xref: /openbmc/linux/net/socket.c (revision 63dc02bd)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 	struct socket_wq *wq;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 	if (!wq) {
250 		kmem_cache_free(sock_inode_cachep, ei);
251 		return NULL;
252 	}
253 	init_waitqueue_head(&wq->wait);
254 	wq->fasync_list = NULL;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static int init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD),
292 					      init_once);
293 	if (sock_inode_cachep == NULL)
294 		return -ENOMEM;
295 	return 0;
296 }
297 
298 static const struct super_operations sockfs_ops = {
299 	.alloc_inode	= sock_alloc_inode,
300 	.destroy_inode	= sock_destroy_inode,
301 	.statfs		= simple_statfs,
302 };
303 
304 /*
305  * sockfs_dname() is called from d_path().
306  */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 				dentry->d_inode->i_ino);
311 }
312 
313 static const struct dentry_operations sockfs_dentry_operations = {
314 	.d_dname  = sockfs_dname,
315 };
316 
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 			 int flags, const char *dev_name, void *data)
319 {
320 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 		&sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323 
324 static struct vfsmount *sock_mnt __read_mostly;
325 
326 static struct file_system_type sock_fs_type = {
327 	.name =		"sockfs",
328 	.mount =	sockfs_mount,
329 	.kill_sb =	kill_anon_super,
330 };
331 
332 /*
333  *	Obtains the first available file descriptor and sets it up for use.
334  *
335  *	These functions create file structures and maps them to fd space
336  *	of the current process. On success it returns file descriptor
337  *	and file struct implicitly stored in sock->file.
338  *	Note that another thread may close file descriptor before we return
339  *	from this function. We use the fact that now we do not refer
340  *	to socket after mapping. If one day we will need it, this
341  *	function will increment ref. count on file by 1.
342  *
343  *	In any case returned fd MAY BE not valid!
344  *	This race condition is unavoidable
345  *	with shared fd spaces, we cannot solve it inside kernel,
346  *	but we take care of internal coherence yet.
347  */
348 
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350 {
351 	struct qstr name = { .name = "" };
352 	struct path path;
353 	struct file *file;
354 	int fd;
355 
356 	fd = get_unused_fd_flags(flags);
357 	if (unlikely(fd < 0))
358 		return fd;
359 
360 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 	if (unlikely(!path.dentry)) {
362 		put_unused_fd(fd);
363 		return -ENOMEM;
364 	}
365 	path.mnt = mntget(sock_mnt);
366 
367 	d_instantiate(path.dentry, SOCK_INODE(sock));
368 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
369 
370 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 		  &socket_file_ops);
372 	if (unlikely(!file)) {
373 		/* drop dentry, keep inode */
374 		ihold(path.dentry->d_inode);
375 		path_put(&path);
376 		put_unused_fd(fd);
377 		return -ENFILE;
378 	}
379 
380 	sock->file = file;
381 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 	file->f_pos = 0;
383 	file->private_data = sock;
384 
385 	*f = file;
386 	return fd;
387 }
388 
389 int sock_map_fd(struct socket *sock, int flags)
390 {
391 	struct file *newfile;
392 	int fd = sock_alloc_file(sock, &newfile, flags);
393 
394 	if (likely(fd >= 0))
395 		fd_install(fd, newfile);
396 
397 	return fd;
398 }
399 EXPORT_SYMBOL(sock_map_fd);
400 
401 static struct socket *sock_from_file(struct file *file, int *err)
402 {
403 	if (file->f_op == &socket_file_ops)
404 		return file->private_data;	/* set in sock_map_fd */
405 
406 	*err = -ENOTSOCK;
407 	return NULL;
408 }
409 
410 /**
411  *	sockfd_lookup - Go from a file number to its socket slot
412  *	@fd: file handle
413  *	@err: pointer to an error code return
414  *
415  *	The file handle passed in is locked and the socket it is bound
416  *	too is returned. If an error occurs the err pointer is overwritten
417  *	with a negative errno code and NULL is returned. The function checks
418  *	for both invalid handles and passing a handle which is not a socket.
419  *
420  *	On a success the socket object pointer is returned.
421  */
422 
423 struct socket *sockfd_lookup(int fd, int *err)
424 {
425 	struct file *file;
426 	struct socket *sock;
427 
428 	file = fget(fd);
429 	if (!file) {
430 		*err = -EBADF;
431 		return NULL;
432 	}
433 
434 	sock = sock_from_file(file, err);
435 	if (!sock)
436 		fput(file);
437 	return sock;
438 }
439 EXPORT_SYMBOL(sockfd_lookup);
440 
441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
442 {
443 	struct file *file;
444 	struct socket *sock;
445 
446 	*err = -EBADF;
447 	file = fget_light(fd, fput_needed);
448 	if (file) {
449 		sock = sock_from_file(file, err);
450 		if (sock)
451 			return sock;
452 		fput_light(file, *fput_needed);
453 	}
454 	return NULL;
455 }
456 
457 /**
458  *	sock_alloc	-	allocate a socket
459  *
460  *	Allocate a new inode and socket object. The two are bound together
461  *	and initialised. The socket is then returned. If we are out of inodes
462  *	NULL is returned.
463  */
464 
465 static struct socket *sock_alloc(void)
466 {
467 	struct inode *inode;
468 	struct socket *sock;
469 
470 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
471 	if (!inode)
472 		return NULL;
473 
474 	sock = SOCKET_I(inode);
475 
476 	kmemcheck_annotate_bitfield(sock, type);
477 	inode->i_ino = get_next_ino();
478 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 	inode->i_uid = current_fsuid();
480 	inode->i_gid = current_fsgid();
481 
482 	percpu_add(sockets_in_use, 1);
483 	return sock;
484 }
485 
486 /*
487  *	In theory you can't get an open on this inode, but /proc provides
488  *	a back door. Remember to keep it shut otherwise you'll let the
489  *	creepy crawlies in.
490  */
491 
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493 {
494 	return -ENXIO;
495 }
496 
497 const struct file_operations bad_sock_fops = {
498 	.owner = THIS_MODULE,
499 	.open = sock_no_open,
500 	.llseek = noop_llseek,
501 };
502 
503 /**
504  *	sock_release	-	close a socket
505  *	@sock: socket to close
506  *
507  *	The socket is released from the protocol stack if it has a release
508  *	callback, and the inode is then released if the socket is bound to
509  *	an inode not a file.
510  */
511 
512 void sock_release(struct socket *sock)
513 {
514 	if (sock->ops) {
515 		struct module *owner = sock->ops->owner;
516 
517 		sock->ops->release(sock);
518 		sock->ops = NULL;
519 		module_put(owner);
520 	}
521 
522 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
524 
525 	percpu_sub(sockets_in_use, 1);
526 	if (!sock->file) {
527 		iput(SOCK_INODE(sock));
528 		return;
529 	}
530 	sock->file = NULL;
531 }
532 EXPORT_SYMBOL(sock_release);
533 
534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
535 {
536 	*tx_flags = 0;
537 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
538 		*tx_flags |= SKBTX_HW_TSTAMP;
539 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
540 		*tx_flags |= SKBTX_SW_TSTAMP;
541 	if (sock_flag(sk, SOCK_WIFI_STATUS))
542 		*tx_flags |= SKBTX_WIFI_STATUS;
543 	return 0;
544 }
545 EXPORT_SYMBOL(sock_tx_timestamp);
546 
547 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
548 				       struct msghdr *msg, size_t size)
549 {
550 	struct sock_iocb *si = kiocb_to_siocb(iocb);
551 
552 	sock_update_classid(sock->sk);
553 
554 	sock_update_netprioidx(sock->sk);
555 
556 	si->sock = sock;
557 	si->scm = NULL;
558 	si->msg = msg;
559 	si->size = size;
560 
561 	return sock->ops->sendmsg(iocb, sock, msg, size);
562 }
563 
564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
565 				 struct msghdr *msg, size_t size)
566 {
567 	int err = security_socket_sendmsg(sock, msg, size);
568 
569 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
570 }
571 
572 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
573 {
574 	struct kiocb iocb;
575 	struct sock_iocb siocb;
576 	int ret;
577 
578 	init_sync_kiocb(&iocb, NULL);
579 	iocb.private = &siocb;
580 	ret = __sock_sendmsg(&iocb, sock, msg, size);
581 	if (-EIOCBQUEUED == ret)
582 		ret = wait_on_sync_kiocb(&iocb);
583 	return ret;
584 }
585 EXPORT_SYMBOL(sock_sendmsg);
586 
587 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
588 {
589 	struct kiocb iocb;
590 	struct sock_iocb siocb;
591 	int ret;
592 
593 	init_sync_kiocb(&iocb, NULL);
594 	iocb.private = &siocb;
595 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
596 	if (-EIOCBQUEUED == ret)
597 		ret = wait_on_sync_kiocb(&iocb);
598 	return ret;
599 }
600 
601 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
602 		   struct kvec *vec, size_t num, size_t size)
603 {
604 	mm_segment_t oldfs = get_fs();
605 	int result;
606 
607 	set_fs(KERNEL_DS);
608 	/*
609 	 * the following is safe, since for compiler definitions of kvec and
610 	 * iovec are identical, yielding the same in-core layout and alignment
611 	 */
612 	msg->msg_iov = (struct iovec *)vec;
613 	msg->msg_iovlen = num;
614 	result = sock_sendmsg(sock, msg, size);
615 	set_fs(oldfs);
616 	return result;
617 }
618 EXPORT_SYMBOL(kernel_sendmsg);
619 
620 static int ktime2ts(ktime_t kt, struct timespec *ts)
621 {
622 	if (kt.tv64) {
623 		*ts = ktime_to_timespec(kt);
624 		return 1;
625 	} else {
626 		return 0;
627 	}
628 }
629 
630 /*
631  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
632  */
633 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
634 	struct sk_buff *skb)
635 {
636 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
637 	struct timespec ts[3];
638 	int empty = 1;
639 	struct skb_shared_hwtstamps *shhwtstamps =
640 		skb_hwtstamps(skb);
641 
642 	/* Race occurred between timestamp enabling and packet
643 	   receiving.  Fill in the current time for now. */
644 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
645 		__net_timestamp(skb);
646 
647 	if (need_software_tstamp) {
648 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
649 			struct timeval tv;
650 			skb_get_timestamp(skb, &tv);
651 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
652 				 sizeof(tv), &tv);
653 		} else {
654 			skb_get_timestampns(skb, &ts[0]);
655 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
656 				 sizeof(ts[0]), &ts[0]);
657 		}
658 	}
659 
660 
661 	memset(ts, 0, sizeof(ts));
662 	if (skb->tstamp.tv64 &&
663 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
664 		skb_get_timestampns(skb, ts + 0);
665 		empty = 0;
666 	}
667 	if (shhwtstamps) {
668 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
669 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
670 			empty = 0;
671 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
672 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
673 			empty = 0;
674 	}
675 	if (!empty)
676 		put_cmsg(msg, SOL_SOCKET,
677 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
678 }
679 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
680 
681 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
682 	struct sk_buff *skb)
683 {
684 	int ack;
685 
686 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
687 		return;
688 	if (!skb->wifi_acked_valid)
689 		return;
690 
691 	ack = skb->wifi_acked;
692 
693 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
694 }
695 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
696 
697 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
698 				   struct sk_buff *skb)
699 {
700 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
701 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
702 			sizeof(__u32), &skb->dropcount);
703 }
704 
705 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
706 	struct sk_buff *skb)
707 {
708 	sock_recv_timestamp(msg, sk, skb);
709 	sock_recv_drops(msg, sk, skb);
710 }
711 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
712 
713 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
714 				       struct msghdr *msg, size_t size, int flags)
715 {
716 	struct sock_iocb *si = kiocb_to_siocb(iocb);
717 
718 	sock_update_classid(sock->sk);
719 
720 	si->sock = sock;
721 	si->scm = NULL;
722 	si->msg = msg;
723 	si->size = size;
724 	si->flags = flags;
725 
726 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
727 }
728 
729 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
730 				 struct msghdr *msg, size_t size, int flags)
731 {
732 	int err = security_socket_recvmsg(sock, msg, size, flags);
733 
734 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
735 }
736 
737 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
738 		 size_t size, int flags)
739 {
740 	struct kiocb iocb;
741 	struct sock_iocb siocb;
742 	int ret;
743 
744 	init_sync_kiocb(&iocb, NULL);
745 	iocb.private = &siocb;
746 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
747 	if (-EIOCBQUEUED == ret)
748 		ret = wait_on_sync_kiocb(&iocb);
749 	return ret;
750 }
751 EXPORT_SYMBOL(sock_recvmsg);
752 
753 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
754 			      size_t size, int flags)
755 {
756 	struct kiocb iocb;
757 	struct sock_iocb siocb;
758 	int ret;
759 
760 	init_sync_kiocb(&iocb, NULL);
761 	iocb.private = &siocb;
762 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
763 	if (-EIOCBQUEUED == ret)
764 		ret = wait_on_sync_kiocb(&iocb);
765 	return ret;
766 }
767 
768 /**
769  * kernel_recvmsg - Receive a message from a socket (kernel space)
770  * @sock:       The socket to receive the message from
771  * @msg:        Received message
772  * @vec:        Input s/g array for message data
773  * @num:        Size of input s/g array
774  * @size:       Number of bytes to read
775  * @flags:      Message flags (MSG_DONTWAIT, etc...)
