1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 struct socket_wq *wq; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 249 if (!wq) { 250 kmem_cache_free(sock_inode_cachep, ei); 251 return NULL; 252 } 253 init_waitqueue_head(&wq->wait); 254 wq->fasync_list = NULL; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 267 268 static void wq_free_rcu(struct rcu_head *head) 269 { 270 struct socket_wq *wq = container_of(head, struct socket_wq, rcu); 271 272 kfree(wq); 273 } 274 275 static void sock_destroy_inode(struct inode *inode) 276 { 277 struct socket_alloc *ei; 278 struct socket_wq *wq; 279 280 ei = container_of(inode, struct socket_alloc, vfs_inode); 281 wq = rcu_dereference_protected(ei->socket.wq, 1); 282 call_rcu(&wq->rcu, wq_free_rcu); 283 kmem_cache_free(sock_inode_cachep, ei); 284 } 285 286 static void init_once(void *foo) 287 { 288 struct socket_alloc *ei = (struct socket_alloc *)foo; 289 290 inode_init_once(&ei->vfs_inode); 291 } 292 293 static int init_inodecache(void) 294 { 295 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 296 sizeof(struct socket_alloc), 297 0, 298 (SLAB_HWCACHE_ALIGN | 299 SLAB_RECLAIM_ACCOUNT | 300 SLAB_MEM_SPREAD), 301 init_once); 302 if (sock_inode_cachep == NULL) 303 return -ENOMEM; 304 return 0; 305 } 306 307 static const struct super_operations sockfs_ops = { 308 .alloc_inode = sock_alloc_inode, 309 .destroy_inode = sock_destroy_inode, 310 .statfs = simple_statfs, 311 }; 312 313 /* 314 * sockfs_dname() is called from d_path(). 315 */ 316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 317 { 318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 319 dentry->d_inode->i_ino); 320 } 321 322 static const struct dentry_operations sockfs_dentry_operations = { 323 .d_dname = sockfs_dname, 324 }; 325 326 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 327 int flags, const char *dev_name, void *data) 328 { 329 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 330 &sockfs_dentry_operations, SOCKFS_MAGIC); 331 } 332 333 static struct vfsmount *sock_mnt __read_mostly; 334 335 static struct file_system_type sock_fs_type = { 336 .name = "sockfs", 337 .mount = sockfs_mount, 338 .kill_sb = kill_anon_super, 339 }; 340 341 /* 342 * Obtains the first available file descriptor and sets it up for use. 343 * 344 * These functions create file structures and maps them to fd space 345 * of the current process. On success it returns file descriptor 346 * and file struct implicitly stored in sock->file. 347 * Note that another thread may close file descriptor before we return 348 * from this function. We use the fact that now we do not refer 349 * to socket after mapping. If one day we will need it, this 350 * function will increment ref. count on file by 1. 351 * 352 * In any case returned fd MAY BE not valid! 353 * This race condition is unavoidable 354 * with shared fd spaces, we cannot solve it inside kernel, 355 * but we take care of internal coherence yet. 356 */ 357 358 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 359 { 360 struct qstr name = { .name = "" }; 361 struct path path; 362 struct file *file; 363 int fd; 364 365 fd = get_unused_fd_flags(flags); 366 if (unlikely(fd < 0)) 367 return fd; 368 369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 370 if (unlikely(!path.dentry)) { 371 put_unused_fd(fd); 372 return -ENOMEM; 373 } 374 path.mnt = mntget(sock_mnt); 375 376 d_instantiate(path.dentry, SOCK_INODE(sock)); 377 SOCK_INODE(sock)->i_fop = &socket_file_ops; 378 379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 380 &socket_file_ops); 381 if (unlikely(!file)) { 382 /* drop dentry, keep inode */ 383 ihold(path.dentry->d_inode); 384 path_put(&path); 385 put_unused_fd(fd); 386 return -ENFILE; 387 } 388 389 sock->file = file; 390 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 391 file->f_pos = 0; 392 file->private_data = sock; 393 394 *f = file; 395 return fd; 396 } 397 398 int sock_map_fd(struct socket *sock, int flags) 399 { 400 struct file *newfile; 401 int fd = sock_alloc_file(sock, &newfile, flags); 402 403 if (likely(fd >= 0)) 404 fd_install(fd, newfile); 405 406 return fd; 407 } 408 EXPORT_SYMBOL(sock_map_fd); 409 410 static struct socket *sock_from_file(struct file *file, int *err) 411 { 412 if (file->f_op == &socket_file_ops) 413 return file->private_data; /* set in sock_map_fd */ 414 415 *err = -ENOTSOCK; 416 return NULL; 417 } 418 419 /** 420 * sockfd_lookup - Go from a file number to its socket slot 421 * @fd: file handle 422 * @err: pointer to an error code return 423 * 424 * The file handle passed in is locked and the socket it is bound 425 * too is returned. If an error occurs the err pointer is overwritten 426 * with a negative errno code and NULL is returned. The function checks 427 * for both invalid handles and passing a handle which is not a socket. 428 * 429 * On a success the socket object pointer is returned. 430 */ 431 432 struct socket *sockfd_lookup(int fd, int *err) 433 { 434 struct file *file; 435 struct socket *sock; 436 437 file = fget(fd); 438 if (!file) { 439 *err = -EBADF; 440 return NULL; 441 } 442 443 sock = sock_from_file(file, err); 444 if (!sock) 445 fput(file); 446 return sock; 447 } 448 EXPORT_SYMBOL(sockfd_lookup); 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 *err = -EBADF; 456 file = fget_light(fd, fput_needed); 457 if (file) { 458 sock = sock_from_file(file, err); 459 if (sock) 460 return sock; 461 fput_light(file, *fput_needed); 462 } 463 return NULL; 464 } 465 466 /** 467 * sock_alloc - allocate a socket 468 * 469 * Allocate a new inode and socket object. The two are bound together 470 * and initialised. The socket is then returned. If we are out of inodes 471 * NULL is returned. 472 */ 473 474 static struct socket *sock_alloc(void) 475 { 476 struct inode *inode; 477 struct socket *sock; 478 479 inode = new_inode(sock_mnt->mnt_sb); 480 if (!inode) 481 return NULL; 482 483 sock = SOCKET_I(inode); 484 485 kmemcheck_annotate_bitfield(sock, type); 486 inode->i_ino = get_next_ino(); 487 inode->i_mode = S_IFSOCK | S_IRWXUGO; 488 inode->i_uid = current_fsuid(); 489 inode->i_gid = current_fsgid(); 490 491 percpu_add(sockets_in_use, 1); 492 return sock; 493 } 494 495 /* 496 * In theory you can't get an open on this inode, but /proc provides 497 * a back door. Remember to keep it shut otherwise you'll let the 498 * creepy crawlies in. 499 */ 500 501 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 502 { 503 return -ENXIO; 504 } 505 506 const struct file_operations bad_sock_fops = { 507 .owner = THIS_MODULE, 508 .open = sock_no_open, 509 .llseek = noop_llseek, 510 }; 511 512 /** 513 * sock_release - close a socket 514 * @sock: socket to close 515 * 516 * The socket is released from the protocol stack if it has a release 517 * callback, and the inode is then released if the socket is bound to 518 * an inode not a file. 519 */ 520 521 void sock_release(struct socket *sock) 522 { 523 if (sock->ops) { 524 struct module *owner = sock->ops->owner; 525 526 sock->ops->release(sock); 527 sock->ops = NULL; 528 module_put(owner); 529 } 530 531 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 532 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 533 534 percpu_sub(sockets_in_use, 1); 535 if (!sock->file) { 536 iput(SOCK_INODE(sock)); 537 return; 538 } 539 sock->file = NULL; 540 } 541 EXPORT_SYMBOL(sock_release); 542 543 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 544 { 545 *tx_flags = 0; 546 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 547 *tx_flags |= SKBTX_HW_TSTAMP; 548 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 549 *tx_flags |= SKBTX_SW_TSTAMP; 550 return 0; 551 } 552 EXPORT_SYMBOL(sock_tx_timestamp); 553 554 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 555 struct msghdr *msg, size_t size) 556 { 557 struct sock_iocb *si = kiocb_to_siocb(iocb); 558 int err; 559 560 sock_update_classid(sock->sk); 561 562 si->sock = sock; 563 si->scm = NULL; 564 si->msg = msg; 565 si->size = size; 566 567 err = security_socket_sendmsg(sock, msg, size); 568 if (err) 569 return err; 570 571 return sock->ops->sendmsg(iocb, sock, msg, size); 572 } 573 574 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 575 { 576 struct kiocb iocb; 577 struct sock_iocb siocb; 578 int ret; 579 580 init_sync_kiocb(&iocb, NULL); 581 iocb.private = &siocb; 582 ret = __sock_sendmsg(&iocb, sock, msg, size); 583 if (-EIOCBQUEUED == ret) 584 ret = wait_on_sync_kiocb(&iocb); 585 return ret; 586 } 587 EXPORT_SYMBOL(sock_sendmsg); 588 589 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 590 struct kvec *vec, size_t num, size_t size) 591 { 592 mm_segment_t oldfs = get_fs(); 593 int result; 594 595 set_fs(KERNEL_DS); 596 /* 597 * the following is safe, since for compiler definitions of kvec and 598 * iovec are identical, yielding the same in-core layout and alignment 599 */ 600 msg->msg_iov = (struct iovec *)vec; 601 msg->msg_iovlen = num; 602 result = sock_sendmsg(sock, msg, size); 603 set_fs(oldfs); 604 return result; 605 } 606 EXPORT_SYMBOL(kernel_sendmsg); 607 608 static int ktime2ts(ktime_t kt, struct timespec *ts) 609 { 610 if (kt.tv64) { 611 *ts = ktime_to_timespec(kt); 612 return 1; 613 } else { 614 return 0; 615 } 616 } 617 618 /* 619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 620 */ 621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 622 struct sk_buff *skb) 623 { 624 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 625 struct timespec ts[3]; 626 int empty = 1; 627 struct skb_shared_hwtstamps *shhwtstamps = 628 skb_hwtstamps(skb); 629 630 /* Race occurred between timestamp enabling and packet 631 receiving. Fill in the current time for now. */ 632 if (need_software_tstamp && skb->tstamp.tv64 == 0) 633 __net_timestamp(skb); 634 635 if (need_software_tstamp) { 636 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 637 struct timeval tv; 638 skb_get_timestamp(skb, &tv); 639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 640 sizeof(tv), &tv); 641 } else { 642 skb_get_timestampns(skb, &ts[0]); 643 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 644 