1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396 { 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) 410 return ERR_PTR(-ENOMEM); 411 path.mnt = mntget(sock_mnt); 412 413 d_instantiate(path.dentry, SOCK_INODE(sock)); 414 415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 /* drop dentry, keep inode */ 419 ihold(d_inode(path.dentry)); 420 path_put(&path); 421 return file; 422 } 423 424 sock->file = file; 425 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 426 file->private_data = sock; 427 return file; 428 } 429 EXPORT_SYMBOL(sock_alloc_file); 430 431 static int sock_map_fd(struct socket *sock, int flags) 432 { 433 struct file *newfile; 434 int fd = get_unused_fd_flags(flags); 435 if (unlikely(fd < 0)) 436 return fd; 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * to is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 kmemcheck_annotate_bitfield(sock, type); 572 inode->i_ino = get_next_ino(); 573 inode->i_mode = S_IFSOCK | S_IRWXUGO; 574 inode->i_uid = current_fsuid(); 575 inode->i_gid = current_fsgid(); 576 inode->i_op = &sockfs_inode_ops; 577 578 this_cpu_add(sockets_in_use, 1); 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 void sock_release(struct socket *sock) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 sock->ops->release(sock); 598 sock->ops = NULL; 599 module_put(owner); 600 } 601 602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 603 pr_err("%s: fasync list not empty!\n", __func__); 604 605 this_cpu_sub(sockets_in_use, 1); 606 if (!sock->file) { 607 iput(SOCK_INODE(sock)); 608 return; 609 } 610 sock->file = NULL; 611 } 612 EXPORT_SYMBOL(sock_release); 613 614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615 { 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628 } 629 EXPORT_SYMBOL(__sock_tx_timestamp); 630 631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632 { 633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 634 BUG_ON(ret == -EIOCBQUEUED); 635 return ret; 636 } 637 638 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 639 { 640 int err = security_socket_sendmsg(sock, msg, 641 msg_data_left(msg)); 642 643 return err ?: sock_sendmsg_nosec(sock, msg); 644 } 645 EXPORT_SYMBOL(sock_sendmsg); 646 647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 648 struct kvec *vec, size_t num, size_t size) 649 { 650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 651 return sock_sendmsg(sock, msg); 652 } 653 EXPORT_SYMBOL(kernel_sendmsg); 654 655 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 656 struct kvec *vec, size_t num, size_t size) 657 { 658 struct socket *sock = sk->sk_socket; 659 660 if (!sock->ops->sendmsg_locked) 661 return sock_no_sendmsg_locked(sk, msg, size); 662 663 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 664 665 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 666 } 667 EXPORT_SYMBOL(kernel_sendmsg_locked); 668 669 static bool skb_is_err_queue(const struct sk_buff *skb) 670 { 671 /* pkt_type of skbs enqueued on the error queue are set to 672 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 673 * in recvmsg, since skbs received on a local socket will never 674 * have a pkt_type of PACKET_OUTGOING. 675 */ 676 return skb->pkt_type == PACKET_OUTGOING; 677 } 678 679 /* On transmit, software and hardware timestamps are returned independently. 680 * As the two skb clones share the hardware timestamp, which may be updated 681 * before the software timestamp is received, a hardware TX timestamp may be 682 * returned only if there is no software TX timestamp. Ignore false software 683 * timestamps, which may be made in the __sock_recv_timestamp() call when the 684 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 685 * hardware timestamp. 686 */ 687 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 688 { 689 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 690 } 691 692 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 693 { 694 struct scm_ts_pktinfo ts_pktinfo; 695 struct net_device *orig_dev; 696 697 if (!skb_mac_header_was_set(skb)) 698 return; 699 700 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 701 702 rcu_read_lock(); 703 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 704 if (orig_dev) 705 ts_pktinfo.if_index = orig_dev->ifindex; 706 rcu_read_unlock(); 707 708 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 709 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 710 sizeof(ts_pktinfo), &ts_pktinfo); 711 } 712 713 /* 714 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 715 */ 716 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 717 struct sk_buff *skb) 718 { 719 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 720 struct scm_timestamping tss; 721 int empty = 1, false_tstamp = 0; 722 struct skb_shared_hwtstamps *shhwtstamps = 723 skb_hwtstamps(skb); 724 725 /* Race occurred between timestamp enabling and packet 726 receiving. Fill in the current time for now. */ 727 if (need_software_tstamp && skb->tstamp == 0) { 728 __net_timestamp(skb); 729 false_tstamp = 1; 730 } 731 732 if (need_software_tstamp) { 733 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 734 struct timeval tv; 735 skb_get_timestamp(skb, &tv); 736 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 737 sizeof(tv), &tv); 738 } else { 739 struct timespec ts; 740 skb_get_timestampns(skb, &ts); 741 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 742 sizeof(ts), &ts); 743 } 744 } 745 746 memset(&tss, 0, sizeof(tss)); 747 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 748 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 749 empty = 0; 750 if (shhwtstamps && 751 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 752 !skb_is_swtx_tstamp(skb, false_tstamp) && 753 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 754 empty = 0; 755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 756 !skb_is_err_queue(skb)) 757 put_ts_pktinfo(msg, skb); 758 } 759 if (!empty) { 760 put_cmsg(msg, SOL_SOCKET, 761 SCM_TIMESTAMPING, sizeof(tss), &tss); 762 763 if (skb_is_err_queue(skb) && skb->len && 764 SKB_EXT_ERR(skb)->opt_stats) 765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 766 skb->len, skb->data); 767 } 768 } 769 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 770 771 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 772 struct sk_buff *skb) 773 { 774 int ack; 775 776 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 777 return; 778 if (!skb->wifi_acked_valid) 779 return; 780 781 ack = skb->wifi_acked; 782 783 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 784 } 785 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 786 787 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 788 struct sk_buff *skb) 789 { 790 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 791 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 792 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 793 } 794 795 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 796 struct sk_buff *skb) 797 { 798 sock_recv_timestamp(msg, sk, skb); 799 sock_recv_drops(msg, sk, skb); 800 } 801 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 802 803 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 804 int flags) 805 { 806 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 807 } 808 809 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 810 { 811 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 812 813 return err ?: sock_recvmsg_nosec(sock, msg, flags); 814 } 815 EXPORT_SYMBOL(sock_recvmsg); 816 817 /** 818 * kernel_recvmsg - Receive a message from a socket (kernel space) 819 * @sock: The socket to receive the message from 820 * @msg: Received message 821 * @vec: Input s/g array for message data 822 * @num: Size of input s/g array 823 * @size: Number of bytes to read 824 * @flags: Message flags (MSG_DONTWAIT, etc...) 825 * 826 * On return the msg structure contains the scatter/gather array passed in the 827 * vec argument. The array is modified so that it consists of the unfilled 828 * portion of the original array. 829 * 830 * The returned value is the total number of bytes received, or an error. 831 */ 832 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 833 struct kvec *vec, size_t num, size_t size, int flags) 834 { 835 mm_segment_t oldfs = get_fs(); 836 int result; 837 838 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 839 set_fs(KERNEL_DS); 840 result = sock_recvmsg(sock, msg, flags); 841 set_fs(oldfs); 842 return result; 843 } 844 EXPORT_SYMBOL(kernel_recvmsg); 845 846 static ssize_t sock_sendpage(struct file *file, struct page *page, 847 int offset, size_t size, loff_t *ppos, int more) 848 { 849 struct socket *sock; 850 int flags; 851 852 sock = file->private_data; 853 854 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 855 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 856 flags |= more; 857 858 return kernel_sendpage(sock, page, offset, size, flags); 859 } 860 861 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 862 struct pipe_inode_info *pipe, size_t len, 863 unsigned int flags) 864 { 865 struct socket *sock = file->private_data; 866 867 if (unlikely(!sock->ops->splice_read)) 868 return -EINVAL; 869 870 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 871 } 872 873 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 874 { 875 struct file *file = iocb->ki_filp; 876 struct socket *sock = file->private_data; 877 struct msghdr msg = {.msg_iter = *to, 878 .msg_iocb = iocb}; 879 ssize_t res; 880 881 if (file->f_flags & O_NONBLOCK) 882 msg.msg_flags = MSG_DONTWAIT; 883 884 if (iocb->ki_pos != 0) 885 return -ESPIPE; 886 887 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 888 return 0; 889 890 res = sock_recvmsg(sock, &msg, msg.msg_flags); 891 *to = msg.msg_iter; 892 return res; 893 } 894 895 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 896 { 897 struct file *file = iocb->ki_filp; 898 struct socket *sock = file->private_data; 899 struct msghdr msg = {.msg_iter = *from, 900 .msg_iocb = iocb}; 901 ssize_t res; 902 903 if (iocb->ki_pos != 0) 904 return -ESPIPE; 905 906 if (file->f_flags & O_NONBLOCK) 907 msg.msg_flags = MSG_DONTWAIT; 908 909 if (sock->type == SOCK_SEQPACKET) 910 msg.msg_flags |= MSG_EOR; 911 912 res = sock_sendmsg(sock, &msg); 913 *from = msg.msg_iter; 914 return res; 915 } 916 917 /* 918 * Atomic setting of ioctl hooks to avoid race 919 * with module unload. 