1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 108 #ifdef CONFIG_NET_RX_BUSY_POLL 109 unsigned int sysctl_net_busy_read __read_mostly; 110 unsigned int sysctl_net_busy_poll __read_mostly; 111 #endif 112 113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 115 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 116 117 static int sock_close(struct inode *inode, struct file *file); 118 static __poll_t sock_poll(struct file *file, 119 struct poll_table_struct *wait); 120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 121 #ifdef CONFIG_COMPAT 122 static long compat_sock_ioctl(struct file *file, 123 unsigned int cmd, unsigned long arg); 124 #endif 125 static int sock_fasync(int fd, struct file *filp, int on); 126 static ssize_t sock_sendpage(struct file *file, struct page *page, 127 int offset, size_t size, loff_t *ppos, int more); 128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 129 struct pipe_inode_info *pipe, size_t len, 130 unsigned int flags); 131 132 #ifdef CONFIG_PROC_FS 133 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 134 { 135 struct socket *sock = f->private_data; 136 137 if (sock->ops->show_fdinfo) 138 sock->ops->show_fdinfo(m, sock); 139 } 140 #else 141 #define sock_show_fdinfo NULL 142 #endif 143 144 /* 145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 146 * in the operation structures but are done directly via the socketcall() multiplexor. 147 */ 148 149 static const struct file_operations socket_file_ops = { 150 .owner = THIS_MODULE, 151 .llseek = no_llseek, 152 .read_iter = sock_read_iter, 153 .write_iter = sock_write_iter, 154 .poll = sock_poll, 155 .unlocked_ioctl = sock_ioctl, 156 #ifdef CONFIG_COMPAT 157 .compat_ioctl = compat_sock_ioctl, 158 #endif 159 .mmap = sock_mmap, 160 .release = sock_close, 161 .fasync = sock_fasync, 162 .sendpage = sock_sendpage, 163 .splice_write = generic_splice_sendpage, 164 .splice_read = sock_splice_read, 165 .show_fdinfo = sock_show_fdinfo, 166 }; 167 168 /* 169 * The protocol list. Each protocol is registered in here. 170 */ 171 172 static DEFINE_SPINLOCK(net_family_lock); 173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 174 175 /* 176 * Support routines. 177 * Move socket addresses back and forth across the kernel/user 178 * divide and look after the messy bits. 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 221 void __user *uaddr, int __user *ulen) 222 { 223 int err; 224 int len; 225 226 BUG_ON(klen > sizeof(struct sockaddr_storage)); 227 err = get_user(len, ulen); 228 if (err) 229 return err; 230 if (len > klen) 231 len = klen; 232 if (len < 0) 233 return -EINVAL; 234 if (len) { 235 if (audit_sockaddr(klen, kaddr)) 236 return -ENOMEM; 237 if (copy_to_user(uaddr, kaddr, len)) 238 return -EFAULT; 239 } 240 /* 241 * "fromlen shall refer to the value before truncation.." 242 * 1003.1g 243 */ 244 return __put_user(klen, ulen); 245 } 246 247 static struct kmem_cache *sock_inode_cachep __ro_after_init; 248 249 static struct inode *sock_alloc_inode(struct super_block *sb) 250 { 251 struct socket_alloc *ei; 252 253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 254 if (!ei) 255 return NULL; 256 init_waitqueue_head(&ei->socket.wq.wait); 257 ei->socket.wq.fasync_list = NULL; 258 ei->socket.wq.flags = 0; 259 260 ei->socket.state = SS_UNCONNECTED; 261 ei->socket.flags = 0; 262 ei->socket.ops = NULL; 263 ei->socket.sk = NULL; 264 ei->socket.file = NULL; 265 266 return &ei->vfs_inode; 267 } 268 269 static void sock_free_inode(struct inode *inode) 270 { 271 struct socket_alloc *ei; 272 273 ei = container_of(inode, struct socket_alloc, vfs_inode); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static void init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 292 init_once); 293 BUG_ON(sock_inode_cachep == NULL); 294 } 295 296 static const struct super_operations sockfs_ops = { 297 .alloc_inode = sock_alloc_inode, 298 .free_inode = sock_free_inode, 299 .statfs = simple_statfs, 300 }; 301 302 /* 303 * sockfs_dname() is called from d_path(). 304 */ 305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 306 { 307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 308 d_inode(dentry)->i_ino); 309 } 310 311 static const struct dentry_operations sockfs_dentry_operations = { 312 .d_dname = sockfs_dname, 313 }; 314 315 static int sockfs_xattr_get(const struct xattr_handler *handler, 316 struct dentry *dentry, struct inode *inode, 317 const char *suffix, void *value, size_t size) 318 { 319 if (value) { 320 if (dentry->d_name.len + 1 > size) 321 return -ERANGE; 322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 323 } 324 return dentry->d_name.len + 1; 325 } 326 327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 330 331 static const struct xattr_handler sockfs_xattr_handler = { 332 .name = XATTR_NAME_SOCKPROTONAME, 333 .get = sockfs_xattr_get, 334 }; 335 336 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 337 struct user_namespace *mnt_userns, 338 struct dentry *dentry, struct inode *inode, 339 const char *suffix, const void *value, 340 size_t size, int flags) 341 { 342 /* Handled by LSM. */ 343 return -EAGAIN; 344 } 345 346 static const struct xattr_handler sockfs_security_xattr_handler = { 347 .prefix = XATTR_SECURITY_PREFIX, 348 .set = sockfs_security_xattr_set, 349 }; 350 351 static const struct xattr_handler *sockfs_xattr_handlers[] = { 352 &sockfs_xattr_handler, 353 &sockfs_security_xattr_handler, 354 NULL 355 }; 356 357 static int sockfs_init_fs_context(struct fs_context *fc) 358 { 359 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 360 if (!ctx) 361 return -ENOMEM; 362 ctx->ops = &sockfs_ops; 363 ctx->dops = &sockfs_dentry_operations; 364 ctx->xattr = sockfs_xattr_handlers; 365 return 0; 366 } 367 368 static struct vfsmount *sock_mnt __read_mostly; 369 370 static struct file_system_type sock_fs_type = { 371 .name = "sockfs", 372 .init_fs_context = sockfs_init_fs_context, 373 .kill_sb = kill_anon_super, 374 }; 375 376 /* 377 * Obtains the first available file descriptor and sets it up for use. 378 * 379 * These functions create file structures and maps them to fd space 380 * of the current process. On success it returns file descriptor 381 * and file struct implicitly stored in sock->file. 382 * Note that another thread may close file descriptor before we return 383 * from this function. We use the fact that now we do not refer 384 * to socket after mapping. If one day we will need it, this 385 * function will increment ref. count on file by 1. 386 * 387 * In any case returned fd MAY BE not valid! 388 * This race condition is unavoidable 389 * with shared fd spaces, we cannot solve it inside kernel, 390 * but we take care of internal coherence yet. 391 */ 392 393 /** 394 * sock_alloc_file - Bind a &socket to a &file 395 * @sock: socket 396 * @flags: file status flags 397 * @dname: protocol name 398 * 399 * Returns the &file bound with @sock, implicitly storing it 400 * in sock->file. If dname is %NULL, sets to "". 401 * On failure the return is a ERR pointer (see linux/err.h). 402 * This function uses GFP_KERNEL internally. 403 */ 404 405 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 406 { 407 struct file *file; 408 409 if (!dname) 410 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 411 412 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 413 O_RDWR | (flags & O_NONBLOCK), 414 &socket_file_ops); 415 if (IS_ERR(file)) { 416 sock_release(sock); 417 return file; 418 } 419 420 sock->file = file; 421 file->private_data = sock; 422 stream_open(SOCK_INODE(sock), file); 423 return file; 424 } 425 EXPORT_SYMBOL(sock_alloc_file); 426 427 static int sock_map_fd(struct socket *sock, int flags) 428 { 429 struct file *newfile; 430 int fd = get_unused_fd_flags(flags); 431 if (unlikely(fd < 0)) { 432 sock_release(sock); 433 return fd; 434 } 435 436 newfile = sock_alloc_file(sock, flags, NULL); 437 if (!IS_ERR(newfile)) { 438 fd_install(fd, newfile); 439 return fd; 440 } 441 442 put_unused_fd(fd); 443 return PTR_ERR(newfile); 444 } 445 446 /** 447 * sock_from_file - Return the &socket bounded to @file. 448 * @file: file 449 * 450 * On failure returns %NULL. 451 */ 452 453 struct socket *sock_from_file(struct file *file) 454 { 455 if (file->f_op == &socket_file_ops) 456 return file->private_data; /* set in sock_map_fd */ 457 458 return NULL; 459 } 460 EXPORT_SYMBOL(sock_from_file); 461 462 /** 463 * sockfd_lookup - Go from a file number to its socket slot 464 * @fd: file handle 465 * @err: pointer to an error code return 466 * 467 * The file handle passed in is locked and the socket it is bound 468 * to is returned. If an error occurs the err pointer is overwritten 469 * with a negative errno code and NULL is returned. The function checks 470 * for both invalid handles and passing a handle which is not a socket. 471 * 472 * On a success the socket object pointer is returned. 473 */ 474 475 struct socket *sockfd_lookup(int fd, int *err) 476 { 477 struct file *file; 478 struct socket *sock; 479 480 file = fget(fd); 481 if (!file) { 482 *err = -EBADF; 483 return NULL; 484 } 485 486 sock = sock_from_file(file); 487 if (!sock) { 488 *err = -ENOTSOCK; 489 fput(file); 490 } 491 return sock; 492 } 493 EXPORT_SYMBOL(sockfd_lookup); 494 495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 496 { 497 struct fd f = fdget(fd); 498 struct socket *sock; 499 500 *err = -EBADF; 501 if (f.file) { 502 sock = sock_from_file(f.file); 503 if (likely(sock)) { 504 *fput_needed = f.flags & FDPUT_FPUT; 505 return sock; 506 } 507 *err = -ENOTSOCK; 508 fdput(f); 509 } 510 return NULL; 511 } 512 513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 514 size_t size) 515 { 516 ssize_t len; 517 ssize_t used = 0; 518 519 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 520 if (len < 0) 521 return len; 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 buffer += len; 527 } 528 529 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 530 used += len; 531 if (buffer) { 532 if (size < used) 533 return -ERANGE; 534 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 535 buffer += len; 536 } 537 538 return used; 539 } 540 541 static int sockfs_setattr(struct user_namespace *mnt_userns, 542 struct dentry *dentry, struct iattr *iattr) 543 { 544 int err = simple_setattr(&init_user_ns, dentry, iattr); 545 546 if (!err && (iattr->ia_valid & ATTR_UID)) { 547 struct socket *sock = SOCKET_I(d_inode(dentry)); 548 549 if (sock->sk) 550 sock->sk->sk_uid = iattr->ia_uid; 551 else 552 err = -ENOENT; 553 } 554 555 return err; 556 } 557 558 static const struct inode_operations sockfs_inode_ops = { 559 .listxattr = sockfs_listxattr, 560 .setattr = sockfs_setattr, 561 }; 562 563 /** 564 * sock_alloc - allocate a socket 565 * 566 * Allocate a new inode and socket object. The two are bound together 567 * and initialised. The socket is then returned. If we are out of inodes 568 * NULL is returned. This functions uses GFP_KERNEL internally. 569 */ 570 571 struct socket *sock_alloc(void) 572 { 573 struct inode *inode; 574 struct socket *sock; 575 576 inode = new_inode_pseudo(sock_mnt->mnt_sb); 577 if (!inode) 578 return NULL; 579 580 sock = SOCKET_I(inode); 581 582 inode->i_ino = get_next_ino(); 583 inode->i_mode = S_IFSOCK | S_IRWXUGO; 584 inode->i_uid = current_fsuid(); 585 inode->i_gid = current_fsgid(); 586 inode->i_op = &sockfs_inode_ops; 587 588 return sock; 589 } 590 EXPORT_SYMBOL(sock_alloc); 591 592 static void __sock_release(struct socket *sock, struct inode *inode) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 if (inode) 598 inode_lock(inode); 599 sock->ops->release(sock); 600 sock->sk = NULL; 601 if (inode) 602 inode_unlock(inode); 603 sock->ops = NULL; 604 module_put(owner); 605 } 606 607 if (sock->wq.fasync_list) 608 pr_err("%s: fasync list not empty!