776  *
777  * On return the msg structure contains the scatter/gather array passed in the
778  * vec argument. The array is modified so that it consists of the unfilled
779  * portion of the original array.
780  *
781  * The returned value is the total number of bytes received, or an error.
782  */
783 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
784 		   struct kvec *vec, size_t num, size_t size, int flags)
785 {
786 	mm_segment_t oldfs = get_fs();
787 	int result;
788 
789 	set_fs(KERNEL_DS);
790 	/*
791 	 * the following is safe, since for compiler definitions of kvec and
792 	 * iovec are identical, yielding the same in-core layout and alignment
793 	 */
794 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
795 	result = sock_recvmsg(sock, msg, size, flags);
796 	set_fs(oldfs);
797 	return result;
798 }
799 EXPORT_SYMBOL(kernel_recvmsg);
800 
801 static void sock_aio_dtor(struct kiocb *iocb)
802 {
803 	kfree(iocb->private);
804 }
805 
806 static ssize_t sock_sendpage(struct file *file, struct page *page,
807 			     int offset, size_t size, loff_t *ppos, int more)
808 {
809 	struct socket *sock;
810 	int flags;
811 
812 	sock = file->private_data;
813 
814 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
815 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
816 	flags |= more;
817 
818 	return kernel_sendpage(sock, page, offset, size, flags);
819 }
820 
821 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
822 				struct pipe_inode_info *pipe, size_t len,
823 				unsigned int flags)
824 {
825 	struct socket *sock = file->private_data;
826 
827 	if (unlikely(!sock->ops->splice_read))
828 		return -EINVAL;
829 
830 	sock_update_classid(sock->sk);
831 
832 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
833 }
834 
835 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
836 					 struct sock_iocb *siocb)
837 {
838 	if (!is_sync_kiocb(iocb)) {
839 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
840 		if (!siocb)
841 			return NULL;
842 		iocb->ki_dtor = sock_aio_dtor;
843 	}
844 
845 	siocb->kiocb = iocb;
846 	iocb->private = siocb;
847 	return siocb;
848 }
849 
850 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
851 		struct file *file, const struct iovec *iov,
852 		unsigned long nr_segs)
853 {
854 	struct socket *sock = file->private_data;
855 	size_t size = 0;
856 	int i;
857 
858 	for (i = 0; i < nr_segs; i++)
859 		size += iov[i].iov_len;
860 
861 	msg->msg_name = NULL;
862 	msg->msg_namelen = 0;
863 	msg->msg_control = NULL;
864 	msg->msg_controllen = 0;
865 	msg->msg_iov = (struct iovec *)iov;
866 	msg->msg_iovlen = nr_segs;
867 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
868 
869 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
870 }
871 
872 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
873 				unsigned long nr_segs, loff_t pos)
874 {
875 	struct sock_iocb siocb, *x;
876 
877 	if (pos != 0)
878 		return -ESPIPE;
879 
880 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
881 		return 0;
882 
883 
884 	x = alloc_sock_iocb(iocb, &siocb);
885 	if (!x)
886 		return -ENOMEM;
887 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
888 }
889 
890 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
891 			struct file *file, const struct iovec *iov,
892 			unsigned long nr_segs)
893 {
894 	struct socket *sock = file->private_data;
895 	size_t size = 0;
896 	int i;
897 
898 	for (i = 0; i < nr_segs; i++)
899 		size += iov[i].iov_len;
900 
901 	msg->msg_name = NULL;
902 	msg->msg_namelen = 0;
903 	msg->msg_control = NULL;
904 	msg->msg_controllen = 0;
905 	msg->msg_iov = (struct iovec *)iov;
906 	msg->msg_iovlen = nr_segs;
907 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
908 	if (sock->type == SOCK_SEQPACKET)
909 		msg->msg_flags |= MSG_EOR;
910 
911 	return __sock_sendmsg(iocb, sock, msg, size);
912 }
913 
914 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
915 			  unsigned long nr_segs, loff_t pos)
916 {
917 	struct sock_iocb siocb, *x;
918 
919 	if (pos != 0)
920 		return -ESPIPE;
921 
922 	x = alloc_sock_iocb(iocb, &siocb);
923 	if (!x)
924 		return -ENOMEM;
925 
926 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
927 }
928 
929 /*
930  * Atomic setting of ioctl hooks to avoid race
931  * with module unload.
932  */
933 
934 static DEFINE_MUTEX(br_ioctl_mutex);
935 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
936 
937 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
938 {
939 	mutex_lock(&br_ioctl_mutex);
940 	br_ioctl_hook = hook;
941 	mutex_unlock(&br_ioctl_mutex);
942 }
943 EXPORT_SYMBOL(brioctl_set);
944 
945 static DEFINE_MUTEX(vlan_ioctl_mutex);
946 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
947 
948 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
949 {
950 	mutex_lock(&vlan_ioctl_mutex);
951 	vlan_ioctl_hook = hook;
952 	mutex_unlock(&vlan_ioctl_mutex);
953 }
954 EXPORT_SYMBOL(vlan_ioctl_set);
955 
956 static DEFINE_MUTEX(dlci_ioctl_mutex);
957 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
958 
959 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
960 {
961 	mutex_lock(&dlci_ioctl_mutex);
962 	dlci_ioctl_hook = hook;
963 	mutex_unlock(&dlci_ioctl_mutex);
964 }
965 EXPORT_SYMBOL(dlci_ioctl_set);
966 
967 static long sock_do_ioctl(struct net *net, struct socket *sock,
968 				 unsigned int cmd, unsigned long arg)
969 {
970 	int err;
971 	void __user *argp = (void __user *)arg;
972 
973 	err = sock->ops->ioctl(sock, cmd, arg);
974 
975 	/*
976 	 * If this ioctl is unknown try to hand it down
977 	 * to the NIC driver.
978 	 */
979 	if (err == -ENOIOCTLCMD)
980 		err = dev_ioctl(net, cmd, argp);
981 
982 	return err;
983 }
984 
985 /*
986  *	With an ioctl, arg may well be a user mode pointer, but we don't know
987  *	what to do with it - that's up to the protocol still.
988  */
989 
990 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
991 {
992 	struct socket *sock;
993 	struct sock *sk;
994 	void __user *argp = (void __user *)arg;
995 	int pid, err;
996 	struct net *net;
997 
998 	sock = file->private_data;
999 	sk = sock->sk;
1000 	net = sock_net(sk);
1001 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1002 		err = dev_ioctl(net, cmd, argp);
1003 	} else
1004 #ifdef CONFIG_WEXT_CORE
1005 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1006 		err = dev_ioctl(net, cmd, argp);
1007 	} else
1008 #endif
1009 		switch (cmd) {
1010 		case FIOSETOWN:
1011 		case SIOCSPGRP:
1012 			err = -EFAULT;
1013 			if (get_user(pid, (int __user *)argp))
1014 				break;
1015 			err = f_setown(sock->file, pid, 1);
1016 			break;
1017 		case FIOGETOWN:
1018 		case SIOCGPGRP:
1019 			err = put_user(f_getown(sock->file),
1020 				       (int __user *)argp);
1021 			break;
1022 		case SIOCGIFBR:
1023 		case SIOCSIFBR:
1024 		case SIOCBRADDBR:
1025 		case SIOCBRDELBR:
1026 			err = -ENOPKG;
1027 			if (!br_ioctl_hook)
1028 				request_module("bridge");
1029 
1030 			mutex_lock(&br_ioctl_mutex);
1031 			if (br_ioctl_hook)
1032 				err = br_ioctl_hook(net, cmd, argp);
1033 			mutex_unlock(&br_ioctl_mutex);
1034 			break;
1035 		case SIOCGIFVLAN:
1036 		case SIOCSIFVLAN:
1037 			err = -ENOPKG;
1038 			if (!vlan_ioctl_hook)
1039 				request_module("8021q");
1040 
1041 			mutex_lock(&vlan_ioctl_mutex);
1042 			if (vlan_ioctl_hook)
1043 				err = vlan_ioctl_hook(net, argp);
1044 			mutex_unlock(&vlan_ioctl_mutex);
1045 			break;
1046 		case SIOCADDDLCI:
1047 		case SIOCDELDLCI:
1048 			err = -ENOPKG;
1049 			if (!dlci_ioctl_hook)
1050 				request_module("dlci");
1051 
1052 			mutex_lock(&dlci_ioctl_mutex);
1053 			if (dlci_ioctl_hook)
1054 				err = dlci_ioctl_hook(cmd, argp);
1055 			mutex_unlock(&dlci_ioctl_mutex);
1056 			break;
1057 		default:
1058 			err = sock_do_ioctl(net, sock, cmd, arg);
1059 			break;
1060 		}
1061 	return err;
1062 }
1063 
1064 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1065 {
1066 	int err;
1067 	struct socket *sock = NULL;
1068 
1069 	err = security_socket_create(family, type, protocol, 1);
1070 	if (err)
1071 		goto out;
1072 
1073 	sock = sock_alloc();
1074 	if (!sock) {
1075 		err = -ENOMEM;
1076 		goto out;
1077 	}
1078 
1079 	sock->type = type;
1080 	err = security_socket_post_create(sock, family, type, protocol, 1);
1081 	if (err)
1082 		goto out_release;
1083 
1084 out:
1085 	*res = sock;
1086 	return err;
1087 out_release:
1088 	sock_release(sock);
1089 	sock = NULL;
1090 	goto out;
1091 }
1092 EXPORT_SYMBOL(sock_create_lite);
1093 
1094 /* No kernel lock held - perfect */
1095 static unsigned int sock_poll(struct file *file, poll_table *wait)
1096 {
1097 	struct socket *sock;
1098 
1099 	/*
1100 	 *      We can't return errors to poll, so it's either yes or no.
