1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 118 unsigned long nr_segs, loff_t pos); 119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 120 unsigned long nr_segs, loff_t pos); 121 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 122 123 static int sock_close(struct inode *inode, struct file *file); 124 static unsigned int sock_poll(struct file *file, 125 struct poll_table_struct *wait); 126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 127 #ifdef CONFIG_COMPAT 128 static long compat_sock_ioctl(struct file *file, 129 unsigned int cmd, unsigned long arg); 130 #endif 131 static int sock_fasync(int fd, struct file *filp, int on); 132 static ssize_t sock_sendpage(struct file *file, struct page *page, 133 int offset, size_t size, loff_t *ppos, int more); 134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 135 struct pipe_inode_info *pipe, size_t len, 136 unsigned int flags); 137 138 /* 139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 140 * in the operation structures but are done directly via the socketcall() multiplexor. 141 */ 142 143 static const struct file_operations socket_file_ops = { 144 .owner = THIS_MODULE, 145 .llseek = no_llseek, 146 .aio_read = sock_aio_read, 147 .aio_write = sock_aio_write, 148 .poll = sock_poll, 149 .unlocked_ioctl = sock_ioctl, 150 #ifdef CONFIG_COMPAT 151 .compat_ioctl = compat_sock_ioctl, 152 #endif 153 .mmap = sock_mmap, 154 .open = sock_no_open, /* special open code to disallow open via /proc */ 155 .release = sock_close, 156 .fasync = sock_fasync, 157 .sendpage = sock_sendpage, 158 .splice_write = generic_splice_sendpage, 159 .splice_read = sock_splice_read, 160 }; 161 162 /* 163 * The protocol list. Each protocol is registered in here. 164 */ 165 166 static DEFINE_SPINLOCK(net_family_lock); 167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 168 169 /* 170 * Statistics counters of the socket lists 171 */ 172 173 static DEFINE_PER_CPU(int, sockets_in_use); 174 175 /* 176 * Support routines. 177 * Move socket addresses back and forth across the kernel/user 178 * divide and look after the messy bits. 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 221 void __user *uaddr, int __user *ulen) 222 { 223 int err; 224 int len; 225 226 BUG_ON(klen > sizeof(struct sockaddr_storage)); 227 err = get_user(len, ulen); 228 if (err) 229 return err; 230 if (len > klen) 231 len = klen; 232 if (len < 0) 233 return -EINVAL; 234 if (len) { 235 if (audit_sockaddr(klen, kaddr)) 236 return -ENOMEM; 237 if (copy_to_user(uaddr, kaddr, len)) 238 return -EFAULT; 239 } 240 /* 241 * "fromlen shall refer to the value before truncation.." 242 * 1003.1g 243 */ 244 return __put_user(klen, ulen); 245 } 246 247 static struct kmem_cache *sock_inode_cachep __read_mostly; 248 249 static struct inode *sock_alloc_inode(struct super_block *sb) 250 { 251 struct socket_alloc *ei; 252 struct socket_wq *wq; 253 254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 255 if (!ei) 256 return NULL; 257 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 258 if (!wq) { 259 kmem_cache_free(sock_inode_cachep, ei); 260 return NULL; 261 } 262 init_waitqueue_head(&wq->wait); 263 wq->fasync_list = NULL; 264 RCU_INIT_POINTER(ei->socket.wq, wq); 265 266 ei->socket.state = SS_UNCONNECTED; 267 ei->socket.flags = 0; 268 ei->socket.ops = NULL; 269 ei->socket.sk = NULL; 270 ei->socket.file = NULL; 271 272 return &ei->vfs_inode; 273 } 274 275 static void sock_destroy_inode(struct inode *inode) 276 { 277 struct socket_alloc *ei; 278 struct socket_wq *wq; 279 280 ei = container_of(inode, struct socket_alloc, vfs_inode); 281 wq = rcu_dereference_protected(ei->socket.wq, 1); 282 kfree_rcu(wq, rcu); 283 kmem_cache_free(sock_inode_cachep, ei); 284 } 285 286 static void init_once(void *foo) 287 { 288 struct socket_alloc *ei = (struct socket_alloc *)foo; 289 290 inode_init_once(&ei->vfs_inode); 291 } 292 293 static int init_inodecache(void) 294 { 295 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 296 sizeof(struct socket_alloc), 297 0, 298 (SLAB_HWCACHE_ALIGN | 299 SLAB_RECLAIM_ACCOUNT | 300 SLAB_MEM_SPREAD), 301 init_once); 302 if (sock_inode_cachep == NULL) 303 return -ENOMEM; 304 return 0; 305 } 306 307 static const struct super_operations sockfs_ops = { 308 .alloc_inode = sock_alloc_inode, 309 .destroy_inode = sock_destroy_inode, 310 .statfs = simple_statfs, 311 }; 312 313 /* 314 * sockfs_dname() is called from d_path(). 315 */ 316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 317 { 318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 319 dentry->d_inode->i_ino); 320 } 321 322 static const struct dentry_operations sockfs_dentry_operations = { 323 .d_dname = sockfs_dname, 324 }; 325 326 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 327 int flags, const char *dev_name, void *data) 328 { 329 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 330 &sockfs_dentry_operations, SOCKFS_MAGIC); 331 } 332 333 static struct vfsmount *sock_mnt __read_mostly; 334 335 static struct file_system_type sock_fs_type = { 336 .name = "sockfs", 337 .mount = sockfs_mount, 338 .kill_sb = kill_anon_super, 339 }; 340 341 /* 342 * Obtains the first available file descriptor and sets it up for use. 343 * 344 * These functions create file structures and maps them to fd space 345 * of the current process. On success it returns file descriptor 346 * and file struct implicitly stored in sock->file. 347 * Note that another thread may close file descriptor before we return 348 * from this function. We use the fact that now we do not refer 349 * to socket after mapping. If one day we will need it, this 350 * function will increment ref. count on file by 1. 351 * 352 * In any case returned fd MAY BE not valid! 353 * This race condition is unavoidable 354 * with shared fd spaces, we cannot solve it inside kernel, 355 * but we take care of internal coherence yet. 356 */ 357 358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 359 { 360 struct qstr name = { .name = "" }; 361 struct path path; 362 struct file *file; 363 364 if (dname) { 365 name.name = dname; 366 name.len = strlen(name.name); 367 } else if (sock->sk) { 368 name.name = sock->sk->sk_prot_creator->name; 369 name.len = strlen(name.name); 370 } 371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 372 if (unlikely(!path.dentry)) 373 return ERR_PTR(-ENOMEM); 374 path.mnt = mntget(sock_mnt); 375 376 d_instantiate(path.dentry, SOCK_INODE(sock)); 377 SOCK_INODE(sock)->i_fop = &socket_file_ops; 378 379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 380 &socket_file_ops); 381 if (unlikely(IS_ERR(file))) { 382 /* drop dentry, keep inode */ 383 ihold(path.dentry->d_inode); 384 path_put(&path); 385 return file; 386 } 387 388 sock->file = file; 389 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 390 file->private_data = sock; 391 return file; 392 } 393 EXPORT_SYMBOL(sock_alloc_file); 394 395 static int sock_map_fd(struct socket *sock, int flags) 396 { 397 struct file *newfile; 398 int fd = get_unused_fd_flags(flags); 399 if (unlikely(fd < 0)) 400 return fd; 401 402 newfile = sock_alloc_file(sock, flags, NULL); 403 if (likely(!IS_ERR(newfile))) { 404 fd_install(fd, newfile); 405 return fd; 406 } 407 408 put_unused_fd(fd); 409 return PTR_ERR(newfile); 410 } 411 412 struct socket *sock_from_file(struct file *file, int *err) 413 { 414 if (file->f_op == &socket_file_ops) 415 return file->private_data; /* set in sock_map_fd */ 416 417 *err = -ENOTSOCK; 418 return NULL; 419 } 420 EXPORT_SYMBOL(sock_from_file); 421 422 /** 423 * sockfd_lookup - Go from a file number to its socket slot 424 * @fd: file handle 425 * @err: pointer to an error code return 426 * 427 * The file handle passed in is locked and the socket it is bound 428 * too is returned. If an error occurs the err pointer is overwritten 429 * with a negative errno code and NULL is returned. The function checks 430 * for both invalid handles and passing a handle which is not a socket. 431 * 432 * On a success the socket object pointer is returned. 433 */ 434 435 struct socket *sockfd_lookup(int fd, int *err) 436 { 437 struct file *file; 438 struct socket *sock; 439 440 file = fget(fd); 441 if (!file) { 442 *err = -EBADF; 443 return NULL; 444 } 445 446 sock = sock_from_file(file, err); 447 if (!sock) 448 fput(file); 449 return sock; 450 } 451 EXPORT_SYMBOL(sockfd_lookup); 452 453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 454 { 455 struct fd f = fdget(fd); 456 struct socket *sock; 457 458 *err = -EBADF; 459 if (f.file) { 460 sock = sock_from_file(f.file, err); 461 if (likely(sock)) { 462 *fput_needed = f.flags; 463 return sock; 464 } 465 fdput(f); 466 } 467 return NULL; 468 } 469 470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 473 static ssize_t sockfs_getxattr(struct dentry *dentry, 474 const char *name, void *value, size_t size) 475 { 476 const char *proto_name; 477 size_t proto_size; 478 int error; 479 480 error = -ENODATA; 481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 482 proto_name = dentry->d_name.name; 483 proto_size = strlen(proto_name); 484 485 if (value) { 486 error = -ERANGE; 487 if (proto_size + 1 > size) 488 goto out; 489 490 strncpy(value, proto_name, proto_size + 1); 491 } 492 error = proto_size + 1; 493 } 494 495 out: 496 return error; 497 } 498 499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 500 size_t size) 501 { 502 ssize_t len; 503 ssize_t used = 0; 504 505 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 506 if (len < 0) 507 return len; 508 used += len; 509 if (buffer) { 510 if (size < used) 511 return -ERANGE; 512 buffer += len; 513 } 514 515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 516 used += len; 517 if (buffer) { 518 if (size < used) 519 return -ERANGE; 520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 521 buffer += len; 522 } 523 524 return used; 525 } 526 527 static const struct inode_operations sockfs_inode_ops = { 528 .getxattr = sockfs_getxattr, 529 .listxattr = sockfs_listxattr, 530 }; 531 532 /** 533 * sock_alloc - allocate a socket 534 * 535 * Allocate a new inode and socket object. The two are bound together 536 * and initialised. The socket is then returned. If we are out of inodes 537 * NULL is returned. 538 */ 539 540 static struct socket *sock_alloc(void) 541 { 542 struct inode *inode; 543 struct socket *sock; 544 545 inode = new_inode_pseudo(sock_mnt->mnt_sb); 546 if (!inode) 547 return NULL; 548 549 sock = SOCKET_I(inode); 550 551 kmemcheck_annotate_bitfield(sock, type); 552 inode->i_ino = get_next_ino(); 553 inode->i_mode = S_IFSOCK | S_IRWXUGO; 554 inode->i_uid = current_fsuid(); 555 inode->i_gid = current_fsgid(); 556 inode->i_op = &sockfs_inode_ops; 557 558 this_cpu_add(sockets_in_use, 1); 559 return sock; 560 } 561 562 /* 563 * In theory you can't get an open on this inode, but /proc provides 564 * a back door. Remember to keep it shut otherwise you'll let the 565 * creepy crawlies in. 566 */ 567 568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 569 { 570 return -ENXIO; 571 } 572 573 const struct file_operations bad_sock_fops = { 574 .owner = THIS_MODULE, 575 .open = sock_no_open, 576 .llseek = noop_llseek, 577 }; 578 579 /** 580 * sock_release - close a socket 581 * @sock: socket to close 582 * 583 * The socket is released from the protocol stack if it has a release 584 * callback, and the inode is then released if the socket is bound to 585 * an inode not a file. 586 */ 587 588 void sock_release(struct socket *sock) 589 { 590 if (sock->ops) { 591 struct module *owner = sock->ops->owner; 592 593 sock->ops->release(sock); 594 sock->ops = NULL; 595 module_put(owner); 596 } 597 598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 599 pr_err("%s: fasync list not empty!