sizeof(ts[0]), &ts[0]); 645 } 646 } 647 648 649 memset(ts, 0, sizeof(ts)); 650 if (skb->tstamp.tv64 && 651 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 652 skb_get_timestampns(skb, ts + 0); 653 empty = 0; 654 } 655 if (shhwtstamps) { 656 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 657 ktime2ts(shhwtstamps->syststamp, ts + 1)) 658 empty = 0; 659 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 660 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 661 empty = 0; 662 } 663 if (!empty) 664 put_cmsg(msg, SOL_SOCKET, 665 SCM_TIMESTAMPING, sizeof(ts), &ts); 666 } 667 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 668 669 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 670 struct sk_buff *skb) 671 { 672 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 673 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 674 sizeof(__u32), &skb->dropcount); 675 } 676 677 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 678 struct sk_buff *skb) 679 { 680 sock_recv_timestamp(msg, sk, skb); 681 sock_recv_drops(msg, sk, skb); 682 } 683 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 684 685 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 686 struct msghdr *msg, size_t size, int flags) 687 { 688 struct sock_iocb *si = kiocb_to_siocb(iocb); 689 690 sock_update_classid(sock->sk); 691 692 si->sock = sock; 693 si->scm = NULL; 694 si->msg = msg; 695 si->size = size; 696 si->flags = flags; 697 698 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 699 } 700 701 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 702 struct msghdr *msg, size_t size, int flags) 703 { 704 int err = security_socket_recvmsg(sock, msg, size, flags); 705 706 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 707 } 708 709 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 710 size_t size, int flags) 711 { 712 struct kiocb iocb; 713 struct sock_iocb siocb; 714 int ret; 715 716 init_sync_kiocb(&iocb, NULL); 717 iocb.private = &siocb; 718 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 719 if (-EIOCBQUEUED == ret) 720 ret = wait_on_sync_kiocb(&iocb); 721 return ret; 722 } 723 EXPORT_SYMBOL(sock_recvmsg); 724 725 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 726 size_t size, int flags) 727 { 728 struct kiocb iocb; 729 struct sock_iocb siocb; 730 int ret; 731 732 init_sync_kiocb(&iocb, NULL); 733 iocb.private = &siocb; 734 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 735 if (-EIOCBQUEUED == ret) 736 ret = wait_on_sync_kiocb(&iocb); 737 return ret; 738 } 739 740 /** 741 * kernel_recvmsg - Receive a message from a socket (kernel space) 742 * @sock: The socket to receive the message from 743 * @msg: Received message 744 * @vec: Input s/g array for message data 745 * @num: Size of input s/g array 746 * @size: Number of bytes to read 747 * @flags: Message flags (MSG_DONTWAIT, etc...) 748 * 749 * On return the msg structure contains the scatter/gather array passed in the 750 * vec argument. The array is modified so that it consists of the unfilled 751 * portion of the original array. 752 * 753 * The returned value is the total number of bytes received, or an error. 754 */ 755 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 756 struct kvec *vec, size_t num, size_t size, int flags) 757 { 758 mm_segment_t oldfs = get_fs(); 759 int result; 760 761 set_fs(KERNEL_DS); 762 /* 763 * the following is safe, since for compiler definitions of kvec and 764 * iovec are identical, yielding the same in-core layout and alignment 765 */ 766 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 767 result = sock_recvmsg(sock, msg, size, flags); 768 set_fs(oldfs); 769 return result; 770 } 771 EXPORT_SYMBOL(kernel_recvmsg); 772 773 static void sock_aio_dtor(struct kiocb *iocb) 774 { 775 kfree(iocb->private); 776 } 777 778 static ssize_t sock_sendpage(struct file *file, struct page *page, 779 int offset, size_t size, loff_t *ppos, int more) 780 { 781 struct socket *sock; 782 int flags; 783 784 sock = file->private_data; 785 786 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 787 if (more) 788 flags |= MSG_MORE; 789 790 return kernel_sendpage(sock, page, offset, size, flags); 791 } 792 793 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 794 struct pipe_inode_info *pipe, size_t len, 795 unsigned int flags) 796 { 797 struct socket *sock = file->private_data; 798 799 if (unlikely(!sock->ops->splice_read)) 800 return -EINVAL; 801 802 sock_update_classid(sock->sk); 803 804 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 805 } 806 807 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 808 struct sock_iocb *siocb) 809 { 810 if (!is_sync_kiocb(iocb)) { 811 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 812 if (!siocb) 813 return NULL; 814 iocb->ki_dtor = sock_aio_dtor; 815 } 816 817 siocb->kiocb = iocb; 818 iocb->private = siocb; 819 return siocb; 820 } 821 822 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 823 struct file *file, const struct iovec *iov, 824 unsigned long nr_segs) 825 { 826 struct socket *sock = file->private_data; 827 size_t size = 0; 828 int i; 829 830 for (i = 0; i < nr_segs; i++) 831 size += iov[i].iov_len; 832 833 msg->msg_name = NULL; 834 msg->msg_namelen = 0; 835 msg->msg_control = NULL; 836 msg->msg_controllen = 0; 837 msg->msg_iov = (struct iovec *)iov; 838 msg->msg_iovlen = nr_segs; 839 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 840 841 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 842 } 843 844 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 845 unsigned long nr_segs, loff_t pos) 846 { 847 struct sock_iocb siocb, *x; 848 849 if (pos != 0) 850 return -ESPIPE; 851 852 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 853 return 0; 854 855 856 x = alloc_sock_iocb(iocb, &siocb); 857 if (!x) 858 return -ENOMEM; 859 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 860 } 861 862 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 863 struct file *file, const struct iovec *iov, 864 unsigned long nr_segs) 865 { 866 struct socket *sock = file->private_data; 867 size_t size = 0; 868 int i; 869 870 for (i = 0; i < nr_segs; i++) 871 size += iov[i].iov_len; 872 873 msg->msg_name = NULL; 874 msg->msg_namelen = 0; 875 msg->msg_control = NULL; 876 msg->msg_controllen = 0; 877 msg->msg_iov = (struct iovec *)iov; 878 msg->msg_iovlen = nr_segs; 879 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 880 if (sock->type == SOCK_SEQPACKET) 881 msg->msg_flags |= MSG_EOR; 882 883 return __sock_sendmsg(iocb, sock, msg, size); 884 } 885 886 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 887 unsigned long nr_segs, loff_t pos) 888 { 889 struct sock_iocb siocb, *x; 890 891 if (pos != 0) 892 return -ESPIPE; 893 894 x = alloc_sock_iocb(iocb, &siocb); 895 if (!x) 896 return -ENOMEM; 897 898 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 899 } 900 901 /* 902 * Atomic setting of ioctl hooks to avoid race 903 * with module unload. 904 */ 905 906 static DEFINE_MUTEX(br_ioctl_mutex); 907 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 908 909 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 910 { 911 mutex_lock(&br_ioctl_mutex); 912 br_ioctl_hook = hook; 913 mutex_unlock(&br_ioctl_mutex); 914 } 915 EXPORT_SYMBOL(brioctl_set); 916 917 static DEFINE_MUTEX(vlan_ioctl_mutex); 918 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 919 920 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 921 { 922 mutex_lock(&vlan_ioctl_mutex); 923 vlan_ioctl_hook = hook; 924 mutex_unlock(&vlan_ioctl_mutex); 925 } 926 EXPORT_SYMBOL(vlan_ioctl_set); 927 928 static DEFINE_MUTEX(dlci_ioctl_mutex); 929 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 930 931 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 932 { 933 mutex_lock(&dlci_ioctl_mutex); 934 dlci_ioctl_hook = hook; 935 mutex_unlock(&dlci_ioctl_mutex); 936 } 937 EXPORT_SYMBOL(dlci_ioctl_set); 938 939 static long sock_do_ioctl(struct net *net, struct socket *sock, 940 unsigned int cmd, unsigned long arg) 941 { 942 int err; 943 void __user *argp = (void __user *)arg; 944 945 err = sock->ops->ioctl(sock, cmd, arg); 946 947 /* 948 * If this ioctl is unknown try to hand it down 949 * to the NIC driver. 950 */ 951 if (err == -ENOIOCTLCMD) 952 err = dev_ioctl(net, cmd, argp); 953 954 return err; 955 } 956 957 /* 958 * With an ioctl, arg may well be a user mode pointer, but we don't know 959 * what to do with it - that's up to the protocol still. 960 */ 961 962 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 963 { 964 struct socket *sock; 965 struct sock *sk; 966 void __user *argp = (void __user *)arg; 967 int pid, err; 968 struct net *net; 969 970 sock = file->private_data; 971 sk = sock->sk; 972 net = sock_net(sk); 973 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 974 err = dev_ioctl(net, cmd, argp); 975 } else 976 #ifdef CONFIG_WEXT_CORE 977 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 978 err = dev_ioctl(net, cmd, argp); 979 } else 980 #endif 981 switch (cmd) { 982 case FIOSETOWN: 983 case SIOCSPGRP: 984 err = -EFAULT; 985 if (get_user(pid, (int __user *)argp)) 986 break; 987 err = f_setown(sock->file, pid, 1); 988 break; 989 case FIOGETOWN: 990 case SIOCGPGRP: 991 err = put_user(f_getown(sock->file), 992 (int __user *)argp); 993 break; 994 case SIOCGIFBR: 995 case SIOCSIFBR: 996 case SIOCBRADDBR: 997 case SIOCBRDELBR: 998 err = -ENOPKG; 999 if (!br_ioctl_hook) 1000 request_module("bridge"); 1001 1002 mutex_lock(&br_ioctl_mutex); 1003 if (br_ioctl_hook) 1004 err = br_ioctl_hook(net, cmd, argp); 1005 mutex_unlock(&br_ioctl_mutex); 1006 break; 1007 case SIOCGIFVLAN: 1008 case SIOCSIFVLAN: 1009 err = -ENOPKG; 1010 if (!vlan_ioctl_hook) 1011 request_module("8021q"); 1012 1013 mutex_lock(&vlan_ioctl_mutex); 1014 if (vlan_ioctl_hook) 1015 err = vlan_ioctl_hook(net, argp); 1016 mutex_unlock(&vlan_ioctl_mutex); 1017 break; 1018 case SIOCADDDLCI: 1019 case SIOCDELDLCI: 1020 err = -ENOPKG; 1021 if (!dlci_ioctl_hook) 1022 request_module("dlci"); 1023 1024 mutex_lock(&dlci_ioctl_mutex); 1025 if (dlci_ioctl_hook) 1026 err = dlci_ioctl_hook(cmd, argp); 1027 mutex_unlock(&dlci_ioctl_mutex); 1028 break; 1029 default: 1030 err = sock_do_ioctl(net, sock, cmd, arg); 1031 break; 1032 } 1033 return err; 1034 } 1035 1036 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1037 { 1038 int err; 1039 struct socket *sock = NULL; 1040 1041 err = security_socket_create(family, type, protocol, 1); 1042 if (err) 1043 goto out; 1044 1045 sock = sock_alloc(); 1046 if (!sock) { 1047 err = -ENOMEM; 1048 goto out; 1049 } 1050 1051 sock->type = type; 1052 err = security_socket_post_create(sock, family, type, protocol, 1); 1053 if (err) 1054 goto out_release; 1055 1056 out: 1057 *res = sock; 1058 return err; 1059 out_release: 1060 sock_release(sock); 1061 sock = NULL; 1062 goto out; 1063 } 1064 EXPORT_SYMBOL(sock_create_lite); 1065 1066 /* No kernel lock held - perfect */ 1067 static unsigned int sock_poll(struct file *file, poll_table *wait) 1068 { 1069 struct socket *sock; 1070 1071 /* 1072 * We can't return errors to poll, so it's either yes or no. 1073 */ 1074 sock = file->private_data; 1075 return sock->ops->poll(file, sock, wait); 1076 } 1077 1078 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1079 { 1080 struct socket *sock = file->private_data; 1081 1082 return sock->ops->mmap(file, sock, vma); 1083 } 1084 1085 static int sock_close(struct inode *inode, struct file *filp) 1086 { 1087 /* 1088 * It was possible the inode is NULL we were 1089 * closing an unfinished socket. 