1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 118 unsigned long nr_segs, loff_t pos); 119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 120 unsigned long nr_segs, loff_t pos); 121 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 122 123 static int sock_close(struct inode *inode, struct file *file); 124 static unsigned int sock_poll(struct file *file, 125 struct poll_table_struct *wait); 126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 127 #ifdef CONFIG_COMPAT 128 static long compat_sock_ioctl(struct file *file, 129 unsigned int cmd, unsigned long arg); 130 #endif 131 static int sock_fasync(int fd, struct file *filp, int on); 132 static ssize_t sock_sendpage(struct file *file, struct page *page, 133 int offset, size_t size, loff_t *ppos, int more); 134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 135 struct pipe_inode_info *pipe, size_t len, 136 unsigned int flags); 137 138 /* 139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 140 * in the operation structures but are done directly via the socketcall() multiplexor. 141 */ 142 143 static const struct file_operations socket_file_ops = { 144 .owner = THIS_MODULE, 145 .llseek = no_llseek, 146 .aio_read = sock_aio_read, 147 .aio_write = sock_aio_write, 148 .poll = sock_poll, 149 .unlocked_ioctl = sock_ioctl, 150 #ifdef CONFIG_COMPAT 151 .compat_ioctl = compat_sock_ioctl, 152 #endif 153 .mmap = sock_mmap, 154 .open = sock_no_open, /* special open code to disallow open via /proc */ 155 .release = sock_close, 156 .fasync = sock_fasync, 157 .sendpage = sock_sendpage, 158 .splice_write = generic_splice_sendpage, 159 .splice_read = sock_splice_read, 160 }; 161 162 /* 163 * The protocol list. Each protocol is registered in here. 164 */ 165 166 static DEFINE_SPINLOCK(net_family_lock); 167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 168 169 /* 170 * Statistics counters of the socket lists 171 */ 172 173 static DEFINE_PER_CPU(int, sockets_in_use); 174 175 /* 176 * Support routines. 177 * Move socket addresses back and forth across the kernel/user 178 * divide and look after the messy bits. 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 221 void __user *uaddr, int __user *ulen) 222 { 223 int err; 224 int len; 225 226 BUG_ON(klen > sizeof(struct sockaddr_storage)); 227 err = get_user(len, ulen); 228 if (err) 229 return err; 230 if (len > klen) 231 len = klen; 232 if (len < 0) 233 return -EINVAL; 234 if (len) { 235 if (audit_sockaddr(klen, kaddr)) 236 return -ENOMEM; 237 if (copy_to_user(uaddr, kaddr, len)) 238 return -EFAULT; 239 } 240 /* 241 * "fromlen shall refer to the value before truncation.." 242 * 1003.1g 243 */ 244 return __put_user(klen, ulen); 245 } 246 247 static struct kmem_cache *sock_inode_cachep __read_mostly; 248 249 static struct inode *sock_alloc_inode(struct super_block *sb) 250 { 251 struct socket_alloc *ei; 252 struct socket_wq *wq; 253 254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 255 if (!ei) 256 return NULL; 257 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 258 if (!wq) { 259 kmem_cache_free(sock_inode_cachep, ei); 260 return NULL; 261 } 262 init_waitqueue_head(&wq->wait); 263 wq->fasync_list = NULL; 264 RCU_INIT_POINTER(ei->socket.wq, wq); 265 266 ei->socket.state = SS_UNCONNECTED; 267 ei->socket.flags = 0; 268 ei->socket.ops = NULL; 269 ei->socket.sk = NULL; 270 ei->socket.file = NULL; 271 272 return &ei->vfs_inode; 273 } 274 275 static void sock_destroy_inode(struct inode *inode) 276 { 277 struct socket_alloc *ei; 278 struct socket_wq *wq; 279 280 ei = container_of(inode, struct socket_alloc, vfs_inode); 281 wq = rcu_dereference_protected(ei->socket.wq, 1); 282 kfree_rcu(wq, rcu); 283 kmem_cache_free(sock_inode_cachep, ei); 284 } 285 286 static void init_once(void *foo) 287 { 288 struct socket_alloc *ei = (struct socket_alloc *)foo; 289 290 inode_init_once(&ei->vfs_inode); 291 } 292 293 static int init_inodecache(void) 294 { 295 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 296 sizeof(struct socket_alloc), 297 0, 298 (SLAB_HWCACHE_ALIGN | 299 SLAB_RECLAIM_ACCOUNT | 300 SLAB_MEM_SPREAD), 301 init_once); 302 if (sock_inode_cachep == NULL) 303 return -ENOMEM; 304 return 0; 305 } 306 307 static const struct super_operations sockfs_ops = { 308 .alloc_inode = sock_alloc_inode, 309 .destroy_inode = sock_destroy_inode, 310 .statfs = simple_statfs, 311 }; 312 313 /* 314 * sockfs_dname() is called from d_path(). 315 */ 316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 317 { 318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 319 dentry->d_inode->i_ino); 320 } 321 322 static const struct dentry_operations sockfs_dentry_operations = { 323 .d_dname = sockfs_dname, 324 }; 325 326 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 327 int flags, const char *dev_name, void *data) 328 { 329 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 330 &sockfs_dentry_operations, SOCKFS_MAGIC); 331 } 332 333 static struct vfsmount *sock_mnt __read_mostly; 334 335 static struct file_system_type sock_fs_type = { 336 .name = "sockfs", 337 .mount = sockfs_mount, 338 .kill_sb = kill_anon_super, 339 }; 340 341 /* 342 * Obtains the first available file descriptor and sets it up for use. 343 * 344 * These functions create file structures and maps them to fd space 345 * of the current process. On success it returns file descriptor 346 * and file struct implicitly stored in sock->file. 347 * Note that another thread may close file descriptor before we return 348 * from this function. We use the fact that now we do not refer 349 * to socket after mapping. If one day we will need it, this 350 * function will increment ref. count on file by 1. 351 * 352 * In any case returned fd MAY BE not valid! 353 * This race condition is unavoidable 354 * with shared fd spaces, we cannot solve it inside kernel, 355 * but we take care of internal coherence yet. 356 */ 357 358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 359 { 360 struct qstr name = { .name = "" }; 361 struct path path; 362 struct file *file; 363 364 if (dname) { 365 name.name = dname; 366 name.len = strlen(name.name); 367 } else if (sock->sk) { 368 name.name = sock->sk->sk_prot_creator->name; 369 name.len = strlen(name.name); 370 } 371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 372 if (unlikely(!path.dentry)) 373 return ERR_PTR(-ENOMEM); 374 path.mnt = mntget(sock_mnt); 375 376 d_instantiate(path.dentry, SOCK_INODE(sock)); 377 SOCK_INODE(sock)->i_fop = &socket_file_ops; 378 379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 380 &socket_file_ops); 381 if (unlikely(IS_ERR(file))) { 382 /* drop dentry, keep inode */ 383 ihold(path.dentry->d_inode); 384 path_put(&path); 385 return file; 386 } 387 388 sock->file = file; 389 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 390 file->private_data = sock; 391 return file; 392 } 393 EXPORT_SYMBOL(sock_alloc_file); 394 395 static int sock_map_fd(struct socket *sock, int flags) 396 { 397 struct file *newfile; 398 int fd = get_unused_fd_flags(flags); 399 if (unlikely(fd < 0)) 400 return fd; 401 402 newfile = sock_alloc_file(sock, flags, NULL); 403 if (likely(!IS_ERR(newfile))) { 404 fd_install(fd, newfile); 405 return fd; 406 } 407 408 put_unused_fd(fd); 409 return PTR_ERR(newfile); 410 } 411 412 struct socket *sock_from_file(struct file *file, int *err) 413 { 414 if (file->f_op == &socket_file_ops) 415 return file->private_data; /* set in sock_map_fd */ 416 417 *err = -ENOTSOCK; 418 return NULL; 419 } 420 EXPORT_SYMBOL(sock_from_file); 421 422 /** 423 * sockfd_lookup - Go from a file number to its socket slot 424 * @fd: file handle 425 * @err: pointer to an error code return 426 * 427 * The file handle passed in is locked and the socket it is bound 428 * too is returned. If an error occurs the err pointer is overwritten 429 * with a negative errno code and NULL is returned. The function checks 430 * for both invalid handles and passing a handle which is not a socket. 431 * 432 * On a success the socket object pointer is returned. 433 */ 434 435 struct socket *sockfd_lookup(int fd, int *err) 436 { 437 struct file *file; 438 struct socket *sock; 439 440 file = fget(fd); 441 if (!file) { 442 *err = -EBADF; 443 return NULL; 444 } 445 446 sock = sock_from_file(file, err); 447 if (!sock) 448 fput(file); 449 return sock; 450 } 451 EXPORT_SYMBOL(sockfd_lookup); 452 453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 454 { 455 struct fd f = fdget(fd); 456 struct socket *sock; 457 458 *err = -EBADF; 459 if (f.file) { 460 sock = sock_from_file(f.file, err); 461 if (likely(sock)) { 462 *fput_needed = f.flags; 463 return sock; 464 } 465 fdput(f); 466 } 467 return NULL; 468 } 469 470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 473 static ssize_t sockfs_getxattr(struct dentry *dentry, 474 const char *name, void *value, size_t size) 475 { 476 const char *proto_name; 477 size_t proto_size; 478 int error; 479 480 error = -ENODATA; 481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 482 proto_name = dentry->d_name.name; 483 proto_size = strlen(proto_name); 484 485 if (value) { 486 error = -ERANGE; 487 if (proto_size + 1 > size) 488 goto out; 489 490 strncpy(value, proto_name, proto_size + 1); 491 } 492 error = proto_size + 1; 493 } 494 495 out: 496 return error; 497 } 498 499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 500 size_t size) 501 { 502 ssize_t len; 503 ssize_t used = 0; 504 505 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 506 if (len < 0) 507 return len; 508 used += len; 509 if (buffer) { 510 if (size < used) 511 return -ERANGE; 512 buffer += len; 513 } 514 515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 516 used += len; 517 if (buffer) { 518 if (size < used) 519 return -ERANGE; 520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 521 buffer += len; 522 } 523 524 return used; 525 } 526 527 static const struct inode_operations sockfs_inode_ops = { 528 .getxattr = sockfs_getxattr, 529 .listxattr = sockfs_listxattr, 530 }; 531 532 /** 533 * sock_alloc - allocate a socket 534 * 535 * Allocate a new inode and socket object. The two are bound together 536 * and initialised. The socket is then returned. If we are out of inodes 537 * NULL is returned. 538 */ 539 540 static struct socket *sock_alloc(void) 541 { 542 struct inode *inode; 543 struct socket *sock; 544 545 inode = new_inode_pseudo(sock_mnt->mnt_sb); 546 if (!inode) 547 return NULL; 548 549 sock = SOCKET_I(inode); 550 551 kmemcheck_annotate_bitfield(sock, type); 552 inode->i_ino = get_next_ino(); 553 inode->i_mode = S_IFSOCK | S_IRWXUGO; 554 inode->i_uid = current_fsuid(); 555 inode->i_gid = current_fsgid(); 556 inode->i_op = &sockfs_inode_ops; 557 558 this_cpu_add(sockets_in_use, 1); 559 return sock; 560 } 561 562 /* 563 * In theory you can't get an open on this inode, but /proc provides 564 * a back door. Remember to keep it shut otherwise you'll let the 565 * creepy crawlies in. 566 */ 567 568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 569 { 570 return -ENXIO; 571 } 572 573 const struct file_operations bad_sock_fops = { 574 .owner = THIS_MODULE, 575 .open = sock_no_open, 576 .llseek = noop_llseek, 577 }; 578 579 /** 580 * sock_release - close a socket 581 * @sock: socket to close 582 * 583 * The socket is released from the protocol stack if it has a release 584 * callback, and the inode is then released if the socket is bound to 585 * an inode not a file. 586 */ 587 588 void sock_release(struct socket *sock) 589 { 590 if (sock->ops) { 591 struct module *owner = sock->ops->owner; 592 593 sock->ops->release(sock); 594 sock->ops = NULL; 595 module_put(owner); 596 } 597 598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 599 pr_err("%s: fasync list not empty!