xref: /openbmc/linux/net/socket.c (revision 5927145e)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __read_mostly;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.destroy_inode	= sock_destroy_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
356 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
357 			 int flags, const char *dev_name, void *data)
358 {
359 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
360 				  sockfs_xattr_handlers,
361 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
362 }
363 
364 static struct vfsmount *sock_mnt __read_mostly;
365 
366 static struct file_system_type sock_fs_type = {
367 	.name =		"sockfs",
368 	.mount =	sockfs_mount,
369 	.kill_sb =	kill_anon_super,
370 };
371 
372 /*
373  *	Obtains the first available file descriptor and sets it up for use.
374  *
375  *	These functions create file structures and maps them to fd space
376  *	of the current process. On success it returns file descriptor
377  *	and file struct implicitly stored in sock->file.
378  *	Note that another thread may close file descriptor before we return
379  *	from this function. We use the fact that now we do not refer
380  *	to socket after mapping. If one day we will need it, this
381  *	function will increment ref. count on file by 1.
382  *
383  *	In any case returned fd MAY BE not valid!
384  *	This race condition is unavoidable
385  *	with shared fd spaces, we cannot solve it inside kernel,
386  *	but we take care of internal coherence yet.
387  */
388 
389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
390 {
391 	struct qstr name = { .name = "" };
392 	struct path path;
393 	struct file *file;
394 
395 	if (dname) {
396 		name.name = dname;
397 		name.len = strlen(name.name);
398 	} else if (sock->sk) {
399 		name.name = sock->sk->sk_prot_creator->name;
400 		name.len = strlen(name.name);
401 	}
402 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
403 	if (unlikely(!path.dentry)) {
404 		sock_release(sock);
405 		return ERR_PTR(-ENOMEM);
406 	}
407 	path.mnt = mntget(sock_mnt);
408 
409 	d_instantiate(path.dentry, SOCK_INODE(sock));
410 
411 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
412 		  &socket_file_ops);
413 	if (IS_ERR(file)) {
414 		/* drop dentry, keep inode for a bit */
415 		ihold(d_inode(path.dentry));
416 		path_put(&path);
417 		/* ... and now kill it properly */
418 		sock_release(sock);
419 		return file;
420 	}
421 
422 	sock->file = file;
423 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
424 	file->private_data = sock;
425 	return file;
426 }
427 EXPORT_SYMBOL(sock_alloc_file);
428 
429 static int sock_map_fd(struct socket *sock, int flags)
430 {
431 	struct file *newfile;
432 	int fd = get_unused_fd_flags(flags);
433 	if (unlikely(fd < 0)) {
434 		sock_release(sock);
435 		return fd;
436 	}
437 
438 	newfile = sock_alloc_file(sock, flags, NULL);
439 	if (likely(!IS_ERR(newfile))) {
440 		fd_install(fd, newfile);
441 		return fd;
442 	}
443 
444 	put_unused_fd(fd);
445 	return PTR_ERR(newfile);
446 }
447 
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 	if (file->f_op == &socket_file_ops)
451 		return file->private_data;	/* set in sock_map_fd */
452 
453 	*err = -ENOTSOCK;
454 	return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457 
458 /**
459  *	sockfd_lookup - Go from a file number to its socket slot
460  *	@fd: file handle
461  *	@err: pointer to an error code return
462  *
463  *	The file handle passed in is locked and the socket it is bound
464  *	to is returned. If an error occurs the err pointer is overwritten
465  *	with a negative errno code and NULL is returned. The function checks
466  *	for both invalid handles and passing a handle which is not a socket.
467  *
468  *	On a success the socket object pointer is returned.
469  */
470 
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 	struct file *file;
474 	struct socket *sock;
475 
476 	file = fget(fd);
477 	if (!file) {
478 		*err = -EBADF;
479 		return NULL;
480 	}
481 
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488 
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 	struct fd f = fdget(fd);
492 	struct socket *sock;
493 
494 	*err = -EBADF;
495 	if (f.file) {
496 		sock = sock_from_file(f.file, err);
497 		if (likely(sock)) {
498 			*fput_needed = f.flags;
499 			return sock;
500 		}
501 		fdput(f);
502 	}
503 	return NULL;
504 }
505 
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 				size_t size)
508 {
509 	ssize_t len;
510 	ssize_t used = 0;
511 
512 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 	if (len < 0)
514 		return len;
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		buffer += len;
520 	}
521 
522 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 	used += len;
524 	if (buffer) {
525 		if (size < used)
526 			return -ERANGE;
527 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 		buffer += len;
529 	}
530 
531 	return used;
532 }
533 
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 	int err = simple_setattr(dentry, iattr);
537 
538 	if (!err && (iattr->ia_valid & ATTR_UID)) {
539 		struct socket *sock = SOCKET_I(d_inode(dentry));
540 
541 		sock->sk->sk_uid = iattr->ia_uid;
542 	}
543 
544 	return err;
545 }
546 
547 static const struct inode_operations sockfs_inode_ops = {
548 	.listxattr = sockfs_listxattr,
549 	.setattr = sockfs_setattr,
550 };
551 
552 /**
553  *	sock_alloc	-	allocate a socket
554  *
555  *	Allocate a new inode and socket object. The two are bound together
556  *	and initialised. The socket is then returned. If we are out of inodes
557  *	NULL is returned.
558  */
559 
560 struct socket *sock_alloc(void)
561 {
562 	struct inode *inode;
563 	struct socket *sock;
564 
565 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 	if (!inode)
567 		return NULL;
568 
569 	sock = SOCKET_I(inode);
570 
571 	inode->i_ino = get_next_ino();
572 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
573 	inode->i_uid = current_fsuid();
574 	inode->i_gid = current_fsgid();
575 	inode->i_op = &sockfs_inode_ops;
576 
577 	return sock;
578 }
579 EXPORT_SYMBOL(sock_alloc);
580 
581 /**
582  *	sock_release	-	close a socket
583  *	@sock: socket to close
584  *
585  *	The socket is released from the protocol stack if it has a release
586  *	callback, and the inode is then released if the socket is bound to
587  *	an inode not a file.
588  */
589 
590 void sock_release(struct socket *sock)
591 {
592 	if (sock->ops) {
593 		struct module *owner = sock->ops->owner;
594 
595 		sock->ops->release(sock);
596 		sock->ops = NULL;
597 		module_put(owner);
598 	}
599 
600 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
601 		pr_err("%s: fasync list not empty!\n", __func__);
602 
603 	if (!sock->file) {
604 		iput(SOCK_INODE(sock));
605 		return;
606 	}
607 	sock->file = NULL;
608 }
609 EXPORT_SYMBOL(sock_release);
610 
611 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
612 {
613 	u8 flags = *tx_flags;
614 
615 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
616 		flags |= SKBTX_HW_TSTAMP;
617 
618 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
619 		flags |= SKBTX_SW_TSTAMP;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
622 		flags |= SKBTX_SCHED_TSTAMP;
623 
624 	*tx_flags = flags;
625 }
626 EXPORT_SYMBOL(__sock_tx_timestamp);
627 
628 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
629 {
630 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
631 	BUG_ON(ret == -EIOCBQUEUED);
632 	return ret;
633 }
634 
635 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
636 {
637 	int err = security_socket_sendmsg(sock, msg,
638 					  msg_data_left(msg));
639 
640 	return err ?: sock_sendmsg_nosec(sock, msg);
641 }
642 EXPORT_SYMBOL(sock_sendmsg);
643 
644 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
645 		   struct kvec *vec, size_t num, size_t size)
646 {
647 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
648 	return sock_sendmsg(sock, msg);
649 }
650 EXPORT_SYMBOL(kernel_sendmsg);
651 
652 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
653 			  struct kvec *vec, size_t num, size_t size)
654 {
655 	struct socket *sock = sk->sk_socket;
656 
657 	if (!sock->ops->sendmsg_locked)
658 		return sock_no_sendmsg_locked(sk, msg, size);
659 
660 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
661 
662 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
663 }
664 EXPORT_SYMBOL(kernel_sendmsg_locked);
665 
666 static bool skb_is_err_queue(const struct sk_buff *skb)
667 {
668 	/* pkt_type of skbs enqueued on the error queue are set to
669 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
670 	 * in recvmsg, since skbs received on a local socket will never
671 	 * have a pkt_type of PACKET_OUTGOING.
672 	 */
673 	return skb->pkt_type == PACKET_OUTGOING;
674 }
675 
676 /* On transmit, software and hardware timestamps are returned independently.
677  * As the two skb clones share the hardware timestamp, which may be updated
678  * before the software timestamp is received, a hardware TX timestamp may be
679  * returned only if there is no software TX timestamp. Ignore false software
680  * timestamps, which may be made in the __sock_recv_timestamp() call when the
681  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
682  * hardware timestamp.
683  */
684 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
685 {
686 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
687 }
688 
689 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
690 {
691 	struct scm_ts_pktinfo ts_pktinfo;
692 	struct net_device *orig_dev;
693 
694 	if (!skb_mac_header_was_set(skb))
695 		return;
696 
697 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
698 
699 	rcu_read_lock();
700 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
701 	if (orig_dev)
702 		ts_pktinfo.if_index = orig_dev->ifindex;
703 	rcu_read_unlock();
704 
705 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
706 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
707 		 sizeof(ts_pktinfo), &ts_pktinfo);
708 }
709 
710 /*
711  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
712  */
713 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
714 	struct sk_buff *skb)
715 {
716 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
717 	struct scm_timestamping tss;
718 	int empty = 1, false_tstamp = 0;
719 	struct skb_shared_hwtstamps *shhwtstamps =
720 		skb_hwtstamps(skb);
721 
722 	/* Race occurred between timestamp enabling and packet
723 	   receiving.  Fill in the current time for now. */
724 	if (need_software_tstamp && skb->tstamp == 0) {
725 		__net_timestamp(skb);
726 		false_tstamp = 1;
727 	}
728 
729 	if (need_software_tstamp) {
730 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
731 			struct timeval tv;
732 			skb_get_timestamp(skb, &tv);
733 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
734 				 sizeof(tv), &tv);
735 		} else {
736 			struct timespec ts;
737 			skb_get_timestampns(skb, &ts);
738 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
739 				 sizeof(ts), &ts);
740 		}
741 	}
742 
743 	memset(&tss, 0, sizeof(tss));
744 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
745 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
746 		empty = 0;
747 	if (shhwtstamps &&
748 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
749 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
750 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
751 		empty = 0;
752 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
753 		    !skb_is_err_queue(skb))
754 			put_ts_pktinfo(msg, skb);
755 	}
756 	if (!empty) {
757 		put_cmsg(msg, SOL_SOCKET,
758 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
759 
760 		if (skb_is_err_queue(skb) && skb->len &&
761 		    SKB_EXT_ERR(skb)->opt_stats)
762 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
763 				 skb->len, skb->data);
764 	}
765 }
766 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
767 
768 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
769 	struct sk_buff *skb)
770 {
771 	int ack;
772 
773 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
774 		return;
775 	if (!skb->wifi_acked_valid)
776 		return;
777 
778 	ack = skb->wifi_acked;
779 
780 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
781 }
782 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
783 
784 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
785 				   struct sk_buff *skb)
786 {
787 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
788 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
789 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
790 }
791 
792 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
793 	struct sk_buff *skb)
794 {
795 	sock_recv_timestamp(msg, sk, skb);
796 	sock_recv_drops(msg, sk, skb);
797 }
798 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
799 
800 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
801 				     int flags)
802 {
803 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
804 }
805 
806 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
807 {
808 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
809 
810 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
811 }
812 EXPORT_SYMBOL(sock_recvmsg);
813 
814 /**
815  * kernel_recvmsg - Receive a message from a socket (kernel space)
816  * @sock:       The socket to receive the message from
817  * @msg:        Received message
818  * @vec:        Input s/g array for message data
819  * @num:        Size of input s/g array
820  * @size:       Number of bytes to read
821  * @flags:      Message flags (MSG_DONTWAIT, etc...)