\n", __func__); 600 601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 602 return; 603 604 this_cpu_sub(sockets_in_use, 1); 605 if (!sock->file) { 606 iput(SOCK_INODE(sock)); 607 return; 608 } 609 sock->file = NULL; 610 } 611 EXPORT_SYMBOL(sock_release); 612 613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 614 { 615 u8 flags = *tx_flags; 616 617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 618 flags |= SKBTX_HW_TSTAMP; 619 620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 621 flags |= SKBTX_SW_TSTAMP; 622 623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 624 flags |= SKBTX_SCHED_TSTAMP; 625 626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 627 flags |= SKBTX_ACK_TSTAMP; 628 629 *tx_flags = flags; 630 } 631 EXPORT_SYMBOL(__sock_tx_timestamp); 632 633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 634 struct msghdr *msg, size_t size) 635 { 636 struct sock_iocb *si = kiocb_to_siocb(iocb); 637 638 si->sock = sock; 639 si->scm = NULL; 640 si->msg = msg; 641 si->size = size; 642 643 return sock->ops->sendmsg(iocb, sock, msg, size); 644 } 645 646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 647 struct msghdr *msg, size_t size) 648 { 649 int err = security_socket_sendmsg(sock, msg, size); 650 651 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 652 } 653 654 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 655 { 656 struct kiocb iocb; 657 struct sock_iocb siocb; 658 int ret; 659 660 init_sync_kiocb(&iocb, NULL); 661 iocb.private = &siocb; 662 ret = __sock_sendmsg(&iocb, sock, msg, size); 663 if (-EIOCBQUEUED == ret) 664 ret = wait_on_sync_kiocb(&iocb); 665 return ret; 666 } 667 EXPORT_SYMBOL(sock_sendmsg); 668 669 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 670 { 671 struct kiocb iocb; 672 struct sock_iocb siocb; 673 int ret; 674 675 init_sync_kiocb(&iocb, NULL); 676 iocb.private = &siocb; 677 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 678 if (-EIOCBQUEUED == ret) 679 ret = wait_on_sync_kiocb(&iocb); 680 return ret; 681 } 682 683 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 684 struct kvec *vec, size_t num, size_t size) 685 { 686 mm_segment_t oldfs = get_fs(); 687 int result; 688 689 set_fs(KERNEL_DS); 690 /* 691 * the following is safe, since for compiler definitions of kvec and 692 * iovec are identical, yielding the same in-core layout and alignment 693 */ 694 msg->msg_iov = (struct iovec *)vec; 695 msg->msg_iovlen = num; 696 result = sock_sendmsg(sock, msg, size); 697 set_fs(oldfs); 698 return result; 699 } 700 EXPORT_SYMBOL(kernel_sendmsg); 701 702 /* 703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 704 */ 705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 706 struct sk_buff *skb) 707 { 708 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 709 struct scm_timestamping tss; 710 int empty = 1; 711 struct skb_shared_hwtstamps *shhwtstamps = 712 skb_hwtstamps(skb); 713 714 /* Race occurred between timestamp enabling and packet 715 receiving. Fill in the current time for now. */ 716 if (need_software_tstamp && skb->tstamp.tv64 == 0) 717 __net_timestamp(skb); 718 719 if (need_software_tstamp) { 720 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 721 struct timeval tv; 722 skb_get_timestamp(skb, &tv); 723 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 724 sizeof(tv), &tv); 725 } else { 726 struct timespec ts; 727 skb_get_timestampns(skb, &ts); 728 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 729 sizeof(ts), &ts); 730 } 731 } 732 733 memset(&tss, 0, sizeof(tss)); 734 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 735 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 736 empty = 0; 737 if (shhwtstamps && 738 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 740 empty = 0; 741 if (!empty) 742 put_cmsg(msg, SOL_SOCKET, 743 SCM_TIMESTAMPING, sizeof(tss), &tss); 744 } 745 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 746 747 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 748 struct sk_buff *skb) 749 { 750 int ack; 751 752 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 753 return; 754 if (!skb->wifi_acked_valid) 755 return; 756 757 ack = skb->wifi_acked; 758 759 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 760 } 761 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 762 763 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 764 struct sk_buff *skb) 765 { 766 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 767 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 768 sizeof(__u32), &skb->dropcount); 769 } 770 771 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 772 struct sk_buff *skb) 773 { 774 sock_recv_timestamp(msg, sk, skb); 775 sock_recv_drops(msg, sk, skb); 776 } 777 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 778 779 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 780 struct msghdr *msg, size_t size, int flags) 781 { 782 struct sock_iocb *si = kiocb_to_siocb(iocb); 783 784 si->sock = sock; 785 si->scm = NULL; 786 si->msg = msg; 787 si->size = size; 788 si->flags = flags; 789 790 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 791 } 792 793 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 794 struct msghdr *msg, size_t size, int flags) 795 { 796 int err = security_socket_recvmsg(sock, msg, size, flags); 797 798 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 799 } 800 801 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 802 size_t size, int flags) 803 { 804 struct kiocb iocb; 805 struct sock_iocb siocb; 806 int ret; 807 808 init_sync_kiocb(&iocb, NULL); 809 iocb.private = &siocb; 810 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 811 if (-EIOCBQUEUED == ret) 812 ret = wait_on_sync_kiocb(&iocb); 813 return ret; 814 } 815 EXPORT_SYMBOL(sock_recvmsg); 816 817 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 818 size_t size, int flags) 819 { 820 struct kiocb iocb; 821 struct sock_iocb siocb; 822 int ret; 823 824 init_sync_kiocb(&iocb, NULL); 825 iocb.private = &siocb; 826 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 827 if (-EIOCBQUEUED == ret) 828 ret = wait_on_sync_kiocb(&iocb); 829 return ret; 830 } 831 832 /** 833 * kernel_recvmsg - Receive a message from a socket (kernel space) 834 * @sock: The socket to receive the message from 835 * @msg: Received message 836 * @vec: Input s/g array for message data 837 * @num: Size of input s/g array 838 * @size: Number of bytes to read 839 * @flags: Message flags (MSG_DONTWAIT, etc...) 840 * 841 * On return the msg structure contains the scatter/gather array passed in the 842 * vec argument. The array is modified so that it consists of the unfilled 843 * portion of the original array. 844 * 845 * The returned value is the total number of bytes received, or an error. 846 */ 847 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 848 struct kvec *vec, size_t num, size_t size, int flags) 849 { 850 mm_segment_t oldfs = get_fs(); 851 int result; 852 853 set_fs(KERNEL_DS); 854 /* 855 * the following is safe, since for compiler definitions of kvec and 856 * iovec are identical, yielding the same in-core layout and alignment 857 */ 858 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 859 result = sock_recvmsg(sock, msg, size, flags); 860 set_fs(oldfs); 861 return result; 862 } 863 EXPORT_SYMBOL(kernel_recvmsg); 864 865 static ssize_t sock_sendpage(struct file *file, struct page *page, 866 int offset, size_t size, loff_t *ppos, int more) 867 { 868 struct socket *sock; 869 int flags; 870 871 sock = file->private_data; 872 873 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 874 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 875 flags |= more; 876 877 return kernel_sendpage(sock, page, offset, size, flags); 878 } 879 880 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 881 struct pipe_inode_info *pipe, size_t len, 882 unsigned int flags) 883 { 884 struct socket *sock = file->private_data; 885 886 if (unlikely(!sock->ops->splice_read)) 887 return -EINVAL; 888 889 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 890 } 891 892 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 893 struct sock_iocb *siocb) 894 { 895 if (!is_sync_kiocb(iocb)) 896 BUG(); 897 898 siocb->kiocb = iocb; 899 iocb->private = siocb; 900 return siocb; 901 } 902 903 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 904 struct file *file, const struct iovec *iov, 905 unsigned long nr_segs) 906 { 907 struct socket *sock = file->private_data; 908 size_t size = 0; 909 int i; 910 911 for (i = 0; i < nr_segs; i++) 912 size += iov[i].iov_len; 913 914 msg->msg_name = NULL; 915 msg->msg_namelen = 0; 916 msg->msg_control = NULL; 917 msg->msg_controllen = 0; 918 msg->msg_iov = (struct iovec *)iov; 919 msg->msg_iovlen = nr_segs; 920 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 921 922 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 923 } 924 925 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 926 unsigned long nr_segs, loff_t pos) 927 { 928 struct sock_iocb siocb, *x; 929 930 if (pos != 0) 931 return -ESPIPE; 932 933 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 934 return 0; 935 936 937 x = alloc_sock_iocb(iocb, &siocb); 938 if (!x) 939 return -ENOMEM; 940 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 941 } 942 943 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 944 struct file *file, const struct iovec *iov, 945 unsigned long nr_segs) 946 { 947 struct socket *sock = file->private_data; 948 size_t size = 0; 949 int i; 950 951 for (i = 0; i < nr_segs; i++) 952 size += iov[i].iov_len; 953 954 msg->msg_name = NULL; 955 msg->msg_namelen = 0; 956 msg->msg_control = NULL; 957 msg->msg_controllen = 0; 958 msg->msg_iov = (struct iovec *)iov; 959 msg->msg_iovlen = nr_segs; 960 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 961 if (sock->type == SOCK_SEQPACKET) 962 msg->msg_flags |= MSG_EOR; 963 964 return __sock_sendmsg(iocb, sock, msg, size); 965 } 966 967 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 968 unsigned long nr_segs, loff_t pos) 969 { 970 struct sock_iocb siocb, *x; 971 972 if (pos != 0) 973 return -ESPIPE; 974 975 x = alloc_sock_iocb(iocb, &siocb); 976 if (!x) 977 return -ENOMEM; 978 979 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 980 } 981 982 /* 983 * Atomic setting of ioctl hooks to avoid race 984 * with module unload. 