xref: /openbmc/linux/net/socket.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static struct wait_queue_head *sock_get_poll_head(struct file *file,
121 		__poll_t events);
122 static __poll_t sock_poll_mask(struct file *file, __poll_t);
123 static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.read_iter =	sock_read_iter,
145 	.write_iter =	sock_write_iter,
146 	.get_poll_head = sock_get_poll_head,
147 	.poll_mask =	sock_poll_mask,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.release =	sock_close,
155 	.fasync =	sock_fasync,
156 	.sendpage =	sock_sendpage,
157 	.splice_write = generic_splice_sendpage,
158 	.splice_read =	sock_splice_read,
159 };
160 
161 /*
162  *	The protocol list. Each protocol is registered in here.
163  */
164 
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167 
168 /*
169  * Support routines.
170  * Move socket addresses back and forth across the kernel/user
171  * divide and look after the messy bits.
172  */
173 
174 /**
175  *	move_addr_to_kernel	-	copy a socket address into kernel space
176  *	@uaddr: Address in user space
177  *	@kaddr: Address in kernel space
178  *	@ulen: Length in user space
179  *
180  *	The address is copied into kernel space. If the provided address is
181  *	too long an error code of -EINVAL is returned. If the copy gives
182  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184 
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 		return -EINVAL;
189 	if (ulen == 0)
190 		return 0;
191 	if (copy_from_user(kaddr, uaddr, ulen))
192 		return -EFAULT;
193 	return audit_sockaddr(ulen, kaddr);
194 }
195 
196 /**
197  *	move_addr_to_user	-	copy an address to user space
198  *	@kaddr: kernel space address
199  *	@klen: length of address in kernel
200  *	@uaddr: user space address
201  *	@ulen: pointer to user length field
202  *
203  *	The value pointed to by ulen on entry is the buffer length available.
204  *	This is overwritten with the buffer space used. -EINVAL is returned
205  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *	is returned if either the buffer or the length field are not
207  *	accessible.
208  *	After copying the data up to the limit the user specifies, the true
209  *	length of the data is written over the length limit the user
210  *	specified. Zero is returned for a success.
211  */
212 
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 			     void __user *uaddr, int __user *ulen)
215 {
216 	int err;
217 	int len;
218 
219 	BUG_ON(klen > sizeof(struct sockaddr_storage));
220 	err = get_user(len, ulen);
221 	if (err)
222 		return err;
223 	if (len > klen)
224 		len = klen;
225 	if (len < 0)
226 		return -EINVAL;
227 	if (len) {
228 		if (audit_sockaddr(klen, kaddr))
229 			return -ENOMEM;
230 		if (copy_to_user(uaddr, kaddr, len))
231 			return -EFAULT;
232 	}
233 	/*
234 	 *      "fromlen shall refer to the value before truncation.."
235 	 *                      1003.1g
236 	 */
237 	return __put_user(klen, ulen);
238 }
239 
240 static struct kmem_cache *sock_inode_cachep __ro_after_init;
241 
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 	struct socket_alloc *ei;
245 	struct socket_wq *wq;
246 
247 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 	if (!ei)
249 		return NULL;
250 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
251 	if (!wq) {
252 		kmem_cache_free(sock_inode_cachep, ei);
253 		return NULL;
254 	}
255 	init_waitqueue_head(&wq->wait);
256 	wq->fasync_list = NULL;
257 	wq->flags = 0;
258 	RCU_INIT_POINTER(ei->socket.wq, wq);
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_destroy_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 	struct socket_wq *wq;
273 
274 	ei = container_of(inode, struct socket_alloc, vfs_inode);
275 	wq = rcu_dereference_protected(ei->socket.wq, 1);
276 	kfree_rcu(wq, rcu);
277 	kmem_cache_free(sock_inode_cachep, ei);
278 }
279 
280 static void init_once(void *foo)
281 {
282 	struct socket_alloc *ei = (struct socket_alloc *)foo;
283 
284 	inode_init_once(&ei->vfs_inode);
285 }
286 
287 static void init_inodecache(void)
288 {
289 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
290 					      sizeof(struct socket_alloc),
291 					      0,
292 					      (SLAB_HWCACHE_ALIGN |
293 					       SLAB_RECLAIM_ACCOUNT |
294 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
295 					      init_once);
296 	BUG_ON(sock_inode_cachep == NULL);
297 }
298 
299 static const struct super_operations sockfs_ops = {
300 	.alloc_inode	= sock_alloc_inode,
301 	.destroy_inode	= sock_destroy_inode,
302 	.statfs		= simple_statfs,
303 };
304 
305 /*
306  * sockfs_dname() is called from d_path().
307  */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 				d_inode(dentry)->i_ino);
312 }
313 
314 static const struct dentry_operations sockfs_dentry_operations = {
315 	.d_dname  = sockfs_dname,
316 };
317 
318 static int sockfs_xattr_get(const struct xattr_handler *handler,
319 			    struct dentry *dentry, struct inode *inode,
320 			    const char *suffix, void *value, size_t size)
321 {
322 	if (value) {
323 		if (dentry->d_name.len + 1 > size)
324 			return -ERANGE;
325 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
326 	}
327 	return dentry->d_name.len + 1;
328 }
329 
330 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
331 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
332 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
333 
334 static const struct xattr_handler sockfs_xattr_handler = {
335 	.name = XATTR_NAME_SOCKPROTONAME,
336 	.get = sockfs_xattr_get,
337 };
338 
339 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
340 				     struct dentry *dentry, struct inode *inode,
341 				     const char *suffix, const void *value,
342 				     size_t size, int flags)
343 {
344 	/* Handled by LSM. */
345 	return -EAGAIN;
346 }
347 
348 static const struct xattr_handler sockfs_security_xattr_handler = {
349 	.prefix = XATTR_SECURITY_PREFIX,
350 	.set = sockfs_security_xattr_set,
351 };
352 
353 static const struct xattr_handler *sockfs_xattr_handlers[] = {
354 	&sockfs_xattr_handler,
355 	&sockfs_security_xattr_handler,
356 	NULL
357 };
358 
359 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
360 			 int flags, const char *dev_name, void *data)
361 {
362 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
363 				  sockfs_xattr_handlers,
364 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.mount =	sockfs_mount,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
393 {
394 	struct qstr name = { .name = "" };
395 	struct path path;
396 	struct file *file;
397 
398 	if (dname) {
399 		name.name = dname;
400 		name.len = strlen(name.name);
401 	} else if (sock->sk) {
402 		name.name = sock->sk->sk_prot_creator->name;
403 		name.len = strlen(name.name);
404 	}
405 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
406 	if (unlikely(!path.dentry)) {
407 		sock_release(sock);
408 		return ERR_PTR(-ENOMEM);
409 	}
410 	path.mnt = mntget(sock_mnt);
411 
412 	d_instantiate(path.dentry, SOCK_INODE(sock));
413 
414 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
415 		  &socket_file_ops);
416 	if (IS_ERR(file)) {
417 		/* drop dentry, keep inode for a bit */
418 		ihold(d_inode(path.dentry));
419 		path_put(&path);
420 		/* ... and now kill it properly */
421 		sock_release(sock);
422 		return file;
423 	}
424 
425 	sock->file = file;
426 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
427 	file->private_data = sock;
428 	return file;
429 }
430 EXPORT_SYMBOL(sock_alloc_file);
431 
432 static int sock_map_fd(struct socket *sock, int flags)
433 {
434 	struct file *newfile;
435 	int fd = get_unused_fd_flags(flags);
436 	if (unlikely(fd < 0)) {
437 		sock_release(sock);
438 		return fd;
439 	}
440 
441 	newfile = sock_alloc_file(sock, flags, NULL);
442 	if (likely(!IS_ERR(newfile))) {
443 		fd_install(fd, newfile);
444 		return fd;
445 	}
446 
447 	put_unused_fd(fd);
448 	return PTR_ERR(newfile);
449 }
450 
451 struct socket *sock_from_file(struct file *file, int *err)
452 {
453 	if (file->f_op == &socket_file_ops)
454 		return file->private_data;	/* set in sock_map_fd */
455 
456 	*err = -ENOTSOCK;
457 	return NULL;
458 }
459 EXPORT_SYMBOL(sock_from_file);
460 
461 /**
462  *	sockfd_lookup - Go from a file number to its socket slot
463  *	@fd: file handle
464  *	@err: pointer to an error code return
465  *
466  *	The file handle passed in is locked and the socket it is bound
467  *	to is returned. If an error occurs the err pointer is overwritten
468  *	with a negative errno code and NULL is returned. The function checks
469  *	for both invalid handles and passing a handle which is not a socket.
470  *
471  *	On a success the socket object pointer is returned.
472  */
473 
474 struct socket *sockfd_lookup(int fd, int *err)
475 {
476 	struct file *file;
477 	struct socket *sock;
478 
479 	file = fget(fd);
480 	if (!file) {
481 		*err = -EBADF;
482 		return NULL;
483 	}
484 
485 	sock = sock_from_file(file, err);
486 	if (!sock)
487 		fput(file);
488 	return sock;
489 }
490 EXPORT_SYMBOL(sockfd_lookup);
491 
492 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493 {
494 	struct fd f = fdget(fd);
495 	struct socket *sock;
496 
497 	*err = -EBADF;
498 	if (f.file) {
499 		sock = sock_from_file(f.file, err);
500 		if (likely(sock)) {
501 			*fput_needed = f.flags;
502 			return sock;
503 		}
504 		fdput(f);
505 	}
506 	return NULL;
507 }
508 
509 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
510 				size_t size)
511 {
512 	ssize_t len;
513 	ssize_t used = 0;
514 
515 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
516 	if (len < 0)
517 		return len;
518 	used += len;
519 	if (buffer) {
520 		if (size < used)
521 			return -ERANGE;
522 		buffer += len;
523 	}
524 
525 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
526 	used += len;
527 	if (buffer) {
528 		if (size < used)
529 			return -ERANGE;
530 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
531 		buffer += len;
532 	}
533 
534 	return used;
535 }
536 
537 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
538 {
539 	int err = simple_setattr(dentry, iattr);
540 
541 	if (!err && (iattr->ia_valid & ATTR_UID)) {
542 		struct socket *sock = SOCKET_I(d_inode(dentry));
543 
544 		if (sock->sk)
545 			sock->sk->sk_uid = iattr->ia_uid;
546 		else
547 			err = -ENOENT;
548 	}
549 
550 	return err;
551 }
552 
553 static const struct inode_operations sockfs_inode_ops = {
554 	.listxattr = sockfs_listxattr,
555 	.setattr = sockfs_setattr,
556 };
557 
558 /**
559  *	sock_alloc	-	allocate a socket
560  *
561  *	Allocate a new inode and socket object. The two are bound together
562  *	and initialised. The socket is then returned. If we are out of inodes
563  *	NULL is returned.
564  */
565 
566 struct socket *sock_alloc(void)
567 {
568 	struct inode *inode;
569 	struct socket *sock;
570 
571 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
572 	if (!inode)
573 		return NULL;
574 
575 	sock = SOCKET_I(inode);
576 
577 	inode->i_ino = get_next_ino();
578 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
579 	inode->i_uid = current_fsuid();
580 	inode->i_gid = current_fsgid();
581 	inode->i_op = &sockfs_inode_ops;
582 
583 	return sock;
584 }
585 EXPORT_SYMBOL(sock_alloc);
586 
587 /**
588  *	sock_release	-	close a socket
589  *	@sock: socket to close
590  *
591  *	The socket is released from the protocol stack if it has a release
592  *	callback, and the inode is then released if the socket is bound to
593  *	an inode not a file.