\n", __func__); 609 610 if (!sock->file) { 611 iput(SOCK_INODE(sock)); 612 return; 613 } 614 sock->file = NULL; 615 } 616 617 /** 618 * sock_release - close a socket 619 * @sock: socket to close 620 * 621 * The socket is released from the protocol stack if it has a release 622 * callback, and the inode is then released if the socket is bound to 623 * an inode not a file. 624 */ 625 void sock_release(struct socket *sock) 626 { 627 __sock_release(sock, NULL); 628 } 629 EXPORT_SYMBOL(sock_release); 630 631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 632 { 633 u8 flags = *tx_flags; 634 635 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 636 flags |= SKBTX_HW_TSTAMP; 637 638 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 639 flags |= SKBTX_SW_TSTAMP; 640 641 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 642 flags |= SKBTX_SCHED_TSTAMP; 643 644 *tx_flags = flags; 645 } 646 EXPORT_SYMBOL(__sock_tx_timestamp); 647 648 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 649 size_t)); 650 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 651 size_t)); 652 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 653 { 654 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 655 inet_sendmsg, sock, msg, 656 msg_data_left(msg)); 657 BUG_ON(ret == -EIOCBQUEUED); 658 return ret; 659 } 660 661 /** 662 * sock_sendmsg - send a message through @sock 663 * @sock: socket 664 * @msg: message to send 665 * 666 * Sends @msg through @sock, passing through LSM. 667 * Returns the number of bytes sent, or an error code. 668 */ 669 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 670 { 671 int err = security_socket_sendmsg(sock, msg, 672 msg_data_left(msg)); 673 674 return err ?: sock_sendmsg_nosec(sock, msg); 675 } 676 EXPORT_SYMBOL(sock_sendmsg); 677 678 /** 679 * kernel_sendmsg - send a message through @sock (kernel-space) 680 * @sock: socket 681 * @msg: message header 682 * @vec: kernel vec 683 * @num: vec array length 684 * @size: total message data size 685 * 686 * Builds the message data with @vec and sends it through @sock. 687 * Returns the number of bytes sent, or an error code. 688 */ 689 690 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 691 struct kvec *vec, size_t num, size_t size) 692 { 693 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 694 return sock_sendmsg(sock, msg); 695 } 696 EXPORT_SYMBOL(kernel_sendmsg); 697 698 /** 699 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 700 * @sk: sock 701 * @msg: message header 702 * @vec: output s/g array 703 * @num: output s/g array length 704 * @size: total message data size 705 * 706 * Builds the message data with @vec and sends it through @sock. 707 * Returns the number of bytes sent, or an error code. 708 * Caller must hold @sk. 709 */ 710 711 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 712 struct kvec *vec, size_t num, size_t size) 713 { 714 struct socket *sock = sk->sk_socket; 715 716 if (!sock->ops->sendmsg_locked) 717 return sock_no_sendmsg_locked(sk, msg, size); 718 719 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 720 721 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 722 } 723 EXPORT_SYMBOL(kernel_sendmsg_locked); 724 725 static bool skb_is_err_queue(const struct sk_buff *skb) 726 { 727 /* pkt_type of skbs enqueued on the error queue are set to 728 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 729 * in recvmsg, since skbs received on a local socket will never 730 * have a pkt_type of PACKET_OUTGOING. 731 */ 732 return skb->pkt_type == PACKET_OUTGOING; 733 } 734 735 /* On transmit, software and hardware timestamps are returned independently. 736 * As the two skb clones share the hardware timestamp, which may be updated 737 * before the software timestamp is received, a hardware TX timestamp may be 738 * returned only if there is no software TX timestamp. Ignore false software 739 * timestamps, which may be made in the __sock_recv_timestamp() call when the 740 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 741 * hardware timestamp. 742 */ 743 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 744 { 745 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 746 } 747 748 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 749 { 750 struct scm_ts_pktinfo ts_pktinfo; 751 struct net_device *orig_dev; 752 753 if (!skb_mac_header_was_set(skb)) 754 return; 755 756 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 757 758 rcu_read_lock(); 759 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 760 if (orig_dev) 761 ts_pktinfo.if_index = orig_dev->ifindex; 762 rcu_read_unlock(); 763 764 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 766 sizeof(ts_pktinfo), &ts_pktinfo); 767 } 768 769 /* 770 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 771 */ 772 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 773 struct sk_buff *skb) 774 { 775 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 776 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 777 struct scm_timestamping_internal tss; 778 779 int empty = 1, false_tstamp = 0; 780 struct skb_shared_hwtstamps *shhwtstamps = 781 skb_hwtstamps(skb); 782 783 /* Race occurred between timestamp enabling and packet 784 receiving. Fill in the current time for now. */ 785 if (need_software_tstamp && skb->tstamp == 0) { 786 __net_timestamp(skb); 787 false_tstamp = 1; 788 } 789 790 if (need_software_tstamp) { 791 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 792 if (new_tstamp) { 793 struct __kernel_sock_timeval tv; 794 795 skb_get_new_timestamp(skb, &tv); 796 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 797 sizeof(tv), &tv); 798 } else { 799 struct __kernel_old_timeval tv; 800 801 skb_get_timestamp(skb, &tv); 802 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 803 sizeof(tv), &tv); 804 } 805 } else { 806 if (new_tstamp) { 807 struct __kernel_timespec ts; 808 809 skb_get_new_timestampns(skb, &ts); 810 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 811 sizeof(ts), &ts); 812 } else { 813 struct __kernel_old_timespec ts; 814 815 skb_get_timestampns(skb, &ts); 816 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 817 sizeof(ts), &ts); 818 } 819 } 820 } 821 822 memset(&tss, 0, sizeof(tss)); 823 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 824 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 825 empty = 0; 826 if (shhwtstamps && 827 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 828 !skb_is_swtx_tstamp(skb, false_tstamp) && 829 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 830 empty = 0; 831 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 832 !skb_is_err_queue(skb)) 833 put_ts_pktinfo(msg, skb); 834 } 835 if (!empty) { 836 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 837 put_cmsg_scm_timestamping64(msg, &tss); 838 else 839 put_cmsg_scm_timestamping(msg, &tss); 840 841 if (skb_is_err_queue(skb) && skb->len && 842 SKB_EXT_ERR(skb)->opt_stats) 843 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 844 skb->len, skb->data); 845 } 846 } 847 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 848 849 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 850 struct sk_buff *skb) 851 { 852 int ack; 853 854 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 855 return; 856 if (!skb->wifi_acked_valid) 857 return; 858 859 ack = skb->wifi_acked; 860 861 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 862 } 863 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 864 865 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 866 struct sk_buff *skb) 867 { 868 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 869 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 870 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 871 } 872 873 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 874 struct sk_buff *skb) 875 { 876 sock_recv_timestamp(msg, sk, skb); 877 sock_recv_drops(msg, sk, skb); 878 } 879 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 880 881 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 882 size_t, int)); 883 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 884 size_t, int)); 885 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 886 int flags) 887 { 888 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 889 inet_recvmsg, sock, msg, msg_data_left(msg), 890 flags); 891 } 892 893 /** 894 * sock_recvmsg - receive a message from @sock 895 * @sock: socket 896 * @msg: message to receive 897 * @flags: message flags 898 * 899 * Receives @msg from @sock, passing through LSM. Returns the total number 900 * of bytes received, or an error. 901 */ 902 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 903 { 904 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 905 906 return err ?: sock_recvmsg_nosec(sock, msg, flags); 907 } 908 EXPORT_SYMBOL(sock_recvmsg); 909 910 /** 911 * kernel_recvmsg - Receive a message from a socket (kernel space) 912 * @sock: The socket to receive the message from 913 * @msg: Received message 914 * @vec: Input s/g array for message data 915 * @num: Size of input s/g array 916 * @size: Number of bytes to read 917 * @flags: Message flags (MSG_DONTWAIT, etc...) 918 * 919 * On return the msg structure contains the scatter/gather array passed in the 920 * vec argument. The array is modified so that it consists of the unfilled 921 * portion of the original array. 922 * 923 * The returned value is the total number of bytes received, or an error. 924 */ 925 926 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 927 struct kvec *vec, size_t num, size_t size, int flags) 928 { 929 msg->msg_control_is_user = false; 930 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 931 return sock_recvmsg(sock, msg, flags); 932 } 933 EXPORT_SYMBOL(kernel_recvmsg); 934 935 static ssize_t sock_sendpage(struct file *file, struct page *page, 936 int offset, size_t size, loff_t *ppos, int more) 937 { 938 struct socket *sock; 939 int flags; 940 941 sock = file->private_data; 942 943 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 944 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 945 flags |= more; 946 947 return kernel_sendpage(sock, page, offset, size, flags); 948 } 949 950 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 951 struct pipe_inode_info *pipe, size_t len, 952 unsigned int flags) 953 { 954 struct socket *sock = file->private_data; 955 956 if (unlikely(!sock->ops->splice_read)) 957 return generic_file_splice_read(file, ppos, pipe, len, flags); 958 959 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 960 } 961 962 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 963 { 964 struct file *file = iocb->ki_filp; 965 struct socket *sock = file->private_data; 966 struct msghdr msg = {.msg_iter = *to, 967 .msg_iocb = iocb}; 968 ssize_t res; 969 970 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 971 msg.msg_flags = MSG_DONTWAIT; 972 973 if (iocb->ki_pos != 0) 974 return -ESPIPE; 975 976 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 977 return 0; 978 979 res = sock_recvmsg(sock, &msg, msg.msg_flags); 980 *to = msg.msg_iter; 981 return res; 982 } 983 984 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 985 { 986 struct file *file = iocb->ki_filp; 987 struct socket *sock = file->private_data; 988 struct msghdr msg = {.msg_iter = *from, 989 .msg_iocb = iocb}; 990 ssize_t res; 991 992 if (iocb->ki_pos != 0) 993 return -ESPIPE; 994 995 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 996 msg.msg_flags = MSG_DONTWAIT; 997 998 if (sock->type == SOCK_SEQPACKET) 999 msg.msg_flags |= MSG_EOR; 1000 1001 res = sock_sendmsg(sock, &msg); 1002 *from = msg.msg_iter; 1003 return res; 1004 } 1005 1006 /* 1007 * Atomic setting of ioctl hooks to avoid race 1008 * with module unload. 1009 */ 1010 1011 static DEFINE_MUTEX(br_ioctl_mutex); 1012 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1013 1014 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1015 { 1016 mutex_lock(&br_ioctl_mutex); 1017 br_ioctl_hook = hook; 1018 mutex_unlock(&br_ioctl_mutex); 1019 } 1020 EXPORT_SYMBOL(brioctl_set); 1021 1022 static DEFINE_MUTEX(vlan_ioctl_mutex); 1023 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1024 1025 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1026 { 1027 mutex_lock(&vlan_ioctl_mutex); 1028 vlan_ioctl_hook = hook; 1029 mutex_unlock(&vlan_ioctl_mutex); 1030 } 1031 EXPORT_SYMBOL(vlan_ioctl_set); 1032 1033 static long sock_do_ioctl(struct net *net, struct socket *sock, 1034 unsigned int cmd, unsigned long arg) 1035 { 1036 int err; 1037 void __user *argp = (void __user *)arg; 1038 1039 err = sock->ops->ioctl(sock, cmd, arg); 1040 1041 /* 1042 * If this ioctl is unknown try to hand it down 1043 * to the NIC driver. 