985 */ 986 987 static DEFINE_MUTEX(br_ioctl_mutex); 988 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 989 990 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 991 { 992 mutex_lock(&br_ioctl_mutex); 993 br_ioctl_hook = hook; 994 mutex_unlock(&br_ioctl_mutex); 995 } 996 EXPORT_SYMBOL(brioctl_set); 997 998 static DEFINE_MUTEX(vlan_ioctl_mutex); 999 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1000 1001 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1002 { 1003 mutex_lock(&vlan_ioctl_mutex); 1004 vlan_ioctl_hook = hook; 1005 mutex_unlock(&vlan_ioctl_mutex); 1006 } 1007 EXPORT_SYMBOL(vlan_ioctl_set); 1008 1009 static DEFINE_MUTEX(dlci_ioctl_mutex); 1010 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1011 1012 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1013 { 1014 mutex_lock(&dlci_ioctl_mutex); 1015 dlci_ioctl_hook = hook; 1016 mutex_unlock(&dlci_ioctl_mutex); 1017 } 1018 EXPORT_SYMBOL(dlci_ioctl_set); 1019 1020 static long sock_do_ioctl(struct net *net, struct socket *sock, 1021 unsigned int cmd, unsigned long arg) 1022 { 1023 int err; 1024 void __user *argp = (void __user *)arg; 1025 1026 err = sock->ops->ioctl(sock, cmd, arg); 1027 1028 /* 1029 * If this ioctl is unknown try to hand it down 1030 * to the NIC driver. 1031 */ 1032 if (err == -ENOIOCTLCMD) 1033 err = dev_ioctl(net, cmd, argp); 1034 1035 return err; 1036 } 1037 1038 /* 1039 * With an ioctl, arg may well be a user mode pointer, but we don't know 1040 * what to do with it - that's up to the protocol still. 1041 */ 1042 1043 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1044 { 1045 struct socket *sock; 1046 struct sock *sk; 1047 void __user *argp = (void __user *)arg; 1048 int pid, err; 1049 struct net *net; 1050 1051 sock = file->private_data; 1052 sk = sock->sk; 1053 net = sock_net(sk); 1054 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1055 err = dev_ioctl(net, cmd, argp); 1056 } else 1057 #ifdef CONFIG_WEXT_CORE 1058 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1059 err = dev_ioctl(net, cmd, argp); 1060 } else 1061 #endif 1062 switch (cmd) { 1063 case FIOSETOWN: 1064 case SIOCSPGRP: 1065 err = -EFAULT; 1066 if (get_user(pid, (int __user *)argp)) 1067 break; 1068 f_setown(sock->file, pid, 1); 1069 err = 0; 1070 break; 1071 case FIOGETOWN: 1072 case SIOCGPGRP: 1073 err = put_user(f_getown(sock->file), 1074 (int __user *)argp); 1075 break; 1076 case SIOCGIFBR: 1077 case SIOCSIFBR: 1078 case SIOCBRADDBR: 1079 case SIOCBRDELBR: 1080 err = -ENOPKG; 1081 if (!br_ioctl_hook) 1082 request_module("bridge"); 1083 1084 mutex_lock(&br_ioctl_mutex); 1085 if (br_ioctl_hook) 1086 err = br_ioctl_hook(net, cmd, argp); 1087 mutex_unlock(&br_ioctl_mutex); 1088 break; 1089 case SIOCGIFVLAN: 1090 case SIOCSIFVLAN: 1091 err = -ENOPKG; 1092 if (!vlan_ioctl_hook) 1093 request_module("8021q"); 1094 1095 mutex_lock(&vlan_ioctl_mutex); 1096 if (vlan_ioctl_hook) 1097 err = vlan_ioctl_hook(net, argp); 1098 mutex_unlock(&vlan_ioctl_mutex); 1099 break; 1100 case SIOCADDDLCI: 1101 case SIOCDELDLCI: 1102 err = -ENOPKG; 1103 if (!dlci_ioctl_hook) 1104 request_module("dlci"); 1105 1106 mutex_lock(&dlci_ioctl_mutex); 1107 if (dlci_ioctl_hook) 1108 err = dlci_ioctl_hook(cmd, argp); 1109 mutex_unlock(&dlci_ioctl_mutex); 1110 break; 1111 default: 1112 err = sock_do_ioctl(net, sock, cmd, arg); 1113 break; 1114 } 1115 return err; 1116 } 1117 1118 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1119 { 1120 int err; 1121 struct socket *sock = NULL; 1122 1123 err = security_socket_create(family, type, protocol, 1); 1124 if (err) 1125 goto out; 1126 1127 sock = sock_alloc(); 1128 if (!sock) { 1129 err = -ENOMEM; 1130 goto out; 1131 } 1132 1133 sock->type = type; 1134 err = security_socket_post_create(sock, family, type, protocol, 1); 1135 if (err) 1136 goto out_release; 1137 1138 out: 1139 *res = sock; 1140 return err; 1141 out_release: 1142 sock_release(sock); 1143 sock = NULL; 1144 goto out; 1145 } 1146 EXPORT_SYMBOL(sock_create_lite); 1147 1148 /* No kernel lock held - perfect */ 1149 static unsigned int sock_poll(struct file *file, poll_table *wait) 1150 { 1151 unsigned int busy_flag = 0; 1152 struct socket *sock; 1153 1154 /* 1155 * We can't return errors to poll, so it's either yes or no. 1156 */ 1157 sock = file->private_data; 1158 1159 if (sk_can_busy_loop(sock->sk)) { 1160 /* this socket can poll_ll so tell the system call */ 1161 busy_flag = POLL_BUSY_LOOP; 1162 1163 /* once, only if requested by syscall */ 1164 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1165 sk_busy_loop(sock->sk, 1); 1166 } 1167 1168 return busy_flag | sock->ops->poll(file, sock, wait); 1169 } 1170 1171 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1172 { 1173 struct socket *sock = file->private_data; 1174 1175 return sock->ops->mmap(file, sock, vma); 1176 } 1177 1178 static int sock_close(struct inode *inode, struct file *filp) 1179 { 1180 sock_release(SOCKET_I(inode)); 1181 return 0; 1182 } 1183 1184 /* 1185 * Update the socket async list 1186 * 1187 * Fasync_list locking strategy. 1188 * 1189 * 1. fasync_list is modified only under process context socket lock 1190 * i.e. under semaphore. 1191 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1192 * or under socket lock 1193 */ 1194 1195 static int sock_fasync(int fd, struct file *filp, int on) 1196 { 1197 struct socket *sock = filp->private_data; 1198 struct sock *sk = sock->sk; 1199 struct socket_wq *wq; 1200 1201 if (sk == NULL) 1202 return -EINVAL; 1203 1204 lock_sock(sk); 1205 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1206 fasync_helper(fd, filp, on, &wq->fasync_list); 1207 1208 if (!wq->fasync_list) 1209 sock_reset_flag(sk, SOCK_FASYNC); 1210 else 1211 sock_set_flag(sk, SOCK_FASYNC); 1212 1213 release_sock(sk); 1214 return 0; 1215 } 1216 1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1218 1219 int sock_wake_async(struct socket *sock, int how, int band) 1220 { 1221 struct socket_wq *wq; 1222 1223 if (!sock) 1224 return -1; 1225 rcu_read_lock(); 1226 wq = rcu_dereference(sock->wq); 1227 if (!wq || !wq->fasync_list) { 1228 rcu_read_unlock(); 1229 return -1; 1230 } 1231 switch (how) { 1232 case SOCK_WAKE_WAITD: 1233 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1234 break; 1235 goto call_kill; 1236 case SOCK_WAKE_SPACE: 1237 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1238 break; 1239 /* fall through */ 1240 case SOCK_WAKE_IO: 1241 call_kill: 1242 kill_fasync(&wq->fasync_list, SIGIO, band); 1243 break; 1244 case SOCK_WAKE_URG: 1245 kill_fasync(&wq->fasync_list, SIGURG, band); 1246 } 1247 rcu_read_unlock(); 1248 return 0; 1249 } 1250 EXPORT_SYMBOL(sock_wake_async); 1251 1252 int __sock_create(struct net *net, int family, int type, int protocol, 1253 struct socket **res, int kern) 1254 { 1255 int err; 1256 struct socket *sock; 1257 const struct net_proto_family *pf; 1258 1259 /* 1260 * Check protocol is in range 1261 */ 1262 if (family < 0 || family >= NPROTO) 1263 return -EAFNOSUPPORT; 1264 if (type < 0 || type >= SOCK_MAX) 1265 return -EINVAL; 1266 1267 /* Compatibility. 1268 1269 This uglymoron is moved from INET layer to here to avoid 1270 deadlock in module load. 1271 */ 1272 if (family == PF_INET && type == SOCK_PACKET) { 1273 static int warned; 1274 if (!warned) { 1275 warned = 1; 1276 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1277 current->comm); 1278 } 1279 family = PF_PACKET; 1280 } 1281 1282 err = security_socket_create(family, type, protocol, kern); 1283 if (err) 1284 return err; 1285 1286 /* 1287 * Allocate the socket and allow the family to set things up. if 1288 * the protocol is 0, the family is instructed to select an appropriate 1289 * default. 1290 */ 1291 sock = sock_alloc(); 1292 if (!sock) { 1293 net_warn_ratelimited("socket: no more sockets\n"); 1294 return -ENFILE; /* Not exactly a match, but its the 1295 closest posix thing */ 1296 } 1297 1298 sock->type = type; 1299 1300 #ifdef CONFIG_MODULES 1301 /* Attempt to load a protocol module if the find failed. 1302 * 1303 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1304 * requested real, full-featured networking support upon configuration. 1305 * Otherwise module support will break! 1306 */ 1307 if (rcu_access_pointer(net_families[family]) == NULL) 1308 request_module("net-pf-%d", family); 1309 #endif 1310 1311 rcu_read_lock(); 1312 pf = rcu_dereference(net_families[family]); 1313 err = -EAFNOSUPPORT; 1314 if (!pf) 1315 goto out_release; 1316 1317 /* 1318 * We will call the ->create function, that possibly is in a loadable 1319 * module, so we have to bump that loadable module refcnt first. 1320 */ 1321 if (!try_module_get(pf->owner)) 1322 goto out_release; 1323 1324 /* Now protected by module ref count */ 1325 rcu_read_unlock(); 1326 1327 err = pf->create(net, sock, protocol, kern); 1328 if (err < 0) 1329 goto out_module_put; 1330 1331 /* 1332 * Now to bump the refcnt of the [loadable] module that owns this 1333 * socket at sock_release time we decrement its refcnt. 1334 */ 1335 if (!try_module_get(sock->ops->owner)) 1336 goto out_module_busy; 1337 1338 /* 1339 * Now that we're done with the ->create function, the [loadable] 1340 * module can have its refcnt decremented 1341 */ 1342 module_put(pf->owner); 1343 err = security_socket_post_create(sock, family, type, protocol, kern); 1344 if (err) 1345 goto out_sock_release; 1346 *res = sock; 1347 1348 return 0; 1349 1350 out_module_busy: 1351 err = -EAFNOSUPPORT; 1352 out_module_put: 1353 sock->ops = NULL; 1354 module_put(pf->owner); 1355 out_sock_release: 1356 sock_release(sock); 1357 return err; 1358 1359 out_release: 1360 rcu_read_unlock(); 1361 goto out_sock_release; 1362 } 1363 EXPORT_SYMBOL(__sock_create); 1364 1365 int sock_create(int family, int type, int protocol, struct socket **res) 1366 { 1367 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1368 } 1369 EXPORT_SYMBOL(sock_create); 1370 1371 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1372 { 1373 return __sock_create(&init_net, family, type, protocol, res, 1); 1374 } 1375 EXPORT_SYMBOL(sock_create_kern); 1376 1377 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1378 { 1379 int retval; 1380 struct socket *sock; 1381 int flags; 1382 1383 /* Check the SOCK_* constants for consistency. */ 1384 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1385 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1386 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1387 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1388 1389 flags = type & ~SOCK_TYPE_MASK; 1390 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1391 return -EINVAL; 1392 type &= SOCK_TYPE_MASK; 1393 1394 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1395 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1396 1397 retval = sock_create(family, type, protocol, &sock); 1398 if (retval < 0) 1399 goto out; 1400 1401 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1402 if (retval < 0) 1403 goto out_release; 1404 1405 out: 1406 /* It may be already another descriptor 8) Not kernel problem. */ 1407 return retval; 1408 1409 out_release: 1410 sock_release(sock); 1411 return retval; 1412 } 1413 1414 /* 1415 * Create a pair of connected sockets. 