1090 */ 1091 1092 if (!inode) { 1093 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1094 return 0; 1095 } 1096 sock_release(SOCKET_I(inode)); 1097 return 0; 1098 } 1099 1100 /* 1101 * Update the socket async list 1102 * 1103 * Fasync_list locking strategy. 1104 * 1105 * 1. fasync_list is modified only under process context socket lock 1106 * i.e. under semaphore. 1107 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1108 * or under socket lock 1109 */ 1110 1111 static int sock_fasync(int fd, struct file *filp, int on) 1112 { 1113 struct socket *sock = filp->private_data; 1114 struct sock *sk = sock->sk; 1115 struct socket_wq *wq; 1116 1117 if (sk == NULL) 1118 return -EINVAL; 1119 1120 lock_sock(sk); 1121 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1122 fasync_helper(fd, filp, on, &wq->fasync_list); 1123 1124 if (!wq->fasync_list) 1125 sock_reset_flag(sk, SOCK_FASYNC); 1126 else 1127 sock_set_flag(sk, SOCK_FASYNC); 1128 1129 release_sock(sk); 1130 return 0; 1131 } 1132 1133 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1134 1135 int sock_wake_async(struct socket *sock, int how, int band) 1136 { 1137 struct socket_wq *wq; 1138 1139 if (!sock) 1140 return -1; 1141 rcu_read_lock(); 1142 wq = rcu_dereference(sock->wq); 1143 if (!wq || !wq->fasync_list) { 1144 rcu_read_unlock(); 1145 return -1; 1146 } 1147 switch (how) { 1148 case SOCK_WAKE_WAITD: 1149 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1150 break; 1151 goto call_kill; 1152 case SOCK_WAKE_SPACE: 1153 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1154 break; 1155 /* fall through */ 1156 case SOCK_WAKE_IO: 1157 call_kill: 1158 kill_fasync(&wq->fasync_list, SIGIO, band); 1159 break; 1160 case SOCK_WAKE_URG: 1161 kill_fasync(&wq->fasync_list, SIGURG, band); 1162 } 1163 rcu_read_unlock(); 1164 return 0; 1165 } 1166 EXPORT_SYMBOL(sock_wake_async); 1167 1168 int __sock_create(struct net *net, int family, int type, int protocol, 1169 struct socket **res, int kern) 1170 { 1171 int err; 1172 struct socket *sock; 1173 const struct net_proto_family *pf; 1174 1175 /* 1176 * Check protocol is in range 1177 */ 1178 if (family < 0 || family >= NPROTO) 1179 return -EAFNOSUPPORT; 1180 if (type < 0 || type >= SOCK_MAX) 1181 return -EINVAL; 1182 1183 /* Compatibility. 1184 1185 This uglymoron is moved from INET layer to here to avoid 1186 deadlock in module load. 1187 */ 1188 if (family == PF_INET && type == SOCK_PACKET) { 1189 static int warned; 1190 if (!warned) { 1191 warned = 1; 1192 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1193 current->comm); 1194 } 1195 family = PF_PACKET; 1196 } 1197 1198 err = security_socket_create(family, type, protocol, kern); 1199 if (err) 1200 return err; 1201 1202 /* 1203 * Allocate the socket and allow the family to set things up. if 1204 * the protocol is 0, the family is instructed to select an appropriate 1205 * default. 1206 */ 1207 sock = sock_alloc(); 1208 if (!sock) { 1209 if (net_ratelimit()) 1210 printk(KERN_WARNING "socket: no more sockets\n"); 1211 return -ENFILE; /* Not exactly a match, but its the 1212 closest posix thing */ 1213 } 1214 1215 sock->type = type; 1216 1217 #ifdef CONFIG_MODULES 1218 /* Attempt to load a protocol module if the find failed. 1219 * 1220 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1221 * requested real, full-featured networking support upon configuration. 1222 * Otherwise module support will break! 1223 */ 1224 if (rcu_access_pointer(net_families[family]) == NULL) 1225 request_module("net-pf-%d", family); 1226 #endif 1227 1228 rcu_read_lock(); 1229 pf = rcu_dereference(net_families[family]); 1230 err = -EAFNOSUPPORT; 1231 if (!pf) 1232 goto out_release; 1233 1234 /* 1235 * We will call the ->create function, that possibly is in a loadable 1236 * module, so we have to bump that loadable module refcnt first. 1237 */ 1238 if (!try_module_get(pf->owner)) 1239 goto out_release; 1240 1241 /* Now protected by module ref count */ 1242 rcu_read_unlock(); 1243 1244 err = pf->create(net, sock, protocol, kern); 1245 if (err < 0) 1246 goto out_module_put; 1247 1248 /* 1249 * Now to bump the refcnt of the [loadable] module that owns this 1250 * socket at sock_release time we decrement its refcnt. 1251 */ 1252 if (!try_module_get(sock->ops->owner)) 1253 goto out_module_busy; 1254 1255 /* 1256 * Now that we're done with the ->create function, the [loadable] 1257 * module can have its refcnt decremented 1258 */ 1259 module_put(pf->owner); 1260 err = security_socket_post_create(sock, family, type, protocol, kern); 1261 if (err) 1262 goto out_sock_release; 1263 *res = sock; 1264 1265 return 0; 1266 1267 out_module_busy: 1268 err = -EAFNOSUPPORT; 1269 out_module_put: 1270 sock->ops = NULL; 1271 module_put(pf->owner); 1272 out_sock_release: 1273 sock_release(sock); 1274 return err; 1275 1276 out_release: 1277 rcu_read_unlock(); 1278 goto out_sock_release; 1279 } 1280 EXPORT_SYMBOL(__sock_create); 1281 1282 int sock_create(int family, int type, int protocol, struct socket **res) 1283 { 1284 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1285 } 1286 EXPORT_SYMBOL(sock_create); 1287 1288 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1289 { 1290 return __sock_create(&init_net, family, type, protocol, res, 1); 1291 } 1292 EXPORT_SYMBOL(sock_create_kern); 1293 1294 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1295 { 1296 int retval; 1297 struct socket *sock; 1298 int flags; 1299 1300 /* Check the SOCK_* constants for consistency. */ 1301 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1302 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1303 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1304 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1305 1306 flags = type & ~SOCK_TYPE_MASK; 1307 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1308 return -EINVAL; 1309 type &= SOCK_TYPE_MASK; 1310 1311 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1312 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1313 1314 retval = sock_create(family, type, protocol, &sock); 1315 if (retval < 0) 1316 goto out; 1317 1318 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1319 if (retval < 0) 1320 goto out_release; 1321 1322 out: 1323 /* It may be already another descriptor 8) Not kernel problem. */ 1324 return retval; 1325 1326 out_release: 1327 sock_release(sock); 1328 return retval; 1329 } 1330 1331 /* 1332 * Create a pair of connected sockets. 1333 */ 1334 1335 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1336 int __user *, usockvec) 1337 { 1338 struct socket *sock1, *sock2; 1339 int fd1, fd2, err; 1340 struct file *newfile1, *newfile2; 1341 int flags; 1342 1343 flags = type & ~SOCK_TYPE_MASK; 1344 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1345 return -EINVAL; 1346 type &= SOCK_TYPE_MASK; 1347 1348 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1349 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1350 1351 /* 1352 * Obtain the first socket and check if the underlying protocol 1353 * supports the socketpair call. 1354 */ 1355 1356 err = sock_create(family, type, protocol, &sock1); 1357 if (err < 0) 1358 goto out; 1359 1360 err = sock_create(family, type, protocol, &sock2); 1361 if (err < 0) 1362 goto out_release_1; 1363 1364 err = sock1->ops->socketpair(sock1, sock2); 1365 if (err < 0) 1366 goto out_release_both; 1367 1368 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1369 if (unlikely(fd1 < 0)) { 1370 err = fd1; 1371 goto out_release_both; 1372 } 1373 1374 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1375 if (unlikely(fd2 < 0)) { 1376 err = fd2; 1377 fput(newfile1); 1378 put_unused_fd(fd1); 1379 sock_release(sock2); 1380 goto out; 1381 } 1382 1383 audit_fd_pair(fd1, fd2); 1384 fd_install(fd1, newfile1); 1385 fd_install(fd2, newfile2); 1386 /* fd1 and fd2 may be already another descriptors. 1387 * Not kernel problem. 1388 */ 1389 1390 err = put_user(fd1, &usockvec[0]); 1391 if (!err) 1392 err = put_user(fd2, &usockvec[1]); 1393 if (!err) 1394 return 0; 1395 1396 sys_close(fd2); 1397 sys_close(fd1); 1398 return err; 1399 1400 out_release_both: 1401 sock_release(sock2); 1402 out_release_1: 1403 sock_release(sock1); 1404 out: 1405 return err; 1406 } 1407 1408 /* 1409 * Bind a name to a socket. Nothing much to do here since it's 1410 * the protocol's responsibility to handle the local address. 1411 * 1412 * We move the socket address to kernel space before we call 1413 * the protocol layer (having also checked the address is ok). 