xref: /openbmc/linux/net/socket.c (revision 5d4a2e29)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 			        struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
174 					   16 for IP, 16 for IPX,
175 					   24 for IPv6,
176 					   about 80 for AX.25
177 					   must be at least one bigger than
178 					   the AF_UNIX size (see net/unix/af_unix.c
179 					   :unix_mkname()).
180 					 */
181 
182 /**
183  *	move_addr_to_kernel	-	copy a socket address into kernel space
184  *	@uaddr: Address in user space
185  *	@kaddr: Address in kernel space
186  *	@ulen: Length in user space
187  *
188  *	The address is copied into kernel space. If the provided address is
189  *	too long an error code of -EINVAL is returned. If the copy gives
190  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
191  */
192 
193 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
194 {
195 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
196 		return -EINVAL;
197 	if (ulen == 0)
198 		return 0;
199 	if (copy_from_user(kaddr, uaddr, ulen))
200 		return -EFAULT;
201 	return audit_sockaddr(ulen, kaddr);
202 }
203 
204 /**
205  *	move_addr_to_user	-	copy an address to user space
206  *	@kaddr: kernel space address
207  *	@klen: length of address in kernel
208  *	@uaddr: user space address
209  *	@ulen: pointer to user length field
210  *
211  *	The value pointed to by ulen on entry is the buffer length available.
212  *	This is overwritten with the buffer space used. -EINVAL is returned
213  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
214  *	is returned if either the buffer or the length field are not
215  *	accessible.
216  *	After copying the data up to the limit the user specifies, the true
217  *	length of the data is written over the length limit the user
218  *	specified. Zero is returned for a success.
219  */
220 
221 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
222 		      int __user *ulen)
223 {
224 	int err;
225 	int len;
226 
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0 || len > sizeof(struct sockaddr_storage))
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
257 	if (!ei->socket.wq) {
258 		kmem_cache_free(sock_inode_cachep, ei);
259 		return NULL;
260 	}
261 	init_waitqueue_head(&ei->socket.wq->wait);
262 	ei->socket.wq->fasync_list = NULL;
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 
274 static void wq_free_rcu(struct rcu_head *head)
275 {
276 	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
277 
278 	kfree(wq);
279 }
280 
281 static void sock_destroy_inode(struct inode *inode)
282 {
283 	struct socket_alloc *ei;
284 
285 	ei = container_of(inode, struct socket_alloc, vfs_inode);
286 	call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
287 	kmem_cache_free(sock_inode_cachep, ei);
288 }
289 
290 static void init_once(void *foo)
291 {
292 	struct socket_alloc *ei = (struct socket_alloc *)foo;
293 
294 	inode_init_once(&ei->vfs_inode);
295 }
296 
297 static int init_inodecache(void)
298 {
299 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
300 					      sizeof(struct socket_alloc),
301 					      0,
302 					      (SLAB_HWCACHE_ALIGN |
303 					       SLAB_RECLAIM_ACCOUNT |
304 					       SLAB_MEM_SPREAD),
305 					      init_once);
306 	if (sock_inode_cachep == NULL)
307 		return -ENOMEM;
308 	return 0;
309 }
310 
311 static const struct super_operations sockfs_ops = {
312 	.alloc_inode =	sock_alloc_inode,
313 	.destroy_inode =sock_destroy_inode,
314 	.statfs =	simple_statfs,
315 };
316 
317 static int sockfs_get_sb(struct file_system_type *fs_type,
318 			 int flags, const char *dev_name, void *data,
319 			 struct vfsmount *mnt)
320 {
321 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
322 			     mnt);
323 }
324 
325 static struct vfsmount *sock_mnt __read_mostly;
326 
327 static struct file_system_type sock_fs_type = {
328 	.name =		"sockfs",
329 	.get_sb =	sockfs_get_sb,
330 	.kill_sb =	kill_anon_super,
331 };
332 
333 /*
334  * sockfs_dname() is called from d_path().
335  */
336 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
337 {
338 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
339 				dentry->d_inode->i_ino);
340 }
341 
342 static const struct dentry_operations sockfs_dentry_operations = {
343 	.d_dname  = sockfs_dname,
344 };
345 
346 /*
347  *	Obtains the first available file descriptor and sets it up for use.
348  *
349  *	These functions create file structures and maps them to fd space
350  *	of the current process. On success it returns file descriptor
351  *	and file struct implicitly stored in sock->file.
352  *	Note that another thread may close file descriptor before we return
353  *	from this function. We use the fact that now we do not refer
354  *	to socket after mapping. If one day we will need it, this
355  *	function will increment ref. count on file by 1.
356  *
357  *	In any case returned fd MAY BE not valid!
358  *	This race condition is unavoidable
359  *	with shared fd spaces, we cannot solve it inside kernel,
360  *	but we take care of internal coherence yet.
361  */
362 
363 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
364 {
365 	struct qstr name = { .name = "" };
366 	struct path path;
367 	struct file *file;
368 	int fd;
369 
370 	fd = get_unused_fd_flags(flags);
371 	if (unlikely(fd < 0))
372 		return fd;
373 
374 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
375 	if (unlikely(!path.dentry)) {
376 		put_unused_fd(fd);
377 		return -ENOMEM;
378 	}
379 	path.mnt = mntget(sock_mnt);
380 
381 	path.dentry->d_op = &sockfs_dentry_operations;
382 	d_instantiate(path.dentry, SOCK_INODE(sock));
383 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
384 
385 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
386 		  &socket_file_ops);
387 	if (unlikely(!file)) {
388 		/* drop dentry, keep inode */
389 		atomic_inc(&path.dentry->d_inode->i_count);
390 		path_put(&path);
391 		put_unused_fd(fd);
392 		return -ENFILE;
393 	}
394 
395 	sock->file = file;
396 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
397 	file->f_pos = 0;
398 	file->private_data = sock;
399 
400 	*f = file;
401 	return fd;
402 }
403 
404 int sock_map_fd(struct socket *sock, int flags)
405 {
406 	struct file *newfile;
407 	int fd = sock_alloc_file(sock, &newfile, flags);
408 
409 	if (likely(fd >= 0))
410 		fd_install(fd, newfile);
411 
412 	return fd;
413 }
414 
415 static struct socket *sock_from_file(struct file *file, int *err)
416 {
417 	if (file->f_op == &socket_file_ops)
418 		return file->private_data;	/* set in sock_map_fd */
419 
420 	*err = -ENOTSOCK;
421 	return NULL;
422 }
423 
424 /**
425  *	sockfd_lookup	- 	Go from a file number to its socket slot
426  *	@fd: file handle
427  *	@err: pointer to an error code return
428  *
429  *	The file handle passed in is locked and the socket it is bound
430  *	too is returned. If an error occurs the err pointer is overwritten
431  *	with a negative errno code and NULL is returned. The function checks
432  *	for both invalid handles and passing a handle which is not a socket.
433  *
434  *	On a success the socket object pointer is returned.
435  */
436 
437 struct socket *sockfd_lookup(int fd, int *err)
438 {
439 	struct file *file;
440 	struct socket *sock;
441 
442 	file = fget(fd);
443 	if (!file) {
444 		*err = -EBADF;
445 		return NULL;
446 	}
447 
448 	sock = sock_from_file(file, err);
449 	if (!sock)
450 		fput(file);
451 	return sock;
452 }
453 
454 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
455 {
456 	struct file *file;
457 	struct socket *sock;
458 
459 	*err = -EBADF;
460 	file = fget_light(fd, fput_needed);
461 	if (file) {
462 		sock = sock_from_file(file, err);
463 		if (sock)
464 			return sock;
465 		fput_light(file, *fput_needed);
466 	}
467 	return NULL;
468 }
469 
470 /**
471  *	sock_alloc	-	allocate a socket
472  *
473  *	Allocate a new inode and socket object. The two are bound together
474  *	and initialised. The socket is then returned. If we are out of inodes
475  *	NULL is returned.
476  */
477 
478 static struct socket *sock_alloc(void)
479 {
480 	struct inode *inode;
481 	struct socket *sock;
482 
483 	inode = new_inode(sock_mnt->mnt_sb);
484 	if (!inode)
485 		return NULL;
486 
487 	sock = SOCKET_I(inode);
488 
489 	kmemcheck_annotate_bitfield(sock, type);
490 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
491 	inode->i_uid = current_fsuid();
492 	inode->i_gid = current_fsgid();
493 
494 	percpu_add(sockets_in_use, 1);
495 	return sock;
496 }
497 
498 /*
499  *	In theory you can't get an open on this inode, but /proc provides
500  *	a back door. Remember to keep it shut otherwise you'll let the
501  *	creepy crawlies in.
502  */
503 
504 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
505 {
506 	return -ENXIO;
507 }
508 
509 const struct file_operations bad_sock_fops = {
510 	.owner = THIS_MODULE,
511 	.open = sock_no_open,
512 };
513 
514 /**
515  *	sock_release	-	close a socket
516  *	@sock: socket to close
517  *
518  *	The socket is released from the protocol stack if it has a release
519  *	callback, and the inode is then released if the socket is bound to
520  *	an inode not a file.