\n", __func__); 600 601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 602 return; 603 604 this_cpu_sub(sockets_in_use, 1); 605 if (!sock->file) { 606 iput(SOCK_INODE(sock)); 607 return; 608 } 609 sock->file = NULL; 610 } 611 EXPORT_SYMBOL(sock_release); 612 613 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 614 { 615 *tx_flags = 0; 616 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 617 *tx_flags |= SKBTX_HW_TSTAMP; 618 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 619 *tx_flags |= SKBTX_SW_TSTAMP; 620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 621 *tx_flags |= SKBTX_SCHED_TSTAMP; 622 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 623 *tx_flags |= SKBTX_ACK_TSTAMP; 624 625 if (sock_flag(sk, SOCK_WIFI_STATUS)) 626 *tx_flags |= SKBTX_WIFI_STATUS; 627 } 628 EXPORT_SYMBOL(sock_tx_timestamp); 629 630 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 631 struct msghdr *msg, size_t size) 632 { 633 struct sock_iocb *si = kiocb_to_siocb(iocb); 634 635 si->sock = sock; 636 si->scm = NULL; 637 si->msg = msg; 638 si->size = size; 639 640 return sock->ops->sendmsg(iocb, sock, msg, size); 641 } 642 643 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 644 struct msghdr *msg, size_t size) 645 { 646 int err = security_socket_sendmsg(sock, msg, size); 647 648 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 649 } 650 651 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 652 { 653 struct kiocb iocb; 654 struct sock_iocb siocb; 655 int ret; 656 657 init_sync_kiocb(&iocb, NULL); 658 iocb.private = &siocb; 659 ret = __sock_sendmsg(&iocb, sock, msg, size); 660 if (-EIOCBQUEUED == ret) 661 ret = wait_on_sync_kiocb(&iocb); 662 return ret; 663 } 664 EXPORT_SYMBOL(sock_sendmsg); 665 666 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 667 { 668 struct kiocb iocb; 669 struct sock_iocb siocb; 670 int ret; 671 672 init_sync_kiocb(&iocb, NULL); 673 iocb.private = &siocb; 674 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 675 if (-EIOCBQUEUED == ret) 676 ret = wait_on_sync_kiocb(&iocb); 677 return ret; 678 } 679 680 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 681 struct kvec *vec, size_t num, size_t size) 682 { 683 mm_segment_t oldfs = get_fs(); 684 int result; 685 686 set_fs(KERNEL_DS); 687 /* 688 * the following is safe, since for compiler definitions of kvec and 689 * iovec are identical, yielding the same in-core layout and alignment 690 */ 691 msg->msg_iov = (struct iovec *)vec; 692 msg->msg_iovlen = num; 693 result = sock_sendmsg(sock, msg, size); 694 set_fs(oldfs); 695 return result; 696 } 697 EXPORT_SYMBOL(kernel_sendmsg); 698 699 /* 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 701 */ 702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704 { 705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 706 struct scm_timestamping tss; 707 int empty = 1; 708 struct skb_shared_hwtstamps *shhwtstamps = 709 skb_hwtstamps(skb); 710 711 /* Race occurred between timestamp enabling and packet 712 receiving. Fill in the current time for now. */ 713 if (need_software_tstamp && skb->tstamp.tv64 == 0) 714 __net_timestamp(skb); 715 716 if (need_software_tstamp) { 717 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 718 struct timeval tv; 719 skb_get_timestamp(skb, &tv); 720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 721 sizeof(tv), &tv); 722 } else { 723 struct timespec ts; 724 skb_get_timestampns(skb, &ts); 725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 726 sizeof(ts), &ts); 727 } 728 } 729 730 memset(&tss, 0, sizeof(tss)); 731 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE || 732 skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP) && 733 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 734 empty = 0; 735 if (shhwtstamps && 736 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 737 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 738 empty = 0; 739 if (!empty) 740 put_cmsg(msg, SOL_SOCKET, 741 SCM_TIMESTAMPING, sizeof(tss), &tss); 742 } 743 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 744 745 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 746 struct sk_buff *skb) 747 { 748 int ack; 749 750 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 751 return; 752 if (!skb->wifi_acked_valid) 753 return; 754 755 ack = skb->wifi_acked; 756 757 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 758 } 759 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 760 761 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 762 struct sk_buff *skb) 763 { 764 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 765 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 766 sizeof(__u32), &skb->dropcount); 767 } 768 769 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 770 struct sk_buff *skb) 771 { 772 sock_recv_timestamp(msg, sk, skb); 773 sock_recv_drops(msg, sk, skb); 774 } 775 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 776 777 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 778 struct msghdr *msg, size_t size, int flags) 779 { 780 struct sock_iocb *si = kiocb_to_siocb(iocb); 781 782 si->sock = sock; 783 si->scm = NULL; 784 si->msg = msg; 785 si->size = size; 786 si->flags = flags; 787 788 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 789 } 790 791 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 792 struct msghdr *msg, size_t size, int flags) 793 { 794 int err = security_socket_recvmsg(sock, msg, size, flags); 795 796 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 797 } 798 799 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 800 size_t size, int flags) 801 { 802 struct kiocb iocb; 803 struct sock_iocb siocb; 804 int ret; 805 806 init_sync_kiocb(&iocb, NULL); 807 iocb.private = &siocb; 808 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 809 if (-EIOCBQUEUED == ret) 810 ret = wait_on_sync_kiocb(&iocb); 811 return ret; 812 } 813 EXPORT_SYMBOL(sock_recvmsg); 814 815 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 816 size_t size, int flags) 817 { 818 struct kiocb iocb; 819 struct sock_iocb siocb; 820 int ret; 821 822 init_sync_kiocb(&iocb, NULL); 823 iocb.private = &siocb; 824 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 825 if (-EIOCBQUEUED == ret) 826 ret = wait_on_sync_kiocb(&iocb); 827 return ret; 828 } 829 830 /** 831 * kernel_recvmsg - Receive a message from a socket (kernel space) 832 * @sock: The socket to receive the message from 833 * @msg: Received message 834 * @vec: Input s/g array for message data 835 * @num: Size of input s/g array 836 * @size: Number of bytes to read 837 * @flags: Message flags (MSG_DONTWAIT, etc...) 838 * 839 * On return the msg structure contains the scatter/gather array passed in the 840 * vec argument. The array is modified so that it consists of the unfilled 841 * portion of the original array. 842 * 843 * The returned value is the total number of bytes received, or an error. 844 */ 845 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 846 struct kvec *vec, size_t num, size_t size, int flags) 847 { 848 mm_segment_t oldfs = get_fs(); 849 int result; 850 851 set_fs(KERNEL_DS); 852 /* 853 * the following is safe, since for compiler definitions of kvec and 854 * iovec are identical, yielding the same in-core layout and alignment 855 */ 856 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 857 result = sock_recvmsg(sock, msg, size, flags); 858 set_fs(oldfs); 859 return result; 860 } 861 EXPORT_SYMBOL(kernel_recvmsg); 862 863 static ssize_t sock_sendpage(struct file *file, struct page *page, 864 int offset, size_t size, loff_t *ppos, int more) 865 { 866 struct socket *sock; 867 int flags; 868 869 sock = file->private_data; 870 871 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 872 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 873 flags |= more; 874 875 return kernel_sendpage(sock, page, offset, size, flags); 876 } 877 878 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 879 struct pipe_inode_info *pipe, size_t len, 880 unsigned int flags) 881 { 882 struct socket *sock = file->private_data; 883 884 if (unlikely(!sock->ops->splice_read)) 885 return -EINVAL; 886 887 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 888 } 889 890 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 891 struct sock_iocb *siocb) 892 { 893 if (!is_sync_kiocb(iocb)) 894 BUG(); 895 896 siocb->kiocb = iocb; 897 iocb->private = siocb; 898 return siocb; 899 } 900 901 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 902 struct file *file, const struct iovec *iov, 903 unsigned long nr_segs) 904 { 905 struct socket *sock = file->private_data; 906 size_t size = 0; 907 int i; 908 909 for (i = 0; i < nr_segs; i++) 910 size += iov[i].iov_len; 911 912 msg->msg_name = NULL; 913 msg->msg_namelen = 0; 914 msg->msg_control = NULL; 915 msg->msg_controllen = 0; 916 msg->msg_iov = (struct iovec *)iov; 917 msg->msg_iovlen = nr_segs; 918 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 919 920 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 921 } 922 923 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 924 unsigned long nr_segs, loff_t pos) 925 { 926 struct sock_iocb siocb, *x; 927 928 if (pos != 0) 929 return -ESPIPE; 930 931 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 932 return 0; 933 934 935 x = alloc_sock_iocb(iocb, &siocb); 936 if (!x) 937 return -ENOMEM; 938 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 939 } 940 941 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 942 struct file *file, const struct iovec *iov, 943 unsigned long nr_segs) 944 { 945 struct socket *sock = file->private_data; 946 size_t size = 0; 947 int i; 948 949 for (i = 0; i < nr_segs; i++) 950 size += iov[i].iov_len; 951 952 msg->msg_name = NULL; 953 msg->msg_namelen = 0; 954 msg->msg_control = NULL; 955 msg->msg_controllen = 0; 956 msg->msg_iov = (struct iovec *)iov; 957 msg->msg_iovlen = nr_segs; 958 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 959 if (sock->type == SOCK_SEQPACKET) 960 msg->msg_flags |= MSG_EOR; 961 962 return __sock_sendmsg(iocb, sock, msg, size); 963 } 964 965 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 966 unsigned long nr_segs, loff_t pos) 967 { 968 struct sock_iocb siocb, *x; 969 970 if (pos != 0) 971 return -ESPIPE; 972 973 x = alloc_sock_iocb(iocb, &siocb); 974 if (!x) 975 return -ENOMEM; 976 977 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 978 } 979 980 /* 981 * Atomic setting of ioctl hooks to avoid race 982 * with module unload. 