1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 struct socket_wq *wq; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 249 if (!wq) { 250 kmem_cache_free(sock_inode_cachep, ei); 251 return NULL; 252 } 253 init_waitqueue_head(&wq->wait); 254 wq->fasync_list = NULL; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static int init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD), 292 init_once); 293 if (sock_inode_cachep == NULL) 294 return -ENOMEM; 295 return 0; 296 } 297 298 static const struct super_operations sockfs_ops = { 299 .alloc_inode = sock_alloc_inode, 300 .destroy_inode = sock_destroy_inode, 301 .statfs = simple_statfs, 302 }; 303 304 /* 305 * sockfs_dname() is called from d_path(). 306 */ 307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 308 { 309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 310 dentry->d_inode->i_ino); 311 } 312 313 static const struct dentry_operations sockfs_dentry_operations = { 314 .d_dname = sockfs_dname, 315 }; 316 317 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 318 int flags, const char *dev_name, void *data) 319 { 320 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 321 &sockfs_dentry_operations, SOCKFS_MAGIC); 322 } 323 324 static struct vfsmount *sock_mnt __read_mostly; 325 326 static struct file_system_type sock_fs_type = { 327 .name = "sockfs", 328 .mount = sockfs_mount, 329 .kill_sb = kill_anon_super, 330 }; 331 332 /* 333 * Obtains the first available file descriptor and sets it up for use. 334 * 335 * These functions create file structures and maps them to fd space 336 * of the current process. On success it returns file descriptor 337 * and file struct implicitly stored in sock->file. 338 * Note that another thread may close file descriptor before we return 339 * from this function. We use the fact that now we do not refer 340 * to socket after mapping. If one day we will need it, this 341 * function will increment ref. count on file by 1. 342 * 343 * In any case returned fd MAY BE not valid! 344 * This race condition is unavoidable 345 * with shared fd spaces, we cannot solve it inside kernel, 346 * but we take care of internal coherence yet. 347 */ 348 349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 350 { 351 struct qstr name = { .name = "" }; 352 struct path path; 353 struct file *file; 354 int fd; 355 356 fd = get_unused_fd_flags(flags); 357 if (unlikely(fd < 0)) 358 return fd; 359 360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 361 if (unlikely(!path.dentry)) { 362 put_unused_fd(fd); 363 return -ENOMEM; 364 } 365 path.mnt = mntget(sock_mnt); 366 367 d_instantiate(path.dentry, SOCK_INODE(sock)); 368 SOCK_INODE(sock)->i_fop = &socket_file_ops; 369 370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 371 &socket_file_ops); 372 if (unlikely(!file)) { 373 /* drop dentry, keep inode */ 374 ihold(path.dentry->d_inode); 375 path_put(&path); 376 put_unused_fd(fd); 377 return -ENFILE; 378 } 379 380 sock->file = file; 381 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 382 file->f_pos = 0; 383 file->private_data = sock; 384 385 *f = file; 386 return fd; 387 } 388 389 int sock_map_fd(struct socket *sock, int flags) 390 { 391 struct file *newfile; 392 int fd = sock_alloc_file(sock, &newfile, flags); 393 394 if (likely(fd >= 0)) 395 fd_install(fd, newfile); 396 397 return fd; 398 } 399 EXPORT_SYMBOL(sock_map_fd); 400 401 static struct socket *sock_from_file(struct file *file, int *err) 402 { 403 if (file->f_op == &socket_file_ops) 404 return file->private_data; /* set in sock_map_fd */ 405 406 *err = -ENOTSOCK; 407 return NULL; 408 } 409 410 /** 411 * sockfd_lookup - Go from a file number to its socket slot 412 * @fd: file handle 413 * @err: pointer to an error code return 414 * 415 * The file handle passed in is locked and the socket it is bound 416 * too is returned. If an error occurs the err pointer is overwritten 417 * with a negative errno code and NULL is returned. The function checks 418 * for both invalid handles and passing a handle which is not a socket. 419 * 420 * On a success the socket object pointer is returned. 421 */ 422 423 struct socket *sockfd_lookup(int fd, int *err) 424 { 425 struct file *file; 426 struct socket *sock; 427 428 file = fget(fd); 429 if (!file) { 430 *err = -EBADF; 431 return NULL; 432 } 433 434 sock = sock_from_file(file, err); 435 if (!sock) 436 fput(file); 437 return sock; 438 } 439 EXPORT_SYMBOL(sockfd_lookup); 440 441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 442 { 443 struct file *file; 444 struct socket *sock; 445 446 *err = -EBADF; 447 file = fget_light(fd, fput_needed); 448 if (file) { 449 sock = sock_from_file(file, err); 450 if (sock) 451 return sock; 452 fput_light(file, *fput_needed); 453 } 454 return NULL; 455 } 456 457 /** 458 * sock_alloc - allocate a socket 459 * 460 * Allocate a new inode and socket object. The two are bound together 461 * and initialised. The socket is then returned. If we are out of inodes 462 * NULL is returned. 463 */ 464 465 static struct socket *sock_alloc(void) 466 { 467 struct inode *inode; 468 struct socket *sock; 469 470 inode = new_inode(sock_mnt->mnt_sb); 471 if (!inode) 472 return NULL; 473 474 sock = SOCKET_I(inode); 475 476 kmemcheck_annotate_bitfield(sock, type); 477 inode->i_ino = get_next_ino(); 478 inode->i_mode = S_IFSOCK | S_IRWXUGO; 479 inode->i_uid = current_fsuid(); 480 inode->i_gid = current_fsgid(); 481 482 percpu_add(sockets_in_use, 1); 483 return sock; 484 } 485 486 /* 487 * In theory you can't get an open on this inode, but /proc provides 488 * a back door. Remember to keep it shut otherwise you'll let the 489 * creepy crawlies in. 490 */ 491 492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 493 { 494 return -ENXIO; 495 } 496 497 const struct file_operations bad_sock_fops = { 498 .owner = THIS_MODULE, 499 .open = sock_no_open, 500 .llseek = noop_llseek, 501 }; 502 503 /** 504 * sock_release - close a socket 505 * @sock: socket to close 506 * 507 * The socket is released from the protocol stack if it has a release 508 * callback, and the inode is then released if the socket is bound to 509 * an inode not a file. 510 */ 511 512 void sock_release(struct socket *sock) 513 { 514 if (sock->ops) { 515 struct module *owner = sock->ops->owner; 516 517 sock->ops->release(sock); 518 sock->ops = NULL; 519 module_put(owner); 520 } 521 522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 523 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 524 525 percpu_sub(sockets_in_use, 1); 526 if (!sock->file) { 527 iput(SOCK_INODE(sock)); 528 return; 529 } 530 sock->file = NULL; 531 } 532 EXPORT_SYMBOL(sock_release); 533 534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 535 { 536 *tx_flags = 0; 537 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 538 *tx_flags |= SKBTX_HW_TSTAMP; 539 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 540 *tx_flags |= SKBTX_SW_TSTAMP; 541 return 0; 542 } 543 EXPORT_SYMBOL(sock_tx_timestamp); 544 545 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 546 struct msghdr *msg, size_t size) 547 { 548 struct sock_iocb *si = kiocb_to_siocb(iocb); 549 550 sock_update_classid(sock->sk); 551 552 si->sock = sock; 553 si->scm = NULL; 554 si->msg = msg; 555 si->size = size; 556 557 return sock->ops->sendmsg(iocb, sock, msg, size); 558 } 559 560 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 561 struct msghdr *msg, size_t size) 562 { 563 int err = security_socket_sendmsg(sock, msg, size); 564 565 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 566 } 567 568 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 569 { 570 struct kiocb iocb; 571 struct sock_iocb siocb; 572 int ret; 573 574 init_sync_kiocb(&iocb, NULL); 575 iocb.private = &siocb; 576 ret = __sock_sendmsg(&iocb, sock, msg, size); 577 if (-EIOCBQUEUED == ret) 578 ret = wait_on_sync_kiocb(&iocb); 579 return ret; 580 } 581 EXPORT_SYMBOL(sock_sendmsg); 582 583 int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 584 { 585 struct kiocb iocb; 586 struct sock_iocb siocb; 587 int ret; 588 589 init_sync_kiocb(&iocb, NULL); 590 iocb.private = &siocb; 591 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 592 if (-EIOCBQUEUED == ret) 593 ret = wait_on_sync_kiocb(&iocb); 594 return ret; 595 } 596 597 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 598 struct kvec *vec, size_t num, size_t size) 599 { 600 mm_segment_t oldfs = get_fs(); 601 int result; 602 603 set_fs(KERNEL_DS); 604 /* 605 * the following is safe, since for compiler definitions of kvec and 606 * iovec are identical, yielding the same in-core layout