920 */ 921 922 static DEFINE_MUTEX(br_ioctl_mutex); 923 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 924 925 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 926 { 927 mutex_lock(&br_ioctl_mutex); 928 br_ioctl_hook = hook; 929 mutex_unlock(&br_ioctl_mutex); 930 } 931 EXPORT_SYMBOL(brioctl_set); 932 933 static DEFINE_MUTEX(vlan_ioctl_mutex); 934 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 935 936 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 937 { 938 mutex_lock(&vlan_ioctl_mutex); 939 vlan_ioctl_hook = hook; 940 mutex_unlock(&vlan_ioctl_mutex); 941 } 942 EXPORT_SYMBOL(vlan_ioctl_set); 943 944 static DEFINE_MUTEX(dlci_ioctl_mutex); 945 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 946 947 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 948 { 949 mutex_lock(&dlci_ioctl_mutex); 950 dlci_ioctl_hook = hook; 951 mutex_unlock(&dlci_ioctl_mutex); 952 } 953 EXPORT_SYMBOL(dlci_ioctl_set); 954 955 static long sock_do_ioctl(struct net *net, struct socket *sock, 956 unsigned int cmd, unsigned long arg) 957 { 958 int err; 959 void __user *argp = (void __user *)arg; 960 961 err = sock->ops->ioctl(sock, cmd, arg); 962 963 /* 964 * If this ioctl is unknown try to hand it down 965 * to the NIC driver. 966 */ 967 if (err == -ENOIOCTLCMD) 968 err = dev_ioctl(net, cmd, argp); 969 970 return err; 971 } 972 973 /* 974 * With an ioctl, arg may well be a user mode pointer, but we don't know 975 * what to do with it - that's up to the protocol still. 976 */ 977 978 static struct ns_common *get_net_ns(struct ns_common *ns) 979 { 980 return &get_net(container_of(ns, struct net, ns))->ns; 981 } 982 983 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 984 { 985 struct socket *sock; 986 struct sock *sk; 987 void __user *argp = (void __user *)arg; 988 int pid, err; 989 struct net *net; 990 991 sock = file->private_data; 992 sk = sock->sk; 993 net = sock_net(sk); 994 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 995 err = dev_ioctl(net, cmd, argp); 996 } else 997 #ifdef CONFIG_WEXT_CORE 998 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 999 err = dev_ioctl(net, cmd, argp); 1000 } else 1001 #endif 1002 switch (cmd) { 1003 case FIOSETOWN: 1004 case SIOCSPGRP: 1005 err = -EFAULT; 1006 if (get_user(pid, (int __user *)argp)) 1007 break; 1008 err = f_setown(sock->file, pid, 1); 1009 break; 1010 case FIOGETOWN: 1011 case SIOCGPGRP: 1012 err = put_user(f_getown(sock->file), 1013 (int __user *)argp); 1014 break; 1015 case SIOCGIFBR: 1016 case SIOCSIFBR: 1017 case SIOCBRADDBR: 1018 case SIOCBRDELBR: 1019 err = -ENOPKG; 1020 if (!br_ioctl_hook) 1021 request_module("bridge"); 1022 1023 mutex_lock(&br_ioctl_mutex); 1024 if (br_ioctl_hook) 1025 err = br_ioctl_hook(net, cmd, argp); 1026 mutex_unlock(&br_ioctl_mutex); 1027 break; 1028 case SIOCGIFVLAN: 1029 case SIOCSIFVLAN: 1030 err = -ENOPKG; 1031 if (!vlan_ioctl_hook) 1032 request_module("8021q"); 1033 1034 mutex_lock(&vlan_ioctl_mutex); 1035 if (vlan_ioctl_hook) 1036 err = vlan_ioctl_hook(net, argp); 1037 mutex_unlock(&vlan_ioctl_mutex); 1038 break; 1039 case SIOCADDDLCI: 1040 case SIOCDELDLCI: 1041 err = -ENOPKG; 1042 if (!dlci_ioctl_hook) 1043 request_module("dlci"); 1044 1045 mutex_lock(&dlci_ioctl_mutex); 1046 if (dlci_ioctl_hook) 1047 err = dlci_ioctl_hook(cmd, argp); 1048 mutex_unlock(&dlci_ioctl_mutex); 1049 break; 1050 case SIOCGSKNS: 1051 err = -EPERM; 1052 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1053 break; 1054 1055 err = open_related_ns(&net->ns, get_net_ns); 1056 break; 1057 default: 1058 err = sock_do_ioctl(net, sock, cmd, arg); 1059 break; 1060 } 1061 return err; 1062 } 1063 1064 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1065 { 1066 int err; 1067 struct socket *sock = NULL; 1068 1069 err = security_socket_create(family, type, protocol, 1); 1070 if (err) 1071 goto out; 1072 1073 sock = sock_alloc(); 1074 if (!sock) { 1075 err = -ENOMEM; 1076 goto out; 1077 } 1078 1079 sock->type = type; 1080 err = security_socket_post_create(sock, family, type, protocol, 1); 1081 if (err) 1082 goto out_release; 1083 1084 out: 1085 *res = sock; 1086 return err; 1087 out_release: 1088 sock_release(sock); 1089 sock = NULL; 1090 goto out; 1091 } 1092 EXPORT_SYMBOL(sock_create_lite); 1093 1094 /* No kernel lock held - perfect */ 1095 static unsigned int sock_poll(struct file *file, poll_table *wait) 1096 { 1097 unsigned int busy_flag = 0; 1098 struct socket *sock; 1099 1100 /* 1101 * We can't return errors to poll, so it's either yes or no. 1102 */ 1103 sock = file->private_data; 1104 1105 if (sk_can_busy_loop(sock->sk)) { 1106 /* this socket can poll_ll so tell the system call */ 1107 busy_flag = POLL_BUSY_LOOP; 1108 1109 /* once, only if requested by syscall */ 1110 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1111 sk_busy_loop(sock->sk, 1); 1112 } 1113 1114 return busy_flag | sock->ops->poll(file, sock, wait); 1115 } 1116 1117 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1118 { 1119 struct socket *sock = file->private_data; 1120 1121 return sock->ops->mmap(file, sock, vma); 1122 } 1123 1124 static int sock_close(struct inode *inode, struct file *filp) 1125 { 1126 sock_release(SOCKET_I(inode)); 1127 return 0; 1128 } 1129 1130 /* 1131 * Update the socket async list 1132 * 1133 * Fasync_list locking strategy. 1134 * 1135 * 1. fasync_list is modified only under process context socket lock 1136 * i.e. under semaphore. 1137 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1138 * or under socket lock 1139 */ 1140 1141 static int sock_fasync(int fd, struct file *filp, int on) 1142 { 1143 struct socket *sock = filp->private_data; 1144 struct sock *sk = sock->sk; 1145 struct socket_wq *wq; 1146 1147 if (sk == NULL) 1148 return -EINVAL; 1149 1150 lock_sock(sk); 1151 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1152 fasync_helper(fd, filp, on, &wq->fasync_list); 1153 1154 if (!wq->fasync_list) 1155 sock_reset_flag(sk, SOCK_FASYNC); 1156 else 1157 sock_set_flag(sk, SOCK_FASYNC); 1158 1159 release_sock(sk); 1160 return 0; 1161 } 1162 1163 /* This function may be called only under rcu_lock */ 1164 1165 int sock_wake_async(struct socket_wq *wq, int how, int band) 1166 { 1167 if (!wq || !wq->fasync_list) 1168 return -1; 1169 1170 switch (how) { 1171 case SOCK_WAKE_WAITD: 1172 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1173 break; 1174 goto call_kill; 1175 case SOCK_WAKE_SPACE: 1176 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1177 break; 1178 /* fall through */ 1179 case SOCK_WAKE_IO: 1180 call_kill: 1181 kill_fasync(&wq->fasync_list, SIGIO, band); 1182 break; 1183 case SOCK_WAKE_URG: 1184 kill_fasync(&wq->fasync_list, SIGURG, band); 1185 } 1186 1187 return 0; 1188 } 1189 EXPORT_SYMBOL(sock_wake_async); 1190 1191 int __sock_create(struct net *net, int family, int type, int protocol, 1192 struct socket **res, int kern) 1193 { 1194 int err; 1195 struct socket *sock; 1196 const struct net_proto_family *pf; 1197 1198 /* 1199 * Check protocol is in range 1200 */ 1201 if (family < 0 || family >= NPROTO) 1202 return -EAFNOSUPPORT; 1203 if (type < 0 || type >= SOCK_MAX) 1204 return -EINVAL; 1205 1206 /* Compatibility. 1207 1208 This uglymoron is moved from INET layer to here to avoid 1209 deadlock in module load. 1210 */ 1211 if (family == PF_INET && type == SOCK_PACKET) { 1212 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1213 current->comm); 1214 family = PF_PACKET; 1215 } 1216 1217 err = security_socket_create(family, type, protocol, kern); 1218 if (err) 1219 return err; 1220 1221 /* 1222 * Allocate the socket and allow the family to set things up. if 1223 * the protocol is 0, the family is instructed to select an appropriate 1224 * default. 1225 */ 1226 sock = sock_alloc(); 1227 if (!sock) { 1228 net_warn_ratelimited("socket: no more sockets\n"); 1229 return -ENFILE; /* Not exactly a match, but its the 1230 closest posix thing */ 1231 } 1232 1233 sock->type = type; 1234 1235 #ifdef CONFIG_MODULES 1236 /* Attempt to load a protocol module if the find failed. 1237 * 1238 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1239 * requested real, full-featured networking support upon configuration. 1240 * Otherwise module support will break! 1241 */ 1242 if (rcu_access_pointer(net_families[family]) == NULL) 1243 request_module("net-pf-%d", family); 1244 #endif 1245 1246 rcu_read_lock(); 1247 pf = rcu_dereference(net_families[family]); 1248 err = -EAFNOSUPPORT; 1249 if (!pf) 1250 goto out_release; 1251 1252 /* 1253 * We will call the ->create function, that possibly is in a loadable 1254 * module, so we have to bump that loadable module refcnt first. 1255 */ 1256 if (!try_module_get(pf->owner)) 1257 goto out_release; 1258 1259 /* Now protected by module ref count */ 1260 rcu_read_unlock(); 1261 1262 err = pf->create(net, sock, protocol, kern); 1263 if (err < 0) 1264 goto out_module_put; 1265 1266 /* 1267 * Now to bump the refcnt of the [loadable] module that owns this 1268 * socket at sock_release time we decrement its refcnt. 