 	set_fs(KERNEL_DS);
835 	result = sock_recvmsg(sock, msg, flags);
836 	set_fs(oldfs);
837 	return result;
838 }
839 EXPORT_SYMBOL(kernel_recvmsg);
840 
841 static ssize_t sock_sendpage(struct file *file, struct page *page,
842 			     int offset, size_t size, loff_t *ppos, int more)
843 {
844 	struct socket *sock;
845 	int flags;
846 
847 	sock = file->private_data;
848 
849 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
850 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
851 	flags |= more;
852 
853 	return kernel_sendpage(sock, page, offset, size, flags);
854 }
855 
856 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
857 				struct pipe_inode_info *pipe, size_t len,
858 				unsigned int flags)
859 {
860 	struct socket *sock = file->private_data;
861 
862 	if (unlikely(!sock->ops->splice_read))
863 		return -EINVAL;
864 
865 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
866 }
867 
868 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
869 {
870 	struct file *file = iocb->ki_filp;
871 	struct socket *sock = file->private_data;
872 	struct msghdr msg = {.msg_iter = *to,
873 			     .msg_iocb = iocb};
874 	ssize_t res;
875 
876 	if (file->f_flags & O_NONBLOCK)
877 		msg.msg_flags = MSG_DONTWAIT;
878 
879 	if (iocb->ki_pos != 0)
880 		return -ESPIPE;
881 
882 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
883 		return 0;
884 
885 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
886 	*to = msg.msg_iter;
887 	return res;
888 }
889 
890 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
891 {
892 	struct file *file = iocb->ki_filp;
893 	struct socket *sock = file->private_data;
894 	struct msghdr msg = {.msg_iter = *from,
895 			     .msg_iocb = iocb};
896 	ssize_t res;
897 
898 	if (iocb->ki_pos != 0)
899 		return -ESPIPE;
900 
901 	if (file->f_flags & O_NONBLOCK)
902 		msg.msg_flags = MSG_DONTWAIT;
903 
904 	if (sock->type == SOCK_SEQPACKET)
905 		msg.msg_flags |= MSG_EOR;
906 
907 	res = sock_sendmsg(sock, &msg);
908 	*from = msg.msg_iter;
909 	return res;
910 }
911 
912 /*
913  * Atomic setting of ioctl hooks to avoid race
914  * with module unload.
915  */
916 
917 static DEFINE_MUTEX(br_ioctl_mutex);
918 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
919 
920 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
921 {
922 	mutex_lock(&br_ioctl_mutex);
923 	br_ioctl_hook = hook;
924 	mutex_unlock(&br_ioctl_mutex);
925 }
926 EXPORT_SYMBOL(brioctl_set);
927 
928 static DEFINE_MUTEX(vlan_ioctl_mutex);
929 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
930 
931 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
932 {
933 	mutex_lock(&vlan_ioctl_mutex);
934 	vlan_ioctl_hook = hook;
935 	mutex_unlock(&vlan_ioctl_mutex);
936 }
937 EXPORT_SYMBOL(vlan_ioctl_set);
938 
939 static DEFINE_MUTEX(dlci_ioctl_mutex);
940 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
941 
942 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
943 {
944 	mutex_lock(&dlci_ioctl_mutex);
945 	dlci_ioctl_hook = hook;
946 	mutex_unlock(&dlci_ioctl_mutex);
947 }
948 EXPORT_SYMBOL(dlci_ioctl_set);
949 
950 static long sock_do_ioctl(struct net *net, struct socket *sock,
951 				 unsigned int cmd, unsigned long arg)
952 {
953 	int err;
954 	void __user *argp = (void __user *)arg;
955 
956 	err = sock->ops->ioctl(sock, cmd, arg);
957 
958 	/*
959 	 * If this ioctl is unknown try to hand it down
960 	 * to the NIC driver.
961 	 */
962 	if (err == -ENOIOCTLCMD)
963 		err = dev_ioctl(net, cmd, argp);
964 
965 	return err;
966 }
967 
968 /*
969  *	With an ioctl, arg may well be a user mode pointer, but we don't know
970  *	what to do with it - that's up to the protocol still.
971  */
972 
973 static struct ns_common *get_net_ns(struct ns_common *ns)
974 {
975 	return &get_net(container_of(ns, struct net, ns))->ns;
976 }
977 
978 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
979 {
980 	struct socket *sock;
981 	struct sock *sk;
982 	void __user *argp = (void __user *)arg;
983 	int pid, err;
984 	struct net *net;
985 
986 	sock = file->private_data;
987 	sk = sock->sk;
988 	net = sock_net(sk);
989 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
990 		err = dev_ioctl(net, cmd, argp);
991 	} else
992 #ifdef CONFIG_WEXT_CORE
993 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
994 		err = dev_ioctl(net, cmd, argp);
995 	} else
996 #endif
997 		switch (cmd) {
998 		case FIOSETOWN:
999 		case SIOCSPGRP:
1000 			err = -EFAULT;
1001 			if (get_user(pid, (int __user *)argp))
1002 				break;
1003 			err = f_setown(sock->file, pid, 1);
1004 			break;
1005 		case FIOGETOWN:
1006 		case SIOCGPGRP:
1007 			err = put_user(f_getown(sock->file),
1008 				       (int __user *)argp);
1009 			break;
1010 		case SIOCGIFBR:
1011 		case SIOCSIFBR:
1012 		case SIOCBRADDBR:
1013 		case SIOCBRDELBR:
1014 			err = -ENOPKG;
1015 			if (!br_ioctl_hook)
1016 				request_module("bridge");
1017 
1018 			mutex_lock(&br_ioctl_mutex);
1019 			if (br_ioctl_hook)
1020 				err = br_ioctl_hook(net, cmd, argp);
1021 			mutex_unlock(&br_ioctl_mutex);
1022 			break;
1023 		case SIOCGIFVLAN:
1024 		case SIOCSIFVLAN:
1025 			err = -ENOPKG;
1026 			if (!vlan_ioctl_hook)
1027 				request_module("8021q");
1028 
1029 			mutex_lock(&vlan_ioctl_mutex);
1030 			if (vlan_ioctl_hook)
1031 				err = vlan_ioctl_hook(net, argp);
1032 			mutex_unlock(&vlan_ioctl_mutex);
1033 			break;
1034 		case SIOCADDDLCI:
1035 		case SIOCDELDLCI:
1036 			err = -ENOPKG;
1037 			if (!dlci_ioctl_hook)
1038 				request_module("dlci");
1039 
1040 			mutex_lock(&dlci_ioctl_mutex);
1041 			if (dlci_ioctl_hook)
1042 				err = dlci_ioctl_hook(cmd, argp);
1043 			mutex_unlock(&dlci_ioctl_mutex);
1044 			break;
1045 		case SIOCGSKNS:
1046 			err = -EPERM;
1047 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1048 				break;
1049 
1050 			err = open_related_ns(&net->ns, get_net_ns);
1051 			break;
1052 		default:
1053 			err = sock_do_ioctl(net, sock, cmd, arg);
1054 			break;
1055 		}
1056 	return err;
1057 }
1058 
1059 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1060 {
1061 	int err;
1062 	struct socket *sock = NULL;
1063 
1064 	err = security_socket_create(family, type, protocol, 1);
1065 	if (err)
1066 		goto out;
1067 
1068 	sock = sock_alloc();
1069 	if (!sock) {
1070 		err = -ENOMEM;
1071 		goto out;
1072 	}
1073 
1074 	sock->type = type;
1075 	err = security_socket_post_create(sock, family, type, protocol, 1);
1076 	if (err)
1077 		goto out_release;
1078 
1079 out:
1080 	*res = sock;
1081 	return err;
1082 out_release:
1083 	sock_release(sock);
1084 	sock = NULL;
1085 	goto out;
1086 }
1087 EXPORT_SYMBOL(sock_create_lite);
1088 
1089 /* No kernel lock held - perfect */
1090 static unsigned int sock_poll(struct file *file, poll_table *wait)
1091 {
1092 	unsigned int busy_flag = 0;
1093 	struct socket *sock;
1094 
1095 	/*
1096 	 *      We can't return errors to poll, so it's either yes or no.
1097 	 */
1098 	sock = file->private_data;
1099 
1100 	if (sk_can_busy_loop(sock->sk)) {
1101 		/* this socket can poll_ll so tell the system call */
1102 		busy_flag = POLL_BUSY_LOOP;
1103 
1104 		/* once, only if requested by syscall */
1105 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1106 			sk_busy_loop(sock->sk, 1);
1107 	}
1108 
1109 	return busy_flag | sock->ops->poll(file, sock, wait);
1110 }
1111 
1112 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1113 {
1114 	struct socket *sock = file->private_data;
1115 
1116 	return sock->ops->mmap(file, sock, vma);
1117 }
1118 
1119 static int sock_close(struct inode *inode, struct file *filp)
1120 {
1121 	sock_release(SOCKET_I(inode));
1122 	return 0;
1123 }
1124 
1125 /*
1126  *	Update the socket async list
1127  *
1128  *	Fasync_list locking strategy.
1129  *
1130  *	1. fasync_list is modified only under process context socket lock
1131  *	   i.e. under semaphore.