1414 */ 1415 1416 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1417 { 1418 struct socket *sock; 1419 struct sockaddr_storage address; 1420 int err, fput_needed; 1421 1422 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1423 if (sock) { 1424 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1425 if (err >= 0) { 1426 err = security_socket_bind(sock, 1427 (struct sockaddr *)&address, 1428 addrlen); 1429 if (!err) 1430 err = sock->ops->bind(sock, 1431 (struct sockaddr *) 1432 &address, addrlen); 1433 } 1434 fput_light(sock->file, fput_needed); 1435 } 1436 return err; 1437 } 1438 1439 /* 1440 * Perform a listen. Basically, we allow the protocol to do anything 1441 * necessary for a listen, and if that works, we mark the socket as 1442 * ready for listening. 1443 */ 1444 1445 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1446 { 1447 struct socket *sock; 1448 int err, fput_needed; 1449 int somaxconn; 1450 1451 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1452 if (sock) { 1453 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1454 if ((unsigned)backlog > somaxconn) 1455 backlog = somaxconn; 1456 1457 err = security_socket_listen(sock, backlog); 1458 if (!err) 1459 err = sock->ops->listen(sock, backlog); 1460 1461 fput_light(sock->file, fput_needed); 1462 } 1463 return err; 1464 } 1465 1466 /* 1467 * For accept, we attempt to create a new socket, set up the link 1468 * with the client, wake up the client, then return the new 1469 * connected fd. We collect the address of the connector in kernel 1470 * space and move it to user at the very end. This is unclean because 1471 * we open the socket then return an error. 1472 * 1473 * 1003.1g adds the ability to recvmsg() to query connection pending 1474 * status to recvmsg. We need to add that support in a way thats 1475 * clean when we restucture accept also. 1476 */ 1477 1478 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1479 int __user *, upeer_addrlen, int, flags) 1480 { 1481 struct socket *sock, *newsock; 1482 struct file *newfile; 1483 int err, len, newfd, fput_needed; 1484 struct sockaddr_storage address; 1485 1486 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1487 return -EINVAL; 1488 1489 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1490 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1491 1492 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1493 if (!sock) 1494 goto out; 1495 1496 err = -ENFILE; 1497 newsock = sock_alloc(); 1498 if (!newsock) 1499 goto out_put; 1500 1501 newsock->type = sock->type; 1502 newsock->ops = sock->ops; 1503 1504 /* 1505 * We don't need try_module_get here, as the listening socket (sock) 1506 * has the protocol module (sock->ops->owner) held. 1507 */ 1508 __module_get(newsock->ops->owner); 1509 1510 newfd = sock_alloc_file(newsock, &newfile, flags); 1511 if (unlikely(newfd < 0)) { 1512 err = newfd; 1513 sock_release(newsock); 1514 goto out_put; 1515 } 1516 1517 err = security_socket_accept(sock, newsock); 1518 if (err) 1519 goto out_fd; 1520 1521 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1522 if (err < 0) 1523 goto out_fd; 1524 1525 if (upeer_sockaddr) { 1526 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1527 &len, 2) < 0) { 1528 err = -ECONNABORTED; 1529 goto out_fd; 1530 } 1531 err = move_addr_to_user((struct sockaddr *)&address, 1532 len, upeer_sockaddr, upeer_addrlen); 1533 if (err < 0) 1534 goto out_fd; 1535 } 1536 1537 /* File flags are not inherited via accept() unlike another OSes. */ 1538 1539 fd_install(newfd, newfile); 1540 err = newfd; 1541 1542 out_put: 1543 fput_light(sock->file, fput_needed); 1544 out: 1545 return err; 1546 out_fd: 1547 fput(newfile); 1548 put_unused_fd(newfd); 1549 goto out_put; 1550 } 1551 1552 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1553 int __user *, upeer_addrlen) 1554 { 1555 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1556 } 1557 1558 /* 1559 * Attempt to connect to a socket with the server address. The address 1560 * is in user space so we verify it is OK and move it to kernel space. 1561 * 1562 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1563 * break bindings 1564 * 1565 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1566 * other SEQPACKET protocols that take time to connect() as it doesn't 1567 * include the -EINPROGRESS status for such sockets. 1568 */ 1569 1570 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1571 int, addrlen) 1572 { 1573 struct socket *sock; 1574 struct sockaddr_storage address; 1575 int err, fput_needed; 1576 1577 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1578 if (!sock) 1579 goto out; 1580 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1581 if (err < 0) 1582 goto out_put; 1583 1584 err = 1585 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1586 if (err) 1587 goto out_put; 1588 1589 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1590 sock->file->f_flags); 1591 out_put: 1592 fput_light(sock->file, fput_needed); 1593 out: 1594 return err; 1595 } 1596 1597 /* 1598 * Get the local address ('name') of a socket object. Move the obtained 1599 * name to user space. 1600 */ 1601 1602 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1603 int __user *, usockaddr_len) 1604 { 1605 struct socket *sock; 1606 struct sockaddr_storage address; 1607 int len, err, fput_needed; 1608 1609 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1610 if (!sock) 1611 goto out; 1612 1613 err = security_socket_getsockname(sock); 1614 if (err) 1615 goto out_put; 1616 1617 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1618 if (err) 1619 goto out_put; 1620 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1621 1622 out_put: 1623 fput_light(sock->file, fput_needed); 1624 out: 1625 return err; 1626 } 1627 1628 /* 1629 * Get the remote address ('name') of a socket object. Move the obtained 1630 * name to user space. 1631 */ 1632 1633 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1634 int __user *, usockaddr_len) 1635 { 1636 struct socket *sock; 1637 struct sockaddr_storage address; 1638 int len, err, fput_needed; 1639 1640 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1641 if (sock != NULL) { 1642 err = security_socket_getpeername(sock); 1643 if (err) { 1644 fput_light(sock->file, fput_needed); 1645 return err; 1646 } 1647 1648 err = 1649 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1650 1); 1651 if (!err) 1652 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1653 usockaddr_len); 1654 fput_light(sock->file, fput_needed); 1655 } 1656 return err; 1657 } 1658 1659 /* 1660 * Send a datagram to a given address. We move the address into kernel 1661 * space and check the user space data area is readable before invoking 1662 * the protocol. 1663 */ 1664 1665 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1666 unsigned, flags, struct sockaddr __user *, addr, 1667 int, addr_len) 1668 { 1669 struct socket *sock; 1670 struct sockaddr_storage address; 1671 int err; 1672 struct msghdr msg; 1673 struct iovec iov; 1674 int fput_needed; 1675 1676 if (len > INT_MAX) 1677 len = INT_MAX; 1678 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1679 if (!sock) 1680 goto out; 1681 1682 iov.iov_base = buff; 1683 iov.iov_len = len; 1684 msg.msg_name = NULL; 1685 msg.msg_iov = &iov; 1686 msg.msg_iovlen = 1; 1687 msg.msg_control = NULL; 1688 msg.msg_controllen = 0; 1689 msg.msg_namelen = 0; 1690 if (addr) { 1691 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1692 if (err < 0) 1693 goto out_put; 1694 msg.msg_name = (struct sockaddr *)&address; 1695 msg.msg_namelen = addr_len; 1696 } 1697 if (sock->file->f_flags & O_NONBLOCK) 1698 flags |= MSG_DONTWAIT; 1699 msg.msg_flags = flags; 1700 err = sock_sendmsg(sock, &msg, len); 1701 1702 out_put: 1703 fput_light(sock->file, fput_needed); 1704 out: 1705 return err; 1706 } 1707 1708 /* 1709 * Send a datagram down a socket. 1710 */ 1711 1712 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1713 unsigned, flags) 1714 { 1715 return sys_sendto(fd, buff, len, flags, NULL, 0); 1716 } 1717 1718 /* 1719 * Receive a frame from the socket and optionally record the address of the 1720 * sender. We verify the buffers are writable and if needed move the 1721 * sender address from kernel to user space. 1722 */ 1723 1724 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1725 unsigned, flags, struct sockaddr __user *, addr, 1726 int __user *, addr_len) 1727 { 1728 struct socket *sock; 1729 struct iovec iov; 1730 struct msghdr msg; 1731 struct sockaddr_storage address; 1732 int err, err2; 1733 int fput_needed; 1734 1735 if (size > INT_MAX) 1736 size = INT_MAX; 1737 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1738 if (!sock) 1739 goto out; 1740 1741 msg.msg_control = NULL; 1742 msg.msg_controllen = 0; 1743 msg.msg_iovlen = 1; 1744 msg.msg_iov = &iov; 1745 iov.iov_len = size; 1746 iov.iov_base = ubuf; 1747 msg.msg_name = (struct sockaddr *)&address; 1748 msg.msg_namelen = sizeof(address); 1749 if (sock->file->f_flags & O_NONBLOCK) 1750 flags |= MSG_DONTWAIT; 1751 err = sock_recvmsg(sock, &msg, size, flags); 1752 1753 if (err >= 0 && addr != NULL) { 1754 err2 = move_addr_to_user((struct sockaddr *)&address, 1755 msg.msg_namelen, addr, addr_len); 1756 if (err2 < 0) 1757 err = err2; 1758 } 1759 1760 fput_light(sock->file, fput_needed); 1761 out: 1762 return err; 1763 } 1764 1765 /* 1766 * Receive a datagram from a socket. 