1269 */ 1270 if (!try_module_get(sock->ops->owner)) 1271 goto out_module_busy; 1272 1273 /* 1274 * Now that we're done with the ->create function, the [loadable] 1275 * module can have its refcnt decremented 1276 */ 1277 module_put(pf->owner); 1278 err = security_socket_post_create(sock, family, type, protocol, kern); 1279 if (err) 1280 goto out_sock_release; 1281 *res = sock; 1282 1283 return 0; 1284 1285 out_module_busy: 1286 err = -EAFNOSUPPORT; 1287 out_module_put: 1288 sock->ops = NULL; 1289 module_put(pf->owner); 1290 out_sock_release: 1291 sock_release(sock); 1292 return err; 1293 1294 out_release: 1295 rcu_read_unlock(); 1296 goto out_sock_release; 1297 } 1298 EXPORT_SYMBOL(__sock_create); 1299 1300 int sock_create(int family, int type, int protocol, struct socket **res) 1301 { 1302 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1303 } 1304 EXPORT_SYMBOL(sock_create); 1305 1306 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1307 { 1308 return __sock_create(net, family, type, protocol, res, 1); 1309 } 1310 EXPORT_SYMBOL(sock_create_kern); 1311 1312 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1313 { 1314 int retval; 1315 struct socket *sock; 1316 int flags; 1317 1318 /* Check the SOCK_* constants for consistency. */ 1319 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1320 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1321 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1322 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1323 1324 flags = type & ~SOCK_TYPE_MASK; 1325 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1326 return -EINVAL; 1327 type &= SOCK_TYPE_MASK; 1328 1329 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1330 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1331 1332 retval = sock_create(family, type, protocol, &sock); 1333 if (retval < 0) 1334 goto out; 1335 1336 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1337 if (retval < 0) 1338 goto out_release; 1339 1340 out: 1341 /* It may be already another descriptor 8) Not kernel problem. */ 1342 return retval; 1343 1344 out_release: 1345 sock_release(sock); 1346 return retval; 1347 } 1348 1349 /* 1350 * Create a pair of connected sockets. 1351 */ 1352 1353 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1354 int __user *, usockvec) 1355 { 1356 struct socket *sock1, *sock2; 1357 int fd1, fd2, err; 1358 struct file *newfile1, *newfile2; 1359 int flags; 1360 1361 flags = type & ~SOCK_TYPE_MASK; 1362 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1363 return -EINVAL; 1364 type &= SOCK_TYPE_MASK; 1365 1366 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1367 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1368 1369 /* 1370 * Obtain the first socket and check if the underlying protocol 1371 * supports the socketpair call. 1372 */ 1373 1374 err = sock_create(family, type, protocol, &sock1); 1375 if (err < 0) 1376 goto out; 1377 1378 err = sock_create(family, type, protocol, &sock2); 1379 if (err < 0) 1380 goto out_release_1; 1381 1382 err = sock1->ops->socketpair(sock1, sock2); 1383 if (err < 0) 1384 goto out_release_both; 1385 1386 fd1 = get_unused_fd_flags(flags); 1387 if (unlikely(fd1 < 0)) { 1388 err = fd1; 1389 goto out_release_both; 1390 } 1391 1392 fd2 = get_unused_fd_flags(flags); 1393 if (unlikely(fd2 < 0)) { 1394 err = fd2; 1395 goto out_put_unused_1; 1396 } 1397 1398 newfile1 = sock_alloc_file(sock1, flags, NULL); 1399 if (IS_ERR(newfile1)) { 1400 err = PTR_ERR(newfile1); 1401 goto out_put_unused_both; 1402 } 1403 1404 newfile2 = sock_alloc_file(sock2, flags, NULL); 1405 if (IS_ERR(newfile2)) { 1406 err = PTR_ERR(newfile2); 1407 goto out_fput_1; 1408 } 1409 1410 err = put_user(fd1, &usockvec[0]); 1411 if (err) 1412 goto out_fput_both; 1413 1414 err = put_user(fd2, &usockvec[1]); 1415 if (err) 1416 goto out_fput_both; 1417 1418 audit_fd_pair(fd1, fd2); 1419 1420 fd_install(fd1, newfile1); 1421 fd_install(fd2, newfile2); 1422 /* fd1 and fd2 may be already another descriptors. 1423 * Not kernel problem. 1424 */ 1425 1426 return 0; 1427 1428 out_fput_both: 1429 fput(newfile2); 1430 fput(newfile1); 1431 put_unused_fd(fd2); 1432 put_unused_fd(fd1); 1433 goto out; 1434 1435 out_fput_1: 1436 fput(newfile1); 1437 put_unused_fd(fd2); 1438 put_unused_fd(fd1); 1439 sock_release(sock2); 1440 goto out; 1441 1442 out_put_unused_both: 1443 put_unused_fd(fd2); 1444 out_put_unused_1: 1445 put_unused_fd(fd1); 1446 out_release_both: 1447 sock_release(sock2); 1448 out_release_1: 1449 sock_release(sock1); 1450 out: 1451 return err; 1452 } 1453 1454 /* 1455 * Bind a name to a socket. Nothing much to do here since it's 1456 * the protocol's responsibility to handle the local address. 1457 * 1458 * We move the socket address to kernel space before we call 1459 * the protocol layer (having also checked the address is ok). 1460 */ 1461 1462 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1463 { 1464 struct socket *sock; 1465 struct sockaddr_storage address; 1466 int err, fput_needed; 1467 1468 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1469 if (sock) { 1470 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1471 if (err >= 0) { 1472 err = security_socket_bind(sock, 1473 (struct sockaddr *)&address, 1474 addrlen); 1475 if (!err) 1476 err = sock->ops->bind(sock, 1477 (struct sockaddr *) 1478 &address, addrlen); 1479 } 1480 fput_light(sock->file, fput_needed); 1481 } 1482 return err; 1483 } 1484 1485 /* 1486 * Perform a listen. Basically, we allow the protocol to do anything 1487 * necessary for a listen, and if that works, we mark the socket as 1488 * ready for listening. 1489 */ 1490 1491 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1492 { 1493 struct socket *sock; 1494 int err, fput_needed; 1495 int somaxconn; 1496 1497 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1498 if (sock) { 1499 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1500 if ((unsigned int)backlog > somaxconn) 1501 backlog = somaxconn; 1502 1503 err = security_socket_listen(sock, backlog); 1504 if (!err) 1505 err = sock->ops->listen(sock, backlog); 1506 1507 fput_light(sock->file, fput_needed); 1508 } 1509 return err; 1510 } 1511 1512 /* 1513 * For accept, we attempt to create a new socket, set up the link 1514 * with the client, wake up the client, then return the new 1515 * connected fd. We collect the address of the connector in kernel 1516 * space and move it to user at the very end. This is unclean because 1517 * we open the socket then return an error. 1518 * 1519 * 1003.1g adds the ability to recvmsg() to query connection pending 1520 * status to recvmsg. We need to add that support in a way thats 1521 * clean when we restucture accept also. 1522 */ 1523 1524 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1525 int __user *, upeer_addrlen, int, flags) 1526 { 1527 struct socket *sock, *newsock; 1528 struct file *newfile; 1529 int err, len, newfd, fput_needed; 1530 struct sockaddr_storage address; 1531 1532 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1533 return -EINVAL; 1534 1535 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1536 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1537 1538 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1539 if (!sock) 1540 goto out; 1541 1542 err = -ENFILE; 1543 newsock = sock_alloc(); 1544 if (!newsock) 1545 goto out_put; 1546 1547 newsock->type = sock->type; 1548 newsock->ops = sock->ops; 1549 1550 /* 1551 * We don't need try_module_get here, as the listening socket (sock) 1552 * has the protocol module (sock->ops->owner) held. 1553 */ 1554 __module_get(newsock->ops->owner); 1555 1556 newfd = get_unused_fd_flags(flags); 1557 if (unlikely(newfd < 0)) { 1558 err = newfd; 1559 sock_release(newsock); 1560 goto out_put; 1561 } 1562 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1563 if (IS_ERR(newfile)) { 1564 err = PTR_ERR(newfile); 1565 put_unused_fd(newfd); 1566 sock_release(newsock); 1567 goto out_put; 1568 } 1569 1570 err = security_socket_accept(sock, newsock); 1571 if (err) 1572 goto out_fd; 1573 1574 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1575 if (err < 0) 1576 goto out_fd; 1577 1578 if (upeer_sockaddr) { 1579 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1580 &len, 2) < 0) { 1581 err = -ECONNABORTED; 1582 goto out_fd; 1583 } 1584 err = move_addr_to_user(&address, 1585 len, upeer_sockaddr, upeer_addrlen); 1586 if (err < 0) 1587 goto out_fd; 1588 } 1589 1590 /* File flags are not inherited via accept() unlike another OSes. */ 1591 1592 fd_install(newfd, newfile); 1593 err = newfd; 1594 1595 out_put: 1596 fput_light(sock->file, fput_needed); 1597 out: 1598 return err; 1599 out_fd: 1600 fput(newfile); 1601 put_unused_fd(newfd); 1602 goto out_put; 1603 } 1604 1605 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1606 int __user *, upeer_addrlen) 1607 { 1608 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1609 } 1610 1611 /* 1612 * Attempt to connect to a socket with the server address. The address 1613 * is in user space so we verify it is OK and move it to kernel space. 1614 * 1615 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1616 * break bindings 1617 * 1618 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1619 * other SEQPACKET protocols that take time to connect() as it doesn't 1620 * include the -EINPROGRESS status for such sockets. 1621 */ 1622 1623 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1624 int, addrlen) 1625 { 1626 struct socket *sock; 1627 struct sockaddr_storage address; 1628 int err, fput_needed; 1629 1630 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1631 if (!sock) 1632 goto out; 1633 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1634 if (err < 0) 1635 goto out_put; 1636 1637 err = 1638 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1639 if (err) 1640 goto out_put; 1641 1642 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1643 sock->file->f_flags); 1644 out_put: 1645 fput_light(sock->file, fput_needed); 1646 out: 1647 return err; 1648 } 1649 1650 /* 1651 * Get the local address ('name') of a socket object. Move the obtained 1652 * name to user space. 