1132  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1133  *	   or under socket lock
1134  */
1135 
1136 static int sock_fasync(int fd, struct file *filp, int on)
1137 {
1138 	struct socket *sock = filp->private_data;
1139 	struct sock *sk = sock->sk;
1140 	struct socket_wq *wq;
1141 
1142 	if (sk == NULL)
1143 		return -EINVAL;
1144 
1145 	lock_sock(sk);
1146 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1147 	fasync_helper(fd, filp, on, &wq->fasync_list);
1148 
1149 	if (!wq->fasync_list)
1150 		sock_reset_flag(sk, SOCK_FASYNC);
1151 	else
1152 		sock_set_flag(sk, SOCK_FASYNC);
1153 
1154 	release_sock(sk);
1155 	return 0;
1156 }
1157 
1158 /* This function may be called only under rcu_lock */
1159 
1160 int sock_wake_async(struct socket_wq *wq, int how, int band)
1161 {
1162 	if (!wq || !wq->fasync_list)
1163 		return -1;
1164 
1165 	switch (how) {
1166 	case SOCK_WAKE_WAITD:
1167 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1168 			break;
1169 		goto call_kill;
1170 	case SOCK_WAKE_SPACE:
1171 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1172 			break;
1173 		/* fall through */
1174 	case SOCK_WAKE_IO:
1175 call_kill:
1176 		kill_fasync(&wq->fasync_list, SIGIO, band);
1177 		break;
1178 	case SOCK_WAKE_URG:
1179 		kill_fasync(&wq->fasync_list, SIGURG, band);
1180 	}
1181 
1182 	return 0;
1183 }
1184 EXPORT_SYMBOL(sock_wake_async);
1185 
1186 int __sock_create(struct net *net, int family, int type, int protocol,
1187 			 struct socket **res, int kern)
1188 {
1189 	int err;
1190 	struct socket *sock;
1191 	const struct net_proto_family *pf;
1192 
1193 	/*
1194 	 *      Check protocol is in range
1195 	 */
1196 	if (family < 0 || family >= NPROTO)
1197 		return -EAFNOSUPPORT;
1198 	if (type < 0 || type >= SOCK_MAX)
1199 		return -EINVAL;
1200 
1201 	/* Compatibility.
1202 
1203 	   This uglymoron is moved from INET layer to here to avoid
1204 	   deadlock in module load.
1205 	 */
1206 	if (family == PF_INET && type == SOCK_PACKET) {
1207 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1208 			     current->comm);
1209 		family = PF_PACKET;
1210 	}
1211 
1212 	err = security_socket_create(family, type, protocol, kern);
1213 	if (err)
1214 		return err;
1215 
1216 	/*
1217 	 *	Allocate the socket and allow the family to set things up. if
1218 	 *	the protocol is 0, the family is instructed to select an appropriate
1219 	 *	default.
1220 	 */
1221 	sock = sock_alloc();
1222 	if (!sock) {
1223 		net_warn_ratelimited("socket: no more sockets\n");
1224 		return -ENFILE;	/* Not exactly a match, but its the
1225 				   closest posix thing */
1226 	}
1227 
1228 	sock->type = type;
1229 
1230 #ifdef CONFIG_MODULES
1231 	/* Attempt to load a protocol module if the find failed.
1232 	 *
1233 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1234 	 * requested real, full-featured networking support upon configuration.
1235 	 * Otherwise module support will break!
1236 	 */
1237 	if (rcu_access_pointer(net_families[family]) == NULL)
1238 		request_module("net-pf-%d", family);
1239 #endif
1240 
1241 	rcu_read_lock();
1242 	pf = rcu_dereference(net_families[family]);
1243 	err = -EAFNOSUPPORT;
1244 	if (!pf)
1245 		goto out_release;
1246 
1247 	/*
1248 	 * We will call the ->create function, that possibly is in a loadable
1249 	 * module, so we have to bump that loadable module refcnt first.
1250 	 */
1251 	if (!try_module_get(pf->owner))
1252 		goto out_release;
1253 
1254 	/* Now protected by module ref count */
1255 	rcu_read_unlock();
1256 
1257 	err = pf->create(net, sock, protocol, kern);
1258 	if (err < 0)
1259 		goto out_module_put;
1260 
1261 	/*
1262 	 * Now to bump the refcnt of the [loadable] module that owns this
1263 	 * socket at sock_release time we decrement its refcnt.
1264 	 */
1265 	if (!try_module_get(sock->ops->owner))
1266 		goto out_module_busy;
1267 
1268 	/*
1269 	 * Now that we're done with the ->create function, the [loadable]
1270 	 * module can have its refcnt decremented
1271 	 */
1272 	module_put(pf->owner);
1273 	err = security_socket_post_create(sock, family, type, protocol, kern);
1274 	if (err)
1275 		goto out_sock_release;
1276 	*res = sock;
1277 
1278 	return 0;
1279 
1280 out_module_busy:
1281 	err = -EAFNOSUPPORT;
1282 out_module_put:
1283 	sock->ops = NULL;
1284 	module_put(pf->owner);
1285 out_sock_release:
1286 	sock_release(sock);
1287 	return err;
1288 
1289 out_release:
1290 	rcu_read_unlock();
1291 	goto out_sock_release;
1292 }
1293 EXPORT_SYMBOL(__sock_create);
1294 
1295 int sock_create(int family, int type, int protocol, struct socket **res)
1296 {
1297 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1298 }
1299 EXPORT_SYMBOL(sock_create);
1300 
1301 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1302 {
1303 	return __sock_create(net, family, type, protocol, res, 1);
1304 }
1305 EXPORT_SYMBOL(sock_create_kern);
1306 
1307 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1308 {
1309 	int retval;
1310 	struct socket *sock;
1311 	int flags;
1312 
1313 	/* Check the SOCK_* constants for consistency.  */
1314 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1315 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1316 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1317 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1318 
1319 	flags = type & ~SOCK_TYPE_MASK;
1320 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1321 		return -EINVAL;
1322 	type &= SOCK_TYPE_MASK;
1323 
1324 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1325 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1326 
1327 	retval = sock_create(family, type, protocol, &sock);
1328 	if (retval < 0)
1329 		return retval;
1330 
1331 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1332 }
1333 
1334 /*
1335  *	Create a pair of connected sockets.
1336  */
1337 
1338 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1339 		int __user *, usockvec)
1340 {
1341 	struct socket *sock1, *sock2;
1342 	int fd1, fd2, err;
1343 	struct file *newfile1, *newfile2;
1344 	int flags;
1345 
1346 	flags = type & ~SOCK_TYPE_MASK;
1347 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1348 		return -EINVAL;
1349 	type &= SOCK_TYPE_MASK;
1350 
1351 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1352 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1353 
1354 	/*
1355 	 * reserve descriptors and make sure we won't fail
1356 	 * to return them to userland.
1357 	 */
1358 	fd1 = get_unused_fd_flags(flags);
1359 	if (unlikely(fd1 < 0))
1360 		return fd1;
1361 
1362 	fd2 = get_unused_fd_flags(flags);
1363 	if (unlikely(fd2 < 0)) {
1364 		put_unused_fd(fd1);
1365 		return fd2;
1366 	}
1367 
1368 	err = put_user(fd1, &usockvec[0]);
1369 	if (err)
1370 		goto out;
1371 
1372 	err = put_user(fd2, &usockvec[1]);
1373 	if (err)
1374 		goto out;
1375 
1376 	/*
1377 	 * Obtain the first socket and check if the underlying protocol
1378 	 * supports the socketpair call.
1379 	 */
1380 
1381 	err = sock_create(family, type, protocol, &sock1);
1382 	if (unlikely(err < 0))
1383 		goto out;
1384 
1385 	err = sock_create(family, type, protocol, &sock2);
1386 	if (unlikely(err < 0)) {
1387 		sock_release(sock1);
1388 		goto out;
1389 	}
1390 
1391 	err = sock1->ops->socketpair(sock1, sock2);
1392 	if (unlikely(err < 0)) {
1393 		sock_release(sock2);
1394 		sock_release(sock1);
1395 		goto out;
1396 	}
1397 
1398 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1399 	if (IS_ERR(newfile1)) {
1400 		err = PTR_ERR(newfile1);
1401 		sock_release(sock2);
1402 		goto out;
1403 	}
1404 
1405 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1406 	if (IS_ERR(newfile2)) {
1407 		err = PTR_ERR(newfile2);
1408 		fput(newfile1);
1409 		goto out;
1410 	}
1411 
1412 	audit_fd_pair(fd1, fd2);
1413 
1414 	fd_install(fd1, newfile1);
1415 	fd_install(fd2, newfile2);
1416 	return 0;
1417 
1418 out:
1419 	put_unused_fd(fd2);
1420 	put_unused_fd(fd1);
1421 	return err;
1422 }
1423 
1424 /*
1425  *	Bind a name to a socket. Nothing much to do here since it's
1426  *	the protocol's responsibility to handle the local address.
1427  *
1428  *	We move the socket address to kernel space before we call
1429  *	the protocol layer (having also checked the address is ok).
1430  */
1431 
1432 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1433 {
1434 	struct socket *sock;
1435 	struct sockaddr_storage address;
1436 	int err, fput_needed;
1437 
1438 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1439 	if (sock) {
1440 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1441 		if (err >= 0) {
1442 			err = security_socket_bind(sock,
1443 						   (struct sockaddr *)&address,
1444 						   addrlen);
1445 			if (!err)
1446 				err = sock->ops->bind(sock,
1447 						      (struct sockaddr *)
1448 						      &address, addrlen);
1449 		}
1450 		fput_light(sock->file, fput_needed);
1451 	}
1452 	return err;
1453 }
1454 
1455 /*
1456  *	Perform a listen. Basically, we allow the protocol to do anything
1457  *	necessary for a listen, and if that works, we mark the socket as
1458  *	ready for listening.
1459  */
1460 
1461 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1462 {
1463 	struct socket *sock;
1464 	int err, fput_needed;
1465 	int somaxconn;
1466 
1467 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1468 	if (sock) {
1469 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1470 		if ((unsigned int)backlog > somaxconn)
1471 			backlog = somaxconn;
1472 
1473 		err = security_socket_listen(sock, backlog);
1474 		if (!err)
1475 			err = sock->ops->listen(sock, backlog);
1476 
1477 		fput_light(sock->file, fput_needed);
1478 	}
1479 	return err;
1480 }
1481 
1482 /*
1483  *	For accept, we attempt to create a new socket, set up the link
1484  *	with the client, wake up the client, then return the new
1485  *	connected fd. We collect the address of the connector in kernel
1486  *	space and move it to user at the very end. This is unclean because
1487  *	we open the socket then return an error.