983 */ 984 985 static DEFINE_MUTEX(br_ioctl_mutex); 986 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 987 988 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 989 { 990 mutex_lock(&br_ioctl_mutex); 991 br_ioctl_hook = hook; 992 mutex_unlock(&br_ioctl_mutex); 993 } 994 EXPORT_SYMBOL(brioctl_set); 995 996 static DEFINE_MUTEX(vlan_ioctl_mutex); 997 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 998 999 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1000 { 1001 mutex_lock(&vlan_ioctl_mutex); 1002 vlan_ioctl_hook = hook; 1003 mutex_unlock(&vlan_ioctl_mutex); 1004 } 1005 EXPORT_SYMBOL(vlan_ioctl_set); 1006 1007 static DEFINE_MUTEX(dlci_ioctl_mutex); 1008 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1009 1010 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1011 { 1012 mutex_lock(&dlci_ioctl_mutex); 1013 dlci_ioctl_hook = hook; 1014 mutex_unlock(&dlci_ioctl_mutex); 1015 } 1016 EXPORT_SYMBOL(dlci_ioctl_set); 1017 1018 static long sock_do_ioctl(struct net *net, struct socket *sock, 1019 unsigned int cmd, unsigned long arg) 1020 { 1021 int err; 1022 void __user *argp = (void __user *)arg; 1023 1024 err = sock->ops->ioctl(sock, cmd, arg); 1025 1026 /* 1027 * If this ioctl is unknown try to hand it down 1028 * to the NIC driver. 1029 */ 1030 if (err == -ENOIOCTLCMD) 1031 err = dev_ioctl(net, cmd, argp); 1032 1033 return err; 1034 } 1035 1036 /* 1037 * With an ioctl, arg may well be a user mode pointer, but we don't know 1038 * what to do with it - that's up to the protocol still. 1039 */ 1040 1041 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1042 { 1043 struct socket *sock; 1044 struct sock *sk; 1045 void __user *argp = (void __user *)arg; 1046 int pid, err; 1047 struct net *net; 1048 1049 sock = file->private_data; 1050 sk = sock->sk; 1051 net = sock_net(sk); 1052 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1053 err = dev_ioctl(net, cmd, argp); 1054 } else 1055 #ifdef CONFIG_WEXT_CORE 1056 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1057 err = dev_ioctl(net, cmd, argp); 1058 } else 1059 #endif 1060 switch (cmd) { 1061 case FIOSETOWN: 1062 case SIOCSPGRP: 1063 err = -EFAULT; 1064 if (get_user(pid, (int __user *)argp)) 1065 break; 1066 err = f_setown(sock->file, pid, 1); 1067 break; 1068 case FIOGETOWN: 1069 case SIOCGPGRP: 1070 err = put_user(f_getown(sock->file), 1071 (int __user *)argp); 1072 break; 1073 case SIOCGIFBR: 1074 case SIOCSIFBR: 1075 case SIOCBRADDBR: 1076 case SIOCBRDELBR: 1077 err = -ENOPKG; 1078 if (!br_ioctl_hook) 1079 request_module("bridge"); 1080 1081 mutex_lock(&br_ioctl_mutex); 1082 if (br_ioctl_hook) 1083 err = br_ioctl_hook(net, cmd, argp); 1084 mutex_unlock(&br_ioctl_mutex); 1085 break; 1086 case SIOCGIFVLAN: 1087 case SIOCSIFVLAN: 1088 err = -ENOPKG; 1089 if (!vlan_ioctl_hook) 1090 request_module("8021q"); 1091 1092 mutex_lock(&vlan_ioctl_mutex); 1093 if (vlan_ioctl_hook) 1094 err = vlan_ioctl_hook(net, argp); 1095 mutex_unlock(&vlan_ioctl_mutex); 1096 break; 1097 case SIOCADDDLCI: 1098 case SIOCDELDLCI: 1099 err = -ENOPKG; 1100 if (!dlci_ioctl_hook) 1101 request_module("dlci"); 1102 1103 mutex_lock(&dlci_ioctl_mutex); 1104 if (dlci_ioctl_hook) 1105 err = dlci_ioctl_hook(cmd, argp); 1106 mutex_unlock(&dlci_ioctl_mutex); 1107 break; 1108 default: 1109 err = sock_do_ioctl(net, sock, cmd, arg); 1110 break; 1111 } 1112 return err; 1113 } 1114 1115 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1116 { 1117 int err; 1118 struct socket *sock = NULL; 1119 1120 err = security_socket_create(family, type, protocol, 1); 1121 if (err) 1122 goto out; 1123 1124 sock = sock_alloc(); 1125 if (!sock) { 1126 err = -ENOMEM; 1127 goto out; 1128 } 1129 1130 sock->type = type; 1131 err = security_socket_post_create(sock, family, type, protocol, 1); 1132 if (err) 1133 goto out_release; 1134 1135 out: 1136 *res = sock; 1137 return err; 1138 out_release: 1139 sock_release(sock); 1140 sock = NULL; 1141 goto out; 1142 } 1143 EXPORT_SYMBOL(sock_create_lite); 1144 1145 /* No kernel lock held - perfect */ 1146 static unsigned int sock_poll(struct file *file, poll_table *wait) 1147 { 1148 unsigned int busy_flag = 0; 1149 struct socket *sock; 1150 1151 /* 1152 * We can't return errors to poll, so it's either yes or no. 1153 */ 1154 sock = file->private_data; 1155 1156 if (sk_can_busy_loop(sock->sk)) { 1157 /* this socket can poll_ll so tell the system call */ 1158 busy_flag = POLL_BUSY_LOOP; 1159 1160 /* once, only if requested by syscall */ 1161 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1162 sk_busy_loop(sock->sk, 1); 1163 } 1164 1165 return busy_flag | sock->ops->poll(file, sock, wait); 1166 } 1167 1168 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1169 { 1170 struct socket *sock = file->private_data; 1171 1172 return sock->ops->mmap(file, sock, vma); 1173 } 1174 1175 static int sock_close(struct inode *inode, struct file *filp) 1176 { 1177 sock_release(SOCKET_I(inode)); 1178 return 0; 1179 } 1180 1181 /* 1182 * Update the socket async list 1183 * 1184 * Fasync_list locking strategy. 1185 * 1186 * 1. fasync_list is modified only under process context socket lock 1187 * i.e. under semaphore. 1188 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1189 * or under socket lock 1190 */ 1191 1192 static int sock_fasync(int fd, struct file *filp, int on) 1193 { 1194 struct socket *sock = filp->private_data; 1195 struct sock *sk = sock->sk; 1196 struct socket_wq *wq; 1197 1198 if (sk == NULL) 1199 return -EINVAL; 1200 1201 lock_sock(sk); 1202 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1203 fasync_helper(fd, filp, on, &wq->fasync_list); 1204 1205 if (!wq->fasync_list) 1206 sock_reset_flag(sk, SOCK_FASYNC); 1207 else 1208 sock_set_flag(sk, SOCK_FASYNC); 1209 1210 release_sock(sk); 1211 return 0; 1212 } 1213 1214 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1215 1216 int sock_wake_async(struct socket *sock, int how, int band) 1217 { 1218 struct socket_wq *wq; 1219 1220 if (!sock) 1221 return -1; 1222 rcu_read_lock(); 1223 wq = rcu_dereference(sock->wq); 1224 if (!wq || !wq->fasync_list) { 1225 rcu_read_unlock(); 1226 return -1; 1227 } 1228 switch (how) { 1229 case SOCK_WAKE_WAITD: 1230 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1231 break; 1232 goto call_kill; 1233 case SOCK_WAKE_SPACE: 1234 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1235 break; 1236 /* fall through */ 1237 case SOCK_WAKE_IO: 1238 call_kill: 1239 kill_fasync(&wq->fasync_list, SIGIO, band); 1240 break; 1241 case SOCK_WAKE_URG: 1242 kill_fasync(&wq->fasync_list, SIGURG, band); 1243 } 1244 rcu_read_unlock(); 1245 return 0; 1246 } 1247 EXPORT_SYMBOL(sock_wake_async); 1248 1249 int __sock_create(struct net *net, int family, int type, int protocol, 1250 struct socket **res, int kern) 1251 { 1252 int err; 1253 struct socket *sock; 1254 const struct net_proto_family *pf; 1255 1256 /* 1257 * Check protocol is in range 1258 */ 1259 if (family < 0 || family >= NPROTO) 1260 return -EAFNOSUPPORT; 1261 if (type < 0 || type >= SOCK_MAX) 1262 return -EINVAL; 1263 1264 /* Compatibility. 1265 1266 This uglymoron is moved from INET layer to here to avoid 1267 deadlock in module load. 1268 */ 1269 if (family == PF_INET && type == SOCK_PACKET) { 1270 static int warned; 1271 if (!warned) { 1272 warned = 1; 1273 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1274 current->comm); 1275 } 1276 family = PF_PACKET; 1277 } 1278 1279 err = security_socket_create(family, type, protocol, kern); 1280 if (err) 1281 return err; 1282 1283 /* 1284 * Allocate the socket and allow the family to set things up. if 1285 * the protocol is 0, the family is instructed to select an appropriate 1286 * default. 1287 */ 1288 sock = sock_alloc(); 1289 if (!sock) { 1290 net_warn_ratelimited("socket: no more sockets\n"); 1291 return -ENFILE; /* Not exactly a match, but its the 1292 closest posix thing */ 1293 } 1294 1295 sock->type = type; 1296 1297 #ifdef CONFIG_MODULES 1298 /* Attempt to load a protocol module if the find failed. 1299 * 1300 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1301 * requested real, full-featured networking support upon configuration. 1302 * Otherwise module support will break! 1303 */ 1304 if (rcu_access_pointer(net_families[family]) == NULL) 1305 request_module("net-pf-%d", family); 1306 #endif 1307 1308 rcu_read_lock(); 1309 pf = rcu_dereference(net_families[family]); 1310 err = -EAFNOSUPPORT; 1311 if (!pf) 1312 goto out_release; 1313 1314 /* 1315 * We will call the ->create function, that possibly is in a loadable 1316 * module, so we have to bump that loadable module refcnt first. 1317 */ 1318 if (!try_module_get(pf->owner)) 1319 goto out_release; 1320 1321 /* Now protected by module ref count */ 1322 rcu_read_unlock(); 1323 1324 err = pf->create(net, sock, protocol, kern); 1325 if (err < 0) 1326 goto out_module_put; 1327 1328 /* 1329 * Now to bump the refcnt of the [loadable] module that owns this 1330 * socket at sock_release time we decrement its refcnt. 1331 */ 1332 if (!try_module_get(sock->ops->owner)) 1333 goto out_module_busy; 1334 1335 /* 1336 * Now that we're done with the ->create function, the [loadable] 1337 * module can have its refcnt decremented 1338 */ 1339 module_put(pf->owner); 1340 err = security_socket_post_create(sock, family, type, protocol, kern); 1341 if (err) 1342 goto out_sock_release; 1343 *res = sock; 1344 1345 return 0; 1346 1347 out_module_busy: 1348 err = -EAFNOSUPPORT; 1349 out_module_put: 1350 sock->ops = NULL; 1351 module_put(pf->owner); 1352 out_sock_release: 1353 sock_release(sock); 1354 return err; 1355 1356 out_release: 1357 rcu_read_unlock(); 1358 goto out_sock_release; 1359 } 1360 EXPORT_SYMBOL(__sock_create); 1361 1362 int sock_create(int family, int type, int protocol, struct socket **res) 1363 { 1364 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1365 } 1366 EXPORT_SYMBOL(sock_create); 1367 1368 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1369 { 1370 return __sock_create(&init_net, family, type, protocol, res, 1); 1371 } 1372 EXPORT_SYMBOL(sock_create_kern); 1373 1374 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1375 { 1376 int retval; 1377 struct socket *sock; 1378 int flags; 1379 1380 /* Check the SOCK_* constants for consistency. */ 1381 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1382 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1383 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1384 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1385 1386 flags = type & ~SOCK_TYPE_MASK; 1387 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1388 return -EINVAL; 1389 type &= SOCK_TYPE_MASK; 1390 1391 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1392 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1393 1394 retval = sock_create(family, type, protocol, &sock); 1395 if (retval < 0) 1396 goto out; 1397 1398 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1399 if (retval < 0) 1400 goto out_release; 1401 1402 out: 1403 /* It may be already another descriptor 8) Not kernel problem. */ 1404 return retval; 1405 1406 out_release: 1407 sock_release(sock); 1408 return retval; 1409 } 1410 1411 /* 1412 * Create a pair of connected sockets. 