xref: /openbmc/linux/net/socket.c (revision 62e7ca52)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 			 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 			  unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 			      struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 			      unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 			     int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 				struct pipe_inode_info *pipe, size_t len,
136 				unsigned int flags);
137 
138 /*
139  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140  *	in the operation structures but are done directly via the socketcall() multiplexor.
141  */
142 
143 static const struct file_operations socket_file_ops = {
144 	.owner =	THIS_MODULE,
145 	.llseek =	no_llseek,
146 	.aio_read =	sock_aio_read,
147 	.aio_write =	sock_aio_write,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
155 	.release =	sock_close,
156 	.fasync =	sock_fasync,
157 	.sendpage =	sock_sendpage,
158 	.splice_write = generic_splice_sendpage,
159 	.splice_read =	sock_splice_read,
160 };
161 
162 /*
163  *	The protocol list. Each protocol is registered in here.
164  */
165 
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 
169 /*
170  *	Statistics counters of the socket lists
171  */
172 
173 static DEFINE_PER_CPU(int, sockets_in_use);
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 	struct socket_wq *wq;
253 
254 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 	if (!ei)
256 		return NULL;
257 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 	if (!wq) {
259 		kmem_cache_free(sock_inode_cachep, ei);
260 		return NULL;
261 	}
262 	init_waitqueue_head(&wq->wait);
263 	wq->fasync_list = NULL;
264 	RCU_INIT_POINTER(ei->socket.wq, wq);
265 
266 	ei->socket.state = SS_UNCONNECTED;
267 	ei->socket.flags = 0;
268 	ei->socket.ops = NULL;
269 	ei->socket.sk = NULL;
270 	ei->socket.file = NULL;
271 
272 	return &ei->vfs_inode;
273 }
274 
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 	struct socket_alloc *ei;
278 	struct socket_wq *wq;
279 
280 	ei = container_of(inode, struct socket_alloc, vfs_inode);
281 	wq = rcu_dereference_protected(ei->socket.wq, 1);
282 	kfree_rcu(wq, rcu);
283 	kmem_cache_free(sock_inode_cachep, ei);
284 }
285 
286 static void init_once(void *foo)
287 {
288 	struct socket_alloc *ei = (struct socket_alloc *)foo;
289 
290 	inode_init_once(&ei->vfs_inode);
291 }
292 
293 static int init_inodecache(void)
294 {
295 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 					      sizeof(struct socket_alloc),
297 					      0,
298 					      (SLAB_HWCACHE_ALIGN |
299 					       SLAB_RECLAIM_ACCOUNT |
300 					       SLAB_MEM_SPREAD),
301 					      init_once);
302 	if (sock_inode_cachep == NULL)
303 		return -ENOMEM;
304 	return 0;
305 }
306 
307 static const struct super_operations sockfs_ops = {
308 	.alloc_inode	= sock_alloc_inode,
309 	.destroy_inode	= sock_destroy_inode,
310 	.statfs		= simple_statfs,
311 };
312 
313 /*
314  * sockfs_dname() is called from d_path().
315  */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 				dentry->d_inode->i_ino);
320 }
321 
322 static const struct dentry_operations sockfs_dentry_operations = {
323 	.d_dname  = sockfs_dname,
324 };
325 
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 			 int flags, const char *dev_name, void *data)
328 {
329 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 		&sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332 
333 static struct vfsmount *sock_mnt __read_mostly;
334 
335 static struct file_system_type sock_fs_type = {
336 	.name =		"sockfs",
337 	.mount =	sockfs_mount,
338 	.kill_sb =	kill_anon_super,
339 };
340 
341 /*
342  *	Obtains the first available file descriptor and sets it up for use.
343  *
344  *	These functions create file structures and maps them to fd space
345  *	of the current process. On success it returns file descriptor
346  *	and file struct implicitly stored in sock->file.
347  *	Note that another thread may close file descriptor before we return
348  *	from this function. We use the fact that now we do not refer
349  *	to socket after mapping. If one day we will need it, this
350  *	function will increment ref. count on file by 1.
351  *
352  *	In any case returned fd MAY BE not valid!
353  *	This race condition is unavoidable
354  *	with shared fd spaces, we cannot solve it inside kernel,
355  *	but we take care of internal coherence yet.
356  */
357 
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 	struct qstr name = { .name = "" };
361 	struct path path;
362 	struct file *file;
363 
364 	if (dname) {
365 		name.name = dname;
366 		name.len = strlen(name.name);
367 	} else if (sock->sk) {
368 		name.name = sock->sk->sk_prot_creator->name;
369 		name.len = strlen(name.name);
370 	}
371 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 	if (unlikely(!path.dentry))
373 		return ERR_PTR(-ENOMEM);
374 	path.mnt = mntget(sock_mnt);
375 
376 	d_instantiate(path.dentry, SOCK_INODE(sock));
377 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
378 
379 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 		  &socket_file_ops);
381 	if (unlikely(IS_ERR(file))) {
382 		/* drop dentry, keep inode */
383 		ihold(path.dentry->d_inode);
384 		path_put(&path);
385 		return file;
386 	}
387 
388 	sock->file = file;
389 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 	file->private_data = sock;
391 	return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394 
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 	struct file *newfile;
398 	int fd = get_unused_fd_flags(flags);
399 	if (unlikely(fd < 0))
400 		return fd;
401 
402 	newfile = sock_alloc_file(sock, flags, NULL);
403 	if (likely(!IS_ERR(newfile))) {
404 		fd_install(fd, newfile);
405 		return fd;
406 	}
407 
408 	put_unused_fd(fd);
409 	return PTR_ERR(newfile);
410 }
411 
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 	if (file->f_op == &socket_file_ops)
415 		return file->private_data;	/* set in sock_map_fd */
416 
417 	*err = -ENOTSOCK;
418 	return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421 
422 /**
423  *	sockfd_lookup - Go from a file number to its socket slot
424  *	@fd: file handle
425  *	@err: pointer to an error code return
426  *
427  *	The file handle passed in is locked and the socket it is bound
428  *	too is returned. If an error occurs the err pointer is overwritten
429  *	with a negative errno code and NULL is returned. The function checks
430  *	for both invalid handles and passing a handle which is not a socket.
431  *
432  *	On a success the socket object pointer is returned.
433  */
434 
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 	struct file *file;
438 	struct socket *sock;
439 
440 	file = fget(fd);
441 	if (!file) {
442 		*err = -EBADF;
443 		return NULL;
444 	}
445 
446 	sock = sock_from_file(file, err);
447 	if (!sock)
448 		fput(file);
449 	return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452 
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 	struct fd f = fdget(fd);
456 	struct socket *sock;
457 
458 	*err = -EBADF;
459 	if (f.file) {
460 		sock = sock_from_file(f.file, err);
461 		if (likely(sock)) {
462 			*fput_needed = f.flags;
463 			return sock;
464 		}
465 		fdput(f);
466 	}
467 	return NULL;
468 }
469 
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 			       const char *name, void *value, size_t size)
475 {
476 	const char *proto_name;
477 	size_t proto_size;
478 	int error;
479 
480 	error = -ENODATA;
481 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 		proto_name = dentry->d_name.name;
483 		proto_size = strlen(proto_name);
484 
485 		if (value) {
486 			error = -ERANGE;
487 			if (proto_size + 1 > size)
488 				goto out;
489 
490 			strncpy(value, proto_name, proto_size + 1);
491 		}
492 		error = proto_size + 1;
493 	}
494 
495 out:
496 	return error;
497 }
498 
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 				size_t size)
501 {
502 	ssize_t len;
503 	ssize_t used = 0;
504 
505 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 	if (len < 0)
507 		return len;
508 	used += len;
509 	if (buffer) {
510 		if (size < used)
511 			return -ERANGE;
512 		buffer += len;
513 	}
514 
515 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 	used += len;
517 	if (buffer) {
518 		if (size < used)
519 			return -ERANGE;
520 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 		buffer += len;
522 	}
523 
524 	return used;
525 }
526 
527 static const struct inode_operations sockfs_inode_ops = {
528 	.getxattr = sockfs_getxattr,
529 	.listxattr = sockfs_listxattr,
530 };
531 
532 /**
533  *	sock_alloc	-	allocate a socket
534  *
535  *	Allocate a new inode and socket object. The two are bound together
536  *	and initialised. The socket is then returned. If we are out of inodes
537  *	NULL is returned.
538  */
539 
540 static struct socket *sock_alloc(void)
541 {
542 	struct inode *inode;
543 	struct socket *sock;
544 
545 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 	if (!inode)
547 		return NULL;
548 
549 	sock = SOCKET_I(inode);
550 
551 	kmemcheck_annotate_bitfield(sock, type);
552 	inode->i_ino = get_next_ino();
553 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 	inode->i_uid = current_fsuid();
555 	inode->i_gid = current_fsgid();
556 	inode->i_op = &sockfs_inode_ops;
557 
558 	this_cpu_add(sockets_in_use, 1);
559 	return sock;
560 }
561 
562 /*
563  *	In theory you can't get an open on this inode, but /proc provides
564  *	a back door. Remember to keep it shut otherwise you'll let the
565  *	creepy crawlies in.
566  */
567 
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 	return -ENXIO;
571 }
572 
573 const struct file_operations bad_sock_fops = {
574 	.owner = THIS_MODULE,
575 	.open = sock_no_open,
576 	.llseek = noop_llseek,
577 };
578 
579 /**
580  *	sock_release	-	close a socket
581  *	@sock: socket to close
582  *
583  *	The socket is released from the protocol stack if it has a release
584  *	callback, and the inode is then released if the socket is bound to
585  *	an inode not a file.
