xref: /openbmc/linux/net/socket.c (revision 5bd8e16d)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
108 
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113 
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 			 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 			  unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.aio_read =	sock_aio_read,
145 	.aio_write =	sock_aio_write,
146 	.poll =		sock_poll,
147 	.unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 	.compat_ioctl = compat_sock_ioctl,
150 #endif
151 	.mmap =		sock_mmap,
152 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	err = get_user(len, ulen);
225 	if (err)
226 		return err;
227 	if (len > klen)
228 		len = klen;
229 	if (len < 0 || len > sizeof(struct sockaddr_storage))
230 		return -EINVAL;
231 	if (len) {
232 		if (audit_sockaddr(klen, kaddr))
233 			return -ENOMEM;
234 		if (copy_to_user(uaddr, kaddr, len))
235 			return -EFAULT;
236 	}
237 	/*
238 	 *      "fromlen shall refer to the value before truncation.."
239 	 *                      1003.1g
240 	 */
241 	return __put_user(klen, ulen);
242 }
243 
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 
246 static struct inode *sock_alloc_inode(struct super_block *sb)
247 {
248 	struct socket_alloc *ei;
249 	struct socket_wq *wq;
250 
251 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 	if (!ei)
253 		return NULL;
254 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 	if (!wq) {
256 		kmem_cache_free(sock_inode_cachep, ei);
257 		return NULL;
258 	}
259 	init_waitqueue_head(&wq->wait);
260 	wq->fasync_list = NULL;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD),
298 					      init_once);
299 	if (sock_inode_cachep == NULL)
300 		return -ENOMEM;
301 	return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305 	.alloc_inode	= sock_alloc_inode,
306 	.destroy_inode	= sock_destroy_inode,
307 	.statfs		= simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 				dentry->d_inode->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320 	.d_dname  = sockfs_dname,
321 };
322 
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 			 int flags, const char *dev_name, void *data)
325 {
326 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 		&sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329 
330 static struct vfsmount *sock_mnt __read_mostly;
331 
332 static struct file_system_type sock_fs_type = {
333 	.name =		"sockfs",
334 	.mount =	sockfs_mount,
335 	.kill_sb =	kill_anon_super,
336 };
337 
338 /*
339  *	Obtains the first available file descriptor and sets it up for use.
340  *
341  *	These functions create file structures and maps them to fd space
342  *	of the current process. On success it returns file descriptor
343  *	and file struct implicitly stored in sock->file.
344  *	Note that another thread may close file descriptor before we return
345  *	from this function. We use the fact that now we do not refer
346  *	to socket after mapping. If one day we will need it, this
347  *	function will increment ref. count on file by 1.
348  *
349  *	In any case returned fd MAY BE not valid!
350  *	This race condition is unavoidable
351  *	with shared fd spaces, we cannot solve it inside kernel,
352  *	but we take care of internal coherence yet.
353  */
354 
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 	struct qstr name = { .name = "" };
358 	struct path path;
359 	struct file *file;
360 
361 	if (dname) {
362 		name.name = dname;
363 		name.len = strlen(name.name);
364 	} else if (sock->sk) {
365 		name.name = sock->sk->sk_prot_creator->name;
366 		name.len = strlen(name.name);
367 	}
368 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 	if (unlikely(!path.dentry))
370 		return ERR_PTR(-ENOMEM);
371 	path.mnt = mntget(sock_mnt);
372 
373 	d_instantiate(path.dentry, SOCK_INODE(sock));
374 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(IS_ERR(file))) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct file *file;
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	file = fget_light(fd, fput_needed);
457 	if (file) {
458 		sock = sock_from_file(file, err);
459 		if (sock)
460 			return sock;
461 		fput_light(file, *fput_needed);
462 	}
463 	return NULL;
464 }
465 
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 			       const char *name, void *value, size_t size)
471 {
472 	const char *proto_name;
473 	size_t proto_size;
474 	int error;
475 
476 	error = -ENODATA;
477 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 		proto_name = dentry->d_name.name;
479 		proto_size = strlen(proto_name);
480 
481 		if (value) {
482 			error = -ERANGE;
483 			if (proto_size + 1 > size)
484 				goto out;
485 
486 			strncpy(value, proto_name, proto_size + 1);
487 		}
488 		error = proto_size + 1;
489 	}
490 
491 out:
492 	return error;
493 }
494 
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 				size_t size)
497 {
498 	ssize_t len;
499 	ssize_t used = 0;
500 
501 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
502 	if (len < 0)
503 		return len;
504 	used += len;
505 	if (buffer) {
506 		if (size < used)
507 			return -ERANGE;
508 		buffer += len;
509 	}
510 
511 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 	used += len;
513 	if (buffer) {
514 		if (size < used)
515 			return -ERANGE;
516 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 		buffer += len;
518 	}
519 
520 	return used;
521 }
522 
523 static const struct inode_operations sockfs_inode_ops = {
524 	.getxattr = sockfs_getxattr,
525 	.listxattr = sockfs_listxattr,
526 };
527 
528 /**
529  *	sock_alloc	-	allocate a socket
530  *
531  *	Allocate a new inode and socket object. The two are bound together
532  *	and initialised. The socket is then returned. If we are out of inodes
533  *	NULL is returned.
534  */
535 
536 static struct socket *sock_alloc(void)
537 {
538 	struct inode *inode;
539 	struct socket *sock;
540 
541 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 	if (!inode)
543 		return NULL;
544 
545 	sock = SOCKET_I(inode);
546 
547 	kmemcheck_annotate_bitfield(sock, type);
548 	inode->i_ino = get_next_ino();
549 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 	inode->i_uid = current_fsuid();
551 	inode->i_gid = current_fsgid();
552 	inode->i_op = &sockfs_inode_ops;
553 
554 	this_cpu_add(sockets_in_use, 1);
555 	return sock;
556 }
557 
558 /*
559  *	In theory you can't get an open on this inode, but /proc provides
560  *	a back door. Remember to keep it shut otherwise you'll let the
561  *	creepy crawlies in.
562  */
563 
564 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
565 {
566 	return -ENXIO;
567 }
568 
569 const struct file_operations bad_sock_fops = {
570 	.owner = THIS_MODULE,
571 	.open = sock_no_open,
572 	.llseek = noop_llseek,
573 };
574 
575 /**
576  *	sock_release	-	close a socket
577  *	@sock: socket to close
578  *
579  *	The socket is released from the protocol stack if it has a release
580  *	callback, and the inode is then released if the socket is bound to
581  *	an inode not a file.
582  */
583 
584 void sock_release(struct socket *sock)
585 {
586 	if (sock->ops) {
587 		struct module *owner = sock->ops->owner;
588 
589 		sock->ops->release(sock);
590 		sock->ops = NULL;
591 		module_put(owner);
592 	}
593 
594 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
595 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
596 
597 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
598 		return;
599 
600 	this_cpu_sub(sockets_in_use, 1);
601 	if (!sock->file) {
602 		iput(SOCK_INODE(sock));
603 		return;
604 	}
605 	sock->file = NULL;
606 }
607 EXPORT_SYMBOL(sock_release);
608 
609 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
610 {
611 	*tx_flags = 0;
612 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
613 		*tx_flags |= SKBTX_HW_TSTAMP;
614 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
615 		*tx_flags |= SKBTX_SW_TSTAMP;
616 	if (sock_flag(sk, SOCK_WIFI_STATUS))
617 		*tx_flags |= SKBTX_WIFI_STATUS;
618 }
619 EXPORT_SYMBOL(sock_tx_timestamp);
620 
621 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
622 				       struct msghdr *msg, size_t size)
623 {
624 	struct sock_iocb *si = kiocb_to_siocb(iocb);
625 
626 	si->sock = sock;
627 	si->scm = NULL;
628 	si->msg = msg;
629 	si->size = size;
630 
631 	return sock->ops->sendmsg(iocb, sock, msg, size);
632 }
633 
634 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
635 				 struct msghdr *msg, size_t size)
636 {
637 	int err = security_socket_sendmsg(sock, msg, size);
638 
639 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
640 }
641 
642 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
643 {
644 	struct kiocb iocb;
645 	struct sock_iocb siocb;
646 	int ret;
647 
648 	init_sync_kiocb(&iocb, NULL);
649 	iocb.private = &siocb;
650 	ret = __sock_sendmsg(&iocb, sock, msg, size);
651 	if (-EIOCBQUEUED == ret)
652 		ret = wait_on_sync_kiocb(&iocb);
653 	return ret;
654 }
655 EXPORT_SYMBOL(sock_sendmsg);
656 
657 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
658 {
659 	struct kiocb iocb;
660 	struct sock_iocb siocb;
661 	int ret;
662 
663 	init_sync_kiocb(&iocb, NULL);
664 	iocb.private = &siocb;
665 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
666 	if (-EIOCBQUEUED == ret)
667 		ret = wait_on_sync_kiocb(&iocb);
668 	return ret;
669 }
670 
671 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
672 		   struct kvec *vec, size_t num, size_t size)
673 {
674 	mm_segment_t oldfs = get_fs();
675 	int result;
676 
677 	set_fs(KERNEL_DS);
678 	/*
679 	 * the following is safe, since for compiler definitions of kvec and
680 	 * iovec are identical, yielding the same in-core layout and alignment
681 	 */
682 	msg->msg_iov = (struct iovec *)vec;
683 	msg->msg_iovlen = num;
684 	result = sock_sendmsg(sock, msg, size);
685 	set_fs(oldfs);
686 	return result;
687 }
688 EXPORT_SYMBOL(kernel_sendmsg);
689 
690 /*
691  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
692  */
693 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
694 	struct sk_buff *skb)
695 {
696 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
697 	struct timespec ts[3];
698 	int empty = 1;
699 	struct skb_shared_hwtstamps *shhwtstamps =
700 		skb_hwtstamps(skb);
701 
702 	/* Race occurred between timestamp enabling and packet
703 	   receiving.  Fill in the current time for now. */
704 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
705 		__net_timestamp(skb);
706 
707 	if (need_software_tstamp) {
708 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
709 			struct timeval tv;
710 			skb_get_timestamp(skb, &tv);
711 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
712 				 sizeof(tv), &tv);
713 		} else {
714 			skb_get_timestampns(skb, &ts[0]);
715 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
716 				 sizeof(ts[0]), &ts[0]);
717 		}
718 	}
719 
720 
721 	memset(ts, 0, sizeof(ts));
722 	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
723 	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
724 		empty = 0;
725 	if (shhwtstamps) {
726 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
727 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
728 			empty = 0;
729 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
730 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
731 			empty = 0;
732 	}
733 	if (!empty)
734 		put_cmsg(msg, SOL_SOCKET,
735 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
736 }
737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
738 
739 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
740 	struct sk_buff *skb)
741 {
742 	int ack;
743 
744 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
745 		return;
746 	if (!skb->wifi_acked_valid)
747 		return;
748 
749 	ack = skb->wifi_acked;
750 
751 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
752 }
753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
754 
755 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
756 				   struct sk_buff *skb)
757 {
758 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
759 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
760 			sizeof(__u32), &skb->dropcount);
761 }
762 
763 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
764 	struct sk_buff *skb)
765 {
766 	sock_recv_timestamp(msg, sk, skb);
767 	sock_recv_drops(msg, sk, skb);
768 }
769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
770 
771 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
772 				       struct msghdr *msg, size_t size, int flags)
773 {
774 	struct sock_iocb *si = kiocb_to_siocb(iocb);
775 
776 	si->sock = sock;
777 	si->scm = NULL;
778 	si->msg = msg;
779 	si->size = size;
780 	si->flags = flags;
781 
782 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
783 }
784 
785 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
786 				 struct msghdr *msg, size_t size, int flags)
787 {
788 	int err = security_socket_recvmsg(sock, msg, size, flags);
789 
790 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
791 }
792 
793 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
794 		 size_t size, int flags)
795 {
796 	struct kiocb iocb;
797 	struct sock_iocb siocb;
798 	int ret;
799 
800 	init_sync_kiocb(&iocb, NULL);
801 	iocb.private = &siocb;
802 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
803 	if (-EIOCBQUEUED == ret)
804 		ret = wait_on_sync_kiocb(&iocb);
805 	return ret;
806 }
807 EXPORT_SYMBOL(sock_recvmsg);
808 
809 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
810 			      size_t size, int flags)
811 {
812 	struct kiocb iocb;
813 	struct sock_iocb siocb;
814 	int ret;
815 
816 	init_sync_kiocb(&iocb, NULL);
817 	iocb.private = &siocb;
818 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
819 	if (-EIOCBQUEUED == ret)
820 		ret = wait_on_sync_kiocb(&iocb);
821 	return ret;
822 }
823 
824 /**
825  * kernel_recvmsg - Receive a message from a socket (kernel space)
826  * @sock:       The socket to receive the message from
827  * @msg:        Received message
828  * @vec:        Input s/g array for message data
829  * @num:        Size of input s/g array
830  * @size:       Number of bytes to read
831  * @flags:      Message flags (MSG_DONTWAIT, etc...)