1653 */ 1654 1655 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1656 int __user *, usockaddr_len) 1657 { 1658 struct socket *sock; 1659 struct sockaddr_storage address; 1660 int len, err, fput_needed; 1661 1662 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1663 if (!sock) 1664 goto out; 1665 1666 err = security_socket_getsockname(sock); 1667 if (err) 1668 goto out_put; 1669 1670 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1671 if (err) 1672 goto out_put; 1673 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1674 1675 out_put: 1676 fput_light(sock->file, fput_needed); 1677 out: 1678 return err; 1679 } 1680 1681 /* 1682 * Get the remote address ('name') of a socket object. Move the obtained 1683 * name to user space. 1684 */ 1685 1686 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1687 int __user *, usockaddr_len) 1688 { 1689 struct socket *sock; 1690 struct sockaddr_storage address; 1691 int len, err, fput_needed; 1692 1693 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1694 if (sock != NULL) { 1695 err = security_socket_getpeername(sock); 1696 if (err) { 1697 fput_light(sock->file, fput_needed); 1698 return err; 1699 } 1700 1701 err = 1702 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1703 1); 1704 if (!err) 1705 err = move_addr_to_user(&address, len, usockaddr, 1706 usockaddr_len); 1707 fput_light(sock->file, fput_needed); 1708 } 1709 return err; 1710 } 1711 1712 /* 1713 * Send a datagram to a given address. We move the address into kernel 1714 * space and check the user space data area is readable before invoking 1715 * the protocol. 1716 */ 1717 1718 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1719 unsigned int, flags, struct sockaddr __user *, addr, 1720 int, addr_len) 1721 { 1722 struct socket *sock; 1723 struct sockaddr_storage address; 1724 int err; 1725 struct msghdr msg; 1726 struct iovec iov; 1727 int fput_needed; 1728 1729 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1730 if (unlikely(err)) 1731 return err; 1732 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1733 if (!sock) 1734 goto out; 1735 1736 msg.msg_name = NULL; 1737 msg.msg_control = NULL; 1738 msg.msg_controllen = 0; 1739 msg.msg_namelen = 0; 1740 if (addr) { 1741 err = move_addr_to_kernel(addr, addr_len, &address); 1742 if (err < 0) 1743 goto out_put; 1744 msg.msg_name = (struct sockaddr *)&address; 1745 msg.msg_namelen = addr_len; 1746 } 1747 if (sock->file->f_flags & O_NONBLOCK) 1748 flags |= MSG_DONTWAIT; 1749 msg.msg_flags = flags; 1750 err = sock_sendmsg(sock, &msg); 1751 1752 out_put: 1753 fput_light(sock->file, fput_needed); 1754 out: 1755 return err; 1756 } 1757 1758 /* 1759 * Send a datagram down a socket. 1760 */ 1761 1762 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1763 unsigned int, flags) 1764 { 1765 return sys_sendto(fd, buff, len, flags, NULL, 0); 1766 } 1767 1768 /* 1769 * Receive a frame from the socket and optionally record the address of the 1770 * sender. We verify the buffers are writable and if needed move the 1771 * sender address from kernel to user space. 1772 */ 1773 1774 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1775 unsigned int, flags, struct sockaddr __user *, addr, 1776 int __user *, addr_len) 1777 { 1778 struct socket *sock; 1779 struct iovec iov; 1780 struct msghdr msg; 1781 struct sockaddr_storage address; 1782 int err, err2; 1783 int fput_needed; 1784 1785 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1786 if (unlikely(err)) 1787 return err; 1788 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1789 if (!sock) 1790 goto out; 1791 1792 msg.msg_control = NULL; 1793 msg.msg_controllen = 0; 1794 /* Save some cycles and don't copy the address if not needed */ 1795 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1796 /* We assume all kernel code knows the size of sockaddr_storage */ 1797 msg.msg_namelen = 0; 1798 msg.msg_iocb = NULL; 1799 msg.msg_flags = 0; 1800 if (sock->file->f_flags & O_NONBLOCK) 1801 flags |= MSG_DONTWAIT; 1802 err = sock_recvmsg(sock, &msg, flags); 1803 1804 if (err >= 0 && addr != NULL) { 1805 err2 = move_addr_to_user(&address, 1806 msg.msg_namelen, addr, addr_len); 1807 if (err2 < 0) 1808 err = err2; 1809 } 1810 1811 fput_light(sock->file, fput_needed); 1812 out: 1813 return err; 1814 } 1815 1816 /* 1817 * Receive a datagram from a socket. 1818 */ 1819 1820 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1821 unsigned int, flags) 1822 { 1823 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1824 } 1825 1826 /* 1827 * Set a socket option. Because we don't know the option lengths we have 1828 * to pass the user mode parameter for the protocols to sort out. 1829 */ 1830 1831 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1832 char __user *, optval, int, optlen) 1833 { 1834 int err, fput_needed; 1835 struct socket *sock; 1836 1837 if (optlen < 0) 1838 return -EINVAL; 1839 1840 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1841 if (sock != NULL) { 1842 err = security_socket_setsockopt(sock, level, optname); 1843 if (err) 1844 goto out_put; 1845 1846 if (level == SOL_SOCKET) 1847 err = 1848 sock_setsockopt(sock, level, optname, optval, 1849 optlen); 1850 else 1851 err = 1852 sock->ops->setsockopt(sock, level, optname, optval, 1853 optlen); 1854 out_put: 1855 fput_light(sock->file, fput_needed); 1856 } 1857 return err; 1858 } 1859 1860 /* 1861 * Get a socket option. Because we don't know the option lengths we have 1862 * to pass a user mode parameter for the protocols to sort out. 1863 */ 1864 1865 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1866 char __user *, optval, int __user *, optlen) 1867 { 1868 int err, fput_needed; 1869 struct socket *sock; 1870 1871 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1872 if (sock != NULL) { 1873 err = security_socket_getsockopt(sock, level, optname); 1874 if (err) 1875 goto out_put; 1876 1877 if (level == SOL_SOCKET) 1878 err = 1879 sock_getsockopt(sock, level, optname, optval, 1880 optlen); 1881 else 1882 err = 1883 sock->ops->getsockopt(sock, level, optname, optval, 1884 optlen); 1885 out_put: 1886 fput_light(sock->file, fput_needed); 1887 } 1888 return err; 1889 } 1890 1891 /* 1892 * Shutdown a socket. 1893 */ 1894 1895 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1896 { 1897 int err, fput_needed; 1898 struct socket *sock; 1899 1900 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1901 if (sock != NULL) { 1902 err = security_socket_shutdown(sock, how); 1903 if (!err) 1904 err = sock->ops->shutdown(sock, how); 1905 fput_light(sock->file, fput_needed); 1906 } 1907 return err; 1908 } 1909 1910 /* A couple of helpful macros for getting the address of the 32/64 bit 1911 * fields which are the same type (int / unsigned) on our platforms. 1912 */ 1913 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1914 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1915 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1916 1917 struct used_address { 1918 struct sockaddr_storage name; 1919 unsigned int name_len; 1920 }; 1921 1922 static int copy_msghdr_from_user(struct msghdr *kmsg, 1923 struct user_msghdr __user *umsg, 1924 struct sockaddr __user **save_addr, 1925 struct iovec **iov) 1926 { 1927 struct user_msghdr msg; 1928 ssize_t err; 1929 1930 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1931 return -EFAULT; 1932 1933 kmsg->msg_control = (void __force *)msg.msg_control; 1934 kmsg->msg_controllen = msg.msg_controllen; 1935 kmsg->msg_flags = msg.msg_flags; 1936 1937 kmsg->msg_namelen = msg.msg_namelen; 1938 if (!msg.msg_name) 1939 kmsg->msg_namelen = 0; 1940 1941 if (kmsg->msg_namelen < 0) 1942 return -EINVAL; 1943 1944 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1945 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1946 1947 if (save_addr) 1948 *save_addr = msg.msg_name; 1949 1950 if (msg.msg_name && kmsg->msg_namelen) { 1951 if (!save_addr) { 1952 err = move_addr_to_kernel(msg.msg_name, 1953 kmsg->msg_namelen, 1954 kmsg->msg_name); 1955 if (err < 0) 1956 return err; 1957 } 1958 } else { 1959 kmsg->msg_name = NULL; 1960 kmsg->msg_namelen = 0; 1961 } 1962 1963 if (msg.msg_iovlen > UIO_MAXIOV) 1964 return -EMSGSIZE; 1965 1966 kmsg->msg_iocb = NULL; 1967 1968 return import_iovec(save_addr ? READ : WRITE, 1969 msg.msg_iov, msg.msg_iovlen, 1970 UIO_FASTIOV, iov, &kmsg->msg_iter); 1971 } 1972 1973 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1974 struct msghdr *msg_sys, unsigned int flags, 1975 struct used_address *used_address, 1976 unsigned int allowed_msghdr_flags) 1977 { 1978 struct compat_msghdr __user *msg_compat = 1979 (struct compat_msghdr __user *)msg; 1980 struct sockaddr_storage address; 1981 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1982 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1983 __aligned(sizeof(__kernel_size_t)); 1984 /* 20 is size of ipv6_pktinfo */ 1985 unsigned char *ctl_buf = ctl; 1986 int ctl_len; 1987 ssize_t err; 1988 1989 msg_sys->msg_name = &address; 1990 1991 if (MSG_CMSG_COMPAT & flags) 1992 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1993 else 1994 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1995 if (err < 0) 1996 return err; 1997 1998 err = -ENOBUFS; 1999 2000 if (msg_sys->msg_controllen > INT_MAX) 2001 goto out_freeiov; 2002 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2003 ctl_len = msg_sys->msg_controllen; 2004 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2005 err = 2006 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2007 sizeof(ctl)); 2008 if (err) 2009 goto out_freeiov; 2010 ctl_buf = msg_sys->msg_control; 2011 ctl_len = msg_sys->msg_controllen; 2012 } else if (ctl_len) { 2013 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2014 CMSG_ALIGN(sizeof(struct cmsghdr))); 2015 if (ctl_len > sizeof(ctl)) { 2016 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2017 if (ctl_buf == NULL) 2018 goto out_freeiov; 2019 } 2020 err = -EFAULT; 2021 /* 2022 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2023 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2024 * checking falls down on this. 2025 */ 2026 if (copy_from_user(ctl_buf, 2027 (void __user __force *)msg_sys->msg_control, 2028 ctl_len)) 2029 goto out_freectl; 2030 msg_sys->msg_control = ctl_buf; 2031 } 2032 msg_sys->msg_flags = flags; 2033 2034 if (sock->file->f_flags & O_NONBLOCK) 2035 msg_sys->msg_flags |= MSG_DONTWAIT; 2036 /* 2037 * If this is sendmmsg() and current destination address is same as 2038 * previously succeeded address, omit asking LSM's decision. 