1044 */ 1045 if (err != -ENOIOCTLCMD) 1046 return err; 1047 1048 if (cmd == SIOCGIFCONF) { 1049 struct ifconf ifc; 1050 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1051 return -EFAULT; 1052 rtnl_lock(); 1053 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1054 rtnl_unlock(); 1055 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1056 err = -EFAULT; 1057 } else { 1058 struct ifreq ifr; 1059 bool need_copyout; 1060 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1061 return -EFAULT; 1062 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1063 if (!err && need_copyout) 1064 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1065 return -EFAULT; 1066 } 1067 return err; 1068 } 1069 1070 /* 1071 * With an ioctl, arg may well be a user mode pointer, but we don't know 1072 * what to do with it - that's up to the protocol still. 1073 */ 1074 1075 /** 1076 * get_net_ns - increment the refcount of the network namespace 1077 * @ns: common namespace (net) 1078 * 1079 * Returns the net's common namespace. 1080 */ 1081 1082 struct ns_common *get_net_ns(struct ns_common *ns) 1083 { 1084 return &get_net(container_of(ns, struct net, ns))->ns; 1085 } 1086 EXPORT_SYMBOL_GPL(get_net_ns); 1087 1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1089 { 1090 struct socket *sock; 1091 struct sock *sk; 1092 void __user *argp = (void __user *)arg; 1093 int pid, err; 1094 struct net *net; 1095 1096 sock = file->private_data; 1097 sk = sock->sk; 1098 net = sock_net(sk); 1099 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1100 struct ifreq ifr; 1101 bool need_copyout; 1102 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1103 return -EFAULT; 1104 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1105 if (!err && need_copyout) 1106 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1107 return -EFAULT; 1108 } else 1109 #ifdef CONFIG_WEXT_CORE 1110 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1111 err = wext_handle_ioctl(net, cmd, argp); 1112 } else 1113 #endif 1114 switch (cmd) { 1115 case FIOSETOWN: 1116 case SIOCSPGRP: 1117 err = -EFAULT; 1118 if (get_user(pid, (int __user *)argp)) 1119 break; 1120 err = f_setown(sock->file, pid, 1); 1121 break; 1122 case FIOGETOWN: 1123 case SIOCGPGRP: 1124 err = put_user(f_getown(sock->file), 1125 (int __user *)argp); 1126 break; 1127 case SIOCGIFBR: 1128 case SIOCSIFBR: 1129 case SIOCBRADDBR: 1130 case SIOCBRDELBR: 1131 err = -ENOPKG; 1132 if (!br_ioctl_hook) 1133 request_module("bridge"); 1134 1135 mutex_lock(&br_ioctl_mutex); 1136 if (br_ioctl_hook) 1137 err = br_ioctl_hook(net, cmd, argp); 1138 mutex_unlock(&br_ioctl_mutex); 1139 break; 1140 case SIOCGIFVLAN: 1141 case SIOCSIFVLAN: 1142 err = -ENOPKG; 1143 if (!vlan_ioctl_hook) 1144 request_module("8021q"); 1145 1146 mutex_lock(&vlan_ioctl_mutex); 1147 if (vlan_ioctl_hook) 1148 err = vlan_ioctl_hook(net, argp); 1149 mutex_unlock(&vlan_ioctl_mutex); 1150 break; 1151 case SIOCGSKNS: 1152 err = -EPERM; 1153 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1154 break; 1155 1156 err = open_related_ns(&net->ns, get_net_ns); 1157 break; 1158 case SIOCGSTAMP_OLD: 1159 case SIOCGSTAMPNS_OLD: 1160 if (!sock->ops->gettstamp) { 1161 err = -ENOIOCTLCMD; 1162 break; 1163 } 1164 err = sock->ops->gettstamp(sock, argp, 1165 cmd == SIOCGSTAMP_OLD, 1166 !IS_ENABLED(CONFIG_64BIT)); 1167 break; 1168 case SIOCGSTAMP_NEW: 1169 case SIOCGSTAMPNS_NEW: 1170 if (!sock->ops->gettstamp) { 1171 err = -ENOIOCTLCMD; 1172 break; 1173 } 1174 err = sock->ops->gettstamp(sock, argp, 1175 cmd == SIOCGSTAMP_NEW, 1176 false); 1177 break; 1178 default: 1179 err = sock_do_ioctl(net, sock, cmd, arg); 1180 break; 1181 } 1182 return err; 1183 } 1184 1185 /** 1186 * sock_create_lite - creates a socket 1187 * @family: protocol family (AF_INET, ...) 1188 * @type: communication type (SOCK_STREAM, ...) 1189 * @protocol: protocol (0, ...) 1190 * @res: new socket 1191 * 1192 * Creates a new socket and assigns it to @res, passing through LSM. 1193 * The new socket initialization is not complete, see kernel_accept(). 1194 * Returns 0 or an error. On failure @res is set to %NULL. 1195 * This function internally uses GFP_KERNEL. 1196 */ 1197 1198 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1199 { 1200 int err; 1201 struct socket *sock = NULL; 1202 1203 err = security_socket_create(family, type, protocol, 1); 1204 if (err) 1205 goto out; 1206 1207 sock = sock_alloc(); 1208 if (!sock) { 1209 err = -ENOMEM; 1210 goto out; 1211 } 1212 1213 sock->type = type; 1214 err = security_socket_post_create(sock, family, type, protocol, 1); 1215 if (err) 1216 goto out_release; 1217 1218 out: 1219 *res = sock; 1220 return err; 1221 out_release: 1222 sock_release(sock); 1223 sock = NULL; 1224 goto out; 1225 } 1226 EXPORT_SYMBOL(sock_create_lite); 1227 1228 /* No kernel lock held - perfect */ 1229 static __poll_t sock_poll(struct file *file, poll_table *wait) 1230 { 1231 struct socket *sock = file->private_data; 1232 __poll_t events = poll_requested_events(wait), flag = 0; 1233 1234 if (!sock->ops->poll) 1235 return 0; 1236 1237 if (sk_can_busy_loop(sock->sk)) { 1238 /* poll once if requested by the syscall */ 1239 if (events & POLL_BUSY_LOOP) 1240 sk_busy_loop(sock->sk, 1); 1241 1242 /* if this socket can poll_ll, tell the system call */ 1243 flag = POLL_BUSY_LOOP; 1244 } 1245 1246 return sock->ops->poll(file, sock, wait) | flag; 1247 } 1248 1249 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1250 { 1251 struct socket *sock = file->private_data; 1252 1253 return sock->ops->mmap(file, sock, vma); 1254 } 1255 1256 static int sock_close(struct inode *inode, struct file *filp) 1257 { 1258 __sock_release(SOCKET_I(inode), inode); 1259 return 0; 1260 } 1261 1262 /* 1263 * Update the socket async list 1264 * 1265 * Fasync_list locking strategy. 1266 * 1267 * 1. fasync_list is modified only under process context socket lock 1268 * i.e. under semaphore. 1269 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1270 * or under socket lock 1271 */ 1272 1273 static int sock_fasync(int fd, struct file *filp, int on) 1274 { 1275 struct socket *sock = filp->private_data; 1276 struct sock *sk = sock->sk; 1277 struct socket_wq *wq = &sock->wq; 1278 1279 if (sk == NULL) 1280 return -EINVAL; 1281 1282 lock_sock(sk); 1283 fasync_helper(fd, filp, on, &wq->fasync_list); 1284 1285 if (!wq->fasync_list) 1286 sock_reset_flag(sk, SOCK_FASYNC); 1287 else 1288 sock_set_flag(sk, SOCK_FASYNC); 1289 1290 release_sock(sk); 1291 return 0; 1292 } 1293 1294 /* This function may be called only under rcu_lock */ 1295 1296 int sock_wake_async(struct socket_wq *wq, int how, int band) 1297 { 1298 if (!wq || !wq->fasync_list) 1299 return -1; 1300 1301 switch (how) { 1302 case SOCK_WAKE_WAITD: 1303 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1304 break; 1305 goto call_kill; 1306 case SOCK_WAKE_SPACE: 1307 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1308 break; 1309 fallthrough; 1310 case SOCK_WAKE_IO: 1311 call_kill: 1312 kill_fasync(&wq->fasync_list, SIGIO, band); 1313 break; 1314 case SOCK_WAKE_URG: 1315 kill_fasync(&wq->fasync_list, SIGURG, band); 1316 } 1317 1318 return 0; 1319 } 1320 EXPORT_SYMBOL(sock_wake_async); 1321 1322 /** 1323 * __sock_create - creates a socket 1324 * @net: net namespace 1325 * @family: protocol family (AF_INET, ...) 1326 * @type: communication type (SOCK_STREAM, ...) 1327 * @protocol: protocol (0, ...) 1328 * @res: new socket 1329 * @kern: boolean for kernel space sockets 1330 * 1331 * Creates a new socket and assigns it to @res, passing through LSM. 1332 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1333 * be set to true if the socket resides in kernel space. 1334 * This function internally uses GFP_KERNEL. 1335 */ 1336 1337 int __sock_create(struct net *net, int family, int type, int protocol, 1338 struct socket **res, int kern) 1339 { 1340 int err; 1341 struct socket *sock; 1342 const struct net_proto_family *pf; 1343 1344 /* 1345 * Check protocol is in range 1346 */ 1347 if (family < 0 || family >= NPROTO) 1348 return -EAFNOSUPPORT; 1349 if (type < 0 || type >= SOCK_MAX) 1350 return -EINVAL; 1351 1352 /* Compatibility. 1353 1354 This uglymoron is moved from INET layer to here to avoid 1355 deadlock in module load. 1356 */ 1357 if (family == PF_INET && type == SOCK_PACKET) { 1358 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1359 current->comm); 1360 family = PF_PACKET; 1361 } 1362 1363 err = security_socket_create(family, type, protocol, kern); 1364 if (err) 1365 return err; 1366 1367 /* 1368 * Allocate the socket and allow the family to set things up. if 1369 * the protocol is 0, the family is instructed to select an appropriate 1370 * default. 1371 */ 1372 sock = sock_alloc(); 1373 if (!sock) { 1374 net_warn_ratelimited("socket: no more sockets\n"); 1375 return -ENFILE; /* Not exactly a match, but its the 1376 closest posix thing */ 1377 } 1378 1379 sock->type = type; 1380 1381 #ifdef CONFIG_MODULES 1382 /* Attempt to load a protocol module if the find failed. 1383 * 1384 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1385 * requested real, full-featured networking support upon configuration. 1386 * Otherwise module support will break! 1387 */ 1388 if (rcu_access_pointer(net_families[family]) == NULL) 1389 request_module("net-pf-%d", family); 1390 #endif 1391 1392 rcu_read_lock(); 1393 pf = rcu_dereference(net_families[family]); 1394 err = -EAFNOSUPPORT; 1395 if (!pf) 1396 goto out_release; 1397 1398 /* 1399 * We will call the ->create function, that possibly is in a loadable 1400 * module, so we have to bump that loadable module refcnt first. 1401 */ 1402 if (!try_module_get(pf->owner)) 1403 goto out_release; 1404 1405 /* Now protected by module ref count */ 1406 rcu_read_unlock(); 1407 1408 err = pf->create(net, sock, protocol, kern); 1409 if (err < 0) 1410 goto out_module_put; 1411 1412 /* 1413 * Now to bump the refcnt of the [loadable] module that owns this 1414 * socket at sock_release time we decrement its refcnt. 1415 */ 1416 if (!try_module_get(sock->ops->owner)) 1417 goto out_module_busy; 1418 1419 /* 1420 * Now that we're done with the ->create function, the [loadable] 1421 * module can have its refcnt decremented 1422 */ 1423 module_put(pf->owner); 1424 err = security_socket_post_create(sock, family, type, protocol, kern); 1425 if (err) 1426 goto out_sock_release; 1427 *res = sock; 1428 1429 return 0; 1430 1431 out_module_busy: 1432 err = -EAFNOSUPPORT; 1433 out_module_put: 1434 sock->ops = NULL; 1435 module_put(pf->owner); 1436 out_sock_release: 1437 sock_release(sock); 1438 return err; 1439 1440 out_release: 1441 rcu_read_unlock(); 1442 goto out_sock_release; 1443 } 1444 EXPORT_SYMBOL(__sock_create); 1445 1446 /** 1447 * sock_create - creates a socket 1448 * @family: protocol family (AF_INET, ...) 1449 * @type: communication type (SOCK_STREAM, ...) 1450 * @protocol: protocol (0, ...) 1451 * @res: new socket 1452 * 1453 * A wrapper around __sock_create(). 1454 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1455 */ 1456 1457 int sock_create(int family, int type, int protocol, struct socket **res) 1458 { 1459 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1460 } 1461 EXPORT_SYMBOL(sock_create); 1462 1463 /** 1464 * sock_create_kern - creates a socket (kernel space) 1465 * @net: net namespace 1466 * @family: protocol family (AF_INET, ...) 1467 * @type: communication type (SOCK_STREAM, ...) 1468 * @protocol: protocol (0, ...) 1469 * @res: new socket 1470 * 1471 * A wrapper around __sock_create(). 