832  *
833  * On return the msg structure contains the scatter/gather array passed in the
834  * vec argument. The array is modified so that it consists of the unfilled
835  * portion of the original array.
836  *
837  * The returned value is the total number of bytes received, or an error.
838  */
839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
840 		   struct kvec *vec, size_t num, size_t size, int flags)
841 {
842 	mm_segment_t oldfs = get_fs();
843 	int result;
844 
845 	set_fs(KERNEL_DS);
846 	/*
847 	 * the following is safe, since for compiler definitions of kvec and
848 	 * iovec are identical, yielding the same in-core layout and alignment
849 	 */
850 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
851 	result = sock_recvmsg(sock, msg, size, flags);
852 	set_fs(oldfs);
853 	return result;
854 }
855 EXPORT_SYMBOL(kernel_recvmsg);
856 
857 static ssize_t sock_sendpage(struct file *file, struct page *page,
858 			     int offset, size_t size, loff_t *ppos, int more)
859 {
860 	struct socket *sock;
861 	int flags;
862 
863 	sock = file->private_data;
864 
865 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
867 	flags |= more;
868 
869 	return kernel_sendpage(sock, page, offset, size, flags);
870 }
871 
872 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
873 				struct pipe_inode_info *pipe, size_t len,
874 				unsigned int flags)
875 {
876 	struct socket *sock = file->private_data;
877 
878 	if (unlikely(!sock->ops->splice_read))
879 		return -EINVAL;
880 
881 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
882 }
883 
884 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
885 					 struct sock_iocb *siocb)
886 {
887 	if (!is_sync_kiocb(iocb))
888 		BUG();
889 
890 	siocb->kiocb = iocb;
891 	iocb->private = siocb;
892 	return siocb;
893 }
894 
895 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
896 		struct file *file, const struct iovec *iov,
897 		unsigned long nr_segs)
898 {
899 	struct socket *sock = file->private_data;
900 	size_t size = 0;
901 	int i;
902 
903 	for (i = 0; i < nr_segs; i++)
904 		size += iov[i].iov_len;
905 
906 	msg->msg_name = NULL;
907 	msg->msg_namelen = 0;
908 	msg->msg_control = NULL;
909 	msg->msg_controllen = 0;
910 	msg->msg_iov = (struct iovec *)iov;
911 	msg->msg_iovlen = nr_segs;
912 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
913 
914 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
915 }
916 
917 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
918 				unsigned long nr_segs, loff_t pos)
919 {
920 	struct sock_iocb siocb, *x;
921 
922 	if (pos != 0)
923 		return -ESPIPE;
924 
925 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
926 		return 0;
927 
928 
929 	x = alloc_sock_iocb(iocb, &siocb);
930 	if (!x)
931 		return -ENOMEM;
932 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
933 }
934 
935 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
936 			struct file *file, const struct iovec *iov,
937 			unsigned long nr_segs)
938 {
939 	struct socket *sock = file->private_data;
940 	size_t size = 0;
941 	int i;
942 
943 	for (i = 0; i < nr_segs; i++)
944 		size += iov[i].iov_len;
945 
946 	msg->msg_name = NULL;
947 	msg->msg_namelen = 0;
948 	msg->msg_control = NULL;
949 	msg->msg_controllen = 0;
950 	msg->msg_iov = (struct iovec *)iov;
951 	msg->msg_iovlen = nr_segs;
952 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
953 	if (sock->type == SOCK_SEQPACKET)
954 		msg->msg_flags |= MSG_EOR;
955 
956 	return __sock_sendmsg(iocb, sock, msg, size);
957 }
958 
959 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
960 			  unsigned long nr_segs, loff_t pos)
961 {
962 	struct sock_iocb siocb, *x;
963 
964 	if (pos != 0)
965 		return -ESPIPE;
966 
967 	x = alloc_sock_iocb(iocb, &siocb);
968 	if (!x)
969 		return -ENOMEM;
970 
971 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
972 }
973 
974 /*
975  * Atomic setting of ioctl hooks to avoid race
976  * with module unload.
977  */
978 
979 static DEFINE_MUTEX(br_ioctl_mutex);
980 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
981 
982 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
983 {
984 	mutex_lock(&br_ioctl_mutex);
985 	br_ioctl_hook = hook;
986 	mutex_unlock(&br_ioctl_mutex);
987 }
988 EXPORT_SYMBOL(brioctl_set);
989 
990 static DEFINE_MUTEX(vlan_ioctl_mutex);
991 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
992 
993 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
994 {
995 	mutex_lock(&vlan_ioctl_mutex);
996 	vlan_ioctl_hook = hook;
997 	mutex_unlock(&vlan_ioctl_mutex);
998 }
999 EXPORT_SYMBOL(vlan_ioctl_set);
1000 
1001 static DEFINE_MUTEX(dlci_ioctl_mutex);
1002 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1003 
1004 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1005 {
1006 	mutex_lock(&dlci_ioctl_mutex);
1007 	dlci_ioctl_hook = hook;
1008 	mutex_unlock(&dlci_ioctl_mutex);
1009 }
1010 EXPORT_SYMBOL(dlci_ioctl_set);
1011 
1012 static long sock_do_ioctl(struct net *net, struct socket *sock,
1013 				 unsigned int cmd, unsigned long arg)
1014 {
1015 	int err;
1016 	void __user *argp = (void __user *)arg;
1017 
1018 	err = sock->ops->ioctl(sock, cmd, arg);
1019 
1020 	/*
1021 	 * If this ioctl is unknown try to hand it down
1022 	 * to the NIC driver.
1023 	 */
1024 	if (err == -ENOIOCTLCMD)
1025 		err = dev_ioctl(net, cmd, argp);
1026 
1027 	return err;
1028 }
1029 
1030 /*
1031  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1032  *	what to do with it - that's up to the protocol still.
1033  */
1034 
1035 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1036 {
1037 	struct socket *sock;
1038 	struct sock *sk;
1039 	void __user *argp = (void __user *)arg;
1040 	int pid, err;
1041 	struct net *net;
1042 
1043 	sock = file->private_data;
1044 	sk = sock->sk;
1045 	net = sock_net(sk);
1046 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1047 		err = dev_ioctl(net, cmd, argp);
1048 	} else
1049 #ifdef CONFIG_WEXT_CORE
1050 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1051 		err = dev_ioctl(net, cmd, argp);
1052 	} else
1053 #endif
1054 		switch (cmd) {
1055 		case FIOSETOWN:
1056 		case SIOCSPGRP:
1057 			err = -EFAULT;
1058 			if (get_user(pid, (int __user *)argp))
1059 				break;
1060 			err = f_setown(sock->file, pid, 1);
1061 			break;
1062 		case FIOGETOWN:
1063 		case SIOCGPGRP:
1064 			err = put_user(f_getown(sock->file),
1065 				       (int __user *)argp);
1066 			break;
1067 		case SIOCGIFBR:
1068 		case SIOCSIFBR:
1069 		case SIOCBRADDBR:
1070 		case SIOCBRDELBR:
1071 			err = -ENOPKG;
1072 			if (!br_ioctl_hook)
1073 				request_module("bridge");
1074 
1075 			mutex_lock(&br_ioctl_mutex);
1076 			if (br_ioctl_hook)
1077 				err = br_ioctl_hook(net, cmd, argp);
1078 			mutex_unlock(&br_ioctl_mutex);
1079 			break;
1080 		case SIOCGIFVLAN:
1081 		case SIOCSIFVLAN:
1082 			err = -ENOPKG;
1083 			if (!vlan_ioctl_hook)
1084 				request_module("8021q");
1085 
1086 			mutex_lock(&vlan_ioctl_mutex);
1087 			if (vlan_ioctl_hook)
1088 				err = vlan_ioctl_hook(net, argp);
1089 			mutex_unlock(&vlan_ioctl_mutex);
1090 			break;
1091 		case SIOCADDDLCI:
1092 		case SIOCDELDLCI:
1093 			err = -ENOPKG;
1094 			if (!dlci_ioctl_hook)
1095 				request_module("dlci");
1096 
1097 			mutex_lock(&dlci_ioctl_mutex);
1098 			if (dlci_ioctl_hook)
1099 				err = dlci_ioctl_hook(cmd, argp);
1100 			mutex_unlock(&dlci_ioctl_mutex);
1101 			break;
1102 		default:
1103 			err = sock_do_ioctl(net, sock, cmd, arg);
1104 			break;
1105 		}
1106 	return err;
1107 }
1108 
1109 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1110 {
1111 	int err;
1112 	struct socket *sock = NULL;
1113 
1114 	err = security_socket_create(family, type, protocol, 1);
1115 	if (err)
1116 		goto out;
1117 
1118 	sock = sock_alloc();
1119 	if (!sock) {
1120 		err = -ENOMEM;
1121 		goto out;
1122 	}
1123 
1124 	sock->type = type;
1125 	err = security_socket_post_create(sock, family, type, protocol, 1);
1126 	if (err)
1127 		goto out_release;
1128 
1129 out:
1130 	*res = sock;
1131 	return err;
1132 out_release:
1133 	sock_release(sock);
1134 	sock = NULL;
1135 	goto out;
1136 }
1137 EXPORT_SYMBOL(sock_create_lite);
1138 
1139 /* No kernel lock held - perfect */
1140 static unsigned int sock_poll(struct file *file, poll_table *wait)
1141 {
1142 	unsigned int busy_flag = 0;
1143 	struct socket *sock;
1144 
1145 	/*
1146 	 *      We can't return errors to poll, so it's either yes or no.