521  */
522 
523 void sock_release(struct socket *sock)
524 {
525 	if (sock->ops) {
526 		struct module *owner = sock->ops->owner;
527 
528 		sock->ops->release(sock);
529 		sock->ops = NULL;
530 		module_put(owner);
531 	}
532 
533 	if (sock->wq->fasync_list)
534 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
535 
536 	percpu_sub(sockets_in_use, 1);
537 	if (!sock->file) {
538 		iput(SOCK_INODE(sock));
539 		return;
540 	}
541 	sock->file = NULL;
542 }
543 
544 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
545 		      union skb_shared_tx *shtx)
546 {
547 	shtx->flags = 0;
548 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
549 		shtx->hardware = 1;
550 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
551 		shtx->software = 1;
552 	return 0;
553 }
554 EXPORT_SYMBOL(sock_tx_timestamp);
555 
556 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
557 				 struct msghdr *msg, size_t size)
558 {
559 	struct sock_iocb *si = kiocb_to_siocb(iocb);
560 	int err;
561 
562 	sock_update_classid(sock->sk);
563 
564 	si->sock = sock;
565 	si->scm = NULL;
566 	si->msg = msg;
567 	si->size = size;
568 
569 	err = security_socket_sendmsg(sock, msg, size);
570 	if (err)
571 		return err;
572 
573 	return sock->ops->sendmsg(iocb, sock, msg, size);
574 }
575 
576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
577 {
578 	struct kiocb iocb;
579 	struct sock_iocb siocb;
580 	int ret;
581 
582 	init_sync_kiocb(&iocb, NULL);
583 	iocb.private = &siocb;
584 	ret = __sock_sendmsg(&iocb, sock, msg, size);
585 	if (-EIOCBQUEUED == ret)
586 		ret = wait_on_sync_kiocb(&iocb);
587 	return ret;
588 }
589 
590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
591 		   struct kvec *vec, size_t num, size_t size)
592 {
593 	mm_segment_t oldfs = get_fs();
594 	int result;
595 
596 	set_fs(KERNEL_DS);
597 	/*
598 	 * the following is safe, since for compiler definitions of kvec and
599 	 * iovec are identical, yielding the same in-core layout and alignment
600 	 */
601 	msg->msg_iov = (struct iovec *)vec;
602 	msg->msg_iovlen = num;
603 	result = sock_sendmsg(sock, msg, size);
604 	set_fs(oldfs);
605 	return result;
606 }
607 
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 	if (kt.tv64) {
611 		*ts = ktime_to_timespec(kt);
612 		return 1;
613 	} else {
614 		return 0;
615 	}
616 }
617 
618 /*
619  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620  */
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 	struct sk_buff *skb)
623 {
624 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 	struct timespec ts[3];
626 	int empty = 1;
627 	struct skb_shared_hwtstamps *shhwtstamps =
628 		skb_hwtstamps(skb);
629 
630 	/* Race occurred between timestamp enabling and packet
631 	   receiving.  Fill in the current time for now. */
632 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 		__net_timestamp(skb);
634 
635 	if (need_software_tstamp) {
636 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 			struct timeval tv;
638 			skb_get_timestamp(skb, &tv);
639 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 				 sizeof(tv), &tv);
641 		} else {
642 			skb_get_timestampns(skb, &ts[0]);
643 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
644 				 sizeof(ts[0]), &ts[0]);
645 		}
646 	}
647 
648 
649 	memset(ts, 0, sizeof(ts));
650 	if (skb->tstamp.tv64 &&
651 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
652 		skb_get_timestampns(skb, ts + 0);
653 		empty = 0;
654 	}
655 	if (shhwtstamps) {
656 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
657 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
658 			empty = 0;
659 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
660 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
661 			empty = 0;
662 	}
663 	if (!empty)
664 		put_cmsg(msg, SOL_SOCKET,
665 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
666 }
667 
668 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
669 
670 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
671 {
672 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
673 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
674 			sizeof(__u32), &skb->dropcount);
675 }
676 
677 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
678 	struct sk_buff *skb)
679 {
680 	sock_recv_timestamp(msg, sk, skb);
681 	sock_recv_drops(msg, sk, skb);
682 }
683 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
684 
685 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
686 				       struct msghdr *msg, size_t size, int flags)
687 {
688 	struct sock_iocb *si = kiocb_to_siocb(iocb);
689 
690 	sock_update_classid(sock->sk);
691 
692 	si->sock = sock;
693 	si->scm = NULL;
694 	si->msg = msg;
695 	si->size = size;
696 	si->flags = flags;
697 
698 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
699 }
700 
701 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
702 				 struct msghdr *msg, size_t size, int flags)
703 {
704 	int err = security_socket_recvmsg(sock, msg, size, flags);
705 
706 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
707 }
708 
709 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
710 		 size_t size, int flags)
711 {
712 	struct kiocb iocb;
713 	struct sock_iocb siocb;
714 	int ret;
715 
716 	init_sync_kiocb(&iocb, NULL);
717 	iocb.private = &siocb;
718 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
719 	if (-EIOCBQUEUED == ret)
720 		ret = wait_on_sync_kiocb(&iocb);
721 	return ret;
722 }
723 
724 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
725 			      size_t size, int flags)
726 {
727 	struct kiocb iocb;
728 	struct sock_iocb siocb;
729 	int ret;
730 
731 	init_sync_kiocb(&iocb, NULL);
732 	iocb.private = &siocb;
733 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
734 	if (-EIOCBQUEUED == ret)
735 		ret = wait_on_sync_kiocb(&iocb);
736 	return ret;
737 }
738 
739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
740 		   struct kvec *vec, size_t num, size_t size, int flags)
741 {
742 	mm_segment_t oldfs = get_fs();
743 	int result;
744 
745 	set_fs(KERNEL_DS);
746 	/*
747 	 * the following is safe, since for compiler definitions of kvec and
748 	 * iovec are identical, yielding the same in-core layout and alignment
749 	 */
750 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
751 	result = sock_recvmsg(sock, msg, size, flags);
752 	set_fs(oldfs);
753 	return result;
754 }
755 
756 static void sock_aio_dtor(struct kiocb *iocb)
757 {
758 	kfree(iocb->private);
759 }
760 
761 static ssize_t sock_sendpage(struct file *file, struct page *page,
762 			     int offset, size_t size, loff_t *ppos, int more)
763 {
764 	struct socket *sock;
765 	int flags;
766 
767 	sock = file->private_data;
768 
769 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
770 	if (more)
771 		flags |= MSG_MORE;
772 
773 	return kernel_sendpage(sock, page, offset, size, flags);
774 }
775 
776 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
777 			        struct pipe_inode_info *pipe, size_t len,
778 				unsigned int flags)
779 {
780 	struct socket *sock = file->private_data;
781 
782 	if (unlikely(!sock->ops->splice_read))
783 		return -EINVAL;
784 
785 	sock_update_classid(sock->sk);
786 
787 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
788 }
789 
790 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
791 					 struct sock_iocb *siocb)
792 {
793 	if (!is_sync_kiocb(iocb)) {
794 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
795 		if (!siocb)
796 			return NULL;
797 		iocb->ki_dtor = sock_aio_dtor;
798 	}
799 
800 	siocb->kiocb = iocb;
801 	iocb->private = siocb;
802 	return siocb;
803 }
804 
805 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
806 		struct file *file, const struct iovec *iov,
807 		unsigned long nr_segs)
808 {
809 	struct socket *sock = file->private_data;
810 	size_t size = 0;
811 	int i;
812 
813 	for (i = 0; i < nr_segs; i++)
814 		size += iov[i].iov_len;
815 
816 	msg->msg_name = NULL;
817 	msg->msg_namelen = 0;
818 	msg->msg_control = NULL;
819 	msg->msg_controllen = 0;
820 	msg->msg_iov = (struct iovec *)iov;
821 	msg->msg_iovlen = nr_segs;
822 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
823 
824 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
825 }
826 
827 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
828 				unsigned long nr_segs, loff_t pos)
829 {
830 	struct sock_iocb siocb, *x;
831 
832 	if (pos != 0)
833 		return -ESPIPE;
834 
835 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
836 		return 0;
837 
838 
839 	x = alloc_sock_iocb(iocb, &siocb);
840 	if (!x)
841 		return -ENOMEM;
842 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
843 }
844 
845 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
846 			struct file *file, const struct iovec *iov,
847 			unsigned long nr_segs)
848 {
849 	struct socket *sock = file->private_data;
850 	size_t size = 0;
851 	int i;
852 
853 	for (i = 0; i < nr_segs; i++)
854 		size += iov[i].iov_len;
855 
856 	msg->msg_name = NULL;
857 	msg->msg_namelen = 0;
858 	msg->msg_control = NULL;
859 	msg->msg_controllen = 0;
860 	msg->msg_iov = (struct iovec *)iov;
861 	msg->msg_iovlen = nr_segs;
862 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
863 	if (sock->type == SOCK_SEQPACKET)
864 		msg->msg_flags |= MSG_EOR;
865 
866 	return __sock_sendmsg(iocb, sock, msg, size);
867 }
868 
869 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
870 			  unsigned long nr_segs, loff_t pos)
871 {
872 	struct sock_iocb siocb, *x;
873 
874 	if (pos != 0)
875 		return -ESPIPE;
876 
877 	x = alloc_sock_iocb(iocb, &siocb);
878 	if (!x)
879 		return -ENOMEM;
880 
881 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
882 }
883 
884 /*
885  * Atomic setting of ioctl hooks to avoid race
886  * with module unload.
887  */
888 
889 static DEFINE_MUTEX(br_ioctl_mutex);
890 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
891 
892 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
893 {
894 	mutex_lock(&br_ioctl_mutex);
895 	br_ioctl_hook = hook;
896 	mutex_unlock(&br_ioctl_mutex);
897 }
898 
899 EXPORT_SYMBOL(brioctl_set);
900 
901 static DEFINE_MUTEX(vlan_ioctl_mutex);
902 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
903 
904 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
905 {
906 	mutex_lock(&vlan_ioctl_mutex);
907 	vlan_ioctl_hook = hook;
908 	mutex_unlock(&vlan_ioctl_mutex);
909 }
910 
911 EXPORT_SYMBOL(vlan_ioctl_set);
912 
913 static DEFINE_MUTEX(dlci_ioctl_mutex);
914 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
915 
916 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
917 {
918 	mutex_lock(&dlci_ioctl_mutex);
919 	dlci_ioctl_hook = hook;
920 	mutex_unlock(&dlci_ioctl_mutex);
921 }
922 
923 EXPORT_SYMBOL(dlci_ioctl_set);
924 
925 static long sock_do_ioctl(struct net *net, struct socket *sock,
926 				 unsigned int cmd, unsigned long arg)
927 {
928 	int err;
929 	void __user *argp = (void __user *)arg;
930 
931 	err = sock->ops->ioctl(sock, cmd, arg);
932 
933 	/*
934 	 * If this ioctl is unknown try to hand it down
935 	 * to the NIC driver.
936 	 */
937 	if (err == -ENOIOCTLCMD)
938 		err = dev_ioctl(net, cmd, argp);
939 
940 	return err;
941 }
942 
943 /*
944  *	With an ioctl, arg may well be a user mode pointer, but we don't know
945  *	what to do with it - that's up to the protocol still.