1101 	 */
1102 	sock = file->private_data;
1103 	return sock->ops->poll(file, sock, wait);
1104 }
1105 
1106 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1107 {
1108 	struct socket *sock = file->private_data;
1109 
1110 	return sock->ops->mmap(file, sock, vma);
1111 }
1112 
1113 static int sock_close(struct inode *inode, struct file *filp)
1114 {
1115 	/*
1116 	 *      It was possible the inode is NULL we were
1117 	 *      closing an unfinished socket.
1118 	 */
1119 
1120 	if (!inode) {
1121 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1122 		return 0;
1123 	}
1124 	sock_release(SOCKET_I(inode));
1125 	return 0;
1126 }
1127 
1128 /*
1129  *	Update the socket async list
1130  *
1131  *	Fasync_list locking strategy.
1132  *
1133  *	1. fasync_list is modified only under process context socket lock
1134  *	   i.e. under semaphore.
1135  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1136  *	   or under socket lock
1137  */
1138 
1139 static int sock_fasync(int fd, struct file *filp, int on)
1140 {
1141 	struct socket *sock = filp->private_data;
1142 	struct sock *sk = sock->sk;
1143 	struct socket_wq *wq;
1144 
1145 	if (sk == NULL)
1146 		return -EINVAL;
1147 
1148 	lock_sock(sk);
1149 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1150 	fasync_helper(fd, filp, on, &wq->fasync_list);
1151 
1152 	if (!wq->fasync_list)
1153 		sock_reset_flag(sk, SOCK_FASYNC);
1154 	else
1155 		sock_set_flag(sk, SOCK_FASYNC);
1156 
1157 	release_sock(sk);
1158 	return 0;
1159 }
1160 
1161 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1162 
1163 int sock_wake_async(struct socket *sock, int how, int band)
1164 {
1165 	struct socket_wq *wq;
1166 
1167 	if (!sock)
1168 		return -1;
1169 	rcu_read_lock();
1170 	wq = rcu_dereference(sock->wq);
1171 	if (!wq || !wq->fasync_list) {
1172 		rcu_read_unlock();
1173 		return -1;
1174 	}
1175 	switch (how) {
1176 	case SOCK_WAKE_WAITD:
1177 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1178 			break;
1179 		goto call_kill;
1180 	case SOCK_WAKE_SPACE:
1181 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1182 			break;
1183 		/* fall through */
1184 	case SOCK_WAKE_IO:
1185 call_kill:
1186 		kill_fasync(&wq->fasync_list, SIGIO, band);
1187 		break;
1188 	case SOCK_WAKE_URG:
1189 		kill_fasync(&wq->fasync_list, SIGURG, band);
1190 	}
1191 	rcu_read_unlock();
1192 	return 0;
1193 }
1194 EXPORT_SYMBOL(sock_wake_async);
1195 
1196 int __sock_create(struct net *net, int family, int type, int protocol,
1197 			 struct socket **res, int kern)
1198 {
1199 	int err;
1200 	struct socket *sock;
1201 	const struct net_proto_family *pf;
1202 
1203 	/*
1204 	 *      Check protocol is in range
1205 	 */
1206 	if (family < 0 || family >= NPROTO)
1207 		return -EAFNOSUPPORT;
1208 	if (type < 0 || type >= SOCK_MAX)
1209 		return -EINVAL;
1210 
1211 	/* Compatibility.
1212 
1213 	   This uglymoron is moved from INET layer to here to avoid
1214 	   deadlock in module load.
1215 	 */
1216 	if (family == PF_INET && type == SOCK_PACKET) {
1217 		static int warned;
1218 		if (!warned) {
1219 			warned = 1;
1220 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1221 			       current->comm);
1222 		}
1223 		family = PF_PACKET;
1224 	}
1225 
1226 	err = security_socket_create(family, type, protocol, kern);
1227 	if (err)
1228 		return err;
1229 
1230 	/*
1231 	 *	Allocate the socket and allow the family to set things up. if
1232 	 *	the protocol is 0, the family is instructed to select an appropriate
1233 	 *	default.
1234 	 */
1235 	sock = sock_alloc();
1236 	if (!sock) {
1237 		if (net_ratelimit())
1238 			printk(KERN_WARNING "socket: no more sockets\n");
1239 		return -ENFILE;	/* Not exactly a match, but its the
1240 				   closest posix thing */
1241 	}
1242 
1243 	sock->type = type;
1244 
1245 #ifdef CONFIG_MODULES
1246 	/* Attempt to load a protocol module if the find failed.
1247 	 *
1248 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1249 	 * requested real, full-featured networking support upon configuration.
1250 	 * Otherwise module support will break!
1251 	 */
1252 	if (rcu_access_pointer(net_families[family]) == NULL)
1253 		request_module("net-pf-%d", family);
1254 #endif
1255 
1256 	rcu_read_lock();
1257 	pf = rcu_dereference(net_families[family]);
1258 	err = -EAFNOSUPPORT;
1259 	if (!pf)
1260 		goto out_release;
1261 
1262 	/*
1263 	 * We will call the ->create function, that possibly is in a loadable
1264 	 * module, so we have to bump that loadable module refcnt first.
1265 	 */
1266 	if (!try_module_get(pf->owner))
1267 		goto out_release;
1268 
1269 	/* Now protected by module ref count */
1270 	rcu_read_unlock();
1271 
1272 	err = pf->create(net, sock, protocol, kern);
1273 	if (err < 0)
1274 		goto out_module_put;
1275 
1276 	/*
1277 	 * Now to bump the refcnt of the [loadable] module that owns this
1278 	 * socket at sock_release time we decrement its refcnt.
1279 	 */
1280 	if (!try_module_get(sock->ops->owner))
1281 		goto out_module_busy;
1282 
1283 	/*
1284 	 * Now that we're done with the ->create function, the [loadable]
1285 	 * module can have its refcnt decremented
1286 	 */
1287 	module_put(pf->owner);
1288 	err = security_socket_post_create(sock, family, type, protocol, kern);
1289 	if (err)
1290 		goto out_sock_release;
1291 	*res = sock;
1292 
1293 	return 0;
1294 
1295 out_module_busy:
1296 	err = -EAFNOSUPPORT;
1297 out_module_put:
1298 	sock->ops = NULL;
1299 	module_put(pf->owner);
1300 out_sock_release:
1301 	sock_release(sock);
1302 	return err;
1303 
1304 out_release:
1305 	rcu_read_unlock();
1306 	goto out_sock_release;
1307 }
1308 EXPORT_SYMBOL(__sock_create);
1309 
1310 int sock_create(int family, int type, int protocol, struct socket **res)
1311 {
1312 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1313 }
1314 EXPORT_SYMBOL(sock_create);
1315 
1316 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1317 {
1318 	return __sock_create(&init_net, family, type, protocol, res, 1);
1319 }
1320 EXPORT_SYMBOL(sock_create_kern);
1321 
1322 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1323 {
1324 	int retval;
1325 	struct socket *sock;
1326 	int flags;
1327 
1328 	/* Check the SOCK_* constants for consistency.  */
1329 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1330 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1331 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1332 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1333 
1334 	flags = type & ~SOCK_TYPE_MASK;
1335 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1336 		return -EINVAL;
1337 	type &= SOCK_TYPE_MASK;
1338 
1339 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1340 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1341 
1342 	retval = sock_create(family, type, protocol, &sock);
1343 	if (retval < 0)
1344 		goto out;
1345 
1346 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1347 	if (retval < 0)
1348 		goto out_release;
1349 
1350 out:
1351 	/* It may be already another descriptor 8) Not kernel problem. */
1352 	return retval;
1353 
1354 out_release:
1355 	sock_release(sock);
1356 	return retval;
1357 }
1358 
1359 /*
1360  *	Create a pair of connected sockets.
1361  */
1362 
1363 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1364 		int __user *, usockvec)
1365 {
1366 	struct socket *sock1, *sock2;
1367 	int fd1, fd2, err;
1368 	struct file *newfile1, *newfile2;
1369 	int flags;
1370 
1371 	flags = type & ~SOCK_TYPE_MASK;
1372 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1373 		return -EINVAL;
1374 	type &= SOCK_TYPE_MASK;
1375 
1376 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1377 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1378 
1379 	/*
1380 	 * Obtain the first socket and check if the underlying protocol
1381 	 * supports the socketpair call.
1382 	 */
1383 
1384 	err = sock_create(family, type, protocol, &sock1);
1385 	if (err < 0)
1386 		goto out;
1387 
1388 	err = sock_create(family, type, protocol, &sock2);
1389 	if (err < 0)
1390 		goto out_release_1;
1391 
1392 	err = sock1->ops->socketpair(sock1, sock2);
1393 	if (err < 0)
1394 		goto out_release_both;
1395 
1396 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1397 	if (unlikely(fd1 < 0)) {
1398 		err = fd1;
1399 		goto out_release_both;
1400 	}
1401 
1402 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1403 	if (unlikely(fd2 < 0)) {
1404 		err = fd2;
1405 		fput(newfile1);
1406 		put_unused_fd(fd1);
1407 		sock_release(sock2);
1408 		goto out;
1409 	}
1410 
1411 	audit_fd_pair(fd1, fd2);
1412 	fd_install(fd1, newfile1);
1413 	fd_install(fd2, newfile2);
1414 	/* fd1 and fd2 may be already another descriptors.
1415 	 * Not kernel problem.
1416 	 */
1417 
1418 	err = put_user(fd1, &usockvec[0]);
1419 	if (!err)
1420 		err = put_user(fd2, &usockvec[1]);
1421 	if (!err)
1422 		return 0;
1423 
1424 	sys_close(fd2);
1425 	sys_close(fd1);
1426 	return err;
1427 
1428 out_release_both:
1429 	sock_release(sock2);
1430 out_release_1:
1431 	sock_release(sock1);
1432 out:
1433 	return err;
1434 }
1435 
1436 /*
1437  *	Bind a name to a socket. Nothing much to do here since it's
1438  *	the protocol's responsibility to handle the local address.
1439  *
1440  *	We move the socket address to kernel space before we call
1441  *	the protocol layer (having also checked the address is ok).
1442  */
1443 
1444 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1445 {
1446 	struct socket *sock;
1447 	struct sockaddr_storage address;
1448 	int err, fput_needed;
1449 
1450 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1451 	if (sock) {
1452 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1453 		if (err >= 0) {
1454 			err = security_socket_bind(sock,
1455 						   (struct sockaddr *)&address,
1456 						   addrlen);
1457 			if (!err)
1458 				err = sock->ops->bind(sock,
1459 						      (struct sockaddr *)
1460 						      &address, addrlen);
1461 		}
1462 		fput_light(sock->file, fput_needed);
1463 	}
1464 	return err;
1465 }
1466 
1467 /*
1468  *	Perform a listen. Basically, we allow the protocol to do anything
1469  *	necessary for a listen, and if that works, we mark the socket as
1470  *	ready for listening.