1767 */ 1768 1769 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1770 unsigned flags) 1771 { 1772 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1773 } 1774 1775 /* 1776 * Set a socket option. Because we don't know the option lengths we have 1777 * to pass the user mode parameter for the protocols to sort out. 1778 */ 1779 1780 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1781 char __user *, optval, int, optlen) 1782 { 1783 int err, fput_needed; 1784 struct socket *sock; 1785 1786 if (optlen < 0) 1787 return -EINVAL; 1788 1789 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1790 if (sock != NULL) { 1791 err = security_socket_setsockopt(sock, level, optname); 1792 if (err) 1793 goto out_put; 1794 1795 if (level == SOL_SOCKET) 1796 err = 1797 sock_setsockopt(sock, level, optname, optval, 1798 optlen); 1799 else 1800 err = 1801 sock->ops->setsockopt(sock, level, optname, optval, 1802 optlen); 1803 out_put: 1804 fput_light(sock->file, fput_needed); 1805 } 1806 return err; 1807 } 1808 1809 /* 1810 * Get a socket option. Because we don't know the option lengths we have 1811 * to pass a user mode parameter for the protocols to sort out. 1812 */ 1813 1814 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1815 char __user *, optval, int __user *, optlen) 1816 { 1817 int err, fput_needed; 1818 struct socket *sock; 1819 1820 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1821 if (sock != NULL) { 1822 err = security_socket_getsockopt(sock, level, optname); 1823 if (err) 1824 goto out_put; 1825 1826 if (level == SOL_SOCKET) 1827 err = 1828 sock_getsockopt(sock, level, optname, optval, 1829 optlen); 1830 else 1831 err = 1832 sock->ops->getsockopt(sock, level, optname, optval, 1833 optlen); 1834 out_put: 1835 fput_light(sock->file, fput_needed); 1836 } 1837 return err; 1838 } 1839 1840 /* 1841 * Shutdown a socket. 1842 */ 1843 1844 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1845 { 1846 int err, fput_needed; 1847 struct socket *sock; 1848 1849 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1850 if (sock != NULL) { 1851 err = security_socket_shutdown(sock, how); 1852 if (!err) 1853 err = sock->ops->shutdown(sock, how); 1854 fput_light(sock->file, fput_needed); 1855 } 1856 return err; 1857 } 1858 1859 /* A couple of helpful macros for getting the address of the 32/64 bit 1860 * fields which are the same type (int / unsigned) on our platforms. 1861 */ 1862 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1863 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1864 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1865 1866 /* 1867 * BSD sendmsg interface 1868 */ 1869 1870 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1871 { 1872 struct compat_msghdr __user *msg_compat = 1873 (struct compat_msghdr __user *)msg; 1874 struct socket *sock; 1875 struct sockaddr_storage address; 1876 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1877 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1878 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1879 /* 20 is size of ipv6_pktinfo */ 1880 unsigned char *ctl_buf = ctl; 1881 struct msghdr msg_sys; 1882 int err, ctl_len, iov_size, total_len; 1883 int fput_needed; 1884 1885 err = -EFAULT; 1886 if (MSG_CMSG_COMPAT & flags) { 1887 if (get_compat_msghdr(&msg_sys, msg_compat)) 1888 return -EFAULT; 1889 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1890 return -EFAULT; 1891 1892 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1893 if (!sock) 1894 goto out; 1895 1896 /* do not move before msg_sys is valid */ 1897 err = -EMSGSIZE; 1898 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1899 goto out_put; 1900 1901 /* Check whether to allocate the iovec area */ 1902 err = -ENOMEM; 1903 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1904 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1905 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1906 if (!iov) 1907 goto out_put; 1908 } 1909 1910 /* This will also move the address data into kernel space */ 1911 if (MSG_CMSG_COMPAT & flags) { 1912 err = verify_compat_iovec(&msg_sys, iov, 1913 (struct sockaddr *)&address, 1914 VERIFY_READ); 1915 } else 1916 err = verify_iovec(&msg_sys, iov, 1917 (struct sockaddr *)&address, 1918 VERIFY_READ); 1919 if (err < 0) 1920 goto out_freeiov; 1921 total_len = err; 1922 1923 err = -ENOBUFS; 1924 1925 if (msg_sys.msg_controllen > INT_MAX) 1926 goto out_freeiov; 1927 ctl_len = msg_sys.msg_controllen; 1928 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1929 err = 1930 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1931 sizeof(ctl)); 1932 if (err) 1933 goto out_freeiov; 1934 ctl_buf = msg_sys.msg_control; 1935 ctl_len = msg_sys.msg_controllen; 1936 } else if (ctl_len) { 1937 if (ctl_len > sizeof(ctl)) { 1938 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1939 if (ctl_buf == NULL) 1940 goto out_freeiov; 1941 } 1942 err = -EFAULT; 1943 /* 1944 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1945 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1946 * checking falls down on this. 1947 */ 1948 if (copy_from_user(ctl_buf, 1949 (void __user __force *)msg_sys.msg_control, 1950 ctl_len)) 1951 goto out_freectl; 1952 msg_sys.msg_control = ctl_buf; 1953 } 1954 msg_sys.msg_flags = flags; 1955 1956 if (sock->file->f_flags & O_NONBLOCK) 1957 msg_sys.msg_flags |= MSG_DONTWAIT; 1958 err = sock_sendmsg(sock, &msg_sys, total_len); 1959 1960 out_freectl: 1961 if (ctl_buf != ctl) 1962 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1963 out_freeiov: 1964 if (iov != iovstack) 1965 sock_kfree_s(sock->sk, iov, iov_size); 1966 out_put: 1967 fput_light(sock->file, fput_needed); 1968 out: 1969 return err; 1970 } 1971 1972 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1973 struct msghdr *msg_sys, unsigned flags, int nosec) 1974 { 1975 struct compat_msghdr __user *msg_compat = 1976 (struct compat_msghdr __user *)msg; 1977 struct iovec iovstack[UIO_FASTIOV]; 1978 struct iovec *iov = iovstack; 1979 unsigned long cmsg_ptr; 1980 int err, iov_size, total_len, len; 1981 1982 /* kernel mode address */ 1983 struct sockaddr_storage addr; 1984 1985 /* user mode address pointers */ 1986 struct sockaddr __user *uaddr; 1987 int __user *uaddr_len; 1988 1989 if (MSG_CMSG_COMPAT & flags) { 1990 if (get_compat_msghdr(msg_sys, msg_compat)) 1991 return -EFAULT; 1992 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1993 return -EFAULT; 1994 1995 err = -EMSGSIZE; 1996 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1997 goto out; 1998 1999 /* Check whether to allocate the iovec area */ 2000 err = -ENOMEM; 2001 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 2002 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2003 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 2004 if (!iov) 2005 goto out; 2006 } 2007 2008 /* 2009 * Save the user-mode address (verify_iovec will change the 2010 * kernel msghdr to use the kernel address space) 2011 */ 2012 2013 uaddr = (__force void __user *)msg_sys->msg_name; 2014 uaddr_len = COMPAT_NAMELEN(msg); 2015 if (MSG_CMSG_COMPAT & flags) { 2016 err = verify_compat_iovec(msg_sys, iov, 2017 (struct sockaddr *)&addr, 2018 VERIFY_WRITE); 2019 } else 2020 err = verify_iovec(msg_sys, iov, 2021 (struct sockaddr *)&addr, 2022 VERIFY_WRITE); 2023 if (err < 0) 2024 goto out_freeiov; 2025 total_len = err; 2026 2027 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2028 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2029 2030 if (sock->file->f_flags & O_NONBLOCK) 2031 flags |= MSG_DONTWAIT; 2032 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2033 total_len, flags); 2034 if (err < 0) 2035 goto out_freeiov; 2036 len = err; 2037 2038 if (uaddr != NULL) { 2039 err = move_addr_to_user((struct sockaddr *)&addr, 2040 msg_sys->msg_namelen, uaddr, 2041 uaddr_len); 2042 if (err < 0) 2043 goto out_freeiov; 2044 } 2045 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2046 COMPAT_FLAGS(msg)); 2047 if (err) 2048 goto out_freeiov; 2049 if (MSG_CMSG_COMPAT & flags) 2050 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2051 &msg_compat->msg_controllen); 2052 else 2053 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2054 &msg->msg_controllen); 2055 if (err) 2056 goto out_freeiov; 2057 err = len; 2058 2059 out_freeiov: 2060 if (iov != iovstack) 2061 sock_kfree_s(sock->sk, iov, iov_size); 2062 out: 2063 return err; 2064 } 2065 2066 /* 2067 * BSD recvmsg interface 2068 */ 2069 2070 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2071 unsigned int, flags) 2072 { 2073 int fput_needed, err; 2074 struct msghdr msg_sys; 2075 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2076 2077 if (!sock) 2078 goto out; 2079 2080 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2081 2082 fput_light(sock->file, fput_needed); 2083 out: 2084 return err; 2085 } 2086 2087 /* 2088 * Linux recvmmsg interface 2089 */ 2090 2091 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2092 unsigned int flags, struct timespec *timeout) 2093 { 2094 int fput_needed, err, datagrams; 2095 struct socket *sock; 2096 struct mmsghdr __user *entry; 2097 struct compat_mmsghdr __user *compat_entry; 2098 struct msghdr msg_sys; 2099 struct timespec end_time; 2100 2101 if (timeout && 2102 poll_select_set_timeout(&end_time, timeout->tv_sec, 2103 timeout->tv_nsec)) 2104 return -EINVAL; 2105 2106 datagrams = 0; 2107 2108 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2109 if (!sock) 2110 return err; 2111 2112 err = sock_error(sock->sk); 2113 if (err) 2114 goto out_put; 2115 2116 entry = mmsg; 2117 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2118 2119 while (datagrams < vlen) { 2120 /* 2121 * No need to ask LSM for more than the first datagram. 2122 */ 2123 if (MSG_CMSG_COMPAT & flags) { 2124 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2125 &msg_sys, flags, datagrams); 2126 if (err < 0) 2127 break; 2128 err = __put_user(err, &compat_entry->msg_len); 2129 ++compat_entry; 2130 } else { 2131 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2132 &msg_sys, flags, datagrams); 2133 if (err < 0) 2134 break; 2135 err = put_user(err, &entry->msg_len); 2136 ++entry; 2137 } 2138 2139 if (err) 2140 break; 2141 ++datagrams; 2142 2143 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2144 if (flags & MSG_WAITFORONE) 2145 flags |= MSG_DONTWAIT; 2146 2147 if (timeout) { 2148 ktime_get_ts(timeout); 2149 *timeout = timespec_sub(end_time, *timeout); 2150 if (timeout->tv_sec < 0) { 2151 timeout->tv_sec = timeout->tv_nsec = 0; 2152 break; 2153 } 2154 2155 /* Timeout, return less than vlen datagrams */ 2156 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2157 break; 2158 } 2159 2160 /* Out of band data, return right away */ 2161 if (msg_sys.msg_flags & MSG_OOB) 2162 break; 2163 } 2164 2165 out_put: 2166 fput_light(sock->file, fput_needed); 2167 2168 if (err == 0) 2169 return datagrams; 2170 2171 if (datagrams != 0) { 2172 /* 2173 * We may return less entries than requested (vlen) if the 2174 * sock is non block and there aren't enough datagrams... 