2039 * used_address->name_len is initialized to UINT_MAX so that the first 2040 * destination address never matches. 2041 */ 2042 if (used_address && msg_sys->msg_name && 2043 used_address->name_len == msg_sys->msg_namelen && 2044 !memcmp(&used_address->name, msg_sys->msg_name, 2045 used_address->name_len)) { 2046 err = sock_sendmsg_nosec(sock, msg_sys); 2047 goto out_freectl; 2048 } 2049 err = sock_sendmsg(sock, msg_sys); 2050 /* 2051 * If this is sendmmsg() and sending to current destination address was 2052 * successful, remember it. 2053 */ 2054 if (used_address && err >= 0) { 2055 used_address->name_len = msg_sys->msg_namelen; 2056 if (msg_sys->msg_name) 2057 memcpy(&used_address->name, msg_sys->msg_name, 2058 used_address->name_len); 2059 } 2060 2061 out_freectl: 2062 if (ctl_buf != ctl) 2063 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2064 out_freeiov: 2065 kfree(iov); 2066 return err; 2067 } 2068 2069 /* 2070 * BSD sendmsg interface 2071 */ 2072 2073 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2074 { 2075 int fput_needed, err; 2076 struct msghdr msg_sys; 2077 struct socket *sock; 2078 2079 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2080 if (!sock) 2081 goto out; 2082 2083 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2084 2085 fput_light(sock->file, fput_needed); 2086 out: 2087 return err; 2088 } 2089 2090 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2091 { 2092 if (flags & MSG_CMSG_COMPAT) 2093 return -EINVAL; 2094 return __sys_sendmsg(fd, msg, flags); 2095 } 2096 2097 /* 2098 * Linux sendmmsg interface 2099 */ 2100 2101 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2102 unsigned int flags) 2103 { 2104 int fput_needed, err, datagrams; 2105 struct socket *sock; 2106 struct mmsghdr __user *entry; 2107 struct compat_mmsghdr __user *compat_entry; 2108 struct msghdr msg_sys; 2109 struct used_address used_address; 2110 unsigned int oflags = flags; 2111 2112 if (vlen > UIO_MAXIOV) 2113 vlen = UIO_MAXIOV; 2114 2115 datagrams = 0; 2116 2117 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2118 if (!sock) 2119 return err; 2120 2121 used_address.name_len = UINT_MAX; 2122 entry = mmsg; 2123 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2124 err = 0; 2125 flags |= MSG_BATCH; 2126 2127 while (datagrams < vlen) { 2128 if (datagrams == vlen - 1) 2129 flags = oflags; 2130 2131 if (MSG_CMSG_COMPAT & flags) { 2132 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2133 &msg_sys, flags, &used_address, MSG_EOR); 2134 if (err < 0) 2135 break; 2136 err = __put_user(err, &compat_entry->msg_len); 2137 ++compat_entry; 2138 } else { 2139 err = ___sys_sendmsg(sock, 2140 (struct user_msghdr __user *)entry, 2141 &msg_sys, flags, &used_address, MSG_EOR); 2142 if (err < 0) 2143 break; 2144 err = put_user(err, &entry->msg_len); 2145 ++entry; 2146 } 2147 2148 if (err) 2149 break; 2150 ++datagrams; 2151 if (msg_data_left(&msg_sys)) 2152 break; 2153 cond_resched(); 2154 } 2155 2156 fput_light(sock->file, fput_needed); 2157 2158 /* We only return an error if no datagrams were able to be sent */ 2159 if (datagrams != 0) 2160 return datagrams; 2161 2162 return err; 2163 } 2164 2165 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2166 unsigned int, vlen, unsigned int, flags) 2167 { 2168 if (flags & MSG_CMSG_COMPAT) 2169 return -EINVAL; 2170 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2171 } 2172 2173 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2174 struct msghdr *msg_sys, unsigned int flags, int nosec) 2175 { 2176 struct compat_msghdr __user *msg_compat = 2177 (struct compat_msghdr __user *)msg; 2178 struct iovec iovstack[UIO_FASTIOV]; 2179 struct iovec *iov = iovstack; 2180 unsigned long cmsg_ptr; 2181 int len; 2182 ssize_t err; 2183 2184 /* kernel mode address */ 2185 struct sockaddr_storage addr; 2186 2187 /* user mode address pointers */ 2188 struct sockaddr __user *uaddr; 2189 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2190 2191 msg_sys->msg_name = &addr; 2192 2193 if (MSG_CMSG_COMPAT & flags) 2194 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2195 else 2196 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2197 if (err < 0) 2198 return err; 2199 2200 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2201 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2202 2203 /* We assume all kernel code knows the size of sockaddr_storage */ 2204 msg_sys->msg_namelen = 0; 2205 2206 if (sock->file->f_flags & O_NONBLOCK) 2207 flags |= MSG_DONTWAIT; 2208 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2209 if (err < 0) 2210 goto out_freeiov; 2211 len = err; 2212 2213 if (uaddr != NULL) { 2214 err = move_addr_to_user(&addr, 2215 msg_sys->msg_namelen, uaddr, 2216 uaddr_len); 2217 if (err < 0) 2218 goto out_freeiov; 2219 } 2220 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2221 COMPAT_FLAGS(msg)); 2222 if (err) 2223 goto out_freeiov; 2224 if (MSG_CMSG_COMPAT & flags) 2225 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2226 &msg_compat->msg_controllen); 2227 else 2228 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2229 &msg->msg_controllen); 2230 if (err) 2231 goto out_freeiov; 2232 err = len; 2233 2234 out_freeiov: 2235 kfree(iov); 2236 return err; 2237 } 2238 2239 /* 2240 * BSD recvmsg interface 2241 */ 2242 2243 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2244 { 2245 int fput_needed, err; 2246 struct msghdr msg_sys; 2247 struct socket *sock; 2248 2249 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2250 if (!sock) 2251 goto out; 2252 2253 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2254 2255 fput_light(sock->file, fput_needed); 2256 out: 2257 return err; 2258 } 2259 2260 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2261 unsigned int, flags) 2262 { 2263 if (flags & MSG_CMSG_COMPAT) 2264 return -EINVAL; 2265 return __sys_recvmsg(fd, msg, flags); 2266 } 2267 2268 /* 2269 * Linux recvmmsg interface 2270 */ 2271 2272 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2273 unsigned int flags, struct timespec *timeout) 2274 { 2275 int fput_needed, err, datagrams; 2276 struct socket *sock; 2277 struct mmsghdr __user *entry; 2278 struct compat_mmsghdr __user *compat_entry; 2279 struct msghdr msg_sys; 2280 struct timespec64 end_time; 2281 struct timespec64 timeout64; 2282 2283 if (timeout && 2284 poll_select_set_timeout(&end_time, timeout->tv_sec, 2285 timeout->tv_nsec)) 2286 return -EINVAL; 2287 2288 datagrams = 0; 2289 2290 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2291 if (!sock) 2292 return err; 2293 2294 err = sock_error(sock->sk); 2295 if (err) { 2296 datagrams = err; 2297 goto out_put; 2298 } 2299 2300 entry = mmsg; 2301 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2302 2303 while (datagrams < vlen) { 2304 /* 2305 * No need to ask LSM for more than the first datagram. 2306 */ 2307 if (MSG_CMSG_COMPAT & flags) { 2308 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2309 &msg_sys, flags & ~MSG_WAITFORONE, 2310 datagrams); 2311 if (err < 0) 2312 break; 2313 err = __put_user(err, &compat_entry->msg_len); 2314 ++compat_entry; 2315 } else { 2316 err = ___sys_recvmsg(sock, 2317 (struct user_msghdr __user *)entry, 2318 &msg_sys, flags & ~MSG_WAITFORONE, 2319 datagrams); 2320 if (err < 0) 2321 break; 2322 err = put_user(err, &entry->msg_len); 2323 ++entry; 2324 } 2325 2326 if (err) 2327 break; 2328 ++datagrams; 2329 2330 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2331 if (flags & MSG_WAITFORONE) 2332 flags |= MSG_DONTWAIT; 2333 2334 if (timeout) { 2335 ktime_get_ts64(&timeout64); 2336 *timeout = timespec64_to_timespec( 2337 timespec64_sub(end_time, timeout64)); 2338 if (timeout->tv_sec < 0) { 2339 timeout->tv_sec = timeout->tv_nsec = 0; 2340 break; 2341 } 2342 2343 /* Timeout, return less than vlen datagrams */ 2344 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2345 break; 2346 } 2347 2348 /* Out of band data, return right away */ 2349 if (msg_sys.msg_flags & MSG_OOB) 2350 break; 2351 cond_resched(); 2352 } 2353 2354 if (err == 0) 2355 goto out_put; 2356 2357 if (datagrams == 0) { 2358 datagrams = err; 2359 goto out_put; 2360 } 2361 2362 /* 2363 * We may return less entries than requested (vlen) if the 2364 * sock is non block and there aren't enough datagrams... 2365 */ 2366 if (err != -EAGAIN) { 2367 /* 2368 * ... or if recvmsg returns an error after we 2369 * received some datagrams, where we record the 2370 * error to return on the next call or if the 2371 * app asks about it using getsockopt(SO_ERROR). 2372 */ 2373 sock->sk->sk_err = -err; 2374 } 2375 out_put: 2376 fput_light(sock->file, fput_needed); 2377 2378 return datagrams; 2379 } 2380 2381 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2382 unsigned int, vlen, unsigned int, flags, 2383 struct timespec __user *, timeout) 2384 { 2385 int datagrams; 2386 struct timespec timeout_sys; 2387 2388 if (flags & MSG_CMSG_COMPAT) 2389 return -EINVAL; 2390 2391 if (!timeout) 2392 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2393 2394 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2395 return -EFAULT; 2396 2397 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2398 2399 if (datagrams > 0 && 2400 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2401 datagrams = -EFAULT; 2402 2403 return datagrams; 2404 } 2405 2406 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2407 /* Argument list sizes for sys_socketcall */ 2408 #define AL(x) ((x) * sizeof(unsigned long)) 2409 static const unsigned char nargs[21] = { 2410 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2411 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2412 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2413 AL(4), AL(5), AL(4) 2414 }; 2415 2416 #undef AL 2417 2418 /* 2419 * System call vectors. 