594  */
595 
596 static void __sock_release(struct socket *sock, struct inode *inode)
597 {
598 	if (sock->ops) {
599 		struct module *owner = sock->ops->owner;
600 
601 		if (inode)
602 			inode_lock(inode);
603 		sock->ops->release(sock);
604 		if (inode)
605 			inode_unlock(inode);
606 		sock->ops = NULL;
607 		module_put(owner);
608 	}
609 
610 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
611 		pr_err("%s: fasync list not empty!\n", __func__);
612 
613 	if (!sock->file) {
614 		iput(SOCK_INODE(sock));
615 		return;
616 	}
617 	sock->file = NULL;
618 }
619 
620 void sock_release(struct socket *sock)
621 {
622 	__sock_release(sock, NULL);
623 }
624 EXPORT_SYMBOL(sock_release);
625 
626 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
627 {
628 	u8 flags = *tx_flags;
629 
630 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
631 		flags |= SKBTX_HW_TSTAMP;
632 
633 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
634 		flags |= SKBTX_SW_TSTAMP;
635 
636 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
637 		flags |= SKBTX_SCHED_TSTAMP;
638 
639 	*tx_flags = flags;
640 }
641 EXPORT_SYMBOL(__sock_tx_timestamp);
642 
643 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
644 {
645 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
646 	BUG_ON(ret == -EIOCBQUEUED);
647 	return ret;
648 }
649 
650 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
651 {
652 	int err = security_socket_sendmsg(sock, msg,
653 					  msg_data_left(msg));
654 
655 	return err ?: sock_sendmsg_nosec(sock, msg);
656 }
657 EXPORT_SYMBOL(sock_sendmsg);
658 
659 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
660 		   struct kvec *vec, size_t num, size_t size)
661 {
662 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
663 	return sock_sendmsg(sock, msg);
664 }
665 EXPORT_SYMBOL(kernel_sendmsg);
666 
667 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
668 			  struct kvec *vec, size_t num, size_t size)
669 {
670 	struct socket *sock = sk->sk_socket;
671 
672 	if (!sock->ops->sendmsg_locked)
673 		return sock_no_sendmsg_locked(sk, msg, size);
674 
675 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
676 
677 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
678 }
679 EXPORT_SYMBOL(kernel_sendmsg_locked);
680 
681 static bool skb_is_err_queue(const struct sk_buff *skb)
682 {
683 	/* pkt_type of skbs enqueued on the error queue are set to
684 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
685 	 * in recvmsg, since skbs received on a local socket will never
686 	 * have a pkt_type of PACKET_OUTGOING.
687 	 */
688 	return skb->pkt_type == PACKET_OUTGOING;
689 }
690 
691 /* On transmit, software and hardware timestamps are returned independently.
692  * As the two skb clones share the hardware timestamp, which may be updated
693  * before the software timestamp is received, a hardware TX timestamp may be
694  * returned only if there is no software TX timestamp. Ignore false software
695  * timestamps, which may be made in the __sock_recv_timestamp() call when the
696  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
697  * hardware timestamp.
698  */
699 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
700 {
701 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
702 }
703 
704 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
705 {
706 	struct scm_ts_pktinfo ts_pktinfo;
707 	struct net_device *orig_dev;
708 
709 	if (!skb_mac_header_was_set(skb))
710 		return;
711 
712 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
713 
714 	rcu_read_lock();
715 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
716 	if (orig_dev)
717 		ts_pktinfo.if_index = orig_dev->ifindex;
718 	rcu_read_unlock();
719 
720 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
721 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
722 		 sizeof(ts_pktinfo), &ts_pktinfo);
723 }
724 
725 /*
726  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
727  */
728 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
729 	struct sk_buff *skb)
730 {
731 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
732 	struct scm_timestamping tss;
733 	int empty = 1, false_tstamp = 0;
734 	struct skb_shared_hwtstamps *shhwtstamps =
735 		skb_hwtstamps(skb);
736 
737 	/* Race occurred between timestamp enabling and packet
738 	   receiving.  Fill in the current time for now. */
739 	if (need_software_tstamp && skb->tstamp == 0) {
740 		__net_timestamp(skb);
741 		false_tstamp = 1;
742 	}
743 
744 	if (need_software_tstamp) {
745 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
746 			struct timeval tv;
747 			skb_get_timestamp(skb, &tv);
748 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
749 				 sizeof(tv), &tv);
750 		} else {
751 			struct timespec ts;
752 			skb_get_timestampns(skb, &ts);
753 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
754 				 sizeof(ts), &ts);
755 		}
756 	}
757 
758 	memset(&tss, 0, sizeof(tss));
759 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
760 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
761 		empty = 0;
762 	if (shhwtstamps &&
763 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
764 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
765 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
766 		empty = 0;
767 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
768 		    !skb_is_err_queue(skb))
769 			put_ts_pktinfo(msg, skb);
770 	}
771 	if (!empty) {
772 		put_cmsg(msg, SOL_SOCKET,
773 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
774 
775 		if (skb_is_err_queue(skb) && skb->len &&
776 		    SKB_EXT_ERR(skb)->opt_stats)
777 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
778 				 skb->len, skb->data);
779 	}
780 }
781 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
782 
783 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
784 	struct sk_buff *skb)
785 {
786 	int ack;
787 
788 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
789 		return;
790 	if (!skb->wifi_acked_valid)
791 		return;
792 
793 	ack = skb->wifi_acked;
794 
795 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
796 }
797 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
798 
799 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
800 				   struct sk_buff *skb)
801 {
802 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
803 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
804 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
805 }
806 
807 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
808 	struct sk_buff *skb)
809 {
810 	sock_recv_timestamp(msg, sk, skb);
811 	sock_recv_drops(msg, sk, skb);
812 }
813 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
814 
815 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
816 				     int flags)
817 {
818 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
819 }
820 
821 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
822 {
823 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
824 
825 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
826 }
827 EXPORT_SYMBOL(sock_recvmsg);
828 
829 /**
830  * kernel_recvmsg - Receive a message from a socket (kernel space)
831  * @sock:       The socket to receive the message from
832  * @msg:        Received message
833  * @vec:        Input s/g array for message data
834  * @num:        Size of input s/g array
835  * @size:       Number of bytes to read
836  * @flags:      Message flags (MSG_DONTWAIT, etc...)
837  *
838  * On return the msg structure contains the scatter/gather array passed in the
839  * vec argument. The array is modified so that it consists of the unfilled
840  * portion of the original array.
841  *
842  * The returned value is the total number of bytes received, or an error.
843  */
844 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
845 		   struct kvec *vec, size_t num, size_t size, int flags)
846 {
847 	mm_segment_t oldfs = get_fs();
848 	int result;
849 
850 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
851 	set_fs(KERNEL_DS);
852 	result = sock_recvmsg(sock, msg, flags);
853 	set_fs(oldfs);
854 	return result;
855 }
856 EXPORT_SYMBOL(kernel_recvmsg);
857 
858 static ssize_t sock_sendpage(struct file *file, struct page *page,
859 			     int offset, size_t size, loff_t *ppos, int more)
860 {
861 	struct socket *sock;
862 	int flags;
863 
864 	sock = file->private_data;
865 
866 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
867 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
868 	flags |= more;
869 
870 	return kernel_sendpage(sock, page, offset, size, flags);
871 }
872 
873 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
874 				struct pipe_inode_info *pipe, size_t len,
875 				unsigned int flags)
876 {
877 	struct socket *sock = file->private_data;
878 
879 	if (unlikely(!sock->ops->splice_read))
880 		return -EINVAL;
881 
882 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
883 }
884 
885 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
886 {
887 	struct file *file = iocb->ki_filp;
888 	struct socket *sock = file->private_data;
889 	struct msghdr msg = {.msg_iter = *to,
890 			     .msg_iocb = iocb};
891 	ssize_t res;
892 
893 	if (file->f_flags & O_NONBLOCK)
894 		msg.msg_flags = MSG_DONTWAIT;
895 
896 	if (iocb->ki_pos != 0)
897 		return -ESPIPE;
898 
899 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
900 		return 0;
901 
902 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
903 	*to = msg.msg_iter;
904 	return res;
905 }
906 
907 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
908 {
909 	struct file *file = iocb->ki_filp;
910 	struct socket *sock = file->private_data;
911 	struct msghdr msg = {.msg_iter = *from,
912 			     .msg_iocb = iocb};
913 	ssize_t res;
914 
915 	if (iocb->ki_pos != 0)
916 		return -ESPIPE;
917 
918 	if (file->f_flags & O_NONBLOCK)
919 		msg.msg_flags = MSG_DONTWAIT;
920 
921 	if (sock->type == SOCK_SEQPACKET)
922 		msg.msg_flags |= MSG_EOR;
923 
924 	res = sock_sendmsg(sock, &msg);
925 	*from = msg.msg_iter;
926 	return res;
927 }
928 
929 /*
930  * Atomic setting of ioctl hooks to avoid race
931  * with module unload.
932  */
933 
934 static DEFINE_MUTEX(br_ioctl_mutex);
935 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
936 
937 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
938 {
939 	mutex_lock(&br_ioctl_mutex);
940 	br_ioctl_hook = hook;
941 	mutex_unlock(&br_ioctl_mutex);
942 }
943 EXPORT_SYMBOL(brioctl_set);
944 
945 static DEFINE_MUTEX(vlan_ioctl_mutex);
946 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
947 
948 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
949 {
950 	mutex_lock(&vlan_ioctl_mutex);
951 	vlan_ioctl_hook = hook;
952 	mutex_unlock(&vlan_ioctl_mutex);
953 }
954 EXPORT_SYMBOL(vlan_ioctl_set);
955 
956 static DEFINE_MUTEX(dlci_ioctl_mutex);
957 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
958 
959 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
960 {
961 	mutex_lock(&dlci_ioctl_mutex);
962 	dlci_ioctl_hook = hook;
963 	mutex_unlock(&dlci_ioctl_mutex);
964 }
965 EXPORT_SYMBOL(dlci_ioctl_set);
966 
967 static long sock_do_ioctl(struct net *net, struct socket *sock,
968 				 unsigned int cmd, unsigned long arg)
969 {
970 	int err;
971 	void __user *argp = (void __user *)arg;
972 
973 	err = sock->ops->ioctl(sock, cmd, arg);
974 
975 	/*
976 	 * If this ioctl is unknown try to hand it down
977 	 * to the NIC driver.
978 	 */
979 	if (err != -ENOIOCTLCMD)
980 		return err;
981 
982 	if (cmd == SIOCGIFCONF) {
983 		struct ifconf ifc;
984 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
985 			return -EFAULT;
986 		rtnl_lock();
987 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
988 		rtnl_unlock();
989 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
990 			err = -EFAULT;
991 	} else {
992 		struct ifreq ifr;
993 		bool need_copyout;
994 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
995 			return -EFAULT;
996 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
997 		if (!err && need_copyout)
998 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
999 				return -EFAULT;
1000 	}
1001 	return err;
1002 }
1003 
1004 /*
1005  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1006  *	what to do with it - that's up to the protocol still.