1147 	 */
1148 	sock = file->private_data;
1149 
1150 	if (sk_can_busy_loop(sock->sk)) {
1151 		/* this socket can poll_ll so tell the system call */
1152 		busy_flag = POLL_BUSY_LOOP;
1153 
1154 		/* once, only if requested by syscall */
1155 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1156 			sk_busy_loop(sock->sk, 1);
1157 	}
1158 
1159 	return busy_flag | sock->ops->poll(file, sock, wait);
1160 }
1161 
1162 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1163 {
1164 	struct socket *sock = file->private_data;
1165 
1166 	return sock->ops->mmap(file, sock, vma);
1167 }
1168 
1169 static int sock_close(struct inode *inode, struct file *filp)
1170 {
1171 	sock_release(SOCKET_I(inode));
1172 	return 0;
1173 }
1174 
1175 /*
1176  *	Update the socket async list
1177  *
1178  *	Fasync_list locking strategy.
1179  *
1180  *	1. fasync_list is modified only under process context socket lock
1181  *	   i.e. under semaphore.
1182  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1183  *	   or under socket lock
1184  */
1185 
1186 static int sock_fasync(int fd, struct file *filp, int on)
1187 {
1188 	struct socket *sock = filp->private_data;
1189 	struct sock *sk = sock->sk;
1190 	struct socket_wq *wq;
1191 
1192 	if (sk == NULL)
1193 		return -EINVAL;
1194 
1195 	lock_sock(sk);
1196 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1197 	fasync_helper(fd, filp, on, &wq->fasync_list);
1198 
1199 	if (!wq->fasync_list)
1200 		sock_reset_flag(sk, SOCK_FASYNC);
1201 	else
1202 		sock_set_flag(sk, SOCK_FASYNC);
1203 
1204 	release_sock(sk);
1205 	return 0;
1206 }
1207 
1208 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1209 
1210 int sock_wake_async(struct socket *sock, int how, int band)
1211 {
1212 	struct socket_wq *wq;
1213 
1214 	if (!sock)
1215 		return -1;
1216 	rcu_read_lock();
1217 	wq = rcu_dereference(sock->wq);
1218 	if (!wq || !wq->fasync_list) {
1219 		rcu_read_unlock();
1220 		return -1;
1221 	}
1222 	switch (how) {
1223 	case SOCK_WAKE_WAITD:
1224 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1225 			break;
1226 		goto call_kill;
1227 	case SOCK_WAKE_SPACE:
1228 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1229 			break;
1230 		/* fall through */
1231 	case SOCK_WAKE_IO:
1232 call_kill:
1233 		kill_fasync(&wq->fasync_list, SIGIO, band);
1234 		break;
1235 	case SOCK_WAKE_URG:
1236 		kill_fasync(&wq->fasync_list, SIGURG, band);
1237 	}
1238 	rcu_read_unlock();
1239 	return 0;
1240 }
1241 EXPORT_SYMBOL(sock_wake_async);
1242 
1243 int __sock_create(struct net *net, int family, int type, int protocol,
1244 			 struct socket **res, int kern)
1245 {
1246 	int err;
1247 	struct socket *sock;
1248 	const struct net_proto_family *pf;
1249 
1250 	/*
1251 	 *      Check protocol is in range
1252 	 */
1253 	if (family < 0 || family >= NPROTO)
1254 		return -EAFNOSUPPORT;
1255 	if (type < 0 || type >= SOCK_MAX)
1256 		return -EINVAL;
1257 
1258 	/* Compatibility.
1259 
1260 	   This uglymoron is moved from INET layer to here to avoid
1261 	   deadlock in module load.
1262 	 */
1263 	if (family == PF_INET && type == SOCK_PACKET) {
1264 		static int warned;
1265 		if (!warned) {
1266 			warned = 1;
1267 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1268 			       current->comm);
1269 		}
1270 		family = PF_PACKET;
1271 	}
1272 
1273 	err = security_socket_create(family, type, protocol, kern);
1274 	if (err)
1275 		return err;
1276 
1277 	/*
1278 	 *	Allocate the socket and allow the family to set things up. if
1279 	 *	the protocol is 0, the family is instructed to select an appropriate
1280 	 *	default.
1281 	 */
1282 	sock = sock_alloc();
1283 	if (!sock) {
1284 		net_warn_ratelimited("socket: no more sockets\n");
1285 		return -ENFILE;	/* Not exactly a match, but its the
1286 				   closest posix thing */
1287 	}
1288 
1289 	sock->type = type;
1290 
1291 #ifdef CONFIG_MODULES
1292 	/* Attempt to load a protocol module if the find failed.
1293 	 *
1294 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1295 	 * requested real, full-featured networking support upon configuration.
1296 	 * Otherwise module support will break!
1297 	 */
1298 	if (rcu_access_pointer(net_families[family]) == NULL)
1299 		request_module("net-pf-%d", family);
1300 #endif
1301 
1302 	rcu_read_lock();
1303 	pf = rcu_dereference(net_families[family]);
1304 	err = -EAFNOSUPPORT;
1305 	if (!pf)
1306 		goto out_release;
1307 
1308 	/*
1309 	 * We will call the ->create function, that possibly is in a loadable
1310 	 * module, so we have to bump that loadable module refcnt first.
1311 	 */
1312 	if (!try_module_get(pf->owner))
1313 		goto out_release;
1314 
1315 	/* Now protected by module ref count */
1316 	rcu_read_unlock();
1317 
1318 	err = pf->create(net, sock, protocol, kern);
1319 	if (err < 0)
1320 		goto out_module_put;
1321 
1322 	/*
1323 	 * Now to bump the refcnt of the [loadable] module that owns this
1324 	 * socket at sock_release time we decrement its refcnt.
1325 	 */
1326 	if (!try_module_get(sock->ops->owner))
1327 		goto out_module_busy;
1328 
1329 	/*
1330 	 * Now that we're done with the ->create function, the [loadable]
1331 	 * module can have its refcnt decremented
1332 	 */
1333 	module_put(pf->owner);
1334 	err = security_socket_post_create(sock, family, type, protocol, kern);
1335 	if (err)
1336 		goto out_sock_release;
1337 	*res = sock;
1338 
1339 	return 0;
1340 
1341 out_module_busy:
1342 	err = -EAFNOSUPPORT;
1343 out_module_put:
1344 	sock->ops = NULL;
1345 	module_put(pf->owner);
1346 out_sock_release:
1347 	sock_release(sock);
1348 	return err;
1349 
1350 out_release:
1351 	rcu_read_unlock();
1352 	goto out_sock_release;
1353 }
1354 EXPORT_SYMBOL(__sock_create);
1355 
1356 int sock_create(int family, int type, int protocol, struct socket **res)
1357 {
1358 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1359 }
1360 EXPORT_SYMBOL(sock_create);
1361 
1362 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1363 {
1364 	return __sock_create(&init_net, family, type, protocol, res, 1);
1365 }
1366 EXPORT_SYMBOL(sock_create_kern);
1367 
1368 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1369 {
1370 	int retval;
1371 	struct socket *sock;
1372 	int flags;
1373 
1374 	/* Check the SOCK_* constants for consistency.  */
1375 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1376 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1377 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1378 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1379 
1380 	flags = type & ~SOCK_TYPE_MASK;
1381 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1382 		return -EINVAL;
1383 	type &= SOCK_TYPE_MASK;
1384 
1385 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1386 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1387 
1388 	retval = sock_create(family, type, protocol, &sock);
1389 	if (retval < 0)
1390 		goto out;
1391 
1392 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1393 	if (retval < 0)
1394 		goto out_release;
1395 
1396 out:
1397 	/* It may be already another descriptor 8) Not kernel problem. */
1398 	return retval;
1399 
1400 out_release:
1401 	sock_release(sock);
1402 	return retval;
1403 }
1404 
1405 /*
1406  *	Create a pair of connected sockets.
1407  */
1408 
1409 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1410 		int __user *, usockvec)
1411 {
1412 	struct socket *sock1, *sock2;
1413 	int fd1, fd2, err;
1414 	struct file *newfile1, *newfile2;
1415 	int flags;
1416 
1417 	flags = type & ~SOCK_TYPE_MASK;
1418 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1419 		return -EINVAL;
1420 	type &= SOCK_TYPE_MASK;
1421 
1422 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1423 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1424 
1425 	/*
1426 	 * Obtain the first socket and check if the underlying protocol
1427 	 * supports the socketpair call.
1428 	 */
1429 
1430 	err = sock_create(family, type, protocol, &sock1);
1431 	if (err < 0)
1432 		goto out;
1433 
1434 	err = sock_create(family, type, protocol, &sock2);
1435 	if (err < 0)
1436 		goto out_release_1;
1437 
1438 	err = sock1->ops->socketpair(sock1, sock2);
1439 	if (err < 0)
1440 		goto out_release_both;
1441 
1442 	fd1 = get_unused_fd_flags(flags);
1443 	if (unlikely(fd1 < 0)) {
1444 		err = fd1;
1445 		goto out_release_both;
1446 	}
1447 	fd2 = get_unused_fd_flags(flags);
1448 	if (unlikely(fd2 < 0)) {
1449 		err = fd2;
1450 		put_unused_fd(fd1);
1451 		goto out_release_both;
1452 	}
1453 
1454 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1455 	if (unlikely(IS_ERR(newfile1))) {
1456 		err = PTR_ERR(newfile1);
1457 		put_unused_fd(fd1);
1458 		put_unused_fd(fd2);
1459 		goto out_release_both;
1460 	}
1461 
1462 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 	if (IS_ERR(newfile2)) {
1464 		err = PTR_ERR(newfile2);
1465 		fput(newfile1);
1466 		put_unused_fd(fd1);
1467 		put_unused_fd(fd2);
1468 		sock_release(sock2);
1469 		goto out;
1470 	}
1471 
1472 	audit_fd_pair(fd1, fd2);
1473 	fd_install(fd1, newfile1);
1474 	fd_install(fd2, newfile2);
1475 	/* fd1 and fd2 may be already another descriptors.
1476 	 * Not kernel problem.
1477 	 */
1478 
1479 	err = put_user(fd1, &usockvec[0]);
1480 	if (!err)
1481 		err = put_user(fd2, &usockvec[1]);
1482 	if (!err)
1483 		return 0;
1484 
1485 	sys_close(fd2);
1486 	sys_close(fd1);
1487 	return err;
1488 
1489 out_release_both:
1490 	sock_release(sock2);
1491 out_release_1:
1492 	sock_release(sock1);
1493 out:
1494 	return err;
1495 }
1496 
1497 /*
1498  *	Bind a name to a socket. Nothing much to do here since it's
1499  *	the protocol's responsibility to handle the local address.
1500  *
1501  *	We move the socket address to kernel space before we call
1502  *	the protocol layer (having also checked the address is ok).
1503  */
1504 
1505 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1506 {
1507 	struct socket *sock;
1508 	struct sockaddr_storage address;
1509 	int err, fput_needed;
1510 
1511 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1512 	if (sock) {
1513 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1514 		if (err >= 0) {
1515 			err = security_socket_bind(sock,
1516 						   (struct sockaddr *)&address,
1517 						   addrlen);
1518 			if (!err)
1519 				err = sock->ops->bind(sock,
1520 						      (struct sockaddr *)
1521 						      &address, addrlen);
1522 		}
1523 		fput_light(sock->file, fput_needed);
1524 	}
1525 	return err;
1526 }
1527 
1528 /*
1529  *	Perform a listen. Basically, we allow the protocol to do anything
1530  *	necessary for a listen, and if that works, we mark the socket as
1531  *	ready for listening.