1471  */
1472 
1473 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1474 {
1475 	struct socket *sock;
1476 	int err, fput_needed;
1477 	int somaxconn;
1478 
1479 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 	if (sock) {
1481 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1482 		if ((unsigned)backlog > somaxconn)
1483 			backlog = somaxconn;
1484 
1485 		err = security_socket_listen(sock, backlog);
1486 		if (!err)
1487 			err = sock->ops->listen(sock, backlog);
1488 
1489 		fput_light(sock->file, fput_needed);
1490 	}
1491 	return err;
1492 }
1493 
1494 /*
1495  *	For accept, we attempt to create a new socket, set up the link
1496  *	with the client, wake up the client, then return the new
1497  *	connected fd. We collect the address of the connector in kernel
1498  *	space and move it to user at the very end. This is unclean because
1499  *	we open the socket then return an error.
1500  *
1501  *	1003.1g adds the ability to recvmsg() to query connection pending
1502  *	status to recvmsg. We need to add that support in a way thats
1503  *	clean when we restucture accept also.
1504  */
1505 
1506 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1507 		int __user *, upeer_addrlen, int, flags)
1508 {
1509 	struct socket *sock, *newsock;
1510 	struct file *newfile;
1511 	int err, len, newfd, fput_needed;
1512 	struct sockaddr_storage address;
1513 
1514 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1515 		return -EINVAL;
1516 
1517 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1518 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1519 
1520 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521 	if (!sock)
1522 		goto out;
1523 
1524 	err = -ENFILE;
1525 	newsock = sock_alloc();
1526 	if (!newsock)
1527 		goto out_put;
1528 
1529 	newsock->type = sock->type;
1530 	newsock->ops = sock->ops;
1531 
1532 	/*
1533 	 * We don't need try_module_get here, as the listening socket (sock)
1534 	 * has the protocol module (sock->ops->owner) held.
1535 	 */
1536 	__module_get(newsock->ops->owner);
1537 
1538 	newfd = sock_alloc_file(newsock, &newfile, flags);
1539 	if (unlikely(newfd < 0)) {
1540 		err = newfd;
1541 		sock_release(newsock);
1542 		goto out_put;
1543 	}
1544 
1545 	err = security_socket_accept(sock, newsock);
1546 	if (err)
1547 		goto out_fd;
1548 
1549 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1550 	if (err < 0)
1551 		goto out_fd;
1552 
1553 	if (upeer_sockaddr) {
1554 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1555 					  &len, 2) < 0) {
1556 			err = -ECONNABORTED;
1557 			goto out_fd;
1558 		}
1559 		err = move_addr_to_user(&address,
1560 					len, upeer_sockaddr, upeer_addrlen);
1561 		if (err < 0)
1562 			goto out_fd;
1563 	}
1564 
1565 	/* File flags are not inherited via accept() unlike another OSes. */
1566 
1567 	fd_install(newfd, newfile);
1568 	err = newfd;
1569 
1570 out_put:
1571 	fput_light(sock->file, fput_needed);
1572 out:
1573 	return err;
1574 out_fd:
1575 	fput(newfile);
1576 	put_unused_fd(newfd);
1577 	goto out_put;
1578 }
1579 
1580 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1581 		int __user *, upeer_addrlen)
1582 {
1583 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1584 }
1585 
1586 /*
1587  *	Attempt to connect to a socket with the server address.  The address
1588  *	is in user space so we verify it is OK and move it to kernel space.
1589  *
1590  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1591  *	break bindings
1592  *
1593  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1594  *	other SEQPACKET protocols that take time to connect() as it doesn't
1595  *	include the -EINPROGRESS status for such sockets.
1596  */
1597 
1598 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1599 		int, addrlen)
1600 {
1601 	struct socket *sock;
1602 	struct sockaddr_storage address;
1603 	int err, fput_needed;
1604 
1605 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1606 	if (!sock)
1607 		goto out;
1608 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1609 	if (err < 0)
1610 		goto out_put;
1611 
1612 	err =
1613 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1614 	if (err)
1615 		goto out_put;
1616 
1617 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1618 				 sock->file->f_flags);
1619 out_put:
1620 	fput_light(sock->file, fput_needed);
1621 out:
1622 	return err;
1623 }
1624 
1625 /*
1626  *	Get the local address ('name') of a socket object. Move the obtained
1627  *	name to user space.
1628  */
1629 
1630 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1631 		int __user *, usockaddr_len)
1632 {
1633 	struct socket *sock;
1634 	struct sockaddr_storage address;
1635 	int len, err, fput_needed;
1636 
1637 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1638 	if (!sock)
1639 		goto out;
1640 
1641 	err = security_socket_getsockname(sock);
1642 	if (err)
1643 		goto out_put;
1644 
1645 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1646 	if (err)
1647 		goto out_put;
1648 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1649 
1650 out_put:
1651 	fput_light(sock->file, fput_needed);
1652 out:
1653 	return err;
1654 }
1655 
1656 /*
1657  *	Get the remote address ('name') of a socket object. Move the obtained
1658  *	name to user space.
1659  */
1660 
1661 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1662 		int __user *, usockaddr_len)
1663 {
1664 	struct socket *sock;
1665 	struct sockaddr_storage address;
1666 	int len, err, fput_needed;
1667 
1668 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1669 	if (sock != NULL) {
1670 		err = security_socket_getpeername(sock);
1671 		if (err) {
1672 			fput_light(sock->file, fput_needed);
1673 			return err;
1674 		}
1675 
1676 		err =
1677 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1678 				       1);
1679 		if (!err)
1680 			err = move_addr_to_user(&address, len, usockaddr,
1681 						usockaddr_len);
1682 		fput_light(sock->file, fput_needed);
1683 	}
1684 	return err;
1685 }
1686 
1687 /*
1688  *	Send a datagram to a given address. We move the address into kernel
1689  *	space and check the user space data area is readable before invoking
1690  *	the protocol.
1691  */
1692 
1693 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1694 		unsigned, flags, struct sockaddr __user *, addr,
1695 		int, addr_len)
1696 {
1697 	struct socket *sock;
1698 	struct sockaddr_storage address;
1699 	int err;
1700 	struct msghdr msg;
1701 	struct iovec iov;
1702 	int fput_needed;
1703 
1704 	if (len > INT_MAX)
1705 		len = INT_MAX;
1706 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707 	if (!sock)
1708 		goto out;
1709 
1710 	iov.iov_base = buff;
1711 	iov.iov_len = len;
1712 	msg.msg_name = NULL;
1713 	msg.msg_iov = &iov;
1714 	msg.msg_iovlen = 1;
1715 	msg.msg_control = NULL;
1716 	msg.msg_controllen = 0;
1717 	msg.msg_namelen = 0;
1718 	if (addr) {
1719 		err = move_addr_to_kernel(addr, addr_len, &address);
1720 		if (err < 0)
1721 			goto out_put;
1722 		msg.msg_name = (struct sockaddr *)&address;
1723 		msg.msg_namelen = addr_len;
1724 	}
1725 	if (sock->file->f_flags & O_NONBLOCK)
1726 		flags |= MSG_DONTWAIT;
1727 	msg.msg_flags = flags;
1728 	err = sock_sendmsg(sock, &msg, len);
1729 
1730 out_put:
1731 	fput_light(sock->file, fput_needed);
1732 out:
1733 	return err;
1734 }
1735 
1736 /*
1737  *	Send a datagram down a socket.
1738  */
1739 
1740 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1741 		unsigned, flags)
1742 {
1743 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1744 }
1745 
1746 /*
1747  *	Receive a frame from the socket and optionally record the address of the
1748  *	sender. We verify the buffers are writable and if needed move the
1749  *	sender address from kernel to user space.
1750  */
1751 
1752 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1753 		unsigned, flags, struct sockaddr __user *, addr,
1754 		int __user *, addr_len)
1755 {
1756 	struct socket *sock;
1757 	struct iovec iov;
1758 	struct msghdr msg;
1759 	struct sockaddr_storage address;
1760 	int err, err2;
1761 	int fput_needed;
1762 
1763 	if (size > INT_MAX)
1764 		size = INT_MAX;
1765 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1766 	if (!sock)
1767 		goto out;
1768 
1769 	msg.msg_control = NULL;
1770 	msg.msg_controllen = 0;
1771 	msg.msg_iovlen = 1;
1772 	msg.msg_iov = &iov;
1773 	iov.iov_len = size;
1774 	iov.iov_base = ubuf;
1775 	msg.msg_name = (struct sockaddr *)&address;
1776 	msg.msg_namelen = sizeof(address);
1777 	if (sock->file->f_flags & O_NONBLOCK)
1778 		flags |= MSG_DONTWAIT;
1779 	err = sock_recvmsg(sock, &msg, size, flags);
1780 
1781 	if (err >= 0 && addr != NULL) {
1782 		err2 = move_addr_to_user(&address,
1783 					 msg.msg_namelen, addr, addr_len);
1784 		if (err2 < 0)
1785 			err = err2;
1786 	}
1787 
1788 	fput_light(sock->file, fput_needed);
1789 out:
1790 	return err;
1791 }
1792 
1793 /*
1794  *	Receive a datagram from a socket.
1795  */
1796 
1797 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1798 			 unsigned flags)
1799 {
1800 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1801 }
1802 
1803 /*
1804  *	Set a socket option. Because we don't know the option lengths we have
1805  *	to pass the user mode parameter for the protocols to sort out.
1806  */
1807 
1808 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1809 		char __user *, optval, int, optlen)
1810 {
1811 	int err, fput_needed;
1812 	struct socket *sock;
1813 
1814 	if (optlen < 0)
1815 		return -EINVAL;
1816 
1817 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 	if (sock != NULL) {
1819 		err = security_socket_setsockopt(sock, level, optname);
1820 		if (err)
1821 			goto out_put;
1822 
1823 		if (level == SOL_SOCKET)
1824 			err =
1825 			    sock_setsockopt(sock, level, optname, optval,
1826 					    optlen);
1827 		else
1828 			err =
1829 			    sock->ops->setsockopt(sock, level, optname, optval,
1830 						  optlen);
1831 out_put:
1832 		fput_light(sock->file, fput_needed);
1833 	}
1834 	return err;
1835 }
1836 
1837 /*
1838  *	Get a socket option. Because we don't know the option lengths we have
1839  *	to pass a user mode parameter for the protocols to sort out.
1840  */
1841 
1842 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1843 		char __user *, optval, int __user *, optlen)
1844 {
1845 	int err, fput_needed;
1846 	struct socket *sock;
1847 
1848 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 	if (sock != NULL) {
1850 		err = security_socket_getsockopt(sock, level, optname);
1851 		if (err)
1852 			goto out_put;
1853 
1854 		if (level == SOL_SOCKET)
1855 			err =
1856 			    sock_getsockopt(sock, level, optname, optval,
1857 					    optlen);
1858 		else
1859 			err =
1860 			    sock->ops->getsockopt(sock, level, optname, optval,
1861 						  optlen);
1862 out_put:
1863 		fput_light(sock->file, fput_needed);
1864 	}
1865 	return err;
1866 }
1867 
1868 /*
1869  *	Shutdown a socket.