1007  */
1008 
1009 struct ns_common *get_net_ns(struct ns_common *ns)
1010 {
1011 	return &get_net(container_of(ns, struct net, ns))->ns;
1012 }
1013 EXPORT_SYMBOL_GPL(get_net_ns);
1014 
1015 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1016 {
1017 	struct socket *sock;
1018 	struct sock *sk;
1019 	void __user *argp = (void __user *)arg;
1020 	int pid, err;
1021 	struct net *net;
1022 
1023 	sock = file->private_data;
1024 	sk = sock->sk;
1025 	net = sock_net(sk);
1026 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1027 		struct ifreq ifr;
1028 		bool need_copyout;
1029 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1030 			return -EFAULT;
1031 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1032 		if (!err && need_copyout)
1033 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1034 				return -EFAULT;
1035 	} else
1036 #ifdef CONFIG_WEXT_CORE
1037 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1038 		err = wext_handle_ioctl(net, cmd, argp);
1039 	} else
1040 #endif
1041 		switch (cmd) {
1042 		case FIOSETOWN:
1043 		case SIOCSPGRP:
1044 			err = -EFAULT;
1045 			if (get_user(pid, (int __user *)argp))
1046 				break;
1047 			err = f_setown(sock->file, pid, 1);
1048 			break;
1049 		case FIOGETOWN:
1050 		case SIOCGPGRP:
1051 			err = put_user(f_getown(sock->file),
1052 				       (int __user *)argp);
1053 			break;
1054 		case SIOCGIFBR:
1055 		case SIOCSIFBR:
1056 		case SIOCBRADDBR:
1057 		case SIOCBRDELBR:
1058 			err = -ENOPKG;
1059 			if (!br_ioctl_hook)
1060 				request_module("bridge");
1061 
1062 			mutex_lock(&br_ioctl_mutex);
1063 			if (br_ioctl_hook)
1064 				err = br_ioctl_hook(net, cmd, argp);
1065 			mutex_unlock(&br_ioctl_mutex);
1066 			break;
1067 		case SIOCGIFVLAN:
1068 		case SIOCSIFVLAN:
1069 			err = -ENOPKG;
1070 			if (!vlan_ioctl_hook)
1071 				request_module("8021q");
1072 
1073 			mutex_lock(&vlan_ioctl_mutex);
1074 			if (vlan_ioctl_hook)
1075 				err = vlan_ioctl_hook(net, argp);
1076 			mutex_unlock(&vlan_ioctl_mutex);
1077 			break;
1078 		case SIOCADDDLCI:
1079 		case SIOCDELDLCI:
1080 			err = -ENOPKG;
1081 			if (!dlci_ioctl_hook)
1082 				request_module("dlci");
1083 
1084 			mutex_lock(&dlci_ioctl_mutex);
1085 			if (dlci_ioctl_hook)
1086 				err = dlci_ioctl_hook(cmd, argp);
1087 			mutex_unlock(&dlci_ioctl_mutex);
1088 			break;
1089 		case SIOCGSKNS:
1090 			err = -EPERM;
1091 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1092 				break;
1093 
1094 			err = open_related_ns(&net->ns, get_net_ns);
1095 			break;
1096 		default:
1097 			err = sock_do_ioctl(net, sock, cmd, arg);
1098 			break;
1099 		}
1100 	return err;
1101 }
1102 
1103 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1104 {
1105 	int err;
1106 	struct socket *sock = NULL;
1107 
1108 	err = security_socket_create(family, type, protocol, 1);
1109 	if (err)
1110 		goto out;
1111 
1112 	sock = sock_alloc();
1113 	if (!sock) {
1114 		err = -ENOMEM;
1115 		goto out;
1116 	}
1117 
1118 	sock->type = type;
1119 	err = security_socket_post_create(sock, family, type, protocol, 1);
1120 	if (err)
1121 		goto out_release;
1122 
1123 out:
1124 	*res = sock;
1125 	return err;
1126 out_release:
1127 	sock_release(sock);
1128 	sock = NULL;
1129 	goto out;
1130 }
1131 EXPORT_SYMBOL(sock_create_lite);
1132 
1133 static struct wait_queue_head *sock_get_poll_head(struct file *file,
1134 		__poll_t events)
1135 {
1136 	struct socket *sock = file->private_data;
1137 
1138 	if (!sock->ops->poll_mask)
1139 		return NULL;
1140 	sock_poll_busy_loop(sock, events);
1141 	return sk_sleep(sock->sk);
1142 }
1143 
1144 static __poll_t sock_poll_mask(struct file *file, __poll_t events)
1145 {
1146 	struct socket *sock = file->private_data;
1147 
1148 	/*
1149 	 * We need to be sure we are in sync with the socket flags modification.
1150 	 *
1151 	 * This memory barrier is paired in the wq_has_sleeper.
1152 	 */
1153 	smp_mb();
1154 
1155 	/* this socket can poll_ll so tell the system call */
1156 	return sock->ops->poll_mask(sock, events) |
1157 		(sk_can_busy_loop(sock->sk) ? POLL_BUSY_LOOP : 0);
1158 }
1159 
1160 /* No kernel lock held - perfect */
1161 static __poll_t sock_poll(struct file *file, poll_table *wait)
1162 {
1163 	struct socket *sock = file->private_data;
1164 	__poll_t events = poll_requested_events(wait), mask = 0;
1165 
1166 	if (sock->ops->poll) {
1167 		sock_poll_busy_loop(sock, events);
1168 		mask = sock->ops->poll(file, sock, wait);
1169 	} else if (sock->ops->poll_mask) {
1170 		sock_poll_wait(file, sock_get_poll_head(file, events), wait);
1171 		mask = sock->ops->poll_mask(sock, events);
1172 	}
1173 
1174 	return mask | sock_poll_busy_flag(sock);
1175 }
1176 
1177 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1178 {
1179 	struct socket *sock = file->private_data;
1180 
1181 	return sock->ops->mmap(file, sock, vma);
1182 }
1183 
1184 static int sock_close(struct inode *inode, struct file *filp)
1185 {
1186 	__sock_release(SOCKET_I(inode), inode);
1187 	return 0;
1188 }
1189 
1190 /*
1191  *	Update the socket async list
1192  *
1193  *	Fasync_list locking strategy.
1194  *
1195  *	1. fasync_list is modified only under process context socket lock
1196  *	   i.e. under semaphore.
1197  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1198  *	   or under socket lock
1199  */
1200 
1201 static int sock_fasync(int fd, struct file *filp, int on)
1202 {
1203 	struct socket *sock = filp->private_data;
1204 	struct sock *sk = sock->sk;
1205 	struct socket_wq *wq;
1206 
1207 	if (sk == NULL)
1208 		return -EINVAL;
1209 
1210 	lock_sock(sk);
1211 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1212 	fasync_helper(fd, filp, on, &wq->fasync_list);
1213 
1214 	if (!wq->fasync_list)
1215 		sock_reset_flag(sk, SOCK_FASYNC);
1216 	else
1217 		sock_set_flag(sk, SOCK_FASYNC);
1218 
1219 	release_sock(sk);
1220 	return 0;
1221 }
1222 
1223 /* This function may be called only under rcu_lock */
1224 
1225 int sock_wake_async(struct socket_wq *wq, int how, int band)
1226 {
1227 	if (!wq || !wq->fasync_list)
1228 		return -1;
1229 
1230 	switch (how) {
1231 	case SOCK_WAKE_WAITD:
1232 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1233 			break;
1234 		goto call_kill;
1235 	case SOCK_WAKE_SPACE:
1236 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1237 			break;
1238 		/* fall through */
1239 	case SOCK_WAKE_IO:
1240 call_kill:
1241 		kill_fasync(&wq->fasync_list, SIGIO, band);
1242 		break;
1243 	case SOCK_WAKE_URG:
1244 		kill_fasync(&wq->fasync_list, SIGURG, band);
1245 	}
1246 
1247 	return 0;
1248 }
1249 EXPORT_SYMBOL(sock_wake_async);
1250 
1251 int __sock_create(struct net *net, int family, int type, int protocol,
1252 			 struct socket **res, int kern)
1253 {
1254 	int err;
1255 	struct socket *sock;
1256 	const struct net_proto_family *pf;
1257 
1258 	/*
1259 	 *      Check protocol is in range
1260 	 */
1261 	if (family < 0 || family >= NPROTO)
1262 		return -EAFNOSUPPORT;
1263 	if (type < 0 || type >= SOCK_MAX)
1264 		return -EINVAL;
1265 
1266 	/* Compatibility.
1267 
1268 	   This uglymoron is moved from INET layer to here to avoid
1269 	   deadlock in module load.
1270 	 */
1271 	if (family == PF_INET && type == SOCK_PACKET) {
1272 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1273 			     current->comm);
1274 		family = PF_PACKET;
1275 	}
1276 
1277 	err = security_socket_create(family, type, protocol, kern);
1278 	if (err)
1279 		return err;
1280 
1281 	/*
1282 	 *	Allocate the socket and allow the family to set things up. if
1283 	 *	the protocol is 0, the family is instructed to select an appropriate
1284 	 *	default.
1285 	 */
1286 	sock = sock_alloc();
1287 	if (!sock) {
1288 		net_warn_ratelimited("socket: no more sockets\n");
1289 		return -ENFILE;	/* Not exactly a match, but its the
1290 				   closest posix thing */
1291 	}
1292 
1293 	sock->type = type;
1294 
1295 #ifdef CONFIG_MODULES
1296 	/* Attempt to load a protocol module if the find failed.
1297 	 *
1298 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1299 	 * requested real, full-featured networking support upon configuration.
1300 	 * Otherwise module support will break!
1301 	 */
1302 	if (rcu_access_pointer(net_families[family]) == NULL)
1303 		request_module("net-pf-%d", family);
1304 #endif
1305 
1306 	rcu_read_lock();
1307 	pf = rcu_dereference(net_families[family]);
1308 	err = -EAFNOSUPPORT;
1309 	if (!pf)
1310 		goto out_release;
1311 
1312 	/*
1313 	 * We will call the ->create function, that possibly is in a loadable
1314 	 * module, so we have to bump that loadable module refcnt first.
1315 	 */
1316 	if (!try_module_get(pf->owner))
1317 		goto out_release;
1318 
1319 	/* Now protected by module ref count */
1320 	rcu_read_unlock();
1321 
1322 	err = pf->create(net, sock, protocol, kern);
1323 	if (err < 0)
1324 		goto out_module_put;
1325 
1326 	/*
1327 	 * Now to bump the refcnt of the [loadable] module that owns this
1328 	 * socket at sock_release time we decrement its refcnt.
1329 	 */
1330 	if (!try_module_get(sock->ops->owner))
1331 		goto out_module_busy;
1332 
1333 	/*
1334 	 * Now that we're done with the ->create function, the [loadable]
1335 	 * module can have its refcnt decremented
1336 	 */
1337 	module_put(pf->owner);
1338 	err = security_socket_post_create(sock, family, type, protocol, kern);
1339 	if (err)
1340 		goto out_sock_release;
1341 	*res = sock;
1342 
1343 	return 0;
1344 
1345 out_module_busy:
1346 	err = -EAFNOSUPPORT;
1347 out_module_put:
1348 	sock->ops = NULL;
1349 	module_put(pf->owner);
1350 out_sock_release:
1351 	sock_release(sock);
1352 	return err;
1353 
1354 out_release:
1355 	rcu_read_unlock();
1356 	goto out_sock_release;
1357 }
1358 EXPORT_SYMBOL(__sock_create);
1359 
1360 int sock_create(int family, int type, int protocol, struct socket **res)
1361 {
1362 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1363 }
1364 EXPORT_SYMBOL(sock_create);
1365 
1366 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1367 {
1368 	return __sock_create(net, family, type, protocol, res, 1);
1369 }
1370 EXPORT_SYMBOL(sock_create_kern);
1371 
1372 int __sys_socket(int family, int type, int protocol)
1373 {
1374 	int retval;
1375 	struct socket *sock;
1376 	int flags;
1377 
1378 	/* Check the SOCK_* constants for consistency.  */
1379 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1380 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1381 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1382 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1383 
1384 	flags = type & ~SOCK_TYPE_MASK;
1385 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1386 		return -EINVAL;
1387 	type &= SOCK_TYPE_MASK;
1388 
1389 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1390 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1391 
1392 	retval = sock_create(family, type, protocol, &sock);
1393 	if (retval < 0)
1394 		return retval;
1395 
1396 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1397 }
1398 
1399 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1400 {
1401 	return __sys_socket(family, type, protocol);
1402 }
1403 
1404 /*
1405  *	Create a pair of connected sockets.
1406  */
1407 
1408 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1409 {
1410 	struct socket *sock1, *sock2;
1411 	int fd1, fd2, err;
1412 	struct file *newfile1, *newfile2;
1413 	int flags;
1414 
1415 	flags = type & ~SOCK_TYPE_MASK;
1416 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1417 		return -EINVAL;
1418 	type &= SOCK_TYPE_MASK;
1419 
1420 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1421 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1422 
1423 	/*
1424 	 * reserve descriptors and make sure we won't fail
1425 	 * to return them to userland.