2175 */ 2176 if (err != -EAGAIN) { 2177 /* 2178 * ... or if recvmsg returns an error after we 2179 * received some datagrams, where we record the 2180 * error to return on the next call or if the 2181 * app asks about it using getsockopt(SO_ERROR). 2182 */ 2183 sock->sk->sk_err = -err; 2184 } 2185 2186 return datagrams; 2187 } 2188 2189 return err; 2190 } 2191 2192 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2193 unsigned int, vlen, unsigned int, flags, 2194 struct timespec __user *, timeout) 2195 { 2196 int datagrams; 2197 struct timespec timeout_sys; 2198 2199 if (!timeout) 2200 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2201 2202 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2203 return -EFAULT; 2204 2205 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2206 2207 if (datagrams > 0 && 2208 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2209 datagrams = -EFAULT; 2210 2211 return datagrams; 2212 } 2213 2214 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2215 /* Argument list sizes for sys_socketcall */ 2216 #define AL(x) ((x) * sizeof(unsigned long)) 2217 static const unsigned char nargs[20] = { 2218 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2219 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2220 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2221 AL(4), AL(5) 2222 }; 2223 2224 #undef AL 2225 2226 /* 2227 * System call vectors. 2228 * 2229 * Argument checking cleaned up. Saved 20% in size. 2230 * This function doesn't need to set the kernel lock because 2231 * it is set by the callees. 2232 */ 2233 2234 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2235 { 2236 unsigned long a[6]; 2237 unsigned long a0, a1; 2238 int err; 2239 unsigned int len; 2240 2241 if (call < 1 || call > SYS_RECVMMSG) 2242 return -EINVAL; 2243 2244 len = nargs[call]; 2245 if (len > sizeof(a)) 2246 return -EINVAL; 2247 2248 /* copy_from_user should be SMP safe. */ 2249 if (copy_from_user(a, args, len)) 2250 return -EFAULT; 2251 2252 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2253 2254 a0 = a[0]; 2255 a1 = a[1]; 2256 2257 switch (call) { 2258 case SYS_SOCKET: 2259 err = sys_socket(a0, a1, a[2]); 2260 break; 2261 case SYS_BIND: 2262 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2263 break; 2264 case SYS_CONNECT: 2265 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2266 break; 2267 case SYS_LISTEN: 2268 err = sys_listen(a0, a1); 2269 break; 2270 case SYS_ACCEPT: 2271 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2272 (int __user *)a[2], 0); 2273 break; 2274 case SYS_GETSOCKNAME: 2275 err = 2276 sys_getsockname(a0, (struct sockaddr __user *)a1, 2277 (int __user *)a[2]); 2278 break; 2279 case SYS_GETPEERNAME: 2280 err = 2281 sys_getpeername(a0, (struct sockaddr __user *)a1, 2282 (int __user *)a[2]); 2283 break; 2284 case SYS_SOCKETPAIR: 2285 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2286 break; 2287 case SYS_SEND: 2288 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2289 break; 2290 case SYS_SENDTO: 2291 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2292 (struct sockaddr __user *)a[4], a[5]); 2293 break; 2294 case SYS_RECV: 2295 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2296 break; 2297 case SYS_RECVFROM: 2298 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2299 (struct sockaddr __user *)a[4], 2300 (int __user *)a[5]); 2301 break; 2302 case SYS_SHUTDOWN: 2303 err = sys_shutdown(a0, a1); 2304 break; 2305 case SYS_SETSOCKOPT: 2306 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2307 break; 2308 case SYS_GETSOCKOPT: 2309 err = 2310 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2311 (int __user *)a[4]); 2312 break; 2313 case SYS_SENDMSG: 2314 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2315 break; 2316 case SYS_RECVMSG: 2317 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2318 break; 2319 case SYS_RECVMMSG: 2320 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2321 (struct timespec __user *)a[4]); 2322 break; 2323 case SYS_ACCEPT4: 2324 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2325 (int __user *)a[2], a[3]); 2326 break; 2327 default: 2328 err = -EINVAL; 2329 break; 2330 } 2331 return err; 2332 } 2333 2334 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2335 2336 /** 2337 * sock_register - add a socket protocol handler 2338 * @ops: description of protocol 2339 * 2340 * This function is called by a protocol handler that wants to 2341 * advertise its address family, and have it linked into the 2342 * socket interface. The value ops->family coresponds to the 2343 * socket system call protocol family. 2344 */ 2345 int sock_register(const struct net_proto_family *ops) 2346 { 2347 int err; 2348 2349 if (ops->family >= NPROTO) { 2350 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2351 NPROTO); 2352 return -ENOBUFS; 2353 } 2354 2355 spin_lock(&net_family_lock); 2356 if (rcu_dereference_protected(net_families[ops->family], 2357 lockdep_is_held(&net_family_lock))) 2358 err = -EEXIST; 2359 else { 2360 rcu_assign_pointer(net_families[ops->family], ops); 2361 err = 0; 2362 } 2363 spin_unlock(&net_family_lock); 2364 2365 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2366 return err; 2367 } 2368 EXPORT_SYMBOL(sock_register); 2369 2370 /** 2371 * sock_unregister - remove a protocol handler 2372 * @family: protocol family to remove 2373 * 2374 * This function is called by a protocol handler that wants to 2375 * remove its address family, and have it unlinked from the 2376 * new socket creation. 2377 * 2378 * If protocol handler is a module, then it can use module reference 2379 * counts to protect against new references. If protocol handler is not 2380 * a module then it needs to provide its own protection in 2381 * the ops->create routine. 2382 */ 2383 void sock_unregister(int family) 2384 { 2385 BUG_ON(family < 0 || family >= NPROTO); 2386 2387 spin_lock(&net_family_lock); 2388 rcu_assign_pointer(net_families[family], NULL); 2389 spin_unlock(&net_family_lock); 2390 2391 synchronize_rcu(); 2392 2393 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2394 } 2395 EXPORT_SYMBOL(sock_unregister); 2396 2397 static int __init sock_init(void) 2398 { 2399 int err; 2400 2401 /* 2402 * Initialize sock SLAB cache. 2403 */ 2404 2405 sk_init(); 2406 2407 /* 2408 * Initialize skbuff SLAB cache 2409 */ 2410 skb_init(); 2411 2412 /* 2413 * Initialize the protocols module. 2414 */ 2415 2416 init_inodecache(); 2417 2418 err = register_filesystem(&sock_fs_type); 2419 if (err) 2420 goto out_fs; 2421 sock_mnt = kern_mount(&sock_fs_type); 2422 if (IS_ERR(sock_mnt)) { 2423 err = PTR_ERR(sock_mnt); 2424 goto out_mount; 2425 } 2426 2427 /* The real protocol initialization is performed in later initcalls. 2428 */ 2429 2430 #ifdef CONFIG_NETFILTER 2431 netfilter_init(); 2432 #endif 2433 2434 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2435 skb_timestamping_init(); 2436 #endif 2437 2438 out: 2439 return err; 2440 2441 out_mount: 2442 unregister_filesystem(&sock_fs_type); 2443 out_fs: 2444 goto out; 2445 } 2446 2447 core_initcall(sock_init); /* early initcall */ 2448 2449 #ifdef CONFIG_PROC_FS 2450 void socket_seq_show(struct seq_file *seq) 2451 { 2452 int cpu; 2453 int counter = 0; 2454 2455 for_each_possible_cpu(cpu) 2456 counter += per_cpu(sockets_in_use, cpu); 2457 2458 /* It can be negative, by the way. 8) */ 2459 if (counter < 0) 2460 counter = 0; 2461 2462 seq_printf(seq, "sockets: used %d\n", counter); 2463 } 2464 #endif /* CONFIG_PROC_FS */ 2465 2466 #ifdef CONFIG_COMPAT 2467 static int do_siocgstamp(struct net *net, struct socket *sock, 2468 unsigned int cmd, struct compat_timeval __user *up) 2469 { 2470 mm_segment_t old_fs = get_fs(); 2471 struct timeval ktv; 2472 int err; 2473 2474 set_fs(KERNEL_DS); 2475 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2476 set_fs(old_fs); 2477 if (!err) { 2478 err = put_user(ktv.tv_sec, &up->tv_sec); 2479 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2480 } 2481 return err; 2482 } 2483 2484 static int do_siocgstampns(struct net *net, struct socket *sock, 2485 unsigned int cmd, struct compat_timespec __user *up) 2486 { 2487 mm_segment_t old_fs = get_fs(); 2488 struct timespec kts; 2489 int err; 2490 2491 set_fs(KERNEL_DS); 2492 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2493 set_fs(old_fs); 2494 if (!err) { 2495 err = put_user(kts.tv_sec, &up->tv_sec); 2496 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2497 } 2498 return err; 2499 } 2500 2501 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2502 { 2503 struct ifreq __user *uifr; 2504 int err; 2505 2506 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2507 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2508 return -EFAULT; 2509 2510 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2511 if (err) 2512 return err; 2513 2514 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2515 return -EFAULT; 2516 2517 return 0; 2518 } 2519 2520 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2521 { 2522 struct compat_ifconf ifc32; 2523 struct ifconf ifc; 2524 struct ifconf __user *uifc; 2525 struct compat_ifreq __user *ifr32; 2526 struct ifreq __user *ifr; 2527 unsigned int i, j; 2528 int err; 2529 2530 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2531 return -EFAULT; 2532 2533 if (ifc32.ifcbuf == 0) { 2534 ifc32.ifc_len = 0; 2535 ifc.ifc_len = 0; 2536 ifc.ifc_req = NULL; 2537 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2538 } else { 2539 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2540 sizeof(struct ifreq); 2541 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2542 ifc.ifc_len = len; 2543 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2544 ifr32 = compat_ptr(ifc32.ifcbuf); 2545 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2546 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2547 return -EFAULT; 2548 ifr++; 2549 ifr32++; 2550 } 2551 } 2552 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2553 return -EFAULT; 2554 