1413 */ 1414 1415 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1416 int __user *, usockvec) 1417 { 1418 struct socket *sock1, *sock2; 1419 int fd1, fd2, err; 1420 struct file *newfile1, *newfile2; 1421 int flags; 1422 1423 flags = type & ~SOCK_TYPE_MASK; 1424 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1425 return -EINVAL; 1426 type &= SOCK_TYPE_MASK; 1427 1428 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1429 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1430 1431 /* 1432 * Obtain the first socket and check if the underlying protocol 1433 * supports the socketpair call. 1434 */ 1435 1436 err = sock_create(family, type, protocol, &sock1); 1437 if (err < 0) 1438 goto out; 1439 1440 err = sock_create(family, type, protocol, &sock2); 1441 if (err < 0) 1442 goto out_release_1; 1443 1444 err = sock1->ops->socketpair(sock1, sock2); 1445 if (err < 0) 1446 goto out_release_both; 1447 1448 fd1 = get_unused_fd_flags(flags); 1449 if (unlikely(fd1 < 0)) { 1450 err = fd1; 1451 goto out_release_both; 1452 } 1453 1454 fd2 = get_unused_fd_flags(flags); 1455 if (unlikely(fd2 < 0)) { 1456 err = fd2; 1457 goto out_put_unused_1; 1458 } 1459 1460 newfile1 = sock_alloc_file(sock1, flags, NULL); 1461 if (unlikely(IS_ERR(newfile1))) { 1462 err = PTR_ERR(newfile1); 1463 goto out_put_unused_both; 1464 } 1465 1466 newfile2 = sock_alloc_file(sock2, flags, NULL); 1467 if (IS_ERR(newfile2)) { 1468 err = PTR_ERR(newfile2); 1469 goto out_fput_1; 1470 } 1471 1472 err = put_user(fd1, &usockvec[0]); 1473 if (err) 1474 goto out_fput_both; 1475 1476 err = put_user(fd2, &usockvec[1]); 1477 if (err) 1478 goto out_fput_both; 1479 1480 audit_fd_pair(fd1, fd2); 1481 1482 fd_install(fd1, newfile1); 1483 fd_install(fd2, newfile2); 1484 /* fd1 and fd2 may be already another descriptors. 1485 * Not kernel problem. 1486 */ 1487 1488 return 0; 1489 1490 out_fput_both: 1491 fput(newfile2); 1492 fput(newfile1); 1493 put_unused_fd(fd2); 1494 put_unused_fd(fd1); 1495 goto out; 1496 1497 out_fput_1: 1498 fput(newfile1); 1499 put_unused_fd(fd2); 1500 put_unused_fd(fd1); 1501 sock_release(sock2); 1502 goto out; 1503 1504 out_put_unused_both: 1505 put_unused_fd(fd2); 1506 out_put_unused_1: 1507 put_unused_fd(fd1); 1508 out_release_both: 1509 sock_release(sock2); 1510 out_release_1: 1511 sock_release(sock1); 1512 out: 1513 return err; 1514 } 1515 1516 /* 1517 * Bind a name to a socket. Nothing much to do here since it's 1518 * the protocol's responsibility to handle the local address. 1519 * 1520 * We move the socket address to kernel space before we call 1521 * the protocol layer (having also checked the address is ok). 1522 */ 1523 1524 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1525 { 1526 struct socket *sock; 1527 struct sockaddr_storage address; 1528 int err, fput_needed; 1529 1530 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1531 if (sock) { 1532 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1533 if (err >= 0) { 1534 err = security_socket_bind(sock, 1535 (struct sockaddr *)&address, 1536 addrlen); 1537 if (!err) 1538 err = sock->ops->bind(sock, 1539 (struct sockaddr *) 1540 &address, addrlen); 1541 } 1542 fput_light(sock->file, fput_needed); 1543 } 1544 return err; 1545 } 1546 1547 /* 1548 * Perform a listen. Basically, we allow the protocol to do anything 1549 * necessary for a listen, and if that works, we mark the socket as 1550 * ready for listening. 1551 */ 1552 1553 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1554 { 1555 struct socket *sock; 1556 int err, fput_needed; 1557 int somaxconn; 1558 1559 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1560 if (sock) { 1561 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1562 if ((unsigned int)backlog > somaxconn) 1563 backlog = somaxconn; 1564 1565 err = security_socket_listen(sock, backlog); 1566 if (!err) 1567 err = sock->ops->listen(sock, backlog); 1568 1569 fput_light(sock->file, fput_needed); 1570 } 1571 return err; 1572 } 1573 1574 /* 1575 * For accept, we attempt to create a new socket, set up the link 1576 * with the client, wake up the client, then return the new 1577 * connected fd. We collect the address of the connector in kernel 1578 * space and move it to user at the very end. This is unclean because 1579 * we open the socket then return an error. 1580 * 1581 * 1003.1g adds the ability to recvmsg() to query connection pending 1582 * status to recvmsg. We need to add that support in a way thats 1583 * clean when we restucture accept also. 1584 */ 1585 1586 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1587 int __user *, upeer_addrlen, int, flags) 1588 { 1589 struct socket *sock, *newsock; 1590 struct file *newfile; 1591 int err, len, newfd, fput_needed; 1592 struct sockaddr_storage address; 1593 1594 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1595 return -EINVAL; 1596 1597 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1598 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1599 1600 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1601 if (!sock) 1602 goto out; 1603 1604 err = -ENFILE; 1605 newsock = sock_alloc(); 1606 if (!newsock) 1607 goto out_put; 1608 1609 newsock->type = sock->type; 1610 newsock->ops = sock->ops; 1611 1612 /* 1613 * We don't need try_module_get here, as the listening socket (sock) 1614 * has the protocol module (sock->ops->owner) held. 1615 */ 1616 __module_get(newsock->ops->owner); 1617 1618 newfd = get_unused_fd_flags(flags); 1619 if (unlikely(newfd < 0)) { 1620 err = newfd; 1621 sock_release(newsock); 1622 goto out_put; 1623 } 1624 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1625 if (unlikely(IS_ERR(newfile))) { 1626 err = PTR_ERR(newfile); 1627 put_unused_fd(newfd); 1628 sock_release(newsock); 1629 goto out_put; 1630 } 1631 1632 err = security_socket_accept(sock, newsock); 1633 if (err) 1634 goto out_fd; 1635 1636 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1637 if (err < 0) 1638 goto out_fd; 1639 1640 if (upeer_sockaddr) { 1641 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1642 &len, 2) < 0) { 1643 err = -ECONNABORTED; 1644 goto out_fd; 1645 } 1646 err = move_addr_to_user(&address, 1647 len, upeer_sockaddr, upeer_addrlen); 1648 if (err < 0) 1649 goto out_fd; 1650 } 1651 1652 /* File flags are not inherited via accept() unlike another OSes. */ 1653 1654 fd_install(newfd, newfile); 1655 err = newfd; 1656 1657 out_put: 1658 fput_light(sock->file, fput_needed); 1659 out: 1660 return err; 1661 out_fd: 1662 fput(newfile); 1663 put_unused_fd(newfd); 1664 goto out_put; 1665 } 1666 1667 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1668 int __user *, upeer_addrlen) 1669 { 1670 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1671 } 1672 1673 /* 1674 * Attempt to connect to a socket with the server address. The address 1675 * is in user space so we verify it is OK and move it to kernel space. 1676 * 1677 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1678 * break bindings 1679 * 1680 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1681 * other SEQPACKET protocols that take time to connect() as it doesn't 1682 * include the -EINPROGRESS status for such sockets. 1683 */ 1684 1685 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1686 int, addrlen) 1687 { 1688 struct socket *sock; 1689 struct sockaddr_storage address; 1690 int err, fput_needed; 1691 1692 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1693 if (!sock) 1694 goto out; 1695 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1696 if (err < 0) 1697 goto out_put; 1698 1699 err = 1700 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1701 if (err) 1702 goto out_put; 1703 1704 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1705 sock->file->f_flags); 1706 out_put: 1707 fput_light(sock->file, fput_needed); 1708 out: 1709 return err; 1710 } 1711 1712 /* 1713 * Get the local address ('name') of a socket object. Move the obtained 1714 * name to user space. 1715 */ 1716 1717 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1718 int __user *, usockaddr_len) 1719 { 1720 struct socket *sock; 1721 struct sockaddr_storage address; 1722 int len, err, fput_needed; 1723 1724 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1725 if (!sock) 1726 goto out; 1727 1728 err = security_socket_getsockname(sock); 1729 if (err) 1730 goto out_put; 1731 1732 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1733 if (err) 1734 goto out_put; 1735 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1736 1737 out_put: 1738 fput_light(sock->file, fput_needed); 1739 out: 1740 return err; 1741 } 1742 1743 /* 1744 * Get the remote address ('name') of a socket object. Move the obtained 1745 * name to user space. 1746 */ 1747 1748 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1749 int __user *, usockaddr_len) 1750 { 1751 struct socket *sock; 1752 struct sockaddr_storage address; 1753 int len, err, fput_needed; 1754 1755 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1756 if (sock != NULL) { 1757 err = security_socket_getpeername(sock); 1758 if (err) { 1759 fput_light(sock->file, fput_needed); 1760 return err; 1761 } 1762 1763 err = 1764 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1765 1); 1766 if (!err) 1767 err = move_addr_to_user(&address, len, usockaddr, 1768 usockaddr_len); 1769 fput_light(sock->file, fput_needed); 1770 } 1771 return err; 1772 } 1773 1774 /* 1775 * Send a datagram to a given address. We move the address into kernel 1776 * space and check the user space data area is readable before invoking 1777 * the protocol. 1778 */ 1779 1780 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1781 unsigned int, flags, struct sockaddr __user *, addr, 1782 int, addr_len) 1783 { 1784 struct socket *sock; 1785 struct sockaddr_storage address; 1786 int err; 1787 struct msghdr msg; 1788 struct iovec iov; 1789 int fput_needed; 1790 1791 if (len > INT_MAX) 1792 len = INT_MAX; 1793 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1794 if (!sock) 1795 goto out; 1796 1797 iov.iov_base = buff; 1798 iov.iov_len = len; 1799 msg.msg_name = NULL; 1800 msg.msg_iov = &iov; 1801 msg.msg_iovlen = 1; 1802 msg.msg_control = NULL; 1803 msg.msg_controllen = 0; 1804 msg.msg_namelen = 0; 1805 if (addr) { 1806 err = move_addr_to_kernel(addr, addr_len, &address); 1807 if (err < 0) 1808 goto out_put; 1809 msg.msg_name = (struct sockaddr *)&address; 1810 msg.msg_namelen = addr_len; 1811 } 1812 if (sock->file->f_flags & O_NONBLOCK) 1813 flags |= MSG_DONTWAIT; 1814 msg.msg_flags = flags; 1815 err = sock_sendmsg(sock, &msg, len); 1816 1817 out_put: 1818 fput_light(sock->file, fput_needed); 1819 out: 1820 return err; 1821 } 1822 1823 /* 1824 * Send a datagram down a socket. 1825 */ 1826 1827 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1828 unsigned int, flags) 1829 { 1830 return sys_sendto(fd, buff, len, flags, NULL, 0); 1831 } 1832 1833 /* 1834 * Receive a frame from the socket and optionally record the address of the 1835 * sender. We verify the buffers are writable and if needed move the 1836 * sender address from kernel to user space. 