1416 */ 1417 1418 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1419 int __user *, usockvec) 1420 { 1421 struct socket *sock1, *sock2; 1422 int fd1, fd2, err; 1423 struct file *newfile1, *newfile2; 1424 int flags; 1425 1426 flags = type & ~SOCK_TYPE_MASK; 1427 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1428 return -EINVAL; 1429 type &= SOCK_TYPE_MASK; 1430 1431 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1432 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1433 1434 /* 1435 * Obtain the first socket and check if the underlying protocol 1436 * supports the socketpair call. 1437 */ 1438 1439 err = sock_create(family, type, protocol, &sock1); 1440 if (err < 0) 1441 goto out; 1442 1443 err = sock_create(family, type, protocol, &sock2); 1444 if (err < 0) 1445 goto out_release_1; 1446 1447 err = sock1->ops->socketpair(sock1, sock2); 1448 if (err < 0) 1449 goto out_release_both; 1450 1451 fd1 = get_unused_fd_flags(flags); 1452 if (unlikely(fd1 < 0)) { 1453 err = fd1; 1454 goto out_release_both; 1455 } 1456 1457 fd2 = get_unused_fd_flags(flags); 1458 if (unlikely(fd2 < 0)) { 1459 err = fd2; 1460 goto out_put_unused_1; 1461 } 1462 1463 newfile1 = sock_alloc_file(sock1, flags, NULL); 1464 if (unlikely(IS_ERR(newfile1))) { 1465 err = PTR_ERR(newfile1); 1466 goto out_put_unused_both; 1467 } 1468 1469 newfile2 = sock_alloc_file(sock2, flags, NULL); 1470 if (IS_ERR(newfile2)) { 1471 err = PTR_ERR(newfile2); 1472 goto out_fput_1; 1473 } 1474 1475 err = put_user(fd1, &usockvec[0]); 1476 if (err) 1477 goto out_fput_both; 1478 1479 err = put_user(fd2, &usockvec[1]); 1480 if (err) 1481 goto out_fput_both; 1482 1483 audit_fd_pair(fd1, fd2); 1484 1485 fd_install(fd1, newfile1); 1486 fd_install(fd2, newfile2); 1487 /* fd1 and fd2 may be already another descriptors. 1488 * Not kernel problem. 1489 */ 1490 1491 return 0; 1492 1493 out_fput_both: 1494 fput(newfile2); 1495 fput(newfile1); 1496 put_unused_fd(fd2); 1497 put_unused_fd(fd1); 1498 goto out; 1499 1500 out_fput_1: 1501 fput(newfile1); 1502 put_unused_fd(fd2); 1503 put_unused_fd(fd1); 1504 sock_release(sock2); 1505 goto out; 1506 1507 out_put_unused_both: 1508 put_unused_fd(fd2); 1509 out_put_unused_1: 1510 put_unused_fd(fd1); 1511 out_release_both: 1512 sock_release(sock2); 1513 out_release_1: 1514 sock_release(sock1); 1515 out: 1516 return err; 1517 } 1518 1519 /* 1520 * Bind a name to a socket. Nothing much to do here since it's 1521 * the protocol's responsibility to handle the local address. 1522 * 1523 * We move the socket address to kernel space before we call 1524 * the protocol layer (having also checked the address is ok). 1525 */ 1526 1527 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1528 { 1529 struct socket *sock; 1530 struct sockaddr_storage address; 1531 int err, fput_needed; 1532 1533 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1534 if (sock) { 1535 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1536 if (err >= 0) { 1537 err = security_socket_bind(sock, 1538 (struct sockaddr *)&address, 1539 addrlen); 1540 if (!err) 1541 err = sock->ops->bind(sock, 1542 (struct sockaddr *) 1543 &address, addrlen); 1544 } 1545 fput_light(sock->file, fput_needed); 1546 } 1547 return err; 1548 } 1549 1550 /* 1551 * Perform a listen. Basically, we allow the protocol to do anything 1552 * necessary for a listen, and if that works, we mark the socket as 1553 * ready for listening. 1554 */ 1555 1556 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1557 { 1558 struct socket *sock; 1559 int err, fput_needed; 1560 int somaxconn; 1561 1562 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1563 if (sock) { 1564 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1565 if ((unsigned int)backlog > somaxconn) 1566 backlog = somaxconn; 1567 1568 err = security_socket_listen(sock, backlog); 1569 if (!err) 1570 err = sock->ops->listen(sock, backlog); 1571 1572 fput_light(sock->file, fput_needed); 1573 } 1574 return err; 1575 } 1576 1577 /* 1578 * For accept, we attempt to create a new socket, set up the link 1579 * with the client, wake up the client, then return the new 1580 * connected fd. We collect the address of the connector in kernel 1581 * space and move it to user at the very end. This is unclean because 1582 * we open the socket then return an error. 1583 * 1584 * 1003.1g adds the ability to recvmsg() to query connection pending 1585 * status to recvmsg. We need to add that support in a way thats 1586 * clean when we restucture accept also. 1587 */ 1588 1589 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1590 int __user *, upeer_addrlen, int, flags) 1591 { 1592 struct socket *sock, *newsock; 1593 struct file *newfile; 1594 int err, len, newfd, fput_needed; 1595 struct sockaddr_storage address; 1596 1597 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1598 return -EINVAL; 1599 1600 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1601 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1602 1603 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1604 if (!sock) 1605 goto out; 1606 1607 err = -ENFILE; 1608 newsock = sock_alloc(); 1609 if (!newsock) 1610 goto out_put; 1611 1612 newsock->type = sock->type; 1613 newsock->ops = sock->ops; 1614 1615 /* 1616 * We don't need try_module_get here, as the listening socket (sock) 1617 * has the protocol module (sock->ops->owner) held. 1618 */ 1619 __module_get(newsock->ops->owner); 1620 1621 newfd = get_unused_fd_flags(flags); 1622 if (unlikely(newfd < 0)) { 1623 err = newfd; 1624 sock_release(newsock); 1625 goto out_put; 1626 } 1627 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1628 if (unlikely(IS_ERR(newfile))) { 1629 err = PTR_ERR(newfile); 1630 put_unused_fd(newfd); 1631 sock_release(newsock); 1632 goto out_put; 1633 } 1634 1635 err = security_socket_accept(sock, newsock); 1636 if (err) 1637 goto out_fd; 1638 1639 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1640 if (err < 0) 1641 goto out_fd; 1642 1643 if (upeer_sockaddr) { 1644 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1645 &len, 2) < 0) { 1646 err = -ECONNABORTED; 1647 goto out_fd; 1648 } 1649 err = move_addr_to_user(&address, 1650 len, upeer_sockaddr, upeer_addrlen); 1651 if (err < 0) 1652 goto out_fd; 1653 } 1654 1655 /* File flags are not inherited via accept() unlike another OSes. */ 1656 1657 fd_install(newfd, newfile); 1658 err = newfd; 1659 1660 out_put: 1661 fput_light(sock->file, fput_needed); 1662 out: 1663 return err; 1664 out_fd: 1665 fput(newfile); 1666 put_unused_fd(newfd); 1667 goto out_put; 1668 } 1669 1670 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1671 int __user *, upeer_addrlen) 1672 { 1673 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1674 } 1675 1676 /* 1677 * Attempt to connect to a socket with the server address. The address 1678 * is in user space so we verify it is OK and move it to kernel space. 1679 * 1680 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1681 * break bindings 1682 * 1683 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1684 * other SEQPACKET protocols that take time to connect() as it doesn't 1685 * include the -EINPROGRESS status for such sockets. 1686 */ 1687 1688 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1689 int, addrlen) 1690 { 1691 struct socket *sock; 1692 struct sockaddr_storage address; 1693 int err, fput_needed; 1694 1695 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1696 if (!sock) 1697 goto out; 1698 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1699 if (err < 0) 1700 goto out_put; 1701 1702 err = 1703 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1704 if (err) 1705 goto out_put; 1706 1707 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1708 sock->file->f_flags); 1709 out_put: 1710 fput_light(sock->file, fput_needed); 1711 out: 1712 return err; 1713 } 1714 1715 /* 1716 * Get the local address ('name') of a socket object. Move the obtained 1717 * name to user space. 1718 */ 1719 1720 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1721 int __user *, usockaddr_len) 1722 { 1723 struct socket *sock; 1724 struct sockaddr_storage address; 1725 int len, err, fput_needed; 1726 1727 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1728 if (!sock) 1729 goto out; 1730 1731 err = security_socket_getsockname(sock); 1732 if (err) 1733 goto out_put; 1734 1735 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1736 if (err) 1737 goto out_put; 1738 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1739 1740 out_put: 1741 fput_light(sock->file, fput_needed); 1742 out: 1743 return err; 1744 } 1745 1746 /* 1747 * Get the remote address ('name') of a socket object. Move the obtained 1748 * name to user space. 1749 */ 1750 1751 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1752 int __user *, usockaddr_len) 1753 { 1754 struct socket *sock; 1755 struct sockaddr_storage address; 1756 int len, err, fput_needed; 1757 1758 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1759 if (sock != NULL) { 1760 err = security_socket_getpeername(sock); 1761 if (err) { 1762 fput_light(sock->file, fput_needed); 1763 return err; 1764 } 1765 1766 err = 1767 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1768 1); 1769 if (!err) 1770 err = move_addr_to_user(&address, len, usockaddr, 1771 usockaddr_len); 1772 fput_light(sock->file, fput_needed); 1773 } 1774 return err; 1775 } 1776 1777 /* 1778 * Send a datagram to a given address. We move the address into kernel 1779 * space and check the user space data area is readable before invoking 1780 * the protocol. 1781 */ 1782 1783 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1784 unsigned int, flags, struct sockaddr __user *, addr, 1785 int, addr_len) 1786 { 1787 struct socket *sock; 1788 struct sockaddr_storage address; 1789 int err; 1790 struct msghdr msg; 1791 struct iovec iov; 1792 int fput_needed; 1793 1794 if (len > INT_MAX) 1795 len = INT_MAX; 1796 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1797 if (!sock) 1798 goto out; 1799 1800 iov.iov_base = buff; 1801 iov.iov_len = len; 1802 msg.msg_name = NULL; 1803 msg.msg_iov = &iov; 1804 msg.msg_iovlen = 1; 1805 msg.msg_control = NULL; 1806 msg.msg_controllen = 0; 1807 msg.msg_namelen = 0; 1808 if (addr) { 1809 err = move_addr_to_kernel(addr, addr_len, &address); 1810 if (err < 0) 1811 goto out_put; 1812 msg.msg_name = (struct sockaddr *)&address; 1813 msg.msg_namelen = addr_len; 1814 } 1815 if (sock->file->f_flags & O_NONBLOCK) 1816 flags |= MSG_DONTWAIT; 1817 msg.msg_flags = flags; 1818 err = sock_sendmsg(sock, &msg, len); 1819 1820 out_put: 1821 fput_light(sock->file, fput_needed); 1822 out: 1823 return err; 1824 } 1825 1826 /* 1827 * Send a datagram down a socket. 1828 */ 1829 1830 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1831 unsigned int, flags) 1832 { 1833 return sys_sendto(fd, buff, len, flags, NULL, 0); 1834 } 1835 1836 /* 1837 * Receive a frame from the socket and optionally record the address of the 1838 * sender. We verify the buffers are writable and if needed move the 1839 * sender address from kernel to user space. 