1472 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1473 */ 1474 1475 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1476 { 1477 return __sock_create(net, family, type, protocol, res, 1); 1478 } 1479 EXPORT_SYMBOL(sock_create_kern); 1480 1481 int __sys_socket(int family, int type, int protocol) 1482 { 1483 int retval; 1484 struct socket *sock; 1485 int flags; 1486 1487 /* Check the SOCK_* constants for consistency. */ 1488 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1489 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1490 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1491 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1492 1493 flags = type & ~SOCK_TYPE_MASK; 1494 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1495 return -EINVAL; 1496 type &= SOCK_TYPE_MASK; 1497 1498 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1499 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1500 1501 retval = sock_create(family, type, protocol, &sock); 1502 if (retval < 0) 1503 return retval; 1504 1505 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1506 } 1507 1508 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1509 { 1510 return __sys_socket(family, type, protocol); 1511 } 1512 1513 /* 1514 * Create a pair of connected sockets. 1515 */ 1516 1517 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1518 { 1519 struct socket *sock1, *sock2; 1520 int fd1, fd2, err; 1521 struct file *newfile1, *newfile2; 1522 int flags; 1523 1524 flags = type & ~SOCK_TYPE_MASK; 1525 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1526 return -EINVAL; 1527 type &= SOCK_TYPE_MASK; 1528 1529 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1530 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1531 1532 /* 1533 * reserve descriptors and make sure we won't fail 1534 * to return them to userland. 1535 */ 1536 fd1 = get_unused_fd_flags(flags); 1537 if (unlikely(fd1 < 0)) 1538 return fd1; 1539 1540 fd2 = get_unused_fd_flags(flags); 1541 if (unlikely(fd2 < 0)) { 1542 put_unused_fd(fd1); 1543 return fd2; 1544 } 1545 1546 err = put_user(fd1, &usockvec[0]); 1547 if (err) 1548 goto out; 1549 1550 err = put_user(fd2, &usockvec[1]); 1551 if (err) 1552 goto out; 1553 1554 /* 1555 * Obtain the first socket and check if the underlying protocol 1556 * supports the socketpair call. 1557 */ 1558 1559 err = sock_create(family, type, protocol, &sock1); 1560 if (unlikely(err < 0)) 1561 goto out; 1562 1563 err = sock_create(family, type, protocol, &sock2); 1564 if (unlikely(err < 0)) { 1565 sock_release(sock1); 1566 goto out; 1567 } 1568 1569 err = security_socket_socketpair(sock1, sock2); 1570 if (unlikely(err)) { 1571 sock_release(sock2); 1572 sock_release(sock1); 1573 goto out; 1574 } 1575 1576 err = sock1->ops->socketpair(sock1, sock2); 1577 if (unlikely(err < 0)) { 1578 sock_release(sock2); 1579 sock_release(sock1); 1580 goto out; 1581 } 1582 1583 newfile1 = sock_alloc_file(sock1, flags, NULL); 1584 if (IS_ERR(newfile1)) { 1585 err = PTR_ERR(newfile1); 1586 sock_release(sock2); 1587 goto out; 1588 } 1589 1590 newfile2 = sock_alloc_file(sock2, flags, NULL); 1591 if (IS_ERR(newfile2)) { 1592 err = PTR_ERR(newfile2); 1593 fput(newfile1); 1594 goto out; 1595 } 1596 1597 audit_fd_pair(fd1, fd2); 1598 1599 fd_install(fd1, newfile1); 1600 fd_install(fd2, newfile2); 1601 return 0; 1602 1603 out: 1604 put_unused_fd(fd2); 1605 put_unused_fd(fd1); 1606 return err; 1607 } 1608 1609 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1610 int __user *, usockvec) 1611 { 1612 return __sys_socketpair(family, type, protocol, usockvec); 1613 } 1614 1615 /* 1616 * Bind a name to a socket. Nothing much to do here since it's 1617 * the protocol's responsibility to handle the local address. 1618 * 1619 * We move the socket address to kernel space before we call 1620 * the protocol layer (having also checked the address is ok). 1621 */ 1622 1623 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1624 { 1625 struct socket *sock; 1626 struct sockaddr_storage address; 1627 int err, fput_needed; 1628 1629 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1630 if (sock) { 1631 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1632 if (!err) { 1633 err = security_socket_bind(sock, 1634 (struct sockaddr *)&address, 1635 addrlen); 1636 if (!err) 1637 err = sock->ops->bind(sock, 1638 (struct sockaddr *) 1639 &address, addrlen); 1640 } 1641 fput_light(sock->file, fput_needed); 1642 } 1643 return err; 1644 } 1645 1646 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1647 { 1648 return __sys_bind(fd, umyaddr, addrlen); 1649 } 1650 1651 /* 1652 * Perform a listen. Basically, we allow the protocol to do anything 1653 * necessary for a listen, and if that works, we mark the socket as 1654 * ready for listening. 1655 */ 1656 1657 int __sys_listen(int fd, int backlog) 1658 { 1659 struct socket *sock; 1660 int err, fput_needed; 1661 int somaxconn; 1662 1663 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1664 if (sock) { 1665 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1666 if ((unsigned int)backlog > somaxconn) 1667 backlog = somaxconn; 1668 1669 err = security_socket_listen(sock, backlog); 1670 if (!err) 1671 err = sock->ops->listen(sock, backlog); 1672 1673 fput_light(sock->file, fput_needed); 1674 } 1675 return err; 1676 } 1677 1678 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1679 { 1680 return __sys_listen(fd, backlog); 1681 } 1682 1683 int __sys_accept4_file(struct file *file, unsigned file_flags, 1684 struct sockaddr __user *upeer_sockaddr, 1685 int __user *upeer_addrlen, int flags, 1686 unsigned long nofile) 1687 { 1688 struct socket *sock, *newsock; 1689 struct file *newfile; 1690 int err, len, newfd; 1691 struct sockaddr_storage address; 1692 1693 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1694 return -EINVAL; 1695 1696 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1697 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1698 1699 sock = sock_from_file(file); 1700 if (!sock) { 1701 err = -ENOTSOCK; 1702 goto out; 1703 } 1704 1705 err = -ENFILE; 1706 newsock = sock_alloc(); 1707 if (!newsock) 1708 goto out; 1709 1710 newsock->type = sock->type; 1711 newsock->ops = sock->ops; 1712 1713 /* 1714 * We don't need try_module_get here, as the listening socket (sock) 1715 * has the protocol module (sock->ops->owner) held. 1716 */ 1717 __module_get(newsock->ops->owner); 1718 1719 newfd = __get_unused_fd_flags(flags, nofile); 1720 if (unlikely(newfd < 0)) { 1721 err = newfd; 1722 sock_release(newsock); 1723 goto out; 1724 } 1725 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1726 if (IS_ERR(newfile)) { 1727 err = PTR_ERR(newfile); 1728 put_unused_fd(newfd); 1729 goto out; 1730 } 1731 1732 err = security_socket_accept(sock, newsock); 1733 if (err) 1734 goto out_fd; 1735 1736 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1737 false); 1738 if (err < 0) 1739 goto out_fd; 1740 1741 if (upeer_sockaddr) { 1742 len = newsock->ops->getname(newsock, 1743 (struct sockaddr *)&address, 2); 1744 if (len < 0) { 1745 err = -ECONNABORTED; 1746 goto out_fd; 1747 } 1748 err = move_addr_to_user(&address, 1749 len, upeer_sockaddr, upeer_addrlen); 1750 if (err < 0) 1751 goto out_fd; 1752 } 1753 1754 /* File flags are not inherited via accept() unlike another OSes. */ 1755 1756 fd_install(newfd, newfile); 1757 err = newfd; 1758 out: 1759 return err; 1760 out_fd: 1761 fput(newfile); 1762 put_unused_fd(newfd); 1763 goto out; 1764 1765 } 1766 1767 /* 1768 * For accept, we attempt to create a new socket, set up the link 1769 * with the client, wake up the client, then return the new 1770 * connected fd. We collect the address of the connector in kernel 1771 * space and move it to user at the very end. This is unclean because 1772 * we open the socket then return an error. 1773 * 1774 * 1003.1g adds the ability to recvmsg() to query connection pending 1775 * status to recvmsg. We need to add that support in a way thats 1776 * clean when we restructure accept also. 1777 */ 1778 1779 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1780 int __user *upeer_addrlen, int flags) 1781 { 1782 int ret = -EBADF; 1783 struct fd f; 1784 1785 f = fdget(fd); 1786 if (f.file) { 1787 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1788 upeer_addrlen, flags, 1789 rlimit(RLIMIT_NOFILE)); 1790 fdput(f); 1791 } 1792 1793 return ret; 1794 } 1795 1796 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1797 int __user *, upeer_addrlen, int, flags) 1798 { 1799 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1800 } 1801 1802 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1803 int __user *, upeer_addrlen) 1804 { 1805 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1806 } 1807 1808 /* 1809 * Attempt to connect to a socket with the server address. The address 1810 * is in user space so we verify it is OK and move it to kernel space. 1811 * 1812 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1813 * break bindings 1814 * 1815 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1816 * other SEQPACKET protocols that take time to connect() as it doesn't 1817 * include the -EINPROGRESS status for such sockets. 1818 */ 1819 1820 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1821 int addrlen, int file_flags) 1822 { 1823 struct socket *sock; 1824 int err; 1825 1826 sock = sock_from_file(file); 1827 if (!sock) { 1828 err = -ENOTSOCK; 1829 goto out; 1830 } 1831 1832 err = 1833 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1834 if (err) 1835 goto out; 1836 1837 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1838 sock->file->f_flags | file_flags); 1839 out: 1840 return err; 1841 } 1842 1843 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1844 { 1845 int ret = -EBADF; 1846 struct fd f; 1847 1848 f = fdget(fd); 1849 if (f.file) { 1850 struct sockaddr_storage address; 1851 1852 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1853 if (!ret) 1854 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1855 fdput(f); 1856 } 1857 1858 return ret; 1859 } 1860 1861 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1862 int, addrlen) 1863 { 1864 return __sys_connect(fd, uservaddr, addrlen); 1865 } 1866 1867 /* 1868 * Get the local address ('name') of a socket object. Move the obtained 1869 * name to user space. 1870 */ 1871 1872 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1873 int __user *usockaddr_len) 1874 { 1875 struct socket *sock; 1876 struct sockaddr_storage address; 1877 int err, fput_needed; 1878 1879 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1880 if (!sock) 1881 goto out; 1882 1883 err = security_socket_getsockname(sock); 1884 if (err) 1885 goto out_put; 1886 1887 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1888 if (err < 0) 1889 goto out_put; 1890 /* "err" is actually length in this case */ 1891 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1892 1893 out_put: 1894 fput_light(sock->file, fput_needed); 1895 out: 1896 return err; 1897 } 1898 1899 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1900 int __user *, usockaddr_len) 1901 { 1902 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1903 } 1904 1905 /* 1906 * Get the remote address ('name') of a socket object. Move the obtained 1907 * name to user space. 1908 */ 1909 1910 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1911 int __user *usockaddr_len) 1912 { 1913 struct socket *sock; 1914 struct sockaddr_storage address; 1915 int err, fput_needed; 1916 1917 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1918 if (sock != NULL) { 1919 err = security_socket_getpeername(sock); 1920 if (err) { 1921 fput_light(sock->file, fput_needed); 1922 return err; 1923 } 1924 1925 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1926 if (err >= 0) 1927 /* "err" is actually length in this case */ 1928 err = move_addr_to_user(&address, err, usockaddr, 1929 usockaddr_len); 1930 fput_light(sock->file, fput_needed); 1931 } 1932 return err; 1933 } 1934 1935 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1936 int __user *, usockaddr_len) 1937 { 1938 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1939 } 1940 1941 /* 1942 * Send a datagram to a given address. We move the address into kernel 1943 * space and check the user space data area is readable before invoking 1944 * the protocol. 