1426 	 */
1427 	fd1 = get_unused_fd_flags(flags);
1428 	if (unlikely(fd1 < 0))
1429 		return fd1;
1430 
1431 	fd2 = get_unused_fd_flags(flags);
1432 	if (unlikely(fd2 < 0)) {
1433 		put_unused_fd(fd1);
1434 		return fd2;
1435 	}
1436 
1437 	err = put_user(fd1, &usockvec[0]);
1438 	if (err)
1439 		goto out;
1440 
1441 	err = put_user(fd2, &usockvec[1]);
1442 	if (err)
1443 		goto out;
1444 
1445 	/*
1446 	 * Obtain the first socket and check if the underlying protocol
1447 	 * supports the socketpair call.
1448 	 */
1449 
1450 	err = sock_create(family, type, protocol, &sock1);
1451 	if (unlikely(err < 0))
1452 		goto out;
1453 
1454 	err = sock_create(family, type, protocol, &sock2);
1455 	if (unlikely(err < 0)) {
1456 		sock_release(sock1);
1457 		goto out;
1458 	}
1459 
1460 	err = security_socket_socketpair(sock1, sock2);
1461 	if (unlikely(err)) {
1462 		sock_release(sock2);
1463 		sock_release(sock1);
1464 		goto out;
1465 	}
1466 
1467 	err = sock1->ops->socketpair(sock1, sock2);
1468 	if (unlikely(err < 0)) {
1469 		sock_release(sock2);
1470 		sock_release(sock1);
1471 		goto out;
1472 	}
1473 
1474 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1475 	if (IS_ERR(newfile1)) {
1476 		err = PTR_ERR(newfile1);
1477 		sock_release(sock2);
1478 		goto out;
1479 	}
1480 
1481 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1482 	if (IS_ERR(newfile2)) {
1483 		err = PTR_ERR(newfile2);
1484 		fput(newfile1);
1485 		goto out;
1486 	}
1487 
1488 	audit_fd_pair(fd1, fd2);
1489 
1490 	fd_install(fd1, newfile1);
1491 	fd_install(fd2, newfile2);
1492 	return 0;
1493 
1494 out:
1495 	put_unused_fd(fd2);
1496 	put_unused_fd(fd1);
1497 	return err;
1498 }
1499 
1500 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1501 		int __user *, usockvec)
1502 {
1503 	return __sys_socketpair(family, type, protocol, usockvec);
1504 }
1505 
1506 /*
1507  *	Bind a name to a socket. Nothing much to do here since it's
1508  *	the protocol's responsibility to handle the local address.
1509  *
1510  *	We move the socket address to kernel space before we call
1511  *	the protocol layer (having also checked the address is ok).
1512  */
1513 
1514 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1515 {
1516 	struct socket *sock;
1517 	struct sockaddr_storage address;
1518 	int err, fput_needed;
1519 
1520 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521 	if (sock) {
1522 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1523 		if (err >= 0) {
1524 			err = security_socket_bind(sock,
1525 						   (struct sockaddr *)&address,
1526 						   addrlen);
1527 			if (!err)
1528 				err = sock->ops->bind(sock,
1529 						      (struct sockaddr *)
1530 						      &address, addrlen);
1531 		}
1532 		fput_light(sock->file, fput_needed);
1533 	}
1534 	return err;
1535 }
1536 
1537 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1538 {
1539 	return __sys_bind(fd, umyaddr, addrlen);
1540 }
1541 
1542 /*
1543  *	Perform a listen. Basically, we allow the protocol to do anything
1544  *	necessary for a listen, and if that works, we mark the socket as
1545  *	ready for listening.
1546  */
1547 
1548 int __sys_listen(int fd, int backlog)
1549 {
1550 	struct socket *sock;
1551 	int err, fput_needed;
1552 	int somaxconn;
1553 
1554 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 	if (sock) {
1556 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1557 		if ((unsigned int)backlog > somaxconn)
1558 			backlog = somaxconn;
1559 
1560 		err = security_socket_listen(sock, backlog);
1561 		if (!err)
1562 			err = sock->ops->listen(sock, backlog);
1563 
1564 		fput_light(sock->file, fput_needed);
1565 	}
1566 	return err;
1567 }
1568 
1569 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1570 {
1571 	return __sys_listen(fd, backlog);
1572 }
1573 
1574 /*
1575  *	For accept, we attempt to create a new socket, set up the link
1576  *	with the client, wake up the client, then return the new
1577  *	connected fd. We collect the address of the connector in kernel
1578  *	space and move it to user at the very end. This is unclean because
1579  *	we open the socket then return an error.
1580  *
1581  *	1003.1g adds the ability to recvmsg() to query connection pending
1582  *	status to recvmsg. We need to add that support in a way thats
1583  *	clean when we restructure accept also.
1584  */
1585 
1586 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1587 		  int __user *upeer_addrlen, int flags)
1588 {
1589 	struct socket *sock, *newsock;
1590 	struct file *newfile;
1591 	int err, len, newfd, fput_needed;
1592 	struct sockaddr_storage address;
1593 
1594 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1595 		return -EINVAL;
1596 
1597 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1598 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1599 
1600 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 	if (!sock)
1602 		goto out;
1603 
1604 	err = -ENFILE;
1605 	newsock = sock_alloc();
1606 	if (!newsock)
1607 		goto out_put;
1608 
1609 	newsock->type = sock->type;
1610 	newsock->ops = sock->ops;
1611 
1612 	/*
1613 	 * We don't need try_module_get here, as the listening socket (sock)
1614 	 * has the protocol module (sock->ops->owner) held.
1615 	 */
1616 	__module_get(newsock->ops->owner);
1617 
1618 	newfd = get_unused_fd_flags(flags);
1619 	if (unlikely(newfd < 0)) {
1620 		err = newfd;
1621 		sock_release(newsock);
1622 		goto out_put;
1623 	}
1624 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1625 	if (IS_ERR(newfile)) {
1626 		err = PTR_ERR(newfile);
1627 		put_unused_fd(newfd);
1628 		goto out_put;
1629 	}
1630 
1631 	err = security_socket_accept(sock, newsock);
1632 	if (err)
1633 		goto out_fd;
1634 
1635 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1636 	if (err < 0)
1637 		goto out_fd;
1638 
1639 	if (upeer_sockaddr) {
1640 		len = newsock->ops->getname(newsock,
1641 					(struct sockaddr *)&address, 2);
1642 		if (len < 0) {
1643 			err = -ECONNABORTED;
1644 			goto out_fd;
1645 		}
1646 		err = move_addr_to_user(&address,
1647 					len, upeer_sockaddr, upeer_addrlen);
1648 		if (err < 0)
1649 			goto out_fd;
1650 	}
1651 
1652 	/* File flags are not inherited via accept() unlike another OSes. */
1653 
1654 	fd_install(newfd, newfile);
1655 	err = newfd;
1656 
1657 out_put:
1658 	fput_light(sock->file, fput_needed);
1659 out:
1660 	return err;
1661 out_fd:
1662 	fput(newfile);
1663 	put_unused_fd(newfd);
1664 	goto out_put;
1665 }
1666 
1667 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1668 		int __user *, upeer_addrlen, int, flags)
1669 {
1670 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1671 }
1672 
1673 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1674 		int __user *, upeer_addrlen)
1675 {
1676 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1677 }
1678 
1679 /*
1680  *	Attempt to connect to a socket with the server address.  The address
1681  *	is in user space so we verify it is OK and move it to kernel space.
1682  *
1683  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1684  *	break bindings
1685  *
1686  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1687  *	other SEQPACKET protocols that take time to connect() as it doesn't
1688  *	include the -EINPROGRESS status for such sockets.
1689  */
1690 
1691 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1692 {
1693 	struct socket *sock;
1694 	struct sockaddr_storage address;
1695 	int err, fput_needed;
1696 
1697 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698 	if (!sock)
1699 		goto out;
1700 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1701 	if (err < 0)
1702 		goto out_put;
1703 
1704 	err =
1705 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1706 	if (err)
1707 		goto out_put;
1708 
1709 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1710 				 sock->file->f_flags);
1711 out_put:
1712 	fput_light(sock->file, fput_needed);
1713 out:
1714 	return err;
1715 }
1716 
1717 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1718 		int, addrlen)
1719 {
1720 	return __sys_connect(fd, uservaddr, addrlen);
1721 }
1722 
1723 /*
1724  *	Get the local address ('name') of a socket object. Move the obtained
1725  *	name to user space.
1726  */
1727 
1728 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1729 		      int __user *usockaddr_len)
1730 {
1731 	struct socket *sock;
1732 	struct sockaddr_storage address;
1733 	int err, fput_needed;
1734 
1735 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1736 	if (!sock)
1737 		goto out;
1738 
1739 	err = security_socket_getsockname(sock);
1740 	if (err)
1741 		goto out_put;
1742 
1743 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1744 	if (err < 0)
1745 		goto out_put;
1746         /* "err" is actually length in this case */
1747 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1748 
1749 out_put:
1750 	fput_light(sock->file, fput_needed);
1751 out:
1752 	return err;
1753 }
1754 
1755 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1756 		int __user *, usockaddr_len)
1757 {
1758 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1759 }
1760 
1761 /*
1762  *	Get the remote address ('name') of a socket object. Move the obtained
1763  *	name to user space.
1764  */
1765 
1766 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1767 		      int __user *usockaddr_len)
1768 {
1769 	struct socket *sock;
1770 	struct sockaddr_storage address;
1771 	int err, fput_needed;
1772 
1773 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1774 	if (sock != NULL) {
1775 		err = security_socket_getpeername(sock);
1776 		if (err) {
1777 			fput_light(sock->file, fput_needed);
1778 			return err;
1779 		}
1780 
1781 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1782 		if (err >= 0)
1783 			/* "err" is actually length in this case */
1784 			err = move_addr_to_user(&address, err, usockaddr,
1785 						usockaddr_len);
1786 		fput_light(sock->file, fput_needed);
1787 	}
1788 	return err;
1789 }
1790 
1791 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1792 		int __user *, usockaddr_len)
1793 {
1794 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1795 }
1796 
1797 /*
1798  *	Send a datagram to a given address. We move the address into kernel
1799  *	space and check the user space data area is readable before invoking
1800  *	the protocol.
1801  */
1802 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1803 		 struct sockaddr __user *addr,  int addr_len)
1804 {
1805 	struct socket *sock;
1806 	struct sockaddr_storage address;
1807 	int err;
1808 	struct msghdr msg;
1809 	struct iovec iov;
1810 	int fput_needed;
1811 
1812 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1813 	if (unlikely(err))
1814 		return err;
1815 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1816 	if (!sock)
1817 		goto out;
1818 
1819 	msg.msg_name = NULL;
1820 	msg.msg_control = NULL;
1821 	msg.msg_controllen = 0;
1822 	msg.msg_namelen = 0;
1823 	if (addr) {
1824 		err = move_addr_to_kernel(addr, addr_len, &address);
1825 		if (err < 0)
1826 			goto out_put;
1827 		msg.msg_name = (struct sockaddr *)&address;
1828 		msg.msg_namelen = addr_len;
1829 	}
1830 	if (sock->file->f_flags & O_NONBLOCK)
1831 		flags |= MSG_DONTWAIT;
1832 	msg.msg_flags = flags;
1833 	err = sock_sendmsg(sock, &msg);
1834 
1835 out_put:
1836 	fput_light(sock->file, fput_needed);
1837 out:
1838 	return err;
1839 }
1840 
1841 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1842 		unsigned int, flags, struct sockaddr __user *, addr,
1843 		int, addr_len)
1844 {
1845 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1846 }
1847 
1848 /*
1849  *	Send a datagram down a socket.