1840 */ 1841 1842 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1843 unsigned int, flags, struct sockaddr __user *, addr, 1844 int __user *, addr_len) 1845 { 1846 struct socket *sock; 1847 struct iovec iov; 1848 struct msghdr msg; 1849 struct sockaddr_storage address; 1850 int err, err2; 1851 int fput_needed; 1852 1853 if (size > INT_MAX) 1854 size = INT_MAX; 1855 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1856 if (!sock) 1857 goto out; 1858 1859 msg.msg_control = NULL; 1860 msg.msg_controllen = 0; 1861 msg.msg_iovlen = 1; 1862 msg.msg_iov = &iov; 1863 iov.iov_len = size; 1864 iov.iov_base = ubuf; 1865 /* Save some cycles and don't copy the address if not needed */ 1866 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1867 /* We assume all kernel code knows the size of sockaddr_storage */ 1868 msg.msg_namelen = 0; 1869 if (sock->file->f_flags & O_NONBLOCK) 1870 flags |= MSG_DONTWAIT; 1871 err = sock_recvmsg(sock, &msg, size, flags); 1872 1873 if (err >= 0 && addr != NULL) { 1874 err2 = move_addr_to_user(&address, 1875 msg.msg_namelen, addr, addr_len); 1876 if (err2 < 0) 1877 err = err2; 1878 } 1879 1880 fput_light(sock->file, fput_needed); 1881 out: 1882 return err; 1883 } 1884 1885 /* 1886 * Receive a datagram from a socket. 1887 */ 1888 1889 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1890 unsigned int, flags) 1891 { 1892 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1893 } 1894 1895 /* 1896 * Set a socket option. Because we don't know the option lengths we have 1897 * to pass the user mode parameter for the protocols to sort out. 1898 */ 1899 1900 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1901 char __user *, optval, int, optlen) 1902 { 1903 int err, fput_needed; 1904 struct socket *sock; 1905 1906 if (optlen < 0) 1907 return -EINVAL; 1908 1909 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1910 if (sock != NULL) { 1911 err = security_socket_setsockopt(sock, level, optname); 1912 if (err) 1913 goto out_put; 1914 1915 if (level == SOL_SOCKET) 1916 err = 1917 sock_setsockopt(sock, level, optname, optval, 1918 optlen); 1919 else 1920 err = 1921 sock->ops->setsockopt(sock, level, optname, optval, 1922 optlen); 1923 out_put: 1924 fput_light(sock->file, fput_needed); 1925 } 1926 return err; 1927 } 1928 1929 /* 1930 * Get a socket option. Because we don't know the option lengths we have 1931 * to pass a user mode parameter for the protocols to sort out. 1932 */ 1933 1934 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1935 char __user *, optval, int __user *, optlen) 1936 { 1937 int err, fput_needed; 1938 struct socket *sock; 1939 1940 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1941 if (sock != NULL) { 1942 err = security_socket_getsockopt(sock, level, optname); 1943 if (err) 1944 goto out_put; 1945 1946 if (level == SOL_SOCKET) 1947 err = 1948 sock_getsockopt(sock, level, optname, optval, 1949 optlen); 1950 else 1951 err = 1952 sock->ops->getsockopt(sock, level, optname, optval, 1953 optlen); 1954 out_put: 1955 fput_light(sock->file, fput_needed); 1956 } 1957 return err; 1958 } 1959 1960 /* 1961 * Shutdown a socket. 1962 */ 1963 1964 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1965 { 1966 int err, fput_needed; 1967 struct socket *sock; 1968 1969 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1970 if (sock != NULL) { 1971 err = security_socket_shutdown(sock, how); 1972 if (!err) 1973 err = sock->ops->shutdown(sock, how); 1974 fput_light(sock->file, fput_needed); 1975 } 1976 return err; 1977 } 1978 1979 /* A couple of helpful macros for getting the address of the 32/64 bit 1980 * fields which are the same type (int / unsigned) on our platforms. 1981 */ 1982 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1983 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1984 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1985 1986 struct used_address { 1987 struct sockaddr_storage name; 1988 unsigned int name_len; 1989 }; 1990 1991 static int copy_msghdr_from_user(struct msghdr *kmsg, 1992 struct msghdr __user *umsg) 1993 { 1994 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1995 return -EFAULT; 1996 1997 if (kmsg->msg_name == NULL) 1998 kmsg->msg_namelen = 0; 1999 2000 if (kmsg->msg_namelen < 0) 2001 return -EINVAL; 2002 2003 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2004 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2005 return 0; 2006 } 2007 2008 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 2009 struct msghdr *msg_sys, unsigned int flags, 2010 struct used_address *used_address) 2011 { 2012 struct compat_msghdr __user *msg_compat = 2013 (struct compat_msghdr __user *)msg; 2014 struct sockaddr_storage address; 2015 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2016 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2017 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2018 /* 20 is size of ipv6_pktinfo */ 2019 unsigned char *ctl_buf = ctl; 2020 int err, ctl_len, total_len; 2021 2022 err = -EFAULT; 2023 if (MSG_CMSG_COMPAT & flags) { 2024 if (get_compat_msghdr(msg_sys, msg_compat)) 2025 return -EFAULT; 2026 } else { 2027 err = copy_msghdr_from_user(msg_sys, msg); 2028 if (err) 2029 return err; 2030 } 2031 2032 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2033 err = -EMSGSIZE; 2034 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2035 goto out; 2036 err = -ENOMEM; 2037 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2038 GFP_KERNEL); 2039 if (!iov) 2040 goto out; 2041 } 2042 2043 /* This will also move the address data into kernel space */ 2044 if (MSG_CMSG_COMPAT & flags) { 2045 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2046 } else 2047 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2048 if (err < 0) 2049 goto out_freeiov; 2050 total_len = err; 2051 2052 err = -ENOBUFS; 2053 2054 if (msg_sys->msg_controllen > INT_MAX) 2055 goto out_freeiov; 2056 ctl_len = msg_sys->msg_controllen; 2057 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2058 err = 2059 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2060 sizeof(ctl)); 2061 if (err) 2062 goto out_freeiov; 2063 ctl_buf = msg_sys->msg_control; 2064 ctl_len = msg_sys->msg_controllen; 2065 } else if (ctl_len) { 2066 if (ctl_len > sizeof(ctl)) { 2067 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2068 if (ctl_buf == NULL) 2069 goto out_freeiov; 2070 } 2071 err = -EFAULT; 2072 /* 2073 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2074 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2075 * checking falls down on this. 2076 */ 2077 if (copy_from_user(ctl_buf, 2078 (void __user __force *)msg_sys->msg_control, 2079 ctl_len)) 2080 goto out_freectl; 2081 msg_sys->msg_control = ctl_buf; 2082 } 2083 msg_sys->msg_flags = flags; 2084 2085 if (sock->file->f_flags & O_NONBLOCK) 2086 msg_sys->msg_flags |= MSG_DONTWAIT; 2087 /* 2088 * If this is sendmmsg() and current destination address is same as 2089 * previously succeeded address, omit asking LSM's decision. 2090 * used_address->name_len is initialized to UINT_MAX so that the first 2091 * destination address never matches. 2092 */ 2093 if (used_address && msg_sys->msg_name && 2094 used_address->name_len == msg_sys->msg_namelen && 2095 !memcmp(&used_address->name, msg_sys->msg_name, 2096 used_address->name_len)) { 2097 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2098 goto out_freectl; 2099 } 2100 err = sock_sendmsg(sock, msg_sys, total_len); 2101 /* 2102 * If this is sendmmsg() and sending to current destination address was 2103 * successful, remember it. 2104 */ 2105 if (used_address && err >= 0) { 2106 used_address->name_len = msg_sys->msg_namelen; 2107 if (msg_sys->msg_name) 2108 memcpy(&used_address->name, msg_sys->msg_name, 2109 used_address->name_len); 2110 } 2111 2112 out_freectl: 2113 if (ctl_buf != ctl) 2114 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2115 out_freeiov: 2116 if (iov != iovstack) 2117 kfree(iov); 2118 out: 2119 return err; 2120 } 2121 2122 /* 2123 * BSD sendmsg interface 2124 */ 2125 2126 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2127 { 2128 int fput_needed, err; 2129 struct msghdr msg_sys; 2130 struct socket *sock; 2131 2132 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2133 if (!sock) 2134 goto out; 2135 2136 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2137 2138 fput_light(sock->file, fput_needed); 2139 out: 2140 return err; 2141 } 2142 2143 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2144 { 2145 if (flags & MSG_CMSG_COMPAT) 2146 return -EINVAL; 2147 return __sys_sendmsg(fd, msg, flags); 2148 } 2149 2150 /* 2151 * Linux sendmmsg interface 2152 */ 2153 2154 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2155 unsigned int flags) 2156 { 2157 int fput_needed, err, datagrams; 2158 struct socket *sock; 2159 struct mmsghdr __user *entry; 2160 struct compat_mmsghdr __user *compat_entry; 2161 struct msghdr msg_sys; 2162 struct used_address used_address; 2163 2164 if (vlen > UIO_MAXIOV) 2165 vlen = UIO_MAXIOV; 2166 2167 datagrams = 0; 2168 2169 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2170 if (!sock) 2171 return err; 2172 2173 used_address.name_len = UINT_MAX; 2174 entry = mmsg; 2175 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2176 err = 0; 2177 2178 while (datagrams < vlen) { 2179 if (MSG_CMSG_COMPAT & flags) { 2180 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2181 &msg_sys, flags, &used_address); 2182 if (err < 0) 2183 break; 2184 err = __put_user(err, &compat_entry->msg_len); 2185 ++compat_entry; 2186 } else { 2187 err = ___sys_sendmsg(sock, 2188 (struct msghdr __user *)entry, 2189 &msg_sys, flags, &used_address); 2190 if (err < 0) 2191 break; 2192 err = put_user(err, &entry->msg_len); 2193 ++entry; 2194 } 2195 2196 if (err) 2197 break; 2198 ++datagrams; 2199 } 2200 2201 fput_light(sock->file, fput_needed); 2202 2203 /* We only return an error if no datagrams were able to be sent */ 2204 if (datagrams != 0) 2205 return datagrams; 2206 2207 return err; 2208 } 2209 2210 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2211 unsigned int, vlen, unsigned int, flags) 2212 { 2213 if (flags & MSG_CMSG_COMPAT) 2214 return -EINVAL; 2215 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2216 } 2217 2218 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2219 struct msghdr *msg_sys, unsigned int flags, int nosec) 2220 { 2221 struct compat_msghdr __user *msg_compat = 2222 (struct compat_msghdr __user *)msg; 2223 struct iovec iovstack[UIO_FASTIOV]; 2224 struct iovec *iov = iovstack; 2225 unsigned long cmsg_ptr; 2226 int err, total_len, len; 2227 2228 /* kernel mode address */ 2229 struct sockaddr_storage addr; 2230 2231 /* user mode address pointers */ 2232 struct sockaddr __user *uaddr; 2233 int __user *uaddr_len; 2234 2235 if (MSG_CMSG_COMPAT & flags) { 2236 if (get_compat_msghdr(msg_sys, msg_compat)) 2237 return -EFAULT; 2238 } else { 2239 err = copy_msghdr_from_user(msg_sys, msg); 2240 if (err) 2241 return err; 2242 } 2243 2244 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2245 err = -EMSGSIZE; 2246 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2247 goto out; 2248 err = -ENOMEM; 2249 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2250 GFP_KERNEL); 2251 if (!iov) 2252 