822  *
823  * On return the msg structure contains the scatter/gather array passed in the
824  * vec argument. The array is modified so that it consists of the unfilled
825  * portion of the original array.
826  *
827  * The returned value is the total number of bytes received, or an error.
828  */
829 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
830 		   struct kvec *vec, size_t num, size_t size, int flags)
831 {
832 	mm_segment_t oldfs = get_fs();
833 	int result;
834 
835 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
836 	set_fs(KERNEL_DS);
837 	result = sock_recvmsg(sock, msg, flags);
838 	set_fs(oldfs);
839 	return result;
840 }
841 EXPORT_SYMBOL(kernel_recvmsg);
842 
843 static ssize_t sock_sendpage(struct file *file, struct page *page,
844 			     int offset, size_t size, loff_t *ppos, int more)
845 {
846 	struct socket *sock;
847 	int flags;
848 
849 	sock = file->private_data;
850 
851 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
852 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
853 	flags |= more;
854 
855 	return kernel_sendpage(sock, page, offset, size, flags);
856 }
857 
858 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
859 				struct pipe_inode_info *pipe, size_t len,
860 				unsigned int flags)
861 {
862 	struct socket *sock = file->private_data;
863 
864 	if (unlikely(!sock->ops->splice_read))
865 		return -EINVAL;
866 
867 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
868 }
869 
870 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
871 {
872 	struct file *file = iocb->ki_filp;
873 	struct socket *sock = file->private_data;
874 	struct msghdr msg = {.msg_iter = *to,
875 			     .msg_iocb = iocb};
876 	ssize_t res;
877 
878 	if (file->f_flags & O_NONBLOCK)
879 		msg.msg_flags = MSG_DONTWAIT;
880 
881 	if (iocb->ki_pos != 0)
882 		return -ESPIPE;
883 
884 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
885 		return 0;
886 
887 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
888 	*to = msg.msg_iter;
889 	return res;
890 }
891 
892 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
893 {
894 	struct file *file = iocb->ki_filp;
895 	struct socket *sock = file->private_data;
896 	struct msghdr msg = {.msg_iter = *from,
897 			     .msg_iocb = iocb};
898 	ssize_t res;
899 
900 	if (iocb->ki_pos != 0)
901 		return -ESPIPE;
902 
903 	if (file->f_flags & O_NONBLOCK)
904 		msg.msg_flags = MSG_DONTWAIT;
905 
906 	if (sock->type == SOCK_SEQPACKET)
907 		msg.msg_flags |= MSG_EOR;
908 
909 	res = sock_sendmsg(sock, &msg);
910 	*from = msg.msg_iter;
911 	return res;
912 }
913 
914 /*
915  * Atomic setting of ioctl hooks to avoid race
916  * with module unload.
917  */
918 
919 static DEFINE_MUTEX(br_ioctl_mutex);
920 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
921 
922 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
923 {
924 	mutex_lock(&br_ioctl_mutex);
925 	br_ioctl_hook = hook;
926 	mutex_unlock(&br_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(brioctl_set);
929 
930 static DEFINE_MUTEX(vlan_ioctl_mutex);
931 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
932 
933 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
934 {
935 	mutex_lock(&vlan_ioctl_mutex);
936 	vlan_ioctl_hook = hook;
937 	mutex_unlock(&vlan_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(vlan_ioctl_set);
940 
941 static DEFINE_MUTEX(dlci_ioctl_mutex);
942 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
943 
944 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
945 {
946 	mutex_lock(&dlci_ioctl_mutex);
947 	dlci_ioctl_hook = hook;
948 	mutex_unlock(&dlci_ioctl_mutex);
949 }
950 EXPORT_SYMBOL(dlci_ioctl_set);
951 
952 static long sock_do_ioctl(struct net *net, struct socket *sock,
953 				 unsigned int cmd, unsigned long arg)
954 {
955 	int err;
956 	void __user *argp = (void __user *)arg;
957 
958 	err = sock->ops->ioctl(sock, cmd, arg);
959 
960 	/*
961 	 * If this ioctl is unknown try to hand it down
962 	 * to the NIC driver.
963 	 */
964 	if (err != -ENOIOCTLCMD)
965 		return err;
966 
967 	if (cmd == SIOCGIFCONF) {
968 		struct ifconf ifc;
969 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
970 			return -EFAULT;
971 		rtnl_lock();
972 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
973 		rtnl_unlock();
974 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
975 			err = -EFAULT;
976 	} else {
977 		struct ifreq ifr;
978 		bool need_copyout;
979 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
980 			return -EFAULT;
981 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
982 		if (!err && need_copyout)
983 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
984 				return -EFAULT;
985 	}
986 	return err;
987 }
988 
989 /*
990  *	With an ioctl, arg may well be a user mode pointer, but we don't know
991  *	what to do with it - that's up to the protocol still.
992  */
993 
994 static struct ns_common *get_net_ns(struct ns_common *ns)
995 {
996 	return &get_net(container_of(ns, struct net, ns))->ns;
997 }
998 
999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000 {
1001 	struct socket *sock;
1002 	struct sock *sk;
1003 	void __user *argp = (void __user *)arg;
1004 	int pid, err;
1005 	struct net *net;
1006 
1007 	sock = file->private_data;
1008 	sk = sock->sk;
1009 	net = sock_net(sk);
1010 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011 		struct ifreq ifr;
1012 		bool need_copyout;
1013 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014 			return -EFAULT;
1015 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016 		if (!err && need_copyout)
1017 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018 				return -EFAULT;
1019 	} else
1020 #ifdef CONFIG_WEXT_CORE
1021 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022 		err = wext_handle_ioctl(net, cmd, argp);
1023 	} else
1024 #endif
1025 		switch (cmd) {
1026 		case FIOSETOWN:
1027 		case SIOCSPGRP:
1028 			err = -EFAULT;
1029 			if (get_user(pid, (int __user *)argp))
1030 				break;
1031 			err = f_setown(sock->file, pid, 1);
1032 			break;
1033 		case FIOGETOWN:
1034 		case SIOCGPGRP:
1035 			err = put_user(f_getown(sock->file),
1036 				       (int __user *)argp);
1037 			break;
1038 		case SIOCGIFBR:
1039 		case SIOCSIFBR:
1040 		case SIOCBRADDBR:
1041 		case SIOCBRDELBR:
1042 			err = -ENOPKG;
1043 			if (!br_ioctl_hook)
1044 				request_module("bridge");
1045 
1046 			mutex_lock(&br_ioctl_mutex);
1047 			if (br_ioctl_hook)
1048 				err = br_ioctl_hook(net, cmd, argp);
1049 			mutex_unlock(&br_ioctl_mutex);
1050 			break;
1051 		case SIOCGIFVLAN:
1052 		case SIOCSIFVLAN:
1053 			err = -ENOPKG;
1054 			if (!vlan_ioctl_hook)
1055 				request_module("8021q");
1056 
1057 			mutex_lock(&vlan_ioctl_mutex);
1058 			if (vlan_ioctl_hook)
1059 				err = vlan_ioctl_hook(net, argp);
1060 			mutex_unlock(&vlan_ioctl_mutex);
1061 			break;
1062 		case SIOCADDDLCI:
1063 		case SIOCDELDLCI:
1064 			err = -ENOPKG;
1065 			if (!dlci_ioctl_hook)
1066 				request_module("dlci");
1067 
1068 			mutex_lock(&dlci_ioctl_mutex);
1069 			if (dlci_ioctl_hook)
1070 				err = dlci_ioctl_hook(cmd, argp);
1071 			mutex_unlock(&dlci_ioctl_mutex);
1072 			break;
1073 		case SIOCGSKNS:
1074 			err = -EPERM;
1075 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076 				break;
1077 
1078 			err = open_related_ns(&net->ns, get_net_ns);
1079 			break;
1080 		default:
1081 			err = sock_do_ioctl(net, sock, cmd, arg);
1082 			break;
1083 		}
1084 	return err;
1085 }
1086 
1087 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088 {
1089 	int err;
1090 	struct socket *sock = NULL;
1091 
1092 	err = security_socket_create(family, type, protocol, 1);
1093 	if (err)
1094 		goto out;
1095 
1096 	sock = sock_alloc();
1097 	if (!sock) {
1098 		err = -ENOMEM;
1099 		goto out;
1100 	}
1101 
1102 	sock->type = type;
1103 	err = security_socket_post_create(sock, family, type, protocol, 1);
1104 	if (err)
1105 		goto out_release;
1106 
1107 out:
1108 	*res = sock;
1109 	return err;
1110 out_release:
1111 	sock_release(sock);
1112 	sock = NULL;
1113 	goto out;
1114 }
1115 EXPORT_SYMBOL(sock_create_lite);
1116 
1117 /* No kernel lock held - perfect */
1118 static __poll_t sock_poll(struct file *file, poll_table *wait)
1119 {
1120 	__poll_t busy_flag = 0;
1121 	struct socket *sock;
1122 
1123 	/*
1124 	 *      We can't return errors to poll, so it's either yes or no.