1850  */
1851 
1852 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1853 		unsigned int, flags)
1854 {
1855 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1856 }
1857 
1858 /*
1859  *	Receive a frame from the socket and optionally record the address of the
1860  *	sender. We verify the buffers are writable and if needed move the
1861  *	sender address from kernel to user space.
1862  */
1863 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1864 		   struct sockaddr __user *addr, int __user *addr_len)
1865 {
1866 	struct socket *sock;
1867 	struct iovec iov;
1868 	struct msghdr msg;
1869 	struct sockaddr_storage address;
1870 	int err, err2;
1871 	int fput_needed;
1872 
1873 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1874 	if (unlikely(err))
1875 		return err;
1876 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1877 	if (!sock)
1878 		goto out;
1879 
1880 	msg.msg_control = NULL;
1881 	msg.msg_controllen = 0;
1882 	/* Save some cycles and don't copy the address if not needed */
1883 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1884 	/* We assume all kernel code knows the size of sockaddr_storage */
1885 	msg.msg_namelen = 0;
1886 	msg.msg_iocb = NULL;
1887 	msg.msg_flags = 0;
1888 	if (sock->file->f_flags & O_NONBLOCK)
1889 		flags |= MSG_DONTWAIT;
1890 	err = sock_recvmsg(sock, &msg, flags);
1891 
1892 	if (err >= 0 && addr != NULL) {
1893 		err2 = move_addr_to_user(&address,
1894 					 msg.msg_namelen, addr, addr_len);
1895 		if (err2 < 0)
1896 			err = err2;
1897 	}
1898 
1899 	fput_light(sock->file, fput_needed);
1900 out:
1901 	return err;
1902 }
1903 
1904 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1905 		unsigned int, flags, struct sockaddr __user *, addr,
1906 		int __user *, addr_len)
1907 {
1908 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1909 }
1910 
1911 /*
1912  *	Receive a datagram from a socket.
1913  */
1914 
1915 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1916 		unsigned int, flags)
1917 {
1918 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1919 }
1920 
1921 /*
1922  *	Set a socket option. Because we don't know the option lengths we have
1923  *	to pass the user mode parameter for the protocols to sort out.
1924  */
1925 
1926 static int __sys_setsockopt(int fd, int level, int optname,
1927 			    char __user *optval, int optlen)
1928 {
1929 	int err, fput_needed;
1930 	struct socket *sock;
1931 
1932 	if (optlen < 0)
1933 		return -EINVAL;
1934 
1935 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1936 	if (sock != NULL) {
1937 		err = security_socket_setsockopt(sock, level, optname);
1938 		if (err)
1939 			goto out_put;
1940 
1941 		if (level == SOL_SOCKET)
1942 			err =
1943 			    sock_setsockopt(sock, level, optname, optval,
1944 					    optlen);
1945 		else
1946 			err =
1947 			    sock->ops->setsockopt(sock, level, optname, optval,
1948 						  optlen);
1949 out_put:
1950 		fput_light(sock->file, fput_needed);
1951 	}
1952 	return err;
1953 }
1954 
1955 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1956 		char __user *, optval, int, optlen)
1957 {
1958 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1959 }
1960 
1961 /*
1962  *	Get a socket option. Because we don't know the option lengths we have
1963  *	to pass a user mode parameter for the protocols to sort out.
1964  */
1965 
1966 static int __sys_getsockopt(int fd, int level, int optname,
1967 			    char __user *optval, int __user *optlen)
1968 {
1969 	int err, fput_needed;
1970 	struct socket *sock;
1971 
1972 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 	if (sock != NULL) {
1974 		err = security_socket_getsockopt(sock, level, optname);
1975 		if (err)
1976 			goto out_put;
1977 
1978 		if (level == SOL_SOCKET)
1979 			err =
1980 			    sock_getsockopt(sock, level, optname, optval,
1981 					    optlen);
1982 		else
1983 			err =
1984 			    sock->ops->getsockopt(sock, level, optname, optval,
1985 						  optlen);
1986 out_put:
1987 		fput_light(sock->file, fput_needed);
1988 	}
1989 	return err;
1990 }
1991 
1992 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1993 		char __user *, optval, int __user *, optlen)
1994 {
1995 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1996 }
1997 
1998 /*
1999  *	Shutdown a socket.
2000  */
2001 
2002 int __sys_shutdown(int fd, int how)
2003 {
2004 	int err, fput_needed;
2005 	struct socket *sock;
2006 
2007 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2008 	if (sock != NULL) {
2009 		err = security_socket_shutdown(sock, how);
2010 		if (!err)
2011 			err = sock->ops->shutdown(sock, how);
2012 		fput_light(sock->file, fput_needed);
2013 	}
2014 	return err;
2015 }
2016 
2017 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2018 {
2019 	return __sys_shutdown(fd, how);
2020 }
2021 
2022 /* A couple of helpful macros for getting the address of the 32/64 bit
2023  * fields which are the same type (int / unsigned) on our platforms.
2024  */
2025 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2026 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2027 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2028 
2029 struct used_address {
2030 	struct sockaddr_storage name;
2031 	unsigned int name_len;
2032 };
2033 
2034 static int copy_msghdr_from_user(struct msghdr *kmsg,
2035 				 struct user_msghdr __user *umsg,
2036 				 struct sockaddr __user **save_addr,
2037 				 struct iovec **iov)
2038 {
2039 	struct user_msghdr msg;
2040 	ssize_t err;
2041 
2042 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2043 		return -EFAULT;
2044 
2045 	kmsg->msg_control = (void __force *)msg.msg_control;
2046 	kmsg->msg_controllen = msg.msg_controllen;
2047 	kmsg->msg_flags = msg.msg_flags;
2048 
2049 	kmsg->msg_namelen = msg.msg_namelen;
2050 	if (!msg.msg_name)
2051 		kmsg->msg_namelen = 0;
2052 
2053 	if (kmsg->msg_namelen < 0)
2054 		return -EINVAL;
2055 
2056 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2057 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2058 
2059 	if (save_addr)
2060 		*save_addr = msg.msg_name;
2061 
2062 	if (msg.msg_name && kmsg->msg_namelen) {
2063 		if (!save_addr) {
2064 			err = move_addr_to_kernel(msg.msg_name,
2065 						  kmsg->msg_namelen,
2066 						  kmsg->msg_name);
2067 			if (err < 0)
2068 				return err;
2069 		}
2070 	} else {
2071 		kmsg->msg_name = NULL;
2072 		kmsg->msg_namelen = 0;
2073 	}
2074 
2075 	if (msg.msg_iovlen > UIO_MAXIOV)
2076 		return -EMSGSIZE;
2077 
2078 	kmsg->msg_iocb = NULL;
2079 
2080 	return import_iovec(save_addr ? READ : WRITE,
2081 			    msg.msg_iov, msg.msg_iovlen,
2082 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2083 }
2084 
2085 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2086 			 struct msghdr *msg_sys, unsigned int flags,
2087 			 struct used_address *used_address,
2088 			 unsigned int allowed_msghdr_flags)
2089 {
2090 	struct compat_msghdr __user *msg_compat =
2091 	    (struct compat_msghdr __user *)msg;
2092 	struct sockaddr_storage address;
2093 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2094 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2095 				__aligned(sizeof(__kernel_size_t));
2096 	/* 20 is size of ipv6_pktinfo */
2097 	unsigned char *ctl_buf = ctl;
2098 	int ctl_len;
2099 	ssize_t err;
2100 
2101 	msg_sys->msg_name = &address;
2102 
2103 	if (MSG_CMSG_COMPAT & flags)
2104 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2105 	else
2106 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2107 	if (err < 0)
2108 		return err;
2109 
2110 	err = -ENOBUFS;
2111 
2112 	if (msg_sys->msg_controllen > INT_MAX)
2113 		goto out_freeiov;
2114 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2115 	ctl_len = msg_sys->msg_controllen;
2116 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2117 		err =
2118 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2119 						     sizeof(ctl));
2120 		if (err)
2121 			goto out_freeiov;
2122 		ctl_buf = msg_sys->msg_control;
2123 		ctl_len = msg_sys->msg_controllen;
2124 	} else if (ctl_len) {
2125 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2126 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2127 		if (ctl_len > sizeof(ctl)) {
2128 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2129 			if (ctl_buf == NULL)
2130 				goto out_freeiov;
2131 		}
2132 		err = -EFAULT;
2133 		/*
2134 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2135 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2136 		 * checking falls down on this.
2137 		 */
2138 		if (copy_from_user(ctl_buf,
2139 				   (void __user __force *)msg_sys->msg_control,
2140 				   ctl_len))
2141 			goto out_freectl;
2142 		msg_sys->msg_control = ctl_buf;
2143 	}
2144 	msg_sys->msg_flags = flags;
2145 
2146 	if (sock->file->f_flags & O_NONBLOCK)
2147 		msg_sys->msg_flags |= MSG_DONTWAIT;
2148 	/*
2149 	 * If this is sendmmsg() and current destination address is same as
2150 	 * previously succeeded address, omit asking LSM's decision.
2151 	 * used_address->name_len is initialized to UINT_MAX so that the first
2152 	 * destination address never matches.
2153 	 */
2154 	if (used_address && msg_sys->msg_name &&
2155 	    used_address->name_len == msg_sys->msg_namelen &&
2156 	    !memcmp(&used_address->name, msg_sys->msg_name,
2157 		    used_address->name_len)) {
2158 		err = sock_sendmsg_nosec(sock, msg_sys);
2159 		goto out_freectl;
2160 	}
2161 	err = sock_sendmsg(sock, msg_sys);
2162 	/*
2163 	 * If this is sendmmsg() and sending to current destination address was
2164 	 * successful, remember it.