2420 * 2421 * Argument checking cleaned up. Saved 20% in size. 2422 * This function doesn't need to set the kernel lock because 2423 * it is set by the callees. 2424 */ 2425 2426 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2427 { 2428 unsigned long a[AUDITSC_ARGS]; 2429 unsigned long a0, a1; 2430 int err; 2431 unsigned int len; 2432 2433 if (call < 1 || call > SYS_SENDMMSG) 2434 return -EINVAL; 2435 2436 len = nargs[call]; 2437 if (len > sizeof(a)) 2438 return -EINVAL; 2439 2440 /* copy_from_user should be SMP safe. */ 2441 if (copy_from_user(a, args, len)) 2442 return -EFAULT; 2443 2444 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2445 if (err) 2446 return err; 2447 2448 a0 = a[0]; 2449 a1 = a[1]; 2450 2451 switch (call) { 2452 case SYS_SOCKET: 2453 err = sys_socket(a0, a1, a[2]); 2454 break; 2455 case SYS_BIND: 2456 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2457 break; 2458 case SYS_CONNECT: 2459 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2460 break; 2461 case SYS_LISTEN: 2462 err = sys_listen(a0, a1); 2463 break; 2464 case SYS_ACCEPT: 2465 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2466 (int __user *)a[2], 0); 2467 break; 2468 case SYS_GETSOCKNAME: 2469 err = 2470 sys_getsockname(a0, (struct sockaddr __user *)a1, 2471 (int __user *)a[2]); 2472 break; 2473 case SYS_GETPEERNAME: 2474 err = 2475 sys_getpeername(a0, (struct sockaddr __user *)a1, 2476 (int __user *)a[2]); 2477 break; 2478 case SYS_SOCKETPAIR: 2479 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2480 break; 2481 case SYS_SEND: 2482 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2483 break; 2484 case SYS_SENDTO: 2485 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2486 (struct sockaddr __user *)a[4], a[5]); 2487 break; 2488 case SYS_RECV: 2489 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2490 break; 2491 case SYS_RECVFROM: 2492 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2493 (struct sockaddr __user *)a[4], 2494 (int __user *)a[5]); 2495 break; 2496 case SYS_SHUTDOWN: 2497 err = sys_shutdown(a0, a1); 2498 break; 2499 case SYS_SETSOCKOPT: 2500 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2501 break; 2502 case SYS_GETSOCKOPT: 2503 err = 2504 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2505 (int __user *)a[4]); 2506 break; 2507 case SYS_SENDMSG: 2508 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2509 break; 2510 case SYS_SENDMMSG: 2511 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2512 break; 2513 case SYS_RECVMSG: 2514 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2515 break; 2516 case SYS_RECVMMSG: 2517 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2518 (struct timespec __user *)a[4]); 2519 break; 2520 case SYS_ACCEPT4: 2521 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2522 (int __user *)a[2], a[3]); 2523 break; 2524 default: 2525 err = -EINVAL; 2526 break; 2527 } 2528 return err; 2529 } 2530 2531 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2532 2533 /** 2534 * sock_register - add a socket protocol handler 2535 * @ops: description of protocol 2536 * 2537 * This function is called by a protocol handler that wants to 2538 * advertise its address family, and have it linked into the 2539 * socket interface. The value ops->family corresponds to the 2540 * socket system call protocol family. 2541 */ 2542 int sock_register(const struct net_proto_family *ops) 2543 { 2544 int err; 2545 2546 if (ops->family >= NPROTO) { 2547 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2548 return -ENOBUFS; 2549 } 2550 2551 spin_lock(&net_family_lock); 2552 if (rcu_dereference_protected(net_families[ops->family], 2553 lockdep_is_held(&net_family_lock))) 2554 err = -EEXIST; 2555 else { 2556 rcu_assign_pointer(net_families[ops->family], ops); 2557 err = 0; 2558 } 2559 spin_unlock(&net_family_lock); 2560 2561 pr_info("NET: Registered protocol family %d\n", ops->family); 2562 return err; 2563 } 2564 EXPORT_SYMBOL(sock_register); 2565 2566 /** 2567 * sock_unregister - remove a protocol handler 2568 * @family: protocol family to remove 2569 * 2570 * This function is called by a protocol handler that wants to 2571 * remove its address family, and have it unlinked from the 2572 * new socket creation. 2573 * 2574 * If protocol handler is a module, then it can use module reference 2575 * counts to protect against new references. If protocol handler is not 2576 * a module then it needs to provide its own protection in 2577 * the ops->create routine. 2578 */ 2579 void sock_unregister(int family) 2580 { 2581 BUG_ON(family < 0 || family >= NPROTO); 2582 2583 spin_lock(&net_family_lock); 2584 RCU_INIT_POINTER(net_families[family], NULL); 2585 spin_unlock(&net_family_lock); 2586 2587 synchronize_rcu(); 2588 2589 pr_info("NET: Unregistered protocol family %d\n", family); 2590 } 2591 EXPORT_SYMBOL(sock_unregister); 2592 2593 static int __init sock_init(void) 2594 { 2595 int err; 2596 /* 2597 * Initialize the network sysctl infrastructure. 2598 */ 2599 err = net_sysctl_init(); 2600 if (err) 2601 goto out; 2602 2603 /* 2604 * Initialize skbuff SLAB cache 2605 */ 2606 skb_init(); 2607 2608 /* 2609 * Initialize the protocols module. 2610 */ 2611 2612 init_inodecache(); 2613 2614 err = register_filesystem(&sock_fs_type); 2615 if (err) 2616 goto out_fs; 2617 sock_mnt = kern_mount(&sock_fs_type); 2618 if (IS_ERR(sock_mnt)) { 2619 err = PTR_ERR(sock_mnt); 2620 goto out_mount; 2621 } 2622 2623 /* The real protocol initialization is performed in later initcalls. 2624 */ 2625 2626 #ifdef CONFIG_NETFILTER 2627 err = netfilter_init(); 2628 if (err) 2629 goto out; 2630 #endif 2631 2632 ptp_classifier_init(); 2633 2634 out: 2635 return err; 2636 2637 out_mount: 2638 unregister_filesystem(&sock_fs_type); 2639 out_fs: 2640 goto out; 2641 } 2642 2643 core_initcall(sock_init); /* early initcall */ 2644 2645 #ifdef CONFIG_PROC_FS 2646 void socket_seq_show(struct seq_file *seq) 2647 { 2648 int cpu; 2649 int counter = 0; 2650 2651 for_each_possible_cpu(cpu) 2652 counter += per_cpu(sockets_in_use, cpu); 2653 2654 /* It can be negative, by the way. 8) */ 2655 if (counter < 0) 2656 counter = 0; 2657 2658 seq_printf(seq, "sockets: used %d\n", counter); 2659 } 2660 #endif /* CONFIG_PROC_FS */ 2661 2662 #ifdef CONFIG_COMPAT 2663 static int do_siocgstamp(struct net *net, struct socket *sock, 2664 unsigned int cmd, void __user *up) 2665 { 2666 mm_segment_t old_fs = get_fs(); 2667 struct timeval ktv; 2668 int err; 2669 2670 set_fs(KERNEL_DS); 2671 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2672 set_fs(old_fs); 2673 if (!err) 2674 err = compat_put_timeval(&ktv, up); 2675 2676 return err; 2677 } 2678 2679 static int do_siocgstampns(struct net *net, struct socket *sock, 2680 unsigned int cmd, void __user *up) 2681 { 2682 mm_segment_t old_fs = get_fs(); 2683 struct timespec kts; 2684 int err; 2685 2686 set_fs(KERNEL_DS); 2687 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2688 set_fs(old_fs); 2689 if (!err) 2690 err = compat_put_timespec(&kts, up); 2691 2692 return err; 2693 } 2694 2695 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2696 { 2697 struct ifreq __user *uifr; 2698 int err; 2699 2700 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2701 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2702 return -EFAULT; 2703 2704 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2705 if (err) 2706 return err; 2707 2708 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2709 return -EFAULT; 2710 2711 return 0; 2712 } 2713 2714 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2715 { 2716 struct compat_ifconf ifc32; 2717 struct ifconf ifc; 2718 struct ifconf __user *uifc; 2719 struct compat_ifreq __user *ifr32; 2720 struct ifreq __user *ifr; 2721 unsigned int i, j; 2722 int err; 2723 2724 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2725 return -EFAULT; 2726 2727 memset(&ifc, 0, sizeof(ifc)); 2728 if (ifc32.ifcbuf == 0) { 2729 ifc32.ifc_len = 0; 2730 ifc.ifc_len = 0; 2731 ifc.ifc_req = NULL; 2732 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2733 } else { 2734 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2735 sizeof(struct ifreq); 2736 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2737 ifc.ifc_len = len; 2738 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2739 ifr32 = compat_ptr(ifc32.ifcbuf); 2740 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2741 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2742 return -EFAULT; 2743 ifr++; 2744 ifr32++; 2745 } 2746 } 2747 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2748 return -EFAULT; 2749 2750 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2751 if (err) 2752 return err; 2753 2754 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2755 return -EFAULT; 2756 2757 ifr = ifc.ifc_req; 2758 ifr32 = compat_ptr(ifc32.ifcbuf); 2759 for (i = 0, j = 0; 2760 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2761 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2762 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2763 return -EFAULT; 2764 ifr32++; 2765 ifr++; 2766 } 2767 2768 if (ifc32.ifcbuf == 0) { 2769 /* Translate from 64-bit structure multiple to 2770 * a 32-bit one. 2771 */ 2772 i = ifc.ifc_len; 2773 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2774 ifc32.ifc_len = i; 2775 } else { 2776 ifc32.ifc_len = i; 2777 } 2778 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2779 return -EFAULT; 2780 2781 return 0; 2782 } 2783 2784 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2785 { 2786 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2787 bool convert_in = false, convert_out = false; 2788 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2789 struct ethtool_rxnfc __user *rxnfc; 2790 struct ifreq __user *ifr; 2791 u32 rule_cnt = 0, actual_rule_cnt; 2792 u32 ethcmd; 2793 u32 data; 2794 int ret; 2795 2796 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2797 return -EFAULT; 2798 2799 compat_rxnfc = compat_ptr(data); 2800 2801 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2802 return -EFAULT; 2803 2804 /* Most ethtool structures are defined without padding. 