1532  */
1533 
1534 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1535 {
1536 	struct socket *sock;
1537 	int err, fput_needed;
1538 	int somaxconn;
1539 
1540 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541 	if (sock) {
1542 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1543 		if ((unsigned int)backlog > somaxconn)
1544 			backlog = somaxconn;
1545 
1546 		err = security_socket_listen(sock, backlog);
1547 		if (!err)
1548 			err = sock->ops->listen(sock, backlog);
1549 
1550 		fput_light(sock->file, fput_needed);
1551 	}
1552 	return err;
1553 }
1554 
1555 /*
1556  *	For accept, we attempt to create a new socket, set up the link
1557  *	with the client, wake up the client, then return the new
1558  *	connected fd. We collect the address of the connector in kernel
1559  *	space and move it to user at the very end. This is unclean because
1560  *	we open the socket then return an error.
1561  *
1562  *	1003.1g adds the ability to recvmsg() to query connection pending
1563  *	status to recvmsg. We need to add that support in a way thats
1564  *	clean when we restucture accept also.
1565  */
1566 
1567 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1568 		int __user *, upeer_addrlen, int, flags)
1569 {
1570 	struct socket *sock, *newsock;
1571 	struct file *newfile;
1572 	int err, len, newfd, fput_needed;
1573 	struct sockaddr_storage address;
1574 
1575 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1576 		return -EINVAL;
1577 
1578 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1579 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1580 
1581 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1582 	if (!sock)
1583 		goto out;
1584 
1585 	err = -ENFILE;
1586 	newsock = sock_alloc();
1587 	if (!newsock)
1588 		goto out_put;
1589 
1590 	newsock->type = sock->type;
1591 	newsock->ops = sock->ops;
1592 
1593 	/*
1594 	 * We don't need try_module_get here, as the listening socket (sock)
1595 	 * has the protocol module (sock->ops->owner) held.
1596 	 */
1597 	__module_get(newsock->ops->owner);
1598 
1599 	newfd = get_unused_fd_flags(flags);
1600 	if (unlikely(newfd < 0)) {
1601 		err = newfd;
1602 		sock_release(newsock);
1603 		goto out_put;
1604 	}
1605 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1606 	if (unlikely(IS_ERR(newfile))) {
1607 		err = PTR_ERR(newfile);
1608 		put_unused_fd(newfd);
1609 		sock_release(newsock);
1610 		goto out_put;
1611 	}
1612 
1613 	err = security_socket_accept(sock, newsock);
1614 	if (err)
1615 		goto out_fd;
1616 
1617 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1618 	if (err < 0)
1619 		goto out_fd;
1620 
1621 	if (upeer_sockaddr) {
1622 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1623 					  &len, 2) < 0) {
1624 			err = -ECONNABORTED;
1625 			goto out_fd;
1626 		}
1627 		err = move_addr_to_user(&address,
1628 					len, upeer_sockaddr, upeer_addrlen);
1629 		if (err < 0)
1630 			goto out_fd;
1631 	}
1632 
1633 	/* File flags are not inherited via accept() unlike another OSes. */
1634 
1635 	fd_install(newfd, newfile);
1636 	err = newfd;
1637 
1638 out_put:
1639 	fput_light(sock->file, fput_needed);
1640 out:
1641 	return err;
1642 out_fd:
1643 	fput(newfile);
1644 	put_unused_fd(newfd);
1645 	goto out_put;
1646 }
1647 
1648 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1649 		int __user *, upeer_addrlen)
1650 {
1651 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1652 }
1653 
1654 /*
1655  *	Attempt to connect to a socket with the server address.  The address
1656  *	is in user space so we verify it is OK and move it to kernel space.
1657  *
1658  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1659  *	break bindings
1660  *
1661  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1662  *	other SEQPACKET protocols that take time to connect() as it doesn't
1663  *	include the -EINPROGRESS status for such sockets.
1664  */
1665 
1666 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1667 		int, addrlen)
1668 {
1669 	struct socket *sock;
1670 	struct sockaddr_storage address;
1671 	int err, fput_needed;
1672 
1673 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 	if (!sock)
1675 		goto out;
1676 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1677 	if (err < 0)
1678 		goto out_put;
1679 
1680 	err =
1681 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1682 	if (err)
1683 		goto out_put;
1684 
1685 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1686 				 sock->file->f_flags);
1687 out_put:
1688 	fput_light(sock->file, fput_needed);
1689 out:
1690 	return err;
1691 }
1692 
1693 /*
1694  *	Get the local address ('name') of a socket object. Move the obtained
1695  *	name to user space.
1696  */
1697 
1698 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1699 		int __user *, usockaddr_len)
1700 {
1701 	struct socket *sock;
1702 	struct sockaddr_storage address;
1703 	int len, err, fput_needed;
1704 
1705 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 	if (!sock)
1707 		goto out;
1708 
1709 	err = security_socket_getsockname(sock);
1710 	if (err)
1711 		goto out_put;
1712 
1713 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1714 	if (err)
1715 		goto out_put;
1716 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1717 
1718 out_put:
1719 	fput_light(sock->file, fput_needed);
1720 out:
1721 	return err;
1722 }
1723 
1724 /*
1725  *	Get the remote address ('name') of a socket object. Move the obtained
1726  *	name to user space.
1727  */
1728 
1729 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1730 		int __user *, usockaddr_len)
1731 {
1732 	struct socket *sock;
1733 	struct sockaddr_storage address;
1734 	int len, err, fput_needed;
1735 
1736 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1737 	if (sock != NULL) {
1738 		err = security_socket_getpeername(sock);
1739 		if (err) {
1740 			fput_light(sock->file, fput_needed);
1741 			return err;
1742 		}
1743 
1744 		err =
1745 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1746 				       1);
1747 		if (!err)
1748 			err = move_addr_to_user(&address, len, usockaddr,
1749 						usockaddr_len);
1750 		fput_light(sock->file, fput_needed);
1751 	}
1752 	return err;
1753 }
1754 
1755 /*
1756  *	Send a datagram to a given address. We move the address into kernel
1757  *	space and check the user space data area is readable before invoking
1758  *	the protocol.
1759  */
1760 
1761 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1762 		unsigned int, flags, struct sockaddr __user *, addr,
1763 		int, addr_len)
1764 {
1765 	struct socket *sock;
1766 	struct sockaddr_storage address;
1767 	int err;
1768 	struct msghdr msg;
1769 	struct iovec iov;
1770 	int fput_needed;
1771 
1772 	if (len > INT_MAX)
1773 		len = INT_MAX;
1774 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 	if (!sock)
1776 		goto out;
1777 
1778 	iov.iov_base = buff;
1779 	iov.iov_len = len;
1780 	msg.msg_name = NULL;
1781 	msg.msg_iov = &iov;
1782 	msg.msg_iovlen = 1;
1783 	msg.msg_control = NULL;
1784 	msg.msg_controllen = 0;
1785 	msg.msg_namelen = 0;
1786 	if (addr) {
1787 		err = move_addr_to_kernel(addr, addr_len, &address);
1788 		if (err < 0)
1789 			goto out_put;
1790 		msg.msg_name = (struct sockaddr *)&address;
1791 		msg.msg_namelen = addr_len;
1792 	}
1793 	if (sock->file->f_flags & O_NONBLOCK)
1794 		flags |= MSG_DONTWAIT;
1795 	msg.msg_flags = flags;
1796 	err = sock_sendmsg(sock, &msg, len);
1797 
1798 out_put:
1799 	fput_light(sock->file, fput_needed);
1800 out:
1801 	return err;
1802 }
1803 
1804 /*
1805  *	Send a datagram down a socket.
1806  */
1807 
1808 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1809 		unsigned int, flags)
1810 {
1811 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1812 }
1813 
1814 /*
1815  *	Receive a frame from the socket and optionally record the address of the
1816  *	sender. We verify the buffers are writable and if needed move the
1817  *	sender address from kernel to user space.
1818  */
1819 
1820 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1821 		unsigned int, flags, struct sockaddr __user *, addr,
1822 		int __user *, addr_len)
1823 {
1824 	struct socket *sock;
1825 	struct iovec iov;
1826 	struct msghdr msg;
1827 	struct sockaddr_storage address;
1828 	int err, err2;
1829 	int fput_needed;
1830 
1831 	if (size > INT_MAX)
1832 		size = INT_MAX;
1833 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1834 	if (!sock)
1835 		goto out;
1836 
1837 	msg.msg_control = NULL;
1838 	msg.msg_controllen = 0;
1839 	msg.msg_iovlen = 1;
1840 	msg.msg_iov = &iov;
1841 	iov.iov_len = size;
1842 	iov.iov_base = ubuf;
1843 	msg.msg_name = (struct sockaddr *)&address;
1844 	msg.msg_namelen = sizeof(address);
1845 	if (sock->file->f_flags & O_NONBLOCK)
1846 		flags |= MSG_DONTWAIT;
1847 	err = sock_recvmsg(sock, &msg, size, flags);
1848 
1849 	if (err >= 0 && addr != NULL) {
1850 		err2 = move_addr_to_user(&address,
1851 					 msg.msg_namelen, addr, addr_len);
1852 		if (err2 < 0)
1853 			err = err2;
1854 	}
1855 
1856 	fput_light(sock->file, fput_needed);
1857 out:
1858 	return err;
1859 }
1860 
1861 /*
1862  *	Receive a datagram from a socket.
1863  */
1864 
1865 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1866 			 unsigned int flags)
1867 {
1868 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1869 }
1870 
1871 /*
1872  *	Set a socket option. Because we don't know the option lengths we have
1873  *	to pass the user mode parameter for the protocols to sort out.
1874  */
1875 
1876 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1877 		char __user *, optval, int, optlen)
1878 {
1879 	int err, fput_needed;
1880 	struct socket *sock;
1881 
1882 	if (optlen < 0)
1883 		return -EINVAL;
1884 
1885 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1886 	if (sock != NULL) {
1887 		err = security_socket_setsockopt(sock, level, optname);
1888 		if (err)
1889 			goto out_put;
1890 
1891 		if (level == SOL_SOCKET)
1892 			err =
1893 			    sock_setsockopt(sock, level, optname, optval,
1894 					    optlen);
1895 		else
1896 			err =
1897 			    sock->ops->setsockopt(sock, level, optname, optval,
1898 						  optlen);
1899 out_put:
1900 		fput_light(sock->file, fput_needed);
1901 	}
1902 	return err;
1903 }
1904 
1905 /*
1906  *	Get a socket option. Because we don't know the option lengths we have
1907  *	to pass a user mode parameter for the protocols to sort out.
1908  */
1909 
1910 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1911 		char __user *, optval, int __user *, optlen)
1912 {
1913 	int err, fput_needed;
1914 	struct socket *sock;
1915 
1916 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1917 	if (sock != NULL) {
1918 		err = security_socket_getsockopt(sock, level, optname);
1919 		if (err)
1920 			goto out_put;
1921 
1922 		if (level == SOL_SOCKET)
1923 			err =
1924 			    sock_getsockopt(sock, level, optname, optval,
1925 					    optlen);
1926 		else
1927 			err =
1928 			    sock->ops->getsockopt(sock, level, optname, optval,
1929 						  optlen);
1930 out_put:
1931 		fput_light(sock->file, fput_needed);
1932 	}
1933 	return err;
1934 }
1935 
1936 /*
1937  *	Shutdown a socket.