946  */
947 
948 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
949 {
950 	struct socket *sock;
951 	struct sock *sk;
952 	void __user *argp = (void __user *)arg;
953 	int pid, err;
954 	struct net *net;
955 
956 	sock = file->private_data;
957 	sk = sock->sk;
958 	net = sock_net(sk);
959 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
960 		err = dev_ioctl(net, cmd, argp);
961 	} else
962 #ifdef CONFIG_WEXT_CORE
963 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
964 		err = dev_ioctl(net, cmd, argp);
965 	} else
966 #endif
967 		switch (cmd) {
968 		case FIOSETOWN:
969 		case SIOCSPGRP:
970 			err = -EFAULT;
971 			if (get_user(pid, (int __user *)argp))
972 				break;
973 			err = f_setown(sock->file, pid, 1);
974 			break;
975 		case FIOGETOWN:
976 		case SIOCGPGRP:
977 			err = put_user(f_getown(sock->file),
978 				       (int __user *)argp);
979 			break;
980 		case SIOCGIFBR:
981 		case SIOCSIFBR:
982 		case SIOCBRADDBR:
983 		case SIOCBRDELBR:
984 			err = -ENOPKG;
985 			if (!br_ioctl_hook)
986 				request_module("bridge");
987 
988 			mutex_lock(&br_ioctl_mutex);
989 			if (br_ioctl_hook)
990 				err = br_ioctl_hook(net, cmd, argp);
991 			mutex_unlock(&br_ioctl_mutex);
992 			break;
993 		case SIOCGIFVLAN:
994 		case SIOCSIFVLAN:
995 			err = -ENOPKG;
996 			if (!vlan_ioctl_hook)
997 				request_module("8021q");
998 
999 			mutex_lock(&vlan_ioctl_mutex);
1000 			if (vlan_ioctl_hook)
1001 				err = vlan_ioctl_hook(net, argp);
1002 			mutex_unlock(&vlan_ioctl_mutex);
1003 			break;
1004 		case SIOCADDDLCI:
1005 		case SIOCDELDLCI:
1006 			err = -ENOPKG;
1007 			if (!dlci_ioctl_hook)
1008 				request_module("dlci");
1009 
1010 			mutex_lock(&dlci_ioctl_mutex);
1011 			if (dlci_ioctl_hook)
1012 				err = dlci_ioctl_hook(cmd, argp);
1013 			mutex_unlock(&dlci_ioctl_mutex);
1014 			break;
1015 		default:
1016 			err = sock_do_ioctl(net, sock, cmd, arg);
1017 			break;
1018 		}
1019 	return err;
1020 }
1021 
1022 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1023 {
1024 	int err;
1025 	struct socket *sock = NULL;
1026 
1027 	err = security_socket_create(family, type, protocol, 1);
1028 	if (err)
1029 		goto out;
1030 
1031 	sock = sock_alloc();
1032 	if (!sock) {
1033 		err = -ENOMEM;
1034 		goto out;
1035 	}
1036 
1037 	sock->type = type;
1038 	err = security_socket_post_create(sock, family, type, protocol, 1);
1039 	if (err)
1040 		goto out_release;
1041 
1042 out:
1043 	*res = sock;
1044 	return err;
1045 out_release:
1046 	sock_release(sock);
1047 	sock = NULL;
1048 	goto out;
1049 }
1050 
1051 /* No kernel lock held - perfect */
1052 static unsigned int sock_poll(struct file *file, poll_table *wait)
1053 {
1054 	struct socket *sock;
1055 
1056 	/*
1057 	 *      We can't return errors to poll, so it's either yes or no.
1058 	 */
1059 	sock = file->private_data;
1060 	return sock->ops->poll(file, sock, wait);
1061 }
1062 
1063 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1064 {
1065 	struct socket *sock = file->private_data;
1066 
1067 	return sock->ops->mmap(file, sock, vma);
1068 }
1069 
1070 static int sock_close(struct inode *inode, struct file *filp)
1071 {
1072 	/*
1073 	 *      It was possible the inode is NULL we were
1074 	 *      closing an unfinished socket.
1075 	 */
1076 
1077 	if (!inode) {
1078 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1079 		return 0;
1080 	}
1081 	sock_release(SOCKET_I(inode));
1082 	return 0;
1083 }
1084 
1085 /*
1086  *	Update the socket async list
1087  *
1088  *	Fasync_list locking strategy.
1089  *
1090  *	1. fasync_list is modified only under process context socket lock
1091  *	   i.e. under semaphore.
1092  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1093  *	   or under socket lock
1094  */
1095 
1096 static int sock_fasync(int fd, struct file *filp, int on)
1097 {
1098 	struct socket *sock = filp->private_data;
1099 	struct sock *sk = sock->sk;
1100 
1101 	if (sk == NULL)
1102 		return -EINVAL;
1103 
1104 	lock_sock(sk);
1105 
1106 	fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1107 
1108 	if (!sock->wq->fasync_list)
1109 		sock_reset_flag(sk, SOCK_FASYNC);
1110 	else
1111 		sock_set_flag(sk, SOCK_FASYNC);
1112 
1113 	release_sock(sk);
1114 	return 0;
1115 }
1116 
1117 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1118 
1119 int sock_wake_async(struct socket *sock, int how, int band)
1120 {
1121 	struct socket_wq *wq;
1122 
1123 	if (!sock)
1124 		return -1;
1125 	rcu_read_lock();
1126 	wq = rcu_dereference(sock->wq);
1127 	if (!wq || !wq->fasync_list) {
1128 		rcu_read_unlock();
1129 		return -1;
1130 	}
1131 	switch (how) {
1132 	case SOCK_WAKE_WAITD:
1133 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1134 			break;
1135 		goto call_kill;
1136 	case SOCK_WAKE_SPACE:
1137 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1138 			break;
1139 		/* fall through */
1140 	case SOCK_WAKE_IO:
1141 call_kill:
1142 		kill_fasync(&wq->fasync_list, SIGIO, band);
1143 		break;
1144 	case SOCK_WAKE_URG:
1145 		kill_fasync(&wq->fasync_list, SIGURG, band);
1146 	}
1147 	rcu_read_unlock();
1148 	return 0;
1149 }
1150 
1151 static int __sock_create(struct net *net, int family, int type, int protocol,
1152 			 struct socket **res, int kern)
1153 {
1154 	int err;
1155 	struct socket *sock;
1156 	const struct net_proto_family *pf;
1157 
1158 	/*
1159 	 *      Check protocol is in range
1160 	 */
1161 	if (family < 0 || family >= NPROTO)
1162 		return -EAFNOSUPPORT;
1163 	if (type < 0 || type >= SOCK_MAX)
1164 		return -EINVAL;
1165 
1166 	/* Compatibility.
1167 
1168 	   This uglymoron is moved from INET layer to here to avoid
1169 	   deadlock in module load.
1170 	 */
1171 	if (family == PF_INET && type == SOCK_PACKET) {
1172 		static int warned;
1173 		if (!warned) {
1174 			warned = 1;
1175 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1176 			       current->comm);
1177 		}
1178 		family = PF_PACKET;
1179 	}
1180 
1181 	err = security_socket_create(family, type, protocol, kern);
1182 	if (err)
1183 		return err;
1184 
1185 	/*
1186 	 *	Allocate the socket and allow the family to set things up. if
1187 	 *	the protocol is 0, the family is instructed to select an appropriate
1188 	 *	default.
1189 	 */
1190 	sock = sock_alloc();
1191 	if (!sock) {
1192 		if (net_ratelimit())
1193 			printk(KERN_WARNING "socket: no more sockets\n");
1194 		return -ENFILE;	/* Not exactly a match, but its the
1195 				   closest posix thing */
1196 	}
1197 
1198 	sock->type = type;
1199 
1200 #ifdef CONFIG_MODULES
1201 	/* Attempt to load a protocol module if the find failed.
1202 	 *
1203 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1204 	 * requested real, full-featured networking support upon configuration.
1205 	 * Otherwise module support will break!
1206 	 */
1207 	if (net_families[family] == NULL)
1208 		request_module("net-pf-%d", family);
1209 #endif
1210 
1211 	rcu_read_lock();
1212 	pf = rcu_dereference(net_families[family]);
1213 	err = -EAFNOSUPPORT;
1214 	if (!pf)
1215 		goto out_release;
1216 
1217 	/*
1218 	 * We will call the ->create function, that possibly is in a loadable
1219 	 * module, so we have to bump that loadable module refcnt first.
1220 	 */
1221 	if (!try_module_get(pf->owner))
1222 		goto out_release;
1223 
1224 	/* Now protected by module ref count */
1225 	rcu_read_unlock();
1226 
1227 	err = pf->create(net, sock, protocol, kern);
1228 	if (err < 0)
1229 		goto out_module_put;
1230 
1231 	/*
1232 	 * Now to bump the refcnt of the [loadable] module that owns this
1233 	 * socket at sock_release time we decrement its refcnt.
1234 	 */
1235 	if (!try_module_get(sock->ops->owner))
1236 		goto out_module_busy;
1237 
1238 	/*
1239 	 * Now that we're done with the ->create function, the [loadable]
1240 	 * module can have its refcnt decremented
1241 	 */
1242 	module_put(pf->owner);
1243 	err = security_socket_post_create(sock, family, type, protocol, kern);
1244 	if (err)
1245 		goto out_sock_release;
1246 	*res = sock;
1247 
1248 	return 0;
1249 
1250 out_module_busy:
1251 	err = -EAFNOSUPPORT;
1252 out_module_put:
1253 	sock->ops = NULL;
1254 	module_put(pf->owner);
1255 out_sock_release:
1256 	sock_release(sock);
1257 	return err;
1258 
1259 out_release:
1260 	rcu_read_unlock();
1261 	goto out_sock_release;
1262 }
1263 
1264 int sock_create(int family, int type, int protocol, struct socket **res)
1265 {
1266 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1267 }
1268 
1269 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1270 {
1271 	return __sock_create(&init_net, family, type, protocol, res, 1);
1272 }
1273 
1274 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1275 {
1276 	int retval;
1277 	struct socket *sock;
1278 	int flags;
1279 
1280 	/* Check the SOCK_* constants for consistency.  */
1281 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1282 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1283 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1284 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1285 
1286 	flags = type & ~SOCK_TYPE_MASK;
1287 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1288 		return -EINVAL;
1289 	type &= SOCK_TYPE_MASK;
1290 
1291 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1292 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1293 
1294 	retval = sock_create(family, type, protocol, &sock);
1295 	if (retval < 0)
1296 		goto out;
1297 
1298 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1299 	if (retval < 0)
1300 		goto out_release;
1301 
1302 out:
1303 	/* It may be already another descriptor 8) Not kernel problem. */
1304 	return retval;
1305 
1306 out_release:
1307 	sock_release(sock);
1308 	return retval;
1309 }
1310 
1311 /*
1312  *	Create a pair of connected sockets.
1313  */
1314 
1315 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1316 		int __user *, usockvec)
1317 {
1318 	struct socket *sock1, *sock2;
1319 	int fd1, fd2, err;
1320 	struct file *newfile1, *newfile2;
1321 	int flags;
1322 
1323 	flags = type & ~SOCK_TYPE_MASK;
1324 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1325 		return -EINVAL;
1326 	type &= SOCK_TYPE_MASK;
1327 
1328 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1329 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1330 
1331 	/*
1332 	 * Obtain the first socket and check if the underlying protocol
1333 	 * supports the socketpair call.