2805 * Unfortunately struct ethtool_rxnfc is an exception. 2806 */ 2807 switch (ethcmd) { 2808 default: 2809 break; 2810 case ETHTOOL_GRXCLSRLALL: 2811 /* Buffer size is variable */ 2812 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2813 return -EFAULT; 2814 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2815 return -ENOMEM; 2816 buf_size += rule_cnt * sizeof(u32); 2817 /* fall through */ 2818 case ETHTOOL_GRXRINGS: 2819 case ETHTOOL_GRXCLSRLCNT: 2820 case ETHTOOL_GRXCLSRULE: 2821 case ETHTOOL_SRXCLSRLINS: 2822 convert_out = true; 2823 /* fall through */ 2824 case ETHTOOL_SRXCLSRLDEL: 2825 buf_size += sizeof(struct ethtool_rxnfc); 2826 convert_in = true; 2827 break; 2828 } 2829 2830 ifr = compat_alloc_user_space(buf_size); 2831 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2832 2833 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2834 return -EFAULT; 2835 2836 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2837 &ifr->ifr_ifru.ifru_data)) 2838 return -EFAULT; 2839 2840 if (convert_in) { 2841 /* We expect there to be holes between fs.m_ext and 2842 * fs.ring_cookie and at the end of fs, but nowhere else. 2843 */ 2844 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2845 sizeof(compat_rxnfc->fs.m_ext) != 2846 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2847 sizeof(rxnfc->fs.m_ext)); 2848 BUILD_BUG_ON( 2849 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2850 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2851 offsetof(struct ethtool_rxnfc, fs.location) - 2852 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2853 2854 if (copy_in_user(rxnfc, compat_rxnfc, 2855 (void __user *)(&rxnfc->fs.m_ext + 1) - 2856 (void __user *)rxnfc) || 2857 copy_in_user(&rxnfc->fs.ring_cookie, 2858 &compat_rxnfc->fs.ring_cookie, 2859 (void __user *)(&rxnfc->fs.location + 1) - 2860 (void __user *)&rxnfc->fs.ring_cookie) || 2861 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2862 sizeof(rxnfc->rule_cnt))) 2863 return -EFAULT; 2864 } 2865 2866 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2867 if (ret) 2868 return ret; 2869 2870 if (convert_out) { 2871 if (copy_in_user(compat_rxnfc, rxnfc, 2872 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2873 (const void __user *)rxnfc) || 2874 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2875 &rxnfc->fs.ring_cookie, 2876 (const void __user *)(&rxnfc->fs.location + 1) - 2877 (const void __user *)&rxnfc->fs.ring_cookie) || 2878 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2879 sizeof(rxnfc->rule_cnt))) 2880 return -EFAULT; 2881 2882 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2883 /* As an optimisation, we only copy the actual 2884 * number of rules that the underlying 2885 * function returned. Since Mallory might 2886 * change the rule count in user memory, we 2887 * check that it is less than the rule count 2888 * originally given (as the user buffer size), 2889 * which has been range-checked. 2890 */ 2891 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2892 return -EFAULT; 2893 if (actual_rule_cnt < rule_cnt) 2894 rule_cnt = actual_rule_cnt; 2895 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2896 &rxnfc->rule_locs[0], 2897 rule_cnt * sizeof(u32))) 2898 return -EFAULT; 2899 } 2900 } 2901 2902 return 0; 2903 } 2904 2905 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2906 { 2907 void __user *uptr; 2908 compat_uptr_t uptr32; 2909 struct ifreq __user *uifr; 2910 2911 uifr = compat_alloc_user_space(sizeof(*uifr)); 2912 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2913 return -EFAULT; 2914 2915 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2916 return -EFAULT; 2917 2918 uptr = compat_ptr(uptr32); 2919 2920 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2921 return -EFAULT; 2922 2923 return dev_ioctl(net, SIOCWANDEV, uifr); 2924 } 2925 2926 static int bond_ioctl(struct net *net, unsigned int cmd, 2927 struct compat_ifreq __user *ifr32) 2928 { 2929 struct ifreq kifr; 2930 mm_segment_t old_fs; 2931 int err; 2932 2933 switch (cmd) { 2934 case SIOCBONDENSLAVE: 2935 case SIOCBONDRELEASE: 2936 case SIOCBONDSETHWADDR: 2937 case SIOCBONDCHANGEACTIVE: 2938 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2939 return -EFAULT; 2940 2941 old_fs = get_fs(); 2942 set_fs(KERNEL_DS); 2943 err = dev_ioctl(net, cmd, 2944 (struct ifreq __user __force *) &kifr); 2945 set_fs(old_fs); 2946 2947 return err; 2948 default: 2949 return -ENOIOCTLCMD; 2950 } 2951 } 2952 2953 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2954 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2955 struct compat_ifreq __user *u_ifreq32) 2956 { 2957 struct ifreq __user *u_ifreq64; 2958 char tmp_buf[IFNAMSIZ]; 2959 void __user *data64; 2960 u32 data32; 2961 2962 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2963 IFNAMSIZ)) 2964 return -EFAULT; 2965 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2966 return -EFAULT; 2967 data64 = compat_ptr(data32); 2968 2969 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2970 2971 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2972 IFNAMSIZ)) 2973 return -EFAULT; 2974 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2975 return -EFAULT; 2976 2977 return dev_ioctl(net, cmd, u_ifreq64); 2978 } 2979 2980 static int dev_ifsioc(struct net *net, struct socket *sock, 2981 unsigned int cmd, struct compat_ifreq __user *uifr32) 2982 { 2983 struct ifreq __user *uifr; 2984 int err; 2985 2986 uifr = compat_alloc_user_space(sizeof(*uifr)); 2987 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2988 return -EFAULT; 2989 2990 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2991 2992 if (!err) { 2993 switch (cmd) { 2994 case SIOCGIFFLAGS: 2995 case SIOCGIFMETRIC: 2996 case SIOCGIFMTU: 2997 case SIOCGIFMEM: 2998 case SIOCGIFHWADDR: 2999 case SIOCGIFINDEX: 3000 case SIOCGIFADDR: 3001 case SIOCGIFBRDADDR: 3002 case SIOCGIFDSTADDR: 3003 case SIOCGIFNETMASK: 3004 case SIOCGIFPFLAGS: 3005 case SIOCGIFTXQLEN: 3006 case SIOCGMIIPHY: 3007 case SIOCGMIIREG: 3008 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3009 err = -EFAULT; 3010 break; 3011 } 3012 } 3013 return err; 3014 } 3015 3016 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3017 struct compat_ifreq __user *uifr32) 3018 { 3019 struct ifreq ifr; 3020 struct compat_ifmap __user *uifmap32; 3021 mm_segment_t old_fs; 3022 int err; 3023 3024 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3025 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3026 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3027 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3028 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3029 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3030 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3031 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3032 if (err) 3033 return -EFAULT; 3034 3035 old_fs = get_fs(); 3036 set_fs(KERNEL_DS); 3037 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3038 set_fs(old_fs); 3039 3040 if (cmd == SIOCGIFMAP && !err) { 3041 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3042 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3043 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3044 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3045 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3046 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3047 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3048 if (err) 3049 err = -EFAULT; 3050 } 3051 return err; 3052 } 3053 3054 struct rtentry32 { 3055 u32 rt_pad1; 3056 struct sockaddr rt_dst; /* target address */ 3057 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3058 struct sockaddr rt_genmask; /* target network mask (IP) */ 3059 unsigned short rt_flags; 3060 short rt_pad2; 3061 u32 rt_pad3; 3062 unsigned char rt_tos; 3063 unsigned char rt_class; 3064 short rt_pad4; 3065 short rt_metric; /* +1 for binary compatibility! */ 3066 /* char * */ u32 rt_dev; /* forcing the device at add */ 3067 u32 rt_mtu; /* per route MTU/Window */ 3068 u32 rt_window; /* Window clamping */ 3069 unsigned short rt_irtt; /* Initial RTT */ 3070 }; 3071 3072 struct in6_rtmsg32 { 3073 struct in6_addr rtmsg_dst; 3074 struct in6_addr rtmsg_src; 3075 struct in6_addr rtmsg_gateway; 3076 u32 rtmsg_type; 3077 u16 rtmsg_dst_len; 3078 u16 rtmsg_src_len; 3079 u32 rtmsg_metric; 3080 u32 rtmsg_info; 3081 u32 rtmsg_flags; 3082 s32 rtmsg_ifindex; 3083 }; 3084 3085 static int routing_ioctl(struct net *net, struct socket *sock, 3086 unsigned int cmd, void __user *argp) 3087 { 3088 int ret; 3089 void *r = NULL; 3090 struct in6_rtmsg r6; 3091 struct rtentry r4; 3092 char devname[16]; 3093 u32 rtdev; 3094 mm_segment_t old_fs = get_fs(); 3095 3096 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3097 struct in6_rtmsg32 __user *ur6 = argp; 3098 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3099 3 * sizeof(struct in6_addr)); 3100 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3101 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3102 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3103 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3104 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3105 