1938  */
1939 
1940 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1941 {
1942 	int err, fput_needed;
1943 	struct socket *sock;
1944 
1945 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1946 	if (sock != NULL) {
1947 		err = security_socket_shutdown(sock, how);
1948 		if (!err)
1949 			err = sock->ops->shutdown(sock, how);
1950 		fput_light(sock->file, fput_needed);
1951 	}
1952 	return err;
1953 }
1954 
1955 /* A couple of helpful macros for getting the address of the 32/64 bit
1956  * fields which are the same type (int / unsigned) on our platforms.
1957  */
1958 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1959 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1960 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1961 
1962 struct used_address {
1963 	struct sockaddr_storage name;
1964 	unsigned int name_len;
1965 };
1966 
1967 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1968 			 struct msghdr *msg_sys, unsigned int flags,
1969 			 struct used_address *used_address)
1970 {
1971 	struct compat_msghdr __user *msg_compat =
1972 	    (struct compat_msghdr __user *)msg;
1973 	struct sockaddr_storage address;
1974 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1975 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1976 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1977 	/* 20 is size of ipv6_pktinfo */
1978 	unsigned char *ctl_buf = ctl;
1979 	int err, ctl_len, total_len;
1980 
1981 	err = -EFAULT;
1982 	if (MSG_CMSG_COMPAT & flags) {
1983 		if (get_compat_msghdr(msg_sys, msg_compat))
1984 			return -EFAULT;
1985 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1986 		return -EFAULT;
1987 
1988 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1989 		err = -EMSGSIZE;
1990 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
1991 			goto out;
1992 		err = -ENOMEM;
1993 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1994 			      GFP_KERNEL);
1995 		if (!iov)
1996 			goto out;
1997 	}
1998 
1999 	/* This will also move the address data into kernel space */
2000 	if (MSG_CMSG_COMPAT & flags) {
2001 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2002 	} else
2003 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2004 	if (err < 0)
2005 		goto out_freeiov;
2006 	total_len = err;
2007 
2008 	err = -ENOBUFS;
2009 
2010 	if (msg_sys->msg_controllen > INT_MAX)
2011 		goto out_freeiov;
2012 	ctl_len = msg_sys->msg_controllen;
2013 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2014 		err =
2015 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2016 						     sizeof(ctl));
2017 		if (err)
2018 			goto out_freeiov;
2019 		ctl_buf = msg_sys->msg_control;
2020 		ctl_len = msg_sys->msg_controllen;
2021 	} else if (ctl_len) {
2022 		if (ctl_len > sizeof(ctl)) {
2023 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2024 			if (ctl_buf == NULL)
2025 				goto out_freeiov;
2026 		}
2027 		err = -EFAULT;
2028 		/*
2029 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2030 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2031 		 * checking falls down on this.
2032 		 */
2033 		if (copy_from_user(ctl_buf,
2034 				   (void __user __force *)msg_sys->msg_control,
2035 				   ctl_len))
2036 			goto out_freectl;
2037 		msg_sys->msg_control = ctl_buf;
2038 	}
2039 	msg_sys->msg_flags = flags;
2040 
2041 	if (sock->file->f_flags & O_NONBLOCK)
2042 		msg_sys->msg_flags |= MSG_DONTWAIT;
2043 	/*
2044 	 * If this is sendmmsg() and current destination address is same as
2045 	 * previously succeeded address, omit asking LSM's decision.
2046 	 * used_address->name_len is initialized to UINT_MAX so that the first
2047 	 * destination address never matches.
2048 	 */
2049 	if (used_address && msg_sys->msg_name &&
2050 	    used_address->name_len == msg_sys->msg_namelen &&
2051 	    !memcmp(&used_address->name, msg_sys->msg_name,
2052 		    used_address->name_len)) {
2053 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2054 		goto out_freectl;
2055 	}
2056 	err = sock_sendmsg(sock, msg_sys, total_len);
2057 	/*
2058 	 * If this is sendmmsg() and sending to current destination address was
2059 	 * successful, remember it.
2060 	 */
2061 	if (used_address && err >= 0) {
2062 		used_address->name_len = msg_sys->msg_namelen;
2063 		if (msg_sys->msg_name)
2064 			memcpy(&used_address->name, msg_sys->msg_name,
2065 			       used_address->name_len);
2066 	}
2067 
2068 out_freectl:
2069 	if (ctl_buf != ctl)
2070 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2071 out_freeiov:
2072 	if (iov != iovstack)
2073 		kfree(iov);
2074 out:
2075 	return err;
2076 }
2077 
2078 /*
2079  *	BSD sendmsg interface
2080  */
2081 
2082 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2083 {
2084 	int fput_needed, err;
2085 	struct msghdr msg_sys;
2086 	struct socket *sock;
2087 
2088 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2089 	if (!sock)
2090 		goto out;
2091 
2092 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2093 
2094 	fput_light(sock->file, fput_needed);
2095 out:
2096 	return err;
2097 }
2098 
2099 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2100 {
2101 	if (flags & MSG_CMSG_COMPAT)
2102 		return -EINVAL;
2103 	return __sys_sendmsg(fd, msg, flags);
2104 }
2105 
2106 /*
2107  *	Linux sendmmsg interface
2108  */
2109 
2110 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2111 		   unsigned int flags)
2112 {
2113 	int fput_needed, err, datagrams;
2114 	struct socket *sock;
2115 	struct mmsghdr __user *entry;
2116 	struct compat_mmsghdr __user *compat_entry;
2117 	struct msghdr msg_sys;
2118 	struct used_address used_address;
2119 
2120 	if (vlen > UIO_MAXIOV)
2121 		vlen = UIO_MAXIOV;
2122 
2123 	datagrams = 0;
2124 
2125 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2126 	if (!sock)
2127 		return err;
2128 
2129 	used_address.name_len = UINT_MAX;
2130 	entry = mmsg;
2131 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2132 	err = 0;
2133 
2134 	while (datagrams < vlen) {
2135 		if (MSG_CMSG_COMPAT & flags) {
2136 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2137 					     &msg_sys, flags, &used_address);
2138 			if (err < 0)
2139 				break;
2140 			err = __put_user(err, &compat_entry->msg_len);
2141 			++compat_entry;
2142 		} else {
2143 			err = ___sys_sendmsg(sock,
2144 					     (struct msghdr __user *)entry,
2145 					     &msg_sys, flags, &used_address);
2146 			if (err < 0)
2147 				break;
2148 			err = put_user(err, &entry->msg_len);
2149 			++entry;
2150 		}
2151 
2152 		if (err)
2153 			break;
2154 		++datagrams;
2155 	}
2156 
2157 	fput_light(sock->file, fput_needed);
2158 
2159 	/* We only return an error if no datagrams were able to be sent */
2160 	if (datagrams != 0)
2161 		return datagrams;
2162 
2163 	return err;
2164 }
2165 
2166 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2167 		unsigned int, vlen, unsigned int, flags)
2168 {
2169 	if (flags & MSG_CMSG_COMPAT)
2170 		return -EINVAL;
2171 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2172 }
2173 
2174 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2175 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2176 {
2177 	struct compat_msghdr __user *msg_compat =
2178 	    (struct compat_msghdr __user *)msg;
2179 	struct iovec iovstack[UIO_FASTIOV];
2180 	struct iovec *iov = iovstack;
2181 	unsigned long cmsg_ptr;
2182 	int err, total_len, len;
2183 
2184 	/* kernel mode address */
2185 	struct sockaddr_storage addr;
2186 
2187 	/* user mode address pointers */
2188 	struct sockaddr __user *uaddr;
2189 	int __user *uaddr_len;
2190 
2191 	if (MSG_CMSG_COMPAT & flags) {
2192 		if (get_compat_msghdr(msg_sys, msg_compat))
2193 			return -EFAULT;
2194 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2195 		return -EFAULT;
2196 
2197 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2198 		err = -EMSGSIZE;
2199 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2200 			goto out;
2201 		err = -ENOMEM;
2202 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2203 			      GFP_KERNEL);
2204 		if (!iov)
2205 			goto out;
2206 	}
2207 
2208 	/*
2209 	 *      Save the user-mode address (verify_iovec will change the
2210 	 *      kernel msghdr to use the kernel address space)
2211 	 */
2212 
2213 	uaddr = (__force void __user *)msg_sys->msg_name;
2214 	uaddr_len = COMPAT_NAMELEN(msg);
2215 	if (MSG_CMSG_COMPAT & flags) {
2216 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2217 	} else
2218 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2219 	if (err < 0)
2220 		goto out_freeiov;
2221 	total_len = err;
2222 
2223 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2224 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2225 
2226 	if (sock->file->f_flags & O_NONBLOCK)
2227 		flags |= MSG_DONTWAIT;
2228 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2229 							  total_len, flags);
2230 	if (err < 0)
2231 		goto out_freeiov;
2232 	len = err;
2233 
2234 	if (uaddr != NULL) {
2235 		err = move_addr_to_user(&addr,
2236 					msg_sys->msg_namelen, uaddr,
2237 					uaddr_len);
2238 		if (err < 0)
2239 			goto out_freeiov;
2240 	}
2241 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2242 			 COMPAT_FLAGS(msg));
2243 	if (err)
2244 		goto out_freeiov;
2245 	if (MSG_CMSG_COMPAT & flags)
2246 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2247 				 &msg_compat->msg_controllen);
2248 	else
2249 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2250 				 &msg->msg_controllen);
2251 	if (err)
2252 		goto out_freeiov;
2253 	err = len;
2254 
2255 out_freeiov:
2256 	if (iov != iovstack)
2257 		kfree(iov);
2258 out:
2259 	return err;
2260 }
2261 
2262 /*
2263  *	BSD recvmsg interface
2264  */
2265 
2266 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2267 {
2268 	int fput_needed, err;
2269 	struct msghdr msg_sys;
2270 	struct socket *sock;
2271 
2272 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2273 	if (!sock)
2274 		goto out;
2275 
2276 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2277 
2278 	fput_light(sock->file, fput_needed);
2279 out:
2280 	return err;
2281 }
2282 
2283 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2284 		unsigned int, flags)
2285 {
2286 	if (flags & MSG_CMSG_COMPAT)
2287 		return -EINVAL;
2288 	return __sys_recvmsg(fd, msg, flags);
2289 }
2290 
2291 /*
2292  *     Linux recvmmsg interface
2293  */
2294 
2295 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2296 		   unsigned int flags, struct timespec *timeout)
2297 {
2298 	int fput_needed, err, datagrams;
2299 	struct socket *sock;
2300 	struct mmsghdr __user *entry;
2301 	struct compat_mmsghdr __user *compat_entry;
2302 	struct msghdr msg_sys;
2303 	struct timespec end_time;
2304 
2305 	if (timeout &&
2306 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2307 				    timeout->tv_nsec))
2308 		return -EINVAL;
2309 
2310 	datagrams = 0;
2311 
2312 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2313 	if (!sock)
2314 		return err;
2315 
2316 	err = sock_error(sock->sk);
2317 	if (err)
2318 		goto out_put;
2319 
2320 	entry = mmsg;
2321 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2322 
2323 	while (datagrams < vlen) {
2324 		/*
2325 		 * No need to ask LSM for more than the first datagram.