1488  *
1489  *	1003.1g adds the ability to recvmsg() to query connection pending
1490  *	status to recvmsg. We need to add that support in a way thats
1491  *	clean when we restucture accept also.
1492  */
1493 
1494 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1495 		int __user *, upeer_addrlen, int, flags)
1496 {
1497 	struct socket *sock, *newsock;
1498 	struct file *newfile;
1499 	int err, len, newfd, fput_needed;
1500 	struct sockaddr_storage address;
1501 
1502 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1503 		return -EINVAL;
1504 
1505 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1506 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1507 
1508 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1509 	if (!sock)
1510 		goto out;
1511 
1512 	err = -ENFILE;
1513 	newsock = sock_alloc();
1514 	if (!newsock)
1515 		goto out_put;
1516 
1517 	newsock->type = sock->type;
1518 	newsock->ops = sock->ops;
1519 
1520 	/*
1521 	 * We don't need try_module_get here, as the listening socket (sock)
1522 	 * has the protocol module (sock->ops->owner) held.
1523 	 */
1524 	__module_get(newsock->ops->owner);
1525 
1526 	newfd = get_unused_fd_flags(flags);
1527 	if (unlikely(newfd < 0)) {
1528 		err = newfd;
1529 		sock_release(newsock);
1530 		goto out_put;
1531 	}
1532 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1533 	if (IS_ERR(newfile)) {
1534 		err = PTR_ERR(newfile);
1535 		put_unused_fd(newfd);
1536 		goto out_put;
1537 	}
1538 
1539 	err = security_socket_accept(sock, newsock);
1540 	if (err)
1541 		goto out_fd;
1542 
1543 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1544 	if (err < 0)
1545 		goto out_fd;
1546 
1547 	if (upeer_sockaddr) {
1548 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1549 					  &len, 2) < 0) {
1550 			err = -ECONNABORTED;
1551 			goto out_fd;
1552 		}
1553 		err = move_addr_to_user(&address,
1554 					len, upeer_sockaddr, upeer_addrlen);
1555 		if (err < 0)
1556 			goto out_fd;
1557 	}
1558 
1559 	/* File flags are not inherited via accept() unlike another OSes. */
1560 
1561 	fd_install(newfd, newfile);
1562 	err = newfd;
1563 
1564 out_put:
1565 	fput_light(sock->file, fput_needed);
1566 out:
1567 	return err;
1568 out_fd:
1569 	fput(newfile);
1570 	put_unused_fd(newfd);
1571 	goto out_put;
1572 }
1573 
1574 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1575 		int __user *, upeer_addrlen)
1576 {
1577 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1578 }
1579 
1580 /*
1581  *	Attempt to connect to a socket with the server address.  The address
1582  *	is in user space so we verify it is OK and move it to kernel space.
1583  *
1584  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1585  *	break bindings
1586  *
1587  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1588  *	other SEQPACKET protocols that take time to connect() as it doesn't
1589  *	include the -EINPROGRESS status for such sockets.
1590  */
1591 
1592 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1593 		int, addrlen)
1594 {
1595 	struct socket *sock;
1596 	struct sockaddr_storage address;
1597 	int err, fput_needed;
1598 
1599 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600 	if (!sock)
1601 		goto out;
1602 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1603 	if (err < 0)
1604 		goto out_put;
1605 
1606 	err =
1607 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1608 	if (err)
1609 		goto out_put;
1610 
1611 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1612 				 sock->file->f_flags);
1613 out_put:
1614 	fput_light(sock->file, fput_needed);
1615 out:
1616 	return err;
1617 }
1618 
1619 /*
1620  *	Get the local address ('name') of a socket object. Move the obtained
1621  *	name to user space.
1622  */
1623 
1624 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1625 		int __user *, usockaddr_len)
1626 {
1627 	struct socket *sock;
1628 	struct sockaddr_storage address;
1629 	int len, err, fput_needed;
1630 
1631 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1632 	if (!sock)
1633 		goto out;
1634 
1635 	err = security_socket_getsockname(sock);
1636 	if (err)
1637 		goto out_put;
1638 
1639 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1640 	if (err)
1641 		goto out_put;
1642 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1643 
1644 out_put:
1645 	fput_light(sock->file, fput_needed);
1646 out:
1647 	return err;
1648 }
1649 
1650 /*
1651  *	Get the remote address ('name') of a socket object. Move the obtained
1652  *	name to user space.
1653  */
1654 
1655 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1656 		int __user *, usockaddr_len)
1657 {
1658 	struct socket *sock;
1659 	struct sockaddr_storage address;
1660 	int len, err, fput_needed;
1661 
1662 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663 	if (sock != NULL) {
1664 		err = security_socket_getpeername(sock);
1665 		if (err) {
1666 			fput_light(sock->file, fput_needed);
1667 			return err;
1668 		}
1669 
1670 		err =
1671 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1672 				       1);
1673 		if (!err)
1674 			err = move_addr_to_user(&address, len, usockaddr,
1675 						usockaddr_len);
1676 		fput_light(sock->file, fput_needed);
1677 	}
1678 	return err;
1679 }
1680 
1681 /*
1682  *	Send a datagram to a given address. We move the address into kernel
1683  *	space and check the user space data area is readable before invoking
1684  *	the protocol.
1685  */
1686 
1687 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1688 		unsigned int, flags, struct sockaddr __user *, addr,
1689 		int, addr_len)
1690 {
1691 	struct socket *sock;
1692 	struct sockaddr_storage address;
1693 	int err;
1694 	struct msghdr msg;
1695 	struct iovec iov;
1696 	int fput_needed;
1697 
1698 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1699 	if (unlikely(err))
1700 		return err;
1701 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1702 	if (!sock)
1703 		goto out;
1704 
1705 	msg.msg_name = NULL;
1706 	msg.msg_control = NULL;
1707 	msg.msg_controllen = 0;
1708 	msg.msg_namelen = 0;
1709 	if (addr) {
1710 		err = move_addr_to_kernel(addr, addr_len, &address);
1711 		if (err < 0)
1712 			goto out_put;
1713 		msg.msg_name = (struct sockaddr *)&address;
1714 		msg.msg_namelen = addr_len;
1715 	}
1716 	if (sock->file->f_flags & O_NONBLOCK)
1717 		flags |= MSG_DONTWAIT;
1718 	msg.msg_flags = flags;
1719 	err = sock_sendmsg(sock, &msg);
1720 
1721 out_put:
1722 	fput_light(sock->file, fput_needed);
1723 out:
1724 	return err;
1725 }
1726 
1727 /*
1728  *	Send a datagram down a socket.
1729  */
1730 
1731 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1732 		unsigned int, flags)
1733 {
1734 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1735 }
1736 
1737 /*
1738  *	Receive a frame from the socket and optionally record the address of the
1739  *	sender. We verify the buffers are writable and if needed move the
1740  *	sender address from kernel to user space.
1741  */
1742 
1743 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1744 		unsigned int, flags, struct sockaddr __user *, addr,
1745 		int __user *, addr_len)
1746 {
1747 	struct socket *sock;
1748 	struct iovec iov;
1749 	struct msghdr msg;
1750 	struct sockaddr_storage address;
1751 	int err, err2;
1752 	int fput_needed;
1753 
1754 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1755 	if (unlikely(err))
1756 		return err;
1757 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1758 	if (!sock)
1759 		goto out;
1760 
1761 	msg.msg_control = NULL;
1762 	msg.msg_controllen = 0;
1763 	/* Save some cycles and don't copy the address if not needed */
1764 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1765 	/* We assume all kernel code knows the size of sockaddr_storage */
1766 	msg.msg_namelen = 0;
1767 	msg.msg_iocb = NULL;
1768 	msg.msg_flags = 0;
1769 	if (sock->file->f_flags & O_NONBLOCK)
1770 		flags |= MSG_DONTWAIT;
1771 	err = sock_recvmsg(sock, &msg, flags);
1772 
1773 	if (err >= 0 && addr != NULL) {
1774 		err2 = move_addr_to_user(&address,
1775 					 msg.msg_namelen, addr, addr_len);
1776 		if (err2 < 0)
1777 			err = err2;
1778 	}
1779 
1780 	fput_light(sock->file, fput_needed);
1781 out:
1782 	return err;
1783 }
1784 
1785 /*
1786  *	Receive a datagram from a socket.
1787  */
1788 
1789 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1790 		unsigned int, flags)
1791 {
1792 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1793 }
1794 
1795 /*
1796  *	Set a socket option. Because we don't know the option lengths we have
1797  *	to pass the user mode parameter for the protocols to sort out.
1798  */
1799 
1800 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1801 		char __user *, optval, int, optlen)
1802 {
1803 	int err, fput_needed;
1804 	struct socket *sock;
1805 
1806 	if (optlen < 0)
1807 		return -EINVAL;
1808 
1809 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1810 	if (sock != NULL) {
1811 		err = security_socket_setsockopt(sock, level, optname);
1812 		if (err)
1813 			goto out_put;
1814 
1815 		if (level == SOL_SOCKET)
1816 			err =
1817 			    sock_setsockopt(sock, level, optname, optval,
1818 					    optlen);
1819 		else
1820 			err =
1821 			    sock->ops->setsockopt(sock, level, optname, optval,
1822 						  optlen);
1823 out_put:
1824 		fput_light(sock->file, fput_needed);
1825 	}
1826 	return err;
1827 }
1828 
1829 /*
1830  *	Get a socket option. Because we don't know the option lengths we have
1831  *	to pass a user mode parameter for the protocols to sort out.