1870  */
1871 
1872 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1873 {
1874 	int err, fput_needed;
1875 	struct socket *sock;
1876 
1877 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878 	if (sock != NULL) {
1879 		err = security_socket_shutdown(sock, how);
1880 		if (!err)
1881 			err = sock->ops->shutdown(sock, how);
1882 		fput_light(sock->file, fput_needed);
1883 	}
1884 	return err;
1885 }
1886 
1887 /* A couple of helpful macros for getting the address of the 32/64 bit
1888  * fields which are the same type (int / unsigned) on our platforms.
1889  */
1890 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1891 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1892 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1893 
1894 struct used_address {
1895 	struct sockaddr_storage name;
1896 	unsigned int name_len;
1897 };
1898 
1899 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1900 			 struct msghdr *msg_sys, unsigned flags,
1901 			 struct used_address *used_address)
1902 {
1903 	struct compat_msghdr __user *msg_compat =
1904 	    (struct compat_msghdr __user *)msg;
1905 	struct sockaddr_storage address;
1906 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1907 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1908 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1909 	/* 20 is size of ipv6_pktinfo */
1910 	unsigned char *ctl_buf = ctl;
1911 	int err, ctl_len, iov_size, total_len;
1912 
1913 	err = -EFAULT;
1914 	if (MSG_CMSG_COMPAT & flags) {
1915 		if (get_compat_msghdr(msg_sys, msg_compat))
1916 			return -EFAULT;
1917 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1918 		return -EFAULT;
1919 
1920 	/* do not move before msg_sys is valid */
1921 	err = -EMSGSIZE;
1922 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1923 		goto out;
1924 
1925 	/* Check whether to allocate the iovec area */
1926 	err = -ENOMEM;
1927 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1928 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1929 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1930 		if (!iov)
1931 			goto out;
1932 	}
1933 
1934 	/* This will also move the address data into kernel space */
1935 	if (MSG_CMSG_COMPAT & flags) {
1936 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1937 	} else
1938 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1939 	if (err < 0)
1940 		goto out_freeiov;
1941 	total_len = err;
1942 
1943 	err = -ENOBUFS;
1944 
1945 	if (msg_sys->msg_controllen > INT_MAX)
1946 		goto out_freeiov;
1947 	ctl_len = msg_sys->msg_controllen;
1948 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1949 		err =
1950 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1951 						     sizeof(ctl));
1952 		if (err)
1953 			goto out_freeiov;
1954 		ctl_buf = msg_sys->msg_control;
1955 		ctl_len = msg_sys->msg_controllen;
1956 	} else if (ctl_len) {
1957 		if (ctl_len > sizeof(ctl)) {
1958 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1959 			if (ctl_buf == NULL)
1960 				goto out_freeiov;
1961 		}
1962 		err = -EFAULT;
1963 		/*
1964 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1965 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1966 		 * checking falls down on this.
1967 		 */
1968 		if (copy_from_user(ctl_buf,
1969 				   (void __user __force *)msg_sys->msg_control,
1970 				   ctl_len))
1971 			goto out_freectl;
1972 		msg_sys->msg_control = ctl_buf;
1973 	}
1974 	msg_sys->msg_flags = flags;
1975 
1976 	if (sock->file->f_flags & O_NONBLOCK)
1977 		msg_sys->msg_flags |= MSG_DONTWAIT;
1978 	/*
1979 	 * If this is sendmmsg() and current destination address is same as
1980 	 * previously succeeded address, omit asking LSM's decision.
1981 	 * used_address->name_len is initialized to UINT_MAX so that the first
1982 	 * destination address never matches.
1983 	 */
1984 	if (used_address && msg_sys->msg_name &&
1985 	    used_address->name_len == msg_sys->msg_namelen &&
1986 	    !memcmp(&used_address->name, msg_sys->msg_name,
1987 		    used_address->name_len)) {
1988 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1989 		goto out_freectl;
1990 	}
1991 	err = sock_sendmsg(sock, msg_sys, total_len);
1992 	/*
1993 	 * If this is sendmmsg() and sending to current destination address was
1994 	 * successful, remember it.
1995 	 */
1996 	if (used_address && err >= 0) {
1997 		used_address->name_len = msg_sys->msg_namelen;
1998 		if (msg_sys->msg_name)
1999 			memcpy(&used_address->name, msg_sys->msg_name,
2000 			       used_address->name_len);
2001 	}
2002 
2003 out_freectl:
2004 	if (ctl_buf != ctl)
2005 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2006 out_freeiov:
2007 	if (iov != iovstack)
2008 		sock_kfree_s(sock->sk, iov, iov_size);
2009 out:
2010 	return err;
2011 }
2012 
2013 /*
2014  *	BSD sendmsg interface
2015  */
2016 
2017 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
2018 {
2019 	int fput_needed, err;
2020 	struct msghdr msg_sys;
2021 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022 
2023 	if (!sock)
2024 		goto out;
2025 
2026 	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2027 
2028 	fput_light(sock->file, fput_needed);
2029 out:
2030 	return err;
2031 }
2032 
2033 /*
2034  *	Linux sendmmsg interface
2035  */
2036 
2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038 		   unsigned int flags)
2039 {
2040 	int fput_needed, err, datagrams;
2041 	struct socket *sock;
2042 	struct mmsghdr __user *entry;
2043 	struct compat_mmsghdr __user *compat_entry;
2044 	struct msghdr msg_sys;
2045 	struct used_address used_address;
2046 
2047 	if (vlen > UIO_MAXIOV)
2048 		vlen = UIO_MAXIOV;
2049 
2050 	datagrams = 0;
2051 
2052 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2053 	if (!sock)
2054 		return err;
2055 
2056 	used_address.name_len = UINT_MAX;
2057 	entry = mmsg;
2058 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2059 	err = 0;
2060 
2061 	while (datagrams < vlen) {
2062 		if (MSG_CMSG_COMPAT & flags) {
2063 			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2064 					    &msg_sys, flags, &used_address);
2065 			if (err < 0)
2066 				break;
2067 			err = __put_user(err, &compat_entry->msg_len);
2068 			++compat_entry;
2069 		} else {
2070 			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2071 					    &msg_sys, flags, &used_address);
2072 			if (err < 0)
2073 				break;
2074 			err = put_user(err, &entry->msg_len);
2075 			++entry;
2076 		}
2077 
2078 		if (err)
2079 			break;
2080 		++datagrams;
2081 	}
2082 
2083 	fput_light(sock->file, fput_needed);
2084 
2085 	/* We only return an error if no datagrams were able to be sent */
2086 	if (datagrams != 0)
2087 		return datagrams;
2088 
2089 	return err;
2090 }
2091 
2092 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2093 		unsigned int, vlen, unsigned int, flags)
2094 {
2095 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2096 }
2097 
2098 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2099 			 struct msghdr *msg_sys, unsigned flags, int nosec)
2100 {
2101 	struct compat_msghdr __user *msg_compat =
2102 	    (struct compat_msghdr __user *)msg;
2103 	struct iovec iovstack[UIO_FASTIOV];
2104 	struct iovec *iov = iovstack;
2105 	unsigned long cmsg_ptr;
2106 	int err, iov_size, total_len, len;
2107 
2108 	/* kernel mode address */
2109 	struct sockaddr_storage addr;
2110 
2111 	/* user mode address pointers */
2112 	struct sockaddr __user *uaddr;
2113 	int __user *uaddr_len;
2114 
2115 	if (MSG_CMSG_COMPAT & flags) {
2116 		if (get_compat_msghdr(msg_sys, msg_compat))
2117 			return -EFAULT;
2118 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2119 		return -EFAULT;
2120 
2121 	err = -EMSGSIZE;
2122 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
2123 		goto out;
2124 
2125 	/* Check whether to allocate the iovec area */
2126 	err = -ENOMEM;
2127 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2128 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2129 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2130 		if (!iov)
2131 			goto out;
2132 	}
2133 
2134 	/*
2135 	 *      Save the user-mode address (verify_iovec will change the
2136 	 *      kernel msghdr to use the kernel address space)
2137 	 */
2138 
2139 	uaddr = (__force void __user *)msg_sys->msg_name;
2140 	uaddr_len = COMPAT_NAMELEN(msg);
2141 	if (MSG_CMSG_COMPAT & flags) {
2142 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2143 	} else
2144 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2145 	if (err < 0)
2146 		goto out_freeiov;
2147 	total_len = err;
2148 
2149 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2150 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2151 
2152 	if (sock->file->f_flags & O_NONBLOCK)
2153 		flags |= MSG_DONTWAIT;
2154 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2155 							  total_len, flags);
2156 	if (err < 0)
2157 		goto out_freeiov;
2158 	len = err;
2159 
2160 	if (uaddr != NULL) {
2161 		err = move_addr_to_user(&addr,
2162 					msg_sys->msg_namelen, uaddr,
2163 					uaddr_len);
2164 		if (err < 0)
2165 			goto out_freeiov;
2166 	}
2167 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2168 			 COMPAT_FLAGS(msg));
2169 	if (err)
2170 		goto out_freeiov;
2171 	if (MSG_CMSG_COMPAT & flags)
2172 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2173 				 &msg_compat->msg_controllen);
2174 	else
2175 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2176 				 &msg->msg_controllen);
2177 	if (err)
2178 		goto out_freeiov;
2179 	err = len;
2180 
2181 out_freeiov:
2182 	if (iov != iovstack)
2183 		sock_kfree_s(sock->sk, iov, iov_size);
2184 out:
2185 	return err;
2186 }
2187 
2188 /*
2189  *	BSD recvmsg interface
2190  */
2191 
2192 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2193 		unsigned int, flags)
2194 {
2195 	int fput_needed, err;
2196 	struct msghdr msg_sys;
2197 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2198 
2199 	if (!sock)
2200 		goto out;
2201 
2202 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2203 
2204 	fput_light(sock->file, fput_needed);
2205 out:
2206 	return err;
2207 }
2208 
2209 /*
2210  *     Linux recvmmsg interface
2211  */
2212 
2213 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2214 		   unsigned int flags, struct timespec *timeout)
2215 {
2216 	int fput_needed, err, datagrams;
2217 	struct socket *sock;
2218 	struct mmsghdr __user *entry;
2219 	struct compat_mmsghdr __user *compat_entry;
2220 	struct msghdr msg_sys;
2221 	struct timespec end_time;
2222 
2223 	if (timeout &&
2224 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2225 				    timeout->tv_nsec))
2226 		return -EINVAL;
2227 
2228 	datagrams = 0;
2229 
2230 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2231 	if (!sock)
2232 		return err;
2233 
2234 	err = sock_error(sock->sk);
2235 	if (err)
2236 		goto out_put;
2237 
2238 	entry = mmsg;
2239 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2240 
2241 	while (datagrams < vlen) {
2242 		/*
2243 		 * No need to ask LSM for more than the first datagram.