1945 */ 1946 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1947 struct sockaddr __user *addr, int addr_len) 1948 { 1949 struct socket *sock; 1950 struct sockaddr_storage address; 1951 int err; 1952 struct msghdr msg; 1953 struct iovec iov; 1954 int fput_needed; 1955 1956 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1957 if (unlikely(err)) 1958 return err; 1959 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1960 if (!sock) 1961 goto out; 1962 1963 msg.msg_name = NULL; 1964 msg.msg_control = NULL; 1965 msg.msg_controllen = 0; 1966 msg.msg_namelen = 0; 1967 if (addr) { 1968 err = move_addr_to_kernel(addr, addr_len, &address); 1969 if (err < 0) 1970 goto out_put; 1971 msg.msg_name = (struct sockaddr *)&address; 1972 msg.msg_namelen = addr_len; 1973 } 1974 if (sock->file->f_flags & O_NONBLOCK) 1975 flags |= MSG_DONTWAIT; 1976 msg.msg_flags = flags; 1977 err = sock_sendmsg(sock, &msg); 1978 1979 out_put: 1980 fput_light(sock->file, fput_needed); 1981 out: 1982 return err; 1983 } 1984 1985 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1986 unsigned int, flags, struct sockaddr __user *, addr, 1987 int, addr_len) 1988 { 1989 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1990 } 1991 1992 /* 1993 * Send a datagram down a socket. 1994 */ 1995 1996 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1997 unsigned int, flags) 1998 { 1999 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2000 } 2001 2002 /* 2003 * Receive a frame from the socket and optionally record the address of the 2004 * sender. We verify the buffers are writable and if needed move the 2005 * sender address from kernel to user space. 2006 */ 2007 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2008 struct sockaddr __user *addr, int __user *addr_len) 2009 { 2010 struct socket *sock; 2011 struct iovec iov; 2012 struct msghdr msg; 2013 struct sockaddr_storage address; 2014 int err, err2; 2015 int fput_needed; 2016 2017 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2018 if (unlikely(err)) 2019 return err; 2020 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2021 if (!sock) 2022 goto out; 2023 2024 msg.msg_control = NULL; 2025 msg.msg_controllen = 0; 2026 /* Save some cycles and don't copy the address if not needed */ 2027 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2028 /* We assume all kernel code knows the size of sockaddr_storage */ 2029 msg.msg_namelen = 0; 2030 msg.msg_iocb = NULL; 2031 msg.msg_flags = 0; 2032 if (sock->file->f_flags & O_NONBLOCK) 2033 flags |= MSG_DONTWAIT; 2034 err = sock_recvmsg(sock, &msg, flags); 2035 2036 if (err >= 0 && addr != NULL) { 2037 err2 = move_addr_to_user(&address, 2038 msg.msg_namelen, addr, addr_len); 2039 if (err2 < 0) 2040 err = err2; 2041 } 2042 2043 fput_light(sock->file, fput_needed); 2044 out: 2045 return err; 2046 } 2047 2048 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2049 unsigned int, flags, struct sockaddr __user *, addr, 2050 int __user *, addr_len) 2051 { 2052 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2053 } 2054 2055 /* 2056 * Receive a datagram from a socket. 2057 */ 2058 2059 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2060 unsigned int, flags) 2061 { 2062 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2063 } 2064 2065 static bool sock_use_custom_sol_socket(const struct socket *sock) 2066 { 2067 const struct sock *sk = sock->sk; 2068 2069 /* Use sock->ops->setsockopt() for MPTCP */ 2070 return IS_ENABLED(CONFIG_MPTCP) && 2071 sk->sk_protocol == IPPROTO_MPTCP && 2072 sk->sk_type == SOCK_STREAM && 2073 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2074 } 2075 2076 /* 2077 * Set a socket option. Because we don't know the option lengths we have 2078 * to pass the user mode parameter for the protocols to sort out. 2079 */ 2080 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2081 int optlen) 2082 { 2083 sockptr_t optval = USER_SOCKPTR(user_optval); 2084 char *kernel_optval = NULL; 2085 int err, fput_needed; 2086 struct socket *sock; 2087 2088 if (optlen < 0) 2089 return -EINVAL; 2090 2091 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2092 if (!sock) 2093 return err; 2094 2095 err = security_socket_setsockopt(sock, level, optname); 2096 if (err) 2097 goto out_put; 2098 2099 if (!in_compat_syscall()) 2100 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2101 user_optval, &optlen, 2102 &kernel_optval); 2103 if (err < 0) 2104 goto out_put; 2105 if (err > 0) { 2106 err = 0; 2107 goto out_put; 2108 } 2109 2110 if (kernel_optval) 2111 optval = KERNEL_SOCKPTR(kernel_optval); 2112 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2113 err = sock_setsockopt(sock, level, optname, optval, optlen); 2114 else if (unlikely(!sock->ops->setsockopt)) 2115 err = -EOPNOTSUPP; 2116 else 2117 err = sock->ops->setsockopt(sock, level, optname, optval, 2118 optlen); 2119 kfree(kernel_optval); 2120 out_put: 2121 fput_light(sock->file, fput_needed); 2122 return err; 2123 } 2124 2125 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2126 char __user *, optval, int, optlen) 2127 { 2128 return __sys_setsockopt(fd, level, optname, optval, optlen); 2129 } 2130 2131 /* 2132 * Get a socket option. Because we don't know the option lengths we have 2133 * to pass a user mode parameter for the protocols to sort out. 2134 */ 2135 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2136 int __user *optlen) 2137 { 2138 int err, fput_needed; 2139 struct socket *sock; 2140 int max_optlen; 2141 2142 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2143 if (!sock) 2144 return err; 2145 2146 err = security_socket_getsockopt(sock, level, optname); 2147 if (err) 2148 goto out_put; 2149 2150 if (!in_compat_syscall()) 2151 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2152 2153 if (level == SOL_SOCKET) 2154 err = sock_getsockopt(sock, level, optname, optval, optlen); 2155 else if (unlikely(!sock->ops->getsockopt)) 2156 err = -EOPNOTSUPP; 2157 else 2158 err = sock->ops->getsockopt(sock, level, optname, optval, 2159 optlen); 2160 2161 if (!in_compat_syscall()) 2162 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2163 optval, optlen, max_optlen, 2164 err); 2165 out_put: 2166 fput_light(sock->file, fput_needed); 2167 return err; 2168 } 2169 2170 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2171 char __user *, optval, int __user *, optlen) 2172 { 2173 return __sys_getsockopt(fd, level, optname, optval, optlen); 2174 } 2175 2176 /* 2177 * Shutdown a socket. 2178 */ 2179 2180 int __sys_shutdown_sock(struct socket *sock, int how) 2181 { 2182 int err; 2183 2184 err = security_socket_shutdown(sock, how); 2185 if (!err) 2186 err = sock->ops->shutdown(sock, how); 2187 2188 return err; 2189 } 2190 2191 int __sys_shutdown(int fd, int how) 2192 { 2193 int err, fput_needed; 2194 struct socket *sock; 2195 2196 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2197 if (sock != NULL) { 2198 err = __sys_shutdown_sock(sock, how); 2199 fput_light(sock->file, fput_needed); 2200 } 2201 return err; 2202 } 2203 2204 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2205 { 2206 return __sys_shutdown(fd, how); 2207 } 2208 2209 /* A couple of helpful macros for getting the address of the 32/64 bit 2210 * fields which are the same type (int / unsigned) on our platforms. 2211 */ 2212 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2213 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2214 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2215 2216 struct used_address { 2217 struct sockaddr_storage name; 2218 unsigned int name_len; 2219 }; 2220 2221 int __copy_msghdr_from_user(struct msghdr *kmsg, 2222 struct user_msghdr __user *umsg, 2223 struct sockaddr __user **save_addr, 2224 struct iovec __user **uiov, size_t *nsegs) 2225 { 2226 struct user_msghdr msg; 2227 ssize_t err; 2228 2229 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2230 return -EFAULT; 2231 2232 kmsg->msg_control_is_user = true; 2233 kmsg->msg_control_user = msg.msg_control; 2234 kmsg->msg_controllen = msg.msg_controllen; 2235 kmsg->msg_flags = msg.msg_flags; 2236 2237 kmsg->msg_namelen = msg.msg_namelen; 2238 if (!msg.msg_name) 2239 kmsg->msg_namelen = 0; 2240 2241 if (kmsg->msg_namelen < 0) 2242 return -EINVAL; 2243 2244 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2245 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2246 2247 if (save_addr) 2248 *save_addr = msg.msg_name; 2249 2250 if (msg.msg_name && kmsg->msg_namelen) { 2251 if (!save_addr) { 2252 err = move_addr_to_kernel(msg.msg_name, 2253 kmsg->msg_namelen, 2254 kmsg->msg_name); 2255 if (err < 0) 2256 return err; 2257 } 2258 } else { 2259 kmsg->msg_name = NULL; 2260 kmsg->msg_namelen = 0; 2261 } 2262 2263 if (msg.msg_iovlen > UIO_MAXIOV) 2264 return -EMSGSIZE; 2265 2266 kmsg->msg_iocb = NULL; 2267 *uiov = msg.msg_iov; 2268 *nsegs = msg.msg_iovlen; 2269 return 0; 2270 } 2271 2272 static int copy_msghdr_from_user(struct msghdr *kmsg, 2273 struct user_msghdr __user *umsg, 2274 struct sockaddr __user **save_addr, 2275 struct iovec **iov) 2276 { 2277 struct user_msghdr msg; 2278 ssize_t err; 2279 2280 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2281 &msg.msg_iovlen); 2282 if (err) 2283 return err; 2284 2285 err = import_iovec(save_addr ? READ : WRITE, 2286 msg.msg_iov, msg.msg_iovlen, 2287 UIO_FASTIOV, iov, &kmsg->msg_iter); 2288 return err < 0 ? err : 0; 2289 } 2290 2291 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2292 unsigned int flags, struct used_address *used_address, 2293 unsigned int allowed_msghdr_flags) 2294 { 2295 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2296 __aligned(sizeof(__kernel_size_t)); 2297 /* 20 is size of ipv6_pktinfo */ 2298 unsigned char *ctl_buf = ctl; 2299 int ctl_len; 2300 ssize_t err; 2301 2302 err = -ENOBUFS; 2303 2304 if (msg_sys->msg_controllen > INT_MAX) 2305 goto out; 2306 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2307 ctl_len = msg_sys->msg_controllen; 2308 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2309 err = 2310 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2311 sizeof(ctl)); 2312 if (err) 2313 goto out; 2314 ctl_buf = msg_sys->msg_control; 2315 ctl_len = msg_sys->msg_controllen; 2316 } else if (ctl_len) { 2317 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2318 CMSG_ALIGN(sizeof(struct cmsghdr))); 2319 if (ctl_len > sizeof(ctl)) { 2320 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2321 if (ctl_buf == NULL) 2322 goto out; 2323 } 2324 err = -EFAULT; 2325 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2326 goto out_freectl; 2327 msg_sys->msg_control = ctl_buf; 2328 msg_sys->msg_control_is_user = false; 2329 } 2330 msg_sys->msg_flags = flags; 2331 2332 if (sock->file->f_flags & O_NONBLOCK) 2333 msg_sys->msg_flags |= MSG_DONTWAIT; 2334 /* 2335 * If this is sendmmsg() and current destination address is same as 2336 * previously succeeded address, omit asking LSM's decision. 2337 * used_address->name_len is initialized to UINT_MAX so that the first 2338 * destination address never matches. 