1832  */
1833 
1834 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1835 		char __user *, optval, int __user *, optlen)
1836 {
1837 	int err, fput_needed;
1838 	struct socket *sock;
1839 
1840 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1841 	if (sock != NULL) {
1842 		err = security_socket_getsockopt(sock, level, optname);
1843 		if (err)
1844 			goto out_put;
1845 
1846 		if (level == SOL_SOCKET)
1847 			err =
1848 			    sock_getsockopt(sock, level, optname, optval,
1849 					    optlen);
1850 		else
1851 			err =
1852 			    sock->ops->getsockopt(sock, level, optname, optval,
1853 						  optlen);
1854 out_put:
1855 		fput_light(sock->file, fput_needed);
1856 	}
1857 	return err;
1858 }
1859 
1860 /*
1861  *	Shutdown a socket.
1862  */
1863 
1864 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1865 {
1866 	int err, fput_needed;
1867 	struct socket *sock;
1868 
1869 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1870 	if (sock != NULL) {
1871 		err = security_socket_shutdown(sock, how);
1872 		if (!err)
1873 			err = sock->ops->shutdown(sock, how);
1874 		fput_light(sock->file, fput_needed);
1875 	}
1876 	return err;
1877 }
1878 
1879 /* A couple of helpful macros for getting the address of the 32/64 bit
1880  * fields which are the same type (int / unsigned) on our platforms.
1881  */
1882 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1883 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1884 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1885 
1886 struct used_address {
1887 	struct sockaddr_storage name;
1888 	unsigned int name_len;
1889 };
1890 
1891 static int copy_msghdr_from_user(struct msghdr *kmsg,
1892 				 struct user_msghdr __user *umsg,
1893 				 struct sockaddr __user **save_addr,
1894 				 struct iovec **iov)
1895 {
1896 	struct user_msghdr msg;
1897 	ssize_t err;
1898 
1899 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1900 		return -EFAULT;
1901 
1902 	kmsg->msg_control = (void __force *)msg.msg_control;
1903 	kmsg->msg_controllen = msg.msg_controllen;
1904 	kmsg->msg_flags = msg.msg_flags;
1905 
1906 	kmsg->msg_namelen = msg.msg_namelen;
1907 	if (!msg.msg_name)
1908 		kmsg->msg_namelen = 0;
1909 
1910 	if (kmsg->msg_namelen < 0)
1911 		return -EINVAL;
1912 
1913 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1914 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1915 
1916 	if (save_addr)
1917 		*save_addr = msg.msg_name;
1918 
1919 	if (msg.msg_name && kmsg->msg_namelen) {
1920 		if (!save_addr) {
1921 			err = move_addr_to_kernel(msg.msg_name,
1922 						  kmsg->msg_namelen,
1923 						  kmsg->msg_name);
1924 			if (err < 0)
1925 				return err;
1926 		}
1927 	} else {
1928 		kmsg->msg_name = NULL;
1929 		kmsg->msg_namelen = 0;
1930 	}
1931 
1932 	if (msg.msg_iovlen > UIO_MAXIOV)
1933 		return -EMSGSIZE;
1934 
1935 	kmsg->msg_iocb = NULL;
1936 
1937 	return import_iovec(save_addr ? READ : WRITE,
1938 			    msg.msg_iov, msg.msg_iovlen,
1939 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1940 }
1941 
1942 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1943 			 struct msghdr *msg_sys, unsigned int flags,
1944 			 struct used_address *used_address,
1945 			 unsigned int allowed_msghdr_flags)
1946 {
1947 	struct compat_msghdr __user *msg_compat =
1948 	    (struct compat_msghdr __user *)msg;
1949 	struct sockaddr_storage address;
1950 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1951 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1952 				__aligned(sizeof(__kernel_size_t));
1953 	/* 20 is size of ipv6_pktinfo */
1954 	unsigned char *ctl_buf = ctl;
1955 	int ctl_len;
1956 	ssize_t err;
1957 
1958 	msg_sys->msg_name = &address;
1959 
1960 	if (MSG_CMSG_COMPAT & flags)
1961 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1962 	else
1963 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1964 	if (err < 0)
1965 		return err;
1966 
1967 	err = -ENOBUFS;
1968 
1969 	if (msg_sys->msg_controllen > INT_MAX)
1970 		goto out_freeiov;
1971 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1972 	ctl_len = msg_sys->msg_controllen;
1973 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1974 		err =
1975 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1976 						     sizeof(ctl));
1977 		if (err)
1978 			goto out_freeiov;
1979 		ctl_buf = msg_sys->msg_control;
1980 		ctl_len = msg_sys->msg_controllen;
1981 	} else if (ctl_len) {
1982 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1983 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
1984 		if (ctl_len > sizeof(ctl)) {
1985 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1986 			if (ctl_buf == NULL)
1987 				goto out_freeiov;
1988 		}
1989 		err = -EFAULT;
1990 		/*
1991 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1992 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1993 		 * checking falls down on this.
1994 		 */
1995 		if (copy_from_user(ctl_buf,
1996 				   (void __user __force *)msg_sys->msg_control,
1997 				   ctl_len))
1998 			goto out_freectl;
1999 		msg_sys->msg_control = ctl_buf;
2000 	}
2001 	msg_sys->msg_flags = flags;
2002 
2003 	if (sock->file->f_flags & O_NONBLOCK)
2004 		msg_sys->msg_flags |= MSG_DONTWAIT;
2005 	/*
2006 	 * If this is sendmmsg() and current destination address is same as
2007 	 * previously succeeded address, omit asking LSM's decision.
2008 	 * used_address->name_len is initialized to UINT_MAX so that the first
2009 	 * destination address never matches.
2010 	 */
2011 	if (used_address && msg_sys->msg_name &&
2012 	    used_address->name_len == msg_sys->msg_namelen &&
2013 	    !memcmp(&used_address->name, msg_sys->msg_name,
2014 		    used_address->name_len)) {
2015 		err = sock_sendmsg_nosec(sock, msg_sys);
2016 		goto out_freectl;
2017 	}
2018 	err = sock_sendmsg(sock, msg_sys);
2019 	/*
2020 	 * If this is sendmmsg() and sending to current destination address was
2021 	 * successful, remember it.
2022 	 */
2023 	if (used_address && err >= 0) {
2024 		used_address->name_len = msg_sys->msg_namelen;
2025 		if (msg_sys->msg_name)
2026 			memcpy(&used_address->name, msg_sys->msg_name,
2027 			       used_address->name_len);
2028 	}
2029 
2030 out_freectl:
2031 	if (ctl_buf != ctl)
2032 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2033 out_freeiov:
2034 	kfree(iov);
2035 	return err;
2036 }
2037 
2038 /*
2039  *	BSD sendmsg interface
2040  */
2041 
2042 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2043 {
2044 	int fput_needed, err;
2045 	struct msghdr msg_sys;
2046 	struct socket *sock;
2047 
2048 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2049 	if (!sock)
2050 		goto out;
2051 
2052 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2053 
2054 	fput_light(sock->file, fput_needed);
2055 out:
2056 	return err;
2057 }
2058 
2059 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2060 {
2061 	if (flags & MSG_CMSG_COMPAT)
2062 		return -EINVAL;
2063 	return __sys_sendmsg(fd, msg, flags);
2064 }
2065 
2066 /*
2067  *	Linux sendmmsg interface
2068  */
2069 
2070 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2071 		   unsigned int flags)
2072 {
2073 	int fput_needed, err, datagrams;
2074 	struct socket *sock;
2075 	struct mmsghdr __user *entry;
2076 	struct compat_mmsghdr __user *compat_entry;
2077 	struct msghdr msg_sys;
2078 	struct used_address used_address;
2079 	unsigned int oflags = flags;
2080 
2081 	if (vlen > UIO_MAXIOV)
2082 		vlen = UIO_MAXIOV;
2083 
2084 	datagrams = 0;
2085 
2086 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2087 	if (!sock)
2088 		return err;
2089 
2090 	used_address.name_len = UINT_MAX;
2091 	entry = mmsg;
2092 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2093 	err = 0;
2094 	flags |= MSG_BATCH;
2095 
2096 	while (datagrams < vlen) {
2097 		if (datagrams == vlen - 1)
2098 			flags = oflags;
2099 
2100 		if (MSG_CMSG_COMPAT & flags) {
2101 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2102 					     &msg_sys, flags, &used_address, MSG_EOR);
2103 			if (err < 0)
2104 				break;
2105 			err = __put_user(err, &compat_entry->msg_len);
2106 			++compat_entry;
2107 		} else {
2108 			err = ___sys_sendmsg(sock,
2109 					     (struct user_msghdr __user *)entry,
2110 					     &msg_sys, flags, &used_address, MSG_EOR);
2111 			if (err < 0)
2112 				break;
2113 			err = put_user(err, &entry->msg_len);
2114 			++entry;
2115 		}
2116 
2117 		if (err)
2118 			break;
2119 		++datagrams;
2120 		if (msg_data_left(&msg_sys))
2121 			break;
2122 		cond_resched();
2123 	}
2124 
2125 	fput_light(sock->file, fput_needed);
2126 
2127 	/* We only return an error if no datagrams were able to be sent */
2128 	if (datagrams != 0)
2129 		return datagrams;
2130 
2131 	return err;
2132 }
2133 
2134 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2135 		unsigned int, vlen, unsigned int, flags)
2136 {
2137 	if (flags & MSG_CMSG_COMPAT)
2138 		return -EINVAL;
2139 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2140 }
2141 
2142 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2143 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2144 {
2145 	struct compat_msghdr __user *msg_compat =
2146 	    (struct compat_msghdr __user *)msg;
2147 	struct iovec iovstack[UIO_FASTIOV];
2148 	struct iovec *iov = iovstack;
2149 	unsigned long cmsg_ptr;
2150 	int len;
2151 	ssize_t err;
2152 
2153 	/* kernel mode address */
2154 	struct sockaddr_storage addr;
2155 
2156 	/* user mode address pointers */
2157 	struct sockaddr __user *uaddr;
2158 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2159 
2160 	msg_sys->msg_name = &addr;
2161 
2162 	if (MSG_CMSG_COMPAT & flags)