2555 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2556 if (err) 2557 return err; 2558 2559 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2560 return -EFAULT; 2561 2562 ifr = ifc.ifc_req; 2563 ifr32 = compat_ptr(ifc32.ifcbuf); 2564 for (i = 0, j = 0; 2565 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2566 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2567 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2568 return -EFAULT; 2569 ifr32++; 2570 ifr++; 2571 } 2572 2573 if (ifc32.ifcbuf == 0) { 2574 /* Translate from 64-bit structure multiple to 2575 * a 32-bit one. 2576 */ 2577 i = ifc.ifc_len; 2578 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2579 ifc32.ifc_len = i; 2580 } else { 2581 ifc32.ifc_len = i; 2582 } 2583 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2584 return -EFAULT; 2585 2586 return 0; 2587 } 2588 2589 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2590 { 2591 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2592 bool convert_in = false, convert_out = false; 2593 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2594 struct ethtool_rxnfc __user *rxnfc; 2595 struct ifreq __user *ifr; 2596 u32 rule_cnt = 0, actual_rule_cnt; 2597 u32 ethcmd; 2598 u32 data; 2599 int ret; 2600 2601 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2602 return -EFAULT; 2603 2604 compat_rxnfc = compat_ptr(data); 2605 2606 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2607 return -EFAULT; 2608 2609 /* Most ethtool structures are defined without padding. 2610 * Unfortunately struct ethtool_rxnfc is an exception. 2611 */ 2612 switch (ethcmd) { 2613 default: 2614 break; 2615 case ETHTOOL_GRXCLSRLALL: 2616 /* Buffer size is variable */ 2617 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2618 return -EFAULT; 2619 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2620 return -ENOMEM; 2621 buf_size += rule_cnt * sizeof(u32); 2622 /* fall through */ 2623 case ETHTOOL_GRXRINGS: 2624 case ETHTOOL_GRXCLSRLCNT: 2625 case ETHTOOL_GRXCLSRULE: 2626 convert_out = true; 2627 /* fall through */ 2628 case ETHTOOL_SRXCLSRLDEL: 2629 case ETHTOOL_SRXCLSRLINS: 2630 buf_size += sizeof(struct ethtool_rxnfc); 2631 convert_in = true; 2632 break; 2633 } 2634 2635 ifr = compat_alloc_user_space(buf_size); 2636 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8); 2637 2638 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2639 return -EFAULT; 2640 2641 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2642 &ifr->ifr_ifru.ifru_data)) 2643 return -EFAULT; 2644 2645 if (convert_in) { 2646 /* We expect there to be holes between fs.m_u and 2647 * fs.ring_cookie and at the end of fs, but nowhere else. 2648 */ 2649 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_u) + 2650 sizeof(compat_rxnfc->fs.m_u) != 2651 offsetof(struct ethtool_rxnfc, fs.m_u) + 2652 sizeof(rxnfc->fs.m_u)); 2653 BUILD_BUG_ON( 2654 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2655 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2656 offsetof(struct ethtool_rxnfc, fs.location) - 2657 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2658 2659 if (copy_in_user(rxnfc, compat_rxnfc, 2660 (void *)(&rxnfc->fs.m_u + 1) - 2661 (void *)rxnfc) || 2662 copy_in_user(&rxnfc->fs.ring_cookie, 2663 &compat_rxnfc->fs.ring_cookie, 2664 (void *)(&rxnfc->fs.location + 1) - 2665 (void *)&rxnfc->fs.ring_cookie) || 2666 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2667 sizeof(rxnfc->rule_cnt))) 2668 return -EFAULT; 2669 } 2670 2671 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2672 if (ret) 2673 return ret; 2674 2675 if (convert_out) { 2676 if (copy_in_user(compat_rxnfc, rxnfc, 2677 (const void *)(&rxnfc->fs.m_u + 1) - 2678 (const void *)rxnfc) || 2679 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2680 &rxnfc->fs.ring_cookie, 2681 (const void *)(&rxnfc->fs.location + 1) - 2682 (const void *)&rxnfc->fs.ring_cookie) || 2683 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2684 sizeof(rxnfc->rule_cnt))) 2685 return -EFAULT; 2686 2687 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2688 /* As an optimisation, we only copy the actual 2689 * number of rules that the underlying 2690 * function returned. Since Mallory might 2691 * change the rule count in user memory, we 2692 * check that it is less than the rule count 2693 * originally given (as the user buffer size), 2694 * which has been range-checked. 2695 */ 2696 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2697 return -EFAULT; 2698 if (actual_rule_cnt < rule_cnt) 2699 rule_cnt = actual_rule_cnt; 2700 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2701 &rxnfc->rule_locs[0], 2702 rule_cnt * sizeof(u32))) 2703 return -EFAULT; 2704 } 2705 } 2706 2707 return 0; 2708 } 2709 2710 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2711 { 2712 void __user *uptr; 2713 compat_uptr_t uptr32; 2714 struct ifreq __user *uifr; 2715 2716 uifr = compat_alloc_user_space(sizeof(*uifr)); 2717 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2718 return -EFAULT; 2719 2720 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2721 return -EFAULT; 2722 2723 uptr = compat_ptr(uptr32); 2724 2725 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2726 return -EFAULT; 2727 2728 return dev_ioctl(net, SIOCWANDEV, uifr); 2729 } 2730 2731 static int bond_ioctl(struct net *net, unsigned int cmd, 2732 struct compat_ifreq __user *ifr32) 2733 { 2734 struct ifreq kifr; 2735 struct ifreq __user *uifr; 2736 mm_segment_t old_fs; 2737 int err; 2738 u32 data; 2739 void __user *datap; 2740 2741 switch (cmd) { 2742 case SIOCBONDENSLAVE: 2743 case SIOCBONDRELEASE: 2744 case SIOCBONDSETHWADDR: 2745 case SIOCBONDCHANGEACTIVE: 2746 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2747 return -EFAULT; 2748 2749 old_fs = get_fs(); 2750 set_fs(KERNEL_DS); 2751 err = dev_ioctl(net, cmd, 2752 (struct ifreq __user __force *) &kifr); 2753 set_fs(old_fs); 2754 2755 return err; 2756 case SIOCBONDSLAVEINFOQUERY: 2757 case SIOCBONDINFOQUERY: 2758 uifr = compat_alloc_user_space(sizeof(*uifr)); 2759 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2760 return -EFAULT; 2761 2762 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2763 return -EFAULT; 2764 2765 datap = compat_ptr(data); 2766 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2767 return -EFAULT; 2768 2769 return dev_ioctl(net, cmd, uifr); 2770 default: 2771 return -EINVAL; 2772 } 2773 } 2774 2775 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2776 struct compat_ifreq __user *u_ifreq32) 2777 { 2778 struct ifreq __user *u_ifreq64; 2779 char tmp_buf[IFNAMSIZ]; 2780 void __user *data64; 2781 u32 data32; 2782 2783 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2784 IFNAMSIZ)) 2785 return -EFAULT; 2786 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2787 return -EFAULT; 2788 data64 = compat_ptr(data32); 2789 2790 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2791 2792 /* Don't check these user accesses, just let that get trapped 2793 * in the ioctl handler instead. 2794 */ 2795 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2796 IFNAMSIZ)) 2797 return -EFAULT; 2798 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2799 return -EFAULT; 2800 2801 return dev_ioctl(net, cmd, u_ifreq64); 2802 } 2803 2804 static int dev_ifsioc(struct net *net, struct socket *sock, 2805 unsigned int cmd, struct compat_ifreq __user *uifr32) 2806 { 2807 struct ifreq __user *uifr; 2808 int err; 2809 2810 uifr = compat_alloc_user_space(sizeof(*uifr)); 2811 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2812 return -EFAULT; 2813 2814 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2815 2816 if (!err) { 2817 switch (cmd) { 2818 case SIOCGIFFLAGS: 2819 case SIOCGIFMETRIC: 2820 case SIOCGIFMTU: 2821 case SIOCGIFMEM: 2822 case SIOCGIFHWADDR: 2823 case SIOCGIFINDEX: 2824 case SIOCGIFADDR: 2825 case SIOCGIFBRDADDR: 2826 case SIOCGIFDSTADDR: 2827 case SIOCGIFNETMASK: 2828 case SIOCGIFPFLAGS: 2829 case SIOCGIFTXQLEN: 2830 case SIOCGMIIPHY: 2831 case SIOCGMIIREG: 2832 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2833 err = -EFAULT; 2834 break; 2835 } 2836 } 2837 return err; 2838 } 2839 2840 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2841 struct compat_ifreq __user *uifr32) 2842 { 2843 struct ifreq ifr; 2844 struct compat_ifmap __user *uifmap32; 2845 mm_segment_t old_fs; 2846 int err; 2847 2848 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2849 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2850 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2851 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2852 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2853 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2854 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2855 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2856 if (err) 2857 return -EFAULT; 2858 2859 old_fs = get_fs(); 2860 set_fs(KERNEL_DS); 2861 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2862 set_fs(old_fs); 2863 2864 if (cmd == SIOCGIFMAP && !err) { 2865 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2866 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2867 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2868 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2869 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2870 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2871 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2872 if (err) 2873 err = -EFAULT; 2874 } 2875 return err; 2876 } 2877 2878 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2879 { 2880 void __user *uptr; 2881 compat_uptr_t uptr32; 2882 struct ifreq __user *uifr; 2883 2884 uifr = compat_alloc_user_space(sizeof(*uifr)); 2885 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2886 return -EFAULT; 2887 2888 if (get_user(uptr32, &uifr32->ifr_data)) 2889 return -EFAULT; 2890 2891 uptr = compat_ptr(uptr32); 2892 2893 if (put_user(uptr, &uifr->ifr_data)) 2894 return -EFAULT; 2895 2896 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2897 } 2898 2899 struct rtentry32 { 2900 