1125 	 */
1126 	sock = file->private_data;
1127 
1128 	if (sk_can_busy_loop(sock->sk)) {
1129 		/* this socket can poll_ll so tell the system call */
1130 		busy_flag = POLL_BUSY_LOOP;
1131 
1132 		/* once, only if requested by syscall */
1133 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1134 			sk_busy_loop(sock->sk, 1);
1135 	}
1136 
1137 	return busy_flag | sock->ops->poll(file, sock, wait);
1138 }
1139 
1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141 {
1142 	struct socket *sock = file->private_data;
1143 
1144 	return sock->ops->mmap(file, sock, vma);
1145 }
1146 
1147 static int sock_close(struct inode *inode, struct file *filp)
1148 {
1149 	sock_release(SOCKET_I(inode));
1150 	return 0;
1151 }
1152 
1153 /*
1154  *	Update the socket async list
1155  *
1156  *	Fasync_list locking strategy.
1157  *
1158  *	1. fasync_list is modified only under process context socket lock
1159  *	   i.e. under semaphore.
1160  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161  *	   or under socket lock
1162  */
1163 
1164 static int sock_fasync(int fd, struct file *filp, int on)
1165 {
1166 	struct socket *sock = filp->private_data;
1167 	struct sock *sk = sock->sk;
1168 	struct socket_wq *wq;
1169 
1170 	if (sk == NULL)
1171 		return -EINVAL;
1172 
1173 	lock_sock(sk);
1174 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175 	fasync_helper(fd, filp, on, &wq->fasync_list);
1176 
1177 	if (!wq->fasync_list)
1178 		sock_reset_flag(sk, SOCK_FASYNC);
1179 	else
1180 		sock_set_flag(sk, SOCK_FASYNC);
1181 
1182 	release_sock(sk);
1183 	return 0;
1184 }
1185 
1186 /* This function may be called only under rcu_lock */
1187 
1188 int sock_wake_async(struct socket_wq *wq, int how, int band)
1189 {
1190 	if (!wq || !wq->fasync_list)
1191 		return -1;
1192 
1193 	switch (how) {
1194 	case SOCK_WAKE_WAITD:
1195 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196 			break;
1197 		goto call_kill;
1198 	case SOCK_WAKE_SPACE:
1199 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200 			break;
1201 		/* fall through */
1202 	case SOCK_WAKE_IO:
1203 call_kill:
1204 		kill_fasync(&wq->fasync_list, SIGIO, band);
1205 		break;
1206 	case SOCK_WAKE_URG:
1207 		kill_fasync(&wq->fasync_list, SIGURG, band);
1208 	}
1209 
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL(sock_wake_async);
1213 
1214 int __sock_create(struct net *net, int family, int type, int protocol,
1215 			 struct socket **res, int kern)
1216 {
1217 	int err;
1218 	struct socket *sock;
1219 	const struct net_proto_family *pf;
1220 
1221 	/*
1222 	 *      Check protocol is in range
1223 	 */
1224 	if (family < 0 || family >= NPROTO)
1225 		return -EAFNOSUPPORT;
1226 	if (type < 0 || type >= SOCK_MAX)
1227 		return -EINVAL;
1228 
1229 	/* Compatibility.
1230 
1231 	   This uglymoron is moved from INET layer to here to avoid
1232 	   deadlock in module load.
1233 	 */
1234 	if (family == PF_INET && type == SOCK_PACKET) {
1235 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236 			     current->comm);
1237 		family = PF_PACKET;
1238 	}
1239 
1240 	err = security_socket_create(family, type, protocol, kern);
1241 	if (err)
1242 		return err;
1243 
1244 	/*
1245 	 *	Allocate the socket and allow the family to set things up. if
1246 	 *	the protocol is 0, the family is instructed to select an appropriate
1247 	 *	default.
1248 	 */
1249 	sock = sock_alloc();
1250 	if (!sock) {
1251 		net_warn_ratelimited("socket: no more sockets\n");
1252 		return -ENFILE;	/* Not exactly a match, but its the
1253 				   closest posix thing */
1254 	}
1255 
1256 	sock->type = type;
1257 
1258 #ifdef CONFIG_MODULES
1259 	/* Attempt to load a protocol module if the find failed.
1260 	 *
1261 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262 	 * requested real, full-featured networking support upon configuration.
1263 	 * Otherwise module support will break!
1264 	 */
1265 	if (rcu_access_pointer(net_families[family]) == NULL)
1266 		request_module("net-pf-%d", family);
1267 #endif
1268 
1269 	rcu_read_lock();
1270 	pf = rcu_dereference(net_families[family]);
1271 	err = -EAFNOSUPPORT;
1272 	if (!pf)
1273 		goto out_release;
1274 
1275 	/*
1276 	 * We will call the ->create function, that possibly is in a loadable
1277 	 * module, so we have to bump that loadable module refcnt first.
1278 	 */
1279 	if (!try_module_get(pf->owner))
1280 		goto out_release;
1281 
1282 	/* Now protected by module ref count */
1283 	rcu_read_unlock();
1284 
1285 	err = pf->create(net, sock, protocol, kern);
1286 	if (err < 0)
1287 		goto out_module_put;
1288 
1289 	/*
1290 	 * Now to bump the refcnt of the [loadable] module that owns this
1291 	 * socket at sock_release time we decrement its refcnt.
1292 	 */
1293 	if (!try_module_get(sock->ops->owner))
1294 		goto out_module_busy;
1295 
1296 	/*
1297 	 * Now that we're done with the ->create function, the [loadable]
1298 	 * module can have its refcnt decremented
1299 	 */
1300 	module_put(pf->owner);
1301 	err = security_socket_post_create(sock, family, type, protocol, kern);
1302 	if (err)
1303 		goto out_sock_release;
1304 	*res = sock;
1305 
1306 	return 0;
1307 
1308 out_module_busy:
1309 	err = -EAFNOSUPPORT;
1310 out_module_put:
1311 	sock->ops = NULL;
1312 	module_put(pf->owner);
1313 out_sock_release:
1314 	sock_release(sock);
1315 	return err;
1316 
1317 out_release:
1318 	rcu_read_unlock();
1319 	goto out_sock_release;
1320 }
1321 EXPORT_SYMBOL(__sock_create);
1322 
1323 int sock_create(int family, int type, int protocol, struct socket **res)
1324 {
1325 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326 }
1327 EXPORT_SYMBOL(sock_create);
1328 
1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330 {
1331 	return __sock_create(net, family, type, protocol, res, 1);
1332 }
1333 EXPORT_SYMBOL(sock_create_kern);
1334 
1335 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1336 {
1337 	int retval;
1338 	struct socket *sock;
1339 	int flags;
1340 
1341 	/* Check the SOCK_* constants for consistency.  */
1342 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346 
1347 	flags = type & ~SOCK_TYPE_MASK;
1348 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 		return -EINVAL;
1350 	type &= SOCK_TYPE_MASK;
1351 
1352 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354 
1355 	retval = sock_create(family, type, protocol, &sock);
1356 	if (retval < 0)
1357 		return retval;
1358 
1359 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360 }
1361 
1362 /*
1363  *	Create a pair of connected sockets.
1364  */
1365 
1366 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1367 		int __user *, usockvec)
1368 {
1369 	struct socket *sock1, *sock2;
1370 	int fd1, fd2, err;
1371 	struct file *newfile1, *newfile2;
1372 	int flags;
1373 
1374 	flags = type & ~SOCK_TYPE_MASK;
1375 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1376 		return -EINVAL;
1377 	type &= SOCK_TYPE_MASK;
1378 
1379 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1380 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1381 
1382 	/*
1383 	 * reserve descriptors and make sure we won't fail
1384 	 * to return them to userland.
1385 	 */
1386 	fd1 = get_unused_fd_flags(flags);
1387 	if (unlikely(fd1 < 0))
1388 		return fd1;
1389 
1390 	fd2 = get_unused_fd_flags(flags);
1391 	if (unlikely(fd2 < 0)) {
1392 		put_unused_fd(fd1);
1393 		return fd2;
1394 	}
1395 
1396 	err = put_user(fd1, &usockvec[0]);
1397 	if (err)
1398 		goto out;
1399 
1400 	err = put_user(fd2, &usockvec[1]);
1401 	if (err)
1402 		goto out;
1403 
1404 	/*
1405 	 * Obtain the first socket and check if the underlying protocol
1406 	 * supports the socketpair call.
1407 	 */
1408 
1409 	err = sock_create(family, type, protocol, &sock1);
1410 	if (unlikely(err < 0))
1411 		goto out;
1412 
1413 	err = sock_create(family, type, protocol, &sock2);
1414 	if (unlikely(err < 0)) {
1415 		sock_release(sock1);
1416 		goto out;
1417 	}
1418 
1419 	err = sock1->ops->socketpair(sock1, sock2);
1420 	if (unlikely(err < 0)) {
1421 		sock_release(sock2);
1422 		sock_release(sock1);
1423 		goto out;
1424 	}
1425 
1426 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1427 	if (IS_ERR(newfile1)) {
1428 		err = PTR_ERR(newfile1);
1429 		sock_release(sock2);
1430 		goto out;
1431 	}
1432 
1433 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1434 	if (IS_ERR(newfile2)) {
1435 		err = PTR_ERR(newfile2);
1436 		fput(newfile1);
1437 		goto out;
1438 	}
1439 
1440 	audit_fd_pair(fd1, fd2);
1441 
1442 	fd_install(fd1, newfile1);
1443 	fd_install(fd2, newfile2);
1444 	return 0;
1445 
1446 out:
1447 	put_unused_fd(fd2);
1448 	put_unused_fd(fd1);
1449 	return err;
1450 }
1451 
1452 /*
1453  *	Bind a name to a socket. Nothing much to do here since it's
1454  *	the protocol's responsibility to handle the local address.
1455  *
1456  *	We move the socket address to kernel space before we call
1457  *	the protocol layer (having also checked the address is ok).
1458  */
1459 
1460 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1461 {
1462 	struct socket *sock;
1463 	struct sockaddr_storage address;
1464 	int err, fput_needed;
1465 
1466 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1467 	if (sock) {
1468 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1469 		if (err >= 0) {
1470 			err = security_socket_bind(sock,
1471 						   (struct sockaddr *)&address,
1472 						   addrlen);
1473 			if (!err)
1474 				err = sock->ops->bind(sock,
1475 						      (struct sockaddr *)
1476 						      &address, addrlen);
1477 		}
1478 		fput_light(sock->file, fput_needed);
1479 	}
1480 	return err;
1481 }
1482 
1483 /*
1484  *	Perform a listen. Basically, we allow the protocol to do anything
1485  *	necessary for a listen, and if that works, we mark the socket as
1486  *	ready for listening.