586  */
587 
588 void sock_release(struct socket *sock)
589 {
590 	if (sock->ops) {
591 		struct module *owner = sock->ops->owner;
592 
593 		sock->ops->release(sock);
594 		sock->ops = NULL;
595 		module_put(owner);
596 	}
597 
598 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 		pr_err("%s: fasync list not empty!\n", __func__);
600 
601 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 		return;
603 
604 	this_cpu_sub(sockets_in_use, 1);
605 	if (!sock->file) {
606 		iput(SOCK_INODE(sock));
607 		return;
608 	}
609 	sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612 
613 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
614 {
615 	*tx_flags = 0;
616 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
617 		*tx_flags |= SKBTX_HW_TSTAMP;
618 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
619 		*tx_flags |= SKBTX_SW_TSTAMP;
620 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
621 		*tx_flags |= SKBTX_SCHED_TSTAMP;
622 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
623 		*tx_flags |= SKBTX_ACK_TSTAMP;
624 
625 	if (sock_flag(sk, SOCK_WIFI_STATUS))
626 		*tx_flags |= SKBTX_WIFI_STATUS;
627 }
628 EXPORT_SYMBOL(sock_tx_timestamp);
629 
630 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
631 				       struct msghdr *msg, size_t size)
632 {
633 	struct sock_iocb *si = kiocb_to_siocb(iocb);
634 
635 	si->sock = sock;
636 	si->scm = NULL;
637 	si->msg = msg;
638 	si->size = size;
639 
640 	return sock->ops->sendmsg(iocb, sock, msg, size);
641 }
642 
643 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
644 				 struct msghdr *msg, size_t size)
645 {
646 	int err = security_socket_sendmsg(sock, msg, size);
647 
648 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
649 }
650 
651 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
652 {
653 	struct kiocb iocb;
654 	struct sock_iocb siocb;
655 	int ret;
656 
657 	init_sync_kiocb(&iocb, NULL);
658 	iocb.private = &siocb;
659 	ret = __sock_sendmsg(&iocb, sock, msg, size);
660 	if (-EIOCBQUEUED == ret)
661 		ret = wait_on_sync_kiocb(&iocb);
662 	return ret;
663 }
664 EXPORT_SYMBOL(sock_sendmsg);
665 
666 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
667 {
668 	struct kiocb iocb;
669 	struct sock_iocb siocb;
670 	int ret;
671 
672 	init_sync_kiocb(&iocb, NULL);
673 	iocb.private = &siocb;
674 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
675 	if (-EIOCBQUEUED == ret)
676 		ret = wait_on_sync_kiocb(&iocb);
677 	return ret;
678 }
679 
680 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
681 		   struct kvec *vec, size_t num, size_t size)
682 {
683 	mm_segment_t oldfs = get_fs();
684 	int result;
685 
686 	set_fs(KERNEL_DS);
687 	/*
688 	 * the following is safe, since for compiler definitions of kvec and
689 	 * iovec are identical, yielding the same in-core layout and alignment
690 	 */
691 	msg->msg_iov = (struct iovec *)vec;
692 	msg->msg_iovlen = num;
693 	result = sock_sendmsg(sock, msg, size);
694 	set_fs(oldfs);
695 	return result;
696 }
697 EXPORT_SYMBOL(kernel_sendmsg);
698 
699 /*
700  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701  */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 	struct sk_buff *skb)
704 {
705 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 	struct scm_timestamping tss;
707 	int empty = 1;
708 	struct skb_shared_hwtstamps *shhwtstamps =
709 		skb_hwtstamps(skb);
710 
711 	/* Race occurred between timestamp enabling and packet
712 	   receiving.  Fill in the current time for now. */
713 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
714 		__net_timestamp(skb);
715 
716 	if (need_software_tstamp) {
717 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
718 			struct timeval tv;
719 			skb_get_timestamp(skb, &tv);
720 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
721 				 sizeof(tv), &tv);
722 		} else {
723 			struct timespec ts;
724 			skb_get_timestampns(skb, &ts);
725 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
726 				 sizeof(ts), &ts);
727 		}
728 	}
729 
730 	memset(&tss, 0, sizeof(tss));
731 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE ||
732 	     skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP) &&
733 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
734 		empty = 0;
735 	if (shhwtstamps &&
736 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
737 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
738 		empty = 0;
739 	if (!empty)
740 		put_cmsg(msg, SOL_SOCKET,
741 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
742 }
743 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
744 
745 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
746 	struct sk_buff *skb)
747 {
748 	int ack;
749 
750 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
751 		return;
752 	if (!skb->wifi_acked_valid)
753 		return;
754 
755 	ack = skb->wifi_acked;
756 
757 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
758 }
759 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
760 
761 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
762 				   struct sk_buff *skb)
763 {
764 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
765 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
766 			sizeof(__u32), &skb->dropcount);
767 }
768 
769 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
770 	struct sk_buff *skb)
771 {
772 	sock_recv_timestamp(msg, sk, skb);
773 	sock_recv_drops(msg, sk, skb);
774 }
775 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
776 
777 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
778 				       struct msghdr *msg, size_t size, int flags)
779 {
780 	struct sock_iocb *si = kiocb_to_siocb(iocb);
781 
782 	si->sock = sock;
783 	si->scm = NULL;
784 	si->msg = msg;
785 	si->size = size;
786 	si->flags = flags;
787 
788 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
789 }
790 
791 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
792 				 struct msghdr *msg, size_t size, int flags)
793 {
794 	int err = security_socket_recvmsg(sock, msg, size, flags);
795 
796 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
797 }
798 
799 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
800 		 size_t size, int flags)
801 {
802 	struct kiocb iocb;
803 	struct sock_iocb siocb;
804 	int ret;
805 
806 	init_sync_kiocb(&iocb, NULL);
807 	iocb.private = &siocb;
808 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
809 	if (-EIOCBQUEUED == ret)
810 		ret = wait_on_sync_kiocb(&iocb);
811 	return ret;
812 }
813 EXPORT_SYMBOL(sock_recvmsg);
814 
815 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
816 			      size_t size, int flags)
817 {
818 	struct kiocb iocb;
819 	struct sock_iocb siocb;
820 	int ret;
821 
822 	init_sync_kiocb(&iocb, NULL);
823 	iocb.private = &siocb;
824 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
825 	if (-EIOCBQUEUED == ret)
826 		ret = wait_on_sync_kiocb(&iocb);
827 	return ret;
828 }
829 
830 /**
831  * kernel_recvmsg - Receive a message from a socket (kernel space)
832  * @sock:       The socket to receive the message from
833  * @msg:        Received message
834  * @vec:        Input s/g array for message data
835  * @num:        Size of input s/g array
836  * @size:       Number of bytes to read
837  * @flags:      Message flags (MSG_DONTWAIT, etc...)
838  *
839  * On return the msg structure contains the scatter/gather array passed in the
840  * vec argument. The array is modified so that it consists of the unfilled
841  * portion of the original array.
842  *
843  * The returned value is the total number of bytes received, or an error.
844  */
845 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
846 		   struct kvec *vec, size_t num, size_t size, int flags)
847 {
848 	mm_segment_t oldfs = get_fs();
849 	int result;
850 
851 	set_fs(KERNEL_DS);
852 	/*
853 	 * the following is safe, since for compiler definitions of kvec and
854 	 * iovec are identical, yielding the same in-core layout and alignment
855 	 */
856 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
857 	result = sock_recvmsg(sock, msg, size, flags);
858 	set_fs(oldfs);
859 	return result;
860 }
861 EXPORT_SYMBOL(kernel_recvmsg);
862 
863 static ssize_t sock_sendpage(struct file *file, struct page *page,
864 			     int offset, size_t size, loff_t *ppos, int more)
865 {
866 	struct socket *sock;
867 	int flags;
868 
869 	sock = file->private_data;
870 
871 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
872 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
873 	flags |= more;
874 
875 	return kernel_sendpage(sock, page, offset, size, flags);
876 }
877 
878 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
879 				struct pipe_inode_info *pipe, size_t len,
880 				unsigned int flags)
881 {
882 	struct socket *sock = file->private_data;
883 
884 	if (unlikely(!sock->ops->splice_read))
885 		return -EINVAL;
886 
887 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
888 }
889 
890 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
891 					 struct sock_iocb *siocb)
892 {
893 	if (!is_sync_kiocb(iocb))
894 		BUG();
895 
896 	siocb->kiocb = iocb;
897 	iocb->private = siocb;
898 	return siocb;
899 }
900 
901 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
902 		struct file *file, const struct iovec *iov,
903 		unsigned long nr_segs)
904 {
905 	struct socket *sock = file->private_data;
906 	size_t size = 0;
907 	int i;
908 
909 	for (i = 0; i < nr_segs; i++)
910 		size += iov[i].iov_len;
911 
912 	msg->msg_name = NULL;
913 	msg->msg_namelen = 0;
914 	msg->msg_control = NULL;
915 	msg->msg_controllen = 0;
916 	msg->msg_iov = (struct iovec *)iov;
917 	msg->msg_iovlen = nr_segs;
918 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
919 
920 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
921 }
922 
923 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
924 				unsigned long nr_segs, loff_t pos)
925 {
926 	struct sock_iocb siocb, *x;
927 
928 	if (pos != 0)
929 		return -ESPIPE;
930 
931 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
932 		return 0;
933 
934 
935 	x = alloc_sock_iocb(iocb, &siocb);
936 	if (!x)
937 		return -ENOMEM;
938 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
939 }
940 
941 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
942 			struct file *file, const struct iovec *iov,
943 			unsigned long nr_segs)
944 {
945 	struct socket *sock = file->private_data;
946 	size_t size = 0;
947 	int i;
948 
949 	for (i = 0; i < nr_segs; i++)
950 		size += iov[i].iov_len;
951 
952 	msg->msg_name = NULL;
953 	msg->msg_namelen = 0;
954 	msg->msg_control = NULL;
955 	msg->msg_controllen = 0;
956 	msg->msg_iov = (struct iovec *)iov;
957 	msg->msg_iovlen = nr_segs;
958 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
959 	if (sock->type == SOCK_SEQPACKET)
960 		msg->msg_flags |= MSG_EOR;
961 
962 	return __sock_sendmsg(iocb, sock, msg, size);
963 }
964 
965 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
966 			  unsigned long nr_segs, loff_t pos)
967 {
968 	struct sock_iocb siocb, *x;
969 
970 	if (pos != 0)
971 		return -ESPIPE;
972 
973 	x = alloc_sock_iocb(iocb, &siocb);
974 	if (!x)
975 		return -ENOMEM;
976 
977 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
978 }
979 
980 /*
981  * Atomic setting of ioctl hooks to avoid race
982  * with module unload.
983  */
984 
985 static DEFINE_MUTEX(br_ioctl_mutex);
986 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
987 
988 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
989 {
990 	mutex_lock(&br_ioctl_mutex);
991 	br_ioctl_hook = hook;
992 	mutex_unlock(&br_ioctl_mutex);
993 }
994 EXPORT_SYMBOL(brioctl_set);
995 
996 static DEFINE_MUTEX(vlan_ioctl_mutex);
997 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
998 
999 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1000 {
1001 	mutex_lock(&vlan_ioctl_mutex);
1002 	vlan_ioctl_hook = hook;
1003 	mutex_unlock(&vlan_ioctl_mutex);
1004 }
1005 EXPORT_SYMBOL(vlan_ioctl_set);
1006 
1007 static DEFINE_MUTEX(dlci_ioctl_mutex);
1008 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1009 
1010 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1011 {
1012 	mutex_lock(&dlci_ioctl_mutex);
1013 	dlci_ioctl_hook = hook;
1014 	mutex_unlock(&dlci_ioctl_mutex);
1015 }
1016 EXPORT_SYMBOL(dlci_ioctl_set);
1017 
1018 static long sock_do_ioctl(struct net *net, struct socket *sock,
1019 				 unsigned int cmd, unsigned long arg)
1020 {
1021 	int err;
1022 	void __user *argp = (void __user *)arg;
1023 
1024 	err = sock->ops->ioctl(sock, cmd, arg);
1025 
1026 	/*
1027 	 * If this ioctl is unknown try to hand it down
1028 	 * to the NIC driver.
1029 	 */
1030 	if (err == -ENOIOCTLCMD)
1031 		err = dev_ioctl(net, cmd, argp);
1032 
1033 	return err;
1034 }
1035 
1036 /*
1037  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1038  *	what to do with it - that's up to the protocol still.