2165 	 */
2166 	if (used_address && err >= 0) {
2167 		used_address->name_len = msg_sys->msg_namelen;
2168 		if (msg_sys->msg_name)
2169 			memcpy(&used_address->name, msg_sys->msg_name,
2170 			       used_address->name_len);
2171 	}
2172 
2173 out_freectl:
2174 	if (ctl_buf != ctl)
2175 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2176 out_freeiov:
2177 	kfree(iov);
2178 	return err;
2179 }
2180 
2181 /*
2182  *	BSD sendmsg interface
2183  */
2184 
2185 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2186 		   bool forbid_cmsg_compat)
2187 {
2188 	int fput_needed, err;
2189 	struct msghdr msg_sys;
2190 	struct socket *sock;
2191 
2192 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2193 		return -EINVAL;
2194 
2195 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2196 	if (!sock)
2197 		goto out;
2198 
2199 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2200 
2201 	fput_light(sock->file, fput_needed);
2202 out:
2203 	return err;
2204 }
2205 
2206 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2207 {
2208 	return __sys_sendmsg(fd, msg, flags, true);
2209 }
2210 
2211 /*
2212  *	Linux sendmmsg interface
2213  */
2214 
2215 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2216 		   unsigned int flags, bool forbid_cmsg_compat)
2217 {
2218 	int fput_needed, err, datagrams;
2219 	struct socket *sock;
2220 	struct mmsghdr __user *entry;
2221 	struct compat_mmsghdr __user *compat_entry;
2222 	struct msghdr msg_sys;
2223 	struct used_address used_address;
2224 	unsigned int oflags = flags;
2225 
2226 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2227 		return -EINVAL;
2228 
2229 	if (vlen > UIO_MAXIOV)
2230 		vlen = UIO_MAXIOV;
2231 
2232 	datagrams = 0;
2233 
2234 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2235 	if (!sock)
2236 		return err;
2237 
2238 	used_address.name_len = UINT_MAX;
2239 	entry = mmsg;
2240 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2241 	err = 0;
2242 	flags |= MSG_BATCH;
2243 
2244 	while (datagrams < vlen) {
2245 		if (datagrams == vlen - 1)
2246 			flags = oflags;
2247 
2248 		if (MSG_CMSG_COMPAT & flags) {
2249 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2250 					     &msg_sys, flags, &used_address, MSG_EOR);
2251 			if (err < 0)
2252 				break;
2253 			err = __put_user(err, &compat_entry->msg_len);
2254 			++compat_entry;
2255 		} else {
2256 			err = ___sys_sendmsg(sock,
2257 					     (struct user_msghdr __user *)entry,
2258 					     &msg_sys, flags, &used_address, MSG_EOR);
2259 			if (err < 0)
2260 				break;
2261 			err = put_user(err, &entry->msg_len);
2262 			++entry;
2263 		}
2264 
2265 		if (err)
2266 			break;
2267 		++datagrams;
2268 		if (msg_data_left(&msg_sys))
2269 			break;
2270 		cond_resched();
2271 	}
2272 
2273 	fput_light(sock->file, fput_needed);
2274 
2275 	/* We only return an error if no datagrams were able to be sent */
2276 	if (datagrams != 0)
2277 		return datagrams;
2278 
2279 	return err;
2280 }
2281 
2282 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2283 		unsigned int, vlen, unsigned int, flags)
2284 {
2285 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2286 }
2287 
2288 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2289 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2290 {
2291 	struct compat_msghdr __user *msg_compat =
2292 	    (struct compat_msghdr __user *)msg;
2293 	struct iovec iovstack[UIO_FASTIOV];
2294 	struct iovec *iov = iovstack;
2295 	unsigned long cmsg_ptr;
2296 	int len;
2297 	ssize_t err;
2298 
2299 	/* kernel mode address */
2300 	struct sockaddr_storage addr;
2301 
2302 	/* user mode address pointers */
2303 	struct sockaddr __user *uaddr;
2304 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2305 
2306 	msg_sys->msg_name = &addr;
2307 
2308 	if (MSG_CMSG_COMPAT & flags)
2309 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2310 	else
2311 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2312 	if (err < 0)
2313 		return err;
2314 
2315 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2316 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2317 
2318 	/* We assume all kernel code knows the size of sockaddr_storage */
2319 	msg_sys->msg_namelen = 0;
2320 
2321 	if (sock->file->f_flags & O_NONBLOCK)
2322 		flags |= MSG_DONTWAIT;
2323 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2324 	if (err < 0)
2325 		goto out_freeiov;
2326 	len = err;
2327 
2328 	if (uaddr != NULL) {
2329 		err = move_addr_to_user(&addr,
2330 					msg_sys->msg_namelen, uaddr,
2331 					uaddr_len);
2332 		if (err < 0)
2333 			goto out_freeiov;
2334 	}
2335 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2336 			 COMPAT_FLAGS(msg));
2337 	if (err)
2338 		goto out_freeiov;
2339 	if (MSG_CMSG_COMPAT & flags)
2340 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2341 				 &msg_compat->msg_controllen);
2342 	else
2343 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2344 				 &msg->msg_controllen);
2345 	if (err)
2346 		goto out_freeiov;
2347 	err = len;
2348 
2349 out_freeiov:
2350 	kfree(iov);
2351 	return err;
2352 }
2353 
2354 /*
2355  *	BSD recvmsg interface
2356  */
2357 
2358 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2359 		   bool forbid_cmsg_compat)
2360 {
2361 	int fput_needed, err;
2362 	struct msghdr msg_sys;
2363 	struct socket *sock;
2364 
2365 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2366 		return -EINVAL;
2367 
2368 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2369 	if (!sock)
2370 		goto out;
2371 
2372 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2373 
2374 	fput_light(sock->file, fput_needed);
2375 out:
2376 	return err;
2377 }
2378 
2379 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2380 		unsigned int, flags)
2381 {
2382 	return __sys_recvmsg(fd, msg, flags, true);
2383 }
2384 
2385 /*
2386  *     Linux recvmmsg interface
2387  */
2388 
2389 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2390 		   unsigned int flags, struct timespec *timeout)
2391 {
2392 	int fput_needed, err, datagrams;
2393 	struct socket *sock;
2394 	struct mmsghdr __user *entry;
2395 	struct compat_mmsghdr __user *compat_entry;
2396 	struct msghdr msg_sys;
2397 	struct timespec64 end_time;
2398 	struct timespec64 timeout64;
2399 
2400 	if (timeout &&
2401 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2402 				    timeout->tv_nsec))
2403 		return -EINVAL;
2404 
2405 	datagrams = 0;
2406 
2407 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2408 	if (!sock)
2409 		return err;
2410 
2411 	if (likely(!(flags & MSG_ERRQUEUE))) {
2412 		err = sock_error(sock->sk);
2413 		if (err) {
2414 			datagrams = err;
2415 			goto out_put;
2416 		}
2417 	}
2418 
2419 	entry = mmsg;
2420 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2421 
2422 	while (datagrams < vlen) {
2423 		/*
2424 		 * No need to ask LSM for more than the first datagram.
2425 		 */
2426 		if (MSG_CMSG_COMPAT & flags) {
2427 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2428 					     &msg_sys, flags & ~MSG_WAITFORONE,
2429 					     datagrams);
2430 			if (err < 0)
2431 				break;
2432 			err = __put_user(err, &compat_entry->msg_len);
2433 			++compat_entry;
2434 		} else {
2435 			err = ___sys_recvmsg(sock,
2436 					     (struct user_msghdr __user *)entry,
2437 					     &msg_sys, flags & ~MSG_WAITFORONE,
2438 					     datagrams);
2439 			if (err < 0)
2440 				break;
2441 			err = put_user(err, &entry->msg_len);
2442 			++entry;
2443 		}
2444 
2445 		if (err)
2446 			break;
2447 		++datagrams;
2448 
2449 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2450 		if (flags & MSG_WAITFORONE)
2451 			flags |= MSG_DONTWAIT;
2452 
2453 		if (timeout) {
2454 			ktime_get_ts64(&timeout64);
2455 			*timeout = timespec64_to_timespec(
2456 					timespec64_sub(end_time, timeout64));
2457 			if (timeout->tv_sec < 0) {
2458 				timeout->tv_sec = timeout->tv_nsec = 0;
2459 				break;
2460 			}
2461 
2462 			/* Timeout, return less than vlen datagrams */
2463 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2464 				break;
2465 		}
2466 
2467 		/* Out of band data, return right away */
2468 		if (msg_sys.msg_flags & MSG_OOB)
2469 			break;
2470 		cond_resched();
2471 	}
2472 
2473 	if (err == 0)
2474 		goto out_put;
2475 
2476 	if (datagrams == 0) {
2477 		datagrams = err;
2478 		goto out_put;
2479 	}
2480 
2481 	/*
2482 	 * We may return less entries than requested (vlen) if the
2483 	 * sock is non block and there aren't enough datagrams...
2484 	 */
2485 	if (err != -EAGAIN) {
2486 		/*
2487 		 * ... or  if recvmsg returns an error after we
2488 		 * received some datagrams, where we record the
2489 		 * error to return on the next call or if the
2490 		 * app asks about it using getsockopt(SO_ERROR).
2491 		 */
2492 		sock->sk->sk_err = -err;
2493 	}
2494 out_put:
2495 	fput_light(sock->file, fput_needed);
2496 
2497 	return datagrams;
2498 }
2499 
2500 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2501 			   unsigned int vlen, unsigned int flags,
2502 			   struct timespec __user *timeout)
2503 {
2504 	int datagrams;
2505 	struct timespec timeout_sys;
2506 
2507 	if (flags & MSG_CMSG_COMPAT)
2508 		return -EINVAL;
2509 
2510 	if (!timeout)
2511 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2512 
2513 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2514 		return -EFAULT;
2515 
2516 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2517 
2518 	if (datagrams > 0 &&
2519 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2520 		datagrams = -EFAULT;
2521 
2522 	return datagrams;
2523 }
2524 
2525 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2526 		unsigned int, vlen, unsigned int, flags,
2527 		struct timespec __user *, timeout)
2528 {
2529 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2530 }
2531 
2532 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2533 /* Argument list sizes for sys_socketcall */
2534 #define AL(x) ((x) * sizeof(unsigned long))
2535 static const unsigned char nargs[21] = {
2536 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2537 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2538 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2539 	AL(4), AL(5), AL(4)
2540 };
2541 
2542 #undef AL
2543 
2544 /*
2545  *	System call vectors.
2546  *
2547  *	Argument checking cleaned up. Saved 20% in size.
2548  *  This function doesn't need to set the kernel lock because
2549  *  it is set by the callees.
2550  */
2551 
2552 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2553 {
2554 	unsigned long a[AUDITSC_ARGS];
2555 	unsigned long a0, a1;
2556 	int err;
2557 	unsigned int len;
2558 
2559 	if (call < 1 || call > SYS_SENDMMSG)
2560 		return -EINVAL;
2561 
2562 	len = nargs[call];
2563 	if (len > sizeof(a))
2564 		return -EINVAL;
2565 
2566 	/* copy_from_user should be SMP safe. */
2567 	if (copy_from_user(a, args, len))
2568 		return -EFAULT;
2569 
2570 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2571 	if (err)
2572 		return err;
2573 
2574 	a0 = a[0];
2575 	a1 = a[1];
2576 
2577 	switch (call) {
2578 	case SYS_SOCKET:
2579 		err = __sys_socket(a0, a1, a[2]);
2580 		break;
2581 	case SYS_BIND:
2582 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2583 		break;
2584 	case SYS_CONNECT:
2585 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2586 		break;
2587 	case SYS_LISTEN:
2588 		err = __sys_listen(a0, a1);
2589 		break;
2590 	case SYS_ACCEPT:
2591 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2592 				    (int __user *)a[2], 0);
2593 		break;
2594 	case SYS_GETSOCKNAME:
2595 		err =
2596 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2597 				      (int __user *)a[2]);
2598 		break;
2599 	case SYS_GETPEERNAME:
2600 		err =
2601 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2602 				      (int __user *)a[2]);
2603 		break;
2604 	case SYS_SOCKETPAIR:
2605 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2606 		break;
2607 	case SYS_SEND:
2608 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2609 				   NULL, 0);
2610 		break;
2611 	case SYS_SENDTO:
2612 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2613 				   (struct sockaddr __user *)a[4], a[5]);
2614 		break;
2615 	case SYS_RECV:
2616 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2617 				     NULL, NULL);
2618 		break;
2619 	case SYS_RECVFROM:
2620 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2621 				     (struct sockaddr __user *)a[4],
2622 				     (int __user *)a[5]);
2623 		break;
2624 	case SYS_SHUTDOWN:
2625 		err = __sys_shutdown(a0, a1);
2626 		break;
2627 	case SYS_SETSOCKOPT:
2628 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2629 				       a[4]);
2630 		break;
2631 	case SYS_GETSOCKOPT:
2632 		err =
2633 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2634 				     (int __user *)a[4]);
2635 		break;
2636 	case SYS_SENDMSG:
2637 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2638 				    a[2], true);
2639 		break;
2640 	case SYS_SENDMMSG:
2641 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2642 				     a[3], true);
2643 		break;
2644 	case SYS_RECVMSG:
2645 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2646 				    a[2], true);
2647 		break;
2648 	case SYS_RECVMMSG:
2649 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2650 				      a[3], (struct timespec __user *)a[4]);
2651 		break;
2652 	case SYS_ACCEPT4:
2653 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2654 				    (int __user *)a[2], a[3]);
2655 		break;
2656 	default:
2657 		err = -EINVAL;
2658 		break;
2659 	}
2660 	return err;
2661 }
2662 
2663 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2664 
2665 /**
2666  *	sock_register - add a socket protocol handler
2667  *	@ops: description of protocol
2668  *
2669  *	This function is called by a protocol handler that wants to
2670  *	advertise its address family, and have it linked into the
2671  *	socket interface. The value ops->family corresponds to the
2672  *	socket system call protocol family.