2339 */ 2340 if (used_address && msg_sys->msg_name && 2341 used_address->name_len == msg_sys->msg_namelen && 2342 !memcmp(&used_address->name, msg_sys->msg_name, 2343 used_address->name_len)) { 2344 err = sock_sendmsg_nosec(sock, msg_sys); 2345 goto out_freectl; 2346 } 2347 err = sock_sendmsg(sock, msg_sys); 2348 /* 2349 * If this is sendmmsg() and sending to current destination address was 2350 * successful, remember it. 2351 */ 2352 if (used_address && err >= 0) { 2353 used_address->name_len = msg_sys->msg_namelen; 2354 if (msg_sys->msg_name) 2355 memcpy(&used_address->name, msg_sys->msg_name, 2356 used_address->name_len); 2357 } 2358 2359 out_freectl: 2360 if (ctl_buf != ctl) 2361 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2362 out: 2363 return err; 2364 } 2365 2366 int sendmsg_copy_msghdr(struct msghdr *msg, 2367 struct user_msghdr __user *umsg, unsigned flags, 2368 struct iovec **iov) 2369 { 2370 int err; 2371 2372 if (flags & MSG_CMSG_COMPAT) { 2373 struct compat_msghdr __user *msg_compat; 2374 2375 msg_compat = (struct compat_msghdr __user *) umsg; 2376 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2377 } else { 2378 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2379 } 2380 if (err < 0) 2381 return err; 2382 2383 return 0; 2384 } 2385 2386 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2387 struct msghdr *msg_sys, unsigned int flags, 2388 struct used_address *used_address, 2389 unsigned int allowed_msghdr_flags) 2390 { 2391 struct sockaddr_storage address; 2392 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2393 ssize_t err; 2394 2395 msg_sys->msg_name = &address; 2396 2397 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2398 if (err < 0) 2399 return err; 2400 2401 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2402 allowed_msghdr_flags); 2403 kfree(iov); 2404 return err; 2405 } 2406 2407 /* 2408 * BSD sendmsg interface 2409 */ 2410 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2411 unsigned int flags) 2412 { 2413 /* disallow ancillary data requests from this path */ 2414 if (msg->msg_control || msg->msg_controllen) 2415 return -EINVAL; 2416 2417 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2418 } 2419 2420 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2421 bool forbid_cmsg_compat) 2422 { 2423 int fput_needed, err; 2424 struct msghdr msg_sys; 2425 struct socket *sock; 2426 2427 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2428 return -EINVAL; 2429 2430 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2431 if (!sock) 2432 goto out; 2433 2434 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2435 2436 fput_light(sock->file, fput_needed); 2437 out: 2438 return err; 2439 } 2440 2441 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2442 { 2443 return __sys_sendmsg(fd, msg, flags, true); 2444 } 2445 2446 /* 2447 * Linux sendmmsg interface 2448 */ 2449 2450 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2451 unsigned int flags, bool forbid_cmsg_compat) 2452 { 2453 int fput_needed, err, datagrams; 2454 struct socket *sock; 2455 struct mmsghdr __user *entry; 2456 struct compat_mmsghdr __user *compat_entry; 2457 struct msghdr msg_sys; 2458 struct used_address used_address; 2459 unsigned int oflags = flags; 2460 2461 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2462 return -EINVAL; 2463 2464 if (vlen > UIO_MAXIOV) 2465 vlen = UIO_MAXIOV; 2466 2467 datagrams = 0; 2468 2469 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2470 if (!sock) 2471 return err; 2472 2473 used_address.name_len = UINT_MAX; 2474 entry = mmsg; 2475 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2476 err = 0; 2477 flags |= MSG_BATCH; 2478 2479 while (datagrams < vlen) { 2480 if (datagrams == vlen - 1) 2481 flags = oflags; 2482 2483 if (MSG_CMSG_COMPAT & flags) { 2484 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2485 &msg_sys, flags, &used_address, MSG_EOR); 2486 if (err < 0) 2487 break; 2488 err = __put_user(err, &compat_entry->msg_len); 2489 ++compat_entry; 2490 } else { 2491 err = ___sys_sendmsg(sock, 2492 (struct user_msghdr __user *)entry, 2493 &msg_sys, flags, &used_address, MSG_EOR); 2494 if (err < 0) 2495 break; 2496 err = put_user(err, &entry->msg_len); 2497 ++entry; 2498 } 2499 2500 if (err) 2501 break; 2502 ++datagrams; 2503 if (msg_data_left(&msg_sys)) 2504 break; 2505 cond_resched(); 2506 } 2507 2508 fput_light(sock->file, fput_needed); 2509 2510 /* We only return an error if no datagrams were able to be sent */ 2511 if (datagrams != 0) 2512 return datagrams; 2513 2514 return err; 2515 } 2516 2517 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2518 unsigned int, vlen, unsigned int, flags) 2519 { 2520 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2521 } 2522 2523 int recvmsg_copy_msghdr(struct msghdr *msg, 2524 struct user_msghdr __user *umsg, unsigned flags, 2525 struct sockaddr __user **uaddr, 2526 struct iovec **iov) 2527 { 2528 ssize_t err; 2529 2530 if (MSG_CMSG_COMPAT & flags) { 2531 struct compat_msghdr __user *msg_compat; 2532 2533 msg_compat = (struct compat_msghdr __user *) umsg; 2534 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2535 } else { 2536 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2537 } 2538 if (err < 0) 2539 return err; 2540 2541 return 0; 2542 } 2543 2544 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2545 struct user_msghdr __user *msg, 2546 struct sockaddr __user *uaddr, 2547 unsigned int flags, int nosec) 2548 { 2549 struct compat_msghdr __user *msg_compat = 2550 (struct compat_msghdr __user *) msg; 2551 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2552 struct sockaddr_storage addr; 2553 unsigned long cmsg_ptr; 2554 int len; 2555 ssize_t err; 2556 2557 msg_sys->msg_name = &addr; 2558 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2559 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2560 2561 /* We assume all kernel code knows the size of sockaddr_storage */ 2562 msg_sys->msg_namelen = 0; 2563 2564 if (sock->file->f_flags & O_NONBLOCK) 2565 flags |= MSG_DONTWAIT; 2566 2567 if (unlikely(nosec)) 2568 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2569 else 2570 err = sock_recvmsg(sock, msg_sys, flags); 2571 2572 if (err < 0) 2573 goto out; 2574 len = err; 2575 2576 if (uaddr != NULL) { 2577 err = move_addr_to_user(&addr, 2578 msg_sys->msg_namelen, uaddr, 2579 uaddr_len); 2580 if (err < 0) 2581 goto out; 2582 } 2583 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2584 COMPAT_FLAGS(msg)); 2585 if (err) 2586 goto out; 2587 if (MSG_CMSG_COMPAT & flags) 2588 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2589 &msg_compat->msg_controllen); 2590 else 2591 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2592 &msg->msg_controllen); 2593 if (err) 2594 goto out; 2595 err = len; 2596 out: 2597 return err; 2598 } 2599 2600 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2601 struct msghdr *msg_sys, unsigned int flags, int nosec) 2602 { 2603 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2604 /* user mode address pointers */ 2605 struct sockaddr __user *uaddr; 2606 ssize_t err; 2607 2608 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2609 if (err < 0) 2610 return err; 2611 2612 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2613 kfree(iov); 2614 return err; 2615 } 2616 2617 /* 2618 * BSD recvmsg interface 2619 */ 2620 2621 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2622 struct user_msghdr __user *umsg, 2623 struct sockaddr __user *uaddr, unsigned int flags) 2624 { 2625 if (msg->msg_control || msg->msg_controllen) { 2626 /* disallow ancillary data reqs unless cmsg is plain data */ 2627 if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY)) 2628 return -EINVAL; 2629 } 2630 2631 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2632 } 2633 2634 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2635 bool forbid_cmsg_compat) 2636 { 2637 int fput_needed, err; 2638 struct msghdr msg_sys; 2639 struct socket *sock; 2640 2641 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2642 return -EINVAL; 2643 2644 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2645 if (!sock) 2646 goto out; 2647 2648 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2649 2650 fput_light(sock->file, fput_needed); 2651 out: 2652 return err; 2653 } 2654 2655 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2656 unsigned int, flags) 2657 { 2658 return __sys_recvmsg(fd, msg, flags, true); 2659 } 2660 2661 /* 2662 * Linux recvmmsg interface 2663 */ 2664 2665 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2666 unsigned int vlen, unsigned int flags, 2667 struct timespec64 *timeout) 2668 { 2669 int fput_needed, err, datagrams; 2670 struct socket *sock; 2671 struct mmsghdr __user *entry; 2672 struct compat_mmsghdr __user *compat_entry; 2673 struct msghdr msg_sys; 2674 struct timespec64 end_time; 2675 struct timespec64 timeout64; 2676 2677 if (timeout && 2678 poll_select_set_timeout(&end_time, timeout->tv_sec, 2679 timeout->tv_nsec)) 2680 return -EINVAL; 2681 2682 datagrams = 0; 2683 2684 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2685 if (!sock) 2686 return err; 2687 2688 if (likely(!(flags & MSG_ERRQUEUE))) { 2689 err = sock_error(sock->sk); 2690 if (err) { 2691 datagrams = err; 2692 goto out_put; 2693 } 2694 } 2695 2696 entry = mmsg; 2697 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2698 2699 while (datagrams < vlen) { 2700 /* 2701 * No need to ask LSM for more than the first datagram. 2702 */ 2703 if (MSG_CMSG_COMPAT & flags) { 2704 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2705 &msg_sys, flags & ~MSG_WAITFORONE, 2706 datagrams); 2707 if (err < 0) 2708 break; 2709 err = __put_user(err, &compat_entry->msg_len); 2710 ++compat_entry; 2711 } else { 2712 err = ___sys_recvmsg(sock, 2713 (struct user_msghdr __user *)entry, 2714 &msg_sys, flags & ~MSG_WAITFORONE, 2715 datagrams); 2716 if (err < 0) 2717 break; 2718 err = put_user(err, &entry->msg_len); 2719 ++entry; 2720 } 2721 2722 if (err) 2723 break; 2724 ++datagrams; 2725 2726 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2727 if (flags & MSG_WAITFORONE) 2728 flags |= MSG_DONTWAIT; 2729 2730 if (timeout) { 2731 ktime_get_ts64(&timeout64); 2732 *timeout = timespec64_sub(end_time, timeout64); 2733 if (timeout->tv_sec < 0) { 2734 timeout->tv_sec = timeout->tv_nsec = 0; 2735 break; 2736 } 2737 2738 /* Timeout, return less than vlen datagrams */ 2739 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2740 break; 2741 } 2742 2743 /* Out of band data, return right away */ 2744 if (msg_sys.msg_flags & MSG_OOB) 2745 break; 2746 cond_resched(); 2747 } 2748 2749 if (err == 0) 2750 goto out_put; 2751 2752 if (datagrams == 0) { 2753 datagrams = err; 2754 goto out_put; 2755 } 2756 2757 /* 2758 * We may return less entries than requested (vlen) if the 2759 * sock is non block and there aren't enough datagrams... 2760 */ 2761 if (err != -EAGAIN) { 2762 /* 2763 * ... or if recvmsg returns an error after we 2764 * received some datagrams, where we record the 2765 * error to return on the next call or if the 2766 * app asks about it using getsockopt(SO_ERROR). 2767 */ 2768 sock->sk->sk_err = -err; 2769 } 2770 out_put: 2771 fput_light(sock->file, fput_needed); 2772 2773 return datagrams; 2774 } 2775 2776 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2777 unsigned int vlen, unsigned int flags, 2778 struct __kernel_timespec __user *timeout, 2779 struct old_timespec32 __user *timeout32) 2780 { 2781 int datagrams; 2782 struct timespec64 timeout_sys; 2783 2784 if (timeout && get_timespec64(&timeout_sys, timeout)) 2785 return -EFAULT; 2786 2787 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2788 return -EFAULT; 2789 2790 if (!timeout && !timeout32) 2791 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2792 2793 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2794 2795 if (datagrams <= 0) 2796 return datagrams; 2797 2798 if (timeout && put_timespec64(&timeout_sys, timeout)) 2799 datagrams = -EFAULT; 2800 2801 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2802 datagrams = -EFAULT; 2803 2804 return datagrams; 2805 } 2806 2807 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2808 unsigned int, vlen, unsigned int, flags, 2809 struct __kernel_timespec __user *, timeout) 2810 { 2811 if (flags & MSG_CMSG_COMPAT) 2812 return -EINVAL; 2813 2814 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2815 } 2816 2817 #ifdef CONFIG_COMPAT_32BIT_TIME 2818 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2819 unsigned int, vlen, unsigned int, flags, 2820 struct old_timespec32 __user *, timeout) 2821 { 2822 if (flags & MSG_CMSG_COMPAT) 2823 return -EINVAL; 2824 2825 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2826 } 2827 #endif 2828 2829 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2830 /* Argument list sizes for sys_socketcall */ 2831 #define AL(x) ((x) * sizeof(unsigned long)) 2832 static const unsigned char nargs[21] = { 2833 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2834 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2835 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2836 AL(4), AL(5), AL(4) 2837 }; 2838 2839 #undef AL 2840 2841 /* 2842 * System call vectors. 2843 * 2844 * Argument checking cleaned up. Saved 20% in size. 2845 * This function doesn't need to set the kernel lock because 2846 * it is set by the callees. 