1334 	 */
1335 
1336 	err = sock_create(family, type, protocol, &sock1);
1337 	if (err < 0)
1338 		goto out;
1339 
1340 	err = sock_create(family, type, protocol, &sock2);
1341 	if (err < 0)
1342 		goto out_release_1;
1343 
1344 	err = sock1->ops->socketpair(sock1, sock2);
1345 	if (err < 0)
1346 		goto out_release_both;
1347 
1348 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1349 	if (unlikely(fd1 < 0)) {
1350 		err = fd1;
1351 		goto out_release_both;
1352 	}
1353 
1354 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1355 	if (unlikely(fd2 < 0)) {
1356 		err = fd2;
1357 		fput(newfile1);
1358 		put_unused_fd(fd1);
1359 		sock_release(sock2);
1360 		goto out;
1361 	}
1362 
1363 	audit_fd_pair(fd1, fd2);
1364 	fd_install(fd1, newfile1);
1365 	fd_install(fd2, newfile2);
1366 	/* fd1 and fd2 may be already another descriptors.
1367 	 * Not kernel problem.
1368 	 */
1369 
1370 	err = put_user(fd1, &usockvec[0]);
1371 	if (!err)
1372 		err = put_user(fd2, &usockvec[1]);
1373 	if (!err)
1374 		return 0;
1375 
1376 	sys_close(fd2);
1377 	sys_close(fd1);
1378 	return err;
1379 
1380 out_release_both:
1381 	sock_release(sock2);
1382 out_release_1:
1383 	sock_release(sock1);
1384 out:
1385 	return err;
1386 }
1387 
1388 /*
1389  *	Bind a name to a socket. Nothing much to do here since it's
1390  *	the protocol's responsibility to handle the local address.
1391  *
1392  *	We move the socket address to kernel space before we call
1393  *	the protocol layer (having also checked the address is ok).
1394  */
1395 
1396 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1397 {
1398 	struct socket *sock;
1399 	struct sockaddr_storage address;
1400 	int err, fput_needed;
1401 
1402 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1403 	if (sock) {
1404 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1405 		if (err >= 0) {
1406 			err = security_socket_bind(sock,
1407 						   (struct sockaddr *)&address,
1408 						   addrlen);
1409 			if (!err)
1410 				err = sock->ops->bind(sock,
1411 						      (struct sockaddr *)
1412 						      &address, addrlen);
1413 		}
1414 		fput_light(sock->file, fput_needed);
1415 	}
1416 	return err;
1417 }
1418 
1419 /*
1420  *	Perform a listen. Basically, we allow the protocol to do anything
1421  *	necessary for a listen, and if that works, we mark the socket as
1422  *	ready for listening.
1423  */
1424 
1425 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1426 {
1427 	struct socket *sock;
1428 	int err, fput_needed;
1429 	int somaxconn;
1430 
1431 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1432 	if (sock) {
1433 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1434 		if ((unsigned)backlog > somaxconn)
1435 			backlog = somaxconn;
1436 
1437 		err = security_socket_listen(sock, backlog);
1438 		if (!err)
1439 			err = sock->ops->listen(sock, backlog);
1440 
1441 		fput_light(sock->file, fput_needed);
1442 	}
1443 	return err;
1444 }
1445 
1446 /*
1447  *	For accept, we attempt to create a new socket, set up the link
1448  *	with the client, wake up the client, then return the new
1449  *	connected fd. We collect the address of the connector in kernel
1450  *	space and move it to user at the very end. This is unclean because
1451  *	we open the socket then return an error.
1452  *
1453  *	1003.1g adds the ability to recvmsg() to query connection pending
1454  *	status to recvmsg. We need to add that support in a way thats
1455  *	clean when we restucture accept also.
1456  */
1457 
1458 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1459 		int __user *, upeer_addrlen, int, flags)
1460 {
1461 	struct socket *sock, *newsock;
1462 	struct file *newfile;
1463 	int err, len, newfd, fput_needed;
1464 	struct sockaddr_storage address;
1465 
1466 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1467 		return -EINVAL;
1468 
1469 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1470 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1471 
1472 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1473 	if (!sock)
1474 		goto out;
1475 
1476 	err = -ENFILE;
1477 	if (!(newsock = sock_alloc()))
1478 		goto out_put;
1479 
1480 	newsock->type = sock->type;
1481 	newsock->ops = sock->ops;
1482 
1483 	/*
1484 	 * We don't need try_module_get here, as the listening socket (sock)
1485 	 * has the protocol module (sock->ops->owner) held.
1486 	 */
1487 	__module_get(newsock->ops->owner);
1488 
1489 	newfd = sock_alloc_file(newsock, &newfile, flags);
1490 	if (unlikely(newfd < 0)) {
1491 		err = newfd;
1492 		sock_release(newsock);
1493 		goto out_put;
1494 	}
1495 
1496 	err = security_socket_accept(sock, newsock);
1497 	if (err)
1498 		goto out_fd;
1499 
1500 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1501 	if (err < 0)
1502 		goto out_fd;
1503 
1504 	if (upeer_sockaddr) {
1505 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1506 					  &len, 2) < 0) {
1507 			err = -ECONNABORTED;
1508 			goto out_fd;
1509 		}
1510 		err = move_addr_to_user((struct sockaddr *)&address,
1511 					len, upeer_sockaddr, upeer_addrlen);
1512 		if (err < 0)
1513 			goto out_fd;
1514 	}
1515 
1516 	/* File flags are not inherited via accept() unlike another OSes. */
1517 
1518 	fd_install(newfd, newfile);
1519 	err = newfd;
1520 
1521 out_put:
1522 	fput_light(sock->file, fput_needed);
1523 out:
1524 	return err;
1525 out_fd:
1526 	fput(newfile);
1527 	put_unused_fd(newfd);
1528 	goto out_put;
1529 }
1530 
1531 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1532 		int __user *, upeer_addrlen)
1533 {
1534 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1535 }
1536 
1537 /*
1538  *	Attempt to connect to a socket with the server address.  The address
1539  *	is in user space so we verify it is OK and move it to kernel space.
1540  *
1541  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1542  *	break bindings
1543  *
1544  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1545  *	other SEQPACKET protocols that take time to connect() as it doesn't
1546  *	include the -EINPROGRESS status for such sockets.
1547  */
1548 
1549 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1550 		int, addrlen)
1551 {
1552 	struct socket *sock;
1553 	struct sockaddr_storage address;
1554 	int err, fput_needed;
1555 
1556 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 	if (!sock)
1558 		goto out;
1559 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1560 	if (err < 0)
1561 		goto out_put;
1562 
1563 	err =
1564 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1565 	if (err)
1566 		goto out_put;
1567 
1568 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1569 				 sock->file->f_flags);
1570 out_put:
1571 	fput_light(sock->file, fput_needed);
1572 out:
1573 	return err;
1574 }
1575 
1576 /*
1577  *	Get the local address ('name') of a socket object. Move the obtained
1578  *	name to user space.
1579  */
1580 
1581 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1582 		int __user *, usockaddr_len)
1583 {
1584 	struct socket *sock;
1585 	struct sockaddr_storage address;
1586 	int len, err, fput_needed;
1587 
1588 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1589 	if (!sock)
1590 		goto out;
1591 
1592 	err = security_socket_getsockname(sock);
1593 	if (err)
1594 		goto out_put;
1595 
1596 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1597 	if (err)
1598 		goto out_put;
1599 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1600 
1601 out_put:
1602 	fput_light(sock->file, fput_needed);
1603 out:
1604 	return err;
1605 }
1606 
1607 /*
1608  *	Get the remote address ('name') of a socket object. Move the obtained
1609  *	name to user space.
1610  */
1611 
1612 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1613 		int __user *, usockaddr_len)
1614 {
1615 	struct socket *sock;
1616 	struct sockaddr_storage address;
1617 	int len, err, fput_needed;
1618 
1619 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1620 	if (sock != NULL) {
1621 		err = security_socket_getpeername(sock);
1622 		if (err) {
1623 			fput_light(sock->file, fput_needed);
1624 			return err;
1625 		}
1626 
1627 		err =
1628 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1629 				       1);
1630 		if (!err)
1631 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1632 						usockaddr_len);
1633 		fput_light(sock->file, fput_needed);
1634 	}
1635 	return err;
1636 }
1637 
1638 /*
1639  *	Send a datagram to a given address. We move the address into kernel
1640  *	space and check the user space data area is readable before invoking
1641  *	the protocol.
1642  */
1643 
1644 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1645 		unsigned, flags, struct sockaddr __user *, addr,
1646 		int, addr_len)
1647 {
1648 	struct socket *sock;
1649 	struct sockaddr_storage address;
1650 	int err;
1651 	struct msghdr msg;
1652 	struct iovec iov;
1653 	int fput_needed;
1654 
1655 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1656 	if (!sock)
1657 		goto out;
1658 
1659 	iov.iov_base = buff;
1660 	iov.iov_len = len;
1661 	msg.msg_name = NULL;
1662 	msg.msg_iov = &iov;
1663 	msg.msg_iovlen = 1;
1664 	msg.msg_control = NULL;
1665 	msg.msg_controllen = 0;
1666 	msg.msg_namelen = 0;
1667 	if (addr) {
1668 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1669 		if (err < 0)
1670 			goto out_put;
1671 		msg.msg_name = (struct sockaddr *)&address;
1672 		msg.msg_namelen = addr_len;
1673 	}
1674 	if (sock->file->f_flags & O_NONBLOCK)
1675 		flags |= MSG_DONTWAIT;
1676 	msg.msg_flags = flags;
1677 	err = sock_sendmsg(sock, &msg, len);
1678 
1679 out_put:
1680 	fput_light(sock->file, fput_needed);
1681 out:
1682 	return err;
1683 }
1684 
1685 /*
1686  *	Send a datagram down a socket.
1687  */
1688 
1689 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1690 		unsigned, flags)
1691 {
1692 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1693 }
1694 
1695 /*
1696  *	Receive a frame from the socket and optionally record the address of the
1697  *	sender. We verify the buffers are writable and if needed move the
1698  *	sender address from kernel to user space.