goto out; 2253 } 2254 2255 /* Save the user-mode address (verify_iovec will change the 2256 * kernel msghdr to use the kernel address space) 2257 */ 2258 uaddr = (__force void __user *)msg_sys->msg_name; 2259 uaddr_len = COMPAT_NAMELEN(msg); 2260 if (MSG_CMSG_COMPAT & flags) 2261 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2262 else 2263 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2264 if (err < 0) 2265 goto out_freeiov; 2266 total_len = err; 2267 2268 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2269 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2270 2271 /* We assume all kernel code knows the size of sockaddr_storage */ 2272 msg_sys->msg_namelen = 0; 2273 2274 if (sock->file->f_flags & O_NONBLOCK) 2275 flags |= MSG_DONTWAIT; 2276 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2277 total_len, flags); 2278 if (err < 0) 2279 goto out_freeiov; 2280 len = err; 2281 2282 if (uaddr != NULL) { 2283 err = move_addr_to_user(&addr, 2284 msg_sys->msg_namelen, uaddr, 2285 uaddr_len); 2286 if (err < 0) 2287 goto out_freeiov; 2288 } 2289 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2290 COMPAT_FLAGS(msg)); 2291 if (err) 2292 goto out_freeiov; 2293 if (MSG_CMSG_COMPAT & flags) 2294 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2295 &msg_compat->msg_controllen); 2296 else 2297 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2298 &msg->msg_controllen); 2299 if (err) 2300 goto out_freeiov; 2301 err = len; 2302 2303 out_freeiov: 2304 if (iov != iovstack) 2305 kfree(iov); 2306 out: 2307 return err; 2308 } 2309 2310 /* 2311 * BSD recvmsg interface 2312 */ 2313 2314 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2315 { 2316 int fput_needed, err; 2317 struct msghdr msg_sys; 2318 struct socket *sock; 2319 2320 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2321 if (!sock) 2322 goto out; 2323 2324 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2325 2326 fput_light(sock->file, fput_needed); 2327 out: 2328 return err; 2329 } 2330 2331 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2332 unsigned int, flags) 2333 { 2334 if (flags & MSG_CMSG_COMPAT) 2335 return -EINVAL; 2336 return __sys_recvmsg(fd, msg, flags); 2337 } 2338 2339 /* 2340 * Linux recvmmsg interface 2341 */ 2342 2343 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2344 unsigned int flags, struct timespec *timeout) 2345 { 2346 int fput_needed, err, datagrams; 2347 struct socket *sock; 2348 struct mmsghdr __user *entry; 2349 struct compat_mmsghdr __user *compat_entry; 2350 struct msghdr msg_sys; 2351 struct timespec end_time; 2352 2353 if (timeout && 2354 poll_select_set_timeout(&end_time, timeout->tv_sec, 2355 timeout->tv_nsec)) 2356 return -EINVAL; 2357 2358 datagrams = 0; 2359 2360 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2361 if (!sock) 2362 return err; 2363 2364 err = sock_error(sock->sk); 2365 if (err) 2366 goto out_put; 2367 2368 entry = mmsg; 2369 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2370 2371 while (datagrams < vlen) { 2372 /* 2373 * No need to ask LSM for more than the first datagram. 2374 */ 2375 if (MSG_CMSG_COMPAT & flags) { 2376 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2377 &msg_sys, flags & ~MSG_WAITFORONE, 2378 datagrams); 2379 if (err < 0) 2380 break; 2381 err = __put_user(err, &compat_entry->msg_len); 2382 ++compat_entry; 2383 } else { 2384 err = ___sys_recvmsg(sock, 2385 (struct msghdr __user *)entry, 2386 &msg_sys, flags & ~MSG_WAITFORONE, 2387 datagrams); 2388 if (err < 0) 2389 break; 2390 err = put_user(err, &entry->msg_len); 2391 ++entry; 2392 } 2393 2394 if (err) 2395 break; 2396 ++datagrams; 2397 2398 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2399 if (flags & MSG_WAITFORONE) 2400 flags |= MSG_DONTWAIT; 2401 2402 if (timeout) { 2403 ktime_get_ts(timeout); 2404 *timeout = timespec_sub(end_time, *timeout); 2405 if (timeout->tv_sec < 0) { 2406 timeout->tv_sec = timeout->tv_nsec = 0; 2407 break; 2408 } 2409 2410 /* Timeout, return less than vlen datagrams */ 2411 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2412 break; 2413 } 2414 2415 /* Out of band data, return right away */ 2416 if (msg_sys.msg_flags & MSG_OOB) 2417 break; 2418 } 2419 2420 out_put: 2421 fput_light(sock->file, fput_needed); 2422 2423 if (err == 0) 2424 return datagrams; 2425 2426 if (datagrams != 0) { 2427 /* 2428 * We may return less entries than requested (vlen) if the 2429 * sock is non block and there aren't enough datagrams... 2430 */ 2431 if (err != -EAGAIN) { 2432 /* 2433 * ... or if recvmsg returns an error after we 2434 * received some datagrams, where we record the 2435 * error to return on the next call or if the 2436 * app asks about it using getsockopt(SO_ERROR). 2437 */ 2438 sock->sk->sk_err = -err; 2439 } 2440 2441 return datagrams; 2442 } 2443 2444 return err; 2445 } 2446 2447 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2448 unsigned int, vlen, unsigned int, flags, 2449 struct timespec __user *, timeout) 2450 { 2451 int datagrams; 2452 struct timespec timeout_sys; 2453 2454 if (flags & MSG_CMSG_COMPAT) 2455 return -EINVAL; 2456 2457 if (!timeout) 2458 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2459 2460 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2461 return -EFAULT; 2462 2463 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2464 2465 if (datagrams > 0 && 2466 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2467 datagrams = -EFAULT; 2468 2469 return datagrams; 2470 } 2471 2472 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2473 /* Argument list sizes for sys_socketcall */ 2474 #define AL(x) ((x) * sizeof(unsigned long)) 2475 static const unsigned char nargs[21] = { 2476 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2477 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2478 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2479 AL(4), AL(5), AL(4) 2480 }; 2481 2482 #undef AL 2483 2484 /* 2485 * System call vectors. 2486 * 2487 * Argument checking cleaned up. Saved 20% in size. 2488 * This function doesn't need to set the kernel lock because 2489 * it is set by the callees. 2490 */ 2491 2492 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2493 { 2494 unsigned long a[AUDITSC_ARGS]; 2495 unsigned long a0, a1; 2496 int err; 2497 unsigned int len; 2498 2499 if (call < 1 || call > SYS_SENDMMSG) 2500 return -EINVAL; 2501 2502 len = nargs[call]; 2503 if (len > sizeof(a)) 2504 return -EINVAL; 2505 2506 /* copy_from_user should be SMP safe. */ 2507 if (copy_from_user(a, args, len)) 2508 return -EFAULT; 2509 2510 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2511 if (err) 2512 return err; 2513 2514 a0 = a[0]; 2515 a1 = a[1]; 2516 2517 switch (call) { 2518 case SYS_SOCKET: 2519 err = sys_socket(a0, a1, a[2]); 2520 break; 2521 case SYS_BIND: 2522 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2523 break; 2524 case SYS_CONNECT: 2525 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2526 break; 2527 case SYS_LISTEN: 2528 err = sys_listen(a0, a1); 2529 break; 2530 case SYS_ACCEPT: 2531 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2532 (int __user *)a[2], 0); 2533 break; 2534 case SYS_GETSOCKNAME: 2535 err = 2536 sys_getsockname(a0, (struct sockaddr __user *)a1, 2537 (int __user *)a[2]); 2538 break; 2539 case SYS_GETPEERNAME: 2540 err = 2541 sys_getpeername(a0, (struct sockaddr __user *)a1, 2542 (int __user *)a[2]); 2543 break; 2544 case SYS_SOCKETPAIR: 2545 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2546 break; 2547 case SYS_SEND: 2548 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2549 break; 2550 case SYS_SENDTO: 2551 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2552 (struct sockaddr __user *)a[4], a[5]); 2553 break; 2554 case SYS_RECV: 2555 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2556 break; 2557 case SYS_RECVFROM: 2558 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2559 (struct sockaddr __user *)a[4], 2560 (int __user *)a[5]); 2561 break; 2562 case SYS_SHUTDOWN: 2563 err = sys_shutdown(a0, a1); 2564 break; 2565 case SYS_SETSOCKOPT: 2566 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2567 break; 2568 case SYS_GETSOCKOPT: 2569 err = 2570 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2571 (int __user *)a[4]); 2572 break; 2573 case SYS_SENDMSG: 2574 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2575 break; 2576 case SYS_SENDMMSG: 2577 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2578 break; 2579 case SYS_RECVMSG: 2580 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2581 break; 2582 case SYS_RECVMMSG: 2583 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2584 (struct timespec __user *)a[4]); 2585 break; 2586 case SYS_ACCEPT4: 2587 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2588 (int __user *)a[2], a[3]); 2589 break; 2590 default: 2591 err = -EINVAL; 2592 break; 2593 } 2594 return err; 2595 } 2596 2597 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2598 2599 /** 2600 * sock_register - add a socket protocol handler 2601 * @ops: description of protocol 2602 * 2603 * This function is called by a protocol handler that wants to 2604 * advertise its address family, and have it linked into the 2605 * socket interface. The value ops->family corresponds to the 2606 * socket system call protocol family. 2607 */ 2608 int sock_register(const struct net_proto_family *ops) 2609 { 2610 int err; 2611 2612 if (ops->family >= NPROTO) { 2613 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2614 return -ENOBUFS; 2615 } 2616 2617 spin_lock(&net_family_lock); 2618 if (rcu_dereference_protected(net_families[ops->family], 2619 lockdep_is_held(&net_family_lock))) 2620 err = -EEXIST; 2621 else { 2622 rcu_assign_pointer(net_families[ops->family], ops); 2623 err = 0; 2624 } 2625 spin_unlock(&net_family_lock); 2626 2627 pr_info("NET: Registered protocol family %d\n", ops->family); 2628 return err; 2629 } 2630 EXPORT_SYMBOL(sock_register); 2631 2632 /** 2633 * sock_unregister - remove a protocol handler 2634 * @family: protocol family to remove 2635 * 2636 * This function is called by a protocol handler that wants to 2637 * remove its address family, and have it unlinked from the 2638 * new socket creation. 2639 * 2640 * If protocol handler is a module, then it can use module reference 2641 * counts to protect against new references. If protocol handler is not 2642 * a module then it needs to provide its own protection in 2643 * the ops->create routine. 2644 */ 2645 void sock_unregister(int family) 2646 { 2647 BUG_ON(family < 0 || family >= NPROTO); 2648 2649 spin_lock(&net_family_lock); 2650 RCU_INIT_POINTER(net_families[family], NULL); 2651 spin_unlock(&net_family_lock); 2652 2653 synchronize_rcu(); 2654 2655 pr_info("NET: Unregistered protocol family %d\n", family); 2656 } 2657 EXPORT_SYMBOL(sock_unregister); 2658 2659 static int __init sock_init(void) 2660 { 2661 int err; 2662 /* 2663 * Initialize the network sysctl infrastructure. 2664 */ 2665 err = net_sysctl_init(); 2666 if (err) 2667 goto out; 2668 2669 /* 2670 * Initialize skbuff SLAB cache 2671 */ 2672 skb_init(); 2673 2674 /* 2675 * Initialize the protocols module. 