2326 		 */
2327 		if (MSG_CMSG_COMPAT & flags) {
2328 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2329 					     &msg_sys, flags & ~MSG_WAITFORONE,
2330 					     datagrams);
2331 			if (err < 0)
2332 				break;
2333 			err = __put_user(err, &compat_entry->msg_len);
2334 			++compat_entry;
2335 		} else {
2336 			err = ___sys_recvmsg(sock,
2337 					     (struct msghdr __user *)entry,
2338 					     &msg_sys, flags & ~MSG_WAITFORONE,
2339 					     datagrams);
2340 			if (err < 0)
2341 				break;
2342 			err = put_user(err, &entry->msg_len);
2343 			++entry;
2344 		}
2345 
2346 		if (err)
2347 			break;
2348 		++datagrams;
2349 
2350 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2351 		if (flags & MSG_WAITFORONE)
2352 			flags |= MSG_DONTWAIT;
2353 
2354 		if (timeout) {
2355 			ktime_get_ts(timeout);
2356 			*timeout = timespec_sub(end_time, *timeout);
2357 			if (timeout->tv_sec < 0) {
2358 				timeout->tv_sec = timeout->tv_nsec = 0;
2359 				break;
2360 			}
2361 
2362 			/* Timeout, return less than vlen datagrams */
2363 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2364 				break;
2365 		}
2366 
2367 		/* Out of band data, return right away */
2368 		if (msg_sys.msg_flags & MSG_OOB)
2369 			break;
2370 	}
2371 
2372 out_put:
2373 	fput_light(sock->file, fput_needed);
2374 
2375 	if (err == 0)
2376 		return datagrams;
2377 
2378 	if (datagrams != 0) {
2379 		/*
2380 		 * We may return less entries than requested (vlen) if the
2381 		 * sock is non block and there aren't enough datagrams...
2382 		 */
2383 		if (err != -EAGAIN) {
2384 			/*
2385 			 * ... or  if recvmsg returns an error after we
2386 			 * received some datagrams, where we record the
2387 			 * error to return on the next call or if the
2388 			 * app asks about it using getsockopt(SO_ERROR).
2389 			 */
2390 			sock->sk->sk_err = -err;
2391 		}
2392 
2393 		return datagrams;
2394 	}
2395 
2396 	return err;
2397 }
2398 
2399 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2400 		unsigned int, vlen, unsigned int, flags,
2401 		struct timespec __user *, timeout)
2402 {
2403 	int datagrams;
2404 	struct timespec timeout_sys;
2405 
2406 	if (flags & MSG_CMSG_COMPAT)
2407 		return -EINVAL;
2408 
2409 	if (!timeout)
2410 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2411 
2412 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2413 		return -EFAULT;
2414 
2415 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2416 
2417 	if (datagrams > 0 &&
2418 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2419 		datagrams = -EFAULT;
2420 
2421 	return datagrams;
2422 }
2423 
2424 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2425 /* Argument list sizes for sys_socketcall */
2426 #define AL(x) ((x) * sizeof(unsigned long))
2427 static const unsigned char nargs[21] = {
2428 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2429 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2430 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2431 	AL(4), AL(5), AL(4)
2432 };
2433 
2434 #undef AL
2435 
2436 /*
2437  *	System call vectors.
2438  *
2439  *	Argument checking cleaned up. Saved 20% in size.
2440  *  This function doesn't need to set the kernel lock because
2441  *  it is set by the callees.
2442  */
2443 
2444 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2445 {
2446 	unsigned long a[AUDITSC_ARGS];
2447 	unsigned long a0, a1;
2448 	int err;
2449 	unsigned int len;
2450 
2451 	if (call < 1 || call > SYS_SENDMMSG)
2452 		return -EINVAL;
2453 
2454 	len = nargs[call];
2455 	if (len > sizeof(a))
2456 		return -EINVAL;
2457 
2458 	/* copy_from_user should be SMP safe. */
2459 	if (copy_from_user(a, args, len))
2460 		return -EFAULT;
2461 
2462 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2463 	if (err)
2464 		return err;
2465 
2466 	a0 = a[0];
2467 	a1 = a[1];
2468 
2469 	switch (call) {
2470 	case SYS_SOCKET:
2471 		err = sys_socket(a0, a1, a[2]);
2472 		break;
2473 	case SYS_BIND:
2474 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2475 		break;
2476 	case SYS_CONNECT:
2477 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2478 		break;
2479 	case SYS_LISTEN:
2480 		err = sys_listen(a0, a1);
2481 		break;
2482 	case SYS_ACCEPT:
2483 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2484 				  (int __user *)a[2], 0);
2485 		break;
2486 	case SYS_GETSOCKNAME:
2487 		err =
2488 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2489 				    (int __user *)a[2]);
2490 		break;
2491 	case SYS_GETPEERNAME:
2492 		err =
2493 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2494 				    (int __user *)a[2]);
2495 		break;
2496 	case SYS_SOCKETPAIR:
2497 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2498 		break;
2499 	case SYS_SEND:
2500 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2501 		break;
2502 	case SYS_SENDTO:
2503 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2504 				 (struct sockaddr __user *)a[4], a[5]);
2505 		break;
2506 	case SYS_RECV:
2507 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2508 		break;
2509 	case SYS_RECVFROM:
2510 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2511 				   (struct sockaddr __user *)a[4],
2512 				   (int __user *)a[5]);
2513 		break;
2514 	case SYS_SHUTDOWN:
2515 		err = sys_shutdown(a0, a1);
2516 		break;
2517 	case SYS_SETSOCKOPT:
2518 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2519 		break;
2520 	case SYS_GETSOCKOPT:
2521 		err =
2522 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2523 				   (int __user *)a[4]);
2524 		break;
2525 	case SYS_SENDMSG:
2526 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2527 		break;
2528 	case SYS_SENDMMSG:
2529 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2530 		break;
2531 	case SYS_RECVMSG:
2532 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2533 		break;
2534 	case SYS_RECVMMSG:
2535 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2536 				   (struct timespec __user *)a[4]);
2537 		break;
2538 	case SYS_ACCEPT4:
2539 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2540 				  (int __user *)a[2], a[3]);
2541 		break;
2542 	default:
2543 		err = -EINVAL;
2544 		break;
2545 	}
2546 	return err;
2547 }
2548 
2549 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2550 
2551 /**
2552  *	sock_register - add a socket protocol handler
2553  *	@ops: description of protocol
2554  *
2555  *	This function is called by a protocol handler that wants to
2556  *	advertise its address family, and have it linked into the
2557  *	socket interface. The value ops->family coresponds to the
2558  *	socket system call protocol family.
2559  */
2560 int sock_register(const struct net_proto_family *ops)
2561 {
2562 	int err;
2563 
2564 	if (ops->family >= NPROTO) {
2565 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2566 		       NPROTO);
2567 		return -ENOBUFS;
2568 	}
2569 
2570 	spin_lock(&net_family_lock);
2571 	if (rcu_dereference_protected(net_families[ops->family],
2572 				      lockdep_is_held(&net_family_lock)))
2573 		err = -EEXIST;
2574 	else {
2575 		rcu_assign_pointer(net_families[ops->family], ops);
2576 		err = 0;
2577 	}
2578 	spin_unlock(&net_family_lock);
2579 
2580 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2581 	return err;
2582 }
2583 EXPORT_SYMBOL(sock_register);
2584 
2585 /**
2586  *	sock_unregister - remove a protocol handler
2587  *	@family: protocol family to remove
2588  *
2589  *	This function is called by a protocol handler that wants to
2590  *	remove its address family, and have it unlinked from the
2591  *	new socket creation.
2592  *
2593  *	If protocol handler is a module, then it can use module reference
2594  *	counts to protect against new references. If protocol handler is not
2595  *	a module then it needs to provide its own protection in
2596  *	the ops->create routine.
2597  */
2598 void sock_unregister(int family)
2599 {
2600 	BUG_ON(family < 0 || family >= NPROTO);
2601 
2602 	spin_lock(&net_family_lock);
2603 	RCU_INIT_POINTER(net_families[family], NULL);
2604 	spin_unlock(&net_family_lock);
2605 
2606 	synchronize_rcu();
2607 
2608 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2609 }
2610 EXPORT_SYMBOL(sock_unregister);
2611 
2612 static int __init sock_init(void)
2613 {
2614 	int err;
2615 	/*
2616 	 *      Initialize the network sysctl infrastructure.
2617 	 */
2618 	err = net_sysctl_init();
2619 	if (err)
2620 		goto out;
2621 
2622 	/*
2623 	 *      Initialize skbuff SLAB cache
2624 	 */
2625 	skb_init();
2626 
2627 	/*
2628 	 *      Initialize the protocols module.
2629 	 */
2630 
2631 	init_inodecache();
2632 
2633 	err = register_filesystem(&sock_fs_type);
2634 	if (err)
2635 		goto out_fs;
2636 	sock_mnt = kern_mount(&sock_fs_type);
2637 	if (IS_ERR(sock_mnt)) {
2638 		err = PTR_ERR(sock_mnt);
2639 		goto out_mount;
2640 	}
2641 
2642 	/* The real protocol initialization is performed in later initcalls.
2643 	 */
2644 
2645 #ifdef CONFIG_NETFILTER
2646 	err = netfilter_init();
2647 	if (err)
2648 		goto out;
2649 #endif
2650 
2651 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2652 	skb_timestamping_init();
2653 #endif
2654 
2655 out:
2656 	return err;
2657 
2658 out_mount:
2659 	unregister_filesystem(&sock_fs_type);
2660 out_fs:
2661 	goto out;
2662 }
2663 
2664 core_initcall(sock_init);	/* early initcall */
2665 
2666 #ifdef CONFIG_PROC_FS
2667 void socket_seq_show(struct seq_file *seq)
2668 {
2669 	int cpu;
2670 	int counter = 0;
2671 
2672 	for_each_possible_cpu(cpu)
2673 	    counter += per_cpu(sockets_in_use, cpu);
2674 
2675 	/* It can be negative, by the way. 8) */
2676 	if (counter < 0)
2677 		counter = 0;
2678 
2679 	seq_printf(seq, "sockets: used %d\n", counter);
2680 }
2681 #endif				/* CONFIG_PROC_FS */
2682 
2683 #ifdef CONFIG_COMPAT
2684 static int do_siocgstamp(struct net *net, struct socket *sock,
2685 			 unsigned int cmd, void __user *up)
2686 {
2687 	mm_segment_t old_fs = get_fs();
2688 	struct timeval ktv;
2689 	int err;
2690 
2691 	set_fs(KERNEL_DS);
2692 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2693 	set_fs(old_fs);
2694 	if (!err)
2695 		err = compat_put_timeval(&ktv, up);
2696 
2697 	return err;
2698 }
2699 
2700 static int do_siocgstampns(struct net *net, struct socket *sock,
2701 			   unsigned int cmd, void __user *up)
2702 {
2703 	mm_segment_t old_fs = get_fs();
2704 	struct timespec kts;
2705 	int err;
2706 
2707 	set_fs(KERNEL_DS);
2708 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2709 	set_fs(old_fs);
2710 	if (!err)
2711 		err = compat_put_timespec(&kts, up);
2712 
2713 	return err;
2714 }
2715 
2716 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2717 {
2718 	struct ifreq __user *uifr;
2719 	int err;
2720 
2721 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2722 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2723 		return -EFAULT;
2724 
2725 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2726 	if (err)
2727 		return err;
2728 
2729 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2730 		return -EFAULT;
2731 
2732 	return 0;
2733 }
2734 
2735 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2736 {
2737 	struct compat_ifconf ifc32;
2738 	struct ifconf ifc;
2739 	struct ifconf __user *uifc;
2740 	struct compat_ifreq __user *ifr32;
2741 	struct ifreq __user *ifr;
2742 	unsigned int i, j;
2743 	int err;
2744 
2745 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2746 		return -EFAULT;
2747 
2748 	memset(&ifc, 0, sizeof(ifc));
2749 	if (ifc32.ifcbuf == 0) {
2750 		ifc32.ifc_len = 0;
2751 		ifc.ifc_len = 0;
2752 		ifc.ifc_req = NULL;
2753 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2754 	} else {
2755 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2756 			sizeof(struct ifreq);
2757 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2758 		ifc.ifc_len = len;
2759 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2760 		ifr32 = compat_ptr(ifc32.ifcbuf);
2761 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2762 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2763 				return -EFAULT;
2764 			ifr++;
2765 			ifr32++;
2766 		}
2767 	}
2768 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2769 		return -EFAULT;
2770 
2771 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2772 	if (err)
2773 		return err;
2774 
2775 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2776 		return -EFAULT;
2777 
2778 	ifr = ifc.ifc_req;
2779 	ifr32 = compat_ptr(ifc32.ifcbuf);
2780 	for (i = 0, j = 0;
2781 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2782 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2783 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2784 			return -EFAULT;
2785 		ifr32++;
2786 		ifr++;
2787 	}
2788 
2789 	if (ifc32.ifcbuf == 0) {
2790 		/* Translate from 64-bit structure multiple to
2791 		 * a 32-bit one.