1699  */
1700 
1701 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1702 		unsigned, flags, struct sockaddr __user *, addr,
1703 		int __user *, addr_len)
1704 {
1705 	struct socket *sock;
1706 	struct iovec iov;
1707 	struct msghdr msg;
1708 	struct sockaddr_storage address;
1709 	int err, err2;
1710 	int fput_needed;
1711 
1712 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1713 	if (!sock)
1714 		goto out;
1715 
1716 	msg.msg_control = NULL;
1717 	msg.msg_controllen = 0;
1718 	msg.msg_iovlen = 1;
1719 	msg.msg_iov = &iov;
1720 	iov.iov_len = size;
1721 	iov.iov_base = ubuf;
1722 	msg.msg_name = (struct sockaddr *)&address;
1723 	msg.msg_namelen = sizeof(address);
1724 	if (sock->file->f_flags & O_NONBLOCK)
1725 		flags |= MSG_DONTWAIT;
1726 	err = sock_recvmsg(sock, &msg, size, flags);
1727 
1728 	if (err >= 0 && addr != NULL) {
1729 		err2 = move_addr_to_user((struct sockaddr *)&address,
1730 					 msg.msg_namelen, addr, addr_len);
1731 		if (err2 < 0)
1732 			err = err2;
1733 	}
1734 
1735 	fput_light(sock->file, fput_needed);
1736 out:
1737 	return err;
1738 }
1739 
1740 /*
1741  *	Receive a datagram from a socket.
1742  */
1743 
1744 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1745 			 unsigned flags)
1746 {
1747 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1748 }
1749 
1750 /*
1751  *	Set a socket option. Because we don't know the option lengths we have
1752  *	to pass the user mode parameter for the protocols to sort out.
1753  */
1754 
1755 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1756 		char __user *, optval, int, optlen)
1757 {
1758 	int err, fput_needed;
1759 	struct socket *sock;
1760 
1761 	if (optlen < 0)
1762 		return -EINVAL;
1763 
1764 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 	if (sock != NULL) {
1766 		err = security_socket_setsockopt(sock, level, optname);
1767 		if (err)
1768 			goto out_put;
1769 
1770 		if (level == SOL_SOCKET)
1771 			err =
1772 			    sock_setsockopt(sock, level, optname, optval,
1773 					    optlen);
1774 		else
1775 			err =
1776 			    sock->ops->setsockopt(sock, level, optname, optval,
1777 						  optlen);
1778 out_put:
1779 		fput_light(sock->file, fput_needed);
1780 	}
1781 	return err;
1782 }
1783 
1784 /*
1785  *	Get a socket option. Because we don't know the option lengths we have
1786  *	to pass a user mode parameter for the protocols to sort out.
1787  */
1788 
1789 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1790 		char __user *, optval, int __user *, optlen)
1791 {
1792 	int err, fput_needed;
1793 	struct socket *sock;
1794 
1795 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1796 	if (sock != NULL) {
1797 		err = security_socket_getsockopt(sock, level, optname);
1798 		if (err)
1799 			goto out_put;
1800 
1801 		if (level == SOL_SOCKET)
1802 			err =
1803 			    sock_getsockopt(sock, level, optname, optval,
1804 					    optlen);
1805 		else
1806 			err =
1807 			    sock->ops->getsockopt(sock, level, optname, optval,
1808 						  optlen);
1809 out_put:
1810 		fput_light(sock->file, fput_needed);
1811 	}
1812 	return err;
1813 }
1814 
1815 /*
1816  *	Shutdown a socket.
1817  */
1818 
1819 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1820 {
1821 	int err, fput_needed;
1822 	struct socket *sock;
1823 
1824 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1825 	if (sock != NULL) {
1826 		err = security_socket_shutdown(sock, how);
1827 		if (!err)
1828 			err = sock->ops->shutdown(sock, how);
1829 		fput_light(sock->file, fput_needed);
1830 	}
1831 	return err;
1832 }
1833 
1834 /* A couple of helpful macros for getting the address of the 32/64 bit
1835  * fields which are the same type (int / unsigned) on our platforms.
1836  */
1837 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1838 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1839 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1840 
1841 /*
1842  *	BSD sendmsg interface
1843  */
1844 
1845 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1846 {
1847 	struct compat_msghdr __user *msg_compat =
1848 	    (struct compat_msghdr __user *)msg;
1849 	struct socket *sock;
1850 	struct sockaddr_storage address;
1851 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1852 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1853 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1854 	/* 20 is size of ipv6_pktinfo */
1855 	unsigned char *ctl_buf = ctl;
1856 	struct msghdr msg_sys;
1857 	int err, ctl_len, iov_size, total_len;
1858 	int fput_needed;
1859 
1860 	err = -EFAULT;
1861 	if (MSG_CMSG_COMPAT & flags) {
1862 		if (get_compat_msghdr(&msg_sys, msg_compat))
1863 			return -EFAULT;
1864 	}
1865 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1866 		return -EFAULT;
1867 
1868 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1869 	if (!sock)
1870 		goto out;
1871 
1872 	/* do not move before msg_sys is valid */
1873 	err = -EMSGSIZE;
1874 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1875 		goto out_put;
1876 
1877 	/* Check whether to allocate the iovec area */
1878 	err = -ENOMEM;
1879 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1880 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1881 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1882 		if (!iov)
1883 			goto out_put;
1884 	}
1885 
1886 	/* This will also move the address data into kernel space */
1887 	if (MSG_CMSG_COMPAT & flags) {
1888 		err = verify_compat_iovec(&msg_sys, iov,
1889 					  (struct sockaddr *)&address,
1890 					  VERIFY_READ);
1891 	} else
1892 		err = verify_iovec(&msg_sys, iov,
1893 				   (struct sockaddr *)&address,
1894 				   VERIFY_READ);
1895 	if (err < 0)
1896 		goto out_freeiov;
1897 	total_len = err;
1898 
1899 	err = -ENOBUFS;
1900 
1901 	if (msg_sys.msg_controllen > INT_MAX)
1902 		goto out_freeiov;
1903 	ctl_len = msg_sys.msg_controllen;
1904 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1905 		err =
1906 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1907 						     sizeof(ctl));
1908 		if (err)
1909 			goto out_freeiov;
1910 		ctl_buf = msg_sys.msg_control;
1911 		ctl_len = msg_sys.msg_controllen;
1912 	} else if (ctl_len) {
1913 		if (ctl_len > sizeof(ctl)) {
1914 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1915 			if (ctl_buf == NULL)
1916 				goto out_freeiov;
1917 		}
1918 		err = -EFAULT;
1919 		/*
1920 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1921 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1922 		 * checking falls down on this.
1923 		 */
1924 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1925 				   ctl_len))
1926 			goto out_freectl;
1927 		msg_sys.msg_control = ctl_buf;
1928 	}
1929 	msg_sys.msg_flags = flags;
1930 
1931 	if (sock->file->f_flags & O_NONBLOCK)
1932 		msg_sys.msg_flags |= MSG_DONTWAIT;
1933 	err = sock_sendmsg(sock, &msg_sys, total_len);
1934 
1935 out_freectl:
1936 	if (ctl_buf != ctl)
1937 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1938 out_freeiov:
1939 	if (iov != iovstack)
1940 		sock_kfree_s(sock->sk, iov, iov_size);
1941 out_put:
1942 	fput_light(sock->file, fput_needed);
1943 out:
1944 	return err;
1945 }
1946 
1947 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1948 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1949 {
1950 	struct compat_msghdr __user *msg_compat =
1951 	    (struct compat_msghdr __user *)msg;
1952 	struct iovec iovstack[UIO_FASTIOV];
1953 	struct iovec *iov = iovstack;
1954 	unsigned long cmsg_ptr;
1955 	int err, iov_size, total_len, len;
1956 
1957 	/* kernel mode address */
1958 	struct sockaddr_storage addr;
1959 
1960 	/* user mode address pointers */
1961 	struct sockaddr __user *uaddr;
1962 	int __user *uaddr_len;
1963 
1964 	if (MSG_CMSG_COMPAT & flags) {
1965 		if (get_compat_msghdr(msg_sys, msg_compat))
1966 			return -EFAULT;
1967 	}
1968 	else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1969 		return -EFAULT;
1970 
1971 	err = -EMSGSIZE;
1972 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1973 		goto out;
1974 
1975 	/* Check whether to allocate the iovec area */
1976 	err = -ENOMEM;
1977 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1978 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1979 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1980 		if (!iov)
1981 			goto out;
1982 	}
1983 
1984 	/*
1985 	 *      Save the user-mode address (verify_iovec will change the
1986 	 *      kernel msghdr to use the kernel address space)
1987 	 */
1988 
1989 	uaddr = (__force void __user *)msg_sys->msg_name;
1990 	uaddr_len = COMPAT_NAMELEN(msg);
1991 	if (MSG_CMSG_COMPAT & flags) {
1992 		err = verify_compat_iovec(msg_sys, iov,
1993 					  (struct sockaddr *)&addr,
1994 					  VERIFY_WRITE);
1995 	} else
1996 		err = verify_iovec(msg_sys, iov,
1997 				   (struct sockaddr *)&addr,
1998 				   VERIFY_WRITE);
1999 	if (err < 0)
2000 		goto out_freeiov;
2001 	total_len = err;
2002 
2003 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2004 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2005 
2006 	if (sock->file->f_flags & O_NONBLOCK)
2007 		flags |= MSG_DONTWAIT;
2008 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2009 							  total_len, flags);
2010 	if (err < 0)
2011 		goto out_freeiov;
2012 	len = err;
2013 
2014 	if (uaddr != NULL) {
2015 		err = move_addr_to_user((struct sockaddr *)&addr,
2016 					msg_sys->msg_namelen, uaddr,
2017 					uaddr_len);
2018 		if (err < 0)
2019 			goto out_freeiov;
2020 	}
2021 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2022 			 COMPAT_FLAGS(msg));
2023 	if (err)
2024 		goto out_freeiov;
2025 	if (MSG_CMSG_COMPAT & flags)
2026 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2027 				 &msg_compat->msg_controllen);
2028 	else
2029 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2030 				 &msg->msg_controllen);
2031 	if (err)
2032 		goto out_freeiov;
2033 	err = len;
2034 
2035 out_freeiov:
2036 	if (iov != iovstack)
2037 		sock_kfree_s(sock->sk, iov, iov_size);
2038 out:
2039 	return err;
2040 }
2041 
2042 /*
2043  *	BSD recvmsg interface
2044  */
2045 
2046 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2047 		unsigned int, flags)
2048 {
2049 	int fput_needed, err;
2050 	struct msghdr msg_sys;
2051 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052 
2053 	if (!sock)
2054 		goto out;
2055 
2056 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2057 
2058 	fput_light(sock->file, fput_needed);
2059 out:
2060 	return err;
2061 }
2062 
2063 /*
2064  *     Linux recvmmsg interface
2065  */
2066 
2067 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2068 		   unsigned int flags, struct timespec *timeout)
2069 {
2070 	int fput_needed, err, datagrams;
2071 	struct socket *sock;
2072 	struct mmsghdr __user *entry;
2073 	struct compat_mmsghdr __user *compat_entry;
2074 	struct msghdr msg_sys;
2075 	struct timespec end_time;
2076 
2077 	if (timeout &&
2078 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2079 				    timeout->tv_nsec))
2080 		return -EINVAL;
2081 
2082 	datagrams = 0;
2083 
2084 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2085 	if (!sock)
2086 		return err;
2087 
2088 	err = sock_error(sock->sk);
2089 	if (err)
2090 		goto out_put;
2091 
2092 	entry = mmsg;
2093 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2094 
2095 	while (datagrams < vlen) {
2096 		/*
2097 		 * No need to ask LSM for more than the first datagram.