2847 */ 2848 2849 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2850 { 2851 unsigned long a[AUDITSC_ARGS]; 2852 unsigned long a0, a1; 2853 int err; 2854 unsigned int len; 2855 2856 if (call < 1 || call > SYS_SENDMMSG) 2857 return -EINVAL; 2858 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2859 2860 len = nargs[call]; 2861 if (len > sizeof(a)) 2862 return -EINVAL; 2863 2864 /* copy_from_user should be SMP safe. */ 2865 if (copy_from_user(a, args, len)) 2866 return -EFAULT; 2867 2868 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2869 if (err) 2870 return err; 2871 2872 a0 = a[0]; 2873 a1 = a[1]; 2874 2875 switch (call) { 2876 case SYS_SOCKET: 2877 err = __sys_socket(a0, a1, a[2]); 2878 break; 2879 case SYS_BIND: 2880 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2881 break; 2882 case SYS_CONNECT: 2883 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2884 break; 2885 case SYS_LISTEN: 2886 err = __sys_listen(a0, a1); 2887 break; 2888 case SYS_ACCEPT: 2889 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2890 (int __user *)a[2], 0); 2891 break; 2892 case SYS_GETSOCKNAME: 2893 err = 2894 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2895 (int __user *)a[2]); 2896 break; 2897 case SYS_GETPEERNAME: 2898 err = 2899 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2900 (int __user *)a[2]); 2901 break; 2902 case SYS_SOCKETPAIR: 2903 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2904 break; 2905 case SYS_SEND: 2906 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2907 NULL, 0); 2908 break; 2909 case SYS_SENDTO: 2910 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2911 (struct sockaddr __user *)a[4], a[5]); 2912 break; 2913 case SYS_RECV: 2914 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2915 NULL, NULL); 2916 break; 2917 case SYS_RECVFROM: 2918 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2919 (struct sockaddr __user *)a[4], 2920 (int __user *)a[5]); 2921 break; 2922 case SYS_SHUTDOWN: 2923 err = __sys_shutdown(a0, a1); 2924 break; 2925 case SYS_SETSOCKOPT: 2926 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2927 a[4]); 2928 break; 2929 case SYS_GETSOCKOPT: 2930 err = 2931 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2932 (int __user *)a[4]); 2933 break; 2934 case SYS_SENDMSG: 2935 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2936 a[2], true); 2937 break; 2938 case SYS_SENDMMSG: 2939 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2940 a[3], true); 2941 break; 2942 case SYS_RECVMSG: 2943 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2944 a[2], true); 2945 break; 2946 case SYS_RECVMMSG: 2947 if (IS_ENABLED(CONFIG_64BIT)) 2948 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2949 a[2], a[3], 2950 (struct __kernel_timespec __user *)a[4], 2951 NULL); 2952 else 2953 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2954 a[2], a[3], NULL, 2955 (struct old_timespec32 __user *)a[4]); 2956 break; 2957 case SYS_ACCEPT4: 2958 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2959 (int __user *)a[2], a[3]); 2960 break; 2961 default: 2962 err = -EINVAL; 2963 break; 2964 } 2965 return err; 2966 } 2967 2968 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2969 2970 /** 2971 * sock_register - add a socket protocol handler 2972 * @ops: description of protocol 2973 * 2974 * This function is called by a protocol handler that wants to 2975 * advertise its address family, and have it linked into the 2976 * socket interface. The value ops->family corresponds to the 2977 * socket system call protocol family. 2978 */ 2979 int sock_register(const struct net_proto_family *ops) 2980 { 2981 int err; 2982 2983 if (ops->family >= NPROTO) { 2984 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2985 return -ENOBUFS; 2986 } 2987 2988 spin_lock(&net_family_lock); 2989 if (rcu_dereference_protected(net_families[ops->family], 2990 lockdep_is_held(&net_family_lock))) 2991 err = -EEXIST; 2992 else { 2993 rcu_assign_pointer(net_families[ops->family], ops); 2994 err = 0; 2995 } 2996 spin_unlock(&net_family_lock); 2997 2998 pr_info("NET: Registered protocol family %d\n", ops->family); 2999 return err; 3000 } 3001 EXPORT_SYMBOL(sock_register); 3002 3003 /** 3004 * sock_unregister - remove a protocol handler 3005 * @family: protocol family to remove 3006 * 3007 * This function is called by a protocol handler that wants to 3008 * remove its address family, and have it unlinked from the 3009 * new socket creation. 3010 * 3011 * If protocol handler is a module, then it can use module reference 3012 * counts to protect against new references. If protocol handler is not 3013 * a module then it needs to provide its own protection in 3014 * the ops->create routine. 3015 */ 3016 void sock_unregister(int family) 3017 { 3018 BUG_ON(family < 0 || family >= NPROTO); 3019 3020 spin_lock(&net_family_lock); 3021 RCU_INIT_POINTER(net_families[family], NULL); 3022 spin_unlock(&net_family_lock); 3023 3024 synchronize_rcu(); 3025 3026 pr_info("NET: Unregistered protocol family %d\n", family); 3027 } 3028 EXPORT_SYMBOL(sock_unregister); 3029 3030 bool sock_is_registered(int family) 3031 { 3032 return family < NPROTO && rcu_access_pointer(net_families[family]); 3033 } 3034 3035 static int __init sock_init(void) 3036 { 3037 int err; 3038 /* 3039 * Initialize the network sysctl infrastructure. 3040 */ 3041 err = net_sysctl_init(); 3042 if (err) 3043 goto out; 3044 3045 /* 3046 * Initialize skbuff SLAB cache 3047 */ 3048 skb_init(); 3049 3050 /* 3051 * Initialize the protocols module. 3052 */ 3053 3054 init_inodecache(); 3055 3056 err = register_filesystem(&sock_fs_type); 3057 if (err) 3058 goto out; 3059 sock_mnt = kern_mount(&sock_fs_type); 3060 if (IS_ERR(sock_mnt)) { 3061 err = PTR_ERR(sock_mnt); 3062 goto out_mount; 3063 } 3064 3065 /* The real protocol initialization is performed in later initcalls. 3066 */ 3067 3068 #ifdef CONFIG_NETFILTER 3069 err = netfilter_init(); 3070 if (err) 3071 goto out; 3072 #endif 3073 3074 ptp_classifier_init(); 3075 3076 out: 3077 return err; 3078 3079 out_mount: 3080 unregister_filesystem(&sock_fs_type); 3081 goto out; 3082 } 3083 3084 core_initcall(sock_init); /* early initcall */ 3085 3086 #ifdef CONFIG_PROC_FS 3087 void socket_seq_show(struct seq_file *seq) 3088 { 3089 seq_printf(seq, "sockets: used %d\n", 3090 sock_inuse_get(seq->private)); 3091 } 3092 #endif /* CONFIG_PROC_FS */ 3093 3094 #ifdef CONFIG_COMPAT 3095 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3096 { 3097 struct compat_ifconf ifc32; 3098 struct ifconf ifc; 3099 int err; 3100 3101 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3102 return -EFAULT; 3103 3104 ifc.ifc_len = ifc32.ifc_len; 3105 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3106 3107 rtnl_lock(); 3108 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3109 rtnl_unlock(); 3110 if (err) 3111 return err; 3112 3113 ifc32.ifc_len = ifc.ifc_len; 3114 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3115 return -EFAULT; 3116 3117 return 0; 3118 } 3119 3120 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3121 { 3122 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3123 bool convert_in = false, convert_out = false; 3124 size_t buf_size = 0; 3125 struct ethtool_rxnfc __user *rxnfc = NULL; 3126 struct ifreq ifr; 3127 u32 rule_cnt = 0, actual_rule_cnt; 3128 u32 ethcmd; 3129 u32 data; 3130 int ret; 3131 3132 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3133 return -EFAULT; 3134 3135 compat_rxnfc = compat_ptr(data); 3136 3137 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3138 return -EFAULT; 3139 3140 /* Most ethtool structures are defined without padding. 3141 * Unfortunately struct ethtool_rxnfc is an exception. 3142 */ 3143 switch (ethcmd) { 3144 default: 3145 break; 3146 case ETHTOOL_GRXCLSRLALL: 3147 /* Buffer size is variable */ 3148 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3149 return -EFAULT; 3150 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3151 return -ENOMEM; 3152 buf_size += rule_cnt * sizeof(u32); 3153 fallthrough; 3154 case ETHTOOL_GRXRINGS: 3155 case ETHTOOL_GRXCLSRLCNT: 3156 case ETHTOOL_GRXCLSRULE: 3157 case ETHTOOL_SRXCLSRLINS: 3158 convert_out = true; 3159 fallthrough; 3160 case ETHTOOL_SRXCLSRLDEL: 3161 buf_size += sizeof(struct ethtool_rxnfc); 3162 convert_in = true; 3163 rxnfc = compat_alloc_user_space(buf_size); 3164 break; 3165 } 3166 3167 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3168 return -EFAULT; 3169 3170 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3171 3172 if (convert_in) { 3173 /* We expect there to be holes between fs.m_ext and 3174 * fs.ring_cookie and at the end of fs, but nowhere else. 3175 */ 3176 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3177 sizeof(compat_rxnfc->fs.m_ext) != 3178 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3179 sizeof(rxnfc->fs.m_ext)); 3180 BUILD_BUG_ON( 3181 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3182 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3183 offsetof(struct ethtool_rxnfc, fs.location) - 3184 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3185 3186 if (copy_in_user(rxnfc, compat_rxnfc, 3187 (void __user *)(&rxnfc->fs.m_ext + 1) - 3188 (void __user *)rxnfc) || 3189 copy_in_user(&rxnfc->fs.ring_cookie, 3190 &compat_rxnfc->fs.ring_cookie, 3191 (void __user *)(&rxnfc->fs.location + 1) - 3192 (void __user *)&rxnfc->fs.ring_cookie)) 3193 return -EFAULT; 3194 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3195 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3196 return -EFAULT; 3197 } else if (copy_in_user(&rxnfc->rule_cnt, 3198 &compat_rxnfc->rule_cnt, 3199 sizeof(rxnfc->rule_cnt))) 3200 return -EFAULT; 3201 } 3202 3203 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3204 if (ret) 3205 return ret; 3206 3207 if (convert_out) { 3208 if (copy_in_user(compat_rxnfc, rxnfc, 3209 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3210 (const void __user *)rxnfc) || 3211 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3212 &rxnfc->fs.ring_cookie, 3213 (const void __user *)(&rxnfc->fs.location + 1) - 3214 (const void __user *)&rxnfc->fs.ring_cookie) || 3215 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3216 sizeof(rxnfc->rule_cnt))) 3217 return -EFAULT; 3218 3219 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3220 /* As an optimisation, we only copy the actual 3221 * number of rules that the underlying 3222 * function returned. Since Mallory might 3223 * change the rule count in user memory, we 3224 * check that it is less than the rule count 3225 * originally given (as the user buffer size), 3226 * which has been range-checked. 3227 */ 3228 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3229 return -EFAULT; 3230 if (actual_rule_cnt < rule_cnt) 3231 rule_cnt = actual_rule_cnt; 3232 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3233 &rxnfc->rule_locs[0], 3234 rule_cnt * sizeof(u32))) 3235 return -EFAULT; 3236 } 3237 } 3238 3239 return 0; 3240 } 3241 3242 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3243 { 3244 compat_uptr_t uptr32; 3245 struct ifreq ifr; 3246 void __user *saved; 3247 int err; 3248 3249 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3250 return -EFAULT; 3251 3252 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3253 return -EFAULT; 3254 3255 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3256 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3257 3258 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3259 if (!err) { 3260 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3261 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3262 err = -EFAULT; 3263 } 3264 return err; 3265 } 3266 3267 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3268 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3269 struct compat_ifreq __user *u_ifreq32) 3270 { 3271 struct ifreq ifreq; 3272 u32 data32; 3273 3274 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3275 return -EFAULT; 3276 if (get_user(data32, &u_ifreq32->ifr_data)) 3277 return -EFAULT; 3278 ifreq.ifr_data = compat_ptr(data32); 3279 3280 return dev_ioctl(net, cmd, &ifreq, NULL); 3281 } 3282 3283 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3284 unsigned int cmd, 3285 struct compat_ifreq __user *uifr32) 3286 { 3287 struct ifreq __user *uifr; 3288 int err; 3289 3290 /* Handle the fact that while struct ifreq has the same *layout* on 3291 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3292 * which are handled elsewhere, it still has different *size* due to 3293 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3294 * resulting in struct ifreq being 32 and 40 bytes respectively). 