2676 */ 2677 2678 init_inodecache(); 2679 2680 err = register_filesystem(&sock_fs_type); 2681 if (err) 2682 goto out_fs; 2683 sock_mnt = kern_mount(&sock_fs_type); 2684 if (IS_ERR(sock_mnt)) { 2685 err = PTR_ERR(sock_mnt); 2686 goto out_mount; 2687 } 2688 2689 /* The real protocol initialization is performed in later initcalls. 2690 */ 2691 2692 #ifdef CONFIG_NETFILTER 2693 err = netfilter_init(); 2694 if (err) 2695 goto out; 2696 #endif 2697 2698 ptp_classifier_init(); 2699 2700 out: 2701 return err; 2702 2703 out_mount: 2704 unregister_filesystem(&sock_fs_type); 2705 out_fs: 2706 goto out; 2707 } 2708 2709 core_initcall(sock_init); /* early initcall */ 2710 2711 #ifdef CONFIG_PROC_FS 2712 void socket_seq_show(struct seq_file *seq) 2713 { 2714 int cpu; 2715 int counter = 0; 2716 2717 for_each_possible_cpu(cpu) 2718 counter += per_cpu(sockets_in_use, cpu); 2719 2720 /* It can be negative, by the way. 8) */ 2721 if (counter < 0) 2722 counter = 0; 2723 2724 seq_printf(seq, "sockets: used %d\n", counter); 2725 } 2726 #endif /* CONFIG_PROC_FS */ 2727 2728 #ifdef CONFIG_COMPAT 2729 static int do_siocgstamp(struct net *net, struct socket *sock, 2730 unsigned int cmd, void __user *up) 2731 { 2732 mm_segment_t old_fs = get_fs(); 2733 struct timeval ktv; 2734 int err; 2735 2736 set_fs(KERNEL_DS); 2737 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2738 set_fs(old_fs); 2739 if (!err) 2740 err = compat_put_timeval(&ktv, up); 2741 2742 return err; 2743 } 2744 2745 static int do_siocgstampns(struct net *net, struct socket *sock, 2746 unsigned int cmd, void __user *up) 2747 { 2748 mm_segment_t old_fs = get_fs(); 2749 struct timespec kts; 2750 int err; 2751 2752 set_fs(KERNEL_DS); 2753 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2754 set_fs(old_fs); 2755 if (!err) 2756 err = compat_put_timespec(&kts, up); 2757 2758 return err; 2759 } 2760 2761 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2762 { 2763 struct ifreq __user *uifr; 2764 int err; 2765 2766 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2767 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2768 return -EFAULT; 2769 2770 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2771 if (err) 2772 return err; 2773 2774 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2775 return -EFAULT; 2776 2777 return 0; 2778 } 2779 2780 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2781 { 2782 struct compat_ifconf ifc32; 2783 struct ifconf ifc; 2784 struct ifconf __user *uifc; 2785 struct compat_ifreq __user *ifr32; 2786 struct ifreq __user *ifr; 2787 unsigned int i, j; 2788 int err; 2789 2790 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2791 return -EFAULT; 2792 2793 memset(&ifc, 0, sizeof(ifc)); 2794 if (ifc32.ifcbuf == 0) { 2795 ifc32.ifc_len = 0; 2796 ifc.ifc_len = 0; 2797 ifc.ifc_req = NULL; 2798 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2799 } else { 2800 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2801 sizeof(struct ifreq); 2802 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2803 ifc.ifc_len = len; 2804 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2805 ifr32 = compat_ptr(ifc32.ifcbuf); 2806 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2807 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2808 return -EFAULT; 2809 ifr++; 2810 ifr32++; 2811 } 2812 } 2813 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2814 return -EFAULT; 2815 2816 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2817 if (err) 2818 return err; 2819 2820 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2821 return -EFAULT; 2822 2823 ifr = ifc.ifc_req; 2824 ifr32 = compat_ptr(ifc32.ifcbuf); 2825 for (i = 0, j = 0; 2826 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2827 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2828 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2829 return -EFAULT; 2830 ifr32++; 2831 ifr++; 2832 } 2833 2834 if (ifc32.ifcbuf == 0) { 2835 /* Translate from 64-bit structure multiple to 2836 * a 32-bit one. 2837 */ 2838 i = ifc.ifc_len; 2839 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2840 ifc32.ifc_len = i; 2841 } else { 2842 ifc32.ifc_len = i; 2843 } 2844 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2845 return -EFAULT; 2846 2847 return 0; 2848 } 2849 2850 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2851 { 2852 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2853 bool convert_in = false, convert_out = false; 2854 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2855 struct ethtool_rxnfc __user *rxnfc; 2856 struct ifreq __user *ifr; 2857 u32 rule_cnt = 0, actual_rule_cnt; 2858 u32 ethcmd; 2859 u32 data; 2860 int ret; 2861 2862 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2863 return -EFAULT; 2864 2865 compat_rxnfc = compat_ptr(data); 2866 2867 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2868 return -EFAULT; 2869 2870 /* Most ethtool structures are defined without padding. 2871 * Unfortunately struct ethtool_rxnfc is an exception. 2872 */ 2873 switch (ethcmd) { 2874 default: 2875 break; 2876 case ETHTOOL_GRXCLSRLALL: 2877 /* Buffer size is variable */ 2878 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2879 return -EFAULT; 2880 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2881 return -ENOMEM; 2882 buf_size += rule_cnt * sizeof(u32); 2883 /* fall through */ 2884 case ETHTOOL_GRXRINGS: 2885 case ETHTOOL_GRXCLSRLCNT: 2886 case ETHTOOL_GRXCLSRULE: 2887 case ETHTOOL_SRXCLSRLINS: 2888 convert_out = true; 2889 /* fall through */ 2890 case ETHTOOL_SRXCLSRLDEL: 2891 buf_size += sizeof(struct ethtool_rxnfc); 2892 convert_in = true; 2893 break; 2894 } 2895 2896 ifr = compat_alloc_user_space(buf_size); 2897 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2898 2899 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2900 return -EFAULT; 2901 2902 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2903 &ifr->ifr_ifru.ifru_data)) 2904 return -EFAULT; 2905 2906 if (convert_in) { 2907 /* We expect there to be holes between fs.m_ext and 2908 * fs.ring_cookie and at the end of fs, but nowhere else. 2909 */ 2910 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2911 sizeof(compat_rxnfc->fs.m_ext) != 2912 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2913 sizeof(rxnfc->fs.m_ext)); 2914 BUILD_BUG_ON( 2915 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2916 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2917 offsetof(struct ethtool_rxnfc, fs.location) - 2918 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2919 2920 if (copy_in_user(rxnfc, compat_rxnfc, 2921 (void __user *)(&rxnfc->fs.m_ext + 1) - 2922 (void __user *)rxnfc) || 2923 copy_in_user(&rxnfc->fs.ring_cookie, 2924 &compat_rxnfc->fs.ring_cookie, 2925 (void __user *)(&rxnfc->fs.location + 1) - 2926 (void __user *)&rxnfc->fs.ring_cookie) || 2927 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2928 sizeof(rxnfc->rule_cnt))) 2929 return -EFAULT; 2930 } 2931 2932 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2933 if (ret) 2934 return ret; 2935 2936 if (convert_out) { 2937 if (copy_in_user(compat_rxnfc, rxnfc, 2938 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2939 (const void __user *)rxnfc) || 2940 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2941 &rxnfc->fs.ring_cookie, 2942 (const void __user *)(&rxnfc->fs.location + 1) - 2943 (const void __user *)&rxnfc->fs.ring_cookie) || 2944 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2945 sizeof(rxnfc->rule_cnt))) 2946 return -EFAULT; 2947 2948 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2949 /* As an optimisation, we only copy the actual 2950 * number of rules that the underlying 2951 * function returned. Since Mallory might 2952 * change the rule count in user memory, we 2953 * check that it is less than the rule count 2954 * originally given (as the user buffer size), 2955 * which has been range-checked. 2956 */ 2957 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2958 return -EFAULT; 2959 if (actual_rule_cnt < rule_cnt) 2960 rule_cnt = actual_rule_cnt; 2961 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2962 &rxnfc->rule_locs[0], 2963 rule_cnt * sizeof(u32))) 2964 return -EFAULT; 2965 } 2966 } 2967 2968 return 0; 2969 } 2970 2971 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2972 { 2973 void __user *uptr; 2974 compat_uptr_t uptr32; 2975 struct ifreq __user *uifr; 2976 2977 uifr = compat_alloc_user_space(sizeof(*uifr)); 2978 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2979 return -EFAULT; 2980 2981 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2982 return -EFAULT; 2983 2984 uptr = compat_ptr(uptr32); 2985 2986 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2987 return -EFAULT; 2988 2989 return dev_ioctl(net, SIOCWANDEV, uifr); 2990 } 2991 2992 static int bond_ioctl(struct net *net, unsigned int cmd, 2993 struct compat_ifreq __user *ifr32) 2994 { 2995 struct ifreq kifr; 2996 mm_segment_t old_fs; 2997 int err; 2998 2999 switch (cmd) { 3000 case SIOCBONDENSLAVE: 3001 case SIOCBONDRELEASE: 3002 case SIOCBONDSETHWADDR: 3003 case SIOCBONDCHANGEACTIVE: 3004 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 3005 return -EFAULT; 3006 3007 old_fs = get_fs(); 3008 set_fs(KERNEL_DS); 3009 err = dev_ioctl(net, cmd, 3010 (struct ifreq __user __force *) &kifr); 3011 set_fs(old_fs); 3012 3013 return err; 3014 default: 3015 return -ENOIOCTLCMD; 3016 } 3017 } 3018 3019 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3020 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3021 struct compat_ifreq __user *u_ifreq32) 3022 { 3023 struct ifreq __user *u_ifreq64; 3024 char tmp_buf[IFNAMSIZ]; 3025 void __user *data64; 3026 u32 data32; 3027 3028 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3029 IFNAMSIZ)) 3030 return -EFAULT; 3031 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3032 return -EFAULT; 3033 data64 = compat_ptr(data32); 3034 3035 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3036 3037 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3038 IFNAMSIZ)) 3039 return -EFAULT; 3040 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3041 return -EFAULT; 3042 3043 return dev_ioctl(net, cmd, u_ifreq64); 3044 } 3045 3046 static int dev_ifsioc(struct net *net, struct socket *sock, 3047 unsigned int cmd, struct compat_ifreq __user *uifr32) 3048 { 3049 struct ifreq __user *uifr; 3050 int err; 3051 3052 uifr = compat_alloc_user_space(sizeof(*uifr)); 3053 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3054 return -EFAULT; 3055 3056 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3057 3058 if (!err) { 3059 switch (cmd) { 3060 case SIOCGIFFLAGS: 3061 case SIOCGIFMETRIC: 3062 case SIOCGIFMTU: 3063 case SIOCGIFMEM: 3064 case SIOCGIFHWADDR: 3065 case SIOCGIFINDEX: 3066 case SIOCGIFADDR: 3067 case SIOCGIFBRDADDR: 3068 case SIOCGIFDSTADDR: 3069 case SIOCGIFNETMASK: 3070 case SIOCGIFPFLAGS: 3071 case SIOCGIFTXQLEN: 3072 case SIOCGMIIPHY: 3073 case SIOCGMIIREG: 3074 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3075 err = -EFAULT; 3076 break; 3077 } 3078 } 3079 return err; 3080 } 