2673  */
2674 int sock_register(const struct net_proto_family *ops)
2675 {
2676 	int err;
2677 
2678 	if (ops->family >= NPROTO) {
2679 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2680 		return -ENOBUFS;
2681 	}
2682 
2683 	spin_lock(&net_family_lock);
2684 	if (rcu_dereference_protected(net_families[ops->family],
2685 				      lockdep_is_held(&net_family_lock)))
2686 		err = -EEXIST;
2687 	else {
2688 		rcu_assign_pointer(net_families[ops->family], ops);
2689 		err = 0;
2690 	}
2691 	spin_unlock(&net_family_lock);
2692 
2693 	pr_info("NET: Registered protocol family %d\n", ops->family);
2694 	return err;
2695 }
2696 EXPORT_SYMBOL(sock_register);
2697 
2698 /**
2699  *	sock_unregister - remove a protocol handler
2700  *	@family: protocol family to remove
2701  *
2702  *	This function is called by a protocol handler that wants to
2703  *	remove its address family, and have it unlinked from the
2704  *	new socket creation.
2705  *
2706  *	If protocol handler is a module, then it can use module reference
2707  *	counts to protect against new references. If protocol handler is not
2708  *	a module then it needs to provide its own protection in
2709  *	the ops->create routine.
2710  */
2711 void sock_unregister(int family)
2712 {
2713 	BUG_ON(family < 0 || family >= NPROTO);
2714 
2715 	spin_lock(&net_family_lock);
2716 	RCU_INIT_POINTER(net_families[family], NULL);
2717 	spin_unlock(&net_family_lock);
2718 
2719 	synchronize_rcu();
2720 
2721 	pr_info("NET: Unregistered protocol family %d\n", family);
2722 }
2723 EXPORT_SYMBOL(sock_unregister);
2724 
2725 bool sock_is_registered(int family)
2726 {
2727 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2728 }
2729 
2730 static int __init sock_init(void)
2731 {
2732 	int err;
2733 	/*
2734 	 *      Initialize the network sysctl infrastructure.
2735 	 */
2736 	err = net_sysctl_init();
2737 	if (err)
2738 		goto out;
2739 
2740 	/*
2741 	 *      Initialize skbuff SLAB cache
2742 	 */
2743 	skb_init();
2744 
2745 	/*
2746 	 *      Initialize the protocols module.
2747 	 */
2748 
2749 	init_inodecache();
2750 
2751 	err = register_filesystem(&sock_fs_type);
2752 	if (err)
2753 		goto out_fs;
2754 	sock_mnt = kern_mount(&sock_fs_type);
2755 	if (IS_ERR(sock_mnt)) {
2756 		err = PTR_ERR(sock_mnt);
2757 		goto out_mount;
2758 	}
2759 
2760 	/* The real protocol initialization is performed in later initcalls.
2761 	 */
2762 
2763 #ifdef CONFIG_NETFILTER
2764 	err = netfilter_init();
2765 	if (err)
2766 		goto out;
2767 #endif
2768 
2769 	ptp_classifier_init();
2770 
2771 out:
2772 	return err;
2773 
2774 out_mount:
2775 	unregister_filesystem(&sock_fs_type);
2776 out_fs:
2777 	goto out;
2778 }
2779 
2780 core_initcall(sock_init);	/* early initcall */
2781 
2782 #ifdef CONFIG_PROC_FS
2783 void socket_seq_show(struct seq_file *seq)
2784 {
2785 	seq_printf(seq, "sockets: used %d\n",
2786 		   sock_inuse_get(seq->private));
2787 }
2788 #endif				/* CONFIG_PROC_FS */
2789 
2790 #ifdef CONFIG_COMPAT
2791 static int do_siocgstamp(struct net *net, struct socket *sock,
2792 			 unsigned int cmd, void __user *up)
2793 {
2794 	mm_segment_t old_fs = get_fs();
2795 	struct timeval ktv;
2796 	int err;
2797 
2798 	set_fs(KERNEL_DS);
2799 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2800 	set_fs(old_fs);
2801 	if (!err)
2802 		err = compat_put_timeval(&ktv, up);
2803 
2804 	return err;
2805 }
2806 
2807 static int do_siocgstampns(struct net *net, struct socket *sock,
2808 			   unsigned int cmd, void __user *up)
2809 {
2810 	mm_segment_t old_fs = get_fs();
2811 	struct timespec kts;
2812 	int err;
2813 
2814 	set_fs(KERNEL_DS);
2815 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2816 	set_fs(old_fs);
2817 	if (!err)
2818 		err = compat_put_timespec(&kts, up);
2819 
2820 	return err;
2821 }
2822 
2823 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2824 {
2825 	struct compat_ifconf ifc32;
2826 	struct ifconf ifc;
2827 	int err;
2828 
2829 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2830 		return -EFAULT;
2831 
2832 	ifc.ifc_len = ifc32.ifc_len;
2833 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2834 
2835 	rtnl_lock();
2836 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2837 	rtnl_unlock();
2838 	if (err)
2839 		return err;
2840 
2841 	ifc32.ifc_len = ifc.ifc_len;
2842 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2843 		return -EFAULT;
2844 
2845 	return 0;
2846 }
2847 
2848 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2849 {
2850 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2851 	bool convert_in = false, convert_out = false;
2852 	size_t buf_size = 0;
2853 	struct ethtool_rxnfc __user *rxnfc = NULL;
2854 	struct ifreq ifr;
2855 	u32 rule_cnt = 0, actual_rule_cnt;
2856 	u32 ethcmd;
2857 	u32 data;
2858 	int ret;
2859 
2860 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2861 		return -EFAULT;
2862 
2863 	compat_rxnfc = compat_ptr(data);
2864 
2865 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2866 		return -EFAULT;
2867 
2868 	/* Most ethtool structures are defined without padding.
2869 	 * Unfortunately struct ethtool_rxnfc is an exception.
2870 	 */
2871 	switch (ethcmd) {
2872 	default:
2873 		break;
2874 	case ETHTOOL_GRXCLSRLALL:
2875 		/* Buffer size is variable */
2876 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2877 			return -EFAULT;
2878 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2879 			return -ENOMEM;
2880 		buf_size += rule_cnt * sizeof(u32);
2881 		/* fall through */
2882 	case ETHTOOL_GRXRINGS:
2883 	case ETHTOOL_GRXCLSRLCNT:
2884 	case ETHTOOL_GRXCLSRULE:
2885 	case ETHTOOL_SRXCLSRLINS:
2886 		convert_out = true;
2887 		/* fall through */
2888 	case ETHTOOL_SRXCLSRLDEL:
2889 		buf_size += sizeof(struct ethtool_rxnfc);
2890 		convert_in = true;
2891 		rxnfc = compat_alloc_user_space(buf_size);
2892 		break;
2893 	}
2894 
2895 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2896 		return -EFAULT;
2897 
2898 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2899 
2900 	if (convert_in) {
2901 		/* We expect there to be holes between fs.m_ext and
2902 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2903 		 */
2904 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2905 			     sizeof(compat_rxnfc->fs.m_ext) !=
2906 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2907 			     sizeof(rxnfc->fs.m_ext));
2908 		BUILD_BUG_ON(
2909 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2910 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2911 			offsetof(struct ethtool_rxnfc, fs.location) -
2912 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2913 
2914 		if (copy_in_user(rxnfc, compat_rxnfc,
2915 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2916 				 (void __user *)rxnfc) ||
2917 		    copy_in_user(&rxnfc->fs.ring_cookie,
2918 				 &compat_rxnfc->fs.ring_cookie,
2919 				 (void __user *)(&rxnfc->fs.location + 1) -
2920 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2921 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2922 				 sizeof(rxnfc->rule_cnt)))
2923 			return -EFAULT;
2924 	}
2925 
2926 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2927 	if (ret)
2928 		return ret;
2929 
2930 	if (convert_out) {
2931 		if (copy_in_user(compat_rxnfc, rxnfc,
2932 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2933 				 (const void __user *)rxnfc) ||
2934 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2935 				 &rxnfc->fs.ring_cookie,
2936 				 (const void __user *)(&rxnfc->fs.location + 1) -
2937 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2938 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2939 				 sizeof(rxnfc->rule_cnt)))
2940 			return -EFAULT;
2941 
2942 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2943 			/* As an optimisation, we only copy the actual
2944 			 * number of rules that the underlying
2945 			 * function returned.  Since Mallory might
2946 			 * change the rule count in user memory, we
2947 			 * check that it is less than the rule count
2948 			 * originally given (as the user buffer size),
2949 			 * which has been range-checked.