3295 * As a result, if the struct happens to be at the end of a page and 3296 * the next page isn't readable/writable, we get a fault. To prevent 3297 * that, copy back and forth to the full size. 3298 */ 3299 3300 uifr = compat_alloc_user_space(sizeof(*uifr)); 3301 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3302 return -EFAULT; 3303 3304 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3305 3306 if (!err) { 3307 switch (cmd) { 3308 case SIOCGIFFLAGS: 3309 case SIOCGIFMETRIC: 3310 case SIOCGIFMTU: 3311 case SIOCGIFMEM: 3312 case SIOCGIFHWADDR: 3313 case SIOCGIFINDEX: 3314 case SIOCGIFADDR: 3315 case SIOCGIFBRDADDR: 3316 case SIOCGIFDSTADDR: 3317 case SIOCGIFNETMASK: 3318 case SIOCGIFPFLAGS: 3319 case SIOCGIFTXQLEN: 3320 case SIOCGMIIPHY: 3321 case SIOCGMIIREG: 3322 case SIOCGIFNAME: 3323 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3324 err = -EFAULT; 3325 break; 3326 } 3327 } 3328 return err; 3329 } 3330 3331 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3332 struct compat_ifreq __user *uifr32) 3333 { 3334 struct ifreq ifr; 3335 struct compat_ifmap __user *uifmap32; 3336 int err; 3337 3338 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3339 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3340 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3341 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3342 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3343 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3344 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3345 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3346 if (err) 3347 return -EFAULT; 3348 3349 err = dev_ioctl(net, cmd, &ifr, NULL); 3350 3351 if (cmd == SIOCGIFMAP && !err) { 3352 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3353 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3354 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3355 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3356 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3357 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3358 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3359 if (err) 3360 err = -EFAULT; 3361 } 3362 return err; 3363 } 3364 3365 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3366 * for some operations; this forces use of the newer bridge-utils that 3367 * use compatible ioctls 3368 */ 3369 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3370 { 3371 compat_ulong_t tmp; 3372 3373 if (get_user(tmp, argp)) 3374 return -EFAULT; 3375 if (tmp == BRCTL_GET_VERSION) 3376 return BRCTL_VERSION + 1; 3377 return -EINVAL; 3378 } 3379 3380 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3381 unsigned int cmd, unsigned long arg) 3382 { 3383 void __user *argp = compat_ptr(arg); 3384 struct sock *sk = sock->sk; 3385 struct net *net = sock_net(sk); 3386 3387 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3388 return compat_ifr_data_ioctl(net, cmd, argp); 3389 3390 switch (cmd) { 3391 case SIOCSIFBR: 3392 case SIOCGIFBR: 3393 return old_bridge_ioctl(argp); 3394 case SIOCGIFCONF: 3395 return compat_dev_ifconf(net, argp); 3396 case SIOCETHTOOL: 3397 return ethtool_ioctl(net, argp); 3398 case SIOCWANDEV: 3399 return compat_siocwandev(net, argp); 3400 case SIOCGIFMAP: 3401 case SIOCSIFMAP: 3402 return compat_sioc_ifmap(net, cmd, argp); 3403 case SIOCGSTAMP_OLD: 3404 case SIOCGSTAMPNS_OLD: 3405 if (!sock->ops->gettstamp) 3406 return -ENOIOCTLCMD; 3407 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3408 !COMPAT_USE_64BIT_TIME); 3409 3410 case SIOCBONDSLAVEINFOQUERY: 3411 case SIOCBONDINFOQUERY: 3412 case SIOCSHWTSTAMP: 3413 case SIOCGHWTSTAMP: 3414 return compat_ifr_data_ioctl(net, cmd, argp); 3415 3416 case FIOSETOWN: 3417 case SIOCSPGRP: 3418 case FIOGETOWN: 3419 case SIOCGPGRP: 3420 case SIOCBRADDBR: 3421 case SIOCBRDELBR: 3422 case SIOCGIFVLAN: 3423 case SIOCSIFVLAN: 3424 case SIOCGSKNS: 3425 case SIOCGSTAMP_NEW: 3426 case SIOCGSTAMPNS_NEW: 3427 return sock_ioctl(file, cmd, arg); 3428 3429 case SIOCGIFFLAGS: 3430 case SIOCSIFFLAGS: 3431 case SIOCGIFMETRIC: 3432 case SIOCSIFMETRIC: 3433 case SIOCGIFMTU: 3434 case SIOCSIFMTU: 3435 case SIOCGIFMEM: 3436 case SIOCSIFMEM: 3437 case SIOCGIFHWADDR: 3438 case SIOCSIFHWADDR: 3439 case SIOCADDMULTI: 3440 case SIOCDELMULTI: 3441 case SIOCGIFINDEX: 3442 case SIOCGIFADDR: 3443 case SIOCSIFADDR: 3444 case SIOCSIFHWBROADCAST: 3445 case SIOCDIFADDR: 3446 case SIOCGIFBRDADDR: 3447 case SIOCSIFBRDADDR: 3448 case SIOCGIFDSTADDR: 3449 case SIOCSIFDSTADDR: 3450 case SIOCGIFNETMASK: 3451 case SIOCSIFNETMASK: 3452 case SIOCSIFPFLAGS: 3453 case SIOCGIFPFLAGS: 3454 case SIOCGIFTXQLEN: 3455 case SIOCSIFTXQLEN: 3456 case SIOCBRADDIF: 3457 case SIOCBRDELIF: 3458 case SIOCGIFNAME: 3459 case SIOCSIFNAME: 3460 case SIOCGMIIPHY: 3461 case SIOCGMIIREG: 3462 case SIOCSMIIREG: 3463 case SIOCBONDENSLAVE: 3464 case SIOCBONDRELEASE: 3465 case SIOCBONDSETHWADDR: 3466 case SIOCBONDCHANGEACTIVE: 3467 return compat_ifreq_ioctl(net, sock, cmd, argp); 3468 3469 case SIOCSARP: 3470 case SIOCGARP: 3471 case SIOCDARP: 3472 case SIOCOUTQ: 3473 case SIOCOUTQNSD: 3474 case SIOCATMARK: 3475 return sock_do_ioctl(net, sock, cmd, arg); 3476 } 3477 3478 return -ENOIOCTLCMD; 3479 } 3480 3481 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3482 unsigned long arg) 3483 { 3484 struct socket *sock = file->private_data; 3485 int ret = -ENOIOCTLCMD; 3486 struct sock *sk; 3487 struct net *net; 3488 3489 sk = sock->sk; 3490 net = sock_net(sk); 3491 3492 if (sock->ops->compat_ioctl) 3493 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3494 3495 if (ret == -ENOIOCTLCMD && 3496 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3497 ret = compat_wext_handle_ioctl(net, cmd, arg); 3498 3499 if (ret == -ENOIOCTLCMD) 3500 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3501 3502 return ret; 3503 } 3504 #endif 3505 3506 /** 3507 * kernel_bind - bind an address to a socket (kernel space) 3508 * @sock: socket 3509 * @addr: address 3510 * @addrlen: length of address 3511 * 3512 * Returns 0 or an error. 3513 */ 3514 3515 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3516 { 3517 return sock->ops->bind(sock, addr, addrlen); 3518 } 3519 EXPORT_SYMBOL(kernel_bind); 3520 3521 /** 3522 * kernel_listen - move socket to listening state (kernel space) 3523 * @sock: socket 3524 * @backlog: pending connections queue size 3525 * 3526 * Returns 0 or an error. 3527 */ 3528 3529 int kernel_listen(struct socket *sock, int backlog) 3530 { 3531 return sock->ops->listen(sock, backlog); 3532 } 3533 EXPORT_SYMBOL(kernel_listen); 3534 3535 /** 3536 * kernel_accept - accept a connection (kernel space) 3537 * @sock: listening socket 3538 * @newsock: new connected socket 3539 * @flags: flags 3540 * 3541 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3542 * If it fails, @newsock is guaranteed to be %NULL. 3543 * Returns 0 or an error. 3544 */ 3545 3546 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3547 { 3548 struct sock *sk = sock->sk; 3549 int err; 3550 3551 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3552 newsock); 3553 if (err < 0) 3554 goto done; 3555 3556 err = sock->ops->accept(sock, *newsock, flags, true); 3557 if (err < 0) { 3558 sock_release(*newsock); 3559 *newsock = NULL; 3560 goto done; 3561 } 3562 3563 (*newsock)->ops = sock->ops; 3564 __module_get((*newsock)->ops->owner); 3565 3566 done: 3567 return err; 3568 } 3569 EXPORT_SYMBOL(kernel_accept); 3570 3571 /** 3572 * kernel_connect - connect a socket (kernel space) 3573 * @sock: socket 3574 * @addr: address 3575 * @addrlen: address length 3576 * @flags: flags (O_NONBLOCK, ...) 3577 * 3578 * For datagram sockets, @addr is the addres to which datagrams are sent 3579 * by default, and the only address from which datagrams are received. 3580 * For stream sockets, attempts to connect to @addr. 3581 * Returns 0 or an error code. 3582 */ 3583 3584 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3585 int flags) 3586 { 3587 return sock->ops->connect(sock, addr, addrlen, flags); 3588 } 3589 EXPORT_SYMBOL(kernel_connect); 3590 3591 /** 3592 * kernel_getsockname - get the address which the socket is bound (kernel space) 3593 * @sock: socket 3594 * @addr: address holder 3595 * 3596 * Fills the @addr pointer with the address which the socket is bound. 3597 * Returns 0 or an error code. 3598 */ 3599 3600 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3601 { 3602 return sock->ops->getname(sock, addr, 0); 3603 } 3604 EXPORT_SYMBOL(kernel_getsockname); 3605 3606 /** 3607 * kernel_getpeername - get the address which the socket is connected (kernel space) 3608 * @sock: socket 3609 * @addr: address holder 3610 * 3611 * Fills the @addr pointer with the address which the socket is connected. 3612 * Returns 0 or an error code. 3613 */ 3614 3615 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3616 { 3617 return sock->ops->getname(sock, addr, 1); 3618 } 3619 EXPORT_SYMBOL(kernel_getpeername); 3620 3621 /** 3622 * kernel_sendpage - send a &page through a socket (kernel space) 3623 * @sock: socket 3624 * @page: page 3625 * @offset: page offset 3626 * @size: total size in bytes 3627 * @flags: flags (MSG_DONTWAIT, ...) 3628 * 3629 * Returns the total amount sent in bytes or an error. 3630 */ 3631 3632 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3633 size_t size, int flags) 3634 { 3635 if (sock->ops->sendpage) { 3636 /* Warn in case the improper page to zero-copy send */ 3637 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3638 return sock->ops->sendpage(sock, page, offset, size, flags); 3639 } 3640 return sock_no_sendpage(sock, page, offset, size, flags); 3641 } 3642 EXPORT_SYMBOL(kernel_sendpage); 3643 3644 /** 3645 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3646 * @sk: sock 3647 * @page: page 3648 * @offset: page offset 3649 * @size: total size in bytes 3650 * @flags: flags (MSG_DONTWAIT, ...) 3651 * 3652 * Returns the total amount sent in bytes or an error. 3653 * Caller must hold @sk. 3654 */ 3655 3656 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3657 size_t size, int flags) 3658 { 3659 struct socket *sock = sk->sk_socket; 3660 3661 if (sock->ops->sendpage_locked) 3662 return sock->ops->sendpage_locked(sk, page, offset, size, 3663 flags); 3664 3665 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3666 } 3667 EXPORT_SYMBOL(kernel_sendpage_locked); 3668 3669 /** 3670 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3671 * @sock: socket 3672 * @how: connection part 3673 * 3674 * Returns 0 or an error. 3675 */ 3676 3677 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3678 { 3679 return sock->ops->shutdown(sock, how); 3680 } 3681 EXPORT_SYMBOL(kernel_sock_shutdown); 3682 3683 /** 3684 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3685 * @sk: socket 3686 * 3687 * This routine returns the IP overhead imposed by a socket i.e. 3688 * the length of the underlying IP header, depending on whether 3689 * this is an IPv4 or IPv6 socket and the length from IP options turned 3690 * on at the socket. Assumes that the caller has a lock on the socket. 3691 */ 3692 3693 u32 kernel_sock_ip_overhead(struct sock *sk) 3694 { 3695 struct inet_sock *inet; 3696 struct ip_options_rcu *opt; 3697 u32 overhead = 0; 3698 #if IS_ENABLED(CONFIG_IPV6) 3699 struct ipv6_pinfo *np; 3700 struct ipv6_txoptions *optv6 = NULL; 3701 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3702 3703 if (!sk) 3704 return overhead; 3705 3706 switch (sk->sk_family) { 3707 case AF_INET: 3708 inet = inet_sk(sk); 3709 overhead += sizeof(struct iphdr); 3710 opt = rcu_dereference_protected(inet->inet_opt, 3711 sock_owned_by_user(sk)); 3712 if (opt) 3713 overhead += opt->opt.optlen; 3714 return overhead; 3715 #if IS_ENABLED(CONFIG_IPV6) 3716 case AF_INET6: 3717 np = inet6_sk(sk); 3718 overhead += sizeof(struct ipv6hdr); 3719 if (np) 3720 optv6 = rcu_dereference_protected(np->opt, 3721 sock_owned_by_user(sk)); 3722 if (optv6) 3723 overhead += (optv6->opt_flen + optv6->opt_nflen); 3724 return overhead; 3725 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3726 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3727 return overhead; 3728 } 3729 } 3730 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3731