1487  */
1488 
1489 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1490 {
1491 	struct socket *sock;
1492 	int err, fput_needed;
1493 	int somaxconn;
1494 
1495 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1496 	if (sock) {
1497 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1498 		if ((unsigned int)backlog > somaxconn)
1499 			backlog = somaxconn;
1500 
1501 		err = security_socket_listen(sock, backlog);
1502 		if (!err)
1503 			err = sock->ops->listen(sock, backlog);
1504 
1505 		fput_light(sock->file, fput_needed);
1506 	}
1507 	return err;
1508 }
1509 
1510 /*
1511  *	For accept, we attempt to create a new socket, set up the link
1512  *	with the client, wake up the client, then return the new
1513  *	connected fd. We collect the address of the connector in kernel
1514  *	space and move it to user at the very end. This is unclean because
1515  *	we open the socket then return an error.
1516  *
1517  *	1003.1g adds the ability to recvmsg() to query connection pending
1518  *	status to recvmsg. We need to add that support in a way thats
1519  *	clean when we restucture accept also.
1520  */
1521 
1522 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1523 		int __user *, upeer_addrlen, int, flags)
1524 {
1525 	struct socket *sock, *newsock;
1526 	struct file *newfile;
1527 	int err, len, newfd, fput_needed;
1528 	struct sockaddr_storage address;
1529 
1530 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1531 		return -EINVAL;
1532 
1533 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1534 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1535 
1536 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 	if (!sock)
1538 		goto out;
1539 
1540 	err = -ENFILE;
1541 	newsock = sock_alloc();
1542 	if (!newsock)
1543 		goto out_put;
1544 
1545 	newsock->type = sock->type;
1546 	newsock->ops = sock->ops;
1547 
1548 	/*
1549 	 * We don't need try_module_get here, as the listening socket (sock)
1550 	 * has the protocol module (sock->ops->owner) held.
1551 	 */
1552 	__module_get(newsock->ops->owner);
1553 
1554 	newfd = get_unused_fd_flags(flags);
1555 	if (unlikely(newfd < 0)) {
1556 		err = newfd;
1557 		sock_release(newsock);
1558 		goto out_put;
1559 	}
1560 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1561 	if (IS_ERR(newfile)) {
1562 		err = PTR_ERR(newfile);
1563 		put_unused_fd(newfd);
1564 		goto out_put;
1565 	}
1566 
1567 	err = security_socket_accept(sock, newsock);
1568 	if (err)
1569 		goto out_fd;
1570 
1571 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1572 	if (err < 0)
1573 		goto out_fd;
1574 
1575 	if (upeer_sockaddr) {
1576 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1577 					  &len, 2) < 0) {
1578 			err = -ECONNABORTED;
1579 			goto out_fd;
1580 		}
1581 		err = move_addr_to_user(&address,
1582 					len, upeer_sockaddr, upeer_addrlen);
1583 		if (err < 0)
1584 			goto out_fd;
1585 	}
1586 
1587 	/* File flags are not inherited via accept() unlike another OSes. */
1588 
1589 	fd_install(newfd, newfile);
1590 	err = newfd;
1591 
1592 out_put:
1593 	fput_light(sock->file, fput_needed);
1594 out:
1595 	return err;
1596 out_fd:
1597 	fput(newfile);
1598 	put_unused_fd(newfd);
1599 	goto out_put;
1600 }
1601 
1602 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1603 		int __user *, upeer_addrlen)
1604 {
1605 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1606 }
1607 
1608 /*
1609  *	Attempt to connect to a socket with the server address.  The address
1610  *	is in user space so we verify it is OK and move it to kernel space.
1611  *
1612  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1613  *	break bindings
1614  *
1615  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1616  *	other SEQPACKET protocols that take time to connect() as it doesn't
1617  *	include the -EINPROGRESS status for such sockets.
1618  */
1619 
1620 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1621 		int, addrlen)
1622 {
1623 	struct socket *sock;
1624 	struct sockaddr_storage address;
1625 	int err, fput_needed;
1626 
1627 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628 	if (!sock)
1629 		goto out;
1630 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1631 	if (err < 0)
1632 		goto out_put;
1633 
1634 	err =
1635 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1636 	if (err)
1637 		goto out_put;
1638 
1639 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1640 				 sock->file->f_flags);
1641 out_put:
1642 	fput_light(sock->file, fput_needed);
1643 out:
1644 	return err;
1645 }
1646 
1647 /*
1648  *	Get the local address ('name') of a socket object. Move the obtained
1649  *	name to user space.
1650  */
1651 
1652 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1653 		int __user *, usockaddr_len)
1654 {
1655 	struct socket *sock;
1656 	struct sockaddr_storage address;
1657 	int len, err, fput_needed;
1658 
1659 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1660 	if (!sock)
1661 		goto out;
1662 
1663 	err = security_socket_getsockname(sock);
1664 	if (err)
1665 		goto out_put;
1666 
1667 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1668 	if (err)
1669 		goto out_put;
1670 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1671 
1672 out_put:
1673 	fput_light(sock->file, fput_needed);
1674 out:
1675 	return err;
1676 }
1677 
1678 /*
1679  *	Get the remote address ('name') of a socket object. Move the obtained
1680  *	name to user space.
1681  */
1682 
1683 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1684 		int __user *, usockaddr_len)
1685 {
1686 	struct socket *sock;
1687 	struct sockaddr_storage address;
1688 	int len, err, fput_needed;
1689 
1690 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 	if (sock != NULL) {
1692 		err = security_socket_getpeername(sock);
1693 		if (err) {
1694 			fput_light(sock->file, fput_needed);
1695 			return err;
1696 		}
1697 
1698 		err =
1699 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1700 				       1);
1701 		if (!err)
1702 			err = move_addr_to_user(&address, len, usockaddr,
1703 						usockaddr_len);
1704 		fput_light(sock->file, fput_needed);
1705 	}
1706 	return err;
1707 }
1708 
1709 /*
1710  *	Send a datagram to a given address. We move the address into kernel
1711  *	space and check the user space data area is readable before invoking
1712  *	the protocol.
1713  */
1714 
1715 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1716 		unsigned int, flags, struct sockaddr __user *, addr,
1717 		int, addr_len)
1718 {
1719 	struct socket *sock;
1720 	struct sockaddr_storage address;
1721 	int err;
1722 	struct msghdr msg;
1723 	struct iovec iov;
1724 	int fput_needed;
1725 
1726 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1727 	if (unlikely(err))
1728 		return err;
1729 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 	if (!sock)
1731 		goto out;
1732 
1733 	msg.msg_name = NULL;
1734 	msg.msg_control = NULL;
1735 	msg.msg_controllen = 0;
1736 	msg.msg_namelen = 0;
1737 	if (addr) {
1738 		err = move_addr_to_kernel(addr, addr_len, &address);
1739 		if (err < 0)
1740 			goto out_put;
1741 		msg.msg_name = (struct sockaddr *)&address;
1742 		msg.msg_namelen = addr_len;
1743 	}
1744 	if (sock->file->f_flags & O_NONBLOCK)
1745 		flags |= MSG_DONTWAIT;
1746 	msg.msg_flags = flags;
1747 	err = sock_sendmsg(sock, &msg);
1748 
1749 out_put:
1750 	fput_light(sock->file, fput_needed);
1751 out:
1752 	return err;
1753 }
1754 
1755 /*
1756  *	Send a datagram down a socket.
1757  */
1758 
1759 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1760 		unsigned int, flags)
1761 {
1762 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1763 }
1764 
1765 /*
1766  *	Receive a frame from the socket and optionally record the address of the
1767  *	sender. We verify the buffers are writable and if needed move the
1768  *	sender address from kernel to user space.
1769  */
1770 
1771 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1772 		unsigned int, flags, struct sockaddr __user *, addr,
1773 		int __user *, addr_len)
1774 {
1775 	struct socket *sock;
1776 	struct iovec iov;
1777 	struct msghdr msg;
1778 	struct sockaddr_storage address;
1779 	int err, err2;
1780 	int fput_needed;
1781 
1782 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1783 	if (unlikely(err))
1784 		return err;
1785 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1786 	if (!sock)
1787 		goto out;
1788 
1789 	msg.msg_control = NULL;
1790 	msg.msg_controllen = 0;
1791 	/* Save some cycles and don't copy the address if not needed */
1792 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1793 	/* We assume all kernel code knows the size of sockaddr_storage */
1794 	msg.msg_namelen = 0;
1795 	msg.msg_iocb = NULL;
1796 	msg.msg_flags = 0;
1797 	if (sock->file->f_flags & O_NONBLOCK)
1798 		flags |= MSG_DONTWAIT;
1799 	err = sock_recvmsg(sock, &msg, flags);
1800 
1801 	if (err >= 0 && addr != NULL) {
1802 		err2 = move_addr_to_user(&address,
1803 					 msg.msg_namelen, addr, addr_len);
1804 		if (err2 < 0)
1805 			err = err2;
1806 	}
1807 
1808 	fput_light(sock->file, fput_needed);
1809 out:
1810 	return err;
1811 }
1812 
1813 /*
1814  *	Receive a datagram from a socket.
1815  */
1816 
1817 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1818 		unsigned int, flags)
1819 {
1820 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1821 }
1822 
1823 /*
1824  *	Set a socket option. Because we don't know the option lengths we have
1825  *	to pass the user mode parameter for the protocols to sort out.
1826  */
1827 
1828 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1829 		char __user *, optval, int, optlen)
1830 {
1831 	int err, fput_needed;
1832 	struct socket *sock;
1833 
1834 	if (optlen < 0)
1835 		return -EINVAL;
1836 
1837 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1838 	if (sock != NULL) {
1839 		err = security_socket_setsockopt(sock, level, optname);
1840 		if (err)
1841 			goto out_put;
1842 
1843 		if (level == SOL_SOCKET)
1844 			err =
1845 			    sock_setsockopt(sock, level, optname, optval,
1846 					    optlen);
1847 		else
1848 			err =
1849 			    sock->ops->setsockopt(sock, level, optname, optval,
1850 						  optlen);
1851 out_put:
1852 		fput_light(sock->file, fput_needed);
1853 	}
1854 	return err;
1855 }
1856 
1857 /*
1858  *	Get a socket option. Because we don't know the option lengths we have
1859  *	to pass a user mode parameter for the protocols to sort out.
1860  */
1861 
1862 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1863 		char __user *, optval, int __user *, optlen)
1864 {
1865 	int err, fput_needed;
1866 	struct socket *sock;
1867 
1868 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1869 	if (sock != NULL) {
1870 		err = security_socket_getsockopt(sock, level, optname);
1871 		if (err)
1872 			goto out_put;
1873 
1874 		if (level == SOL_SOCKET)
1875 			err =
1876 			    sock_getsockopt(sock, level, optname, optval,
1877 					    optlen);
1878 		else
1879 			err =
1880 			    sock->ops->getsockopt(sock, level, optname, optval,
1881 						  optlen);
1882 out_put:
1883 		fput_light(sock->file, fput_needed);
1884 	}
1885 	return err;
1886 }
1887 
1888 /*
1889  *	Shutdown a socket.