2098 		 */
2099 		if (MSG_CMSG_COMPAT & flags) {
2100 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2101 					    &msg_sys, flags, datagrams);
2102 			if (err < 0)
2103 				break;
2104 			err = __put_user(err, &compat_entry->msg_len);
2105 			++compat_entry;
2106 		} else {
2107 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2108 					    &msg_sys, flags, datagrams);
2109 			if (err < 0)
2110 				break;
2111 			err = put_user(err, &entry->msg_len);
2112 			++entry;
2113 		}
2114 
2115 		if (err)
2116 			break;
2117 		++datagrams;
2118 
2119 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2120 		if (flags & MSG_WAITFORONE)
2121 			flags |= MSG_DONTWAIT;
2122 
2123 		if (timeout) {
2124 			ktime_get_ts(timeout);
2125 			*timeout = timespec_sub(end_time, *timeout);
2126 			if (timeout->tv_sec < 0) {
2127 				timeout->tv_sec = timeout->tv_nsec = 0;
2128 				break;
2129 			}
2130 
2131 			/* Timeout, return less than vlen datagrams */
2132 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2133 				break;
2134 		}
2135 
2136 		/* Out of band data, return right away */
2137 		if (msg_sys.msg_flags & MSG_OOB)
2138 			break;
2139 	}
2140 
2141 out_put:
2142 	fput_light(sock->file, fput_needed);
2143 
2144 	if (err == 0)
2145 		return datagrams;
2146 
2147 	if (datagrams != 0) {
2148 		/*
2149 		 * We may return less entries than requested (vlen) if the
2150 		 * sock is non block and there aren't enough datagrams...
2151 		 */
2152 		if (err != -EAGAIN) {
2153 			/*
2154 			 * ... or  if recvmsg returns an error after we
2155 			 * received some datagrams, where we record the
2156 			 * error to return on the next call or if the
2157 			 * app asks about it using getsockopt(SO_ERROR).
2158 			 */
2159 			sock->sk->sk_err = -err;
2160 		}
2161 
2162 		return datagrams;
2163 	}
2164 
2165 	return err;
2166 }
2167 
2168 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2169 		unsigned int, vlen, unsigned int, flags,
2170 		struct timespec __user *, timeout)
2171 {
2172 	int datagrams;
2173 	struct timespec timeout_sys;
2174 
2175 	if (!timeout)
2176 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2177 
2178 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2179 		return -EFAULT;
2180 
2181 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2182 
2183 	if (datagrams > 0 &&
2184 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2185 		datagrams = -EFAULT;
2186 
2187 	return datagrams;
2188 }
2189 
2190 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2191 /* Argument list sizes for sys_socketcall */
2192 #define AL(x) ((x) * sizeof(unsigned long))
2193 static const unsigned char nargs[20] = {
2194 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2195 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2196 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2197 	AL(4),AL(5)
2198 };
2199 
2200 #undef AL
2201 
2202 /*
2203  *	System call vectors.
2204  *
2205  *	Argument checking cleaned up. Saved 20% in size.
2206  *  This function doesn't need to set the kernel lock because
2207  *  it is set by the callees.
2208  */
2209 
2210 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2211 {
2212 	unsigned long a[6];
2213 	unsigned long a0, a1;
2214 	int err;
2215 	unsigned int len;
2216 
2217 	if (call < 1 || call > SYS_RECVMMSG)
2218 		return -EINVAL;
2219 
2220 	len = nargs[call];
2221 	if (len > sizeof(a))
2222 		return -EINVAL;
2223 
2224 	/* copy_from_user should be SMP safe. */
2225 	if (copy_from_user(a, args, len))
2226 		return -EFAULT;
2227 
2228 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2229 
2230 	a0 = a[0];
2231 	a1 = a[1];
2232 
2233 	switch (call) {
2234 	case SYS_SOCKET:
2235 		err = sys_socket(a0, a1, a[2]);
2236 		break;
2237 	case SYS_BIND:
2238 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2239 		break;
2240 	case SYS_CONNECT:
2241 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2242 		break;
2243 	case SYS_LISTEN:
2244 		err = sys_listen(a0, a1);
2245 		break;
2246 	case SYS_ACCEPT:
2247 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2248 				  (int __user *)a[2], 0);
2249 		break;
2250 	case SYS_GETSOCKNAME:
2251 		err =
2252 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2253 				    (int __user *)a[2]);
2254 		break;
2255 	case SYS_GETPEERNAME:
2256 		err =
2257 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2258 				    (int __user *)a[2]);
2259 		break;
2260 	case SYS_SOCKETPAIR:
2261 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2262 		break;
2263 	case SYS_SEND:
2264 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2265 		break;
2266 	case SYS_SENDTO:
2267 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2268 				 (struct sockaddr __user *)a[4], a[5]);
2269 		break;
2270 	case SYS_RECV:
2271 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2272 		break;
2273 	case SYS_RECVFROM:
2274 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2275 				   (struct sockaddr __user *)a[4],
2276 				   (int __user *)a[5]);
2277 		break;
2278 	case SYS_SHUTDOWN:
2279 		err = sys_shutdown(a0, a1);
2280 		break;
2281 	case SYS_SETSOCKOPT:
2282 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2283 		break;
2284 	case SYS_GETSOCKOPT:
2285 		err =
2286 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2287 				   (int __user *)a[4]);
2288 		break;
2289 	case SYS_SENDMSG:
2290 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2291 		break;
2292 	case SYS_RECVMSG:
2293 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2294 		break;
2295 	case SYS_RECVMMSG:
2296 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2297 				   (struct timespec __user *)a[4]);
2298 		break;
2299 	case SYS_ACCEPT4:
2300 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2301 				  (int __user *)a[2], a[3]);
2302 		break;
2303 	default:
2304 		err = -EINVAL;
2305 		break;
2306 	}
2307 	return err;
2308 }
2309 
2310 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2311 
2312 /**
2313  *	sock_register - add a socket protocol handler
2314  *	@ops: description of protocol
2315  *
2316  *	This function is called by a protocol handler that wants to
2317  *	advertise its address family, and have it linked into the
2318  *	socket interface. The value ops->family coresponds to the
2319  *	socket system call protocol family.
2320  */
2321 int sock_register(const struct net_proto_family *ops)
2322 {
2323 	int err;
2324 
2325 	if (ops->family >= NPROTO) {
2326 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2327 		       NPROTO);
2328 		return -ENOBUFS;
2329 	}
2330 
2331 	spin_lock(&net_family_lock);
2332 	if (net_families[ops->family])
2333 		err = -EEXIST;
2334 	else {
2335 		net_families[ops->family] = ops;
2336 		err = 0;
2337 	}
2338 	spin_unlock(&net_family_lock);
2339 
2340 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2341 	return err;
2342 }
2343 
2344 /**
2345  *	sock_unregister - remove a protocol handler
2346  *	@family: protocol family to remove
2347  *
2348  *	This function is called by a protocol handler that wants to
2349  *	remove its address family, and have it unlinked from the
2350  *	new socket creation.
2351  *
2352  *	If protocol handler is a module, then it can use module reference
2353  *	counts to protect against new references. If protocol handler is not
2354  *	a module then it needs to provide its own protection in
2355  *	the ops->create routine.
2356  */
2357 void sock_unregister(int family)
2358 {
2359 	BUG_ON(family < 0 || family >= NPROTO);
2360 
2361 	spin_lock(&net_family_lock);
2362 	net_families[family] = NULL;
2363 	spin_unlock(&net_family_lock);
2364 
2365 	synchronize_rcu();
2366 
2367 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2368 }
2369 
2370 static int __init sock_init(void)
2371 {
2372 	/*
2373 	 *      Initialize sock SLAB cache.
2374 	 */
2375 
2376 	sk_init();
2377 
2378 	/*
2379 	 *      Initialize skbuff SLAB cache
2380 	 */
2381 	skb_init();
2382 
2383 	/*
2384 	 *      Initialize the protocols module.
2385 	 */
2386 
2387 	init_inodecache();
2388 	register_filesystem(&sock_fs_type);
2389 	sock_mnt = kern_mount(&sock_fs_type);
2390 
2391 	/* The real protocol initialization is performed in later initcalls.