2163 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2164 	else
2165 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2166 	if (err < 0)
2167 		return err;
2168 
2169 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2170 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2171 
2172 	/* We assume all kernel code knows the size of sockaddr_storage */
2173 	msg_sys->msg_namelen = 0;
2174 
2175 	if (sock->file->f_flags & O_NONBLOCK)
2176 		flags |= MSG_DONTWAIT;
2177 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2178 	if (err < 0)
2179 		goto out_freeiov;
2180 	len = err;
2181 
2182 	if (uaddr != NULL) {
2183 		err = move_addr_to_user(&addr,
2184 					msg_sys->msg_namelen, uaddr,
2185 					uaddr_len);
2186 		if (err < 0)
2187 			goto out_freeiov;
2188 	}
2189 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2190 			 COMPAT_FLAGS(msg));
2191 	if (err)
2192 		goto out_freeiov;
2193 	if (MSG_CMSG_COMPAT & flags)
2194 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2195 				 &msg_compat->msg_controllen);
2196 	else
2197 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2198 				 &msg->msg_controllen);
2199 	if (err)
2200 		goto out_freeiov;
2201 	err = len;
2202 
2203 out_freeiov:
2204 	kfree(iov);
2205 	return err;
2206 }
2207 
2208 /*
2209  *	BSD recvmsg interface
2210  */
2211 
2212 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2213 {
2214 	int fput_needed, err;
2215 	struct msghdr msg_sys;
2216 	struct socket *sock;
2217 
2218 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2219 	if (!sock)
2220 		goto out;
2221 
2222 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2223 
2224 	fput_light(sock->file, fput_needed);
2225 out:
2226 	return err;
2227 }
2228 
2229 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2230 		unsigned int, flags)
2231 {
2232 	if (flags & MSG_CMSG_COMPAT)
2233 		return -EINVAL;
2234 	return __sys_recvmsg(fd, msg, flags);
2235 }
2236 
2237 /*
2238  *     Linux recvmmsg interface
2239  */
2240 
2241 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2242 		   unsigned int flags, struct timespec *timeout)
2243 {
2244 	int fput_needed, err, datagrams;
2245 	struct socket *sock;
2246 	struct mmsghdr __user *entry;
2247 	struct compat_mmsghdr __user *compat_entry;
2248 	struct msghdr msg_sys;
2249 	struct timespec64 end_time;
2250 	struct timespec64 timeout64;
2251 
2252 	if (timeout &&
2253 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2254 				    timeout->tv_nsec))
2255 		return -EINVAL;
2256 
2257 	datagrams = 0;
2258 
2259 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2260 	if (!sock)
2261 		return err;
2262 
2263 	err = sock_error(sock->sk);
2264 	if (err) {
2265 		datagrams = err;
2266 		goto out_put;
2267 	}
2268 
2269 	entry = mmsg;
2270 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2271 
2272 	while (datagrams < vlen) {
2273 		/*
2274 		 * No need to ask LSM for more than the first datagram.
2275 		 */
2276 		if (MSG_CMSG_COMPAT & flags) {
2277 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2278 					     &msg_sys, flags & ~MSG_WAITFORONE,
2279 					     datagrams);
2280 			if (err < 0)
2281 				break;
2282 			err = __put_user(err, &compat_entry->msg_len);
2283 			++compat_entry;
2284 		} else {
2285 			err = ___sys_recvmsg(sock,
2286 					     (struct user_msghdr __user *)entry,
2287 					     &msg_sys, flags & ~MSG_WAITFORONE,
2288 					     datagrams);
2289 			if (err < 0)
2290 				break;
2291 			err = put_user(err, &entry->msg_len);
2292 			++entry;
2293 		}
2294 
2295 		if (err)
2296 			break;
2297 		++datagrams;
2298 
2299 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2300 		if (flags & MSG_WAITFORONE)
2301 			flags |= MSG_DONTWAIT;
2302 
2303 		if (timeout) {
2304 			ktime_get_ts64(&timeout64);
2305 			*timeout = timespec64_to_timespec(
2306 					timespec64_sub(end_time, timeout64));
2307 			if (timeout->tv_sec < 0) {
2308 				timeout->tv_sec = timeout->tv_nsec = 0;
2309 				break;
2310 			}
2311 
2312 			/* Timeout, return less than vlen datagrams */
2313 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2314 				break;
2315 		}
2316 
2317 		/* Out of band data, return right away */
2318 		if (msg_sys.msg_flags & MSG_OOB)
2319 			break;
2320 		cond_resched();
2321 	}
2322 
2323 	if (err == 0)
2324 		goto out_put;
2325 
2326 	if (datagrams == 0) {
2327 		datagrams = err;
2328 		goto out_put;
2329 	}
2330 
2331 	/*
2332 	 * We may return less entries than requested (vlen) if the
2333 	 * sock is non block and there aren't enough datagrams...
2334 	 */
2335 	if (err != -EAGAIN) {
2336 		/*
2337 		 * ... or  if recvmsg returns an error after we
2338 		 * received some datagrams, where we record the
2339 		 * error to return on the next call or if the
2340 		 * app asks about it using getsockopt(SO_ERROR).
2341 		 */
2342 		sock->sk->sk_err = -err;
2343 	}
2344 out_put:
2345 	fput_light(sock->file, fput_needed);
2346 
2347 	return datagrams;
2348 }
2349 
2350 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2351 		unsigned int, vlen, unsigned int, flags,
2352 		struct timespec __user *, timeout)
2353 {
2354 	int datagrams;
2355 	struct timespec timeout_sys;
2356 
2357 	if (flags & MSG_CMSG_COMPAT)
2358 		return -EINVAL;
2359 
2360 	if (!timeout)
2361 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2362 
2363 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2364 		return -EFAULT;
2365 
2366 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2367 
2368 	if (datagrams > 0 &&
2369 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2370 		datagrams = -EFAULT;
2371 
2372 	return datagrams;
2373 }
2374 
2375 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2376 /* Argument list sizes for sys_socketcall */
2377 #define AL(x) ((x) * sizeof(unsigned long))
2378 static const unsigned char nargs[21] = {
2379 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2380 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2381 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2382 	AL(4), AL(5), AL(4)
2383 };
2384 
2385 #undef AL
2386 
2387 /*
2388  *	System call vectors.
2389  *
2390  *	Argument checking cleaned up. Saved 20% in size.
2391  *  This function doesn't need to set the kernel lock because
2392  *  it is set by the callees.
2393  */
2394 
2395 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2396 {
2397 	unsigned long a[AUDITSC_ARGS];
2398 	unsigned long a0, a1;
2399 	int err;
2400 	unsigned int len;
2401 
2402 	if (call < 1 || call > SYS_SENDMMSG)
2403 		return -EINVAL;
2404 
2405 	len = nargs[call];
2406 	if (len > sizeof(a))
2407 		return -EINVAL;
2408 
2409 	/* copy_from_user should be SMP safe. */
2410 	if (copy_from_user(a, args, len))
2411 		return -EFAULT;
2412 
2413 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2414 	if (err)
2415 		return err;
2416 
2417 	a0 = a[0];
2418 	a1 = a[1];
2419 
2420 	switch (call) {
2421 	case SYS_SOCKET:
2422 		err = sys_socket(a0, a1, a[2]);
2423 		break;
2424 	case SYS_BIND:
2425 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2426 		break;
2427 	case SYS_CONNECT:
2428 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2429 		break;
2430 	case SYS_LISTEN:
2431 		err = sys_listen(a0, a1);
2432 		break;
2433 	case SYS_ACCEPT:
2434 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2435 				  (int __user *)a[2], 0);
2436 		break;
2437 	case SYS_GETSOCKNAME:
2438 		err =
2439 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2440 				    (int __user *)a[2]);
2441 		break;
2442 	case SYS_GETPEERNAME:
2443 		err =
2444 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2445 				    (int __user *)a[2]);
2446 		break;
2447 	case SYS_SOCKETPAIR:
2448 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2449 		break;
2450 	case SYS_SEND:
2451 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2452 		break;
2453 	case SYS_SENDTO:
2454 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2455 				 (struct sockaddr __user *)a[4], a[5]);
2456 		break;
2457 	case SYS_RECV:
2458 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2459 		break;
2460 	case SYS_RECVFROM:
2461 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2462 				   (struct sockaddr __user *)a[4],
2463 				   (int __user *)a[5]);
2464 		break;
2465 	case SYS_SHUTDOWN:
2466 		err = sys_shutdown(a0, a1);
2467 		break;
2468 	case SYS_SETSOCKOPT:
2469 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2470 		break;
2471 	case SYS_GETSOCKOPT:
2472 		err =
2473 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2474 				   (int __user *)a[4]);
2475 		break;
2476 	case SYS_SENDMSG:
2477 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2478 		break;
2479 	case SYS_SENDMMSG:
2480 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2481 		break;
2482 	case SYS_RECVMSG:
2483 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2484 		break;
2485 	case SYS_RECVMMSG:
2486 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2487 				   (struct timespec __user *)a[4]);
2488 		break;
2489 	case SYS_ACCEPT4:
2490 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2491 				  (int __user *)a[2], a[3]);
2492 		break;
2493 	default:
2494 		err = -EINVAL;
2495 		break;
2496 	}
2497 	return err;
2498 }
2499 
2500 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2501 
2502 /**
2503  *	sock_register - add a socket protocol handler
2504  *	@ops: description of protocol
2505  *
2506  *	This function is called by a protocol handler that wants to
2507  *	advertise its address family, and have it linked into the
2508  *	socket interface. The value ops->family corresponds to the
2509  *	socket system call protocol family.