2244 		 */
2245 		if (MSG_CMSG_COMPAT & flags) {
2246 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2247 					    &msg_sys, flags & ~MSG_WAITFORONE,
2248 					    datagrams);
2249 			if (err < 0)
2250 				break;
2251 			err = __put_user(err, &compat_entry->msg_len);
2252 			++compat_entry;
2253 		} else {
2254 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2255 					    &msg_sys, flags & ~MSG_WAITFORONE,
2256 					    datagrams);
2257 			if (err < 0)
2258 				break;
2259 			err = put_user(err, &entry->msg_len);
2260 			++entry;
2261 		}
2262 
2263 		if (err)
2264 			break;
2265 		++datagrams;
2266 
2267 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2268 		if (flags & MSG_WAITFORONE)
2269 			flags |= MSG_DONTWAIT;
2270 
2271 		if (timeout) {
2272 			ktime_get_ts(timeout);
2273 			*timeout = timespec_sub(end_time, *timeout);
2274 			if (timeout->tv_sec < 0) {
2275 				timeout->tv_sec = timeout->tv_nsec = 0;
2276 				break;
2277 			}
2278 
2279 			/* Timeout, return less than vlen datagrams */
2280 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281 				break;
2282 		}
2283 
2284 		/* Out of band data, return right away */
2285 		if (msg_sys.msg_flags & MSG_OOB)
2286 			break;
2287 	}
2288 
2289 out_put:
2290 	fput_light(sock->file, fput_needed);
2291 
2292 	if (err == 0)
2293 		return datagrams;
2294 
2295 	if (datagrams != 0) {
2296 		/*
2297 		 * We may return less entries than requested (vlen) if the
2298 		 * sock is non block and there aren't enough datagrams...
2299 		 */
2300 		if (err != -EAGAIN) {
2301 			/*
2302 			 * ... or  if recvmsg returns an error after we
2303 			 * received some datagrams, where we record the
2304 			 * error to return on the next call or if the
2305 			 * app asks about it using getsockopt(SO_ERROR).
2306 			 */
2307 			sock->sk->sk_err = -err;
2308 		}
2309 
2310 		return datagrams;
2311 	}
2312 
2313 	return err;
2314 }
2315 
2316 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2317 		unsigned int, vlen, unsigned int, flags,
2318 		struct timespec __user *, timeout)
2319 {
2320 	int datagrams;
2321 	struct timespec timeout_sys;
2322 
2323 	if (!timeout)
2324 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2325 
2326 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2327 		return -EFAULT;
2328 
2329 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2330 
2331 	if (datagrams > 0 &&
2332 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2333 		datagrams = -EFAULT;
2334 
2335 	return datagrams;
2336 }
2337 
2338 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2339 /* Argument list sizes for sys_socketcall */
2340 #define AL(x) ((x) * sizeof(unsigned long))
2341 static const unsigned char nargs[21] = {
2342 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2343 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2344 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2345 	AL(4), AL(5), AL(4)
2346 };
2347 
2348 #undef AL
2349 
2350 /*
2351  *	System call vectors.
2352  *
2353  *	Argument checking cleaned up. Saved 20% in size.
2354  *  This function doesn't need to set the kernel lock because
2355  *  it is set by the callees.
2356  */
2357 
2358 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2359 {
2360 	unsigned long a[6];
2361 	unsigned long a0, a1;
2362 	int err;
2363 	unsigned int len;
2364 
2365 	if (call < 1 || call > SYS_SENDMMSG)
2366 		return -EINVAL;
2367 
2368 	len = nargs[call];
2369 	if (len > sizeof(a))
2370 		return -EINVAL;
2371 
2372 	/* copy_from_user should be SMP safe. */
2373 	if (copy_from_user(a, args, len))
2374 		return -EFAULT;
2375 
2376 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2377 
2378 	a0 = a[0];
2379 	a1 = a[1];
2380 
2381 	switch (call) {
2382 	case SYS_SOCKET:
2383 		err = sys_socket(a0, a1, a[2]);
2384 		break;
2385 	case SYS_BIND:
2386 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2387 		break;
2388 	case SYS_CONNECT:
2389 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2390 		break;
2391 	case SYS_LISTEN:
2392 		err = sys_listen(a0, a1);
2393 		break;
2394 	case SYS_ACCEPT:
2395 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2396 				  (int __user *)a[2], 0);
2397 		break;
2398 	case SYS_GETSOCKNAME:
2399 		err =
2400 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2401 				    (int __user *)a[2]);
2402 		break;
2403 	case SYS_GETPEERNAME:
2404 		err =
2405 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2406 				    (int __user *)a[2]);
2407 		break;
2408 	case SYS_SOCKETPAIR:
2409 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2410 		break;
2411 	case SYS_SEND:
2412 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2413 		break;
2414 	case SYS_SENDTO:
2415 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2416 				 (struct sockaddr __user *)a[4], a[5]);
2417 		break;
2418 	case SYS_RECV:
2419 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2420 		break;
2421 	case SYS_RECVFROM:
2422 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2423 				   (struct sockaddr __user *)a[4],
2424 				   (int __user *)a[5]);
2425 		break;
2426 	case SYS_SHUTDOWN:
2427 		err = sys_shutdown(a0, a1);
2428 		break;
2429 	case SYS_SETSOCKOPT:
2430 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2431 		break;
2432 	case SYS_GETSOCKOPT:
2433 		err =
2434 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2435 				   (int __user *)a[4]);
2436 		break;
2437 	case SYS_SENDMSG:
2438 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2439 		break;
2440 	case SYS_SENDMMSG:
2441 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2442 		break;
2443 	case SYS_RECVMSG:
2444 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2445 		break;
2446 	case SYS_RECVMMSG:
2447 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2448 				   (struct timespec __user *)a[4]);
2449 		break;
2450 	case SYS_ACCEPT4:
2451 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2452 				  (int __user *)a[2], a[3]);
2453 		break;
2454 	default:
2455 		err = -EINVAL;
2456 		break;
2457 	}
2458 	return err;
2459 }
2460 
2461 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2462 
2463 /**
2464  *	sock_register - add a socket protocol handler
2465  *	@ops: description of protocol
2466  *
2467  *	This function is called by a protocol handler that wants to
2468  *	advertise its address family, and have it linked into the
2469  *	socket interface. The value ops->family coresponds to the
2470  *	socket system call protocol family.
2471  */
2472 int sock_register(const struct net_proto_family *ops)
2473 {
2474 	int err;
2475 
2476 	if (ops->family >= NPROTO) {
2477 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2478 		       NPROTO);
2479 		return -ENOBUFS;
2480 	}
2481 
2482 	spin_lock(&net_family_lock);
2483 	if (rcu_dereference_protected(net_families[ops->family],
2484 				      lockdep_is_held(&net_family_lock)))
2485 		err = -EEXIST;
2486 	else {
2487 		rcu_assign_pointer(net_families[ops->family], ops);
2488 		err = 0;
2489 	}
2490 	spin_unlock(&net_family_lock);
2491 
2492 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2493 	return err;
2494 }
2495 EXPORT_SYMBOL(sock_register);
2496 
2497 /**
2498  *	sock_unregister - remove a protocol handler
2499  *	@family: protocol family to remove
2500  *
2501  *	This function is called by a protocol handler that wants to
2502  *	remove its address family, and have it unlinked from the
2503  *	new socket creation.
2504  *
2505  *	If protocol handler is a module, then it can use module reference
2506  *	counts to protect against new references. If protocol handler is not
2507  *	a module then it needs to provide its own protection in
2508  *	the ops->create routine.
2509  */
2510 void sock_unregister(int family)
2511 {
2512 	BUG_ON(family < 0 || family >= NPROTO);
2513 
2514 	spin_lock(&net_family_lock);
2515 	RCU_INIT_POINTER(net_families[family], NULL);
2516 	spin_unlock(&net_family_lock);
2517 
2518 	synchronize_rcu();
2519 
2520 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2521 }
2522 EXPORT_SYMBOL(sock_unregister);
2523 
2524 static int __init sock_init(void)
2525 {
2526 	int err;
2527 
2528 	/*
2529 	 *      Initialize sock SLAB cache.
2530 	 */
2531 
2532 	sk_init();
2533 
2534 	/*
2535 	 *      Initialize skbuff SLAB cache
2536 	 */
2537 	skb_init();
2538 
2539 	/*
2540 	 *      Initialize the protocols module.
2541 	 */
2542 
2543 	init_inodecache();
2544 
2545 	err = register_filesystem(&sock_fs_type);
2546 	if (err)
2547 		goto out_fs;
2548 	sock_mnt = kern_mount(&sock_fs_type);
2549 	if (IS_ERR(sock_mnt)) {
2550 		err = PTR_ERR(sock_mnt);
2551 		goto out_mount;
2552 	}
2553 
2554 	/* The real protocol initialization is performed in later initcalls.
2555 	 */
2556 
2557 #ifdef CONFIG_NETFILTER
2558 	netfilter_init();
2559 #endif
2560 
2561 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2562 	skb_timestamping_init();
2563 #endif
2564 
2565 out:
2566 	return err;
2567 
2568 out_mount:
2569 	unregister_filesystem(&sock_fs_type);
2570 out_fs:
2571 	goto out;
2572 }
2573 
2574 core_initcall(sock_init);	/* early initcall */
2575 
2576 #ifdef CONFIG_PROC_FS
2577 void socket_seq_show(struct seq_file *seq)
2578 {
2579 	int cpu;
2580 	int counter = 0;
2581 
2582 	for_each_possible_cpu(cpu)
2583 	    counter += per_cpu(sockets_in_use, cpu);
2584 
2585 	/* It can be negative, by the way. 8) */
2586 	if (counter < 0)
2587 		counter = 0;
2588 
2589 	seq_printf(seq, "sockets: used %d\n", counter);
2590 }
2591 #endif				/* CONFIG_PROC_FS */
2592 
2593 #ifdef CONFIG_COMPAT
2594 static int do_siocgstamp(struct net *net, struct socket *sock,
2595 			 unsigned int cmd, void __user *up)
2596 {
2597 	mm_segment_t old_fs = get_fs();
2598 	struct timeval ktv;
2599 	int err;
2600 
2601 	set_fs(KERNEL_DS);
2602 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2603 	set_fs(old_fs);
2604 	if (!err)
2605 		err = compat_put_timeval(up, &ktv);
2606 
2607 	return err;
2608 }
2609 
2610 static int do_siocgstampns(struct net *net, struct socket *sock,
2611 			   unsigned int cmd, void __user *up)
2612 {
2613 	mm_segment_t old_fs = get_fs();
2614 	struct timespec kts;
2615 	int err;
2616 
2617 	set_fs(KERNEL_DS);
2618 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2619 	set_fs(old_fs);
2620 	if (!err)
2621 		err = compat_put_timespec(up, &kts);
2622 
2623 	return err;
2624 }
2625 
2626 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2627 {
2628 	struct ifreq __user *uifr;
2629 	int err;
2630 
2631 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2632 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2633 		return -EFAULT;
2634 
2635 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2636 	if (err)
2637 		return err;
2638 
2639 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2640 		return -EFAULT;
2641 
2642 	return 0;
2643 }
2644 
2645 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2646 {
2647 	struct compat_ifconf ifc32;
2648 	struct ifconf ifc;
2649 	struct ifconf __user *uifc;
2650 	struct compat_ifreq __user *ifr32;
2651 	struct ifreq __user *ifr;
2652 	unsigned int i, j;
2653 	int err;
2654 
2655 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2656 		return -EFAULT;
2657 
2658 	if (ifc32.ifcbuf == 0) {
2659 		ifc32.ifc_len = 0;
2660 		ifc.ifc_len = 0;
2661 		ifc.ifc_req = NULL;
2662 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2663 	} else {
2664 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2665 			sizeof(struct ifreq);
2666 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2667 		ifc.ifc_len = len;
2668 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2669 		ifr32 = compat_ptr(ifc32.ifcbuf);
2670 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2671 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2672 				return -EFAULT;
2673 			ifr++;
2674 			ifr32++;
2675 		}
2676 	}
2677 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2678 		return -EFAULT;
2679 
2680 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2681 	if (err)
2682 		return err;
2683 
2684 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2685 		return -EFAULT;
2686 
2687 	ifr = ifc.ifc_req;
2688 	ifr32 = compat_ptr(ifc32.ifcbuf);
2689 	for (i = 0, j = 0;
2690 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2691 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2692 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2693 			return -EFAULT;
2694 		ifr32++;
2695 		ifr++;
2696 	}
2697 
2698 	if (ifc32.ifcbuf == 0) {
2699 		/* Translate from 64-bit structure multiple to
2700 		 * a 32-bit one.