2392 	 */
2393 
2394 #ifdef CONFIG_NETFILTER
2395 	netfilter_init();
2396 #endif
2397 
2398 	return 0;
2399 }
2400 
2401 core_initcall(sock_init);	/* early initcall */
2402 
2403 #ifdef CONFIG_PROC_FS
2404 void socket_seq_show(struct seq_file *seq)
2405 {
2406 	int cpu;
2407 	int counter = 0;
2408 
2409 	for_each_possible_cpu(cpu)
2410 	    counter += per_cpu(sockets_in_use, cpu);
2411 
2412 	/* It can be negative, by the way. 8) */
2413 	if (counter < 0)
2414 		counter = 0;
2415 
2416 	seq_printf(seq, "sockets: used %d\n", counter);
2417 }
2418 #endif				/* CONFIG_PROC_FS */
2419 
2420 #ifdef CONFIG_COMPAT
2421 static int do_siocgstamp(struct net *net, struct socket *sock,
2422 			 unsigned int cmd, struct compat_timeval __user *up)
2423 {
2424 	mm_segment_t old_fs = get_fs();
2425 	struct timeval ktv;
2426 	int err;
2427 
2428 	set_fs(KERNEL_DS);
2429 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2430 	set_fs(old_fs);
2431 	if (!err) {
2432 		err = put_user(ktv.tv_sec, &up->tv_sec);
2433 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2434 	}
2435 	return err;
2436 }
2437 
2438 static int do_siocgstampns(struct net *net, struct socket *sock,
2439 			 unsigned int cmd, struct compat_timespec __user *up)
2440 {
2441 	mm_segment_t old_fs = get_fs();
2442 	struct timespec kts;
2443 	int err;
2444 
2445 	set_fs(KERNEL_DS);
2446 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2447 	set_fs(old_fs);
2448 	if (!err) {
2449 		err = put_user(kts.tv_sec, &up->tv_sec);
2450 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2451 	}
2452 	return err;
2453 }
2454 
2455 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2456 {
2457 	struct ifreq __user *uifr;
2458 	int err;
2459 
2460 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2461 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2462 		return -EFAULT;
2463 
2464 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2465 	if (err)
2466 		return err;
2467 
2468 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2469 		return -EFAULT;
2470 
2471 	return 0;
2472 }
2473 
2474 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2475 {
2476 	struct compat_ifconf ifc32;
2477 	struct ifconf ifc;
2478 	struct ifconf __user *uifc;
2479 	struct compat_ifreq __user *ifr32;
2480 	struct ifreq __user *ifr;
2481 	unsigned int i, j;
2482 	int err;
2483 
2484 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2485 		return -EFAULT;
2486 
2487 	if (ifc32.ifcbuf == 0) {
2488 		ifc32.ifc_len = 0;
2489 		ifc.ifc_len = 0;
2490 		ifc.ifc_req = NULL;
2491 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2492 	} else {
2493 		size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2494 			sizeof (struct ifreq);
2495 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2496 		ifc.ifc_len = len;
2497 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2498 		ifr32 = compat_ptr(ifc32.ifcbuf);
2499 		for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2500 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2501 				return -EFAULT;
2502 			ifr++;
2503 			ifr32++;
2504 		}
2505 	}
2506 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2507 		return -EFAULT;
2508 
2509 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2510 	if (err)
2511 		return err;
2512 
2513 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2514 		return -EFAULT;
2515 
2516 	ifr = ifc.ifc_req;
2517 	ifr32 = compat_ptr(ifc32.ifcbuf);
2518 	for (i = 0, j = 0;
2519              i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2520 	     i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2521 		if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2522 			return -EFAULT;
2523 		ifr32++;
2524 		ifr++;
2525 	}
2526 
2527 	if (ifc32.ifcbuf == 0) {
2528 		/* Translate from 64-bit structure multiple to
2529 		 * a 32-bit one.
2530 		 */
2531 		i = ifc.ifc_len;
2532 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2533 		ifc32.ifc_len = i;
2534 	} else {
2535 		ifc32.ifc_len = i;
2536 	}
2537 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2538 		return -EFAULT;
2539 
2540 	return 0;
2541 }
2542 
2543 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2544 {
2545 	struct ifreq __user *ifr;
2546 	u32 data;
2547 	void __user *datap;
2548 
2549 	ifr = compat_alloc_user_space(sizeof(*ifr));
2550 
2551 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2552 		return -EFAULT;
2553 
2554 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2555 		return -EFAULT;
2556 
2557 	datap = compat_ptr(data);
2558 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2559 		return -EFAULT;
2560 
2561 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2562 }
2563 
2564 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2565 {
2566 	void __user *uptr;
2567 	compat_uptr_t uptr32;
2568 	struct ifreq __user *uifr;
2569 
2570 	uifr = compat_alloc_user_space(sizeof (*uifr));
2571 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2572 		return -EFAULT;
2573 
2574 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2575 		return -EFAULT;
2576 
2577 	uptr = compat_ptr(uptr32);
2578 
2579 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2580 		return -EFAULT;
2581 
2582 	return dev_ioctl(net, SIOCWANDEV, uifr);
2583 }
2584 
2585 static int bond_ioctl(struct net *net, unsigned int cmd,
2586 			 struct compat_ifreq __user *ifr32)
2587 {
2588 	struct ifreq kifr;
2589 	struct ifreq __user *uifr;
2590 	mm_segment_t old_fs;
2591 	int err;
2592 	u32 data;
2593 	void __user *datap;
2594 
2595 	switch (cmd) {
2596 	case SIOCBONDENSLAVE:
2597 	case SIOCBONDRELEASE:
2598 	case SIOCBONDSETHWADDR:
2599 	case SIOCBONDCHANGEACTIVE:
2600 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2601 			return -EFAULT;
2602 
2603 		old_fs = get_fs();
2604 		set_fs (KERNEL_DS);
2605 		err = dev_ioctl(net, cmd, &kifr);
2606 		set_fs (old_fs);
2607 
2608 		return err;
2609 	case SIOCBONDSLAVEINFOQUERY:
2610 	case SIOCBONDINFOQUERY:
2611 		uifr = compat_alloc_user_space(sizeof(*uifr));
2612 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2613 			return -EFAULT;
2614 
2615 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2616 			return -EFAULT;
2617 
2618 		datap = compat_ptr(data);
2619 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2620 			return -EFAULT;
2621 
2622 		return dev_ioctl(net, cmd, uifr);
2623 	default:
2624 		return -EINVAL;
2625 	}
2626 }
2627 
2628 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2629 				 struct compat_ifreq __user *u_ifreq32)
2630 {
2631 	struct ifreq __user *u_ifreq64;
2632 	char tmp_buf[IFNAMSIZ];
2633 	void __user *data64;
2634 	u32 data32;
2635 
2636 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2637 			   IFNAMSIZ))
2638 		return -EFAULT;
2639 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2640 		return -EFAULT;
2641 	data64 = compat_ptr(data32);
2642 
2643 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2644 
2645 	/* Don't check these user accesses, just let that get trapped
2646 	 * in the ioctl handler instead.
2647 	 */
2648 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2649 			 IFNAMSIZ))
2650 		return -EFAULT;
2651 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2652 		return -EFAULT;
2653 
2654 	return dev_ioctl(net, cmd, u_ifreq64);
2655 }
2656 
2657 static int dev_ifsioc(struct net *net, struct socket *sock,
2658 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2659 {
2660 	struct ifreq __user *uifr;
2661 	int err;
2662 
2663 	uifr = compat_alloc_user_space(sizeof(*uifr));
2664 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2665 		return -EFAULT;
2666 
2667 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2668 
2669 	if (!err) {
2670 		switch (cmd) {
2671 		case SIOCGIFFLAGS:
2672 		case SIOCGIFMETRIC:
2673 		case SIOCGIFMTU:
2674 		case SIOCGIFMEM:
2675 		case SIOCGIFHWADDR:
2676 		case SIOCGIFINDEX:
2677 		case SIOCGIFADDR:
2678 		case SIOCGIFBRDADDR:
2679 		case SIOCGIFDSTADDR:
2680 		case SIOCGIFNETMASK:
2681 		case SIOCGIFPFLAGS:
2682 		case SIOCGIFTXQLEN:
2683 		case SIOCGMIIPHY:
2684 		case SIOCGMIIREG:
2685 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2686 				err = -EFAULT;
2687 			break;
2688 		}
2689 	}
2690 	return err;
2691 }
2692 
2693 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2694 			struct compat_ifreq __user *uifr32)
2695 {
2696 	struct ifreq ifr;
2697 	struct compat_ifmap __user *uifmap32;
2698 	mm_segment_t old_fs;
2699 	int err;
2700 
2701 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2702 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2703 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2704 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2705 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2706 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2707 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2708 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2709 	if (err)
2710 		return -EFAULT;
2711 
2712 	old_fs = get_fs();
2713 	set_fs (KERNEL_DS);
2714 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2715 	set_fs (old_fs);
2716 
2717 	if (cmd == SIOCGIFMAP && !err) {
2718 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2719 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2720 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2721 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2722 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2723 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2724 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2725 		if (err)
2726 			err = -EFAULT;
2727 	}
2728 	return err;
2729 }
2730 
2731 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2732 {
2733 	void __user *uptr;
2734 	compat_uptr_t uptr32;
2735 	struct ifreq __user *uifr;
2736 
2737 	uifr = compat_alloc_user_space(sizeof (*uifr));
2738 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2739 		return -EFAULT;
2740 
2741 	if (get_user(uptr32, &uifr32->ifr_data))
2742 		return -EFAULT;
2743 
2744 	uptr = compat_ptr(uptr32);
2745 
2746 	if (put_user(uptr, &uifr->ifr_data))
2747 		return -EFAULT;
2748 
2749 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2750 }
2751 
2752 struct rtentry32 {
2753 	u32   		rt_pad1;
2754 	struct sockaddr rt_dst;         /* target address               */
2755 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2756 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2757 	unsigned short  rt_flags;
2758 	short           rt_pad2;
2759 	u32   		rt_pad3;
2760 	unsigned char   rt_tos;
2761 	unsigned char   rt_class;