2510  */
2511 int sock_register(const struct net_proto_family *ops)
2512 {
2513 	int err;
2514 
2515 	if (ops->family >= NPROTO) {
2516 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2517 		return -ENOBUFS;
2518 	}
2519 
2520 	spin_lock(&net_family_lock);
2521 	if (rcu_dereference_protected(net_families[ops->family],
2522 				      lockdep_is_held(&net_family_lock)))
2523 		err = -EEXIST;
2524 	else {
2525 		rcu_assign_pointer(net_families[ops->family], ops);
2526 		err = 0;
2527 	}
2528 	spin_unlock(&net_family_lock);
2529 
2530 	pr_info("NET: Registered protocol family %d\n", ops->family);
2531 	return err;
2532 }
2533 EXPORT_SYMBOL(sock_register);
2534 
2535 /**
2536  *	sock_unregister - remove a protocol handler
2537  *	@family: protocol family to remove
2538  *
2539  *	This function is called by a protocol handler that wants to
2540  *	remove its address family, and have it unlinked from the
2541  *	new socket creation.
2542  *
2543  *	If protocol handler is a module, then it can use module reference
2544  *	counts to protect against new references. If protocol handler is not
2545  *	a module then it needs to provide its own protection in
2546  *	the ops->create routine.
2547  */
2548 void sock_unregister(int family)
2549 {
2550 	BUG_ON(family < 0 || family >= NPROTO);
2551 
2552 	spin_lock(&net_family_lock);
2553 	RCU_INIT_POINTER(net_families[family], NULL);
2554 	spin_unlock(&net_family_lock);
2555 
2556 	synchronize_rcu();
2557 
2558 	pr_info("NET: Unregistered protocol family %d\n", family);
2559 }
2560 EXPORT_SYMBOL(sock_unregister);
2561 
2562 static int __init sock_init(void)
2563 {
2564 	int err;
2565 	/*
2566 	 *      Initialize the network sysctl infrastructure.
2567 	 */
2568 	err = net_sysctl_init();
2569 	if (err)
2570 		goto out;
2571 
2572 	/*
2573 	 *      Initialize skbuff SLAB cache
2574 	 */
2575 	skb_init();
2576 
2577 	/*
2578 	 *      Initialize the protocols module.
2579 	 */
2580 
2581 	init_inodecache();
2582 
2583 	err = register_filesystem(&sock_fs_type);
2584 	if (err)
2585 		goto out_fs;
2586 	sock_mnt = kern_mount(&sock_fs_type);
2587 	if (IS_ERR(sock_mnt)) {
2588 		err = PTR_ERR(sock_mnt);
2589 		goto out_mount;
2590 	}
2591 
2592 	/* The real protocol initialization is performed in later initcalls.
2593 	 */
2594 
2595 #ifdef CONFIG_NETFILTER
2596 	err = netfilter_init();
2597 	if (err)
2598 		goto out;
2599 #endif
2600 
2601 	ptp_classifier_init();
2602 
2603 out:
2604 	return err;
2605 
2606 out_mount:
2607 	unregister_filesystem(&sock_fs_type);
2608 out_fs:
2609 	goto out;
2610 }
2611 
2612 core_initcall(sock_init);	/* early initcall */
2613 
2614 #ifdef CONFIG_PROC_FS
2615 void socket_seq_show(struct seq_file *seq)
2616 {
2617 	seq_printf(seq, "sockets: used %d\n",
2618 		   sock_inuse_get(seq->private));
2619 }
2620 #endif				/* CONFIG_PROC_FS */
2621 
2622 #ifdef CONFIG_COMPAT
2623 static int do_siocgstamp(struct net *net, struct socket *sock,
2624 			 unsigned int cmd, void __user *up)
2625 {
2626 	mm_segment_t old_fs = get_fs();
2627 	struct timeval ktv;
2628 	int err;
2629 
2630 	set_fs(KERNEL_DS);
2631 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2632 	set_fs(old_fs);
2633 	if (!err)
2634 		err = compat_put_timeval(&ktv, up);
2635 
2636 	return err;
2637 }
2638 
2639 static int do_siocgstampns(struct net *net, struct socket *sock,
2640 			   unsigned int cmd, void __user *up)
2641 {
2642 	mm_segment_t old_fs = get_fs();
2643 	struct timespec kts;
2644 	int err;
2645 
2646 	set_fs(KERNEL_DS);
2647 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2648 	set_fs(old_fs);
2649 	if (!err)
2650 		err = compat_put_timespec(&kts, up);
2651 
2652 	return err;
2653 }
2654 
2655 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2656 {
2657 	struct ifreq __user *uifr;
2658 	int err;
2659 
2660 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2661 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2662 		return -EFAULT;
2663 
2664 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2665 	if (err)
2666 		return err;
2667 
2668 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2669 		return -EFAULT;
2670 
2671 	return 0;
2672 }
2673 
2674 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2675 {
2676 	struct compat_ifconf ifc32;
2677 	struct ifconf ifc;
2678 	struct ifconf __user *uifc;
2679 	struct compat_ifreq __user *ifr32;
2680 	struct ifreq __user *ifr;
2681 	unsigned int i, j;
2682 	int err;
2683 
2684 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2685 		return -EFAULT;
2686 
2687 	memset(&ifc, 0, sizeof(ifc));
2688 	if (ifc32.ifcbuf == 0) {
2689 		ifc32.ifc_len = 0;
2690 		ifc.ifc_len = 0;
2691 		ifc.ifc_req = NULL;
2692 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2693 	} else {
2694 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2695 			sizeof(struct ifreq);
2696 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2697 		ifc.ifc_len = len;
2698 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2699 		ifr32 = compat_ptr(ifc32.ifcbuf);
2700 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2701 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2702 				return -EFAULT;
2703 			ifr++;
2704 			ifr32++;
2705 		}
2706 	}
2707 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2708 		return -EFAULT;
2709 
2710 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2711 	if (err)
2712 		return err;
2713 
2714 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2715 		return -EFAULT;
2716 
2717 	ifr = ifc.ifc_req;
2718 	ifr32 = compat_ptr(ifc32.ifcbuf);
2719 	for (i = 0, j = 0;
2720 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2721 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2722 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2723 			return -EFAULT;
2724 		ifr32++;
2725 		ifr++;
2726 	}
2727 
2728 	if (ifc32.ifcbuf == 0) {
2729 		/* Translate from 64-bit structure multiple to
2730 		 * a 32-bit one.
2731 		 */
2732 		i = ifc.ifc_len;
2733 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2734 		ifc32.ifc_len = i;
2735 	} else {
2736 		ifc32.ifc_len = i;
2737 	}
2738 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2739 		return -EFAULT;
2740 
2741 	return 0;
2742 }
2743 
2744 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2745 {
2746 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2747 	bool convert_in = false, convert_out = false;
2748 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2749 	struct ethtool_rxnfc __user *rxnfc;
2750 	struct ifreq __user *ifr;
2751 	u32 rule_cnt = 0, actual_rule_cnt;
2752 	u32 ethcmd;
2753 	u32 data;
2754 	int ret;
2755 
2756 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2757 		return -EFAULT;
2758 
2759 	compat_rxnfc = compat_ptr(data);
2760 
2761 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2762 		return -EFAULT;
2763 
2764 	/* Most ethtool structures are defined without padding.
2765 	 * Unfortunately struct ethtool_rxnfc is an exception.
2766 	 */
2767 	switch (ethcmd) {
2768 	default:
2769 		break;
2770 	case ETHTOOL_GRXCLSRLALL:
2771 		/* Buffer size is variable */
2772 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2773 			return -EFAULT;
2774 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2775 			return -ENOMEM;
2776 		buf_size += rule_cnt * sizeof(u32);
2777 		/* fall through */
2778 	case ETHTOOL_GRXRINGS:
2779 	case ETHTOOL_GRXCLSRLCNT:
2780 	case ETHTOOL_GRXCLSRULE:
2781 	case ETHTOOL_SRXCLSRLINS:
2782 		convert_out = true;
2783 		/* fall through */
2784 	case ETHTOOL_SRXCLSRLDEL:
2785 		buf_size += sizeof(struct ethtool_rxnfc);
2786 		convert_in = true;
2787 		break;
2788 	}
2789 
2790 	ifr = compat_alloc_user_space(buf_size);
2791 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2792 
2793 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2794 		return -EFAULT;
2795 
2796 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2797 		     &ifr->ifr_ifru.ifru_data))
2798 		return -EFAULT;
2799 
2800 	if (convert_in) {
2801 		/* We expect there to be holes between fs.m_ext and
2802 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2803 		 */
2804 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2805 			     sizeof(compat_rxnfc->fs.m_ext) !=
2806 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2807 			     sizeof(rxnfc->fs.m_ext));
2808 		BUILD_BUG_ON(
2809 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2810 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2811 			offsetof(struct ethtool_rxnfc, fs.location) -
2812 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2813 
2814 		if (copy_in_user(rxnfc, compat_rxnfc,
2815 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2816 				 (void __user *)rxnfc) ||
2817 		    copy_in_user(&rxnfc->fs.ring_cookie,
2818 				 &compat_rxnfc->fs.ring_cookie,
2819 				 (void __user *)(&rxnfc->fs.location + 1) -
2820 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2821 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2822 				 sizeof(rxnfc->rule_cnt)))
2823 			return -EFAULT;
2824 	}
2825 
2826 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2827 	if (ret)
2828 		return ret;
2829 
2830 	if (convert_out) {
2831 		if (copy_in_user(compat_rxnfc, rxnfc,
2832 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2833 				 (const void __user *)rxnfc) ||
2834 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2835 				 &rxnfc->fs.ring_cookie,
2836 				 (const void __user *)(&rxnfc->fs.location + 1) -
2837 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2838 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2839 				 sizeof(rxnfc->rule_cnt)))
2840 			return -EFAULT;
2841 
2842 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2843 			/* As an optimisation, we only copy the actual
2844 			 * number of rules that the underlying
2845 			 * function returned.  Since Mallory might
2846 			 * change the rule count in user memory, we
2847 			 * check that it is less than the rule count
2848 			 * originally given (as the user buffer size),
2849 			 * which has been range-checked.