2792 		 */
2793 		i = ifc.ifc_len;
2794 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2795 		ifc32.ifc_len = i;
2796 	} else {
2797 		ifc32.ifc_len = i;
2798 	}
2799 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2800 		return -EFAULT;
2801 
2802 	return 0;
2803 }
2804 
2805 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2806 {
2807 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2808 	bool convert_in = false, convert_out = false;
2809 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2810 	struct ethtool_rxnfc __user *rxnfc;
2811 	struct ifreq __user *ifr;
2812 	u32 rule_cnt = 0, actual_rule_cnt;
2813 	u32 ethcmd;
2814 	u32 data;
2815 	int ret;
2816 
2817 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2818 		return -EFAULT;
2819 
2820 	compat_rxnfc = compat_ptr(data);
2821 
2822 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2823 		return -EFAULT;
2824 
2825 	/* Most ethtool structures are defined without padding.
2826 	 * Unfortunately struct ethtool_rxnfc is an exception.
2827 	 */
2828 	switch (ethcmd) {
2829 	default:
2830 		break;
2831 	case ETHTOOL_GRXCLSRLALL:
2832 		/* Buffer size is variable */
2833 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2834 			return -EFAULT;
2835 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2836 			return -ENOMEM;
2837 		buf_size += rule_cnt * sizeof(u32);
2838 		/* fall through */
2839 	case ETHTOOL_GRXRINGS:
2840 	case ETHTOOL_GRXCLSRLCNT:
2841 	case ETHTOOL_GRXCLSRULE:
2842 	case ETHTOOL_SRXCLSRLINS:
2843 		convert_out = true;
2844 		/* fall through */
2845 	case ETHTOOL_SRXCLSRLDEL:
2846 		buf_size += sizeof(struct ethtool_rxnfc);
2847 		convert_in = true;
2848 		break;
2849 	}
2850 
2851 	ifr = compat_alloc_user_space(buf_size);
2852 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2853 
2854 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2855 		return -EFAULT;
2856 
2857 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2858 		     &ifr->ifr_ifru.ifru_data))
2859 		return -EFAULT;
2860 
2861 	if (convert_in) {
2862 		/* We expect there to be holes between fs.m_ext and
2863 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2864 		 */
2865 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2866 			     sizeof(compat_rxnfc->fs.m_ext) !=
2867 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2868 			     sizeof(rxnfc->fs.m_ext));
2869 		BUILD_BUG_ON(
2870 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2871 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2872 			offsetof(struct ethtool_rxnfc, fs.location) -
2873 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2874 
2875 		if (copy_in_user(rxnfc, compat_rxnfc,
2876 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2877 				 (void __user *)rxnfc) ||
2878 		    copy_in_user(&rxnfc->fs.ring_cookie,
2879 				 &compat_rxnfc->fs.ring_cookie,
2880 				 (void __user *)(&rxnfc->fs.location + 1) -
2881 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2882 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2883 				 sizeof(rxnfc->rule_cnt)))
2884 			return -EFAULT;
2885 	}
2886 
2887 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2888 	if (ret)
2889 		return ret;
2890 
2891 	if (convert_out) {
2892 		if (copy_in_user(compat_rxnfc, rxnfc,
2893 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2894 				 (const void __user *)rxnfc) ||
2895 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2896 				 &rxnfc->fs.ring_cookie,
2897 				 (const void __user *)(&rxnfc->fs.location + 1) -
2898 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2899 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2900 				 sizeof(rxnfc->rule_cnt)))
2901 			return -EFAULT;
2902 
2903 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2904 			/* As an optimisation, we only copy the actual
2905 			 * number of rules that the underlying
2906 			 * function returned.  Since Mallory might
2907 			 * change the rule count in user memory, we
2908 			 * check that it is less than the rule count
2909 			 * originally given (as the user buffer size),
2910 			 * which has been range-checked.
2911 			 */
2912 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2913 				return -EFAULT;
2914 			if (actual_rule_cnt < rule_cnt)
2915 				rule_cnt = actual_rule_cnt;
2916 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2917 					 &rxnfc->rule_locs[0],
2918 					 rule_cnt * sizeof(u32)))
2919 				return -EFAULT;
2920 		}
2921 	}
2922 
2923 	return 0;
2924 }
2925 
2926 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2927 {
2928 	void __user *uptr;
2929 	compat_uptr_t uptr32;
2930 	struct ifreq __user *uifr;
2931 
2932 	uifr = compat_alloc_user_space(sizeof(*uifr));
2933 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2934 		return -EFAULT;
2935 
2936 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2937 		return -EFAULT;
2938 
2939 	uptr = compat_ptr(uptr32);
2940 
2941 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2942 		return -EFAULT;
2943 
2944 	return dev_ioctl(net, SIOCWANDEV, uifr);
2945 }
2946 
2947 static int bond_ioctl(struct net *net, unsigned int cmd,
2948 			 struct compat_ifreq __user *ifr32)
2949 {
2950 	struct ifreq kifr;
2951 	struct ifreq __user *uifr;
2952 	mm_segment_t old_fs;
2953 	int err;
2954 	u32 data;
2955 	void __user *datap;
2956 
2957 	switch (cmd) {
2958 	case SIOCBONDENSLAVE:
2959 	case SIOCBONDRELEASE:
2960 	case SIOCBONDSETHWADDR:
2961 	case SIOCBONDCHANGEACTIVE:
2962 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2963 			return -EFAULT;
2964 
2965 		old_fs = get_fs();
2966 		set_fs(KERNEL_DS);
2967 		err = dev_ioctl(net, cmd,
2968 				(struct ifreq __user __force *) &kifr);
2969 		set_fs(old_fs);
2970 
2971 		return err;
2972 	case SIOCBONDSLAVEINFOQUERY:
2973 	case SIOCBONDINFOQUERY:
2974 		uifr = compat_alloc_user_space(sizeof(*uifr));
2975 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2976 			return -EFAULT;
2977 
2978 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2979 			return -EFAULT;
2980 
2981 		datap = compat_ptr(data);
2982 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2983 			return -EFAULT;
2984 
2985 		return dev_ioctl(net, cmd, uifr);
2986 	default:
2987 		return -ENOIOCTLCMD;
2988 	}
2989 }
2990 
2991 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2992 				 struct compat_ifreq __user *u_ifreq32)
2993 {
2994 	struct ifreq __user *u_ifreq64;
2995 	char tmp_buf[IFNAMSIZ];
2996 	void __user *data64;
2997 	u32 data32;
2998 
2999 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3000 			   IFNAMSIZ))
3001 		return -EFAULT;
3002 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3003 		return -EFAULT;
3004 	data64 = compat_ptr(data32);
3005 
3006 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3007 
3008 	/* Don't check these user accesses, just let that get trapped
3009 	 * in the ioctl handler instead.