and alignment 607 */ 608 msg->msg_iov = (struct iovec *)vec; 609 msg->msg_iovlen = num; 610 result = sock_sendmsg(sock, msg, size); 611 set_fs(oldfs); 612 return result; 613 } 614 EXPORT_SYMBOL(kernel_sendmsg); 615 616 static int ktime2ts(ktime_t kt, struct timespec *ts) 617 { 618 if (kt.tv64) { 619 *ts = ktime_to_timespec(kt); 620 return 1; 621 } else { 622 return 0; 623 } 624 } 625 626 /* 627 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 628 */ 629 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 630 struct sk_buff *skb) 631 { 632 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 633 struct timespec ts[3]; 634 int empty = 1; 635 struct skb_shared_hwtstamps *shhwtstamps = 636 skb_hwtstamps(skb); 637 638 /* Race occurred between timestamp enabling and packet 639 receiving. Fill in the current time for now. */ 640 if (need_software_tstamp && skb->tstamp.tv64 == 0) 641 __net_timestamp(skb); 642 643 if (need_software_tstamp) { 644 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 645 struct timeval tv; 646 skb_get_timestamp(skb, &tv); 647 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 648 sizeof(tv), &tv); 649 } else { 650 skb_get_timestampns(skb, &ts[0]); 651 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 652 sizeof(ts[0]), &ts[0]); 653 } 654 } 655 656 657 memset(ts, 0, sizeof(ts)); 658 if (skb->tstamp.tv64 && 659 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 660 skb_get_timestampns(skb, ts + 0); 661 empty = 0; 662 } 663 if (shhwtstamps) { 664 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 665 ktime2ts(shhwtstamps->syststamp, ts + 1)) 666 empty = 0; 667 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 668 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 669 empty = 0; 670 } 671 if (!empty) 672 put_cmsg(msg, SOL_SOCKET, 673 SCM_TIMESTAMPING, sizeof(ts), &ts); 674 } 675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 676 677 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 678 struct sk_buff *skb) 679 { 680 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 681 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 682 sizeof(__u32), &skb->dropcount); 683 } 684 685 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 686 struct sk_buff *skb) 687 { 688 sock_recv_timestamp(msg, sk, skb); 689 sock_recv_drops(msg, sk, skb); 690 } 691 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 692 693 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 694 struct msghdr *msg, size_t size, int flags) 695 { 696 struct sock_iocb *si = kiocb_to_siocb(iocb); 697 698 sock_update_classid(sock->sk); 699 700 si->sock = sock; 701 si->scm = NULL; 702 si->msg = msg; 703 si->size = size; 704 si->flags = flags; 705 706 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 707 } 708 709 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 710 struct msghdr *msg, size_t size, int flags) 711 { 712 int err = security_socket_recvmsg(sock, msg, size, flags); 713 714 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 715 } 716 717 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 718 size_t size, int flags) 719 { 720 struct kiocb iocb; 721 struct sock_iocb siocb; 722 int ret; 723 724 init_sync_kiocb(&iocb, NULL); 725 iocb.private = &siocb; 726 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 727 if (-EIOCBQUEUED == ret) 728 ret = wait_on_sync_kiocb(&iocb); 729 return ret; 730 } 731 EXPORT_SYMBOL(sock_recvmsg); 732 733 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 734 size_t size, int flags) 735 { 736 struct kiocb iocb; 737 struct sock_iocb siocb; 738 int ret; 739 740 init_sync_kiocb(&iocb, NULL); 741 iocb.private = &siocb; 742 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 743 if (-EIOCBQUEUED == ret) 744 ret = wait_on_sync_kiocb(&iocb); 745 return ret; 746 } 747 748 /** 749 * kernel_recvmsg - Receive a message from a socket (kernel space) 750 * @sock: The socket to receive the message from 751 * @msg: Received message 752 * @vec: Input s/g array for message data 753 * @num: Size of input s/g array 754 * @size: Number of bytes to read 755 * @flags: Message flags (MSG_DONTWAIT, etc...) 756 * 757 * On return the msg structure contains the scatter/gather array passed in the 758 * vec argument. The array is modified so that it consists of the unfilled 759 * portion of the original array. 760 * 761 * The returned value is the total number of bytes received, or an error. 762 */ 763 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 764 struct kvec *vec, size_t num, size_t size, int flags) 765 { 766 mm_segment_t oldfs = get_fs(); 767 int result; 768 769 set_fs(KERNEL_DS); 770 /* 771 * the following is safe, since for compiler definitions of kvec and 772 * iovec are identical, yielding the same in-core layout and alignment 773 */ 774 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 775 result = sock_recvmsg(sock, msg, size, flags); 776 set_fs(oldfs); 777 return result; 778 } 779 EXPORT_SYMBOL(kernel_recvmsg); 780 781 static void sock_aio_dtor(struct kiocb *iocb) 782 { 783 kfree(iocb->private); 784 } 785 786 static ssize_t sock_sendpage(struct file *file, struct page *page, 787 int offset, size_t size, loff_t *ppos, int more) 788 { 789 struct socket *sock; 790 int flags; 791 792 sock = file->private_data; 793 794 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 795 if (more) 796 flags |= MSG_MORE; 797 798 return kernel_sendpage(sock, page, offset, size, flags); 799 } 800 801 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 802 struct pipe_inode_info *pipe, size_t len, 803 unsigned int flags) 804 { 805 struct socket *sock = file->private_data; 806 807 if (unlikely(!sock->ops->splice_read)) 808 return -EINVAL; 809 810 sock_update_classid(sock->sk); 811 812 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 813 } 814 815 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 816 struct sock_iocb *siocb) 817 { 818 if (!is_sync_kiocb(iocb)) { 819 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 820 if (!siocb) 821 return NULL; 822 iocb->ki_dtor = sock_aio_dtor; 823 } 824 825 siocb->kiocb = iocb; 826 iocb->private = siocb; 827 return siocb; 828 } 829 830 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 831 struct file *file, const struct iovec *iov, 832 unsigned long nr_segs) 833 { 834 struct socket *sock = file->private_data; 835 size_t size = 0; 836 int i; 837 838 for (i = 0; i < nr_segs; i++) 839 size += iov[i].iov_len; 840 841 msg->msg_name = NULL; 842 msg->msg_namelen = 0; 843 msg->msg_control = NULL; 844 msg->msg_controllen = 0; 845 msg->msg_iov = (struct iovec *)iov; 846 msg->msg_iovlen = nr_segs; 847 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 848 849 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 850 } 851 852 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 853 unsigned long nr_segs, loff_t pos) 854 { 855 struct sock_iocb siocb, *x; 856 857 if (pos != 0) 858 return -ESPIPE; 859 860 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 861 return 0; 862 863 864 x = alloc_sock_iocb(iocb, &siocb); 865 if (!x) 866 return -ENOMEM; 867 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 868 } 869 870 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 871 struct file *file, const struct iovec *iov, 872 unsigned long nr_segs) 873 { 874 struct socket *sock = file->private_data; 875 size_t size = 0; 876 int i; 877 878 for (i = 0; i < nr_segs; i++) 879 size += iov[i].iov_len; 880 881 msg->msg_name = NULL; 882 msg->msg_namelen = 0; 883 msg->msg_control = NULL; 884 msg->msg_controllen = 0; 885 msg->msg_iov = (struct iovec *)iov; 886 msg->msg_iovlen = nr_segs; 887 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 888 if (sock->type == SOCK_SEQPACKET) 889 msg->msg_flags |= MSG_EOR; 890 891 return __sock_sendmsg(iocb, sock, msg, size); 892 } 893 894 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 895 unsigned long nr_segs, loff_t pos) 896 { 897 struct sock_iocb siocb, *x; 898 899 if (pos != 0) 900 return -ESPIPE; 901 902 x = alloc_sock_iocb(iocb, &siocb); 903 if (!x) 904 return -ENOMEM; 905 906 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 907 } 908 909 /* 910 * Atomic setting of ioctl hooks to avoid race 911 * with module unload. 