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3106 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3107 3108 r = (void *) &r6; 3109 } else { /* ipv4 */ 3110 struct rtentry32 __user *ur4 = argp; 3111 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3112 3 * sizeof(struct sockaddr)); 3113 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3114 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3115 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3116 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3117 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3118 ret |= get_user(rtdev, &(ur4->rt_dev)); 3119 if (rtdev) { 3120 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3121 r4.rt_dev = (char __user __force *)devname; 3122 devname[15] = 0; 3123 } else 3124 r4.rt_dev = NULL; 3125 3126 r = (void *) &r4; 3127 } 3128 3129 if (ret) { 3130 ret = -EFAULT; 3131 goto out; 3132 } 3133 3134 set_fs(KERNEL_DS); 3135 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3136 set_fs(old_fs); 3137 3138 out: 3139 return ret; 3140 } 3141 3142 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3143 * for some operations; this forces use of the newer bridge-utils that 3144 * use compatible ioctls 3145 */ 3146 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3147 { 3148 compat_ulong_t tmp; 3149 3150 if (get_user(tmp, argp)) 3151 return -EFAULT; 3152 if (tmp == BRCTL_GET_VERSION) 3153 return BRCTL_VERSION + 1; 3154 return -EINVAL; 3155 } 3156 3157 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3158 unsigned int cmd, unsigned long arg) 3159 { 3160 void __user *argp = compat_ptr(arg); 3161 struct sock *sk = sock->sk; 3162 struct net *net = sock_net(sk); 3163 3164 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3165 return compat_ifr_data_ioctl(net, cmd, argp); 3166 3167 switch (cmd) { 3168 case SIOCSIFBR: 3169 case SIOCGIFBR: 3170 return old_bridge_ioctl(argp); 3171 case SIOCGIFNAME: 3172 return dev_ifname32(net, argp); 3173 case SIOCGIFCONF: 3174 return dev_ifconf(net, argp); 3175 case SIOCETHTOOL: 3176 return ethtool_ioctl(net, argp); 3177 case SIOCWANDEV: 3178 return compat_siocwandev(net, argp); 3179 case SIOCGIFMAP: 3180 case SIOCSIFMAP: 3181 return compat_sioc_ifmap(net, cmd, argp); 3182 case SIOCBONDENSLAVE: 3183 case SIOCBONDRELEASE: 3184 case SIOCBONDSETHWADDR: 3185 case SIOCBONDCHANGEACTIVE: 3186 return bond_ioctl(net, cmd, argp); 3187 case SIOCADDRT: 3188 case SIOCDELRT: 3189 return routing_ioctl(net, sock, cmd, argp); 3190 case SIOCGSTAMP: 3191 return do_siocgstamp(net, sock, cmd, argp); 3192 case SIOCGSTAMPNS: 3193 return do_siocgstampns(net, sock, cmd, argp); 3194 case SIOCBONDSLAVEINFOQUERY: 3195 case SIOCBONDINFOQUERY: 3196 case SIOCSHWTSTAMP: 3197 case SIOCGHWTSTAMP: 3198 return compat_ifr_data_ioctl(net, cmd, argp); 3199 3200 case FIOSETOWN: 3201 case SIOCSPGRP: 3202 case FIOGETOWN: 3203 case SIOCGPGRP: 3204 case SIOCBRADDBR: 3205 case SIOCBRDELBR: 3206 case SIOCGIFVLAN: 3207 case SIOCSIFVLAN: 3208 case SIOCADDDLCI: 3209 case SIOCDELDLCI: 3210 case SIOCGSKNS: 3211 return sock_ioctl(file, cmd, arg); 3212 3213 case SIOCGIFFLAGS: 3214 case SIOCSIFFLAGS: 3215 case SIOCGIFMETRIC: 3216 case SIOCSIFMETRIC: 3217 case SIOCGIFMTU: 3218 case SIOCSIFMTU: 3219 case SIOCGIFMEM: 3220 case SIOCSIFMEM: 3221 case SIOCGIFHWADDR: 3222 case SIOCSIFHWADDR: 3223 case SIOCADDMULTI: 3224 case SIOCDELMULTI: 3225 case SIOCGIFINDEX: 3226 case SIOCGIFADDR: 3227 case SIOCSIFADDR: 3228 case SIOCSIFHWBROADCAST: 3229 case SIOCDIFADDR: 3230 case SIOCGIFBRDADDR: 3231 case SIOCSIFBRDADDR: 3232 case SIOCGIFDSTADDR: 3233 case SIOCSIFDSTADDR: 3234 case SIOCGIFNETMASK: 3235 case SIOCSIFNETMASK: 3236 case SIOCSIFPFLAGS: 3237 case SIOCGIFPFLAGS: 3238 case SIOCGIFTXQLEN: 3239 case SIOCSIFTXQLEN: 3240 case SIOCBRADDIF: 3241 case SIOCBRDELIF: 3242 case SIOCSIFNAME: 3243 case SIOCGMIIPHY: 3244 case SIOCGMIIREG: 3245 case SIOCSMIIREG: 3246 return dev_ifsioc(net, sock, cmd, argp); 3247 3248 case SIOCSARP: 3249 case SIOCGARP: 3250 case SIOCDARP: 3251 case SIOCATMARK: 3252 return sock_do_ioctl(net, sock, cmd, arg); 3253 } 3254 3255 return -ENOIOCTLCMD; 3256 } 3257 3258 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3259 unsigned long arg) 3260 { 3261 struct socket *sock = file->private_data; 3262 int ret = -ENOIOCTLCMD; 3263 struct sock *sk; 3264 struct net *net; 3265 3266 sk = sock->sk; 3267 net = sock_net(sk); 3268 3269 if (sock->ops->compat_ioctl) 3270 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3271 3272 if (ret == -ENOIOCTLCMD && 3273 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3274 ret = compat_wext_handle_ioctl(net, cmd, arg); 3275 3276 if (ret == -ENOIOCTLCMD) 3277 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3278 3279 return ret; 3280 } 3281 #endif 3282 3283 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3284 { 3285 return sock->ops->bind(sock, addr, addrlen); 3286 } 3287 EXPORT_SYMBOL(kernel_bind); 3288 3289 int kernel_listen(struct socket *sock, int backlog) 3290 { 3291 return sock->ops->listen(sock, backlog); 3292 } 3293 EXPORT_SYMBOL(kernel_listen); 3294 3295 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3296 { 3297 struct sock *sk = sock->sk; 3298 int err; 3299 3300 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3301 newsock); 3302 if (err < 0) 3303 goto done; 3304 3305 err = sock->ops->accept(sock, *newsock, flags, true); 3306 if (err < 0) { 3307 sock_release(*newsock); 3308 *newsock = NULL; 3309 goto done; 3310 } 3311 3312 (*newsock)->ops = sock->ops; 3313 __module_get((*newsock)->ops->owner); 3314 3315 done: 3316 return err; 3317 } 3318 EXPORT_SYMBOL(kernel_accept); 3319 3320 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3321 int flags) 3322 { 3323 return sock->ops->connect(sock, addr, addrlen, flags); 3324 } 3325 EXPORT_SYMBOL(kernel_connect); 3326 3327 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3328 int *addrlen) 3329 { 3330 return sock->ops->getname(sock, addr, addrlen, 0); 3331 } 3332 EXPORT_SYMBOL(kernel_getsockname); 3333 3334 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3335 int *addrlen) 3336 { 3337 return sock->ops->getname(sock, addr, addrlen, 1); 3338 } 3339 EXPORT_SYMBOL(kernel_getpeername); 3340 3341 int kernel_getsockopt(struct socket *sock, int level, int optname, 3342 char *optval, int *optlen) 3343 { 3344 mm_segment_t oldfs = get_fs(); 3345 char __user *uoptval; 3346 int __user *uoptlen; 3347 int err; 3348 3349 uoptval = (char __user __force *) optval; 3350 uoptlen = (int __user __force *) optlen; 3351 3352 set_fs(KERNEL_DS); 3353 if (level == SOL_SOCKET) 3354 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3355 else 3356 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3357 uoptlen); 3358 set_fs(oldfs); 3359 return err; 3360 } 3361 EXPORT_SYMBOL(kernel_getsockopt); 3362 3363 int kernel_setsockopt(struct socket *sock, int level, int optname, 3364 char *optval, unsigned int optlen) 3365 { 3366 mm_segment_t oldfs = get_fs(); 3367 char __user *uoptval; 3368 int err; 3369 3370 uoptval = (char __user __force *) optval; 3371 3372 set_fs(KERNEL_DS); 3373 if (level == SOL_SOCKET) 3374 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3375 else 3376 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3377 optlen); 3378 set_fs(oldfs); 3379 return err; 3380 } 3381 EXPORT_SYMBOL(kernel_setsockopt); 3382 3383 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3384 size_t size, int flags) 3385 { 3386 if (sock->ops->sendpage) 3387 return sock->ops->sendpage(sock, page, offset, size, flags); 3388 3389 return sock_no_sendpage(sock, page, offset, size, flags); 3390 } 3391 EXPORT_SYMBOL(kernel_sendpage); 3392 3393 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3394 size_t size, int flags) 3395 { 3396 struct socket *sock = sk->sk_socket; 3397 3398 if (sock->ops->sendpage_locked) 3399 return sock->ops->sendpage_locked(sk, page, offset, size, 3400 flags); 3401 3402 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3403 } 3404 EXPORT_SYMBOL(kernel_sendpage_locked); 3405 3406 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3407 { 3408 mm_segment_t oldfs = get_fs(); 3409 int err; 3410 3411 set_fs(KERNEL_DS); 3412 err = sock->ops->ioctl(sock, cmd, arg); 3413 set_fs(oldfs); 3414 3415 return err; 3416 } 3417 EXPORT_SYMBOL(kernel_sock_ioctl); 3418 3419 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3420 { 3421 return sock->ops->shutdown(sock, how); 3422 } 3423 EXPORT_SYMBOL(kernel_sock_shutdown); 3424 3425 /* This routine returns the IP overhead imposed by a socket i.e. 3426 * the length of the underlying IP header, depending on whether 3427 * this is an IPv4 or IPv6 socket and the length from IP options turned 3428 * on at the socket. Assumes that the caller has a lock on the socket. 3429 */ 3430 u32 kernel_sock_ip_overhead(struct sock *sk) 3431 { 3432 struct inet_sock *inet; 3433 struct ip_options_rcu *opt; 3434 u32 overhead = 0; 3435 #if IS_ENABLED(CONFIG_IPV6) 3436 struct ipv6_pinfo *np; 3437 struct ipv6_txoptions *optv6 = NULL; 3438 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3439 3440 if (!sk) 3441 return overhead; 3442 3443 switch (sk->sk_family) { 3444 case AF_INET: 3445 inet = inet_sk(sk); 3446 overhead += sizeof(struct iphdr); 3447 opt = rcu_dereference_protected(inet->inet_opt, 3448 sock_owned_by_user(sk)); 3449 if (opt) 3450 overhead += opt->opt.optlen; 3451 return overhead; 3452 #if IS_ENABLED(CONFIG_IPV6) 3453 case AF_INET6: 3454 np = inet6_sk(sk); 3455 overhead += sizeof(struct ipv6hdr); 3456 if (np) 3457 optv6 = rcu_dereference_protected(np->opt, 3458 sock_owned_by_user(sk)); 3459 if (optv6) 3460 overhead += (optv6->opt_flen + optv6->opt_nflen); 3461 return overhead; 3462 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3463 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3464 return overhead; 3465 } 3466 } 3467 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3468