1039  */
1040 
1041 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1042 {
1043 	struct socket *sock;
1044 	struct sock *sk;
1045 	void __user *argp = (void __user *)arg;
1046 	int pid, err;
1047 	struct net *net;
1048 
1049 	sock = file->private_data;
1050 	sk = sock->sk;
1051 	net = sock_net(sk);
1052 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1053 		err = dev_ioctl(net, cmd, argp);
1054 	} else
1055 #ifdef CONFIG_WEXT_CORE
1056 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1057 		err = dev_ioctl(net, cmd, argp);
1058 	} else
1059 #endif
1060 		switch (cmd) {
1061 		case FIOSETOWN:
1062 		case SIOCSPGRP:
1063 			err = -EFAULT;
1064 			if (get_user(pid, (int __user *)argp))
1065 				break;
1066 			err = f_setown(sock->file, pid, 1);
1067 			break;
1068 		case FIOGETOWN:
1069 		case SIOCGPGRP:
1070 			err = put_user(f_getown(sock->file),
1071 				       (int __user *)argp);
1072 			break;
1073 		case SIOCGIFBR:
1074 		case SIOCSIFBR:
1075 		case SIOCBRADDBR:
1076 		case SIOCBRDELBR:
1077 			err = -ENOPKG;
1078 			if (!br_ioctl_hook)
1079 				request_module("bridge");
1080 
1081 			mutex_lock(&br_ioctl_mutex);
1082 			if (br_ioctl_hook)
1083 				err = br_ioctl_hook(net, cmd, argp);
1084 			mutex_unlock(&br_ioctl_mutex);
1085 			break;
1086 		case SIOCGIFVLAN:
1087 		case SIOCSIFVLAN:
1088 			err = -ENOPKG;
1089 			if (!vlan_ioctl_hook)
1090 				request_module("8021q");
1091 
1092 			mutex_lock(&vlan_ioctl_mutex);
1093 			if (vlan_ioctl_hook)
1094 				err = vlan_ioctl_hook(net, argp);
1095 			mutex_unlock(&vlan_ioctl_mutex);
1096 			break;
1097 		case SIOCADDDLCI:
1098 		case SIOCDELDLCI:
1099 			err = -ENOPKG;
1100 			if (!dlci_ioctl_hook)
1101 				request_module("dlci");
1102 
1103 			mutex_lock(&dlci_ioctl_mutex);
1104 			if (dlci_ioctl_hook)
1105 				err = dlci_ioctl_hook(cmd, argp);
1106 			mutex_unlock(&dlci_ioctl_mutex);
1107 			break;
1108 		default:
1109 			err = sock_do_ioctl(net, sock, cmd, arg);
1110 			break;
1111 		}
1112 	return err;
1113 }
1114 
1115 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1116 {
1117 	int err;
1118 	struct socket *sock = NULL;
1119 
1120 	err = security_socket_create(family, type, protocol, 1);
1121 	if (err)
1122 		goto out;
1123 
1124 	sock = sock_alloc();
1125 	if (!sock) {
1126 		err = -ENOMEM;
1127 		goto out;
1128 	}
1129 
1130 	sock->type = type;
1131 	err = security_socket_post_create(sock, family, type, protocol, 1);
1132 	if (err)
1133 		goto out_release;
1134 
1135 out:
1136 	*res = sock;
1137 	return err;
1138 out_release:
1139 	sock_release(sock);
1140 	sock = NULL;
1141 	goto out;
1142 }
1143 EXPORT_SYMBOL(sock_create_lite);
1144 
1145 /* No kernel lock held - perfect */
1146 static unsigned int sock_poll(struct file *file, poll_table *wait)
1147 {
1148 	unsigned int busy_flag = 0;
1149 	struct socket *sock;
1150 
1151 	/*
1152 	 *      We can't return errors to poll, so it's either yes or no.
1153 	 */
1154 	sock = file->private_data;
1155 
1156 	if (sk_can_busy_loop(sock->sk)) {
1157 		/* this socket can poll_ll so tell the system call */
1158 		busy_flag = POLL_BUSY_LOOP;
1159 
1160 		/* once, only if requested by syscall */
1161 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1162 			sk_busy_loop(sock->sk, 1);
1163 	}
1164 
1165 	return busy_flag | sock->ops->poll(file, sock, wait);
1166 }
1167 
1168 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1169 {
1170 	struct socket *sock = file->private_data;
1171 
1172 	return sock->ops->mmap(file, sock, vma);
1173 }
1174 
1175 static int sock_close(struct inode *inode, struct file *filp)
1176 {
1177 	sock_release(SOCKET_I(inode));
1178 	return 0;
1179 }
1180 
1181 /*
1182  *	Update the socket async list
1183  *
1184  *	Fasync_list locking strategy.
1185  *
1186  *	1. fasync_list is modified only under process context socket lock
1187  *	   i.e. under semaphore.
1188  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1189  *	   or under socket lock
1190  */
1191 
1192 static int sock_fasync(int fd, struct file *filp, int on)
1193 {
1194 	struct socket *sock = filp->private_data;
1195 	struct sock *sk = sock->sk;
1196 	struct socket_wq *wq;
1197 
1198 	if (sk == NULL)
1199 		return -EINVAL;
1200 
1201 	lock_sock(sk);
1202 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1203 	fasync_helper(fd, filp, on, &wq->fasync_list);
1204 
1205 	if (!wq->fasync_list)
1206 		sock_reset_flag(sk, SOCK_FASYNC);
1207 	else
1208 		sock_set_flag(sk, SOCK_FASYNC);
1209 
1210 	release_sock(sk);
1211 	return 0;
1212 }
1213 
1214 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1215 
1216 int sock_wake_async(struct socket *sock, int how, int band)
1217 {
1218 	struct socket_wq *wq;
1219 
1220 	if (!sock)
1221 		return -1;
1222 	rcu_read_lock();
1223 	wq = rcu_dereference(sock->wq);
1224 	if (!wq || !wq->fasync_list) {
1225 		rcu_read_unlock();
1226 		return -1;
1227 	}
1228 	switch (how) {
1229 	case SOCK_WAKE_WAITD:
1230 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1231 			break;
1232 		goto call_kill;
1233 	case SOCK_WAKE_SPACE:
1234 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1235 			break;
1236 		/* fall through */
1237 	case SOCK_WAKE_IO:
1238 call_kill:
1239 		kill_fasync(&wq->fasync_list, SIGIO, band);
1240 		break;
1241 	case SOCK_WAKE_URG:
1242 		kill_fasync(&wq->fasync_list, SIGURG, band);
1243 	}
1244 	rcu_read_unlock();
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL(sock_wake_async);
1248 
1249 int __sock_create(struct net *net, int family, int type, int protocol,
1250 			 struct socket **res, int kern)
1251 {
1252 	int err;
1253 	struct socket *sock;
1254 	const struct net_proto_family *pf;
1255 
1256 	/*
1257 	 *      Check protocol is in range
1258 	 */
1259 	if (family < 0 || family >= NPROTO)
1260 		return -EAFNOSUPPORT;
1261 	if (type < 0 || type >= SOCK_MAX)
1262 		return -EINVAL;
1263 
1264 	/* Compatibility.
1265 
1266 	   This uglymoron is moved from INET layer to here to avoid
1267 	   deadlock in module load.
1268 	 */
1269 	if (family == PF_INET && type == SOCK_PACKET) {
1270 		static int warned;
1271 		if (!warned) {
1272 			warned = 1;
1273 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1274 				current->comm);
1275 		}
1276 		family = PF_PACKET;
1277 	}
1278 
1279 	err = security_socket_create(family, type, protocol, kern);
1280 	if (err)
1281 		return err;
1282 
1283 	/*
1284 	 *	Allocate the socket and allow the family to set things up. if
1285 	 *	the protocol is 0, the family is instructed to select an appropriate
1286 	 *	default.
1287 	 */
1288 	sock = sock_alloc();
1289 	if (!sock) {
1290 		net_warn_ratelimited("socket: no more sockets\n");
1291 		return -ENFILE;	/* Not exactly a match, but its the
1292 				   closest posix thing */
1293 	}
1294 
1295 	sock->type = type;
1296 
1297 #ifdef CONFIG_MODULES
1298 	/* Attempt to load a protocol module if the find failed.
1299 	 *
1300 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1301 	 * requested real, full-featured networking support upon configuration.
1302 	 * Otherwise module support will break!
1303 	 */
1304 	if (rcu_access_pointer(net_families[family]) == NULL)
1305 		request_module("net-pf-%d", family);
1306 #endif
1307 
1308 	rcu_read_lock();
1309 	pf = rcu_dereference(net_families[family]);
1310 	err = -EAFNOSUPPORT;
1311 	if (!pf)
1312 		goto out_release;
1313 
1314 	/*
1315 	 * We will call the ->create function, that possibly is in a loadable
1316 	 * module, so we have to bump that loadable module refcnt first.
1317 	 */
1318 	if (!try_module_get(pf->owner))
1319 		goto out_release;
1320 
1321 	/* Now protected by module ref count */
1322 	rcu_read_unlock();
1323 
1324 	err = pf->create(net, sock, protocol, kern);
1325 	if (err < 0)
1326 		goto out_module_put;
1327 
1328 	/*
1329 	 * Now to bump the refcnt of the [loadable] module that owns this
1330 	 * socket at sock_release time we decrement its refcnt.
1331 	 */
1332 	if (!try_module_get(sock->ops->owner))
1333 		goto out_module_busy;
1334 
1335 	/*
1336 	 * Now that we're done with the ->create function, the [loadable]
1337 	 * module can have its refcnt decremented
1338 	 */
1339 	module_put(pf->owner);
1340 	err = security_socket_post_create(sock, family, type, protocol, kern);
1341 	if (err)
1342 		goto out_sock_release;
1343 	*res = sock;
1344 
1345 	return 0;
1346 
1347 out_module_busy:
1348 	err = -EAFNOSUPPORT;
1349 out_module_put:
1350 	sock->ops = NULL;
1351 	module_put(pf->owner);
1352 out_sock_release:
1353 	sock_release(sock);
1354 	return err;
1355 
1356 out_release:
1357 	rcu_read_unlock();
1358 	goto out_sock_release;
1359 }
1360 EXPORT_SYMBOL(__sock_create);
1361 
1362 int sock_create(int family, int type, int protocol, struct socket **res)
1363 {
1364 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1365 }
1366 EXPORT_SYMBOL(sock_create);
1367 
1368 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1369 {
1370 	return __sock_create(&init_net, family, type, protocol, res, 1);
1371 }
1372 EXPORT_SYMBOL(sock_create_kern);
1373 
1374 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1375 {
1376 	int retval;
1377 	struct socket *sock;
1378 	int flags;
1379 
1380 	/* Check the SOCK_* constants for consistency.  */
1381 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1382 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1383 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1384 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1385 
1386 	flags = type & ~SOCK_TYPE_MASK;
1387 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1388 		return -EINVAL;
1389 	type &= SOCK_TYPE_MASK;
1390 
1391 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1392 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1393 
1394 	retval = sock_create(family, type, protocol, &sock);
1395 	if (retval < 0)
1396 		goto out;
1397 
1398 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1399 	if (retval < 0)
1400 		goto out_release;
1401 
1402 out:
1403 	/* It may be already another descriptor 8) Not kernel problem. */
1404 	return retval;
1405 
1406 out_release:
1407 	sock_release(sock);
1408 	return retval;
1409 }
1410 
1411 /*
1412  *	Create a pair of connected sockets.
1413  */
1414 
1415 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1416 		int __user *, usockvec)
1417 {
1418 	struct socket *sock1, *sock2;
1419 	int fd1, fd2, err;
1420 	struct file *newfile1, *newfile2;
1421 	int flags;
1422 
1423 	flags = type & ~SOCK_TYPE_MASK;
1424 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1425 		return -EINVAL;
1426 	type &= SOCK_TYPE_MASK;
1427 
1428 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1429 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1430 
1431 	/*
1432 	 * Obtain the first socket and check if the underlying protocol
1433 	 * supports the socketpair call.
1434 	 */
1435 
1436 	err = sock_create(family, type, protocol, &sock1);
1437 	if (err < 0)
1438 		goto out;
1439 
1440 	err = sock_create(family, type, protocol, &sock2);
1441 	if (err < 0)
1442 		goto out_release_1;
1443 
1444 	err = sock1->ops->socketpair(sock1, sock2);
1445 	if (err < 0)
1446 		goto out_release_both;
1447 
1448 	fd1 = get_unused_fd_flags(flags);
1449 	if (unlikely(fd1 < 0)) {
1450 		err = fd1;
1451 		goto out_release_both;
1452 	}
1453 
1454 	fd2 = get_unused_fd_flags(flags);
1455 	if (unlikely(fd2 < 0)) {
1456 		err = fd2;
1457 		goto out_put_unused_1;
1458 	}
1459 
1460 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1461 	if (unlikely(IS_ERR(newfile1))) {
1462 		err = PTR_ERR(newfile1);
1463 		goto out_put_unused_both;
1464 	}
1465 
1466 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1467 	if (IS_ERR(newfile2)) {
1468 		err = PTR_ERR(newfile2);
1469 		goto out_fput_1;
1470 	}
1471 
1472 	err = put_user(fd1, &usockvec[0]);
1473 	if (err)
1474 		goto out_fput_both;
1475 
1476 	err = put_user(fd2, &usockvec[1]);
1477 	if (err)
1478 		goto out_fput_both;
1479 
1480 	audit_fd_pair(fd1, fd2);
1481 
1482 	fd_install(fd1, newfile1);
1483 	fd_install(fd2, newfile2);
1484 	/* fd1 and fd2 may be already another descriptors.