1837 */ 1838 1839 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1840 unsigned int, flags, struct sockaddr __user *, addr, 1841 int __user *, addr_len) 1842 { 1843 struct socket *sock; 1844 struct iovec iov; 1845 struct msghdr msg; 1846 struct sockaddr_storage address; 1847 int err, err2; 1848 int fput_needed; 1849 1850 if (size > INT_MAX) 1851 size = INT_MAX; 1852 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1853 if (!sock) 1854 goto out; 1855 1856 msg.msg_control = NULL; 1857 msg.msg_controllen = 0; 1858 msg.msg_iovlen = 1; 1859 msg.msg_iov = &iov; 1860 iov.iov_len = size; 1861 iov.iov_base = ubuf; 1862 /* Save some cycles and don't copy the address if not needed */ 1863 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1864 /* We assume all kernel code knows the size of sockaddr_storage */ 1865 msg.msg_namelen = 0; 1866 if (sock->file->f_flags & O_NONBLOCK) 1867 flags |= MSG_DONTWAIT; 1868 err = sock_recvmsg(sock, &msg, size, flags); 1869 1870 if (err >= 0 && addr != NULL) { 1871 err2 = move_addr_to_user(&address, 1872 msg.msg_namelen, addr, addr_len); 1873 if (err2 < 0) 1874 err = err2; 1875 } 1876 1877 fput_light(sock->file, fput_needed); 1878 out: 1879 return err; 1880 } 1881 1882 /* 1883 * Receive a datagram from a socket. 1884 */ 1885 1886 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1887 unsigned int, flags) 1888 { 1889 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1890 } 1891 1892 /* 1893 * Set a socket option. Because we don't know the option lengths we have 1894 * to pass the user mode parameter for the protocols to sort out. 1895 */ 1896 1897 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1898 char __user *, optval, int, optlen) 1899 { 1900 int err, fput_needed; 1901 struct socket *sock; 1902 1903 if (optlen < 0) 1904 return -EINVAL; 1905 1906 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1907 if (sock != NULL) { 1908 err = security_socket_setsockopt(sock, level, optname); 1909 if (err) 1910 goto out_put; 1911 1912 if (level == SOL_SOCKET) 1913 err = 1914 sock_setsockopt(sock, level, optname, optval, 1915 optlen); 1916 else 1917 err = 1918 sock->ops->setsockopt(sock, level, optname, optval, 1919 optlen); 1920 out_put: 1921 fput_light(sock->file, fput_needed); 1922 } 1923 return err; 1924 } 1925 1926 /* 1927 * Get a socket option. Because we don't know the option lengths we have 1928 * to pass a user mode parameter for the protocols to sort out. 1929 */ 1930 1931 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1932 char __user *, optval, int __user *, optlen) 1933 { 1934 int err, fput_needed; 1935 struct socket *sock; 1936 1937 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1938 if (sock != NULL) { 1939 err = security_socket_getsockopt(sock, level, optname); 1940 if (err) 1941 goto out_put; 1942 1943 if (level == SOL_SOCKET) 1944 err = 1945 sock_getsockopt(sock, level, optname, optval, 1946 optlen); 1947 else 1948 err = 1949 sock->ops->getsockopt(sock, level, optname, optval, 1950 optlen); 1951 out_put: 1952 fput_light(sock->file, fput_needed); 1953 } 1954 return err; 1955 } 1956 1957 /* 1958 * Shutdown a socket. 1959 */ 1960 1961 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1962 { 1963 int err, fput_needed; 1964 struct socket *sock; 1965 1966 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1967 if (sock != NULL) { 1968 err = security_socket_shutdown(sock, how); 1969 if (!err) 1970 err = sock->ops->shutdown(sock, how); 1971 fput_light(sock->file, fput_needed); 1972 } 1973 return err; 1974 } 1975 1976 /* A couple of helpful macros for getting the address of the 32/64 bit 1977 * fields which are the same type (int / unsigned) on our platforms. 1978 */ 1979 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1980 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1981 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1982 1983 struct used_address { 1984 struct sockaddr_storage name; 1985 unsigned int name_len; 1986 }; 1987 1988 static int copy_msghdr_from_user(struct msghdr *kmsg, 1989 struct msghdr __user *umsg) 1990 { 1991 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1992 return -EFAULT; 1993 1994 if (kmsg->msg_namelen < 0) 1995 return -EINVAL; 1996 1997 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1998 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1999 return 0; 2000 } 2001 2002 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 2003 struct msghdr *msg_sys, unsigned int flags, 2004 struct used_address *used_address) 2005 { 2006 struct compat_msghdr __user *msg_compat = 2007 (struct compat_msghdr __user *)msg; 2008 struct sockaddr_storage address; 2009 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2010 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2011 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2012 /* 20 is size of ipv6_pktinfo */ 2013 unsigned char *ctl_buf = ctl; 2014 int err, ctl_len, total_len; 2015 2016 err = -EFAULT; 2017 if (MSG_CMSG_COMPAT & flags) { 2018 if (get_compat_msghdr(msg_sys, msg_compat)) 2019 return -EFAULT; 2020 } else { 2021 err = copy_msghdr_from_user(msg_sys, msg); 2022 if (err) 2023 return err; 2024 } 2025 2026 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2027 err = -EMSGSIZE; 2028 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2029 goto out; 2030 err = -ENOMEM; 2031 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2032 GFP_KERNEL); 2033 if (!iov) 2034 goto out; 2035 } 2036 2037 /* This will also move the address data into kernel space */ 2038 if (MSG_CMSG_COMPAT & flags) { 2039 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2040 } else 2041 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2042 if (err < 0) 2043 goto out_freeiov; 2044 total_len = err; 2045 2046 err = -ENOBUFS; 2047 2048 if (msg_sys->msg_controllen > INT_MAX) 2049 goto out_freeiov; 2050 ctl_len = msg_sys->msg_controllen; 2051 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2052 err = 2053 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2054 sizeof(ctl)); 2055 if (err) 2056 goto out_freeiov; 2057 ctl_buf = msg_sys->msg_control; 2058 ctl_len = msg_sys->msg_controllen; 2059 } else if (ctl_len) { 2060 if (ctl_len > sizeof(ctl)) { 2061 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2062 if (ctl_buf == NULL) 2063 goto out_freeiov; 2064 } 2065 err = -EFAULT; 2066 /* 2067 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2068 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2069 * checking falls down on this. 2070 */ 2071 if (copy_from_user(ctl_buf, 2072 (void __user __force *)msg_sys->msg_control, 2073 ctl_len)) 2074 goto out_freectl; 2075 msg_sys->msg_control = ctl_buf; 2076 } 2077 msg_sys->msg_flags = flags; 2078 2079 if (sock->file->f_flags & O_NONBLOCK) 2080 msg_sys->msg_flags |= MSG_DONTWAIT; 2081 /* 2082 * If this is sendmmsg() and current destination address is same as 2083 * previously succeeded address, omit asking LSM's decision. 2084 * used_address->name_len is initialized to UINT_MAX so that the first 2085 * destination address never matches. 2086 */ 2087 if (used_address && msg_sys->msg_name && 2088 used_address->name_len == msg_sys->msg_namelen && 2089 !memcmp(&used_address->name, msg_sys->msg_name, 2090 used_address->name_len)) { 2091 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2092 goto out_freectl; 2093 } 2094 err = sock_sendmsg(sock, msg_sys, total_len); 2095 /* 2096 * If this is sendmmsg() and sending to current destination address was 2097 * successful, remember it. 2098 */ 2099 if (used_address && err >= 0) { 2100 used_address->name_len = msg_sys->msg_namelen; 2101 if (msg_sys->msg_name) 2102 memcpy(&used_address->name, msg_sys->msg_name, 2103 used_address->name_len); 2104 } 2105 2106 out_freectl: 2107 if (ctl_buf != ctl) 2108 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2109 out_freeiov: 2110 if (iov != iovstack) 2111 kfree(iov); 2112 out: 2113 return err; 2114 } 2115 2116 /* 2117 * BSD sendmsg interface 2118 */ 2119 2120 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2121 { 2122 int fput_needed, err; 2123 struct msghdr msg_sys; 2124 struct socket *sock; 2125 2126 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2127 if (!sock) 2128 goto out; 2129 2130 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2131 2132 fput_light(sock->file, fput_needed); 2133 out: 2134 return err; 2135 } 2136 2137 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2138 { 2139 if (flags & MSG_CMSG_COMPAT) 2140 return -EINVAL; 2141 return __sys_sendmsg(fd, msg, flags); 2142 } 2143 2144 /* 2145 * Linux sendmmsg interface 2146 */ 2147 2148 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2149 unsigned int flags) 2150 { 2151 int fput_needed, err, datagrams; 2152 struct socket *sock; 2153 struct mmsghdr __user *entry; 2154 struct compat_mmsghdr __user *compat_entry; 2155 struct msghdr msg_sys; 2156 struct used_address used_address; 2157 2158 if (vlen > UIO_MAXIOV) 2159 vlen = UIO_MAXIOV; 2160 2161 datagrams = 0; 2162 2163 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2164 if (!sock) 2165 return err; 2166 2167 used_address.name_len = UINT_MAX; 2168 entry = mmsg; 2169 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2170 err = 0; 2171 2172 while (datagrams < vlen) { 2173 if (MSG_CMSG_COMPAT & flags) { 2174 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2175 &msg_sys, flags, &used_address); 2176 if (err < 0) 2177 break; 2178 err = __put_user(err, &compat_entry->msg_len); 2179 ++compat_entry; 2180 } else { 2181 err = ___sys_sendmsg(sock, 2182 (struct msghdr __user *)entry, 2183 &msg_sys, flags, &used_address); 2184 if (err < 0) 2185 break; 2186 err = put_user(err, &entry->msg_len); 2187 ++entry; 2188 } 2189 2190 if (err) 2191 break; 2192 ++datagrams; 2193 } 2194 2195 fput_light(sock->file, fput_needed); 2196 2197 /* We only return an error if no datagrams were able to be sent */ 2198 if (datagrams != 0) 2199 return datagrams; 2200 2201 return err; 2202 } 2203 2204 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2205 unsigned int, vlen, unsigned int, flags) 2206 { 2207 if (flags & MSG_CMSG_COMPAT) 2208 return -EINVAL; 2209 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2210 } 2211 2212 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2213 struct msghdr *msg_sys, unsigned int flags, int nosec) 2214 { 2215 struct compat_msghdr __user *msg_compat = 2216 (struct compat_msghdr __user *)msg; 2217 struct iovec iovstack[UIO_FASTIOV]; 2218 struct iovec *iov = iovstack; 2219 unsigned long cmsg_ptr; 2220 int err, total_len, len; 2221 2222 /* kernel mode address */ 2223 struct sockaddr_storage addr; 2224 2225 /* user mode address pointers */ 2226 struct sockaddr __user *uaddr; 2227 int __user *uaddr_len; 2228 2229 if (MSG_CMSG_COMPAT & flags) { 2230 if (get_compat_msghdr(msg_sys, msg_compat)) 2231 return -EFAULT; 2232 } else { 2233 err = copy_msghdr_from_user(msg_sys, msg); 2234 if (err) 2235 return err; 2236 } 2237 2238 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2239 err = -EMSGSIZE; 2240 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2241 goto out; 2242 err = -ENOMEM; 2243 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2244 