1890  */
1891 
1892 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1893 {
1894 	int err, fput_needed;
1895 	struct socket *sock;
1896 
1897 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1898 	if (sock != NULL) {
1899 		err = security_socket_shutdown(sock, how);
1900 		if (!err)
1901 			err = sock->ops->shutdown(sock, how);
1902 		fput_light(sock->file, fput_needed);
1903 	}
1904 	return err;
1905 }
1906 
1907 /* A couple of helpful macros for getting the address of the 32/64 bit
1908  * fields which are the same type (int / unsigned) on our platforms.
1909  */
1910 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1911 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1912 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1913 
1914 struct used_address {
1915 	struct sockaddr_storage name;
1916 	unsigned int name_len;
1917 };
1918 
1919 static int copy_msghdr_from_user(struct msghdr *kmsg,
1920 				 struct user_msghdr __user *umsg,
1921 				 struct sockaddr __user **save_addr,
1922 				 struct iovec **iov)
1923 {
1924 	struct user_msghdr msg;
1925 	ssize_t err;
1926 
1927 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1928 		return -EFAULT;
1929 
1930 	kmsg->msg_control = (void __force *)msg.msg_control;
1931 	kmsg->msg_controllen = msg.msg_controllen;
1932 	kmsg->msg_flags = msg.msg_flags;
1933 
1934 	kmsg->msg_namelen = msg.msg_namelen;
1935 	if (!msg.msg_name)
1936 		kmsg->msg_namelen = 0;
1937 
1938 	if (kmsg->msg_namelen < 0)
1939 		return -EINVAL;
1940 
1941 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1942 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1943 
1944 	if (save_addr)
1945 		*save_addr = msg.msg_name;
1946 
1947 	if (msg.msg_name && kmsg->msg_namelen) {
1948 		if (!save_addr) {
1949 			err = move_addr_to_kernel(msg.msg_name,
1950 						  kmsg->msg_namelen,
1951 						  kmsg->msg_name);
1952 			if (err < 0)
1953 				return err;
1954 		}
1955 	} else {
1956 		kmsg->msg_name = NULL;
1957 		kmsg->msg_namelen = 0;
1958 	}
1959 
1960 	if (msg.msg_iovlen > UIO_MAXIOV)
1961 		return -EMSGSIZE;
1962 
1963 	kmsg->msg_iocb = NULL;
1964 
1965 	return import_iovec(save_addr ? READ : WRITE,
1966 			    msg.msg_iov, msg.msg_iovlen,
1967 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1968 }
1969 
1970 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1971 			 struct msghdr *msg_sys, unsigned int flags,
1972 			 struct used_address *used_address,
1973 			 unsigned int allowed_msghdr_flags)
1974 {
1975 	struct compat_msghdr __user *msg_compat =
1976 	    (struct compat_msghdr __user *)msg;
1977 	struct sockaddr_storage address;
1978 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1979 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1980 				__aligned(sizeof(__kernel_size_t));
1981 	/* 20 is size of ipv6_pktinfo */
1982 	unsigned char *ctl_buf = ctl;
1983 	int ctl_len;
1984 	ssize_t err;
1985 
1986 	msg_sys->msg_name = &address;
1987 
1988 	if (MSG_CMSG_COMPAT & flags)
1989 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1990 	else
1991 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1992 	if (err < 0)
1993 		return err;
1994 
1995 	err = -ENOBUFS;
1996 
1997 	if (msg_sys->msg_controllen > INT_MAX)
1998 		goto out_freeiov;
1999 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2000 	ctl_len = msg_sys->msg_controllen;
2001 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2002 		err =
2003 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2004 						     sizeof(ctl));
2005 		if (err)
2006 			goto out_freeiov;
2007 		ctl_buf = msg_sys->msg_control;
2008 		ctl_len = msg_sys->msg_controllen;
2009 	} else if (ctl_len) {
2010 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2011 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2012 		if (ctl_len > sizeof(ctl)) {
2013 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2014 			if (ctl_buf == NULL)
2015 				goto out_freeiov;
2016 		}
2017 		err = -EFAULT;
2018 		/*
2019 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2020 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2021 		 * checking falls down on this.
2022 		 */
2023 		if (copy_from_user(ctl_buf,
2024 				   (void __user __force *)msg_sys->msg_control,
2025 				   ctl_len))
2026 			goto out_freectl;
2027 		msg_sys->msg_control = ctl_buf;
2028 	}
2029 	msg_sys->msg_flags = flags;
2030 
2031 	if (sock->file->f_flags & O_NONBLOCK)
2032 		msg_sys->msg_flags |= MSG_DONTWAIT;
2033 	/*
2034 	 * If this is sendmmsg() and current destination address is same as
2035 	 * previously succeeded address, omit asking LSM's decision.
2036 	 * used_address->name_len is initialized to UINT_MAX so that the first
2037 	 * destination address never matches.
2038 	 */
2039 	if (used_address && msg_sys->msg_name &&
2040 	    used_address->name_len == msg_sys->msg_namelen &&
2041 	    !memcmp(&used_address->name, msg_sys->msg_name,
2042 		    used_address->name_len)) {
2043 		err = sock_sendmsg_nosec(sock, msg_sys);
2044 		goto out_freectl;
2045 	}
2046 	err = sock_sendmsg(sock, msg_sys);
2047 	/*
2048 	 * If this is sendmmsg() and sending to current destination address was
2049 	 * successful, remember it.
2050 	 */
2051 	if (used_address && err >= 0) {
2052 		used_address->name_len = msg_sys->msg_namelen;
2053 		if (msg_sys->msg_name)
2054 			memcpy(&used_address->name, msg_sys->msg_name,
2055 			       used_address->name_len);
2056 	}
2057 
2058 out_freectl:
2059 	if (ctl_buf != ctl)
2060 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2061 out_freeiov:
2062 	kfree(iov);
2063 	return err;
2064 }
2065 
2066 /*
2067  *	BSD sendmsg interface
2068  */
2069 
2070 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2071 {
2072 	int fput_needed, err;
2073 	struct msghdr msg_sys;
2074 	struct socket *sock;
2075 
2076 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2077 	if (!sock)
2078 		goto out;
2079 
2080 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2081 
2082 	fput_light(sock->file, fput_needed);
2083 out:
2084 	return err;
2085 }
2086 
2087 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2088 {
2089 	if (flags & MSG_CMSG_COMPAT)
2090 		return -EINVAL;
2091 	return __sys_sendmsg(fd, msg, flags);
2092 }
2093 
2094 /*
2095  *	Linux sendmmsg interface
2096  */
2097 
2098 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2099 		   unsigned int flags)
2100 {
2101 	int fput_needed, err, datagrams;
2102 	struct socket *sock;
2103 	struct mmsghdr __user *entry;
2104 	struct compat_mmsghdr __user *compat_entry;
2105 	struct msghdr msg_sys;
2106 	struct used_address used_address;
2107 	unsigned int oflags = flags;
2108 
2109 	if (vlen > UIO_MAXIOV)
2110 		vlen = UIO_MAXIOV;
2111 
2112 	datagrams = 0;
2113 
2114 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2115 	if (!sock)
2116 		return err;
2117 
2118 	used_address.name_len = UINT_MAX;
2119 	entry = mmsg;
2120 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2121 	err = 0;
2122 	flags |= MSG_BATCH;
2123 
2124 	while (datagrams < vlen) {
2125 		if (datagrams == vlen - 1)
2126 			flags = oflags;
2127 
2128 		if (MSG_CMSG_COMPAT & flags) {
2129 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2130 					     &msg_sys, flags, &used_address, MSG_EOR);
2131 			if (err < 0)
2132 				break;
2133 			err = __put_user(err, &compat_entry->msg_len);
2134 			++compat_entry;
2135 		} else {
2136 			err = ___sys_sendmsg(sock,
2137 					     (struct user_msghdr __user *)entry,
2138 					     &msg_sys, flags, &used_address, MSG_EOR);
2139 			if (err < 0)
2140 				break;
2141 			err = put_user(err, &entry->msg_len);
2142 			++entry;
2143 		}
2144 
2145 		if (err)
2146 			break;
2147 		++datagrams;
2148 		if (msg_data_left(&msg_sys))
2149 			break;
2150 		cond_resched();
2151 	}
2152 
2153 	fput_light(sock->file, fput_needed);
2154 
2155 	/* We only return an error if no datagrams were able to be sent */
2156 	if (datagrams != 0)
2157 		return datagrams;
2158 
2159 	return err;
2160 }
2161 
2162 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2163 		unsigned int, vlen, unsigned int, flags)
2164 {
2165 	if (flags & MSG_CMSG_COMPAT)
2166 		return -EINVAL;
2167 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2168 }
2169 
2170 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2171 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2172 {
2173 	struct compat_msghdr __user *msg_compat =
2174 	    (struct compat_msghdr __user *)msg;
2175 	struct iovec iovstack[UIO_FASTIOV];
2176 	struct iovec *iov = iovstack;
2177 	unsigned long cmsg_ptr;
2178 	int len;
2179 	ssize_t err;
2180 
2181 	/* kernel mode address */
2182 	struct sockaddr_storage addr;
2183 
2184 	/* user mode address pointers */
2185 	struct sockaddr __user *uaddr;
2186 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2187 
2188 	msg_sys->msg_name = &addr;
2189 
2190 	if (MSG_CMSG_COMPAT & flags)
2191 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2192 	else
2193 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2194 	if (err < 0)
2195 		return err;
2196 
2197 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2198 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2199 
2200 	/* We assume all kernel code knows the size of sockaddr_storage */
2201 	msg_sys->msg_namelen = 0;
2202 
2203 	if (sock->file->f_flags & O_NONBLOCK)
2204 		flags |= MSG_DONTWAIT;
2205 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2206 	if (err < 0)
2207 		goto out_freeiov;
2208 	len = err;
2209 
2210 	if (uaddr != NULL) {
2211 		err = move_addr_to_user(&addr,
2212 					msg_sys->msg_namelen, uaddr,
2213 					uaddr_len);
2214 		if (err < 0)
2215 			goto out_freeiov;
2216 	}
2217 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2218 			 COMPAT_FLAGS(msg));
2219 	if (err)
2220 		goto out_freeiov;
2221 	if (MSG_CMSG_COMPAT & flags)
2222 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2223 				 &msg_compat->msg_controllen);
2224 	else
2225 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2226 				 &msg->msg_controllen);
2227 	if (err)
2228 		goto out_freeiov;
2229 	err = len;
2230 
2231 out_freeiov:
2232 	kfree(iov);
2233 	return err;
2234 }
2235 
2236 /*
2237  *	BSD recvmsg interface
2238  */
2239 
2240 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2241 {
2242 	int fput_needed, err;
2243 	struct msghdr msg_sys;
2244 	struct socket *sock;
2245 
2246 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2247 	if (!sock)
2248 		goto out;
2249 
2250 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2251 
2252 	fput_light(sock->file, fput_needed);
2253 out:
2254 	return err;
2255 }
2256 
2257 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2258 		unsigned int, flags)
2259 {
2260 	if (flags & MSG_CMSG_COMPAT)
2261 		return -EINVAL;
2262 	return __sys_recvmsg(fd, msg, flags);
2263 }
2264 
2265 /*
2266  *     Linux recvmmsg interface
2267  */
2268 
2269 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2270 		   unsigned int flags, struct timespec *timeout)
2271 {
2272 	int fput_needed, err, datagrams;
2273 	struct socket *sock;
2274 	struct mmsghdr __user *entry;
2275 	struct compat_mmsghdr __user *compat_entry;
2276 	struct msghdr msg_sys;
2277 	struct timespec64 end_time;
2278 	struct timespec64 timeout64;
2279 
2280 	if (timeout &&
2281 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2282 				    timeout->tv_nsec))
2283 		return -EINVAL;
2284 
2285 	datagrams = 0;
2286 
2287 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2288 	if (!sock)
2289 		return err;
2290 
2291 	err = sock_error(sock->sk);
2292 	if (err) {
2293 		datagrams = err;
2294 		goto out_put;
2295 	}
2296 
2297 	entry = mmsg;
2298 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2299 
2300 	while (datagrams < vlen) {
2301 		/*
2302 		 * No need to ask LSM for more than the first datagram.