1485 	 * Not kernel problem.
1486 	 */
1487 
1488 	return 0;
1489 
1490 out_fput_both:
1491 	fput(newfile2);
1492 	fput(newfile1);
1493 	put_unused_fd(fd2);
1494 	put_unused_fd(fd1);
1495 	goto out;
1496 
1497 out_fput_1:
1498 	fput(newfile1);
1499 	put_unused_fd(fd2);
1500 	put_unused_fd(fd1);
1501 	sock_release(sock2);
1502 	goto out;
1503 
1504 out_put_unused_both:
1505 	put_unused_fd(fd2);
1506 out_put_unused_1:
1507 	put_unused_fd(fd1);
1508 out_release_both:
1509 	sock_release(sock2);
1510 out_release_1:
1511 	sock_release(sock1);
1512 out:
1513 	return err;
1514 }
1515 
1516 /*
1517  *	Bind a name to a socket. Nothing much to do here since it's
1518  *	the protocol's responsibility to handle the local address.
1519  *
1520  *	We move the socket address to kernel space before we call
1521  *	the protocol layer (having also checked the address is ok).
1522  */
1523 
1524 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1525 {
1526 	struct socket *sock;
1527 	struct sockaddr_storage address;
1528 	int err, fput_needed;
1529 
1530 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 	if (sock) {
1532 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1533 		if (err >= 0) {
1534 			err = security_socket_bind(sock,
1535 						   (struct sockaddr *)&address,
1536 						   addrlen);
1537 			if (!err)
1538 				err = sock->ops->bind(sock,
1539 						      (struct sockaddr *)
1540 						      &address, addrlen);
1541 		}
1542 		fput_light(sock->file, fput_needed);
1543 	}
1544 	return err;
1545 }
1546 
1547 /*
1548  *	Perform a listen. Basically, we allow the protocol to do anything
1549  *	necessary for a listen, and if that works, we mark the socket as
1550  *	ready for listening.
1551  */
1552 
1553 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1554 {
1555 	struct socket *sock;
1556 	int err, fput_needed;
1557 	int somaxconn;
1558 
1559 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1560 	if (sock) {
1561 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1562 		if ((unsigned int)backlog > somaxconn)
1563 			backlog = somaxconn;
1564 
1565 		err = security_socket_listen(sock, backlog);
1566 		if (!err)
1567 			err = sock->ops->listen(sock, backlog);
1568 
1569 		fput_light(sock->file, fput_needed);
1570 	}
1571 	return err;
1572 }
1573 
1574 /*
1575  *	For accept, we attempt to create a new socket, set up the link
1576  *	with the client, wake up the client, then return the new
1577  *	connected fd. We collect the address of the connector in kernel
1578  *	space and move it to user at the very end. This is unclean because
1579  *	we open the socket then return an error.
1580  *
1581  *	1003.1g adds the ability to recvmsg() to query connection pending
1582  *	status to recvmsg. We need to add that support in a way thats
1583  *	clean when we restucture accept also.
1584  */
1585 
1586 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1587 		int __user *, upeer_addrlen, int, flags)
1588 {
1589 	struct socket *sock, *newsock;
1590 	struct file *newfile;
1591 	int err, len, newfd, fput_needed;
1592 	struct sockaddr_storage address;
1593 
1594 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1595 		return -EINVAL;
1596 
1597 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1598 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1599 
1600 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 	if (!sock)
1602 		goto out;
1603 
1604 	err = -ENFILE;
1605 	newsock = sock_alloc();
1606 	if (!newsock)
1607 		goto out_put;
1608 
1609 	newsock->type = sock->type;
1610 	newsock->ops = sock->ops;
1611 
1612 	/*
1613 	 * We don't need try_module_get here, as the listening socket (sock)
1614 	 * has the protocol module (sock->ops->owner) held.
1615 	 */
1616 	__module_get(newsock->ops->owner);
1617 
1618 	newfd = get_unused_fd_flags(flags);
1619 	if (unlikely(newfd < 0)) {
1620 		err = newfd;
1621 		sock_release(newsock);
1622 		goto out_put;
1623 	}
1624 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1625 	if (unlikely(IS_ERR(newfile))) {
1626 		err = PTR_ERR(newfile);
1627 		put_unused_fd(newfd);
1628 		sock_release(newsock);
1629 		goto out_put;
1630 	}
1631 
1632 	err = security_socket_accept(sock, newsock);
1633 	if (err)
1634 		goto out_fd;
1635 
1636 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1637 	if (err < 0)
1638 		goto out_fd;
1639 
1640 	if (upeer_sockaddr) {
1641 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1642 					  &len, 2) < 0) {
1643 			err = -ECONNABORTED;
1644 			goto out_fd;
1645 		}
1646 		err = move_addr_to_user(&address,
1647 					len, upeer_sockaddr, upeer_addrlen);
1648 		if (err < 0)
1649 			goto out_fd;
1650 	}
1651 
1652 	/* File flags are not inherited via accept() unlike another OSes. */
1653 
1654 	fd_install(newfd, newfile);
1655 	err = newfd;
1656 
1657 out_put:
1658 	fput_light(sock->file, fput_needed);
1659 out:
1660 	return err;
1661 out_fd:
1662 	fput(newfile);
1663 	put_unused_fd(newfd);
1664 	goto out_put;
1665 }
1666 
1667 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1668 		int __user *, upeer_addrlen)
1669 {
1670 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1671 }
1672 
1673 /*
1674  *	Attempt to connect to a socket with the server address.  The address
1675  *	is in user space so we verify it is OK and move it to kernel space.
1676  *
1677  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1678  *	break bindings
1679  *
1680  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1681  *	other SEQPACKET protocols that take time to connect() as it doesn't
1682  *	include the -EINPROGRESS status for such sockets.
1683  */
1684 
1685 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1686 		int, addrlen)
1687 {
1688 	struct socket *sock;
1689 	struct sockaddr_storage address;
1690 	int err, fput_needed;
1691 
1692 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1693 	if (!sock)
1694 		goto out;
1695 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1696 	if (err < 0)
1697 		goto out_put;
1698 
1699 	err =
1700 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1701 	if (err)
1702 		goto out_put;
1703 
1704 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1705 				 sock->file->f_flags);
1706 out_put:
1707 	fput_light(sock->file, fput_needed);
1708 out:
1709 	return err;
1710 }
1711 
1712 /*
1713  *	Get the local address ('name') of a socket object. Move the obtained
1714  *	name to user space.
1715  */
1716 
1717 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1718 		int __user *, usockaddr_len)
1719 {
1720 	struct socket *sock;
1721 	struct sockaddr_storage address;
1722 	int len, err, fput_needed;
1723 
1724 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1725 	if (!sock)
1726 		goto out;
1727 
1728 	err = security_socket_getsockname(sock);
1729 	if (err)
1730 		goto out_put;
1731 
1732 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1733 	if (err)
1734 		goto out_put;
1735 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1736 
1737 out_put:
1738 	fput_light(sock->file, fput_needed);
1739 out:
1740 	return err;
1741 }
1742 
1743 /*
1744  *	Get the remote address ('name') of a socket object. Move the obtained
1745  *	name to user space.
1746  */
1747 
1748 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1749 		int __user *, usockaddr_len)
1750 {
1751 	struct socket *sock;
1752 	struct sockaddr_storage address;
1753 	int len, err, fput_needed;
1754 
1755 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1756 	if (sock != NULL) {
1757 		err = security_socket_getpeername(sock);
1758 		if (err) {
1759 			fput_light(sock->file, fput_needed);
1760 			return err;
1761 		}
1762 
1763 		err =
1764 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1765 				       1);
1766 		if (!err)
1767 			err = move_addr_to_user(&address, len, usockaddr,
1768 						usockaddr_len);
1769 		fput_light(sock->file, fput_needed);
1770 	}
1771 	return err;
1772 }
1773 
1774 /*
1775  *	Send a datagram to a given address. We move the address into kernel
1776  *	space and check the user space data area is readable before invoking
1777  *	the protocol.
1778  */
1779 
1780 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1781 		unsigned int, flags, struct sockaddr __user *, addr,
1782 		int, addr_len)
1783 {
1784 	struct socket *sock;
1785 	struct sockaddr_storage address;
1786 	int err;
1787 	struct msghdr msg;
1788 	struct iovec iov;
1789 	int fput_needed;
1790 
1791 	if (len > INT_MAX)
1792 		len = INT_MAX;
1793 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 	if (!sock)
1795 		goto out;
1796 
1797 	iov.iov_base = buff;
1798 	iov.iov_len = len;
1799 	msg.msg_name = NULL;
1800 	msg.msg_iov = &iov;
1801 	msg.msg_iovlen = 1;
1802 	msg.msg_control = NULL;
1803 	msg.msg_controllen = 0;
1804 	msg.msg_namelen = 0;
1805 	if (addr) {
1806 		err = move_addr_to_kernel(addr, addr_len, &address);
1807 		if (err < 0)
1808 			goto out_put;
1809 		msg.msg_name = (struct sockaddr *)&address;
1810 		msg.msg_namelen = addr_len;
1811 	}
1812 	if (sock->file->f_flags & O_NONBLOCK)
1813 		flags |= MSG_DONTWAIT;
1814 	msg.msg_flags = flags;
1815 	err = sock_sendmsg(sock, &msg, len);
1816 
1817 out_put:
1818 	fput_light(sock->file, fput_needed);
1819 out:
1820 	return err;
1821 }
1822 
1823 /*
1824  *	Send a datagram down a socket.
1825  */
1826 
1827 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1828 		unsigned int, flags)
1829 {
1830 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1831 }
1832 
1833 /*
1834  *	Receive a frame from the socket and optionally record the address of the
1835  *	sender. We verify the buffers are writable and if needed move the
1836  *	sender address from kernel to user space.
1837  */
1838 
1839 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1840 		unsigned int, flags, struct sockaddr __user *, addr,
1841 		int __user *, addr_len)
1842 {
1843 	struct socket *sock;
1844 	struct iovec iov;
1845 	struct msghdr msg;
1846 	struct sockaddr_storage address;
1847 	int err, err2;
1848 	int fput_needed;
1849 
1850 	if (size > INT_MAX)
1851 		size = INT_MAX;
1852 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1853 	if (!sock)
1854 		goto out;
1855 
1856 	msg.msg_control = NULL;
1857 	msg.msg_controllen = 0;
1858 	msg.msg_iovlen = 1;
1859 	msg.msg_iov = &iov;
1860 	iov.iov_len = size;
1861 	iov.iov_base = ubuf;
1862 	/* Save some cycles and don't copy the address if not needed */
1863 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1864 	/* We assume all kernel code knows the size of sockaddr_storage */
1865 	msg.msg_namelen = 0;
1866 	if (sock->file->f_flags & O_NONBLOCK)
1867 		flags |= MSG_DONTWAIT;
1868 	err = sock_recvmsg(sock, &msg, size, flags);
1869 
1870 	if (err >= 0 && addr != NULL) {
1871 		err2 = move_addr_to_user(&address,
1872 					 msg.msg_namelen, addr, addr_len);
1873 		if (err2 < 0)
1874 			err = err2;
1875 	}
1876 
1877 	fput_light(sock->file, fput_needed);
1878 out:
1879 	return err;
1880 }
1881 
1882 /*
1883  *	Receive a datagram from a socket.