912 */ 913 914 static DEFINE_MUTEX(br_ioctl_mutex); 915 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 916 917 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 918 { 919 mutex_lock(&br_ioctl_mutex); 920 br_ioctl_hook = hook; 921 mutex_unlock(&br_ioctl_mutex); 922 } 923 EXPORT_SYMBOL(brioctl_set); 924 925 static DEFINE_MUTEX(vlan_ioctl_mutex); 926 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 927 928 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 929 { 930 mutex_lock(&vlan_ioctl_mutex); 931 vlan_ioctl_hook = hook; 932 mutex_unlock(&vlan_ioctl_mutex); 933 } 934 EXPORT_SYMBOL(vlan_ioctl_set); 935 936 static DEFINE_MUTEX(dlci_ioctl_mutex); 937 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 938 939 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 940 { 941 mutex_lock(&dlci_ioctl_mutex); 942 dlci_ioctl_hook = hook; 943 mutex_unlock(&dlci_ioctl_mutex); 944 } 945 EXPORT_SYMBOL(dlci_ioctl_set); 946 947 static long sock_do_ioctl(struct net *net, struct socket *sock, 948 unsigned int cmd, unsigned long arg) 949 { 950 int err; 951 void __user *argp = (void __user *)arg; 952 953 err = sock->ops->ioctl(sock, cmd, arg); 954 955 /* 956 * If this ioctl is unknown try to hand it down 957 * to the NIC driver. 958 */ 959 if (err == -ENOIOCTLCMD) 960 err = dev_ioctl(net, cmd, argp); 961 962 return err; 963 } 964 965 /* 966 * With an ioctl, arg may well be a user mode pointer, but we don't know 967 * what to do with it - that's up to the protocol still. 968 */ 969 970 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 971 { 972 struct socket *sock; 973 struct sock *sk; 974 void __user *argp = (void __user *)arg; 975 int pid, err; 976 struct net *net; 977 978 sock = file->private_data; 979 sk = sock->sk; 980 net = sock_net(sk); 981 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 982 err = dev_ioctl(net, cmd, argp); 983 } else 984 #ifdef CONFIG_WEXT_CORE 985 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 986 err = dev_ioctl(net, cmd, argp); 987 } else 988 #endif 989 switch (cmd) { 990 case FIOSETOWN: 991 case SIOCSPGRP: 992 err = -EFAULT; 993 if (get_user(pid, (int __user *)argp)) 994 break; 995 err = f_setown(sock->file, pid, 1); 996 break; 997 case FIOGETOWN: 998 case SIOCGPGRP: 999 err = put_user(f_getown(sock->file), 1000 (int __user *)argp); 1001 break; 1002 case SIOCGIFBR: 1003 case SIOCSIFBR: 1004 case SIOCBRADDBR: 1005 case SIOCBRDELBR: 1006 err = -ENOPKG; 1007 if (!br_ioctl_hook) 1008 request_module("bridge"); 1009 1010 mutex_lock(&br_ioctl_mutex); 1011 if (br_ioctl_hook) 1012 err = br_ioctl_hook(net, cmd, argp); 1013 mutex_unlock(&br_ioctl_mutex); 1014 break; 1015 case SIOCGIFVLAN: 1016 case SIOCSIFVLAN: 1017 err = -ENOPKG; 1018 if (!vlan_ioctl_hook) 1019 request_module("8021q"); 1020 1021 mutex_lock(&vlan_ioctl_mutex); 1022 if (vlan_ioctl_hook) 1023 err = vlan_ioctl_hook(net, argp); 1024 mutex_unlock(&vlan_ioctl_mutex); 1025 break; 1026 case SIOCADDDLCI: 1027 case SIOCDELDLCI: 1028 err = -ENOPKG; 1029 if (!dlci_ioctl_hook) 1030 request_module("dlci"); 1031 1032 mutex_lock(&dlci_ioctl_mutex); 1033 if (dlci_ioctl_hook) 1034 err = dlci_ioctl_hook(cmd, argp); 1035 mutex_unlock(&dlci_ioctl_mutex); 1036 break; 1037 default: 1038 err = sock_do_ioctl(net, sock, cmd, arg); 1039 break; 1040 } 1041 return err; 1042 } 1043 1044 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1045 { 1046 int err; 1047 struct socket *sock = NULL; 1048 1049 err = security_socket_create(family, type, protocol, 1); 1050 if (err) 1051 goto out; 1052 1053 sock = sock_alloc(); 1054 if (!sock) { 1055 err = -ENOMEM; 1056 goto out; 1057 } 1058 1059 sock->type = type; 1060 err = security_socket_post_create(sock, family, type, protocol, 1); 1061 if (err) 1062 goto out_release; 1063 1064 out: 1065 *res = sock; 1066 return err; 1067 out_release: 1068 sock_release(sock); 1069 sock = NULL; 1070 goto out; 1071 } 1072 EXPORT_SYMBOL(sock_create_lite); 1073 1074 /* No kernel lock held - perfect */ 1075 static unsigned int sock_poll(struct file *file, poll_table *wait) 1076 { 1077 struct socket *sock; 1078 1079 /* 1080 * We can't return errors to poll, so it's either yes or no. 1081 */ 1082 sock = file->private_data; 1083 return sock->ops->poll(file, sock, wait); 1084 } 1085 1086 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1087 { 1088 struct socket *sock = file->private_data; 1089 1090 return sock->ops->mmap(file, sock, vma); 1091 } 1092 1093 static int sock_close(struct inode *inode, struct file *filp) 1094 { 1095 /* 1096 * It was possible the inode is NULL we were 1097 * closing an unfinished socket. 1098 */ 1099 1100 if (!inode) { 1101 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1102 return 0; 1103 } 1104 sock_release(SOCKET_I(inode)); 1105 return 0; 1106 } 1107 1108 /* 1109 * Update the socket async list 1110 * 1111 * Fasync_list locking strategy. 1112 * 1113 * 1. fasync_list is modified only under process context socket lock 1114 * i.e. under semaphore. 1115 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1116 * or under socket lock 1117 */ 1118 1119 static int sock_fasync(int fd, struct file *filp, int on) 1120 { 1121 struct socket *sock = filp->private_data; 1122 struct sock *sk = sock->sk; 1123 struct socket_wq *wq; 1124 1125 if (sk == NULL) 1126 return -EINVAL; 1127 1128 lock_sock(sk); 1129 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1130 fasync_helper(fd, filp, on, &wq->fasync_list); 1131 1132 if (!wq->fasync_list) 1133 sock_reset_flag(sk, SOCK_FASYNC); 1134 else 1135 sock_set_flag(sk, SOCK_FASYNC); 1136 1137 release_sock(sk); 1138 return 0; 1139 } 1140 1141 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1142 1143 int sock_wake_async(struct socket *sock, int how, int band) 1144 { 1145 struct socket_wq *wq; 1146 1147 if (!sock) 1148 return -1; 1149 rcu_read_lock(); 1150 wq = rcu_dereference(sock->wq); 1151 if (!wq || !wq->fasync_list) { 1152 rcu_read_unlock(); 1153 return -1; 1154 } 1155 switch (how) { 1156 case SOCK_WAKE_WAITD: 1157 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1158 break; 1159 goto call_kill; 1160 case SOCK_WAKE_SPACE: 1161 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1162 break; 1163 /* fall through */ 1164 case SOCK_WAKE_IO: 1165 call_kill: 1166 kill_fasync(&wq->fasync_list, SIGIO, band); 1167 break; 1168 case SOCK_WAKE_URG: 1169 kill_fasync(&wq->fasync_list, SIGURG, band); 1170 } 1171 rcu_read_unlock(); 1172 return 0; 1173 } 1174 EXPORT_SYMBOL(sock_wake_async); 1175 1176 int __sock_create(struct net *net, int family, int type, int protocol, 1177 struct socket **res, int kern) 1178 { 1179 int err; 1180 struct socket *sock; 1181 const struct net_proto_family *pf; 1182 1183 /* 1184 * Check protocol is in range 1185 */ 1186 if (family < 0 || family >= NPROTO) 1187 return -EAFNOSUPPORT; 1188 if (type < 0 || type >= SOCK_MAX) 1189 return -EINVAL; 1190 1191 /* Compatibility. 1192 1193 This uglymoron is moved from INET layer to here to avoid 1194 deadlock in module load. 1195 */ 1196 if (family == PF_INET && type == SOCK_PACKET) { 1197 static int warned; 1198 if (!warned) { 1199 warned = 1; 1200 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1201 current->comm); 1202 } 1203 family = PF_PACKET; 1204 } 1205 1206 err = security_socket_create(family, type, protocol, kern); 1207 if (err) 1208 return err; 1209 1210 /* 1211 * Allocate the socket and allow the family to set things up. if 1212 * the protocol is 0, the family is instructed to select an appropriate 1213 * default. 1214 */ 1215 sock = sock_alloc(); 1216 if (!sock) { 1217 if (net_ratelimit()) 1218 printk(KERN_WARNING "socket: no more sockets\n"); 1219 return -ENFILE; /* Not exactly a match, but its the 1220 closest posix thing */ 1221 } 1222 1223 sock->type = type; 1224 1225 #ifdef CONFIG_MODULES 1226 /* Attempt to load a protocol module if the find failed. 1227 * 1228 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1229 * requested real, full-featured networking support upon configuration. 1230 * Otherwise module support will break! 1231 */ 1232 if (rcu_access_pointer(net_families[family]) == NULL) 1233 request_module("net-pf-%d", family); 1234 #endif 1235 1236 rcu_read_lock(); 1237 pf = rcu_dereference(net_families[family]); 1238 err = -EAFNOSUPPORT; 1239 if (!pf) 1240 goto out_release; 1241 1242 /* 1243 * We will call the ->create function, that possibly is in a loadable 1244 * module, so we have to bump that loadable module refcnt first. 1245 */ 1246 if (!try_module_get(pf->owner)) 1247 goto out_release; 1248 1249 /* Now protected by module ref count */ 1250 rcu_read_unlock(); 1251 1252 err = pf->create(net, sock, protocol, kern); 1253 if (err < 0) 1254 goto out_module_put; 1255 1256 /* 1257 * Now to bump the refcnt of the [loadable] module that owns this 1258 * socket at sock_release time we decrement its refcnt. 