3081 3082 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3083 struct compat_ifreq __user *uifr32) 3084 { 3085 struct ifreq ifr; 3086 struct compat_ifmap __user *uifmap32; 3087 mm_segment_t old_fs; 3088 int err; 3089 3090 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3091 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3092 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3093 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3094 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3095 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3096 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3097 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3098 if (err) 3099 return -EFAULT; 3100 3101 old_fs = get_fs(); 3102 set_fs(KERNEL_DS); 3103 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3104 set_fs(old_fs); 3105 3106 if (cmd == SIOCGIFMAP && !err) { 3107 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3108 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3109 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3110 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3111 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3112 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3113 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3114 if (err) 3115 err = -EFAULT; 3116 } 3117 return err; 3118 } 3119 3120 struct rtentry32 { 3121 u32 rt_pad1; 3122 struct sockaddr rt_dst; /* target address */ 3123 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3124 struct sockaddr rt_genmask; /* target network mask (IP) */ 3125 unsigned short rt_flags; 3126 short rt_pad2; 3127 u32 rt_pad3; 3128 unsigned char rt_tos; 3129 unsigned char rt_class; 3130 short rt_pad4; 3131 short rt_metric; /* +1 for binary compatibility! */ 3132 /* char * */ u32 rt_dev; /* forcing the device at add */ 3133 u32 rt_mtu; /* per route MTU/Window */ 3134 u32 rt_window; /* Window clamping */ 3135 unsigned short rt_irtt; /* Initial RTT */ 3136 }; 3137 3138 struct in6_rtmsg32 { 3139 struct in6_addr rtmsg_dst; 3140 struct in6_addr rtmsg_src; 3141 struct in6_addr rtmsg_gateway; 3142 u32 rtmsg_type; 3143 u16 rtmsg_dst_len; 3144 u16 rtmsg_src_len; 3145 u32 rtmsg_metric; 3146 u32 rtmsg_info; 3147 u32 rtmsg_flags; 3148 s32 rtmsg_ifindex; 3149 }; 3150 3151 static int routing_ioctl(struct net *net, struct socket *sock, 3152 unsigned int cmd, void __user *argp) 3153 { 3154 int ret; 3155 void *r = NULL; 3156 struct in6_rtmsg r6; 3157 struct rtentry r4; 3158 char devname[16]; 3159 u32 rtdev; 3160 mm_segment_t old_fs = get_fs(); 3161 3162 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3163 struct in6_rtmsg32 __user *ur6 = argp; 3164 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3165 3 * sizeof(struct in6_addr)); 3166 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3167 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3168 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3169 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3170 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3171 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3172 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3173 3174 r = (void *) &r6; 3175 } else { /* ipv4 */ 3176 struct rtentry32 __user *ur4 = argp; 3177 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3178 3 * sizeof(struct sockaddr)); 3179 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3180 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3181 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3182 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3183 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3184 ret |= get_user(rtdev, &(ur4->rt_dev)); 3185 if (rtdev) { 3186 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3187 r4.rt_dev = (char __user __force *)devname; 3188 devname[15] = 0; 3189 } else 3190 r4.rt_dev = NULL; 3191 3192 r = (void *) &r4; 3193 } 3194 3195 if (ret) { 3196 ret = -EFAULT; 3197 goto out; 3198 } 3199 3200 set_fs(KERNEL_DS); 3201 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3202 set_fs(old_fs); 3203 3204 out: 3205 return ret; 3206 } 3207 3208 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3209 * for some operations; this forces use of the newer bridge-utils that 3210 * use compatible ioctls 3211 */ 3212 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3213 { 3214 compat_ulong_t tmp; 3215 3216 if (get_user(tmp, argp)) 3217 return -EFAULT; 3218 if (tmp == BRCTL_GET_VERSION) 3219 return BRCTL_VERSION + 1; 3220 return -EINVAL; 3221 } 3222 3223 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3224 unsigned int cmd, unsigned long arg) 3225 { 3226 void __user *argp = compat_ptr(arg); 3227 struct sock *sk = sock->sk; 3228 struct net *net = sock_net(sk); 3229 3230 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3231 return compat_ifr_data_ioctl(net, cmd, argp); 3232 3233 switch (cmd) { 3234 case SIOCSIFBR: 3235 case SIOCGIFBR: 3236 return old_bridge_ioctl(argp); 3237 case SIOCGIFNAME: 3238 return dev_ifname32(net, argp); 3239 case SIOCGIFCONF: 3240 return dev_ifconf(net, argp); 3241 case SIOCETHTOOL: 3242 return ethtool_ioctl(net, argp); 3243 case SIOCWANDEV: 3244 return compat_siocwandev(net, argp); 3245 case SIOCGIFMAP: 3246 case SIOCSIFMAP: 3247 return compat_sioc_ifmap(net, cmd, argp); 3248 case SIOCBONDENSLAVE: 3249 case SIOCBONDRELEASE: 3250 case SIOCBONDSETHWADDR: 3251 case SIOCBONDCHANGEACTIVE: 3252 return bond_ioctl(net, cmd, argp); 3253 case SIOCADDRT: 3254 case SIOCDELRT: 3255 return routing_ioctl(net, sock, cmd, argp); 3256 case SIOCGSTAMP: 3257 return do_siocgstamp(net, sock, cmd, argp); 3258 case SIOCGSTAMPNS: 3259 return do_siocgstampns(net, sock, cmd, argp); 3260 case SIOCBONDSLAVEINFOQUERY: 3261 case SIOCBONDINFOQUERY: 3262 case SIOCSHWTSTAMP: 3263 case SIOCGHWTSTAMP: 3264 return compat_ifr_data_ioctl(net, cmd, argp); 3265 3266 case FIOSETOWN: 3267 case SIOCSPGRP: 3268 case FIOGETOWN: 3269 case SIOCGPGRP: 3270 case SIOCBRADDBR: 3271 case SIOCBRDELBR: 3272 case SIOCGIFVLAN: 3273 case SIOCSIFVLAN: 3274 case SIOCADDDLCI: 3275 case SIOCDELDLCI: 3276 return sock_ioctl(file, cmd, arg); 3277 3278 case SIOCGIFFLAGS: 3279 case SIOCSIFFLAGS: 3280 case SIOCGIFMETRIC: 3281 case SIOCSIFMETRIC: 3282 case SIOCGIFMTU: 3283 case SIOCSIFMTU: 3284 case SIOCGIFMEM: 3285 case SIOCSIFMEM: 3286 case SIOCGIFHWADDR: 3287 case SIOCSIFHWADDR: 3288 case SIOCADDMULTI: 3289 case SIOCDELMULTI: 3290 case SIOCGIFINDEX: 3291 case SIOCGIFADDR: 3292 case SIOCSIFADDR: 3293 case SIOCSIFHWBROADCAST: 3294 case SIOCDIFADDR: 3295 case SIOCGIFBRDADDR: 3296 case SIOCSIFBRDADDR: 3297 case SIOCGIFDSTADDR: 3298 case SIOCSIFDSTADDR: 3299 case SIOCGIFNETMASK: 3300 case SIOCSIFNETMASK: 3301 case SIOCSIFPFLAGS: 3302 case SIOCGIFPFLAGS: 3303 case SIOCGIFTXQLEN: 3304 case SIOCSIFTXQLEN: 3305 case SIOCBRADDIF: 3306 case SIOCBRDELIF: 3307 case SIOCSIFNAME: 3308 case SIOCGMIIPHY: 3309 case SIOCGMIIREG: 3310 case SIOCSMIIREG: 3311 return dev_ifsioc(net, sock, cmd, argp); 3312 3313 case SIOCSARP: 3314 case SIOCGARP: 3315 case SIOCDARP: 3316 case SIOCATMARK: 3317 return sock_do_ioctl(net, sock, cmd, arg); 3318 } 3319 3320 return -ENOIOCTLCMD; 3321 } 3322 3323 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3324 unsigned long arg) 3325 { 3326 struct socket *sock = file->private_data; 3327 int ret = -ENOIOCTLCMD; 3328 struct sock *sk; 3329 struct net *net; 3330 3331 sk = sock->sk; 3332 net = sock_net(sk); 3333 3334 if (sock->ops->compat_ioctl) 3335 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3336 3337 if (ret == -ENOIOCTLCMD && 3338 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3339 ret = compat_wext_handle_ioctl(net, cmd, arg); 3340 3341 if (ret == -ENOIOCTLCMD) 3342 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3343 3344 return ret; 3345 } 3346 #endif 3347 3348 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3349 { 3350 return sock->ops->bind(sock, addr, addrlen); 3351 } 3352 EXPORT_SYMBOL(kernel_bind); 3353 3354 int kernel_listen(struct socket *sock, int backlog) 3355 { 3356 return sock->ops->listen(sock, backlog); 3357 } 3358 EXPORT_SYMBOL(kernel_listen); 3359 3360 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3361 { 3362 struct sock *sk = sock->sk; 3363 int err; 3364 3365 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3366 newsock); 3367 if (err < 0) 3368 goto done; 3369 3370 err = sock->ops->accept(sock, *newsock, flags); 3371 if (err < 0) { 3372 sock_release(*newsock); 3373 *newsock = NULL; 3374 goto done; 3375 } 3376 3377 (*newsock)->ops = sock->ops; 3378 __module_get((*newsock)->ops->owner); 3379 3380 done: 3381 return err; 3382 } 3383 EXPORT_SYMBOL(kernel_accept); 3384 3385 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3386 int flags) 3387 { 3388 return sock->ops->connect(sock, addr, addrlen, flags); 3389 } 3390 EXPORT_SYMBOL(kernel_connect); 3391 3392 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3393 int *addrlen) 3394 { 3395 return sock->ops->getname(sock, addr, addrlen, 0); 3396 } 3397 EXPORT_SYMBOL(kernel_getsockname); 3398 3399 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3400 int *addrlen) 3401 { 3402 return sock->ops->getname(sock, addr, addrlen, 1); 3403 } 3404 EXPORT_SYMBOL(kernel_getpeername); 3405 3406 int kernel_getsockopt(struct socket *sock, int level, int optname, 3407 char *optval, int *optlen) 3408 { 3409 mm_segment_t oldfs = get_fs(); 3410 char __user *uoptval; 3411 int __user *uoptlen; 3412 int err; 3413 3414 uoptval = (char __user __force *) optval; 3415 uoptlen = (int __user __force *) optlen; 3416 3417 set_fs(KERNEL_DS); 3418 if (level == SOL_SOCKET) 3419 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3420 else 3421 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3422 uoptlen); 3423 set_fs(oldfs); 3424 return err; 3425 } 3426 EXPORT_SYMBOL(kernel_getsockopt); 3427 3428 int kernel_setsockopt(struct socket *sock, int level, int optname, 3429 char *optval, unsigned int optlen) 3430 { 3431 mm_segment_t oldfs = get_fs(); 3432 char __user *uoptval; 3433 int err; 3434 3435 uoptval = (char __user __force *) optval; 3436 3437 set_fs(KERNEL_DS); 3438 if (level == SOL_SOCKET) 3439 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3440 else 3441 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3442 optlen); 3443 set_fs(oldfs); 3444 return err; 3445 } 3446 EXPORT_SYMBOL(kernel_setsockopt); 3447 3448 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3449 size_t size, int flags) 3450 { 3451 if (sock->ops->sendpage) 3452 return sock->ops->sendpage(sock, page, offset, size, flags); 3453 3454 return sock_no_sendpage(sock, page, offset, size, flags); 3455 } 3456 EXPORT_SYMBOL(kernel_sendpage); 3457 3458 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3459 { 3460 mm_segment_t oldfs = get_fs(); 3461 int err; 3462 3463 set_fs(KERNEL_DS); 3464 err = sock->ops->ioctl(sock, cmd, arg); 3465 set_fs(oldfs); 3466 3467 return err; 3468 } 3469 EXPORT_SYMBOL(kernel_sock_ioctl); 3470 3471 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3472 { 3473 return sock->ops->shutdown(sock, how); 3474 } 3475 EXPORT_SYMBOL(kernel_sock_shutdown); 3476