2950 			 */
2951 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2952 				return -EFAULT;
2953 			if (actual_rule_cnt < rule_cnt)
2954 				rule_cnt = actual_rule_cnt;
2955 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2956 					 &rxnfc->rule_locs[0],
2957 					 rule_cnt * sizeof(u32)))
2958 				return -EFAULT;
2959 		}
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2966 {
2967 	compat_uptr_t uptr32;
2968 	struct ifreq ifr;
2969 	void __user *saved;
2970 	int err;
2971 
2972 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2973 		return -EFAULT;
2974 
2975 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2976 		return -EFAULT;
2977 
2978 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2979 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2980 
2981 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2982 	if (!err) {
2983 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2984 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2985 			err = -EFAULT;
2986 	}
2987 	return err;
2988 }
2989 
2990 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2991 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2992 				 struct compat_ifreq __user *u_ifreq32)
2993 {
2994 	struct ifreq ifreq;
2995 	u32 data32;
2996 
2997 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2998 		return -EFAULT;
2999 	if (get_user(data32, &u_ifreq32->ifr_data))
3000 		return -EFAULT;
3001 	ifreq.ifr_data = compat_ptr(data32);
3002 
3003 	return dev_ioctl(net, cmd, &ifreq, NULL);
3004 }
3005 
3006 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3007 			struct compat_ifreq __user *uifr32)
3008 {
3009 	struct ifreq ifr;
3010 	struct compat_ifmap __user *uifmap32;
3011 	int err;
3012 
3013 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3014 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3015 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3016 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3017 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3018 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3019 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3020 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3021 	if (err)
3022 		return -EFAULT;
3023 
3024 	err = dev_ioctl(net, cmd, &ifr, NULL);
3025 
3026 	if (cmd == SIOCGIFMAP && !err) {
3027 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3028 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3029 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3030 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3031 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3032 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3033 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3034 		if (err)
3035 			err = -EFAULT;
3036 	}
3037 	return err;
3038 }
3039 
3040 struct rtentry32 {
3041 	u32		rt_pad1;
3042 	struct sockaddr rt_dst;         /* target address               */
3043 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3044 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3045 	unsigned short	rt_flags;
3046 	short		rt_pad2;
3047 	u32		rt_pad3;
3048 	unsigned char	rt_tos;
3049 	unsigned char	rt_class;
3050 	short		rt_pad4;
3051 	short		rt_metric;      /* +1 for binary compatibility! */
3052 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3053 	u32		rt_mtu;         /* per route MTU/Window         */
3054 	u32		rt_window;      /* Window clamping              */
3055 	unsigned short  rt_irtt;        /* Initial RTT                  */
3056 };
3057 
3058 struct in6_rtmsg32 {
3059 	struct in6_addr		rtmsg_dst;
3060 	struct in6_addr		rtmsg_src;
3061 	struct in6_addr		rtmsg_gateway;
3062 	u32			rtmsg_type;
3063 	u16			rtmsg_dst_len;
3064 	u16			rtmsg_src_len;
3065 	u32			rtmsg_metric;
3066 	u32			rtmsg_info;
3067 	u32			rtmsg_flags;
3068 	s32			rtmsg_ifindex;
3069 };
3070 
3071 static int routing_ioctl(struct net *net, struct socket *sock,
3072 			 unsigned int cmd, void __user *argp)
3073 {
3074 	int ret;
3075 	void *r = NULL;
3076 	struct in6_rtmsg r6;
3077 	struct rtentry r4;
3078 	char devname[16];
3079 	u32 rtdev;
3080 	mm_segment_t old_fs = get_fs();
3081 
3082 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3083 		struct in6_rtmsg32 __user *ur6 = argp;
3084 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3085 			3 * sizeof(struct in6_addr));
3086 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3087 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3088 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3089 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3090 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3091 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3092 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3093 
3094 		r = (void *) &r6;
3095 	} else { /* ipv4 */
3096 		struct rtentry32 __user *ur4 = argp;
3097 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3098 					3 * sizeof(struct sockaddr));
3099 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3100 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3101 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3102 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3103 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3104 		ret |= get_user(rtdev, &(ur4->rt_dev));
3105 		if (rtdev) {
3106 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3107 			r4.rt_dev = (char __user __force *)devname;
3108 			devname[15] = 0;
3109 		} else
3110 			r4.rt_dev = NULL;
3111 
3112 		r = (void *) &r4;
3113 	}
3114 
3115 	if (ret) {
3116 		ret = -EFAULT;
3117 		goto out;
3118 	}
3119 
3120 	set_fs(KERNEL_DS);
3121 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3122 	set_fs(old_fs);
3123 
3124 out:
3125 	return ret;
3126 }
3127 
3128 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3129  * for some operations; this forces use of the newer bridge-utils that
3130  * use compatible ioctls
3131  */
3132 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3133 {
3134 	compat_ulong_t tmp;
3135 
3136 	if (get_user(tmp, argp))
3137 		return -EFAULT;
3138 	if (tmp == BRCTL_GET_VERSION)
3139 		return BRCTL_VERSION + 1;
3140 	return -EINVAL;
3141 }
3142 
3143 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3144 			 unsigned int cmd, unsigned long arg)
3145 {
3146 	void __user *argp = compat_ptr(arg);
3147 	struct sock *sk = sock->sk;
3148 	struct net *net = sock_net(sk);
3149 
3150 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3151 		return compat_ifr_data_ioctl(net, cmd, argp);
3152 
3153 	switch (cmd) {
3154 	case SIOCSIFBR:
3155 	case SIOCGIFBR:
3156 		return old_bridge_ioctl(argp);
3157 	case SIOCGIFCONF:
3158 		return compat_dev_ifconf(net, argp);
3159 	case SIOCETHTOOL:
3160 		return ethtool_ioctl(net, argp);
3161 	case SIOCWANDEV:
3162 		return compat_siocwandev(net, argp);
3163 	case SIOCGIFMAP:
3164 	case SIOCSIFMAP:
3165 		return compat_sioc_ifmap(net, cmd, argp);
3166 	case SIOCADDRT:
3167 	case SIOCDELRT:
3168 		return routing_ioctl(net, sock, cmd, argp);
3169 	case SIOCGSTAMP:
3170 		return do_siocgstamp(net, sock, cmd, argp);
3171 	case SIOCGSTAMPNS:
3172 		return do_siocgstampns(net, sock, cmd, argp);
3173 	case SIOCBONDSLAVEINFOQUERY:
3174 	case SIOCBONDINFOQUERY:
3175 	case SIOCSHWTSTAMP:
3176 	case SIOCGHWTSTAMP:
3177 		return compat_ifr_data_ioctl(net, cmd, argp);
3178 
3179 	case FIOSETOWN:
3180 	case SIOCSPGRP:
3181 	case FIOGETOWN:
3182 	case SIOCGPGRP:
3183 	case SIOCBRADDBR:
3184 	case SIOCBRDELBR:
3185 	case SIOCGIFVLAN:
3186 	case SIOCSIFVLAN:
3187 	case SIOCADDDLCI:
3188 	case SIOCDELDLCI:
3189 	case SIOCGSKNS:
3190 		return sock_ioctl(file, cmd, arg);
3191 
3192 	case SIOCGIFFLAGS:
3193 	case SIOCSIFFLAGS:
3194 	case SIOCGIFMETRIC:
3195 	case SIOCSIFMETRIC:
3196 	case SIOCGIFMTU:
3197 	case SIOCSIFMTU:
3198 	case SIOCGIFMEM:
3199 	case SIOCSIFMEM:
3200 	case SIOCGIFHWADDR:
3201 	case SIOCSIFHWADDR:
3202 	case SIOCADDMULTI:
3203 	case SIOCDELMULTI:
3204 	case SIOCGIFINDEX:
3205 	case SIOCGIFADDR:
3206 	case SIOCSIFADDR:
3207 	case SIOCSIFHWBROADCAST:
3208 	case SIOCDIFADDR:
3209 	case SIOCGIFBRDADDR:
3210 	case SIOCSIFBRDADDR:
3211 	case SIOCGIFDSTADDR:
3212 	case SIOCSIFDSTADDR:
3213 	case SIOCGIFNETMASK:
3214 	case SIOCSIFNETMASK:
3215 	case SIOCSIFPFLAGS:
3216 	case SIOCGIFPFLAGS:
3217 	case SIOCGIFTXQLEN:
3218 	case SIOCSIFTXQLEN:
3219 	case SIOCBRADDIF:
3220 	case SIOCBRDELIF:
3221 	case SIOCSIFNAME:
3222 	case SIOCGMIIPHY:
3223 	case SIOCGMIIREG:
3224 	case SIOCSMIIREG:
3225 	case SIOCSARP:
3226 	case SIOCGARP:
3227 	case SIOCDARP:
3228 	case SIOCATMARK:
3229 	case SIOCBONDENSLAVE:
3230 	case SIOCBONDRELEASE:
3231 	case SIOCBONDSETHWADDR:
3232 	case SIOCBONDCHANGEACTIVE:
3233 	case SIOCGIFNAME:
3234 		return sock_do_ioctl(net, sock, cmd, arg);
3235 	}
3236 
3237 	return -ENOIOCTLCMD;
3238 }
3239 
3240 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3241 			      unsigned long arg)
3242 {
3243 	struct socket *sock = file->private_data;
3244 	int ret = -ENOIOCTLCMD;
3245 	struct sock *sk;
3246 	struct net *net;
3247 
3248 	sk = sock->sk;
3249 	net = sock_net(sk);
3250 
3251 	if (sock->ops->compat_ioctl)
3252 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3253 
3254 	if (ret == -ENOIOCTLCMD &&
3255 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3256 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3257 
3258 	if (ret == -ENOIOCTLCMD)
3259 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3260 
3261 	return ret;
3262 }
3263 #endif
3264 
3265 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3266 {
3267 	return sock->ops->bind(sock, addr, addrlen);
3268 }
3269 EXPORT_SYMBOL(kernel_bind);
3270 
3271 int kernel_listen(struct socket *sock, int backlog)
3272 {
3273 	return sock->ops->listen(sock, backlog);
3274 }
3275 EXPORT_SYMBOL(kernel_listen);
3276 
3277 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3278 {
3279 	struct sock *sk = sock->sk;
3280 	int err;
3281 
3282 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3283 			       newsock);
3284 	if (err < 0)
3285 		goto done;
3286 
3287 	err = sock->ops->accept(sock, *newsock, flags, true);
3288 	if (err < 0) {
3289 		sock_release(*newsock);
3290 		*newsock = NULL;
3291 		goto done;
3292 	}
3293 
3294 	(*newsock)->ops = sock->ops;
3295 	__module_get((*newsock)->ops->owner);
3296 
3297 done:
3298 	return err;
3299 }
3300 EXPORT_SYMBOL(kernel_accept);
3301 
3302 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3303 		   int flags)
3304 {
3305 	return sock->ops->connect(sock, addr, addrlen, flags);
3306 }
3307 EXPORT_SYMBOL(kernel_connect);
3308 
3309 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3310 {
3311 	return sock->ops->getname(sock, addr, 0);
3312 }
3313 EXPORT_SYMBOL(kernel_getsockname);
3314 
3315 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3316 {
3317 	return sock->ops->getname(sock, addr, 1);
3318 }
3319 EXPORT_SYMBOL(kernel_getpeername);
3320 
3321 int kernel_getsockopt(struct socket *sock, int level, int optname,
3322 			char *optval, int *optlen)
3323 {
3324 	mm_segment_t oldfs = get_fs();
3325 	char __user *uoptval;
3326 	int __user *uoptlen;
3327 	int err;
3328 
3329 	uoptval = (char __user __force *) optval;
3330 	uoptlen = (int __user __force *) optlen;
3331 
3332 	set_fs(KERNEL_DS);
3333 	if (level == SOL_SOCKET)
3334 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3335 	else
3336 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3337 					    uoptlen);
3338 	set_fs(oldfs);
3339 	return err;
3340 }
3341 EXPORT_SYMBOL(kernel_getsockopt);
3342 
3343 int kernel_setsockopt(struct socket *sock, int level, int optname,
3344 			char *optval, unsigned int optlen)
3345 {
3346 	mm_segment_t oldfs = get_fs();
3347 	char __user *uoptval;
3348 	int err;
3349 
3350 	uoptval = (char __user __force *) optval;
3351 
3352 	set_fs(KERNEL_DS);
3353 	if (level == SOL_SOCKET)
3354 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3355 	else
3356 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3357 					    optlen);
3358 	set_fs(oldfs);
3359 	return err;
3360 }
3361 EXPORT_SYMBOL(kernel_setsockopt);
3362 
3363 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3364 		    size_t size, int flags)
3365 {
3366 	if (sock->ops->sendpage)
3367 		return sock->ops->sendpage(sock, page, offset, size, flags);
3368 
3369 	return sock_no_sendpage(sock, page, offset, size, flags);
3370 }
3371 EXPORT_SYMBOL(kernel_sendpage);
3372 
3373 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3374 			   size_t size, int flags)
3375 {
3376 	struct socket *sock = sk->sk_socket;
3377 
3378 	if (sock->ops->sendpage_locked)
3379 		return sock->ops->sendpage_locked(sk, page, offset, size,
3380 						  flags);
3381 
3382 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3383 }
3384 EXPORT_SYMBOL(kernel_sendpage_locked);
3385 
3386 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3387 {
3388 	return sock->ops->shutdown(sock, how);
3389 }
3390 EXPORT_SYMBOL(kernel_sock_shutdown);
3391 
3392 /* This routine returns the IP overhead imposed by a socket i.e.
3393  * the length of the underlying IP header, depending on whether
3394  * this is an IPv4 or IPv6 socket and the length from IP options turned
3395  * on at the socket. Assumes that the caller has a lock on the socket.
3396  */
3397 u32 kernel_sock_ip_overhead(struct sock *sk)
3398 {
3399 	struct inet_sock *inet;
3400 	struct ip_options_rcu *opt;
3401 	u32 overhead = 0;
3402 #if IS_ENABLED(CONFIG_IPV6)
3403 	struct ipv6_pinfo *np;
3404 	struct ipv6_txoptions *optv6 = NULL;
3405 #endif /* IS_ENABLED(CONFIG_IPV6) */
3406 
3407 	if (!sk)
3408 		return overhead;
3409 
3410 	switch (sk->sk_family) {
3411 	case AF_INET:
3412 		inet = inet_sk(sk);
3413 		overhead += sizeof(struct iphdr);
3414 		opt = rcu_dereference_protected(inet->inet_opt,
3415 						sock_owned_by_user(sk));
3416 		if (opt)
3417 			overhead += opt->opt.optlen;
3418 		return overhead;
3419 #if IS_ENABLED(CONFIG_IPV6)
3420 	case AF_INET6:
3421 		np = inet6_sk(sk);
3422 		overhead += sizeof(struct ipv6hdr);
3423 		if (np)
3424 			optv6 = rcu_dereference_protected(np->opt,
3425 							  sock_owned_by_user(sk));
3426 		if (optv6)
3427 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3428 		return overhead;
3429 #endif /* IS_ENABLED(CONFIG_IPV6) */
3430 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3431 		return overhead;
3432 	}
3433 }
3434 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3435