1259 */ 1260 if (!try_module_get(sock->ops->owner)) 1261 goto out_module_busy; 1262 1263 /* 1264 * Now that we're done with the ->create function, the [loadable] 1265 * module can have its refcnt decremented 1266 */ 1267 module_put(pf->owner); 1268 err = security_socket_post_create(sock, family, type, protocol, kern); 1269 if (err) 1270 goto out_sock_release; 1271 *res = sock; 1272 1273 return 0; 1274 1275 out_module_busy: 1276 err = -EAFNOSUPPORT; 1277 out_module_put: 1278 sock->ops = NULL; 1279 module_put(pf->owner); 1280 out_sock_release: 1281 sock_release(sock); 1282 return err; 1283 1284 out_release: 1285 rcu_read_unlock(); 1286 goto out_sock_release; 1287 } 1288 EXPORT_SYMBOL(__sock_create); 1289 1290 int sock_create(int family, int type, int protocol, struct socket **res) 1291 { 1292 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1293 } 1294 EXPORT_SYMBOL(sock_create); 1295 1296 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1297 { 1298 return __sock_create(&init_net, family, type, protocol, res, 1); 1299 } 1300 EXPORT_SYMBOL(sock_create_kern); 1301 1302 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1303 { 1304 int retval; 1305 struct socket *sock; 1306 int flags; 1307 1308 /* Check the SOCK_* constants for consistency. */ 1309 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1310 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1311 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1312 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1313 1314 flags = type & ~SOCK_TYPE_MASK; 1315 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1316 return -EINVAL; 1317 type &= SOCK_TYPE_MASK; 1318 1319 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1320 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1321 1322 retval = sock_create(family, type, protocol, &sock); 1323 if (retval < 0) 1324 goto out; 1325 1326 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1327 if (retval < 0) 1328 goto out_release; 1329 1330 out: 1331 /* It may be already another descriptor 8) Not kernel problem. */ 1332 return retval; 1333 1334 out_release: 1335 sock_release(sock); 1336 return retval; 1337 } 1338 1339 /* 1340 * Create a pair of connected sockets. 1341 */ 1342 1343 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1344 int __user *, usockvec) 1345 { 1346 struct socket *sock1, *sock2; 1347 int fd1, fd2, err; 1348 struct file *newfile1, *newfile2; 1349 int flags; 1350 1351 flags = type & ~SOCK_TYPE_MASK; 1352 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1353 return -EINVAL; 1354 type &= SOCK_TYPE_MASK; 1355 1356 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1357 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1358 1359 /* 1360 * Obtain the first socket and check if the underlying protocol 1361 * supports the socketpair call. 1362 */ 1363 1364 err = sock_create(family, type, protocol, &sock1); 1365 if (err < 0) 1366 goto out; 1367 1368 err = sock_create(family, type, protocol, &sock2); 1369 if (err < 0) 1370 goto out_release_1; 1371 1372 err = sock1->ops->socketpair(sock1, sock2); 1373 if (err < 0) 1374 goto out_release_both; 1375 1376 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1377 if (unlikely(fd1 < 0)) { 1378 err = fd1; 1379 goto out_release_both; 1380 } 1381 1382 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1383 if (unlikely(fd2 < 0)) { 1384 err = fd2; 1385 fput(newfile1); 1386 put_unused_fd(fd1); 1387 sock_release(sock2); 1388 goto out; 1389 } 1390 1391 audit_fd_pair(fd1, fd2); 1392 fd_install(fd1, newfile1); 1393 fd_install(fd2, newfile2); 1394 /* fd1 and fd2 may be already another descriptors. 1395 * Not kernel problem. 1396 */ 1397 1398 err = put_user(fd1, &usockvec[0]); 1399 if (!err) 1400 err = put_user(fd2, &usockvec[1]); 1401 if (!err) 1402 return 0; 1403 1404 sys_close(fd2); 1405 sys_close(fd1); 1406 return err; 1407 1408 out_release_both: 1409 sock_release(sock2); 1410 out_release_1: 1411 sock_release(sock1); 1412 out: 1413 return err; 1414 } 1415 1416 /* 1417 * Bind a name to a socket. Nothing much to do here since it's 1418 * the protocol's responsibility to handle the local address. 1419 * 1420 * We move the socket address to kernel space before we call 1421 * the protocol layer (having also checked the address is ok). 1422 */ 1423 1424 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1425 { 1426 struct socket *sock; 1427 struct sockaddr_storage address; 1428 int err, fput_needed; 1429 1430 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1431 if (sock) { 1432 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1433 if (err >= 0) { 1434 err = security_socket_bind(sock, 1435 (struct sockaddr *)&address, 1436 addrlen); 1437 if (!err) 1438 err = sock->ops->bind(sock, 1439 (struct sockaddr *) 1440 &address, addrlen); 1441 } 1442 fput_light(sock->file, fput_needed); 1443 } 1444 return err; 1445 } 1446 1447 /* 1448 * Perform a listen. Basically, we allow the protocol to do anything 1449 * necessary for a listen, and if that works, we mark the socket as 1450 * ready for listening. 1451 */ 1452 1453 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1454 { 1455 struct socket *sock; 1456 int err, fput_needed; 1457 int somaxconn; 1458 1459 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1460 if (sock) { 1461 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1462 if ((unsigned)backlog > somaxconn) 1463 backlog = somaxconn; 1464 1465 err = security_socket_listen(sock, backlog); 1466 if (!err) 1467 err = sock->ops->listen(sock, backlog); 1468 1469 fput_light(sock->file, fput_needed); 1470 } 1471 return err; 1472 } 1473 1474 /* 1475 * For accept, we attempt to create a new socket, set up the link 1476 * with the client, wake up the client, then return the new 1477 * connected fd. We collect the address of the connector in kernel 1478 * space and move it to user at the very end. This is unclean because 1479 * we open the socket then return an error. 1480 * 1481 * 1003.1g adds the ability to recvmsg() to query connection pending 1482 * status to recvmsg. We need to add that support in a way thats 1483 * clean when we restucture accept also. 1484 */ 1485 1486 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1487 int __user *, upeer_addrlen, int, flags) 1488 { 1489 struct socket *sock, *newsock; 1490 struct file *newfile; 1491 int err, len, newfd, fput_needed; 1492 struct sockaddr_storage address; 1493 1494 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1495 return -EINVAL; 1496 1497 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1498 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1499 1500 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1501 if (!sock) 1502 goto out; 1503 1504 err = -ENFILE; 1505 newsock = sock_alloc(); 1506 if (!newsock) 1507 goto out_put; 1508 1509 newsock->type = sock->type; 1510 newsock->ops = sock->ops; 1511 1512 /* 1513 * We don't need try_module_get here, as the listening socket (sock) 1514 * has the protocol module (sock->ops->owner) held. 1515 */ 1516 __module_get(newsock->ops->owner); 1517 1518 newfd = sock_alloc_file(newsock, &newfile, flags); 1519 if (unlikely(newfd < 0)) { 1520 err = newfd; 1521 sock_release(newsock); 1522 goto out_put; 1523 } 1524 1525 err = security_socket_accept(sock, newsock); 1526 if (err) 1527 goto out_fd; 1528 1529 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1530 if (err < 0) 1531 goto out_fd; 1532 1533 if (upeer_sockaddr) { 1534 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1535 &len, 2) < 0) { 1536 err = -ECONNABORTED; 1537 goto out_fd; 1538 } 1539 err = move_addr_to_user((struct sockaddr *)&address, 1540 len, upeer_sockaddr, upeer_addrlen); 1541 if (err < 0) 1542 goto out_fd; 1543 } 1544 1545 /* File flags are not inherited via accept() unlike another OSes. */ 1546 1547 fd_install(newfd, newfile); 1548 err = newfd; 1549 1550 out_put: 1551 fput_light(sock->file, fput_needed); 1552 out: 1553 return err; 1554 out_fd: 1555 fput(newfile); 1556 put_unused_fd(newfd); 1557 goto out_put; 1558 } 1559 1560 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1561 int __user *, upeer_addrlen) 1562 { 1563 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1564 } 1565 1566 /* 1567 * Attempt to connect to a socket with the server address. The address 1568 * is in user space so we verify it is OK and move it to kernel space. 1569 * 1570 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1571 * break bindings 1572 * 1573 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1574 * other SEQPACKET protocols that take time to connect() as it doesn't 1575 * include the -EINPROGRESS status for such sockets. 