2303 		 */
2304 		if (MSG_CMSG_COMPAT & flags) {
2305 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2306 					     &msg_sys, flags & ~MSG_WAITFORONE,
2307 					     datagrams);
2308 			if (err < 0)
2309 				break;
2310 			err = __put_user(err, &compat_entry->msg_len);
2311 			++compat_entry;
2312 		} else {
2313 			err = ___sys_recvmsg(sock,
2314 					     (struct user_msghdr __user *)entry,
2315 					     &msg_sys, flags & ~MSG_WAITFORONE,
2316 					     datagrams);
2317 			if (err < 0)
2318 				break;
2319 			err = put_user(err, &entry->msg_len);
2320 			++entry;
2321 		}
2322 
2323 		if (err)
2324 			break;
2325 		++datagrams;
2326 
2327 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2328 		if (flags & MSG_WAITFORONE)
2329 			flags |= MSG_DONTWAIT;
2330 
2331 		if (timeout) {
2332 			ktime_get_ts64(&timeout64);
2333 			*timeout = timespec64_to_timespec(
2334 					timespec64_sub(end_time, timeout64));
2335 			if (timeout->tv_sec < 0) {
2336 				timeout->tv_sec = timeout->tv_nsec = 0;
2337 				break;
2338 			}
2339 
2340 			/* Timeout, return less than vlen datagrams */
2341 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2342 				break;
2343 		}
2344 
2345 		/* Out of band data, return right away */
2346 		if (msg_sys.msg_flags & MSG_OOB)
2347 			break;
2348 		cond_resched();
2349 	}
2350 
2351 	if (err == 0)
2352 		goto out_put;
2353 
2354 	if (datagrams == 0) {
2355 		datagrams = err;
2356 		goto out_put;
2357 	}
2358 
2359 	/*
2360 	 * We may return less entries than requested (vlen) if the
2361 	 * sock is non block and there aren't enough datagrams...
2362 	 */
2363 	if (err != -EAGAIN) {
2364 		/*
2365 		 * ... or  if recvmsg returns an error after we
2366 		 * received some datagrams, where we record the
2367 		 * error to return on the next call or if the
2368 		 * app asks about it using getsockopt(SO_ERROR).
2369 		 */
2370 		sock->sk->sk_err = -err;
2371 	}
2372 out_put:
2373 	fput_light(sock->file, fput_needed);
2374 
2375 	return datagrams;
2376 }
2377 
2378 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2379 		unsigned int, vlen, unsigned int, flags,
2380 		struct timespec __user *, timeout)
2381 {
2382 	int datagrams;
2383 	struct timespec timeout_sys;
2384 
2385 	if (flags & MSG_CMSG_COMPAT)
2386 		return -EINVAL;
2387 
2388 	if (!timeout)
2389 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2390 
2391 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2392 		return -EFAULT;
2393 
2394 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2395 
2396 	if (datagrams > 0 &&
2397 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2398 		datagrams = -EFAULT;
2399 
2400 	return datagrams;
2401 }
2402 
2403 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2404 /* Argument list sizes for sys_socketcall */
2405 #define AL(x) ((x) * sizeof(unsigned long))
2406 static const unsigned char nargs[21] = {
2407 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2408 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2409 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2410 	AL(4), AL(5), AL(4)
2411 };
2412 
2413 #undef AL
2414 
2415 /*
2416  *	System call vectors.
2417  *
2418  *	Argument checking cleaned up. Saved 20% in size.
2419  *  This function doesn't need to set the kernel lock because
2420  *  it is set by the callees.
2421  */
2422 
2423 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2424 {
2425 	unsigned long a[AUDITSC_ARGS];
2426 	unsigned long a0, a1;
2427 	int err;
2428 	unsigned int len;
2429 
2430 	if (call < 1 || call > SYS_SENDMMSG)
2431 		return -EINVAL;
2432 
2433 	len = nargs[call];
2434 	if (len > sizeof(a))
2435 		return -EINVAL;
2436 
2437 	/* copy_from_user should be SMP safe. */
2438 	if (copy_from_user(a, args, len))
2439 		return -EFAULT;
2440 
2441 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2442 	if (err)
2443 		return err;
2444 
2445 	a0 = a[0];
2446 	a1 = a[1];
2447 
2448 	switch (call) {
2449 	case SYS_SOCKET:
2450 		err = sys_socket(a0, a1, a[2]);
2451 		break;
2452 	case SYS_BIND:
2453 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2454 		break;
2455 	case SYS_CONNECT:
2456 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2457 		break;
2458 	case SYS_LISTEN:
2459 		err = sys_listen(a0, a1);
2460 		break;
2461 	case SYS_ACCEPT:
2462 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2463 				  (int __user *)a[2], 0);
2464 		break;
2465 	case SYS_GETSOCKNAME:
2466 		err =
2467 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2468 				    (int __user *)a[2]);
2469 		break;
2470 	case SYS_GETPEERNAME:
2471 		err =
2472 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2473 				    (int __user *)a[2]);
2474 		break;
2475 	case SYS_SOCKETPAIR:
2476 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2477 		break;
2478 	case SYS_SEND:
2479 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2480 		break;
2481 	case SYS_SENDTO:
2482 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2483 				 (struct sockaddr __user *)a[4], a[5]);
2484 		break;
2485 	case SYS_RECV:
2486 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2487 		break;
2488 	case SYS_RECVFROM:
2489 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2490 				   (struct sockaddr __user *)a[4],
2491 				   (int __user *)a[5]);
2492 		break;
2493 	case SYS_SHUTDOWN:
2494 		err = sys_shutdown(a0, a1);
2495 		break;
2496 	case SYS_SETSOCKOPT:
2497 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2498 		break;
2499 	case SYS_GETSOCKOPT:
2500 		err =
2501 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2502 				   (int __user *)a[4]);
2503 		break;
2504 	case SYS_SENDMSG:
2505 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2506 		break;
2507 	case SYS_SENDMMSG:
2508 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2509 		break;
2510 	case SYS_RECVMSG:
2511 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2512 		break;
2513 	case SYS_RECVMMSG:
2514 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2515 				   (struct timespec __user *)a[4]);
2516 		break;
2517 	case SYS_ACCEPT4:
2518 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2519 				  (int __user *)a[2], a[3]);
2520 		break;
2521 	default:
2522 		err = -EINVAL;
2523 		break;
2524 	}
2525 	return err;
2526 }
2527 
2528 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2529 
2530 /**
2531  *	sock_register - add a socket protocol handler
2532  *	@ops: description of protocol
2533  *
2534  *	This function is called by a protocol handler that wants to
2535  *	advertise its address family, and have it linked into the
2536  *	socket interface. The value ops->family corresponds to the
2537  *	socket system call protocol family.
2538  */
2539 int sock_register(const struct net_proto_family *ops)
2540 {
2541 	int err;
2542 
2543 	if (ops->family >= NPROTO) {
2544 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2545 		return -ENOBUFS;
2546 	}
2547 
2548 	spin_lock(&net_family_lock);
2549 	if (rcu_dereference_protected(net_families[ops->family],
2550 				      lockdep_is_held(&net_family_lock)))
2551 		err = -EEXIST;
2552 	else {
2553 		rcu_assign_pointer(net_families[ops->family], ops);
2554 		err = 0;
2555 	}
2556 	spin_unlock(&net_family_lock);
2557 
2558 	pr_info("NET: Registered protocol family %d\n", ops->family);
2559 	return err;
2560 }
2561 EXPORT_SYMBOL(sock_register);
2562 
2563 /**
2564  *	sock_unregister - remove a protocol handler
2565  *	@family: protocol family to remove
2566  *
2567  *	This function is called by a protocol handler that wants to
2568  *	remove its address family, and have it unlinked from the
2569  *	new socket creation.
2570  *
2571  *	If protocol handler is a module, then it can use module reference
2572  *	counts to protect against new references. If protocol handler is not
2573  *	a module then it needs to provide its own protection in
2574  *	the ops->create routine.
2575  */
2576 void sock_unregister(int family)
2577 {
2578 	BUG_ON(family < 0 || family >= NPROTO);
2579 
2580 	spin_lock(&net_family_lock);
2581 	RCU_INIT_POINTER(net_families[family], NULL);
2582 	spin_unlock(&net_family_lock);
2583 
2584 	synchronize_rcu();
2585 
2586 	pr_info("NET: Unregistered protocol family %d\n", family);
2587 }
2588 EXPORT_SYMBOL(sock_unregister);
2589 
2590 static int __init sock_init(void)
2591 {
2592 	int err;
2593 	/*
2594 	 *      Initialize the network sysctl infrastructure.
2595 	 */
2596 	err = net_sysctl_init();
2597 	if (err)
2598 		goto out;
2599 
2600 	/*
2601 	 *      Initialize skbuff SLAB cache
2602 	 */
2603 	skb_init();
2604 
2605 	/*
2606 	 *      Initialize the protocols module.
2607 	 */
2608 
2609 	init_inodecache();
2610 
2611 	err = register_filesystem(&sock_fs_type);
2612 	if (err)
2613 		goto out_fs;
2614 	sock_mnt = kern_mount(&sock_fs_type);
2615 	if (IS_ERR(sock_mnt)) {
2616 		err = PTR_ERR(sock_mnt);
2617 		goto out_mount;
2618 	}
2619 
2620 	/* The real protocol initialization is performed in later initcalls.