1884  */
1885 
1886 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1887 		unsigned int, flags)
1888 {
1889 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1890 }
1891 
1892 /*
1893  *	Set a socket option. Because we don't know the option lengths we have
1894  *	to pass the user mode parameter for the protocols to sort out.
1895  */
1896 
1897 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1898 		char __user *, optval, int, optlen)
1899 {
1900 	int err, fput_needed;
1901 	struct socket *sock;
1902 
1903 	if (optlen < 0)
1904 		return -EINVAL;
1905 
1906 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1907 	if (sock != NULL) {
1908 		err = security_socket_setsockopt(sock, level, optname);
1909 		if (err)
1910 			goto out_put;
1911 
1912 		if (level == SOL_SOCKET)
1913 			err =
1914 			    sock_setsockopt(sock, level, optname, optval,
1915 					    optlen);
1916 		else
1917 			err =
1918 			    sock->ops->setsockopt(sock, level, optname, optval,
1919 						  optlen);
1920 out_put:
1921 		fput_light(sock->file, fput_needed);
1922 	}
1923 	return err;
1924 }
1925 
1926 /*
1927  *	Get a socket option. Because we don't know the option lengths we have
1928  *	to pass a user mode parameter for the protocols to sort out.
1929  */
1930 
1931 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1932 		char __user *, optval, int __user *, optlen)
1933 {
1934 	int err, fput_needed;
1935 	struct socket *sock;
1936 
1937 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938 	if (sock != NULL) {
1939 		err = security_socket_getsockopt(sock, level, optname);
1940 		if (err)
1941 			goto out_put;
1942 
1943 		if (level == SOL_SOCKET)
1944 			err =
1945 			    sock_getsockopt(sock, level, optname, optval,
1946 					    optlen);
1947 		else
1948 			err =
1949 			    sock->ops->getsockopt(sock, level, optname, optval,
1950 						  optlen);
1951 out_put:
1952 		fput_light(sock->file, fput_needed);
1953 	}
1954 	return err;
1955 }
1956 
1957 /*
1958  *	Shutdown a socket.
1959  */
1960 
1961 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1962 {
1963 	int err, fput_needed;
1964 	struct socket *sock;
1965 
1966 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1967 	if (sock != NULL) {
1968 		err = security_socket_shutdown(sock, how);
1969 		if (!err)
1970 			err = sock->ops->shutdown(sock, how);
1971 		fput_light(sock->file, fput_needed);
1972 	}
1973 	return err;
1974 }
1975 
1976 /* A couple of helpful macros for getting the address of the 32/64 bit
1977  * fields which are the same type (int / unsigned) on our platforms.
1978  */
1979 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1980 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1981 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1982 
1983 struct used_address {
1984 	struct sockaddr_storage name;
1985 	unsigned int name_len;
1986 };
1987 
1988 static int copy_msghdr_from_user(struct msghdr *kmsg,
1989 				 struct msghdr __user *umsg)
1990 {
1991 	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1992 		return -EFAULT;
1993 
1994 	if (kmsg->msg_namelen < 0)
1995 		return -EINVAL;
1996 
1997 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1998 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1999 	return 0;
2000 }
2001 
2002 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2003 			 struct msghdr *msg_sys, unsigned int flags,
2004 			 struct used_address *used_address)
2005 {
2006 	struct compat_msghdr __user *msg_compat =
2007 	    (struct compat_msghdr __user *)msg;
2008 	struct sockaddr_storage address;
2009 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2010 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2011 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2012 	/* 20 is size of ipv6_pktinfo */
2013 	unsigned char *ctl_buf = ctl;
2014 	int err, ctl_len, total_len;
2015 
2016 	err = -EFAULT;
2017 	if (MSG_CMSG_COMPAT & flags) {
2018 		if (get_compat_msghdr(msg_sys, msg_compat))
2019 			return -EFAULT;
2020 	} else {
2021 		err = copy_msghdr_from_user(msg_sys, msg);
2022 		if (err)
2023 			return err;
2024 	}
2025 
2026 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2027 		err = -EMSGSIZE;
2028 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2029 			goto out;
2030 		err = -ENOMEM;
2031 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2032 			      GFP_KERNEL);
2033 		if (!iov)
2034 			goto out;
2035 	}
2036 
2037 	/* This will also move the address data into kernel space */
2038 	if (MSG_CMSG_COMPAT & flags) {
2039 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2040 	} else
2041 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2042 	if (err < 0)
2043 		goto out_freeiov;
2044 	total_len = err;
2045 
2046 	err = -ENOBUFS;
2047 
2048 	if (msg_sys->msg_controllen > INT_MAX)
2049 		goto out_freeiov;
2050 	ctl_len = msg_sys->msg_controllen;
2051 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2052 		err =
2053 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2054 						     sizeof(ctl));
2055 		if (err)
2056 			goto out_freeiov;
2057 		ctl_buf = msg_sys->msg_control;
2058 		ctl_len = msg_sys->msg_controllen;
2059 	} else if (ctl_len) {
2060 		if (ctl_len > sizeof(ctl)) {
2061 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2062 			if (ctl_buf == NULL)
2063 				goto out_freeiov;
2064 		}
2065 		err = -EFAULT;
2066 		/*
2067 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2068 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2069 		 * checking falls down on this.
2070 		 */
2071 		if (copy_from_user(ctl_buf,
2072 				   (void __user __force *)msg_sys->msg_control,
2073 				   ctl_len))
2074 			goto out_freectl;
2075 		msg_sys->msg_control = ctl_buf;
2076 	}
2077 	msg_sys->msg_flags = flags;
2078 
2079 	if (sock->file->f_flags & O_NONBLOCK)
2080 		msg_sys->msg_flags |= MSG_DONTWAIT;
2081 	/*
2082 	 * If this is sendmmsg() and current destination address is same as
2083 	 * previously succeeded address, omit asking LSM's decision.
2084 	 * used_address->name_len is initialized to UINT_MAX so that the first
2085 	 * destination address never matches.
2086 	 */
2087 	if (used_address && msg_sys->msg_name &&
2088 	    used_address->name_len == msg_sys->msg_namelen &&
2089 	    !memcmp(&used_address->name, msg_sys->msg_name,
2090 		    used_address->name_len)) {
2091 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2092 		goto out_freectl;
2093 	}
2094 	err = sock_sendmsg(sock, msg_sys, total_len);
2095 	/*
2096 	 * If this is sendmmsg() and sending to current destination address was
2097 	 * successful, remember it.
2098 	 */
2099 	if (used_address && err >= 0) {
2100 		used_address->name_len = msg_sys->msg_namelen;
2101 		if (msg_sys->msg_name)
2102 			memcpy(&used_address->name, msg_sys->msg_name,
2103 			       used_address->name_len);
2104 	}
2105 
2106 out_freectl:
2107 	if (ctl_buf != ctl)
2108 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2109 out_freeiov:
2110 	if (iov != iovstack)
2111 		kfree(iov);
2112 out:
2113 	return err;
2114 }
2115 
2116 /*
2117  *	BSD sendmsg interface
2118  */
2119 
2120 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2121 {
2122 	int fput_needed, err;
2123 	struct msghdr msg_sys;
2124 	struct socket *sock;
2125 
2126 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 	if (!sock)
2128 		goto out;
2129 
2130 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2131 
2132 	fput_light(sock->file, fput_needed);
2133 out:
2134 	return err;
2135 }
2136 
2137 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2138 {
2139 	if (flags & MSG_CMSG_COMPAT)
2140 		return -EINVAL;
2141 	return __sys_sendmsg(fd, msg, flags);
2142 }
2143 
2144 /*
2145  *	Linux sendmmsg interface
2146  */
2147 
2148 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2149 		   unsigned int flags)
2150 {
2151 	int fput_needed, err, datagrams;
2152 	struct socket *sock;
2153 	struct mmsghdr __user *entry;
2154 	struct compat_mmsghdr __user *compat_entry;
2155 	struct msghdr msg_sys;
2156 	struct used_address used_address;
2157 
2158 	if (vlen > UIO_MAXIOV)
2159 		vlen = UIO_MAXIOV;
2160 
2161 	datagrams = 0;
2162 
2163 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2164 	if (!sock)
2165 		return err;
2166 
2167 	used_address.name_len = UINT_MAX;
2168 	entry = mmsg;
2169 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2170 	err = 0;
2171 
2172 	while (datagrams < vlen) {
2173 		if (MSG_CMSG_COMPAT & flags) {
2174 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2175 					     &msg_sys, flags, &used_address);
2176 			if (err < 0)
2177 				break;
2178 			err = __put_user(err, &compat_entry->msg_len);
2179 			++compat_entry;
2180 		} else {
2181 			err = ___sys_sendmsg(sock,
2182 					     (struct msghdr __user *)entry,
2183 					     &msg_sys, flags, &used_address);
2184 			if (err < 0)
2185 				break;
2186 			err = put_user(err, &entry->msg_len);
2187 			++entry;
2188 		}
2189 
2190 		if (err)
2191 			break;
2192 		++datagrams;
2193 	}
2194 
2195 	fput_light(sock->file, fput_needed);
2196 
2197 	/* We only return an error if no datagrams were able to be sent */
2198 	if (datagrams != 0)
2199 		return datagrams;
2200 
2201 	return err;
2202 }
2203 
2204 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2205 		unsigned int, vlen, unsigned int, flags)
2206 {
2207 	if (flags & MSG_CMSG_COMPAT)
2208 		return -EINVAL;
2209 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2210 }
2211 
2212 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2213 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2214 {
2215 	struct compat_msghdr __user *msg_compat =
2216 	    (struct compat_msghdr __user *)msg;
2217 	struct iovec iovstack[UIO_FASTIOV];
2218 	struct iovec *iov = iovstack;
2219 	unsigned long cmsg_ptr;
2220 	int err, total_len, len;
2221 
2222 	/* kernel mode address */
2223 	struct sockaddr_storage addr;
2224 
2225 	/* user mode address pointers */
2226 	struct sockaddr __user *uaddr;
2227 	int __user *uaddr_len;
2228 
2229 	if (MSG_CMSG_COMPAT & flags) {
2230 		if (get_compat_msghdr(msg_sys, msg_compat))
2231 			return -EFAULT;
2232 	} else {
2233 		err = copy_msghdr_from_user(msg_sys, msg);
2234 		if (err)
2235 			return err;
2236 	}
2237 
2238 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2239 		err = -EMSGSIZE;
2240 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2241 			goto out;
2242 		err = -ENOMEM;
2243 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2244 			      GFP_KERNEL);
2245 		if (!iov)
2246 			goto out;
2247 	}
2248 
2249 	/* Save the user-mode address (verify_iovec will change the
2250 	 * kernel msghdr to use the kernel address space)
2251 	 */
2252 	uaddr = (__force void __user *)msg_sys->msg_name;
2253 	uaddr_len = COMPAT_NAMELEN(msg);
2254 	if (MSG_CMSG_COMPAT & flags)
2255 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2256 	else
2257 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2258 	if (err < 0)
2259 		goto out_freeiov;
2260 	total_len = err;
2261 
2262 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2263 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2264 
2265 	/* We assume all kernel code knows the size of sockaddr_storage */
2266 	msg_sys->msg_namelen = 0;
2267 
2268 	if (sock->file->f_flags & O_NONBLOCK)
2269 		flags |= MSG_DONTWAIT;
2270 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2271 							  total_len, flags);
2272 	if (err < 0)
2273 		goto out_freeiov;
2274 	len = err;
2275 
2276 	if (uaddr != NULL) {
2277 		err = move_addr_to_user(&addr,
2278 					msg_sys->msg_namelen, uaddr,
2279 					uaddr_len);
2280 		if (err < 0)
2281 			goto out_freeiov;
2282 	}
2283 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2284 			 COMPAT_FLAGS(msg));
2285 	if (err)
2286 		goto out_freeiov;
2287 	if (MSG_CMSG_COMPAT & flags)
2288 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289 				 &msg_compat->msg_controllen);
2290 	else
2291 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2292 				 &msg->msg_controllen);
2293 	if (err)
2294 		goto out_freeiov;
2295 	err = len;
2296 
2297 out_freeiov:
2298 	if (iov != iovstack)
2299 		kfree(iov);
2300 out:
2301 	return err;
2302 }
2303 
2304 /*
2305  *	BSD recvmsg interface
2306  */
2307 
2308 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2309 {
2310 	int fput_needed, err;
2311 	struct msghdr msg_sys;
2312 	struct socket *sock;
2313 
2314 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2315 	if (!sock)
2316 		goto out;
2317 
2318 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2319 
2320 	fput_light(sock->file, fput_needed);
2321 out:
2322 	return err;
2323 }
2324 
2325 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2326 		unsigned int, flags)
2327 {
2328 	if (flags & MSG_CMSG_COMPAT)
2329 		return -EINVAL;
2330 	return __sys_recvmsg(fd, msg, flags);
2331 }
2332 
2333 /*
2334  *     Linux recvmmsg interface
2335  */
2336 
2337 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2338 		   unsigned int flags, struct timespec *timeout)
2339 {
2340 	int fput_needed, err, datagrams;
2341 	struct socket *sock;
2342 	struct mmsghdr __user *entry;
2343 	struct compat_mmsghdr __user *compat_entry;
2344 	struct msghdr msg_sys;
2345 	struct timespec end_time;
2346 
2347 	if (timeout &&
2348 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2349 				    timeout->tv_nsec))
2350 		return -EINVAL;
2351 
2352 	datagrams = 0;
2353 
2354 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2355 	if (!sock)
2356 		return err;
2357 
2358 	err = sock_error(sock->sk);
2359 	if (err)
2360 		goto out_put;
2361 
2362 	entry = mmsg;
2363 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2364 
2365 	while (datagrams < vlen) {
2366 		/*
2367 		 * No need to ask LSM for more than the first datagram.