1576 */ 1577 1578 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1579 int, addrlen) 1580 { 1581 struct socket *sock; 1582 struct sockaddr_storage address; 1583 int err, fput_needed; 1584 1585 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1586 if (!sock) 1587 goto out; 1588 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1589 if (err < 0) 1590 goto out_put; 1591 1592 err = 1593 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1594 if (err) 1595 goto out_put; 1596 1597 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1598 sock->file->f_flags); 1599 out_put: 1600 fput_light(sock->file, fput_needed); 1601 out: 1602 return err; 1603 } 1604 1605 /* 1606 * Get the local address ('name') of a socket object. Move the obtained 1607 * name to user space. 1608 */ 1609 1610 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1611 int __user *, usockaddr_len) 1612 { 1613 struct socket *sock; 1614 struct sockaddr_storage address; 1615 int len, err, fput_needed; 1616 1617 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1618 if (!sock) 1619 goto out; 1620 1621 err = security_socket_getsockname(sock); 1622 if (err) 1623 goto out_put; 1624 1625 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1626 if (err) 1627 goto out_put; 1628 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1629 1630 out_put: 1631 fput_light(sock->file, fput_needed); 1632 out: 1633 return err; 1634 } 1635 1636 /* 1637 * Get the remote address ('name') of a socket object. Move the obtained 1638 * name to user space. 1639 */ 1640 1641 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1642 int __user *, usockaddr_len) 1643 { 1644 struct socket *sock; 1645 struct sockaddr_storage address; 1646 int len, err, fput_needed; 1647 1648 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1649 if (sock != NULL) { 1650 err = security_socket_getpeername(sock); 1651 if (err) { 1652 fput_light(sock->file, fput_needed); 1653 return err; 1654 } 1655 1656 err = 1657 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1658 1); 1659 if (!err) 1660 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1661 usockaddr_len); 1662 fput_light(sock->file, fput_needed); 1663 } 1664 return err; 1665 } 1666 1667 /* 1668 * Send a datagram to a given address. We move the address into kernel 1669 * space and check the user space data area is readable before invoking 1670 * the protocol. 1671 */ 1672 1673 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1674 unsigned, flags, struct sockaddr __user *, addr, 1675 int, addr_len) 1676 { 1677 struct socket *sock; 1678 struct sockaddr_storage address; 1679 int err; 1680 struct msghdr msg; 1681 struct iovec iov; 1682 int fput_needed; 1683 1684 if (len > INT_MAX) 1685 len = INT_MAX; 1686 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1687 if (!sock) 1688 goto out; 1689 1690 iov.iov_base = buff; 1691 iov.iov_len = len; 1692 msg.msg_name = NULL; 1693 msg.msg_iov = &iov; 1694 msg.msg_iovlen = 1; 1695 msg.msg_control = NULL; 1696 msg.msg_controllen = 0; 1697 msg.msg_namelen = 0; 1698 if (addr) { 1699 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1700 if (err < 0) 1701 goto out_put; 1702 msg.msg_name = (struct sockaddr *)&address; 1703 msg.msg_namelen = addr_len; 1704 } 1705 if (sock->file->f_flags & O_NONBLOCK) 1706 flags |= MSG_DONTWAIT; 1707 msg.msg_flags = flags; 1708 err = sock_sendmsg(sock, &msg, len); 1709 1710 out_put: 1711 fput_light(sock->file, fput_needed); 1712 out: 1713 return err; 1714 } 1715 1716 /* 1717 * Send a datagram down a socket. 1718 */ 1719 1720 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1721 unsigned, flags) 1722 { 1723 return sys_sendto(fd, buff, len, flags, NULL, 0); 1724 } 1725 1726 /* 1727 * Receive a frame from the socket and optionally record the address of the 1728 * sender. We verify the buffers are writable and if needed move the 1729 * sender address from kernel to user space. 1730 */ 1731 1732 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1733 unsigned, flags, struct sockaddr __user *, addr, 1734 int __user *, addr_len) 1735 { 1736 struct socket *sock; 1737 struct iovec iov; 1738 struct msghdr msg; 1739 struct sockaddr_storage address; 1740 int err, err2; 1741 int fput_needed; 1742 1743 if (size > INT_MAX) 1744 size = INT_MAX; 1745 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1746 if (!sock) 1747 goto out; 1748 1749 msg.msg_control = NULL; 1750 msg.msg_controllen = 0; 1751 msg.msg_iovlen = 1; 1752 msg.msg_iov = &iov; 1753 iov.iov_len = size; 1754 iov.iov_base = ubuf; 1755 msg.msg_name = (struct sockaddr *)&address; 1756 msg.msg_namelen = sizeof(address); 1757 if (sock->file->f_flags & O_NONBLOCK) 1758 flags |= MSG_DONTWAIT; 1759 err = sock_recvmsg(sock, &msg, size, flags); 1760 1761 if (err >= 0 && addr != NULL) { 1762 err2 = move_addr_to_user((struct sockaddr *)&address, 1763 msg.msg_namelen, addr, addr_len); 1764 if (err2 < 0) 1765 err = err2; 1766 } 1767 1768 fput_light(sock->file, fput_needed); 1769 out: 1770 return err; 1771 } 1772 1773 /* 1774 * Receive a datagram from a socket. 1775 */ 1776 1777 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1778 unsigned flags) 1779 { 1780 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1781 } 1782 1783 /* 1784 * Set a socket option. Because we don't know the option lengths we have 1785 * to pass the user mode parameter for the protocols to sort out. 1786 */ 1787 1788 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1789 char __user *, optval, int, optlen) 1790 { 1791 int err, fput_needed; 1792 struct socket *sock; 1793 1794 if (optlen < 0) 1795 return -EINVAL; 1796 1797 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1798 if (sock != NULL) { 1799 err = security_socket_setsockopt(sock, level, optname); 1800 if (err) 1801 goto out_put; 1802 1803 if (level == SOL_SOCKET) 1804 err = 1805 sock_setsockopt(sock, level, optname, optval, 1806 optlen); 1807 else 1808 err = 1809 sock->ops->setsockopt(sock, level, optname, optval, 1810 optlen); 1811 out_put: 1812 fput_light(sock->file, fput_needed); 1813 } 1814 return err; 1815 } 1816 1817 /* 1818 * Get a socket option. Because we don't know the option lengths we have 1819 * to pass a user mode parameter for the protocols to sort out. 1820 */ 1821 1822 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1823 char __user *, optval, int __user *, optlen) 1824 { 1825 int err, fput_needed; 1826 struct socket *sock; 1827 1828 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1829 if (sock != NULL) { 1830 err = security_socket_getsockopt(sock, level, optname); 1831 if (err) 1832 goto out_put; 1833 1834 if (level == SOL_SOCKET) 1835 err = 1836 sock_getsockopt(sock, level, optname, optval, 1837 optlen); 1838 else 1839 err = 1840 sock->ops->getsockopt(sock, level, optname, optval, 1841 optlen); 1842 out_put: 1843 fput_light(sock->file, fput_needed); 1844 } 1845 return err; 1846 } 1847 1848 /* 1849 * Shutdown a socket. 1850 */ 1851 1852 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1853 { 1854 int err, fput_needed; 1855 struct socket *sock; 1856 1857 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1858 if (sock != NULL) { 1859 err = security_socket_shutdown(sock, how); 1860 if (!err) 1861 err = sock->ops->shutdown(sock, how); 1862 fput_light(sock->file, fput_needed); 1863 } 1864 return err; 1865 } 1866 1867 /* A couple of helpful macros for getting the address of the 32/64 bit 1868 * fields which are the same type (int / unsigned) on our platforms. 