2621 	 */
2622 
2623 #ifdef CONFIG_NETFILTER
2624 	err = netfilter_init();
2625 	if (err)
2626 		goto out;
2627 #endif
2628 
2629 	ptp_classifier_init();
2630 
2631 out:
2632 	return err;
2633 
2634 out_mount:
2635 	unregister_filesystem(&sock_fs_type);
2636 out_fs:
2637 	goto out;
2638 }
2639 
2640 core_initcall(sock_init);	/* early initcall */
2641 
2642 #ifdef CONFIG_PROC_FS
2643 void socket_seq_show(struct seq_file *seq)
2644 {
2645 	seq_printf(seq, "sockets: used %d\n",
2646 		   sock_inuse_get(seq->private));
2647 }
2648 #endif				/* CONFIG_PROC_FS */
2649 
2650 #ifdef CONFIG_COMPAT
2651 static int do_siocgstamp(struct net *net, struct socket *sock,
2652 			 unsigned int cmd, void __user *up)
2653 {
2654 	mm_segment_t old_fs = get_fs();
2655 	struct timeval ktv;
2656 	int err;
2657 
2658 	set_fs(KERNEL_DS);
2659 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2660 	set_fs(old_fs);
2661 	if (!err)
2662 		err = compat_put_timeval(&ktv, up);
2663 
2664 	return err;
2665 }
2666 
2667 static int do_siocgstampns(struct net *net, struct socket *sock,
2668 			   unsigned int cmd, void __user *up)
2669 {
2670 	mm_segment_t old_fs = get_fs();
2671 	struct timespec kts;
2672 	int err;
2673 
2674 	set_fs(KERNEL_DS);
2675 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2676 	set_fs(old_fs);
2677 	if (!err)
2678 		err = compat_put_timespec(&kts, up);
2679 
2680 	return err;
2681 }
2682 
2683 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2684 {
2685 	struct compat_ifconf ifc32;
2686 	struct ifconf ifc;
2687 	int err;
2688 
2689 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2690 		return -EFAULT;
2691 
2692 	ifc.ifc_len = ifc32.ifc_len;
2693 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2694 
2695 	rtnl_lock();
2696 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2697 	rtnl_unlock();
2698 	if (err)
2699 		return err;
2700 
2701 	ifc32.ifc_len = ifc.ifc_len;
2702 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2703 		return -EFAULT;
2704 
2705 	return 0;
2706 }
2707 
2708 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2709 {
2710 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2711 	bool convert_in = false, convert_out = false;
2712 	size_t buf_size = 0;
2713 	struct ethtool_rxnfc __user *rxnfc = NULL;
2714 	struct ifreq ifr;
2715 	u32 rule_cnt = 0, actual_rule_cnt;
2716 	u32 ethcmd;
2717 	u32 data;
2718 	int ret;
2719 
2720 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2721 		return -EFAULT;
2722 
2723 	compat_rxnfc = compat_ptr(data);
2724 
2725 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2726 		return -EFAULT;
2727 
2728 	/* Most ethtool structures are defined without padding.
2729 	 * Unfortunately struct ethtool_rxnfc is an exception.
2730 	 */
2731 	switch (ethcmd) {
2732 	default:
2733 		break;
2734 	case ETHTOOL_GRXCLSRLALL:
2735 		/* Buffer size is variable */
2736 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2737 			return -EFAULT;
2738 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2739 			return -ENOMEM;
2740 		buf_size += rule_cnt * sizeof(u32);
2741 		/* fall through */
2742 	case ETHTOOL_GRXRINGS:
2743 	case ETHTOOL_GRXCLSRLCNT:
2744 	case ETHTOOL_GRXCLSRULE:
2745 	case ETHTOOL_SRXCLSRLINS:
2746 		convert_out = true;
2747 		/* fall through */
2748 	case ETHTOOL_SRXCLSRLDEL:
2749 		buf_size += sizeof(struct ethtool_rxnfc);
2750 		convert_in = true;
2751 		rxnfc = compat_alloc_user_space(buf_size);
2752 		break;
2753 	}
2754 
2755 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2756 		return -EFAULT;
2757 
2758 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2759 
2760 	if (convert_in) {
2761 		/* We expect there to be holes between fs.m_ext and
2762 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2763 		 */
2764 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2765 			     sizeof(compat_rxnfc->fs.m_ext) !=
2766 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2767 			     sizeof(rxnfc->fs.m_ext));
2768 		BUILD_BUG_ON(
2769 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2770 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2771 			offsetof(struct ethtool_rxnfc, fs.location) -
2772 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2773 
2774 		if (copy_in_user(rxnfc, compat_rxnfc,
2775 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2776 				 (void __user *)rxnfc) ||
2777 		    copy_in_user(&rxnfc->fs.ring_cookie,
2778 				 &compat_rxnfc->fs.ring_cookie,
2779 				 (void __user *)(&rxnfc->fs.location + 1) -
2780 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2781 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2782 				 sizeof(rxnfc->rule_cnt)))
2783 			return -EFAULT;
2784 	}
2785 
2786 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2787 	if (ret)
2788 		return ret;
2789 
2790 	if (convert_out) {
2791 		if (copy_in_user(compat_rxnfc, rxnfc,
2792 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2793 				 (const void __user *)rxnfc) ||
2794 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2795 				 &rxnfc->fs.ring_cookie,
2796 				 (const void __user *)(&rxnfc->fs.location + 1) -
2797 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2798 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2799 				 sizeof(rxnfc->rule_cnt)))
2800 			return -EFAULT;
2801 
2802 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2803 			/* As an optimisation, we only copy the actual
2804 			 * number of rules that the underlying
2805 			 * function returned.  Since Mallory might
2806 			 * change the rule count in user memory, we
2807 			 * check that it is less than the rule count
2808 			 * originally given (as the user buffer size),
2809 			 * which has been range-checked.
2810 			 */
2811 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2812 				return -EFAULT;
2813 			if (actual_rule_cnt < rule_cnt)
2814 				rule_cnt = actual_rule_cnt;
2815 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2816 					 &rxnfc->rule_locs[0],
2817 					 rule_cnt * sizeof(u32)))
2818 				return -EFAULT;
2819 		}
2820 	}
2821 
2822 	return 0;
2823 }
2824 
2825 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2826 {
2827 	compat_uptr_t uptr32;
2828 	struct ifreq ifr;
2829 	void __user *saved;
2830 	int err;
2831 
2832 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2833 		return -EFAULT;
2834 
2835 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2836 		return -EFAULT;
2837 
2838 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2839 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2840 
2841 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2842 	if (!err) {
2843 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2844 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2845 			err = -EFAULT;
2846 	}
2847 	return err;
2848 }
2849 
2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2852 				 struct compat_ifreq __user *u_ifreq32)
2853 {
2854 	struct ifreq ifreq;
2855 	u32 data32;
2856 
2857 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2858 		return -EFAULT;
2859 	if (get_user(data32, &u_ifreq32->ifr_data))
2860 		return -EFAULT;
2861 	ifreq.ifr_data = compat_ptr(data32);
2862 
2863 	return dev_ioctl(net, cmd, &ifreq, NULL);
2864 }
2865 
2866 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2867 			struct compat_ifreq __user *uifr32)
2868 {
2869 	struct ifreq ifr;
2870 	struct compat_ifmap __user *uifmap32;
2871 	int err;
2872 
2873 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2874 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2875 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2876 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2877 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2878 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2879 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2880 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2881 	if (err)
2882 		return -EFAULT;
2883 
2884 	err = dev_ioctl(net, cmd, &ifr, NULL);
2885 
2886 	if (cmd == SIOCGIFMAP && !err) {
2887 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2888 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2889 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2890 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2891 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2892 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2893 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2894 		if (err)
2895 			err = -EFAULT;
2896 	}
2897 	return err;
2898 }
2899 
2900 struct rtentry32 {
2901 	u32		rt_pad1;
2902 	struct sockaddr rt_dst;         /* target address               */
2903 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2904 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2905 	unsigned short	rt_flags;
2906 	short		rt_pad2;
2907 	u32		rt_pad3;
2908 	unsigned char	rt_tos;
2909 	unsigned char	rt_class;
2910 	short		rt_pad4;
2911 	short		rt_metric;      /* +1 for binary compatibility! */
2912 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2913 	u32		rt_mtu;         /* per route MTU/Window         */
2914 	u32		rt_window;      /* Window clamping              */
2915 	unsigned short  rt_irtt;        /* Initial RTT                  */
2916 };
2917 
2918 struct in6_rtmsg32 {
2919 	struct in6_addr		rtmsg_dst;
2920 	struct in6_addr		rtmsg_src;
2921 	struct in6_addr		rtmsg_gateway;
2922 	u32			rtmsg_type;
2923 	u16			rtmsg_dst_len;
2924 	u16			rtmsg_src_len;
2925 	u32			rtmsg_metric;
2926 	u32			rtmsg_info;
2927 	u32			rtmsg_flags;
2928 	s32			rtmsg_ifindex;
2929 };
2930 
2931 static int routing_ioctl(struct net *net, struct socket *sock,
2932 			 unsigned int cmd, void __user *argp)
2933 {
2934 	int ret;
2935 	void *r = NULL;
2936 	struct in6_rtmsg r6;
2937 	struct rtentry r4;
2938 	char devname[16];
2939 	u32 rtdev;
2940 	mm_segment_t old_fs = get_fs();
2941 
2942 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2943 		struct in6_rtmsg32 __user *ur6 = argp;
2944 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2945 			3 * sizeof(struct in6_addr));