GFP_KERNEL); 2245 if (!iov) 2246 goto out; 2247 } 2248 2249 /* Save the user-mode address (verify_iovec will change the 2250 * kernel msghdr to use the kernel address space) 2251 */ 2252 uaddr = (__force void __user *)msg_sys->msg_name; 2253 uaddr_len = COMPAT_NAMELEN(msg); 2254 if (MSG_CMSG_COMPAT & flags) 2255 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2256 else 2257 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2258 if (err < 0) 2259 goto out_freeiov; 2260 total_len = err; 2261 2262 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2263 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2264 2265 /* We assume all kernel code knows the size of sockaddr_storage */ 2266 msg_sys->msg_namelen = 0; 2267 2268 if (sock->file->f_flags & O_NONBLOCK) 2269 flags |= MSG_DONTWAIT; 2270 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2271 total_len, flags); 2272 if (err < 0) 2273 goto out_freeiov; 2274 len = err; 2275 2276 if (uaddr != NULL) { 2277 err = move_addr_to_user(&addr, 2278 msg_sys->msg_namelen, uaddr, 2279 uaddr_len); 2280 if (err < 0) 2281 goto out_freeiov; 2282 } 2283 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2284 COMPAT_FLAGS(msg)); 2285 if (err) 2286 goto out_freeiov; 2287 if (MSG_CMSG_COMPAT & flags) 2288 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2289 &msg_compat->msg_controllen); 2290 else 2291 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2292 &msg->msg_controllen); 2293 if (err) 2294 goto out_freeiov; 2295 err = len; 2296 2297 out_freeiov: 2298 if (iov != iovstack) 2299 kfree(iov); 2300 out: 2301 return err; 2302 } 2303 2304 /* 2305 * BSD recvmsg interface 2306 */ 2307 2308 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2309 { 2310 int fput_needed, err; 2311 struct msghdr msg_sys; 2312 struct socket *sock; 2313 2314 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2315 if (!sock) 2316 goto out; 2317 2318 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2319 2320 fput_light(sock->file, fput_needed); 2321 out: 2322 return err; 2323 } 2324 2325 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2326 unsigned int, flags) 2327 { 2328 if (flags & MSG_CMSG_COMPAT) 2329 return -EINVAL; 2330 return __sys_recvmsg(fd, msg, flags); 2331 } 2332 2333 /* 2334 * Linux recvmmsg interface 2335 */ 2336 2337 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2338 unsigned int flags, struct timespec *timeout) 2339 { 2340 int fput_needed, err, datagrams; 2341 struct socket *sock; 2342 struct mmsghdr __user *entry; 2343 struct compat_mmsghdr __user *compat_entry; 2344 struct msghdr msg_sys; 2345 struct timespec end_time; 2346 2347 if (timeout && 2348 poll_select_set_timeout(&end_time, timeout->tv_sec, 2349 timeout->tv_nsec)) 2350 return -EINVAL; 2351 2352 datagrams = 0; 2353 2354 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2355 if (!sock) 2356 return err; 2357 2358 err = sock_error(sock->sk); 2359 if (err) 2360 goto out_put; 2361 2362 entry = mmsg; 2363 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2364 2365 while (datagrams < vlen) { 2366 /* 2367 * No need to ask LSM for more than the first datagram. 2368 */ 2369 if (MSG_CMSG_COMPAT & flags) { 2370 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2371 &msg_sys, flags & ~MSG_WAITFORONE, 2372 datagrams); 2373 if (err < 0) 2374 break; 2375 err = __put_user(err, &compat_entry->msg_len); 2376 ++compat_entry; 2377 } else { 2378 err = ___sys_recvmsg(sock, 2379 (struct msghdr __user *)entry, 2380 &msg_sys, flags & ~MSG_WAITFORONE, 2381 datagrams); 2382 if (err < 0) 2383 break; 2384 err = put_user(err, &entry->msg_len); 2385 ++entry; 2386 } 2387 2388 if (err) 2389 break; 2390 ++datagrams; 2391 2392 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2393 if (flags & MSG_WAITFORONE) 2394 flags |= MSG_DONTWAIT; 2395 2396 if (timeout) { 2397 ktime_get_ts(timeout); 2398 *timeout = timespec_sub(end_time, *timeout); 2399 if (timeout->tv_sec < 0) { 2400 timeout->tv_sec = timeout->tv_nsec = 0; 2401 break; 2402 } 2403 2404 /* Timeout, return less than vlen datagrams */ 2405 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2406 break; 2407 } 2408 2409 /* Out of band data, return right away */ 2410 if (msg_sys.msg_flags & MSG_OOB) 2411 break; 2412 } 2413 2414 out_put: 2415 fput_light(sock->file, fput_needed); 2416 2417 if (err == 0) 2418 return datagrams; 2419 2420 if (datagrams != 0) { 2421 /* 2422 * We may return less entries than requested (vlen) if the 2423 * sock is non block and there aren't enough datagrams... 2424 */ 2425 if (err != -EAGAIN) { 2426 /* 2427 * ... or if recvmsg returns an error after we 2428 * received some datagrams, where we record the 2429 * error to return on the next call or if the 2430 * app asks about it using getsockopt(SO_ERROR). 2431 */ 2432 sock->sk->sk_err = -err; 2433 } 2434 2435 return datagrams; 2436 } 2437 2438 return err; 2439 } 2440 2441 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2442 unsigned int, vlen, unsigned int, flags, 2443 struct timespec __user *, timeout) 2444 { 2445 int datagrams; 2446 struct timespec timeout_sys; 2447 2448 if (flags & MSG_CMSG_COMPAT) 2449 return -EINVAL; 2450 2451 if (!timeout) 2452 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2453 2454 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2455 return -EFAULT; 2456 2457 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2458 2459 if (datagrams > 0 && 2460 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2461 datagrams = -EFAULT; 2462 2463 return datagrams; 2464 } 2465 2466 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2467 /* Argument list sizes for sys_socketcall */ 2468 #define AL(x) ((x) * sizeof(unsigned long)) 2469 static const unsigned char nargs[21] = { 2470 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2471 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2472 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2473 AL(4), AL(5), AL(4) 2474 }; 2475 2476 #undef AL 2477 2478 /* 2479 * System call vectors. 2480 * 2481 * Argument checking cleaned up. Saved 20% in size. 2482 * This function doesn't need to set the kernel lock because 2483 * it is set by the callees. 2484 */ 2485 2486 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2487 { 2488 unsigned long a[AUDITSC_ARGS]; 2489 unsigned long a0, a1; 2490 int err; 2491 unsigned int len; 2492 2493 if (call < 1 || call > SYS_SENDMMSG) 2494 return -EINVAL; 2495 2496 len = nargs[call]; 2497 if (len > sizeof(a)) 2498 return -EINVAL; 2499 2500 /* copy_from_user should be SMP safe. */ 2501 if (copy_from_user(a, args, len)) 2502 return -EFAULT; 2503 2504 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2505 if (err) 2506 return err; 2507 2508 a0 = a[0]; 2509 a1 = a[1]; 2510 2511 switch (call) { 2512 case SYS_SOCKET: 2513 err = sys_socket(a0, a1, a[2]); 2514 break; 2515 case SYS_BIND: 2516 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2517 break; 2518 case SYS_CONNECT: 2519 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2520 break; 2521 case SYS_LISTEN: 2522 err = sys_listen(a0, a1); 2523 break; 2524 case SYS_ACCEPT: 2525 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2526 (int __user *)a[2], 0); 2527 break; 2528 case SYS_GETSOCKNAME: 2529 err = 2530 sys_getsockname(a0, (struct sockaddr __user *)a1, 2531 (int __user *)a[2]); 2532 break; 2533 case SYS_GETPEERNAME: 2534 err = 2535 sys_getpeername(a0, (struct sockaddr __user *)a1, 2536 (int __user *)a[2]); 2537 break; 2538 case SYS_SOCKETPAIR: 2539 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2540 break; 2541 case SYS_SEND: 2542 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2543 break; 2544 case SYS_SENDTO: 2545 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2546 (struct sockaddr __user *)a[4], a[5]); 2547 break; 2548 case SYS_RECV: 2549 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2550 break; 2551 case SYS_RECVFROM: 2552 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2553 (struct sockaddr __user *)a[4], 2554 (int __user *)a[5]); 2555 break; 2556 case SYS_SHUTDOWN: 2557 err = sys_shutdown(a0, a1); 2558 break; 2559 case SYS_SETSOCKOPT: 2560 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2561 break; 2562 case SYS_GETSOCKOPT: 2563 err = 2564 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2565 (int __user *)a[4]); 2566 break; 2567 case SYS_SENDMSG: 2568 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2569 break; 2570 case SYS_SENDMMSG: 2571 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2572 break; 2573 case SYS_RECVMSG: 2574 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2575 break; 2576 case SYS_RECVMMSG: 2577 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2578 (struct timespec __user *)a[4]); 2579 break; 2580 case SYS_ACCEPT4: 2581 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2582 (int __user *)a[2], a[3]); 2583 break; 2584 default: 2585 err = -EINVAL; 2586 break; 2587 } 2588 return err; 2589 } 2590 2591 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2592 2593 /** 2594 * sock_register - add a socket protocol handler 2595 * @ops: description of protocol 2596 * 2597 * This function is called by a protocol handler that wants to 2598 * advertise its address family, and have it linked into the 2599 * socket interface. The value ops->family coresponds to the 2600 * socket system call protocol family. 2601 */ 2602 int sock_register(const struct net_proto_family *ops) 2603 { 2604 int err; 2605 2606 if (ops->family >= NPROTO) { 2607 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2608 return -ENOBUFS; 2609 } 2610 2611 spin_lock(&net_family_lock); 2612 if (rcu_dereference_protected(net_families[ops->family], 2613 lockdep_is_held(&net_family_lock))) 2614 err = -EEXIST; 2615 else { 2616 rcu_assign_pointer(net_families[ops->family], ops); 2617 err = 0; 2618 } 2619 spin_unlock(&net_family_lock); 2620 2621 pr_info("NET: Registered protocol family %d\n", ops->family); 2622 return err; 2623 } 2624 EXPORT_SYMBOL(sock_register); 2625 2626 /** 2627 * sock_unregister - remove a protocol handler 2628 * @family: protocol family to remove 2629 * 2630 * This function is called by a protocol handler that wants to 2631 * remove its address family, and have it unlinked from the 2632 * new socket creation. 2633 * 2634 * If protocol handler is a module, then it can use module reference 2635 * counts to protect against new references. If protocol handler is not 2636 * a module then it needs to provide its own protection in 2637 * the ops->create routine. 2638 */ 2639 void sock_unregister(int family) 2640 { 2641 BUG_ON(family < 0 || family >= NPROTO); 2642 2643 spin_lock(&net_family_lock); 2644 RCU_INIT_POINTER(net_families[family], NULL); 2645 spin_unlock(&net_family_lock); 2646 2647 synchronize_rcu(); 2648 2649 pr_info("NET: Unregistered protocol family %d\n", family); 2650 } 2651 EXPORT_SYMBOL(sock_unregister); 2652 2653 static int __init sock_init(void) 2654 { 2655 int err; 2656 /* 2657 * Initialize the network sysctl infrastructure. 2658 */ 2659 err = net_sysctl_init(); 2660 if (err) 2661 goto out; 2662 2663 /* 2664 * Initialize skbuff SLAB cache 2665 */ 2666 skb_init(); 2667 2668 /* 2669 * Initialize the protocols module. 