2701 		 */
2702 		i = ifc.ifc_len;
2703 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2704 		ifc32.ifc_len = i;
2705 	} else {
2706 		ifc32.ifc_len = i;
2707 	}
2708 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2709 		return -EFAULT;
2710 
2711 	return 0;
2712 }
2713 
2714 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2715 {
2716 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2717 	bool convert_in = false, convert_out = false;
2718 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2719 	struct ethtool_rxnfc __user *rxnfc;
2720 	struct ifreq __user *ifr;
2721 	u32 rule_cnt = 0, actual_rule_cnt;
2722 	u32 ethcmd;
2723 	u32 data;
2724 	int ret;
2725 
2726 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2727 		return -EFAULT;
2728 
2729 	compat_rxnfc = compat_ptr(data);
2730 
2731 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2732 		return -EFAULT;
2733 
2734 	/* Most ethtool structures are defined without padding.
2735 	 * Unfortunately struct ethtool_rxnfc is an exception.
2736 	 */
2737 	switch (ethcmd) {
2738 	default:
2739 		break;
2740 	case ETHTOOL_GRXCLSRLALL:
2741 		/* Buffer size is variable */
2742 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2743 			return -EFAULT;
2744 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2745 			return -ENOMEM;
2746 		buf_size += rule_cnt * sizeof(u32);
2747 		/* fall through */
2748 	case ETHTOOL_GRXRINGS:
2749 	case ETHTOOL_GRXCLSRLCNT:
2750 	case ETHTOOL_GRXCLSRULE:
2751 	case ETHTOOL_SRXCLSRLINS:
2752 		convert_out = true;
2753 		/* fall through */
2754 	case ETHTOOL_SRXCLSRLDEL:
2755 		buf_size += sizeof(struct ethtool_rxnfc);
2756 		convert_in = true;
2757 		break;
2758 	}
2759 
2760 	ifr = compat_alloc_user_space(buf_size);
2761 	rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2762 
2763 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2764 		return -EFAULT;
2765 
2766 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2767 		     &ifr->ifr_ifru.ifru_data))
2768 		return -EFAULT;
2769 
2770 	if (convert_in) {
2771 		/* We expect there to be holes between fs.m_ext and
2772 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2773 		 */
2774 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2775 			     sizeof(compat_rxnfc->fs.m_ext) !=
2776 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2777 			     sizeof(rxnfc->fs.m_ext));
2778 		BUILD_BUG_ON(
2779 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2780 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2781 			offsetof(struct ethtool_rxnfc, fs.location) -
2782 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2783 
2784 		if (copy_in_user(rxnfc, compat_rxnfc,
2785 				 (void *)(&rxnfc->fs.m_ext + 1) -
2786 				 (void *)rxnfc) ||
2787 		    copy_in_user(&rxnfc->fs.ring_cookie,
2788 				 &compat_rxnfc->fs.ring_cookie,
2789 				 (void *)(&rxnfc->fs.location + 1) -
2790 				 (void *)&rxnfc->fs.ring_cookie) ||
2791 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2792 				 sizeof(rxnfc->rule_cnt)))
2793 			return -EFAULT;
2794 	}
2795 
2796 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2797 	if (ret)
2798 		return ret;
2799 
2800 	if (convert_out) {
2801 		if (copy_in_user(compat_rxnfc, rxnfc,
2802 				 (const void *)(&rxnfc->fs.m_ext + 1) -
2803 				 (const void *)rxnfc) ||
2804 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2805 				 &rxnfc->fs.ring_cookie,
2806 				 (const void *)(&rxnfc->fs.location + 1) -
2807 				 (const void *)&rxnfc->fs.ring_cookie) ||
2808 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2809 				 sizeof(rxnfc->rule_cnt)))
2810 			return -EFAULT;
2811 
2812 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2813 			/* As an optimisation, we only copy the actual
2814 			 * number of rules that the underlying
2815 			 * function returned.  Since Mallory might
2816 			 * change the rule count in user memory, we
2817 			 * check that it is less than the rule count
2818 			 * originally given (as the user buffer size),
2819 			 * which has been range-checked.
2820 			 */
2821 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2822 				return -EFAULT;
2823 			if (actual_rule_cnt < rule_cnt)
2824 				rule_cnt = actual_rule_cnt;
2825 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2826 					 &rxnfc->rule_locs[0],
2827 					 rule_cnt * sizeof(u32)))
2828 				return -EFAULT;
2829 		}
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2836 {
2837 	void __user *uptr;
2838 	compat_uptr_t uptr32;
2839 	struct ifreq __user *uifr;
2840 
2841 	uifr = compat_alloc_user_space(sizeof(*uifr));
2842 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2843 		return -EFAULT;
2844 
2845 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2846 		return -EFAULT;
2847 
2848 	uptr = compat_ptr(uptr32);
2849 
2850 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2851 		return -EFAULT;
2852 
2853 	return dev_ioctl(net, SIOCWANDEV, uifr);
2854 }
2855 
2856 static int bond_ioctl(struct net *net, unsigned int cmd,
2857 			 struct compat_ifreq __user *ifr32)
2858 {
2859 	struct ifreq kifr;
2860 	struct ifreq __user *uifr;
2861 	mm_segment_t old_fs;
2862 	int err;
2863 	u32 data;
2864 	void __user *datap;
2865 
2866 	switch (cmd) {
2867 	case SIOCBONDENSLAVE:
2868 	case SIOCBONDRELEASE:
2869 	case SIOCBONDSETHWADDR:
2870 	case SIOCBONDCHANGEACTIVE:
2871 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2872 			return -EFAULT;
2873 
2874 		old_fs = get_fs();
2875 		set_fs(KERNEL_DS);
2876 		err = dev_ioctl(net, cmd,
2877 				(struct ifreq __user __force *) &kifr);
2878 		set_fs(old_fs);
2879 
2880 		return err;
2881 	case SIOCBONDSLAVEINFOQUERY:
2882 	case SIOCBONDINFOQUERY:
2883 		uifr = compat_alloc_user_space(sizeof(*uifr));
2884 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2885 			return -EFAULT;
2886 
2887 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2888 			return -EFAULT;
2889 
2890 		datap = compat_ptr(data);
2891 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2892 			return -EFAULT;
2893 
2894 		return dev_ioctl(net, cmd, uifr);
2895 	default:
2896 		return -ENOIOCTLCMD;
2897 	}
2898 }
2899 
2900 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2901 				 struct compat_ifreq __user *u_ifreq32)
2902 {
2903 	struct ifreq __user *u_ifreq64;
2904 	char tmp_buf[IFNAMSIZ];
2905 	void __user *data64;
2906 	u32 data32;
2907 
2908 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2909 			   IFNAMSIZ))
2910 		return -EFAULT;
2911 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2912 		return -EFAULT;
2913 	data64 = compat_ptr(data32);
2914 
2915 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2916 
2917 	/* Don't check these user accesses, just let that get trapped
2918 	 * in the ioctl handler instead.