3010 	 */
3011 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3012 			 IFNAMSIZ))
3013 		return -EFAULT;
3014 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3015 		return -EFAULT;
3016 
3017 	return dev_ioctl(net, cmd, u_ifreq64);
3018 }
3019 
3020 static int dev_ifsioc(struct net *net, struct socket *sock,
3021 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3022 {
3023 	struct ifreq __user *uifr;
3024 	int err;
3025 
3026 	uifr = compat_alloc_user_space(sizeof(*uifr));
3027 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3028 		return -EFAULT;
3029 
3030 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3031 
3032 	if (!err) {
3033 		switch (cmd) {
3034 		case SIOCGIFFLAGS:
3035 		case SIOCGIFMETRIC:
3036 		case SIOCGIFMTU:
3037 		case SIOCGIFMEM:
3038 		case SIOCGIFHWADDR:
3039 		case SIOCGIFINDEX:
3040 		case SIOCGIFADDR:
3041 		case SIOCGIFBRDADDR:
3042 		case SIOCGIFDSTADDR:
3043 		case SIOCGIFNETMASK:
3044 		case SIOCGIFPFLAGS:
3045 		case SIOCGIFTXQLEN:
3046 		case SIOCGMIIPHY:
3047 		case SIOCGMIIREG:
3048 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3049 				err = -EFAULT;
3050 			break;
3051 		}
3052 	}
3053 	return err;
3054 }
3055 
3056 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3057 			struct compat_ifreq __user *uifr32)
3058 {
3059 	struct ifreq ifr;
3060 	struct compat_ifmap __user *uifmap32;
3061 	mm_segment_t old_fs;
3062 	int err;
3063 
3064 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3065 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3066 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3067 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3068 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3069 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3070 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3071 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3072 	if (err)
3073 		return -EFAULT;
3074 
3075 	old_fs = get_fs();
3076 	set_fs(KERNEL_DS);
3077 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3078 	set_fs(old_fs);
3079 
3080 	if (cmd == SIOCGIFMAP && !err) {
3081 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3082 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3083 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3084 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3085 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3086 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3087 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3088 		if (err)
3089 			err = -EFAULT;
3090 	}
3091 	return err;
3092 }
3093 
3094 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3095 {
3096 	void __user *uptr;
3097 	compat_uptr_t uptr32;
3098 	struct ifreq __user *uifr;
3099 
3100 	uifr = compat_alloc_user_space(sizeof(*uifr));
3101 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3102 		return -EFAULT;
3103 
3104 	if (get_user(uptr32, &uifr32->ifr_data))
3105 		return -EFAULT;
3106 
3107 	uptr = compat_ptr(uptr32);
3108 
3109 	if (put_user(uptr, &uifr->ifr_data))
3110 		return -EFAULT;
3111 
3112 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3113 }
3114 
3115 struct rtentry32 {
3116 	u32		rt_pad1;
3117 	struct sockaddr rt_dst;         /* target address               */
3118 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3119 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3120 	unsigned short	rt_flags;
3121 	short		rt_pad2;
3122 	u32		rt_pad3;
3123 	unsigned char	rt_tos;
3124 	unsigned char	rt_class;
3125 	short		rt_pad4;
3126 	short		rt_metric;      /* +1 for binary compatibility! */
3127 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3128 	u32		rt_mtu;         /* per route MTU/Window         */
3129 	u32		rt_window;      /* Window clamping              */
3130 	unsigned short  rt_irtt;        /* Initial RTT                  */
3131 };
3132 
3133 struct in6_rtmsg32 {
3134 	struct in6_addr		rtmsg_dst;
3135 	struct in6_addr		rtmsg_src;
3136 	struct in6_addr		rtmsg_gateway;
3137 	u32			rtmsg_type;
3138 	u16			rtmsg_dst_len;
3139 	u16			rtmsg_src_len;
3140 	u32			rtmsg_metric;
3141 	u32			rtmsg_info;
3142 	u32			rtmsg_flags;
3143 	s32			rtmsg_ifindex;
3144 };
3145 
3146 static int routing_ioctl(struct net *net, struct socket *sock,
3147 			 unsigned int cmd, void __user *argp)
3148 {
3149 	int ret;
3150 	void *r = NULL;
3151 	struct in6_rtmsg r6;
3152 	struct rtentry r4;
3153 	char devname[16];
3154 	u32 rtdev;
3155 	mm_segment_t old_fs = get_fs();
3156 
3157 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3158 		struct in6_rtmsg32 __user *ur6 = argp;
3159 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3160 			3 * sizeof(struct in6_addr));
3161 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3162 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3163 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3164 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3165 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3166 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3167 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3168 
3169 		r = (void *) &r6;
3170 	} else { /* ipv4 */
3171 		struct rtentry32 __user *ur4 = argp;
3172 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3173 					3 * sizeof(struct sockaddr));
3174 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3175 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3176 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3177 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3178 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3179 		ret |= get_user(rtdev, &(ur4->rt_dev));
3180 		if (rtdev) {
3181 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3182 			r4.rt_dev = (char __user __force *)devname;
3183 			devname[15] = 0;
3184 		} else
3185 			r4.rt_dev = NULL;
3186 
3187 		r = (void *) &r4;
3188 	}
3189 
3190 	if (ret) {
3191 		ret = -EFAULT;
3192 		goto out;
3193 	}
3194 
3195 	set_fs(KERNEL_DS);
3196 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3197 	set_fs(old_fs);
3198 
3199 out:
3200 	return ret;
3201 }
3202 
3203 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3204  * for some operations; this forces use of the newer bridge-utils that
3205  * use compatible ioctls
3206  */
3207 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3208 {
3209 	compat_ulong_t tmp;
3210 
3211 	if (get_user(tmp, argp))
3212 		return -EFAULT;
3213 	if (tmp == BRCTL_GET_VERSION)
3214 		return BRCTL_VERSION + 1;
3215 	return -EINVAL;
3216 }
3217 
3218 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3219 			 unsigned int cmd, unsigned long arg)
3220 {
3221 	void __user *argp = compat_ptr(arg);
3222 	struct sock *sk = sock->sk;
3223 	struct net *net = sock_net(sk);
3224 
3225 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3226 		return siocdevprivate_ioctl(net, cmd, argp);
3227 
3228 	switch (cmd) {
3229 	case SIOCSIFBR:
3230 	case SIOCGIFBR:
3231 		return old_bridge_ioctl(argp);
3232 	case SIOCGIFNAME:
3233 		return dev_ifname32(net, argp);
3234 	case SIOCGIFCONF:
3235 		return dev_ifconf(net, argp);
3236 	case SIOCETHTOOL:
3237 		return ethtool_ioctl(net, argp);
3238 	case SIOCWANDEV:
3239 		return compat_siocwandev(net, argp);
3240 	case SIOCGIFMAP:
3241 	case SIOCSIFMAP:
3242 		return compat_sioc_ifmap(net, cmd, argp);
3243 	case SIOCBONDENSLAVE:
3244 	case SIOCBONDRELEASE:
3245 	case SIOCBONDSETHWADDR:
3246 	case SIOCBONDSLAVEINFOQUERY:
3247 	case SIOCBONDINFOQUERY:
3248 	case SIOCBONDCHANGEACTIVE:
3249 		return bond_ioctl(net, cmd, argp);
3250 	case SIOCADDRT:
3251 	case SIOCDELRT:
3252 		return routing_ioctl(net, sock, cmd, argp);
3253 	case SIOCGSTAMP:
3254 		return do_siocgstamp(net, sock, cmd, argp);
3255 	case SIOCGSTAMPNS:
3256 		return do_siocgstampns(net, sock, cmd, argp);
3257 	case SIOCSHWTSTAMP:
3258 		return compat_siocshwtstamp(net, argp);
3259 
3260 	case FIOSETOWN:
3261 	case SIOCSPGRP:
3262 	case FIOGETOWN:
3263 	case SIOCGPGRP:
3264 	case SIOCBRADDBR:
3265 	case SIOCBRDELBR:
3266 	case SIOCGIFVLAN:
3267 	case SIOCSIFVLAN:
3268 	case SIOCADDDLCI:
3269 	case SIOCDELDLCI:
3270 		return sock_ioctl(file, cmd, arg);
3271 
3272 	case SIOCGIFFLAGS:
3273 	case SIOCSIFFLAGS:
3274 	case SIOCGIFMETRIC:
3275 	case SIOCSIFMETRIC:
3276 	case SIOCGIFMTU:
3277 	case SIOCSIFMTU:
3278 	case SIOCGIFMEM:
3279 	case SIOCSIFMEM:
3280 	case SIOCGIFHWADDR:
3281 	case SIOCSIFHWADDR:
3282 	case SIOCADDMULTI:
3283 	case SIOCDELMULTI:
3284 	case SIOCGIFINDEX:
3285 	case SIOCGIFADDR:
3286 	case SIOCSIFADDR:
3287 	case SIOCSIFHWBROADCAST:
3288 	case SIOCDIFADDR:
3289 	case SIOCGIFBRDADDR:
3290 	case SIOCSIFBRDADDR:
3291 	case SIOCGIFDSTADDR:
3292 	case SIOCSIFDSTADDR:
3293 	case SIOCGIFNETMASK:
3294 	case SIOCSIFNETMASK:
3295 	case SIOCSIFPFLAGS:
3296 	case SIOCGIFPFLAGS:
3297 	case SIOCGIFTXQLEN:
3298 	case SIOCSIFTXQLEN:
3299 	case SIOCBRADDIF:
3300 	case SIOCBRDELIF:
3301 	case SIOCSIFNAME:
3302 	case SIOCGMIIPHY:
3303 	case SIOCGMIIREG:
3304 	case SIOCSMIIREG:
3305 		return dev_ifsioc(net, sock, cmd, argp);
3306 
3307 	case SIOCSARP:
3308 	case SIOCGARP:
3309 	case SIOCDARP:
3310 	case SIOCATMARK:
3311 		return sock_do_ioctl(net, sock, cmd, arg);
3312 	}
3313 
3314 	return -ENOIOCTLCMD;
3315 }
3316 
3317 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3318 			      unsigned long arg)
3319 {
3320 	struct socket *sock = file->private_data;
3321 	int ret = -ENOIOCTLCMD;
3322 	struct sock *sk;
3323 	struct net *net;
3324 
3325 	sk = sock->sk;
3326 	net = sock_net(sk);
3327 
3328 	if (sock->ops->compat_ioctl)
3329 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3330 
3331 	if (ret == -ENOIOCTLCMD &&
3332 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3333 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3334 
3335 	if (ret == -ENOIOCTLCMD)
3336 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3337 
3338 	return ret;
3339 }
3340 #endif
3341 
3342 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3343 {
3344 	return sock->ops->bind(sock, addr, addrlen);
3345 }
3346 EXPORT_SYMBOL(kernel_bind);
3347 
3348 int kernel_listen(struct socket *sock, int backlog)
3349 {
3350 	return sock->ops->listen(sock, backlog);
3351 }
3352 EXPORT_SYMBOL(kernel_listen);
3353 
3354 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3355 {
3356 	struct sock *sk = sock->sk;
3357 	int err;
3358 
3359 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3360 			       newsock);
3361 	if (err < 0)
3362 		goto done;
3363 
3364 	err = sock->ops->accept(sock, *newsock, flags);
3365 	if (err < 0) {
3366 		sock_release(*newsock);
3367 		*newsock = NULL;
3368 		goto done;
3369 	}
3370 
3371 	(*newsock)->ops = sock->ops;
3372 	__module_get((*newsock)->ops->owner);
3373 
3374 done:
3375 	return err;
3376 }
3377 EXPORT_SYMBOL(kernel_accept);
3378 
3379 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3380 		   int flags)
3381 {
3382 	return sock->ops->connect(sock, addr, addrlen, flags);
3383 }
3384 EXPORT_SYMBOL(kernel_connect);
3385 
3386 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3387 			 int *addrlen)
3388 {
3389 	return sock->ops->getname(sock, addr, addrlen, 0);
3390 }
3391 EXPORT_SYMBOL(kernel_getsockname);
3392 
3393 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3394 			 int *addrlen)
3395 {
3396 	return sock->ops->getname(sock, addr, addrlen, 1);
3397 }
3398 EXPORT_SYMBOL(kernel_getpeername);
3399 
3400 int kernel_getsockopt(struct socket *sock, int level, int optname,
3401 			char *optval, int *optlen)
3402 {
3403 	mm_segment_t oldfs = get_fs();
3404 	char __user *uoptval;
3405 	int __user *uoptlen;
3406 	int err;
3407 
3408 	uoptval = (char __user __force *) optval;
3409 	uoptlen = (int __user __force *) optlen;
3410 
3411 	set_fs(KERNEL_DS);
3412 	if (level == SOL_SOCKET)
3413 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3414 	else
3415 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3416 					    uoptlen);
3417 	set_fs(oldfs);
3418 	return err;
3419 }
3420 EXPORT_SYMBOL(kernel_getsockopt);
3421 
3422 int kernel_setsockopt(struct socket *sock, int level, int optname,
3423 			char *optval, unsigned int optlen)
3424 {
3425 	mm_segment_t oldfs = get_fs();
3426 	char __user *uoptval;
3427 	int err;
3428 
3429 	uoptval = (char __user __force *) optval;
3430 
3431 	set_fs(KERNEL_DS);
3432 	if (level == SOL_SOCKET)
3433 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3434 	else
3435 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3436 					    optlen);
3437 	set_fs(oldfs);
3438 	return err;
3439 }
3440 EXPORT_SYMBOL(kernel_setsockopt);
3441 
3442 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3443 		    size_t size, int flags)
3444 {
3445 	if (sock->ops->sendpage)
3446 		return sock->ops->sendpage(sock, page, offset, size, flags);
3447 
3448 	return sock_no_sendpage(sock, page, offset, size, flags);
3449 }
3450 EXPORT_SYMBOL(kernel_sendpage);
3451 
3452 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3453 {
3454 	mm_segment_t oldfs = get_fs();
3455 	int err;
3456 
3457 	set_fs(KERNEL_DS);
3458 	err = sock->ops->ioctl(sock, cmd, arg);
3459 	set_fs(oldfs);
3460 
3461 	return err;
3462 }
3463 EXPORT_SYMBOL(kernel_sock_ioctl);
3464 
3465 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3466 {
3467 	return sock->ops->shutdown(sock, how);
3468 }
3469 EXPORT_SYMBOL(kernel_sock_shutdown);
3470