2670 */ 2671 2672 init_inodecache(); 2673 2674 err = register_filesystem(&sock_fs_type); 2675 if (err) 2676 goto out_fs; 2677 sock_mnt = kern_mount(&sock_fs_type); 2678 if (IS_ERR(sock_mnt)) { 2679 err = PTR_ERR(sock_mnt); 2680 goto out_mount; 2681 } 2682 2683 /* The real protocol initialization is performed in later initcalls. 2684 */ 2685 2686 #ifdef CONFIG_NETFILTER 2687 err = netfilter_init(); 2688 if (err) 2689 goto out; 2690 #endif 2691 2692 ptp_classifier_init(); 2693 2694 out: 2695 return err; 2696 2697 out_mount: 2698 unregister_filesystem(&sock_fs_type); 2699 out_fs: 2700 goto out; 2701 } 2702 2703 core_initcall(sock_init); /* early initcall */ 2704 2705 #ifdef CONFIG_PROC_FS 2706 void socket_seq_show(struct seq_file *seq) 2707 { 2708 int cpu; 2709 int counter = 0; 2710 2711 for_each_possible_cpu(cpu) 2712 counter += per_cpu(sockets_in_use, cpu); 2713 2714 /* It can be negative, by the way. 8) */ 2715 if (counter < 0) 2716 counter = 0; 2717 2718 seq_printf(seq, "sockets: used %d\n", counter); 2719 } 2720 #endif /* CONFIG_PROC_FS */ 2721 2722 #ifdef CONFIG_COMPAT 2723 static int do_siocgstamp(struct net *net, struct socket *sock, 2724 unsigned int cmd, void __user *up) 2725 { 2726 mm_segment_t old_fs = get_fs(); 2727 struct timeval ktv; 2728 int err; 2729 2730 set_fs(KERNEL_DS); 2731 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2732 set_fs(old_fs); 2733 if (!err) 2734 err = compat_put_timeval(&ktv, up); 2735 2736 return err; 2737 } 2738 2739 static int do_siocgstampns(struct net *net, struct socket *sock, 2740 unsigned int cmd, void __user *up) 2741 { 2742 mm_segment_t old_fs = get_fs(); 2743 struct timespec kts; 2744 int err; 2745 2746 set_fs(KERNEL_DS); 2747 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2748 set_fs(old_fs); 2749 if (!err) 2750 err = compat_put_timespec(&kts, up); 2751 2752 return err; 2753 } 2754 2755 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2756 { 2757 struct ifreq __user *uifr; 2758 int err; 2759 2760 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2761 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2762 return -EFAULT; 2763 2764 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2765 if (err) 2766 return err; 2767 2768 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2769 return -EFAULT; 2770 2771 return 0; 2772 } 2773 2774 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2775 { 2776 struct compat_ifconf ifc32; 2777 struct ifconf ifc; 2778 struct ifconf __user *uifc; 2779 struct compat_ifreq __user *ifr32; 2780 struct ifreq __user *ifr; 2781 unsigned int i, j; 2782 int err; 2783 2784 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2785 return -EFAULT; 2786 2787 memset(&ifc, 0, sizeof(ifc)); 2788 if (ifc32.ifcbuf == 0) { 2789 ifc32.ifc_len = 0; 2790 ifc.ifc_len = 0; 2791 ifc.ifc_req = NULL; 2792 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2793 } else { 2794 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2795 sizeof(struct ifreq); 2796 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2797 ifc.ifc_len = len; 2798 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2799 ifr32 = compat_ptr(ifc32.ifcbuf); 2800 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2801 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2802 return -EFAULT; 2803 ifr++; 2804 ifr32++; 2805 } 2806 } 2807 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2808 return -EFAULT; 2809 2810 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2811 if (err) 2812 return err; 2813 2814 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2815 return -EFAULT; 2816 2817 ifr = ifc.ifc_req; 2818 ifr32 = compat_ptr(ifc32.ifcbuf); 2819 for (i = 0, j = 0; 2820 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2821 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2822 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2823 return -EFAULT; 2824 ifr32++; 2825 ifr++; 2826 } 2827 2828 if (ifc32.ifcbuf == 0) { 2829 /* Translate from 64-bit structure multiple to 2830 * a 32-bit one. 2831 */ 2832 i = ifc.ifc_len; 2833 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2834 ifc32.ifc_len = i; 2835 } else { 2836 ifc32.ifc_len = i; 2837 } 2838 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2839 return -EFAULT; 2840 2841 return 0; 2842 } 2843 2844 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2845 { 2846 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2847 bool convert_in = false, convert_out = false; 2848 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2849 struct ethtool_rxnfc __user *rxnfc; 2850 struct ifreq __user *ifr; 2851 u32 rule_cnt = 0, actual_rule_cnt; 2852 u32 ethcmd; 2853 u32 data; 2854 int ret; 2855 2856 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2857 return -EFAULT; 2858 2859 compat_rxnfc = compat_ptr(data); 2860 2861 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2862 return -EFAULT; 2863 2864 /* Most ethtool structures are defined without padding. 2865 * Unfortunately struct ethtool_rxnfc is an exception. 2866 */ 2867 switch (ethcmd) { 2868 default: 2869 break; 2870 case ETHTOOL_GRXCLSRLALL: 2871 /* Buffer size is variable */ 2872 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2873 return -EFAULT; 2874 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2875 return -ENOMEM; 2876 buf_size += rule_cnt * sizeof(u32); 2877 /* fall through */ 2878 case ETHTOOL_GRXRINGS: 2879 case ETHTOOL_GRXCLSRLCNT: 2880 case ETHTOOL_GRXCLSRULE: 2881 case ETHTOOL_SRXCLSRLINS: 2882 convert_out = true; 2883 /* fall through */ 2884 case ETHTOOL_SRXCLSRLDEL: 2885 buf_size += sizeof(struct ethtool_rxnfc); 2886 convert_in = true; 2887 break; 2888 } 2889 2890 ifr = compat_alloc_user_space(buf_size); 2891 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2892 2893 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2894 return -EFAULT; 2895 2896 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2897 &ifr->ifr_ifru.ifru_data)) 2898 return -EFAULT; 2899 2900 if (convert_in) { 2901 /* We expect there to be holes between fs.m_ext and 2902 * fs.ring_cookie and at the end of fs, but nowhere else. 2903 */ 2904 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2905 sizeof(compat_rxnfc->fs.m_ext) != 2906 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2907 sizeof(rxnfc->fs.m_ext)); 2908 BUILD_BUG_ON( 2909 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2910 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2911 offsetof(struct ethtool_rxnfc, fs.location) - 2912 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2913 2914 if (copy_in_user(rxnfc, compat_rxnfc, 2915 (void __user *)(&rxnfc->fs.m_ext + 1) - 2916 (void __user *)rxnfc) || 2917 copy_in_user(&rxnfc->fs.ring_cookie, 2918 &compat_rxnfc->fs.ring_cookie, 2919 (void __user *)(&rxnfc->fs.location + 1) - 2920 (void __user *)&rxnfc->fs.ring_cookie) || 2921 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2922 sizeof(rxnfc->rule_cnt))) 2923 return -EFAULT; 2924 } 2925 2926 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2927 if (ret) 2928 return ret; 2929 2930 if (convert_out) { 2931 if (copy_in_user(compat_rxnfc, rxnfc, 2932 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2933 (const void __user *)rxnfc) || 2934 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2935 &rxnfc->fs.ring_cookie, 2936 (const void __user *)(&rxnfc->fs.location + 1) - 2937 (const void __user *)&rxnfc->fs.ring_cookie) || 2938 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2939 sizeof(rxnfc->rule_cnt))) 2940 return -EFAULT; 2941 2942 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2943 /* As an optimisation, we only copy the actual 2944 * number of rules that the underlying 2945 * function returned. Since Mallory might 2946 * change the rule count in user memory, we 2947 * check that it is less than the rule count 2948 * originally given (as the user buffer size), 2949 * which has been range-checked. 2950 */ 2951 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2952 return -EFAULT; 2953 if (actual_rule_cnt < rule_cnt) 2954 rule_cnt = actual_rule_cnt; 2955 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2956 &rxnfc->rule_locs[0], 2957 rule_cnt * sizeof(u32))) 2958 return -EFAULT; 2959 } 2960 } 2961 2962 return 0; 2963 } 2964 2965 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2966 { 2967 void __user *uptr; 2968 compat_uptr_t uptr32; 2969 struct ifreq __user *uifr; 2970 2971 uifr = compat_alloc_user_space(sizeof(*uifr)); 2972 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2973 return -EFAULT; 2974 2975 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2976 return -EFAULT; 2977 2978 uptr = compat_ptr(uptr32); 2979 2980 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2981 return -EFAULT; 2982 2983 return dev_ioctl(net, SIOCWANDEV, uifr); 2984 } 2985 2986 static int bond_ioctl(struct net *net, unsigned int cmd, 2987 struct compat_ifreq __user *ifr32) 2988 { 2989 struct ifreq kifr; 2990 mm_segment_t old_fs; 2991 int err; 2992 2993 switch (cmd) { 2994 case SIOCBONDENSLAVE: 2995 case SIOCBONDRELEASE: 2996 case SIOCBONDSETHWADDR: 2997 case SIOCBONDCHANGEACTIVE: 2998 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2999 return -EFAULT; 3000 3001 old_fs = get_fs(); 3002 set_fs(KERNEL_DS); 3003 err = dev_ioctl(net, cmd, 3004 (struct ifreq __user __force *) &kifr); 3005 set_fs(old_fs); 3006 3007 return err; 3008 default: 3009 return -ENOIOCTLCMD; 3010 } 3011 } 3012 3013 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3014 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3015 struct compat_ifreq __user *u_ifreq32) 3016 { 3017 struct ifreq __user *u_ifreq64; 3018 char tmp_buf[IFNAMSIZ]; 3019 void __user *data64; 3020 u32 data32; 3021 3022 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3023 IFNAMSIZ)) 3024 return -EFAULT; 3025 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3026 return -EFAULT; 3027 data64 = compat_ptr(data32); 3028 3029 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3030 3031 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3032 IFNAMSIZ)) 3033 return -EFAULT; 3034 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3035 return -EFAULT; 3036 3037 return dev_ioctl(net, cmd, u_ifreq64); 3038 } 3039 3040 static int dev_ifsioc(struct net *net, struct socket *sock, 3041 unsigned int cmd, struct compat_ifreq __user *uifr32) 3042 { 3043 struct ifreq __user *uifr; 3044 int err; 3045 3046 uifr = compat_alloc_user_space(sizeof(*uifr)); 3047 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3048 return -EFAULT; 3049 3050 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3051 3052 if (!err) { 3053 switch (cmd) { 3054 case SIOCGIFFLAGS: 3055 case SIOCGIFMETRIC: 3056 case SIOCGIFMTU: 3057 case SIOCGIFMEM: 3058 case SIOCGIFHWADDR: 3059 case SIOCGIFINDEX: 3060 case SIOCGIFADDR: 3061 case SIOCGIFBRDADDR: 3062 case SIOCGIFDSTADDR: 3063 case SIOCGIFNETMASK: 3064 case SIOCGIFPFLAGS: 3065 case SIOCGIFTXQLEN: 3066 case SIOCGMIIPHY: 3067 case SIOCGMIIREG: 3068 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3069 err = -EFAULT; 3070 break; 3071 } 3072 } 3073 return err; 