2368 		 */
2369 		if (MSG_CMSG_COMPAT & flags) {
2370 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2371 					     &msg_sys, flags & ~MSG_WAITFORONE,
2372 					     datagrams);
2373 			if (err < 0)
2374 				break;
2375 			err = __put_user(err, &compat_entry->msg_len);
2376 			++compat_entry;
2377 		} else {
2378 			err = ___sys_recvmsg(sock,
2379 					     (struct msghdr __user *)entry,
2380 					     &msg_sys, flags & ~MSG_WAITFORONE,
2381 					     datagrams);
2382 			if (err < 0)
2383 				break;
2384 			err = put_user(err, &entry->msg_len);
2385 			++entry;
2386 		}
2387 
2388 		if (err)
2389 			break;
2390 		++datagrams;
2391 
2392 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2393 		if (flags & MSG_WAITFORONE)
2394 			flags |= MSG_DONTWAIT;
2395 
2396 		if (timeout) {
2397 			ktime_get_ts(timeout);
2398 			*timeout = timespec_sub(end_time, *timeout);
2399 			if (timeout->tv_sec < 0) {
2400 				timeout->tv_sec = timeout->tv_nsec = 0;
2401 				break;
2402 			}
2403 
2404 			/* Timeout, return less than vlen datagrams */
2405 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2406 				break;
2407 		}
2408 
2409 		/* Out of band data, return right away */
2410 		if (msg_sys.msg_flags & MSG_OOB)
2411 			break;
2412 	}
2413 
2414 out_put:
2415 	fput_light(sock->file, fput_needed);
2416 
2417 	if (err == 0)
2418 		return datagrams;
2419 
2420 	if (datagrams != 0) {
2421 		/*
2422 		 * We may return less entries than requested (vlen) if the
2423 		 * sock is non block and there aren't enough datagrams...
2424 		 */
2425 		if (err != -EAGAIN) {
2426 			/*
2427 			 * ... or  if recvmsg returns an error after we
2428 			 * received some datagrams, where we record the
2429 			 * error to return on the next call or if the
2430 			 * app asks about it using getsockopt(SO_ERROR).
2431 			 */
2432 			sock->sk->sk_err = -err;
2433 		}
2434 
2435 		return datagrams;
2436 	}
2437 
2438 	return err;
2439 }
2440 
2441 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2442 		unsigned int, vlen, unsigned int, flags,
2443 		struct timespec __user *, timeout)
2444 {
2445 	int datagrams;
2446 	struct timespec timeout_sys;
2447 
2448 	if (flags & MSG_CMSG_COMPAT)
2449 		return -EINVAL;
2450 
2451 	if (!timeout)
2452 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2453 
2454 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2455 		return -EFAULT;
2456 
2457 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2458 
2459 	if (datagrams > 0 &&
2460 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2461 		datagrams = -EFAULT;
2462 
2463 	return datagrams;
2464 }
2465 
2466 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2467 /* Argument list sizes for sys_socketcall */
2468 #define AL(x) ((x) * sizeof(unsigned long))
2469 static const unsigned char nargs[21] = {
2470 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2471 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2472 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2473 	AL(4), AL(5), AL(4)
2474 };
2475 
2476 #undef AL
2477 
2478 /*
2479  *	System call vectors.
2480  *
2481  *	Argument checking cleaned up. Saved 20% in size.
2482  *  This function doesn't need to set the kernel lock because
2483  *  it is set by the callees.
2484  */
2485 
2486 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2487 {
2488 	unsigned long a[AUDITSC_ARGS];
2489 	unsigned long a0, a1;
2490 	int err;
2491 	unsigned int len;
2492 
2493 	if (call < 1 || call > SYS_SENDMMSG)
2494 		return -EINVAL;
2495 
2496 	len = nargs[call];
2497 	if (len > sizeof(a))
2498 		return -EINVAL;
2499 
2500 	/* copy_from_user should be SMP safe. */
2501 	if (copy_from_user(a, args, len))
2502 		return -EFAULT;
2503 
2504 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2505 	if (err)
2506 		return err;
2507 
2508 	a0 = a[0];
2509 	a1 = a[1];
2510 
2511 	switch (call) {
2512 	case SYS_SOCKET:
2513 		err = sys_socket(a0, a1, a[2]);
2514 		break;
2515 	case SYS_BIND:
2516 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2517 		break;
2518 	case SYS_CONNECT:
2519 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2520 		break;
2521 	case SYS_LISTEN:
2522 		err = sys_listen(a0, a1);
2523 		break;
2524 	case SYS_ACCEPT:
2525 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2526 				  (int __user *)a[2], 0);
2527 		break;
2528 	case SYS_GETSOCKNAME:
2529 		err =
2530 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2531 				    (int __user *)a[2]);
2532 		break;
2533 	case SYS_GETPEERNAME:
2534 		err =
2535 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2536 				    (int __user *)a[2]);
2537 		break;
2538 	case SYS_SOCKETPAIR:
2539 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2540 		break;
2541 	case SYS_SEND:
2542 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2543 		break;
2544 	case SYS_SENDTO:
2545 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2546 				 (struct sockaddr __user *)a[4], a[5]);
2547 		break;
2548 	case SYS_RECV:
2549 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2550 		break;
2551 	case SYS_RECVFROM:
2552 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2553 				   (struct sockaddr __user *)a[4],
2554 				   (int __user *)a[5]);
2555 		break;
2556 	case SYS_SHUTDOWN:
2557 		err = sys_shutdown(a0, a1);
2558 		break;
2559 	case SYS_SETSOCKOPT:
2560 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2561 		break;
2562 	case SYS_GETSOCKOPT:
2563 		err =
2564 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2565 				   (int __user *)a[4]);
2566 		break;
2567 	case SYS_SENDMSG:
2568 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2569 		break;
2570 	case SYS_SENDMMSG:
2571 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2572 		break;
2573 	case SYS_RECVMSG:
2574 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2575 		break;
2576 	case SYS_RECVMMSG:
2577 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2578 				   (struct timespec __user *)a[4]);
2579 		break;
2580 	case SYS_ACCEPT4:
2581 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2582 				  (int __user *)a[2], a[3]);
2583 		break;
2584 	default:
2585 		err = -EINVAL;
2586 		break;
2587 	}
2588 	return err;
2589 }
2590 
2591 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2592 
2593 /**
2594  *	sock_register - add a socket protocol handler
2595  *	@ops: description of protocol
2596  *
2597  *	This function is called by a protocol handler that wants to
2598  *	advertise its address family, and have it linked into the
2599  *	socket interface. The value ops->family coresponds to the
2600  *	socket system call protocol family.
2601  */
2602 int sock_register(const struct net_proto_family *ops)
2603 {
2604 	int err;
2605 
2606 	if (ops->family >= NPROTO) {
2607 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2608 		return -ENOBUFS;
2609 	}
2610 
2611 	spin_lock(&net_family_lock);
2612 	if (rcu_dereference_protected(net_families[ops->family],
2613 				      lockdep_is_held(&net_family_lock)))
2614 		err = -EEXIST;
2615 	else {
2616 		rcu_assign_pointer(net_families[ops->family], ops);
2617 		err = 0;
2618 	}
2619 	spin_unlock(&net_family_lock);
2620 
2621 	pr_info("NET: Registered protocol family %d\n", ops->family);
2622 	return err;
2623 }
2624 EXPORT_SYMBOL(sock_register);
2625 
2626 /**
2627  *	sock_unregister - remove a protocol handler
2628  *	@family: protocol family to remove
2629  *
2630  *	This function is called by a protocol handler that wants to
2631  *	remove its address family, and have it unlinked from the
2632  *	new socket creation.
2633  *
2634  *	If protocol handler is a module, then it can use module reference
2635  *	counts to protect against new references. If protocol handler is not
2636  *	a module then it needs to provide its own protection in
2637  *	the ops->create routine.
2638  */
2639 void sock_unregister(int family)
2640 {
2641 	BUG_ON(family < 0 || family >= NPROTO);
2642 
2643 	spin_lock(&net_family_lock);
2644 	RCU_INIT_POINTER(net_families[family], NULL);
2645 	spin_unlock(&net_family_lock);
2646 
2647 	synchronize_rcu();
2648 
2649 	pr_info("NET: Unregistered protocol family %d\n", family);
2650 }
2651 EXPORT_SYMBOL(sock_unregister);
2652 
2653 static int __init sock_init(void)
2654 {
2655 	int err;
2656 	/*
2657 	 *      Initialize the network sysctl infrastructure.
2658 	 */
2659 	err = net_sysctl_init();
2660 	if (err)
2661 		goto out;
2662 
2663 	/*
2664 	 *      Initialize skbuff SLAB cache
2665 	 */
2666 	skb_init();
2667 
2668 	/*
2669 	 *      Initialize the protocols module.
2670 	 */
2671 
2672 	init_inodecache();
2673 
2674 	err = register_filesystem(&sock_fs_type);
2675 	if (err)
2676 		goto out_fs;
2677 	sock_mnt = kern_mount(&sock_fs_type);
2678 	if (IS_ERR(sock_mnt)) {
2679 		err = PTR_ERR(sock_mnt);
2680 		goto out_mount;
2681 	}
2682 
2683 	/* The real protocol initialization is performed in later initcalls.