2919 	 */
2920 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2921 			 IFNAMSIZ))
2922 		return -EFAULT;
2923 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2924 		return -EFAULT;
2925 
2926 	return dev_ioctl(net, cmd, u_ifreq64);
2927 }
2928 
2929 static int dev_ifsioc(struct net *net, struct socket *sock,
2930 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2931 {
2932 	struct ifreq __user *uifr;
2933 	int err;
2934 
2935 	uifr = compat_alloc_user_space(sizeof(*uifr));
2936 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2937 		return -EFAULT;
2938 
2939 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2940 
2941 	if (!err) {
2942 		switch (cmd) {
2943 		case SIOCGIFFLAGS:
2944 		case SIOCGIFMETRIC:
2945 		case SIOCGIFMTU:
2946 		case SIOCGIFMEM:
2947 		case SIOCGIFHWADDR:
2948 		case SIOCGIFINDEX:
2949 		case SIOCGIFADDR:
2950 		case SIOCGIFBRDADDR:
2951 		case SIOCGIFDSTADDR:
2952 		case SIOCGIFNETMASK:
2953 		case SIOCGIFPFLAGS:
2954 		case SIOCGIFTXQLEN:
2955 		case SIOCGMIIPHY:
2956 		case SIOCGMIIREG:
2957 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2958 				err = -EFAULT;
2959 			break;
2960 		}
2961 	}
2962 	return err;
2963 }
2964 
2965 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2966 			struct compat_ifreq __user *uifr32)
2967 {
2968 	struct ifreq ifr;
2969 	struct compat_ifmap __user *uifmap32;
2970 	mm_segment_t old_fs;
2971 	int err;
2972 
2973 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2974 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2975 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2976 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2977 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2978 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2979 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2980 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2981 	if (err)
2982 		return -EFAULT;
2983 
2984 	old_fs = get_fs();
2985 	set_fs(KERNEL_DS);
2986 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2987 	set_fs(old_fs);
2988 
2989 	if (cmd == SIOCGIFMAP && !err) {
2990 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2991 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2992 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2993 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2994 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2995 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2996 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2997 		if (err)
2998 			err = -EFAULT;
2999 	}
3000 	return err;
3001 }
3002 
3003 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3004 {
3005 	void __user *uptr;
3006 	compat_uptr_t uptr32;
3007 	struct ifreq __user *uifr;
3008 
3009 	uifr = compat_alloc_user_space(sizeof(*uifr));
3010 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3011 		return -EFAULT;
3012 
3013 	if (get_user(uptr32, &uifr32->ifr_data))
3014 		return -EFAULT;
3015 
3016 	uptr = compat_ptr(uptr32);
3017 
3018 	if (put_user(uptr, &uifr->ifr_data))
3019 		return -EFAULT;
3020 
3021 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3022 }
3023 
3024 struct rtentry32 {
3025 	u32		rt_pad1;
3026 	struct sockaddr rt_dst;         /* target address               */
3027 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3028 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3029 	unsigned short	rt_flags;
3030 	short		rt_pad2;
3031 	u32		rt_pad3;
3032 	unsigned char	rt_tos;
3033 	unsigned char	rt_class;
3034 	short		rt_pad4;
3035 	short		rt_metric;      /* +1 for binary compatibility! */
3036 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3037 	u32		rt_mtu;         /* per route MTU/Window         */
3038 	u32		rt_window;      /* Window clamping              */
3039 	unsigned short  rt_irtt;        /* Initial RTT                  */
3040 };
3041 
3042 struct in6_rtmsg32 {
3043 	struct in6_addr		rtmsg_dst;
3044 	struct in6_addr		rtmsg_src;
3045 	struct in6_addr		rtmsg_gateway;
3046 	u32			rtmsg_type;
3047 	u16			rtmsg_dst_len;
3048 	u16			rtmsg_src_len;
3049 	u32			rtmsg_metric;
3050 	u32			rtmsg_info;
3051 	u32			rtmsg_flags;
3052 	s32			rtmsg_ifindex;
3053 };
3054 
3055 static int routing_ioctl(struct net *net, struct socket *sock,
3056 			 unsigned int cmd, void __user *argp)
3057 {
3058 	int ret;
3059 	void *r = NULL;
3060 	struct in6_rtmsg r6;
3061 	struct rtentry r4;
3062 	char devname[16];
3063 	u32 rtdev;
3064 	mm_segment_t old_fs = get_fs();
3065 
3066 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3067 		struct in6_rtmsg32 __user *ur6 = argp;
3068 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3069 			3 * sizeof(struct in6_addr));
3070 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3071 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3072 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3073 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3074 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3075 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3076 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3077 
3078 		r = (void *) &r6;
3079 	} else { /* ipv4 */
3080 		struct rtentry32 __user *ur4 = argp;
3081 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3082 					3 * sizeof(struct sockaddr));
3083 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3084 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3085 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3086 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3087 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3088 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3089 		if (rtdev) {
3090 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3091 			r4.rt_dev = (char __user __force *)devname;
3092 			devname[15] = 0;
3093 		} else
3094 			r4.rt_dev = NULL;
3095 
3096 		r = (void *) &r4;
3097 	}
3098 
3099 	if (ret) {
3100 		ret = -EFAULT;
3101 		goto out;
3102 	}
3103 
3104 	set_fs(KERNEL_DS);
3105 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3106 	set_fs(old_fs);
3107 
3108 out:
3109 	return ret;
3110 }
3111 
3112 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3113  * for some operations; this forces use of the newer bridge-utils that
3114  * use compatible ioctls
3115  */
3116 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3117 {
3118 	compat_ulong_t tmp;
3119 
3120 	if (get_user(tmp, argp))
3121 		return -EFAULT;
3122 	if (tmp == BRCTL_GET_VERSION)
3123 		return BRCTL_VERSION + 1;
3124 	return -EINVAL;
3125 }
3126 
3127 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3128 			 unsigned int cmd, unsigned long arg)
3129 {
3130 	void __user *argp = compat_ptr(arg);
3131 	struct sock *sk = sock->sk;
3132 	struct net *net = sock_net(sk);
3133 
3134 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3135 		return siocdevprivate_ioctl(net, cmd, argp);
3136 
3137 	switch (cmd) {
3138 	case SIOCSIFBR:
3139 	case SIOCGIFBR:
3140 		return old_bridge_ioctl(argp);
3141 	case SIOCGIFNAME:
3142 		return dev_ifname32(net, argp);
3143 	case SIOCGIFCONF:
3144 		return dev_ifconf(net, argp);
3145 	case SIOCETHTOOL:
3146 		return ethtool_ioctl(net, argp);
3147 	case SIOCWANDEV:
3148 		return compat_siocwandev(net, argp);
3149 	case SIOCGIFMAP:
3150 	case SIOCSIFMAP:
3151 		return compat_sioc_ifmap(net, cmd, argp);
3152 	case SIOCBONDENSLAVE:
3153 	case SIOCBONDRELEASE:
3154 	case SIOCBONDSETHWADDR:
3155 	case SIOCBONDSLAVEINFOQUERY:
3156 	case SIOCBONDINFOQUERY:
3157 	case SIOCBONDCHANGEACTIVE:
3158 		return bond_ioctl(net, cmd, argp);
3159 	case SIOCADDRT:
3160 	case SIOCDELRT:
3161 		return routing_ioctl(net, sock, cmd, argp);
3162 	case SIOCGSTAMP:
3163 		return do_siocgstamp(net, sock, cmd, argp);
3164 	case SIOCGSTAMPNS:
3165 		return do_siocgstampns(net, sock, cmd, argp);
3166 	case SIOCSHWTSTAMP:
3167 		return compat_siocshwtstamp(net, argp);
3168 
3169 	case FIOSETOWN:
3170 	case SIOCSPGRP:
3171 	case FIOGETOWN:
3172 	case SIOCGPGRP:
3173 	case SIOCBRADDBR:
3174 	case SIOCBRDELBR:
3175 	case SIOCGIFVLAN:
3176 	case SIOCSIFVLAN:
3177 	case SIOCADDDLCI:
3178 	case SIOCDELDLCI:
3179 		return sock_ioctl(file, cmd, arg);
3180 
3181 	case SIOCGIFFLAGS:
3182 	case SIOCSIFFLAGS:
3183 	case SIOCGIFMETRIC:
3184 	case SIOCSIFMETRIC:
3185 	case SIOCGIFMTU:
3186 	case SIOCSIFMTU:
3187 	case SIOCGIFMEM:
3188 	case SIOCSIFMEM:
3189 	case SIOCGIFHWADDR:
3190 	case SIOCSIFHWADDR:
3191 	case SIOCADDMULTI:
3192 	case SIOCDELMULTI:
3193 	case SIOCGIFINDEX:
3194 	case SIOCGIFADDR:
3195 	case SIOCSIFADDR:
3196 	case SIOCSIFHWBROADCAST:
3197 	case SIOCDIFADDR:
3198 	case SIOCGIFBRDADDR:
3199 	case SIOCSIFBRDADDR:
3200 	case SIOCGIFDSTADDR:
3201 	case SIOCSIFDSTADDR:
3202 	case SIOCGIFNETMASK:
3203 	case SIOCSIFNETMASK:
3204 	case SIOCSIFPFLAGS:
3205 	case SIOCGIFPFLAGS:
3206 	case SIOCGIFTXQLEN:
3207 	case SIOCSIFTXQLEN:
3208 	case SIOCBRADDIF:
3209 	case SIOCBRDELIF:
3210 	case SIOCSIFNAME:
3211 	case SIOCGMIIPHY:
3212 	case SIOCGMIIREG:
3213 	case SIOCSMIIREG:
3214 		return dev_ifsioc(net, sock, cmd, argp);
3215 
3216 	case SIOCSARP:
3217 	case SIOCGARP:
3218 	case SIOCDARP:
3219 	case SIOCATMARK:
3220 		return sock_do_ioctl(net, sock, cmd, arg);
3221 	}
3222 
3223 	return -ENOIOCTLCMD;
3224 }
3225 
3226 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3227 			      unsigned long arg)
3228 {
3229 	struct socket *sock = file->private_data;
3230 	int ret = -ENOIOCTLCMD;
3231 	struct sock *sk;
3232 	struct net *net;
3233 
3234 	sk = sock->sk;
3235 	net = sock_net(sk);
3236 
3237 	if (sock->ops->compat_ioctl)
3238 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3239 
3240 	if (ret == -ENOIOCTLCMD &&
3241 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3242 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3243 
3244 	if (ret == -ENOIOCTLCMD)
3245 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3246 
3247 	return ret;
3248 }
3249 #endif
3250 
3251 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3252 {
3253 	return sock->ops->bind(sock, addr, addrlen);
3254 }
3255 EXPORT_SYMBOL(kernel_bind);
3256 
3257 int kernel_listen(struct socket *sock, int backlog)
3258 {
3259 	return sock->ops->listen(sock, backlog);
3260 }
3261 EXPORT_SYMBOL(kernel_listen);
3262 
3263 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3264 {
3265 	struct sock *sk = sock->sk;
3266 	int err;
3267 
3268 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3269 			       newsock);
3270 	if (err < 0)
3271 		goto done;
3272 
3273 	err = sock->ops->accept(sock, *newsock, flags);
3274 	if (err < 0) {
3275 		sock_release(*newsock);
3276 		*newsock = NULL;
3277 		goto done;
3278 	}
3279 
3280 	(*newsock)->ops = sock->ops;
3281 	__module_get((*newsock)->ops->owner);
3282 
3283 done:
3284 	return err;
3285 }
3286 EXPORT_SYMBOL(kernel_accept);
3287 
3288 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3289 		   int flags)
3290 {
3291 	return sock->ops->connect(sock, addr, addrlen, flags);
3292 }
3293 EXPORT_SYMBOL(kernel_connect);
3294 
3295 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3296 			 int *addrlen)
3297 {
3298 	return sock->ops->getname(sock, addr, addrlen, 0);
3299 }
3300 EXPORT_SYMBOL(kernel_getsockname);
3301 
3302 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3303 			 int *addrlen)
3304 {
3305 	return sock->ops->getname(sock, addr, addrlen, 1);
3306 }
3307 EXPORT_SYMBOL(kernel_getpeername);
3308 
3309 int kernel_getsockopt(struct socket *sock, int level, int optname,
3310 			char *optval, int *optlen)
3311 {
3312 	mm_segment_t oldfs = get_fs();
3313 	char __user *uoptval;
3314 	int __user *uoptlen;
3315 	int err;
3316 
3317 	uoptval = (char __user __force *) optval;
3318 	uoptlen = (int __user __force *) optlen;
3319 
3320 	set_fs(KERNEL_DS);
3321 	if (level == SOL_SOCKET)
3322 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3323 	else
3324 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3325 					    uoptlen);
3326 	set_fs(oldfs);
3327 	return err;
3328 }
3329 EXPORT_SYMBOL(kernel_getsockopt);
3330 
3331 int kernel_setsockopt(struct socket *sock, int level, int optname,
3332 			char *optval, unsigned int optlen)
3333 {
3334 	mm_segment_t oldfs = get_fs();
3335 	char __user *uoptval;
3336 	int err;
3337 
3338 	uoptval = (char __user __force *) optval;
3339 
3340 	set_fs(KERNEL_DS);
3341 	if (level == SOL_SOCKET)
3342 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3343 	else
3344 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3345 					    optlen);
3346 	set_fs(oldfs);
3347 	return err;
3348 }
3349 EXPORT_SYMBOL(kernel_setsockopt);
3350 
3351 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3352 		    size_t size, int flags)
3353 {
3354 	sock_update_classid(sock->sk);
3355 
3356 	if (sock->ops->sendpage)
3357 		return sock->ops->sendpage(sock, page, offset, size, flags);
3358 
3359 	return sock_no_sendpage(sock, page, offset, size, flags);
3360 }
3361 EXPORT_SYMBOL(kernel_sendpage);
3362 
3363 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3364 {
3365 	mm_segment_t oldfs = get_fs();
3366 	int err;
3367 
3368 	set_fs(KERNEL_DS);
3369 	err = sock->ops->ioctl(sock, cmd, arg);
3370 	set_fs(oldfs);
3371 
3372 	return err;
3373 }
3374 EXPORT_SYMBOL(kernel_sock_ioctl);
3375 
3376 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3377 {
3378 	return sock->ops->shutdown(sock, how);
3379 }
3380 EXPORT_SYMBOL(kernel_sock_shutdown);
3381