3074 } 3075 3076 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3077 struct compat_ifreq __user *uifr32) 3078 { 3079 struct ifreq ifr; 3080 struct compat_ifmap __user *uifmap32; 3081 mm_segment_t old_fs; 3082 int err; 3083 3084 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3085 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3086 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3087 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3088 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3089 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3090 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3091 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3092 if (err) 3093 return -EFAULT; 3094 3095 old_fs = get_fs(); 3096 set_fs(KERNEL_DS); 3097 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3098 set_fs(old_fs); 3099 3100 if (cmd == SIOCGIFMAP && !err) { 3101 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3102 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3103 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3104 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3105 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3106 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3107 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3108 if (err) 3109 err = -EFAULT; 3110 } 3111 return err; 3112 } 3113 3114 struct rtentry32 { 3115 u32 rt_pad1; 3116 struct sockaddr rt_dst; /* target address */ 3117 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3118 struct sockaddr rt_genmask; /* target network mask (IP) */ 3119 unsigned short rt_flags; 3120 short rt_pad2; 3121 u32 rt_pad3; 3122 unsigned char rt_tos; 3123 unsigned char rt_class; 3124 short rt_pad4; 3125 short rt_metric; /* +1 for binary compatibility! */ 3126 /* char * */ u32 rt_dev; /* forcing the device at add */ 3127 u32 rt_mtu; /* per route MTU/Window */ 3128 u32 rt_window; /* Window clamping */ 3129 unsigned short rt_irtt; /* Initial RTT */ 3130 }; 3131 3132 struct in6_rtmsg32 { 3133 struct in6_addr rtmsg_dst; 3134 struct in6_addr rtmsg_src; 3135 struct in6_addr rtmsg_gateway; 3136 u32 rtmsg_type; 3137 u16 rtmsg_dst_len; 3138 u16 rtmsg_src_len; 3139 u32 rtmsg_metric; 3140 u32 rtmsg_info; 3141 u32 rtmsg_flags; 3142 s32 rtmsg_ifindex; 3143 }; 3144 3145 static int routing_ioctl(struct net *net, struct socket *sock, 3146 unsigned int cmd, void __user *argp) 3147 { 3148 int ret; 3149 void *r = NULL; 3150 struct in6_rtmsg r6; 3151 struct rtentry r4; 3152 char devname[16]; 3153 u32 rtdev; 3154 mm_segment_t old_fs = get_fs(); 3155 3156 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3157 struct in6_rtmsg32 __user *ur6 = argp; 3158 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3159 3 * sizeof(struct in6_addr)); 3160 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3161 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3162 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3163 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3164 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3165 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3166 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3167 3168 r = (void *) &r6; 3169 } else { /* ipv4 */ 3170 struct rtentry32 __user *ur4 = argp; 3171 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3172 3 * sizeof(struct sockaddr)); 3173 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3174 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3175 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3176 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3177 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3178 ret |= get_user(rtdev, &(ur4->rt_dev)); 3179 if (rtdev) { 3180 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3181 r4.rt_dev = (char __user __force *)devname; 3182 devname[15] = 0; 3183 } else 3184 r4.rt_dev = NULL; 3185 3186 r = (void *) &r4; 3187 } 3188 3189 if (ret) { 3190 ret = -EFAULT; 3191 goto out; 3192 } 3193 3194 set_fs(KERNEL_DS); 3195 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3196 set_fs(old_fs); 3197 3198 out: 3199 return ret; 3200 } 3201 3202 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3203 * for some operations; this forces use of the newer bridge-utils that 3204 * use compatible ioctls 3205 */ 3206 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3207 { 3208 compat_ulong_t tmp; 3209 3210 if (get_user(tmp, argp)) 3211 return -EFAULT; 3212 if (tmp == BRCTL_GET_VERSION) 3213 return BRCTL_VERSION + 1; 3214 return -EINVAL; 3215 } 3216 3217 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3218 unsigned int cmd, unsigned long arg) 3219 { 3220 void __user *argp = compat_ptr(arg); 3221 struct sock *sk = sock->sk; 3222 struct net *net = sock_net(sk); 3223 3224 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3225 return compat_ifr_data_ioctl(net, cmd, argp); 3226 3227 switch (cmd) { 3228 case SIOCSIFBR: 3229 case SIOCGIFBR: 3230 return old_bridge_ioctl(argp); 3231 case SIOCGIFNAME: 3232 return dev_ifname32(net, argp); 3233 case SIOCGIFCONF: 3234 return dev_ifconf(net, argp); 3235 case SIOCETHTOOL: 3236 return ethtool_ioctl(net, argp); 3237 case SIOCWANDEV: 3238 return compat_siocwandev(net, argp); 3239 case SIOCGIFMAP: 3240 case SIOCSIFMAP: 3241 return compat_sioc_ifmap(net, cmd, argp); 3242 case SIOCBONDENSLAVE: 3243 case SIOCBONDRELEASE: 3244 case SIOCBONDSETHWADDR: 3245 case SIOCBONDCHANGEACTIVE: 3246 return bond_ioctl(net, cmd, argp); 3247 case SIOCADDRT: 3248 case SIOCDELRT: 3249 return routing_ioctl(net, sock, cmd, argp); 3250 case SIOCGSTAMP: 3251 return do_siocgstamp(net, sock, cmd, argp); 3252 case SIOCGSTAMPNS: 3253 return do_siocgstampns(net, sock, cmd, argp); 3254 case SIOCBONDSLAVEINFOQUERY: 3255 case SIOCBONDINFOQUERY: 3256 case SIOCSHWTSTAMP: 3257 case SIOCGHWTSTAMP: 3258 return compat_ifr_data_ioctl(net, cmd, argp); 3259 3260 case FIOSETOWN: 3261 case SIOCSPGRP: 3262 case FIOGETOWN: 3263 case SIOCGPGRP: 3264 case SIOCBRADDBR: 3265 case SIOCBRDELBR: 3266 case SIOCGIFVLAN: 3267 case SIOCSIFVLAN: 3268 case SIOCADDDLCI: 3269 case SIOCDELDLCI: 3270 return sock_ioctl(file, cmd, arg); 3271 3272 case SIOCGIFFLAGS: 3273 case SIOCSIFFLAGS: 3274 case SIOCGIFMETRIC: 3275 case SIOCSIFMETRIC: 3276 case SIOCGIFMTU: 3277 case SIOCSIFMTU: 3278 case SIOCGIFMEM: 3279 case SIOCSIFMEM: 3280 case SIOCGIFHWADDR: 3281 case SIOCSIFHWADDR: 3282 case SIOCADDMULTI: 3283 case SIOCDELMULTI: 3284 case SIOCGIFINDEX: 3285 case SIOCGIFADDR: 3286 case SIOCSIFADDR: 3287 case SIOCSIFHWBROADCAST: 3288 case SIOCDIFADDR: 3289 case SIOCGIFBRDADDR: 3290 case SIOCSIFBRDADDR: 3291 case SIOCGIFDSTADDR: 3292 case SIOCSIFDSTADDR: 3293 case SIOCGIFNETMASK: 3294 case SIOCSIFNETMASK: 3295 case SIOCSIFPFLAGS: 3296 case SIOCGIFPFLAGS: 3297 case SIOCGIFTXQLEN: 3298 case SIOCSIFTXQLEN: 3299 case SIOCBRADDIF: 3300 case SIOCBRDELIF: 3301 case SIOCSIFNAME: 3302 case SIOCGMIIPHY: 3303 case SIOCGMIIREG: 3304 case SIOCSMIIREG: 3305 return dev_ifsioc(net, sock, cmd, argp); 3306 3307 case SIOCSARP: 3308 case SIOCGARP: 3309 case SIOCDARP: 3310 case SIOCATMARK: 3311 return sock_do_ioctl(net, sock, cmd, arg); 3312 } 3313 3314 return -ENOIOCTLCMD; 3315 } 3316 3317 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3318 unsigned long arg) 3319 { 3320 struct socket *sock = file->private_data; 3321 int ret = -ENOIOCTLCMD; 3322 struct sock *sk; 3323 struct net *net; 3324 3325 sk = sock->sk; 3326 net = sock_net(sk); 3327 3328 if (sock->ops->compat_ioctl) 3329 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3330 3331 if (ret == -ENOIOCTLCMD && 3332 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3333 ret = compat_wext_handle_ioctl(net, cmd, arg); 3334 3335 if (ret == -ENOIOCTLCMD) 3336 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3337 3338 return ret; 3339 } 3340 #endif 3341 3342 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3343 { 3344 return sock->ops->bind(sock, addr, addrlen); 3345 } 3346 EXPORT_SYMBOL(kernel_bind); 3347 3348 int kernel_listen(struct socket *sock, int backlog) 3349 { 3350 return sock->ops->listen(sock, backlog); 3351 } 3352 EXPORT_SYMBOL(kernel_listen); 3353 3354 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3355 { 3356 struct sock *sk = sock->sk; 3357 int err; 3358 3359 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3360 newsock); 3361 if (err < 0) 3362 goto done; 3363 3364 err = sock->ops->accept(sock, *newsock, flags); 3365 if (err < 0) { 3366 sock_release(*newsock); 3367 *newsock = NULL; 3368 goto done; 3369 } 3370 3371 (*newsock)->ops = sock->ops; 3372 __module_get((*newsock)->ops->owner); 3373 3374 done: 3375 return err; 3376 } 3377 EXPORT_SYMBOL(kernel_accept); 3378 3379 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3380 int flags) 3381 { 3382 return sock->ops->connect(sock, addr, addrlen, flags); 3383 } 3384 EXPORT_SYMBOL(kernel_connect); 3385 3386 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3387 int *addrlen) 3388 { 3389 return sock->ops->getname(sock, addr, addrlen, 0); 3390 } 3391 EXPORT_SYMBOL(kernel_getsockname); 3392 3393 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3394 int *addrlen) 3395 { 3396 return sock->ops->getname(sock, addr, addrlen, 1); 3397 } 3398 EXPORT_SYMBOL(kernel_getpeername); 3399 3400 int kernel_getsockopt(struct socket *sock, int level, int optname, 3401 char *optval, int *optlen) 3402 { 3403 mm_segment_t oldfs = get_fs(); 3404 char __user *uoptval; 3405 int __user *uoptlen; 3406 int err; 3407 3408 uoptval = (char __user __force *) optval; 3409 uoptlen = (int __user __force *) optlen; 3410 3411 set_fs(KERNEL_DS); 3412 if (level == SOL_SOCKET) 3413 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3414 else 3415 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3416 uoptlen); 3417 set_fs(oldfs); 3418 return err; 3419 } 3420 EXPORT_SYMBOL(kernel_getsockopt); 3421 3422 int kernel_setsockopt(struct socket *sock, int level, int optname, 3423 char *optval, unsigned int optlen) 3424 { 3425 mm_segment_t oldfs = get_fs(); 3426 char __user *uoptval; 3427 int err; 3428 3429 uoptval = (char __user __force *) optval; 3430 3431 set_fs(KERNEL_DS); 3432 if (level == SOL_SOCKET) 3433 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3434 else 3435 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3436 optlen); 3437 set_fs(oldfs); 3438 return err; 3439 } 3440 EXPORT_SYMBOL(kernel_setsockopt); 3441 3442 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3443 size_t size, int flags) 3444 { 3445 if (sock->ops->sendpage) 3446 return sock->ops->sendpage(sock, page, offset, size, flags); 3447 3448 return sock_no_sendpage(sock, page, offset, size, flags); 3449 } 3450 EXPORT_SYMBOL(kernel_sendpage); 3451 3452 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3453 { 3454 mm_segment_t oldfs = get_fs(); 3455 int err; 3456 3457 set_fs(KERNEL_DS); 3458 err = sock->ops->ioctl(sock, cmd, arg); 3459 set_fs(oldfs); 3460 3461 return err; 3462 } 3463 EXPORT_SYMBOL(kernel_sock_ioctl); 3464 3465 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3466 { 3467 return sock->ops->shutdown(sock, how); 3468 } 3469 EXPORT_SYMBOL(kernel_sock_shutdown); 3470