2684 	 */
2685 
2686 #ifdef CONFIG_NETFILTER
2687 	err = netfilter_init();
2688 	if (err)
2689 		goto out;
2690 #endif
2691 
2692 	ptp_classifier_init();
2693 
2694 out:
2695 	return err;
2696 
2697 out_mount:
2698 	unregister_filesystem(&sock_fs_type);
2699 out_fs:
2700 	goto out;
2701 }
2702 
2703 core_initcall(sock_init);	/* early initcall */
2704 
2705 #ifdef CONFIG_PROC_FS
2706 void socket_seq_show(struct seq_file *seq)
2707 {
2708 	int cpu;
2709 	int counter = 0;
2710 
2711 	for_each_possible_cpu(cpu)
2712 	    counter += per_cpu(sockets_in_use, cpu);
2713 
2714 	/* It can be negative, by the way. 8) */
2715 	if (counter < 0)
2716 		counter = 0;
2717 
2718 	seq_printf(seq, "sockets: used %d\n", counter);
2719 }
2720 #endif				/* CONFIG_PROC_FS */
2721 
2722 #ifdef CONFIG_COMPAT
2723 static int do_siocgstamp(struct net *net, struct socket *sock,
2724 			 unsigned int cmd, void __user *up)
2725 {
2726 	mm_segment_t old_fs = get_fs();
2727 	struct timeval ktv;
2728 	int err;
2729 
2730 	set_fs(KERNEL_DS);
2731 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2732 	set_fs(old_fs);
2733 	if (!err)
2734 		err = compat_put_timeval(&ktv, up);
2735 
2736 	return err;
2737 }
2738 
2739 static int do_siocgstampns(struct net *net, struct socket *sock,
2740 			   unsigned int cmd, void __user *up)
2741 {
2742 	mm_segment_t old_fs = get_fs();
2743 	struct timespec kts;
2744 	int err;
2745 
2746 	set_fs(KERNEL_DS);
2747 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2748 	set_fs(old_fs);
2749 	if (!err)
2750 		err = compat_put_timespec(&kts, up);
2751 
2752 	return err;
2753 }
2754 
2755 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2756 {
2757 	struct ifreq __user *uifr;
2758 	int err;
2759 
2760 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2761 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2762 		return -EFAULT;
2763 
2764 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2765 	if (err)
2766 		return err;
2767 
2768 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2769 		return -EFAULT;
2770 
2771 	return 0;
2772 }
2773 
2774 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2775 {
2776 	struct compat_ifconf ifc32;
2777 	struct ifconf ifc;
2778 	struct ifconf __user *uifc;
2779 	struct compat_ifreq __user *ifr32;
2780 	struct ifreq __user *ifr;
2781 	unsigned int i, j;
2782 	int err;
2783 
2784 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2785 		return -EFAULT;
2786 
2787 	memset(&ifc, 0, sizeof(ifc));
2788 	if (ifc32.ifcbuf == 0) {
2789 		ifc32.ifc_len = 0;
2790 		ifc.ifc_len = 0;
2791 		ifc.ifc_req = NULL;
2792 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2793 	} else {
2794 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2795 			sizeof(struct ifreq);
2796 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2797 		ifc.ifc_len = len;
2798 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2799 		ifr32 = compat_ptr(ifc32.ifcbuf);
2800 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2801 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2802 				return -EFAULT;
2803 			ifr++;
2804 			ifr32++;
2805 		}
2806 	}
2807 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2808 		return -EFAULT;
2809 
2810 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2811 	if (err)
2812 		return err;
2813 
2814 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2815 		return -EFAULT;
2816 
2817 	ifr = ifc.ifc_req;
2818 	ifr32 = compat_ptr(ifc32.ifcbuf);
2819 	for (i = 0, j = 0;
2820 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2821 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2822 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2823 			return -EFAULT;
2824 		ifr32++;
2825 		ifr++;
2826 	}
2827 
2828 	if (ifc32.ifcbuf == 0) {
2829 		/* Translate from 64-bit structure multiple to
2830 		 * a 32-bit one.
2831 		 */
2832 		i = ifc.ifc_len;
2833 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2834 		ifc32.ifc_len = i;
2835 	} else {
2836 		ifc32.ifc_len = i;
2837 	}
2838 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2839 		return -EFAULT;
2840 
2841 	return 0;
2842 }
2843 
2844 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2845 {
2846 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2847 	bool convert_in = false, convert_out = false;
2848 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2849 	struct ethtool_rxnfc __user *rxnfc;
2850 	struct ifreq __user *ifr;
2851 	u32 rule_cnt = 0, actual_rule_cnt;
2852 	u32 ethcmd;
2853 	u32 data;
2854 	int ret;
2855 
2856 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2857 		return -EFAULT;
2858 
2859 	compat_rxnfc = compat_ptr(data);
2860 
2861 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2862 		return -EFAULT;
2863 
2864 	/* Most ethtool structures are defined without padding.
2865 	 * Unfortunately struct ethtool_rxnfc is an exception.
2866 	 */
2867 	switch (ethcmd) {
2868 	default:
2869 		break;
2870 	case ETHTOOL_GRXCLSRLALL:
2871 		/* Buffer size is variable */
2872 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2873 			return -EFAULT;
2874 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2875 			return -ENOMEM;
2876 		buf_size += rule_cnt * sizeof(u32);
2877 		/* fall through */
2878 	case ETHTOOL_GRXRINGS:
2879 	case ETHTOOL_GRXCLSRLCNT:
2880 	case ETHTOOL_GRXCLSRULE:
2881 	case ETHTOOL_SRXCLSRLINS:
2882 		convert_out = true;
2883 		/* fall through */
2884 	case ETHTOOL_SRXCLSRLDEL:
2885 		buf_size += sizeof(struct ethtool_rxnfc);
2886 		convert_in = true;
2887 		break;
2888 	}
2889 
2890 	ifr = compat_alloc_user_space(buf_size);
2891 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2892 
2893 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2894 		return -EFAULT;
2895 
2896 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2897 		     &ifr->ifr_ifru.ifru_data))
2898 		return -EFAULT;
2899 
2900 	if (convert_in) {
2901 		/* We expect there to be holes between fs.m_ext and
2902 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2903 		 */
2904 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2905 			     sizeof(compat_rxnfc->fs.m_ext) !=
2906 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2907 			     sizeof(rxnfc->fs.m_ext));
2908 		BUILD_BUG_ON(
2909 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2910 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2911 			offsetof(struct ethtool_rxnfc, fs.location) -
2912 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2913 
2914 		if (copy_in_user(rxnfc, compat_rxnfc,
2915 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2916 				 (void __user *)rxnfc) ||
2917 		    copy_in_user(&rxnfc->fs.ring_cookie,
2918 				 &compat_rxnfc->fs.ring_cookie,
2919 				 (void __user *)(&rxnfc->fs.location + 1) -
2920 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2921 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2922 				 sizeof(rxnfc->rule_cnt)))
2923 			return -EFAULT;
2924 	}
2925 
2926 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2927 	if (ret)
2928 		return ret;
2929 
2930 	if (convert_out) {
2931 		if (copy_in_user(compat_rxnfc, rxnfc,
2932 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2933 				 (const void __user *)rxnfc) ||
2934 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2935 				 &rxnfc->fs.ring_cookie,
2936 				 (const void __user *)(&rxnfc->fs.location + 1) -
2937 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2938 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2939 				 sizeof(rxnfc->rule_cnt)))
2940 			return -EFAULT;
2941 
2942 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2943 			/* As an optimisation, we only copy the actual
2944 			 * number of rules that the underlying
2945 			 * function returned.  Since Mallory might
2946 			 * change the rule count in user memory, we
2947 			 * check that it is less than the rule count
2948 			 * originally given (as the user buffer size),
2949 			 * which has been range-checked.
2950 			 */
2951 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2952 				return -EFAULT;
2953 			if (actual_rule_cnt < rule_cnt)
2954 				rule_cnt = actual_rule_cnt;
2955 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2956 					 &rxnfc->rule_locs[0],
2957 					 rule_cnt * sizeof(u32)))
2958 				return -EFAULT;
2959 		}
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2966 {
2967 	void __user *uptr;
2968 	compat_uptr_t uptr32;
2969 	struct ifreq __user *uifr;
2970 
2971 	uifr = compat_alloc_user_space(sizeof(*uifr));
2972 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2973 		return -EFAULT;
2974 
2975 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2976 		return -EFAULT;
2977 
2978 	uptr = compat_ptr(uptr32);
2979 
2980 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2981 		return -EFAULT;
2982 
2983 	return dev_ioctl(net, SIOCWANDEV, uifr);
2984 }
2985 
2986 static int bond_ioctl(struct net *net, unsigned int cmd,
2987 			 struct compat_ifreq __user *ifr32)
2988 {
2989 	struct ifreq kifr;
2990 	mm_segment_t old_fs;
2991 	int err;
2992 
2993 	switch (cmd) {
2994 	case SIOCBONDENSLAVE:
2995 	case SIOCBONDRELEASE:
2996 	case SIOCBONDSETHWADDR:
2997 	case SIOCBONDCHANGEACTIVE:
2998 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2999 			return -EFAULT;
3000 
3001 		old_fs = get_fs();
3002 		set_fs(KERNEL_DS);
3003 		err = dev_ioctl(net, cmd,
3004 				(struct ifreq __user __force *) &kifr);
3005 		set_fs(old_fs);
3006 
3007 		return err;
3008 	default:
3009 		return -ENOIOCTLCMD;
3010 	}
3011 }
3012 
3013 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3014 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3015 				 struct compat_ifreq __user *u_ifreq32)
3016 {
3017 	struct ifreq __user *u_ifreq64;
3018 	char tmp_buf[IFNAMSIZ];
3019 	void __user *data64;
3020 	u32 data32;
3021 
3022 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3023 			   IFNAMSIZ))
3024 		return -EFAULT;
3025 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3026 		return -EFAULT;
3027 	data64 = compat_ptr(data32);
3028 
3029 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3030 
3031 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3032 			 IFNAMSIZ))
3033 		return -EFAULT;
3034 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3035 		return -EFAULT;
3036 
3037 	return dev_ioctl(net, cmd, u_ifreq64);
3038 }
3039 
3040 static int dev_ifsioc(struct net *net, struct socket *sock,
3041 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3042 {
3043 	struct ifreq __user *uifr;
3044 	int err;
3045 
3046 	uifr = compat_alloc_user_space(sizeof(*uifr));
3047 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3048 		return -EFAULT;
3049 
3050 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3051 
3052 	if (!err) {
3053 		switch (cmd) {
3054 		case SIOCGIFFLAGS:
3055 		case SIOCGIFMETRIC:
3056 		case SIOCGIFMTU:
3057 		case SIOCGIFMEM:
3058 		case SIOCGIFHWADDR:
3059 		case SIOCGIFINDEX:
3060 		case SIOCGIFADDR:
3061 		case SIOCGIFBRDADDR:
3062 		case SIOCGIFDSTADDR:
3063 		case SIOCGIFNETMASK:
3064 		case SIOCGIFPFLAGS:
3065 		case SIOCGIFTXQLEN:
3066 		case SIOCGMIIPHY:
3067 		case SIOCGMIIREG:
3068 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3069 				err = -EFAULT;
3070 			break;
3071 		}
3072 	}
3073 	return err;
3074 }
3075 
3076 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3077 			struct compat_ifreq __user *uifr32)
3078 {
3079 	struct ifreq ifr;
3080 	struct compat_ifmap __user *uifmap32;