2762 	short           rt_pad4;
2763 	short           rt_metric;      /* +1 for binary compatibility! */
2764 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2765 	u32   		rt_mtu;         /* per route MTU/Window         */
2766 	u32   		rt_window;      /* Window clamping              */
2767 	unsigned short  rt_irtt;        /* Initial RTT                  */
2768 };
2769 
2770 struct in6_rtmsg32 {
2771 	struct in6_addr		rtmsg_dst;
2772 	struct in6_addr		rtmsg_src;
2773 	struct in6_addr		rtmsg_gateway;
2774 	u32			rtmsg_type;
2775 	u16			rtmsg_dst_len;
2776 	u16			rtmsg_src_len;
2777 	u32			rtmsg_metric;
2778 	u32			rtmsg_info;
2779 	u32			rtmsg_flags;
2780 	s32			rtmsg_ifindex;
2781 };
2782 
2783 static int routing_ioctl(struct net *net, struct socket *sock,
2784 			 unsigned int cmd, void __user *argp)
2785 {
2786 	int ret;
2787 	void *r = NULL;
2788 	struct in6_rtmsg r6;
2789 	struct rtentry r4;
2790 	char devname[16];
2791 	u32 rtdev;
2792 	mm_segment_t old_fs = get_fs();
2793 
2794 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2795 		struct in6_rtmsg32 __user *ur6 = argp;
2796 		ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2797 			3 * sizeof(struct in6_addr));
2798 		ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2799 		ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2800 		ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2801 		ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2802 		ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2803 		ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2804 		ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2805 
2806 		r = (void *) &r6;
2807 	} else { /* ipv4 */
2808 		struct rtentry32 __user *ur4 = argp;
2809 		ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2810 					3 * sizeof(struct sockaddr));
2811 		ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2812 		ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2813 		ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2814 		ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2815 		ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2816 		ret |= __get_user (rtdev, &(ur4->rt_dev));
2817 		if (rtdev) {
2818 			ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2819 			r4.rt_dev = devname; devname[15] = 0;
2820 		} else
2821 			r4.rt_dev = NULL;
2822 
2823 		r = (void *) &r4;
2824 	}
2825 
2826 	if (ret) {
2827 		ret = -EFAULT;
2828 		goto out;
2829 	}
2830 
2831 	set_fs (KERNEL_DS);
2832 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2833 	set_fs (old_fs);
2834 
2835 out:
2836 	return ret;
2837 }
2838 
2839 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2840  * for some operations; this forces use of the newer bridge-utils that
2841  * use compatiable ioctls
2842  */
2843 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2844 {
2845 	compat_ulong_t tmp;
2846 
2847 	if (get_user(tmp, argp))
2848 		return -EFAULT;
2849 	if (tmp == BRCTL_GET_VERSION)
2850 		return BRCTL_VERSION + 1;
2851 	return -EINVAL;
2852 }
2853 
2854 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2855 			 unsigned int cmd, unsigned long arg)
2856 {
2857 	void __user *argp = compat_ptr(arg);
2858 	struct sock *sk = sock->sk;
2859 	struct net *net = sock_net(sk);
2860 
2861 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2862 		return siocdevprivate_ioctl(net, cmd, argp);
2863 
2864 	switch (cmd) {
2865 	case SIOCSIFBR:
2866 	case SIOCGIFBR:
2867 		return old_bridge_ioctl(argp);
2868 	case SIOCGIFNAME:
2869 		return dev_ifname32(net, argp);
2870 	case SIOCGIFCONF:
2871 		return dev_ifconf(net, argp);
2872 	case SIOCETHTOOL:
2873 		return ethtool_ioctl(net, argp);
2874 	case SIOCWANDEV:
2875 		return compat_siocwandev(net, argp);
2876 	case SIOCGIFMAP:
2877 	case SIOCSIFMAP:
2878 		return compat_sioc_ifmap(net, cmd, argp);
2879 	case SIOCBONDENSLAVE:
2880 	case SIOCBONDRELEASE:
2881 	case SIOCBONDSETHWADDR:
2882 	case SIOCBONDSLAVEINFOQUERY:
2883 	case SIOCBONDINFOQUERY:
2884 	case SIOCBONDCHANGEACTIVE:
2885 		return bond_ioctl(net, cmd, argp);
2886 	case SIOCADDRT:
2887 	case SIOCDELRT:
2888 		return routing_ioctl(net, sock, cmd, argp);
2889 	case SIOCGSTAMP:
2890 		return do_siocgstamp(net, sock, cmd, argp);
2891 	case SIOCGSTAMPNS:
2892 		return do_siocgstampns(net, sock, cmd, argp);
2893 	case SIOCSHWTSTAMP:
2894 		return compat_siocshwtstamp(net, argp);
2895 
2896 	case FIOSETOWN:
2897 	case SIOCSPGRP:
2898 	case FIOGETOWN:
2899 	case SIOCGPGRP:
2900 	case SIOCBRADDBR:
2901 	case SIOCBRDELBR:
2902 	case SIOCGIFVLAN:
2903 	case SIOCSIFVLAN:
2904 	case SIOCADDDLCI:
2905 	case SIOCDELDLCI:
2906 		return sock_ioctl(file, cmd, arg);
2907 
2908 	case SIOCGIFFLAGS:
2909 	case SIOCSIFFLAGS:
2910 	case SIOCGIFMETRIC:
2911 	case SIOCSIFMETRIC:
2912 	case SIOCGIFMTU:
2913 	case SIOCSIFMTU:
2914 	case SIOCGIFMEM:
2915 	case SIOCSIFMEM:
2916 	case SIOCGIFHWADDR:
2917 	case SIOCSIFHWADDR:
2918 	case SIOCADDMULTI:
2919 	case SIOCDELMULTI:
2920 	case SIOCGIFINDEX:
2921 	case SIOCGIFADDR:
2922 	case SIOCSIFADDR:
2923 	case SIOCSIFHWBROADCAST:
2924 	case SIOCDIFADDR:
2925 	case SIOCGIFBRDADDR:
2926 	case SIOCSIFBRDADDR:
2927 	case SIOCGIFDSTADDR:
2928 	case SIOCSIFDSTADDR:
2929 	case SIOCGIFNETMASK:
2930 	case SIOCSIFNETMASK:
2931 	case SIOCSIFPFLAGS:
2932 	case SIOCGIFPFLAGS:
2933 	case SIOCGIFTXQLEN:
2934 	case SIOCSIFTXQLEN:
2935 	case SIOCBRADDIF:
2936 	case SIOCBRDELIF:
2937 	case SIOCSIFNAME:
2938 	case SIOCGMIIPHY:
2939 	case SIOCGMIIREG:
2940 	case SIOCSMIIREG:
2941 		return dev_ifsioc(net, sock, cmd, argp);
2942 
2943 	case SIOCSARP:
2944 	case SIOCGARP:
2945 	case SIOCDARP:
2946 	case SIOCATMARK:
2947 		return sock_do_ioctl(net, sock, cmd, arg);
2948 	}
2949 
2950 	/* Prevent warning from compat_sys_ioctl, these always
2951 	 * result in -EINVAL in the native case anyway. */
2952 	switch (cmd) {
2953 	case SIOCRTMSG:
2954 	case SIOCGIFCOUNT:
2955 	case SIOCSRARP:
2956 	case SIOCGRARP:
2957 	case SIOCDRARP:
2958 	case SIOCSIFLINK:
2959 	case SIOCGIFSLAVE:
2960 	case SIOCSIFSLAVE:
2961 		return -EINVAL;
2962 	}
2963 
2964 	return -ENOIOCTLCMD;
2965 }
2966 
2967 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2968 			      unsigned long arg)
2969 {
2970 	struct socket *sock = file->private_data;
2971 	int ret = -ENOIOCTLCMD;
2972 	struct sock *sk;
2973 	struct net *net;
2974 
2975 	sk = sock->sk;
2976 	net = sock_net(sk);
2977 
2978 	if (sock->ops->compat_ioctl)
2979 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2980 
2981 	if (ret == -ENOIOCTLCMD &&
2982 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2983 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2984 
2985 	if (ret == -ENOIOCTLCMD)
2986 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2987 
2988 	return ret;
2989 }
2990 #endif
2991 
2992 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2993 {
2994 	return sock->ops->bind(sock, addr, addrlen);
2995 }
2996 
2997 int kernel_listen(struct socket *sock, int backlog)
2998 {
2999 	return sock->ops->listen(sock, backlog);
3000 }
3001 
3002 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3003 {
3004 	struct sock *sk = sock->sk;
3005 	int err;
3006 
3007 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3008 			       newsock);
3009 	if (err < 0)
3010 		goto done;
3011 
3012 	err = sock->ops->accept(sock, *newsock, flags);
3013 	if (err < 0) {
3014 		sock_release(*newsock);
3015 		*newsock = NULL;
3016 		goto done;
3017 	}
3018 
3019 	(*newsock)->ops = sock->ops;
3020 	__module_get((*newsock)->ops->owner);
3021 
3022 done:
3023 	return err;
3024 }
3025 
3026 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3027 		   int flags)
3028 {
3029 	return sock->ops->connect(sock, addr, addrlen, flags);
3030 }
3031 
3032 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3033 			 int *addrlen)
3034 {
3035 	return sock->ops->getname(sock, addr, addrlen, 0);
3036 }
3037 
3038 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3039 			 int *addrlen)
3040 {
3041 	return sock->ops->getname(sock, addr, addrlen, 1);
3042 }
3043 
3044 int kernel_getsockopt(struct socket *sock, int level, int optname,
3045 			char *optval, int *optlen)
3046 {
3047 	mm_segment_t oldfs = get_fs();
3048 	int err;
3049 
3050 	set_fs(KERNEL_DS);
3051 	if (level == SOL_SOCKET)
3052 		err = sock_getsockopt(sock, level, optname, optval, optlen);
3053 	else
3054 		err = sock->ops->getsockopt(sock, level, optname, optval,
3055 					    optlen);
3056 	set_fs(oldfs);
3057 	return err;
3058 }
3059 
3060 int kernel_setsockopt(struct socket *sock, int level, int optname,
3061 			char *optval, unsigned int optlen)
3062 {
3063 	mm_segment_t oldfs = get_fs();
3064 	int err;
3065 
3066 	set_fs(KERNEL_DS);
3067 	if (level == SOL_SOCKET)
3068 		err = sock_setsockopt(sock, level, optname, optval, optlen);
3069 	else
3070 		err = sock->ops->setsockopt(sock, level, optname, optval,
3071 					    optlen);
3072 	set_fs(oldfs);
3073 	return err;
3074 }
3075 
3076 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3077 		    size_t size, int flags)
3078 {
3079 	sock_update_classid(sock->sk);
3080 
3081 	if (sock->ops->sendpage)
3082 		return sock->ops->sendpage(sock, page, offset, size, flags);
3083 
3084 	return sock_no_sendpage(sock, page, offset, size, flags);
3085 }
3086 
3087 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3088 {
3089 	mm_segment_t oldfs = get_fs();
3090 	int err;
3091 
3092 	set_fs(KERNEL_DS);
3093 	err = sock->ops->ioctl(sock, cmd, arg);
3094 	set_fs(oldfs);
3095 
3096 	return err;
3097 }
3098 
3099 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3100 {
3101 	return sock->ops->shutdown(sock, how);
3102 }
3103 
3104 EXPORT_SYMBOL(sock_create);
3105 EXPORT_SYMBOL(sock_create_kern);
3106 EXPORT_SYMBOL(sock_create_lite);
3107 EXPORT_SYMBOL(sock_map_fd);
3108 EXPORT_SYMBOL(sock_recvmsg);
3109 EXPORT_SYMBOL(sock_register);
3110 EXPORT_SYMBOL(sock_release);
3111 EXPORT_SYMBOL(sock_sendmsg);
3112 EXPORT_SYMBOL(sock_unregister);
3113 EXPORT_SYMBOL(sock_wake_async);
3114 EXPORT_SYMBOL(sockfd_lookup);
3115 EXPORT_SYMBOL(kernel_sendmsg);
3116 EXPORT_SYMBOL(kernel_recvmsg);
3117 EXPORT_SYMBOL(kernel_bind);
3118 EXPORT_SYMBOL(kernel_listen);
3119 EXPORT_SYMBOL(kernel_accept);
3120 EXPORT_SYMBOL(kernel_connect);
3121 EXPORT_SYMBOL(kernel_getsockname);
3122 EXPORT_SYMBOL(kernel_getpeername);
3123 EXPORT_SYMBOL(kernel_getsockopt);
3124 EXPORT_SYMBOL(kernel_setsockopt);
3125 EXPORT_SYMBOL(kernel_sendpage);
3126 EXPORT_SYMBOL(kernel_sock_ioctl);
3127 EXPORT_SYMBOL(kernel_sock_shutdown);
3128