1869 */ 1870 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1871 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1872 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1873 1874 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1875 struct msghdr *msg_sys, unsigned flags, int nosec) 1876 { 1877 struct compat_msghdr __user *msg_compat = 1878 (struct compat_msghdr __user *)msg; 1879 struct sockaddr_storage address; 1880 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1881 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1882 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1883 /* 20 is size of ipv6_pktinfo */ 1884 unsigned char *ctl_buf = ctl; 1885 int err, ctl_len, iov_size, total_len; 1886 1887 err = -EFAULT; 1888 if (MSG_CMSG_COMPAT & flags) { 1889 if (get_compat_msghdr(msg_sys, msg_compat)) 1890 return -EFAULT; 1891 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1892 return -EFAULT; 1893 1894 /* do not move before msg_sys is valid */ 1895 err = -EMSGSIZE; 1896 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1897 goto out; 1898 1899 /* Check whether to allocate the iovec area */ 1900 err = -ENOMEM; 1901 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1902 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1903 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1904 if (!iov) 1905 goto out; 1906 } 1907 1908 /* This will also move the address data into kernel space */ 1909 if (MSG_CMSG_COMPAT & flags) { 1910 err = verify_compat_iovec(msg_sys, iov, 1911 (struct sockaddr *)&address, 1912 VERIFY_READ); 1913 } else 1914 err = verify_iovec(msg_sys, iov, 1915 (struct sockaddr *)&address, 1916 VERIFY_READ); 1917 if (err < 0) 1918 goto out_freeiov; 1919 total_len = err; 1920 1921 err = -ENOBUFS; 1922 1923 if (msg_sys->msg_controllen > INT_MAX) 1924 goto out_freeiov; 1925 ctl_len = msg_sys->msg_controllen; 1926 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1927 err = 1928 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1929 sizeof(ctl)); 1930 if (err) 1931 goto out_freeiov; 1932 ctl_buf = msg_sys->msg_control; 1933 ctl_len = msg_sys->msg_controllen; 1934 } else if (ctl_len) { 1935 if (ctl_len > sizeof(ctl)) { 1936 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1937 if (ctl_buf == NULL) 1938 goto out_freeiov; 1939 } 1940 err = -EFAULT; 1941 /* 1942 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1943 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1944 * checking falls down on this. 1945 */ 1946 if (copy_from_user(ctl_buf, 1947 (void __user __force *)msg_sys->msg_control, 1948 ctl_len)) 1949 goto out_freectl; 1950 msg_sys->msg_control = ctl_buf; 1951 } 1952 msg_sys->msg_flags = flags; 1953 1954 if (sock->file->f_flags & O_NONBLOCK) 1955 msg_sys->msg_flags |= MSG_DONTWAIT; 1956 err = (nosec ? sock_sendmsg_nosec : sock_sendmsg)(sock, msg_sys, 1957 total_len); 1958 1959 out_freectl: 1960 if (ctl_buf != ctl) 1961 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1962 out_freeiov: 1963 if (iov != iovstack) 1964 sock_kfree_s(sock->sk, iov, iov_size); 1965 out: 1966 return err; 1967 } 1968 1969 /* 1970 * BSD sendmsg interface 1971 */ 1972 1973 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1974 { 1975 int fput_needed, err; 1976 struct msghdr msg_sys; 1977 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 1978 1979 if (!sock) 1980 goto out; 1981 1982 err = __sys_sendmsg(sock, msg, &msg_sys, flags, 0); 1983 1984 fput_light(sock->file, fput_needed); 1985 out: 1986 return err; 1987 } 1988 1989 /* 1990 * Linux sendmmsg interface 1991 */ 1992 1993 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 1994 unsigned int flags) 1995 { 1996 int fput_needed, err, datagrams; 1997 struct socket *sock; 1998 struct mmsghdr __user *entry; 1999 struct compat_mmsghdr __user *compat_entry; 2000 struct msghdr msg_sys; 2001 2002 datagrams = 0; 2003 2004 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2005 if (!sock) 2006 return err; 2007 2008 err = sock_error(sock->sk); 2009 if (err) 2010 goto out_put; 2011 2012 entry = mmsg; 2013 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2014 2015 while (datagrams < vlen) { 2016 /* 2017 * No need to ask LSM for more than the first datagram. 2018 */ 2019 if (MSG_CMSG_COMPAT & flags) { 2020 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2021 &msg_sys, flags, datagrams); 2022 if (err < 0) 2023 break; 2024 err = __put_user(err, &compat_entry->msg_len); 2025 ++compat_entry; 2026 } else { 2027 err = __sys_sendmsg(sock, (struct msghdr __user *)entry, 2028 &msg_sys, flags, datagrams); 2029 if (err < 0) 2030 break; 2031 err = put_user(err, &entry->msg_len); 2032 ++entry; 2033 } 2034 2035 if (err) 2036 break; 2037 ++datagrams; 2038 } 2039 2040 out_put: 2041 fput_light(sock->file, fput_needed); 2042 2043 if (err == 0) 2044 return datagrams; 2045 2046 if (datagrams != 0) { 2047 /* 2048 * We may send less entries than requested (vlen) if the 2049 * sock is non blocking... 2050 */ 2051 if (err != -EAGAIN) { 2052 /* 2053 * ... or if sendmsg returns an error after we 2054 * send some datagrams, where we record the 2055 * error to return on the next call or if the 2056 * app asks about it using getsockopt(SO_ERROR). 2057 */ 2058 sock->sk->sk_err = -err; 2059 } 2060 2061 return datagrams; 2062 } 2063 2064 return err; 2065 } 2066 2067 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2068 unsigned int, vlen, unsigned int, flags) 2069 { 2070 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2071 } 2072 2073 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2074 struct msghdr *msg_sys, unsigned flags, int nosec) 2075 { 2076 struct compat_msghdr __user *msg_compat = 2077 (struct compat_msghdr __user *)msg; 2078 struct iovec iovstack[UIO_FASTIOV]; 2079 struct iovec *iov = iovstack; 2080 unsigned long cmsg_ptr; 2081 int err, iov_size, total_len, len; 2082 2083 /* kernel mode address */ 2084 struct sockaddr_storage addr; 2085 2086 /* user mode address pointers */ 2087 struct sockaddr __user *uaddr; 2088 int __user *uaddr_len; 2089 2090 if (MSG_CMSG_COMPAT & flags) { 2091 if (get_compat_msghdr(msg_sys, msg_compat)) 2092 return -EFAULT; 2093 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2094 return -EFAULT; 2095 2096 err = -EMSGSIZE; 2097 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2098 goto out; 2099 2100 /* Check whether to allocate the iovec area */ 2101 err = -ENOMEM; 2102 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 2103 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2104 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 2105 if (!iov) 2106 goto out; 2107 } 2108 2109 /* 2110 * Save the user-mode address (verify_iovec will change the 2111 * kernel msghdr to use the kernel address space) 2112 */ 2113 2114 uaddr = (__force void __user *)msg_sys->msg_name; 2115 uaddr_len = COMPAT_NAMELEN(msg); 2116 if (MSG_CMSG_COMPAT & flags) { 2117 err = verify_compat_iovec(msg_sys, iov, 2118 (struct sockaddr *)&addr, 2119 VERIFY_WRITE); 2120 } else 2121 err = verify_iovec(msg_sys, iov, 2122 (struct sockaddr *)&addr, 2123 VERIFY_WRITE); 2124 if (err < 0) 2125 goto out_freeiov; 2126 total_len = err; 2127 2128 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2129 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2130 2131 if (sock->file->f_flags & O_NONBLOCK) 2132 flags |= MSG_DONTWAIT; 2133 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2134 total_len, flags); 2135 if (err < 0) 2136 goto out_freeiov; 2137 len = err; 2138 2139 if (uaddr != NULL) { 2140 err = move_addr_to_user((struct sockaddr *)&addr, 2141 msg_sys->msg_namelen, uaddr, 2142 uaddr_len); 2143 if (err < 0) 2144 goto out_freeiov; 2145 } 2146 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2147 COMPAT_FLAGS(msg)); 2148 if (err) 2149 goto out_freeiov; 2150 if (MSG_CMSG_COMPAT & flags) 2151 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2152 &msg_compat->msg_controllen); 2153 else 2154 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2155 &msg->msg_controllen); 2156 if (err) 2157 goto out_freeiov; 2158 err = len; 2159 2160 out_freeiov: 2161 if (iov != iovstack) 2162 sock_kfree_s(sock->sk, iov, iov_size); 2163 out: 2164 return err; 2165 } 2166 2167 /* 2168 * BSD recvmsg interface 2169 */ 2170 2171 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2172 unsigned int, flags) 2173 { 2174 int fput_needed, err; 2175 struct msghdr msg_sys; 2176 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2177 2178 if (!sock) 2179 goto out; 2180 2181 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2182 2183 fput_light(sock->file, fput_needed); 2184 out: 2185 return err; 2186 } 2187 2188 /* 2189 * Linux recvmmsg interface 2190 */ 2191 2192 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2193 unsigned int flags, struct timespec *timeout) 2194 { 2195 int fput_needed, err, datagrams; 2196 struct socket *sock; 2197 struct mmsghdr __user *entry; 2198 struct compat_mmsghdr __user *compat_entry; 2199 struct msghdr msg_sys; 2200 struct timespec end_time; 2201 2202 if (timeout && 2203 poll_select_set_timeout(&end_time, timeout->tv_sec, 2204 timeout->tv_nsec)) 2205 return -EINVAL; 2206 2207 datagrams = 0; 2208 2209 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2210 if (!sock) 2211 return err; 2212 2213 err = sock_error(sock->sk); 2214 if (err) 2215 goto out_put; 2216 2217 entry = mmsg; 2218 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2219 2220 while (datagrams < vlen) { 2221 /* 2222 * No need to ask LSM for more than the first datagram. 