3081 	mm_segment_t old_fs;
3082 	int err;
3083 
3084 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3085 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3086 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3087 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3088 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3089 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3090 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3091 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3092 	if (err)
3093 		return -EFAULT;
3094 
3095 	old_fs = get_fs();
3096 	set_fs(KERNEL_DS);
3097 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3098 	set_fs(old_fs);
3099 
3100 	if (cmd == SIOCGIFMAP && !err) {
3101 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3102 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3103 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3104 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3105 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3106 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3107 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3108 		if (err)
3109 			err = -EFAULT;
3110 	}
3111 	return err;
3112 }
3113 
3114 struct rtentry32 {
3115 	u32		rt_pad1;
3116 	struct sockaddr rt_dst;         /* target address               */
3117 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3118 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3119 	unsigned short	rt_flags;
3120 	short		rt_pad2;
3121 	u32		rt_pad3;
3122 	unsigned char	rt_tos;
3123 	unsigned char	rt_class;
3124 	short		rt_pad4;
3125 	short		rt_metric;      /* +1 for binary compatibility! */
3126 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3127 	u32		rt_mtu;         /* per route MTU/Window         */
3128 	u32		rt_window;      /* Window clamping              */
3129 	unsigned short  rt_irtt;        /* Initial RTT                  */
3130 };
3131 
3132 struct in6_rtmsg32 {
3133 	struct in6_addr		rtmsg_dst;
3134 	struct in6_addr		rtmsg_src;
3135 	struct in6_addr		rtmsg_gateway;
3136 	u32			rtmsg_type;
3137 	u16			rtmsg_dst_len;
3138 	u16			rtmsg_src_len;
3139 	u32			rtmsg_metric;
3140 	u32			rtmsg_info;
3141 	u32			rtmsg_flags;
3142 	s32			rtmsg_ifindex;
3143 };
3144 
3145 static int routing_ioctl(struct net *net, struct socket *sock,
3146 			 unsigned int cmd, void __user *argp)
3147 {
3148 	int ret;
3149 	void *r = NULL;
3150 	struct in6_rtmsg r6;
3151 	struct rtentry r4;
3152 	char devname[16];
3153 	u32 rtdev;
3154 	mm_segment_t old_fs = get_fs();
3155 
3156 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3157 		struct in6_rtmsg32 __user *ur6 = argp;
3158 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3159 			3 * sizeof(struct in6_addr));
3160 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3161 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3162 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3163 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3164 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3165 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3166 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3167 
3168 		r = (void *) &r6;
3169 	} else { /* ipv4 */
3170 		struct rtentry32 __user *ur4 = argp;
3171 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3172 					3 * sizeof(struct sockaddr));
3173 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3174 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3175 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3176 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3177 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3178 		ret |= get_user(rtdev, &(ur4->rt_dev));
3179 		if (rtdev) {
3180 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3181 			r4.rt_dev = (char __user __force *)devname;
3182 			devname[15] = 0;
3183 		} else
3184 			r4.rt_dev = NULL;
3185 
3186 		r = (void *) &r4;
3187 	}
3188 
3189 	if (ret) {
3190 		ret = -EFAULT;
3191 		goto out;
3192 	}
3193 
3194 	set_fs(KERNEL_DS);
3195 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3196 	set_fs(old_fs);
3197 
3198 out:
3199 	return ret;
3200 }
3201 
3202 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3203  * for some operations; this forces use of the newer bridge-utils that
3204  * use compatible ioctls
3205  */
3206 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3207 {
3208 	compat_ulong_t tmp;
3209 
3210 	if (get_user(tmp, argp))
3211 		return -EFAULT;
3212 	if (tmp == BRCTL_GET_VERSION)
3213 		return BRCTL_VERSION + 1;
3214 	return -EINVAL;
3215 }
3216 
3217 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3218 			 unsigned int cmd, unsigned long arg)
3219 {
3220 	void __user *argp = compat_ptr(arg);
3221 	struct sock *sk = sock->sk;
3222 	struct net *net = sock_net(sk);
3223 
3224 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3225 		return compat_ifr_data_ioctl(net, cmd, argp);
3226 
3227 	switch (cmd) {
3228 	case SIOCSIFBR:
3229 	case SIOCGIFBR:
3230 		return old_bridge_ioctl(argp);
3231 	case SIOCGIFNAME:
3232 		return dev_ifname32(net, argp);
3233 	case SIOCGIFCONF:
3234 		return dev_ifconf(net, argp);
3235 	case SIOCETHTOOL:
3236 		return ethtool_ioctl(net, argp);
3237 	case SIOCWANDEV:
3238 		return compat_siocwandev(net, argp);
3239 	case SIOCGIFMAP:
3240 	case SIOCSIFMAP:
3241 		return compat_sioc_ifmap(net, cmd, argp);
3242 	case SIOCBONDENSLAVE:
3243 	case SIOCBONDRELEASE:
3244 	case SIOCBONDSETHWADDR:
3245 	case SIOCBONDCHANGEACTIVE:
3246 		return bond_ioctl(net, cmd, argp);
3247 	case SIOCADDRT:
3248 	case SIOCDELRT:
3249 		return routing_ioctl(net, sock, cmd, argp);
3250 	case SIOCGSTAMP:
3251 		return do_siocgstamp(net, sock, cmd, argp);
3252 	case SIOCGSTAMPNS:
3253 		return do_siocgstampns(net, sock, cmd, argp);
3254 	case SIOCBONDSLAVEINFOQUERY:
3255 	case SIOCBONDINFOQUERY:
3256 	case SIOCSHWTSTAMP:
3257 	case SIOCGHWTSTAMP:
3258 		return compat_ifr_data_ioctl(net, cmd, argp);
3259 
3260 	case FIOSETOWN:
3261 	case SIOCSPGRP:
3262 	case FIOGETOWN:
3263 	case SIOCGPGRP:
3264 	case SIOCBRADDBR:
3265 	case SIOCBRDELBR:
3266 	case SIOCGIFVLAN:
3267 	case SIOCSIFVLAN:
3268 	case SIOCADDDLCI:
3269 	case SIOCDELDLCI:
3270 		return sock_ioctl(file, cmd, arg);
3271 
3272 	case SIOCGIFFLAGS:
3273 	case SIOCSIFFLAGS:
3274 	case SIOCGIFMETRIC:
3275 	case SIOCSIFMETRIC:
3276 	case SIOCGIFMTU:
3277 	case SIOCSIFMTU:
3278 	case SIOCGIFMEM:
3279 	case SIOCSIFMEM:
3280 	case SIOCGIFHWADDR:
3281 	case SIOCSIFHWADDR:
3282 	case SIOCADDMULTI:
3283 	case SIOCDELMULTI:
3284 	case SIOCGIFINDEX:
3285 	case SIOCGIFADDR:
3286 	case SIOCSIFADDR:
3287 	case SIOCSIFHWBROADCAST:
3288 	case SIOCDIFADDR:
3289 	case SIOCGIFBRDADDR:
3290 	case SIOCSIFBRDADDR:
3291 	case SIOCGIFDSTADDR:
3292 	case SIOCSIFDSTADDR:
3293 	case SIOCGIFNETMASK:
3294 	case SIOCSIFNETMASK:
3295 	case SIOCSIFPFLAGS:
3296 	case SIOCGIFPFLAGS:
3297 	case SIOCGIFTXQLEN:
3298 	case SIOCSIFTXQLEN:
3299 	case SIOCBRADDIF:
3300 	case SIOCBRDELIF:
3301 	case SIOCSIFNAME:
3302 	case SIOCGMIIPHY:
3303 	case SIOCGMIIREG:
3304 	case SIOCSMIIREG:
3305 		return dev_ifsioc(net, sock, cmd, argp);
3306 
3307 	case SIOCSARP:
3308 	case SIOCGARP:
3309 	case SIOCDARP:
3310 	case SIOCATMARK:
3311 		return sock_do_ioctl(net, sock, cmd, arg);
3312 	}
3313 
3314 	return -ENOIOCTLCMD;
3315 }
3316 
3317 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3318 			      unsigned long arg)
3319 {
3320 	struct socket *sock = file->private_data;
3321 	int ret = -ENOIOCTLCMD;
3322 	struct sock *sk;
3323 	struct net *net;
3324 
3325 	sk = sock->sk;
3326 	net = sock_net(sk);
3327 
3328 	if (sock->ops->compat_ioctl)
3329 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3330 
3331 	if (ret == -ENOIOCTLCMD &&
3332 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3333 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3334 
3335 	if (ret == -ENOIOCTLCMD)
3336 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3337 
3338 	return ret;
3339 }
3340 #endif
3341 
3342 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3343 {
3344 	return sock->ops->bind(sock, addr, addrlen);
3345 }
3346 EXPORT_SYMBOL(kernel_bind);
3347 
3348 int kernel_listen(struct socket *sock, int backlog)
3349 {
3350 	return sock->ops->listen(sock, backlog);
3351 }
3352 EXPORT_SYMBOL(kernel_listen);
3353 
3354 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3355 {
3356 	struct sock *sk = sock->sk;
3357 	int err;
3358 
3359 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3360 			       newsock);
3361 	if (err < 0)
3362 		goto done;
3363 
3364 	err = sock->ops->accept(sock, *newsock, flags);
3365 	if (err < 0) {
3366 		sock_release(*newsock);
3367 		*newsock = NULL;
3368 		goto done;
3369 	}
3370 
3371 	(*newsock)->ops = sock->ops;
3372 	__module_get((*newsock)->ops->owner);
3373 
3374 done:
3375 	return err;
3376 }
3377 EXPORT_SYMBOL(kernel_accept);
3378 
3379 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3380 		   int flags)
3381 {
3382 	return sock->ops->connect(sock, addr, addrlen, flags);
3383 }
3384 EXPORT_SYMBOL(kernel_connect);
3385 
3386 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3387 			 int *addrlen)
3388 {
3389 	return sock->ops->getname(sock, addr, addrlen, 0);
3390 }
3391 EXPORT_SYMBOL(kernel_getsockname);
3392 
3393 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3394 			 int *addrlen)
3395 {
3396 	return sock->ops->getname(sock, addr, addrlen, 1);
3397 }
3398 EXPORT_SYMBOL(kernel_getpeername);
3399 
3400 int kernel_getsockopt(struct socket *sock, int level, int optname,
3401 			char *optval, int *optlen)
3402 {
3403 	mm_segment_t oldfs = get_fs();
3404 	char __user *uoptval;
3405 	int __user *uoptlen;
3406 	int err;
3407 
3408 	uoptval = (char __user __force *) optval;
3409 	uoptlen = (int __user __force *) optlen;
3410 
3411 	set_fs(KERNEL_DS);
3412 	if (level == SOL_SOCKET)
3413 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3414 	else
3415 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3416 					    uoptlen);
3417 	set_fs(oldfs);
3418 	return err;
3419 }
3420 EXPORT_SYMBOL(kernel_getsockopt);
3421 
3422 int kernel_setsockopt(struct socket *sock, int level, int optname,
3423 			char *optval, unsigned int optlen)
3424 {
3425 	mm_segment_t oldfs = get_fs();
3426 	char __user *uoptval;
3427 	int err;
3428 
3429 	uoptval = (char __user __force *) optval;
3430 
3431 	set_fs(KERNEL_DS);
3432 	if (level == SOL_SOCKET)
3433 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3434 	else
3435 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3436 					    optlen);
3437 	set_fs(oldfs);
3438 	return err;
3439 }
3440 EXPORT_SYMBOL(kernel_setsockopt);
3441 
3442 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3443 		    size_t size, int flags)
3444 {
3445 	if (sock->ops->sendpage)
3446 		return sock->ops->sendpage(sock, page, offset, size, flags);
3447 
3448 	return sock_no_sendpage(sock, page, offset, size, flags);
3449 }
3450 EXPORT_SYMBOL(kernel_sendpage);
3451 
3452 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3453 {
3454 	mm_segment_t oldfs = get_fs();
3455 	int err;
3456 
3457 	set_fs(KERNEL_DS);
3458 	err = sock->ops->ioctl(sock, cmd, arg);
3459 	set_fs(oldfs);
3460 
3461 	return err;
3462 }
3463 EXPORT_SYMBOL(kernel_sock_ioctl);
3464 
3465 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3466 {
3467 	return sock->ops->shutdown(sock, how);
3468 }
3469 EXPORT_SYMBOL(kernel_sock_shutdown);
3470