2850 			 */
2851 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2852 				return -EFAULT;
2853 			if (actual_rule_cnt < rule_cnt)
2854 				rule_cnt = actual_rule_cnt;
2855 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2856 					 &rxnfc->rule_locs[0],
2857 					 rule_cnt * sizeof(u32)))
2858 				return -EFAULT;
2859 		}
2860 	}
2861 
2862 	return 0;
2863 }
2864 
2865 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2866 {
2867 	void __user *uptr;
2868 	compat_uptr_t uptr32;
2869 	struct ifreq __user *uifr;
2870 
2871 	uifr = compat_alloc_user_space(sizeof(*uifr));
2872 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2873 		return -EFAULT;
2874 
2875 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2876 		return -EFAULT;
2877 
2878 	uptr = compat_ptr(uptr32);
2879 
2880 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2881 		return -EFAULT;
2882 
2883 	return dev_ioctl(net, SIOCWANDEV, uifr);
2884 }
2885 
2886 static int bond_ioctl(struct net *net, unsigned int cmd,
2887 			 struct compat_ifreq __user *ifr32)
2888 {
2889 	struct ifreq kifr;
2890 	mm_segment_t old_fs;
2891 	int err;
2892 
2893 	switch (cmd) {
2894 	case SIOCBONDENSLAVE:
2895 	case SIOCBONDRELEASE:
2896 	case SIOCBONDSETHWADDR:
2897 	case SIOCBONDCHANGEACTIVE:
2898 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2899 			return -EFAULT;
2900 
2901 		old_fs = get_fs();
2902 		set_fs(KERNEL_DS);
2903 		err = dev_ioctl(net, cmd,
2904 				(struct ifreq __user __force *) &kifr);
2905 		set_fs(old_fs);
2906 
2907 		return err;
2908 	default:
2909 		return -ENOIOCTLCMD;
2910 	}
2911 }
2912 
2913 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2914 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2915 				 struct compat_ifreq __user *u_ifreq32)
2916 {
2917 	struct ifreq __user *u_ifreq64;
2918 	char tmp_buf[IFNAMSIZ];
2919 	void __user *data64;
2920 	u32 data32;
2921 
2922 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2923 			   IFNAMSIZ))
2924 		return -EFAULT;
2925 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2926 		return -EFAULT;
2927 	data64 = compat_ptr(data32);
2928 
2929 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2930 
2931 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2932 			 IFNAMSIZ))
2933 		return -EFAULT;
2934 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2935 		return -EFAULT;
2936 
2937 	return dev_ioctl(net, cmd, u_ifreq64);
2938 }
2939 
2940 static int dev_ifsioc(struct net *net, struct socket *sock,
2941 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2942 {
2943 	struct ifreq __user *uifr;
2944 	int err;
2945 
2946 	uifr = compat_alloc_user_space(sizeof(*uifr));
2947 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2948 		return -EFAULT;
2949 
2950 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2951 
2952 	if (!err) {
2953 		switch (cmd) {
2954 		case SIOCGIFFLAGS:
2955 		case SIOCGIFMETRIC:
2956 		case SIOCGIFMTU:
2957 		case SIOCGIFMEM:
2958 		case SIOCGIFHWADDR:
2959 		case SIOCGIFINDEX:
2960 		case SIOCGIFADDR:
2961 		case SIOCGIFBRDADDR:
2962 		case SIOCGIFDSTADDR:
2963 		case SIOCGIFNETMASK:
2964 		case SIOCGIFPFLAGS:
2965 		case SIOCGIFTXQLEN:
2966 		case SIOCGMIIPHY:
2967 		case SIOCGMIIREG:
2968 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2969 				err = -EFAULT;
2970 			break;
2971 		}
2972 	}
2973 	return err;
2974 }
2975 
2976 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2977 			struct compat_ifreq __user *uifr32)
2978 {
2979 	struct ifreq ifr;
2980 	struct compat_ifmap __user *uifmap32;
2981 	mm_segment_t old_fs;
2982 	int err;
2983 
2984 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2985 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2986 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2987 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2988 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2989 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2990 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2991 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2992 	if (err)
2993 		return -EFAULT;
2994 
2995 	old_fs = get_fs();
2996 	set_fs(KERNEL_DS);
2997 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2998 	set_fs(old_fs);
2999 
3000 	if (cmd == SIOCGIFMAP && !err) {
3001 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3002 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3003 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3004 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3005 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3006 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3007 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3008 		if (err)
3009 			err = -EFAULT;
3010 	}
3011 	return err;
3012 }
3013 
3014 struct rtentry32 {
3015 	u32		rt_pad1;
3016 	struct sockaddr rt_dst;         /* target address               */
3017 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3018 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3019 	unsigned short	rt_flags;
3020 	short		rt_pad2;
3021 	u32		rt_pad3;
3022 	unsigned char	rt_tos;
3023 	unsigned char	rt_class;
3024 	short		rt_pad4;
3025 	short		rt_metric;      /* +1 for binary compatibility! */
3026 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3027 	u32		rt_mtu;         /* per route MTU/Window         */
3028 	u32		rt_window;      /* Window clamping              */
3029 	unsigned short  rt_irtt;        /* Initial RTT                  */
3030 };
3031 
3032 struct in6_rtmsg32 {
3033 	struct in6_addr		rtmsg_dst;
3034 	struct in6_addr		rtmsg_src;
3035 	struct in6_addr		rtmsg_gateway;
3036 	u32			rtmsg_type;
3037 	u16			rtmsg_dst_len;
3038 	u16			rtmsg_src_len;
3039 	u32			rtmsg_metric;
3040 	u32			rtmsg_info;
3041 	u32			rtmsg_flags;
3042 	s32			rtmsg_ifindex;
3043 };
3044 
3045 static int routing_ioctl(struct net *net, struct socket *sock,
3046 			 unsigned int cmd, void __user *argp)
3047 {
3048 	int ret;
3049 	void *r = NULL;
3050 	struct in6_rtmsg r6;
3051 	struct rtentry r4;
3052 	char devname[16];
3053 	u32 rtdev;
3054 	mm_segment_t old_fs = get_fs();
3055 
3056 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3057 		struct in6_rtmsg32 __user *ur6 = argp;
3058 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3059 			3 * sizeof(struct in6_addr));
3060 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3061 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3062 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3063 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3064 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3065 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3066 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3067 
3068 		r = (void *) &r6;
3069 	} else { /* ipv4 */
3070 		struct rtentry32 __user *ur4 = argp;
3071 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3072 					3 * sizeof(struct sockaddr));
3073 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3074 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3075 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3076 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3077 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3078 		ret |= get_user(rtdev, &(ur4->rt_dev));
3079 		if (rtdev) {
3080 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3081 			r4.rt_dev = (char __user __force *)devname;
3082 			devname[15] = 0;
3083 		} else
3084 			r4.rt_dev = NULL;
3085 
3086 		r = (void *) &r4;
3087 	}
3088 
3089 	if (ret) {
3090 		ret = -EFAULT;
3091 		goto out;
3092 	}
3093 
3094 	set_fs(KERNEL_DS);
3095 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3096 	set_fs(old_fs);
3097 
3098 out:
3099 	return ret;
3100 }
3101 
3102 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3103  * for some operations; this forces use of the newer bridge-utils that
3104  * use compatible ioctls
3105  */
3106 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3107 {
3108 	compat_ulong_t tmp;
3109 
3110 	if (get_user(tmp, argp))
3111 		return -EFAULT;
3112 	if (tmp == BRCTL_GET_VERSION)
3113 		return BRCTL_VERSION + 1;
3114 	return -EINVAL;
3115 }
3116 
3117 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3118 			 unsigned int cmd, unsigned long arg)
3119 {
3120 	void __user *argp = compat_ptr(arg);
3121 	struct sock *sk = sock->sk;
3122 	struct net *net = sock_net(sk);
3123 
3124 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3125 		return compat_ifr_data_ioctl(net, cmd, argp);