2223 */ 2224 if (MSG_CMSG_COMPAT & flags) { 2225 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2226 &msg_sys, flags & ~MSG_WAITFORONE, 2227 datagrams); 2228 if (err < 0) 2229 break; 2230 err = __put_user(err, &compat_entry->msg_len); 2231 ++compat_entry; 2232 } else { 2233 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2234 &msg_sys, flags & ~MSG_WAITFORONE, 2235 datagrams); 2236 if (err < 0) 2237 break; 2238 err = put_user(err, &entry->msg_len); 2239 ++entry; 2240 } 2241 2242 if (err) 2243 break; 2244 ++datagrams; 2245 2246 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2247 if (flags & MSG_WAITFORONE) 2248 flags |= MSG_DONTWAIT; 2249 2250 if (timeout) { 2251 ktime_get_ts(timeout); 2252 *timeout = timespec_sub(end_time, *timeout); 2253 if (timeout->tv_sec < 0) { 2254 timeout->tv_sec = timeout->tv_nsec = 0; 2255 break; 2256 } 2257 2258 /* Timeout, return less than vlen datagrams */ 2259 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2260 break; 2261 } 2262 2263 /* Out of band data, return right away */ 2264 if (msg_sys.msg_flags & MSG_OOB) 2265 break; 2266 } 2267 2268 out_put: 2269 fput_light(sock->file, fput_needed); 2270 2271 if (err == 0) 2272 return datagrams; 2273 2274 if (datagrams != 0) { 2275 /* 2276 * We may return less entries than requested (vlen) if the 2277 * sock is non block and there aren't enough datagrams... 2278 */ 2279 if (err != -EAGAIN) { 2280 /* 2281 * ... or if recvmsg returns an error after we 2282 * received some datagrams, where we record the 2283 * error to return on the next call or if the 2284 * app asks about it using getsockopt(SO_ERROR). 2285 */ 2286 sock->sk->sk_err = -err; 2287 } 2288 2289 return datagrams; 2290 } 2291 2292 return err; 2293 } 2294 2295 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2296 unsigned int, vlen, unsigned int, flags, 2297 struct timespec __user *, timeout) 2298 { 2299 int datagrams; 2300 struct timespec timeout_sys; 2301 2302 if (!timeout) 2303 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2304 2305 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2306 return -EFAULT; 2307 2308 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2309 2310 if (datagrams > 0 && 2311 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2312 datagrams = -EFAULT; 2313 2314 return datagrams; 2315 } 2316 2317 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2318 /* Argument list sizes for sys_socketcall */ 2319 #define AL(x) ((x) * sizeof(unsigned long)) 2320 static const unsigned char nargs[21] = { 2321 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2322 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2323 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2324 AL(4), AL(5), AL(4) 2325 }; 2326 2327 #undef AL 2328 2329 /* 2330 * System call vectors. 2331 * 2332 * Argument checking cleaned up. Saved 20% in size. 2333 * This function doesn't need to set the kernel lock because 2334 * it is set by the callees. 2335 */ 2336 2337 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2338 { 2339 unsigned long a[6]; 2340 unsigned long a0, a1; 2341 int err; 2342 unsigned int len; 2343 2344 if (call < 1 || call > SYS_SENDMMSG) 2345 return -EINVAL; 2346 2347 len = nargs[call]; 2348 if (len > sizeof(a)) 2349 return -EINVAL; 2350 2351 /* copy_from_user should be SMP safe. */ 2352 if (copy_from_user(a, args, len)) 2353 return -EFAULT; 2354 2355 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2356 2357 a0 = a[0]; 2358 a1 = a[1]; 2359 2360 switch (call) { 2361 case SYS_SOCKET: 2362 err = sys_socket(a0, a1, a[2]); 2363 break; 2364 case SYS_BIND: 2365 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2366 break; 2367 case SYS_CONNECT: 2368 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2369 break; 2370 case SYS_LISTEN: 2371 err = sys_listen(a0, a1); 2372 break; 2373 case SYS_ACCEPT: 2374 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2375 (int __user *)a[2], 0); 2376 break; 2377 case SYS_GETSOCKNAME: 2378 err = 2379 sys_getsockname(a0, (struct sockaddr __user *)a1, 2380 (int __user *)a[2]); 2381 break; 2382 case SYS_GETPEERNAME: 2383 err = 2384 sys_getpeername(a0, (struct sockaddr __user *)a1, 2385 (int __user *)a[2]); 2386 break; 2387 case SYS_SOCKETPAIR: 2388 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2389 break; 2390 case SYS_SEND: 2391 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2392 break; 2393 case SYS_SENDTO: 2394 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2395 (struct sockaddr __user *)a[4], a[5]); 2396 break; 2397 case SYS_RECV: 2398 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2399 break; 2400 case SYS_RECVFROM: 2401 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2402 (struct sockaddr __user *)a[4], 2403 (int __user *)a[5]); 2404 break; 2405 case SYS_SHUTDOWN: 2406 err = sys_shutdown(a0, a1); 2407 break; 2408 case SYS_SETSOCKOPT: 2409 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2410 break; 2411 case SYS_GETSOCKOPT: 2412 err = 2413 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2414 (int __user *)a[4]); 2415 break; 2416 case SYS_SENDMSG: 2417 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2418 break; 2419 case SYS_SENDMMSG: 2420 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2421 break; 2422 case SYS_RECVMSG: 2423 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2424 break; 2425 case SYS_RECVMMSG: 2426 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2427 (struct timespec __user *)a[4]); 2428 break; 2429 case SYS_ACCEPT4: 2430 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2431 (int __user *)a[2], a[3]); 2432 break; 2433 default: 2434 err = -EINVAL; 2435 break; 2436 } 2437 return err; 2438 } 2439 2440 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2441 2442 /** 2443 * sock_register - add a socket protocol handler 2444 * @ops: description of protocol 2445 * 2446 * This function is called by a protocol handler that wants to 2447 * advertise its address family, and have it linked into the 2448 * socket interface. The value ops->family coresponds to the 2449 * socket system call protocol family. 2450 */ 2451 int sock_register(const struct net_proto_family *ops) 2452 { 2453 int err; 2454 2455 if (ops->family >= NPROTO) { 2456 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2457 NPROTO); 2458 return -ENOBUFS; 2459 } 2460 2461 spin_lock(&net_family_lock); 2462 if (rcu_dereference_protected(net_families[ops->family], 2463 lockdep_is_held(&net_family_lock))) 2464 err = -EEXIST; 2465 else { 2466 rcu_assign_pointer(net_families[ops->family], ops); 2467 err = 0; 2468 } 2469 spin_unlock(&net_family_lock); 2470 2471 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2472 return err; 2473 } 2474 EXPORT_SYMBOL(sock_register); 2475 2476 /** 2477 * sock_unregister - remove a protocol handler 2478 * @family: protocol family to remove 2479 * 2480 * This function is called by a protocol handler that wants to 2481 * remove its address family, and have it unlinked from the 2482 * new socket creation. 2483 * 2484 * If protocol handler is a module, then it can use module reference 2485 * counts to protect against new references. If protocol handler is not 2486 * a module then it needs to provide its own protection in 2487 * the ops->create routine. 2488 */ 2489 void sock_unregister(int family) 2490 { 2491 BUG_ON(family < 0 || family >= NPROTO); 2492 2493 spin_lock(&net_family_lock); 2494 rcu_assign_pointer(net_families[family], NULL); 2495 spin_unlock(&net_family_lock); 2496 2497 synchronize_rcu(); 2498 2499 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2500 } 2501 EXPORT_SYMBOL(sock_unregister); 2502 2503 static int __init sock_init(void) 2504 { 2505 int err; 2506 2507 /* 2508 * Initialize sock SLAB cache. 2509 */ 2510 2511 sk_init(); 2512 2513 /* 2514 * Initialize skbuff SLAB cache 2515 */ 2516 skb_init(); 2517 2518 /* 2519 * Initialize the protocols module. 2520 */ 2521 2522 init_inodecache(); 2523 2524 err = register_filesystem(&sock_fs_type); 2525 if (err) 2526 goto out_fs; 2527 sock_mnt = kern_mount(&sock_fs_type); 2528 if (IS_ERR(sock_mnt)) { 2529 err = PTR_ERR(sock_mnt); 2530 goto out_mount; 2531 } 2532 2533 /* The real protocol initialization is performed in later initcalls. 