2946 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2947 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2948 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2949 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2950 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2951 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2952 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2953 
2954 		r = (void *) &r6;
2955 	} else { /* ipv4 */
2956 		struct rtentry32 __user *ur4 = argp;
2957 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2958 					3 * sizeof(struct sockaddr));
2959 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
2960 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
2961 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
2962 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
2963 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
2964 		ret |= get_user(rtdev, &(ur4->rt_dev));
2965 		if (rtdev) {
2966 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2967 			r4.rt_dev = (char __user __force *)devname;
2968 			devname[15] = 0;
2969 		} else
2970 			r4.rt_dev = NULL;
2971 
2972 		r = (void *) &r4;
2973 	}
2974 
2975 	if (ret) {
2976 		ret = -EFAULT;
2977 		goto out;
2978 	}
2979 
2980 	set_fs(KERNEL_DS);
2981 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2982 	set_fs(old_fs);
2983 
2984 out:
2985 	return ret;
2986 }
2987 
2988 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2989  * for some operations; this forces use of the newer bridge-utils that
2990  * use compatible ioctls
2991  */
2992 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2993 {
2994 	compat_ulong_t tmp;
2995 
2996 	if (get_user(tmp, argp))
2997 		return -EFAULT;
2998 	if (tmp == BRCTL_GET_VERSION)
2999 		return BRCTL_VERSION + 1;
3000 	return -EINVAL;
3001 }
3002 
3003 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3004 			 unsigned int cmd, unsigned long arg)
3005 {
3006 	void __user *argp = compat_ptr(arg);
3007 	struct sock *sk = sock->sk;
3008 	struct net *net = sock_net(sk);
3009 
3010 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3011 		return compat_ifr_data_ioctl(net, cmd, argp);
3012 
3013 	switch (cmd) {
3014 	case SIOCSIFBR:
3015 	case SIOCGIFBR:
3016 		return old_bridge_ioctl(argp);
3017 	case SIOCGIFCONF:
3018 		return compat_dev_ifconf(net, argp);
3019 	case SIOCETHTOOL:
3020 		return ethtool_ioctl(net, argp);
3021 	case SIOCWANDEV:
3022 		return compat_siocwandev(net, argp);
3023 	case SIOCGIFMAP:
3024 	case SIOCSIFMAP:
3025 		return compat_sioc_ifmap(net, cmd, argp);
3026 	case SIOCADDRT:
3027 	case SIOCDELRT:
3028 		return routing_ioctl(net, sock, cmd, argp);
3029 	case SIOCGSTAMP:
3030 		return do_siocgstamp(net, sock, cmd, argp);
3031 	case SIOCGSTAMPNS:
3032 		return do_siocgstampns(net, sock, cmd, argp);
3033 	case SIOCBONDSLAVEINFOQUERY:
3034 	case SIOCBONDINFOQUERY:
3035 	case SIOCSHWTSTAMP:
3036 	case SIOCGHWTSTAMP:
3037 		return compat_ifr_data_ioctl(net, cmd, argp);
3038 
3039 	case FIOSETOWN:
3040 	case SIOCSPGRP:
3041 	case FIOGETOWN:
3042 	case SIOCGPGRP:
3043 	case SIOCBRADDBR:
3044 	case SIOCBRDELBR:
3045 	case SIOCGIFVLAN:
3046 	case SIOCSIFVLAN:
3047 	case SIOCADDDLCI:
3048 	case SIOCDELDLCI:
3049 	case SIOCGSKNS:
3050 		return sock_ioctl(file, cmd, arg);
3051 
3052 	case SIOCGIFFLAGS:
3053 	case SIOCSIFFLAGS:
3054 	case SIOCGIFMETRIC:
3055 	case SIOCSIFMETRIC:
3056 	case SIOCGIFMTU:
3057 	case SIOCSIFMTU:
3058 	case SIOCGIFMEM:
3059 	case SIOCSIFMEM:
3060 	case SIOCGIFHWADDR:
3061 	case SIOCSIFHWADDR:
3062 	case SIOCADDMULTI:
3063 	case SIOCDELMULTI:
3064 	case SIOCGIFINDEX:
3065 	case SIOCGIFADDR:
3066 	case SIOCSIFADDR:
3067 	case SIOCSIFHWBROADCAST:
3068 	case SIOCDIFADDR:
3069 	case SIOCGIFBRDADDR:
3070 	case SIOCSIFBRDADDR:
3071 	case SIOCGIFDSTADDR:
3072 	case SIOCSIFDSTADDR:
3073 	case SIOCGIFNETMASK:
3074 	case SIOCSIFNETMASK:
3075 	case SIOCSIFPFLAGS:
3076 	case SIOCGIFPFLAGS:
3077 	case SIOCGIFTXQLEN:
3078 	case SIOCSIFTXQLEN:
3079 	case SIOCBRADDIF:
3080 	case SIOCBRDELIF:
3081 	case SIOCSIFNAME:
3082 	case SIOCGMIIPHY:
3083 	case SIOCGMIIREG:
3084 	case SIOCSMIIREG:
3085 	case SIOCSARP:
3086 	case SIOCGARP:
3087 	case SIOCDARP:
3088 	case SIOCATMARK:
3089 	case SIOCBONDENSLAVE:
3090 	case SIOCBONDRELEASE:
3091 	case SIOCBONDSETHWADDR:
3092 	case SIOCBONDCHANGEACTIVE:
3093 	case SIOCGIFNAME:
3094 		return sock_do_ioctl(net, sock, cmd, arg);
3095 	}
3096 
3097 	return -ENOIOCTLCMD;
3098 }
3099 
3100 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3101 			      unsigned long arg)
3102 {
3103 	struct socket *sock = file->private_data;
3104 	int ret = -ENOIOCTLCMD;
3105 	struct sock *sk;
3106 	struct net *net;
3107 
3108 	sk = sock->sk;
3109 	net = sock_net(sk);
3110 
3111 	if (sock->ops->compat_ioctl)
3112 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3113 
3114 	if (ret == -ENOIOCTLCMD &&
3115 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3116 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3117 
3118 	if (ret == -ENOIOCTLCMD)
3119 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3120 
3121 	return ret;
3122 }
3123 #endif
3124 
3125 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3126 {
3127 	return sock->ops->bind(sock, addr, addrlen);
3128 }
3129 EXPORT_SYMBOL(kernel_bind);
3130 
3131 int kernel_listen(struct socket *sock, int backlog)
3132 {
3133 	return sock->ops->listen(sock, backlog);
3134 }
3135 EXPORT_SYMBOL(kernel_listen);
3136 
3137 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3138 {
3139 	struct sock *sk = sock->sk;
3140 	int err;
3141 
3142 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3143 			       newsock);
3144 	if (err < 0)
3145 		goto done;
3146 
3147 	err = sock->ops->accept(sock, *newsock, flags, true);
3148 	if (err < 0) {
3149 		sock_release(*newsock);
3150 		*newsock = NULL;
3151 		goto done;
3152 	}
3153 
3154 	(*newsock)->ops = sock->ops;
3155 	__module_get((*newsock)->ops->owner);
3156 
3157 done:
3158 	return err;
3159 }
3160 EXPORT_SYMBOL(kernel_accept);
3161 
3162 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3163 		   int flags)
3164 {
3165 	return sock->ops->connect(sock, addr, addrlen, flags);
3166 }
3167 EXPORT_SYMBOL(kernel_connect);
3168 
3169 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3170 			 int *addrlen)
3171 {
3172 	return sock->ops->getname(sock, addr, addrlen, 0);
3173 }
3174 EXPORT_SYMBOL(kernel_getsockname);
3175 
3176 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3177 			 int *addrlen)
3178 {
3179 	return sock->ops->getname(sock, addr, addrlen, 1);
3180 }
3181 EXPORT_SYMBOL(kernel_getpeername);
3182 
3183 int kernel_getsockopt(struct socket *sock, int level, int optname,
3184 			char *optval, int *optlen)
3185 {
3186 	mm_segment_t oldfs = get_fs();
3187 	char __user *uoptval;
3188 	int __user *uoptlen;
3189 	int err;
3190 
3191 	uoptval = (char __user __force *) optval;
3192 	uoptlen = (int __user __force *) optlen;
3193 
3194 	set_fs(KERNEL_DS);
3195 	if (level == SOL_SOCKET)
3196 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3197 	else
3198 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3199 					    uoptlen);
3200 	set_fs(oldfs);
3201 	return err;
3202 }
3203 EXPORT_SYMBOL(kernel_getsockopt);
3204 
3205 int kernel_setsockopt(struct socket *sock, int level, int optname,
3206 			char *optval, unsigned int optlen)
3207 {
3208 	mm_segment_t oldfs = get_fs();
3209 	char __user *uoptval;
3210 	int err;
3211 
3212 	uoptval = (char __user __force *) optval;
3213 
3214 	set_fs(KERNEL_DS);
3215 	if (level == SOL_SOCKET)
3216 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3217 	else
3218 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3219 					    optlen);
3220 	set_fs(oldfs);
3221 	return err;
3222 }
3223 EXPORT_SYMBOL(kernel_setsockopt);
3224 
3225 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3226 		    size_t size, int flags)
3227 {
3228 	if (sock->ops->sendpage)
3229 		return sock->ops->sendpage(sock, page, offset, size, flags);
3230 
3231 	return sock_no_sendpage(sock, page, offset, size, flags);
3232 }
3233 EXPORT_SYMBOL(kernel_sendpage);
3234 
3235 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3236 			   size_t size, int flags)
3237 {
3238 	struct socket *sock = sk->sk_socket;
3239 
3240 	if (sock->ops->sendpage_locked)
3241 		return sock->ops->sendpage_locked(sk, page, offset, size,
3242 						  flags);
3243 
3244 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3245 }
3246 EXPORT_SYMBOL(kernel_sendpage_locked);
3247 
3248 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3249 {
3250 	return sock->ops->shutdown(sock, how);
3251 }
3252 EXPORT_SYMBOL(kernel_sock_shutdown);
3253 
3254 /* This routine returns the IP overhead imposed by a socket i.e.
3255  * the length of the underlying IP header, depending on whether
3256  * this is an IPv4 or IPv6 socket and the length from IP options turned
3257  * on at the socket. Assumes that the caller has a lock on the socket.
3258  */
3259 u32 kernel_sock_ip_overhead(struct sock *sk)
3260 {
3261 	struct inet_sock *inet;
3262 	struct ip_options_rcu *opt;
3263 	u32 overhead = 0;
3264 #if IS_ENABLED(CONFIG_IPV6)
3265 	struct ipv6_pinfo *np;
3266 	struct ipv6_txoptions *optv6 = NULL;
3267 #endif /* IS_ENABLED(CONFIG_IPV6) */
3268 
3269 	if (!sk)
3270 		return overhead;
3271 
3272 	switch (sk->sk_family) {
3273 	case AF_INET:
3274 		inet = inet_sk(sk);
3275 		overhead += sizeof(struct iphdr);
3276 		opt = rcu_dereference_protected(inet->inet_opt,
3277 						sock_owned_by_user(sk));
3278 		if (opt)
3279 			overhead += opt->opt.optlen;
3280 		return overhead;
3281 #if IS_ENABLED(CONFIG_IPV6)
3282 	case AF_INET6:
3283 		np = inet6_sk(sk);
3284 		overhead += sizeof(struct ipv6hdr);
3285 		if (np)
3286 			optv6 = rcu_dereference_protected(np->opt,
3287 							  sock_owned_by_user(sk));
3288 		if (optv6)
3289 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3290 		return overhead;
3291 #endif /* IS_ENABLED(CONFIG_IPV6) */
3292 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3293 		return overhead;
3294 	}
3295 }
3296 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3297