3126 
3127 	switch (cmd) {
3128 	case SIOCSIFBR:
3129 	case SIOCGIFBR:
3130 		return old_bridge_ioctl(argp);
3131 	case SIOCGIFNAME:
3132 		return dev_ifname32(net, argp);
3133 	case SIOCGIFCONF:
3134 		return dev_ifconf(net, argp);
3135 	case SIOCETHTOOL:
3136 		return ethtool_ioctl(net, argp);
3137 	case SIOCWANDEV:
3138 		return compat_siocwandev(net, argp);
3139 	case SIOCGIFMAP:
3140 	case SIOCSIFMAP:
3141 		return compat_sioc_ifmap(net, cmd, argp);
3142 	case SIOCBONDENSLAVE:
3143 	case SIOCBONDRELEASE:
3144 	case SIOCBONDSETHWADDR:
3145 	case SIOCBONDCHANGEACTIVE:
3146 		return bond_ioctl(net, cmd, argp);
3147 	case SIOCADDRT:
3148 	case SIOCDELRT:
3149 		return routing_ioctl(net, sock, cmd, argp);
3150 	case SIOCGSTAMP:
3151 		return do_siocgstamp(net, sock, cmd, argp);
3152 	case SIOCGSTAMPNS:
3153 		return do_siocgstampns(net, sock, cmd, argp);
3154 	case SIOCBONDSLAVEINFOQUERY:
3155 	case SIOCBONDINFOQUERY:
3156 	case SIOCSHWTSTAMP:
3157 	case SIOCGHWTSTAMP:
3158 		return compat_ifr_data_ioctl(net, cmd, argp);
3159 
3160 	case FIOSETOWN:
3161 	case SIOCSPGRP:
3162 	case FIOGETOWN:
3163 	case SIOCGPGRP:
3164 	case SIOCBRADDBR:
3165 	case SIOCBRDELBR:
3166 	case SIOCGIFVLAN:
3167 	case SIOCSIFVLAN:
3168 	case SIOCADDDLCI:
3169 	case SIOCDELDLCI:
3170 	case SIOCGSKNS:
3171 		return sock_ioctl(file, cmd, arg);
3172 
3173 	case SIOCGIFFLAGS:
3174 	case SIOCSIFFLAGS:
3175 	case SIOCGIFMETRIC:
3176 	case SIOCSIFMETRIC:
3177 	case SIOCGIFMTU:
3178 	case SIOCSIFMTU:
3179 	case SIOCGIFMEM:
3180 	case SIOCSIFMEM:
3181 	case SIOCGIFHWADDR:
3182 	case SIOCSIFHWADDR:
3183 	case SIOCADDMULTI:
3184 	case SIOCDELMULTI:
3185 	case SIOCGIFINDEX:
3186 	case SIOCGIFADDR:
3187 	case SIOCSIFADDR:
3188 	case SIOCSIFHWBROADCAST:
3189 	case SIOCDIFADDR:
3190 	case SIOCGIFBRDADDR:
3191 	case SIOCSIFBRDADDR:
3192 	case SIOCGIFDSTADDR:
3193 	case SIOCSIFDSTADDR:
3194 	case SIOCGIFNETMASK:
3195 	case SIOCSIFNETMASK:
3196 	case SIOCSIFPFLAGS:
3197 	case SIOCGIFPFLAGS:
3198 	case SIOCGIFTXQLEN:
3199 	case SIOCSIFTXQLEN:
3200 	case SIOCBRADDIF:
3201 	case SIOCBRDELIF:
3202 	case SIOCSIFNAME:
3203 	case SIOCGMIIPHY:
3204 	case SIOCGMIIREG:
3205 	case SIOCSMIIREG:
3206 		return dev_ifsioc(net, sock, cmd, argp);
3207 
3208 	case SIOCSARP:
3209 	case SIOCGARP:
3210 	case SIOCDARP:
3211 	case SIOCATMARK:
3212 		return sock_do_ioctl(net, sock, cmd, arg);
3213 	}
3214 
3215 	return -ENOIOCTLCMD;
3216 }
3217 
3218 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3219 			      unsigned long arg)
3220 {
3221 	struct socket *sock = file->private_data;
3222 	int ret = -ENOIOCTLCMD;
3223 	struct sock *sk;
3224 	struct net *net;
3225 
3226 	sk = sock->sk;
3227 	net = sock_net(sk);
3228 
3229 	if (sock->ops->compat_ioctl)
3230 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3231 
3232 	if (ret == -ENOIOCTLCMD &&
3233 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3234 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3235 
3236 	if (ret == -ENOIOCTLCMD)
3237 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3238 
3239 	return ret;
3240 }
3241 #endif
3242 
3243 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3244 {
3245 	return sock->ops->bind(sock, addr, addrlen);
3246 }
3247 EXPORT_SYMBOL(kernel_bind);
3248 
3249 int kernel_listen(struct socket *sock, int backlog)
3250 {
3251 	return sock->ops->listen(sock, backlog);
3252 }
3253 EXPORT_SYMBOL(kernel_listen);
3254 
3255 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3256 {
3257 	struct sock *sk = sock->sk;
3258 	int err;
3259 
3260 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3261 			       newsock);
3262 	if (err < 0)
3263 		goto done;
3264 
3265 	err = sock->ops->accept(sock, *newsock, flags, true);
3266 	if (err < 0) {
3267 		sock_release(*newsock);
3268 		*newsock = NULL;
3269 		goto done;
3270 	}
3271 
3272 	(*newsock)->ops = sock->ops;
3273 	__module_get((*newsock)->ops->owner);
3274 
3275 done:
3276 	return err;
3277 }
3278 EXPORT_SYMBOL(kernel_accept);
3279 
3280 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3281 		   int flags)
3282 {
3283 	return sock->ops->connect(sock, addr, addrlen, flags);
3284 }
3285 EXPORT_SYMBOL(kernel_connect);
3286 
3287 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3288 			 int *addrlen)
3289 {
3290 	return sock->ops->getname(sock, addr, addrlen, 0);
3291 }
3292 EXPORT_SYMBOL(kernel_getsockname);
3293 
3294 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3295 			 int *addrlen)
3296 {
3297 	return sock->ops->getname(sock, addr, addrlen, 1);
3298 }
3299 EXPORT_SYMBOL(kernel_getpeername);
3300 
3301 int kernel_getsockopt(struct socket *sock, int level, int optname,
3302 			char *optval, int *optlen)
3303 {
3304 	mm_segment_t oldfs = get_fs();
3305 	char __user *uoptval;
3306 	int __user *uoptlen;
3307 	int err;
3308 
3309 	uoptval = (char __user __force *) optval;
3310 	uoptlen = (int __user __force *) optlen;
3311 
3312 	set_fs(KERNEL_DS);
3313 	if (level == SOL_SOCKET)
3314 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3315 	else
3316 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3317 					    uoptlen);
3318 	set_fs(oldfs);
3319 	return err;
3320 }
3321 EXPORT_SYMBOL(kernel_getsockopt);
3322 
3323 int kernel_setsockopt(struct socket *sock, int level, int optname,
3324 			char *optval, unsigned int optlen)
3325 {
3326 	mm_segment_t oldfs = get_fs();
3327 	char __user *uoptval;
3328 	int err;
3329 
3330 	uoptval = (char __user __force *) optval;
3331 
3332 	set_fs(KERNEL_DS);
3333 	if (level == SOL_SOCKET)
3334 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3335 	else
3336 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3337 					    optlen);
3338 	set_fs(oldfs);
3339 	return err;
3340 }
3341 EXPORT_SYMBOL(kernel_setsockopt);
3342 
3343 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3344 		    size_t size, int flags)
3345 {
3346 	if (sock->ops->sendpage)
3347 		return sock->ops->sendpage(sock, page, offset, size, flags);
3348 
3349 	return sock_no_sendpage(sock, page, offset, size, flags);
3350 }
3351 EXPORT_SYMBOL(kernel_sendpage);
3352 
3353 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3354 			   size_t size, int flags)
3355 {
3356 	struct socket *sock = sk->sk_socket;
3357 
3358 	if (sock->ops->sendpage_locked)
3359 		return sock->ops->sendpage_locked(sk, page, offset, size,
3360 						  flags);
3361 
3362 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3363 }
3364 EXPORT_SYMBOL(kernel_sendpage_locked);
3365 
3366 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3367 {
3368 	mm_segment_t oldfs = get_fs();
3369 	int err;
3370 
3371 	set_fs(KERNEL_DS);
3372 	err = sock->ops->ioctl(sock, cmd, arg);
3373 	set_fs(oldfs);
3374 
3375 	return err;
3376 }
3377 EXPORT_SYMBOL(kernel_sock_ioctl);
3378 
3379 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3380 {
3381 	return sock->ops->shutdown(sock, how);
3382 }
3383 EXPORT_SYMBOL(kernel_sock_shutdown);
3384 
3385 /* This routine returns the IP overhead imposed by a socket i.e.
3386  * the length of the underlying IP header, depending on whether
3387  * this is an IPv4 or IPv6 socket and the length from IP options turned
3388  * on at the socket. Assumes that the caller has a lock on the socket.
3389  */
3390 u32 kernel_sock_ip_overhead(struct sock *sk)
3391 {
3392 	struct inet_sock *inet;
3393 	struct ip_options_rcu *opt;
3394 	u32 overhead = 0;
3395 #if IS_ENABLED(CONFIG_IPV6)
3396 	struct ipv6_pinfo *np;
3397 	struct ipv6_txoptions *optv6 = NULL;
3398 #endif /* IS_ENABLED(CONFIG_IPV6) */
3399 
3400 	if (!sk)
3401 		return overhead;
3402 
3403 	switch (sk->sk_family) {
3404 	case AF_INET:
3405 		inet = inet_sk(sk);
3406 		overhead += sizeof(struct iphdr);
3407 		opt = rcu_dereference_protected(inet->inet_opt,
3408 						sock_owned_by_user(sk));
3409 		if (opt)
3410 			overhead += opt->opt.optlen;
3411 		return overhead;
3412 #if IS_ENABLED(CONFIG_IPV6)
3413 	case AF_INET6:
3414 		np = inet6_sk(sk);
3415 		overhead += sizeof(struct ipv6hdr);
3416 		if (np)
3417 			optv6 = rcu_dereference_protected(np->opt,
3418 							  sock_owned_by_user(sk));
3419 		if (optv6)
3420 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3421 		return overhead;
3422 #endif /* IS_ENABLED(CONFIG_IPV6) */
3423 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3424 		return overhead;
3425 	}
3426 }
3427 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3428