u32 rt_pad1; 2901 struct sockaddr rt_dst; /* target address */ 2902 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2903 struct sockaddr rt_genmask; /* target network mask (IP) */ 2904 unsigned short rt_flags; 2905 short rt_pad2; 2906 u32 rt_pad3; 2907 unsigned char rt_tos; 2908 unsigned char rt_class; 2909 short rt_pad4; 2910 short rt_metric; /* +1 for binary compatibility! */ 2911 /* char * */ u32 rt_dev; /* forcing the device at add */ 2912 u32 rt_mtu; /* per route MTU/Window */ 2913 u32 rt_window; /* Window clamping */ 2914 unsigned short rt_irtt; /* Initial RTT */ 2915 }; 2916 2917 struct in6_rtmsg32 { 2918 struct in6_addr rtmsg_dst; 2919 struct in6_addr rtmsg_src; 2920 struct in6_addr rtmsg_gateway; 2921 u32 rtmsg_type; 2922 u16 rtmsg_dst_len; 2923 u16 rtmsg_src_len; 2924 u32 rtmsg_metric; 2925 u32 rtmsg_info; 2926 u32 rtmsg_flags; 2927 s32 rtmsg_ifindex; 2928 }; 2929 2930 static int routing_ioctl(struct net *net, struct socket *sock, 2931 unsigned int cmd, void __user *argp) 2932 { 2933 int ret; 2934 void *r = NULL; 2935 struct in6_rtmsg r6; 2936 struct rtentry r4; 2937 char devname[16]; 2938 u32 rtdev; 2939 mm_segment_t old_fs = get_fs(); 2940 2941 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2942 struct in6_rtmsg32 __user *ur6 = argp; 2943 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2944 3 * sizeof(struct in6_addr)); 2945 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2946 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2947 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2948 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2949 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2950 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2951 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2952 2953 r = (void *) &r6; 2954 } else { /* ipv4 */ 2955 struct rtentry32 __user *ur4 = argp; 2956 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2957 3 * sizeof(struct sockaddr)); 2958 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 2959 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 2960 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2961 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 2962 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2963 ret |= __get_user(rtdev, &(ur4->rt_dev)); 2964 if (rtdev) { 2965 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2966 r4.rt_dev = (char __user __force *)devname; 2967 devname[15] = 0; 2968 } else 2969 r4.rt_dev = NULL; 2970 2971 r = (void *) &r4; 2972 } 2973 2974 if (ret) { 2975 ret = -EFAULT; 2976 goto out; 2977 } 2978 2979 set_fs(KERNEL_DS); 2980 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2981 set_fs(old_fs); 2982 2983 out: 2984 return ret; 2985 } 2986 2987 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2988 * for some operations; this forces use of the newer bridge-utils that 2989 * use compatiable ioctls 2990 */ 2991 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2992 { 2993 compat_ulong_t tmp; 2994 2995 if (get_user(tmp, argp)) 2996 return -EFAULT; 2997 if (tmp == BRCTL_GET_VERSION) 2998 return BRCTL_VERSION + 1; 2999 return -EINVAL; 3000 } 3001 3002 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3003 unsigned int cmd, unsigned long arg) 3004 { 3005 void __user *argp = compat_ptr(arg); 3006 struct sock *sk = sock->sk; 3007 struct net *net = sock_net(sk); 3008 3009 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3010 return siocdevprivate_ioctl(net, cmd, argp); 3011 3012 switch (cmd) { 3013 case SIOCSIFBR: 3014 case SIOCGIFBR: 3015 return old_bridge_ioctl(argp); 3016 case SIOCGIFNAME: 3017 return dev_ifname32(net, argp); 3018 case SIOCGIFCONF: 3019 return dev_ifconf(net, argp); 3020 case SIOCETHTOOL: 3021 return ethtool_ioctl(net, argp); 3022 case SIOCWANDEV: 3023 return compat_siocwandev(net, argp); 3024 case SIOCGIFMAP: 3025 case SIOCSIFMAP: 3026 return compat_sioc_ifmap(net, cmd, argp); 3027 case SIOCBONDENSLAVE: 3028 case SIOCBONDRELEASE: 3029 case SIOCBONDSETHWADDR: 3030 case SIOCBONDSLAVEINFOQUERY: 3031 case SIOCBONDINFOQUERY: 3032 case SIOCBONDCHANGEACTIVE: 3033 return bond_ioctl(net, cmd, argp); 3034 case SIOCADDRT: 3035 case SIOCDELRT: 3036 return routing_ioctl(net, sock, cmd, argp); 3037 case SIOCGSTAMP: 3038 return do_siocgstamp(net, sock, cmd, argp); 3039 case SIOCGSTAMPNS: 3040 return do_siocgstampns(net, sock, cmd, argp); 3041 case SIOCSHWTSTAMP: 3042 return compat_siocshwtstamp(net, argp); 3043 3044 case FIOSETOWN: 3045 case SIOCSPGRP: 3046 case FIOGETOWN: 3047 case SIOCGPGRP: 3048 case SIOCBRADDBR: 3049 case SIOCBRDELBR: 3050 case SIOCGIFVLAN: 3051 case SIOCSIFVLAN: 3052 case SIOCADDDLCI: 3053 case SIOCDELDLCI: 3054 return sock_ioctl(file, cmd, arg); 3055 3056 case SIOCGIFFLAGS: 3057 case SIOCSIFFLAGS: 3058 case SIOCGIFMETRIC: 3059 case SIOCSIFMETRIC: 3060 case SIOCGIFMTU: 3061 case SIOCSIFMTU: 3062 case SIOCGIFMEM: 3063 case SIOCSIFMEM: 3064 case SIOCGIFHWADDR: 3065 case SIOCSIFHWADDR: 3066 case SIOCADDMULTI: 3067 case SIOCDELMULTI: 3068 case SIOCGIFINDEX: 3069 case SIOCGIFADDR: 3070 case SIOCSIFADDR: 3071 case SIOCSIFHWBROADCAST: 3072 case SIOCDIFADDR: 3073 case SIOCGIFBRDADDR: 3074 case SIOCSIFBRDADDR: 3075 case SIOCGIFDSTADDR: 3076 case SIOCSIFDSTADDR: 3077 case SIOCGIFNETMASK: 3078 case SIOCSIFNETMASK: 3079 case SIOCSIFPFLAGS: 3080 case SIOCGIFPFLAGS: 3081 case SIOCGIFTXQLEN: 3082 case SIOCSIFTXQLEN: 3083 case SIOCBRADDIF: 3084 case SIOCBRDELIF: 3085 case SIOCSIFNAME: 3086 case SIOCGMIIPHY: 3087 case SIOCGMIIREG: 3088 case SIOCSMIIREG: 3089 return dev_ifsioc(net, sock, cmd, argp); 3090 3091 case SIOCSARP: 3092 case SIOCGARP: 3093 case SIOCDARP: 3094 case SIOCATMARK: 3095 return sock_do_ioctl(net, sock, cmd, arg); 3096 } 3097 3098 /* Prevent warning from compat_sys_ioctl, these always 3099 * result in -EINVAL in the native case anyway. */ 3100 switch (cmd) { 3101 case SIOCRTMSG: 3102 case SIOCGIFCOUNT: 3103 case SIOCSRARP: 3104 case SIOCGRARP: 3105 case SIOCDRARP: 3106 case SIOCSIFLINK: 3107 case SIOCGIFSLAVE: 3108 case SIOCSIFSLAVE: 3109 return -EINVAL; 3110 } 3111 3112 return -ENOIOCTLCMD; 3113 } 3114 3115 static long compat_sock_ioctl(struct file *file, unsigned cmd, 3116 unsigned long arg) 3117 { 3118 struct socket *sock = file->private_data; 3119 int ret = -ENOIOCTLCMD; 3120 struct sock *sk; 3121 struct net *net; 3122 3123 sk = sock->sk; 3124 net = sock_net(sk); 3125 3126 if (sock->ops->compat_ioctl) 3127 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3128 3129 if (ret == -ENOIOCTLCMD && 3130 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3131 ret = compat_wext_handle_ioctl(net, cmd, arg); 3132 3133 if (ret == -ENOIOCTLCMD) 3134 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3135 3136 return ret; 3137 } 3138 #endif 3139 3140 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3141 { 3142 return sock->ops->bind(sock, addr, addrlen); 3143 } 3144 EXPORT_SYMBOL(kernel_bind); 3145 3146 int kernel_listen(struct socket *sock, int backlog) 3147 { 3148 return sock->ops->listen(sock, backlog); 3149 } 3150 EXPORT_SYMBOL(kernel_listen); 3151 3152 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3153 { 3154 struct sock *sk = sock->sk; 3155 int err; 3156 3157 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3158 newsock); 3159 if (err < 0) 3160 goto done; 3161 3162 err = sock->ops->accept(sock, *newsock, flags); 3163 if (err < 0) { 3164 sock_release(*newsock); 3165 *newsock = NULL; 3166 goto done; 3167 } 3168 3169 (*newsock)->ops = sock->ops; 3170 __module_get((*newsock)->ops->owner); 3171 3172 done: 3173 return err; 3174 } 3175 EXPORT_SYMBOL(kernel_accept); 3176 3177 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3178 int flags) 3179 { 3180 return sock->ops->connect(sock, addr, addrlen, flags); 3181 } 3182 EXPORT_SYMBOL(kernel_connect); 3183 3184 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3185 int *addrlen) 3186 { 3187 return sock->ops->getname(sock, addr, addrlen, 0); 3188 } 3189 EXPORT_SYMBOL(kernel_getsockname); 3190 3191 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3192 int *addrlen) 3193 { 3194 return sock->ops->getname(sock, addr, addrlen, 1); 3195 } 3196 EXPORT_SYMBOL(kernel_getpeername); 3197 3198 int kernel_getsockopt(struct socket *sock, int level, int optname, 3199 char *optval, int *optlen) 3200 { 3201 mm_segment_t oldfs = get_fs(); 3202 char __user *uoptval; 3203 int __user *uoptlen; 3204 int err; 3205 3206 uoptval = (char __user __force *) optval; 3207 uoptlen = (int __user __force *) optlen; 3208 3209 set_fs(KERNEL_DS); 3210 if (level == SOL_SOCKET) 3211 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3212 else 3213 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3214 uoptlen); 3215 set_fs(oldfs); 3216 return err; 3217 } 3218 EXPORT_SYMBOL(kernel_getsockopt); 3219 3220 int kernel_setsockopt(struct socket *sock, int level, int optname, 3221 char *optval, unsigned int optlen) 3222 { 3223 mm_segment_t oldfs = get_fs(); 3224 char __user *uoptval; 3225 int err; 3226 3227 uoptval = (char __user __force *) optval; 3228 3229 set_fs(KERNEL_DS); 3230 if (level == SOL_SOCKET) 3231 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3232 else 3233 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3234 optlen); 3235 set_fs(oldfs); 3236 return err; 3237 } 3238 EXPORT_SYMBOL(kernel_setsockopt); 3239 3240 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3241 size_t size, int flags) 3242 { 3243 sock_update_classid(sock->sk); 3244 3245 if (sock->ops->sendpage) 3246 return sock->ops->sendpage(sock, page, offset, size, flags); 3247 3248 return sock_no_sendpage(sock, page, offset, size, flags); 3249 } 3250 EXPORT_SYMBOL(kernel_sendpage); 3251 3252 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3253 { 3254 mm_segment_t oldfs = get_fs(); 3255 int err; 3256 3257 set_fs(KERNEL_DS); 3258 err = sock->ops->ioctl(sock, cmd, arg); 3259 set_fs(oldfs); 3260 3261 return err; 3262 } 3263 EXPORT_SYMBOL(kernel_sock_ioctl); 3264 3265 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3266 { 3267 return sock->ops->shutdown(sock, how); 3268 } 3269 EXPORT_SYMBOL(kernel_sock_shutdown); 3270