2534 */ 2535 2536 #ifdef CONFIG_NETFILTER 2537 netfilter_init(); 2538 #endif 2539 2540 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2541 skb_timestamping_init(); 2542 #endif 2543 2544 out: 2545 return err; 2546 2547 out_mount: 2548 unregister_filesystem(&sock_fs_type); 2549 out_fs: 2550 goto out; 2551 } 2552 2553 core_initcall(sock_init); /* early initcall */ 2554 2555 #ifdef CONFIG_PROC_FS 2556 void socket_seq_show(struct seq_file *seq) 2557 { 2558 int cpu; 2559 int counter = 0; 2560 2561 for_each_possible_cpu(cpu) 2562 counter += per_cpu(sockets_in_use, cpu); 2563 2564 /* It can be negative, by the way. 8) */ 2565 if (counter < 0) 2566 counter = 0; 2567 2568 seq_printf(seq, "sockets: used %d\n", counter); 2569 } 2570 #endif /* CONFIG_PROC_FS */ 2571 2572 #ifdef CONFIG_COMPAT 2573 static int do_siocgstamp(struct net *net, struct socket *sock, 2574 unsigned int cmd, struct compat_timeval __user *up) 2575 { 2576 mm_segment_t old_fs = get_fs(); 2577 struct timeval ktv; 2578 int err; 2579 2580 set_fs(KERNEL_DS); 2581 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2582 set_fs(old_fs); 2583 if (!err) { 2584 err = put_user(ktv.tv_sec, &up->tv_sec); 2585 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2586 } 2587 return err; 2588 } 2589 2590 static int do_siocgstampns(struct net *net, struct socket *sock, 2591 unsigned int cmd, struct compat_timespec __user *up) 2592 { 2593 mm_segment_t old_fs = get_fs(); 2594 struct timespec kts; 2595 int err; 2596 2597 set_fs(KERNEL_DS); 2598 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2599 set_fs(old_fs); 2600 if (!err) { 2601 err = put_user(kts.tv_sec, &up->tv_sec); 2602 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2603 } 2604 return err; 2605 } 2606 2607 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2608 { 2609 struct ifreq __user *uifr; 2610 int err; 2611 2612 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2613 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2614 return -EFAULT; 2615 2616 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2617 if (err) 2618 return err; 2619 2620 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2621 return -EFAULT; 2622 2623 return 0; 2624 } 2625 2626 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2627 { 2628 struct compat_ifconf ifc32; 2629 struct ifconf ifc; 2630 struct ifconf __user *uifc; 2631 struct compat_ifreq __user *ifr32; 2632 struct ifreq __user *ifr; 2633 unsigned int i, j; 2634 int err; 2635 2636 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2637 return -EFAULT; 2638 2639 if (ifc32.ifcbuf == 0) { 2640 ifc32.ifc_len = 0; 2641 ifc.ifc_len = 0; 2642 ifc.ifc_req = NULL; 2643 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2644 } else { 2645 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2646 sizeof(struct ifreq); 2647 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2648 ifc.ifc_len = len; 2649 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2650 ifr32 = compat_ptr(ifc32.ifcbuf); 2651 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2652 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2653 return -EFAULT; 2654 ifr++; 2655 ifr32++; 2656 } 2657 } 2658 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2659 return -EFAULT; 2660 2661 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2662 if (err) 2663 return err; 2664 2665 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2666 return -EFAULT; 2667 2668 ifr = ifc.ifc_req; 2669 ifr32 = compat_ptr(ifc32.ifcbuf); 2670 for (i = 0, j = 0; 2671 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2672 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2673 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2674 return -EFAULT; 2675 ifr32++; 2676 ifr++; 2677 } 2678 2679 if (ifc32.ifcbuf == 0) { 2680 /* Translate from 64-bit structure multiple to 2681 * a 32-bit one. 2682 */ 2683 i = ifc.ifc_len; 2684 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2685 ifc32.ifc_len = i; 2686 } else { 2687 ifc32.ifc_len = i; 2688 } 2689 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2690 return -EFAULT; 2691 2692 return 0; 2693 } 2694 2695 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2696 { 2697 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2698 bool convert_in = false, convert_out = false; 2699 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2700 struct ethtool_rxnfc __user *rxnfc; 2701 struct ifreq __user *ifr; 2702 u32 rule_cnt = 0, actual_rule_cnt; 2703 u32 ethcmd; 2704 u32 data; 2705 int ret; 2706 2707 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2708 return -EFAULT; 2709 2710 compat_rxnfc = compat_ptr(data); 2711 2712 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2713 return -EFAULT; 2714 2715 /* Most ethtool structures are defined without padding. 2716 * Unfortunately struct ethtool_rxnfc is an exception. 2717 */ 2718 switch (ethcmd) { 2719 default: 2720 break; 2721 case ETHTOOL_GRXCLSRLALL: 2722 /* Buffer size is variable */ 2723 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2724 return -EFAULT; 2725 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2726 return -ENOMEM; 2727 buf_size += rule_cnt * sizeof(u32); 2728 /* fall through */ 2729 case ETHTOOL_GRXRINGS: 2730 case ETHTOOL_GRXCLSRLCNT: 2731 case ETHTOOL_GRXCLSRULE: 2732 convert_out = true; 2733 /* fall through */ 2734 case ETHTOOL_SRXCLSRLDEL: 2735 case ETHTOOL_SRXCLSRLINS: 2736 buf_size += sizeof(struct ethtool_rxnfc); 2737 convert_in = true; 2738 break; 2739 } 2740 2741 ifr = compat_alloc_user_space(buf_size); 2742 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8); 2743 2744 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2745 return -EFAULT; 2746 2747 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2748 &ifr->ifr_ifru.ifru_data)) 2749 return -EFAULT; 2750 2751 if (convert_in) { 2752 /* We expect there to be holes between fs.m_ext and 2753 * fs.ring_cookie and at the end of fs, but nowhere else. 2754 */ 2755 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2756 sizeof(compat_rxnfc->fs.m_ext) != 2757 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2758 sizeof(rxnfc->fs.m_ext)); 2759 BUILD_BUG_ON( 2760 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2761 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2762 offsetof(struct ethtool_rxnfc, fs.location) - 2763 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2764 2765 if (copy_in_user(rxnfc, compat_rxnfc, 2766 (void *)(&rxnfc->fs.m_ext + 1) - 2767 (void *)rxnfc) || 2768 copy_in_user(&rxnfc->fs.ring_cookie, 2769 &compat_rxnfc->fs.ring_cookie, 2770 (void *)(&rxnfc->fs.location + 1) - 2771 (void *)&rxnfc->fs.ring_cookie) || 2772 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2773 sizeof(rxnfc->rule_cnt))) 2774 return -EFAULT; 2775 } 2776 2777 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2778 if (ret) 2779 return ret; 2780 2781 if (convert_out) { 2782 if (copy_in_user(compat_rxnfc, rxnfc, 2783 (const void *)(&rxnfc->fs.m_ext + 1) - 2784 (const void *)rxnfc) || 2785 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2786 &rxnfc->fs.ring_cookie, 2787 (const void *)(&rxnfc->fs.location + 1) - 2788 (const void *)&rxnfc->fs.ring_cookie) || 2789 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2790 sizeof(rxnfc->rule_cnt))) 2791 return -EFAULT; 2792 2793 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2794 /* As an optimisation, we only copy the actual 2795 * number of rules that the underlying 2796 * function returned. Since Mallory might 2797 * change the rule count in user memory, we 2798 * check that it is less than the rule count 2799 * originally given (as the user buffer size), 2800 * which has been range-checked. 2801 */ 2802 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2803 return -EFAULT; 2804 if (actual_rule_cnt < rule_cnt) 2805 rule_cnt = actual_rule_cnt; 2806 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2807 &rxnfc->rule_locs[0], 2808 rule_cnt * sizeof(u32))) 2809 return -EFAULT; 2810 } 2811 } 2812 2813 return 0; 2814 } 2815 2816 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2817 { 2818 void __user *uptr; 2819 compat_uptr_t uptr32; 2820 struct ifreq __user *uifr; 2821 2822 uifr = compat_alloc_user_space(sizeof(*uifr)); 2823 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2824 return -EFAULT; 2825 2826 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2827 return -EFAULT; 2828 2829 uptr = compat_ptr(uptr32); 2830 2831 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2832 return -EFAULT; 2833 2834 return dev_ioctl(net, SIOCWANDEV, uifr); 2835 } 2836 2837 static int bond_ioctl(struct net *net, unsigned int cmd, 2838 struct compat_ifreq __user *ifr32) 2839 { 2840 struct ifreq kifr; 2841 struct ifreq __user *uifr; 2842 mm_segment_t old_fs; 2843 int err; 2844 u32 data; 2845 void __user *datap; 2846 2847 switch (cmd) { 2848 case SIOCBONDENSLAVE: 2849 case SIOCBONDRELEASE: 2850 case SIOCBONDSETHWADDR: 2851 case SIOCBONDCHANGEACTIVE: 2852 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2853 return -EFAULT; 2854 2855 old_fs = get_fs(); 2856 set_fs(KERNEL_DS); 2857 err = dev_ioctl(net, cmd, 2858 (struct ifreq __user __force *) &kifr); 2859 set_fs(old_fs); 2860 2861 return err; 2862 case SIOCBONDSLAVEINFOQUERY: 2863 case SIOCBONDINFOQUERY: 2864 uifr = compat_alloc_user_space(sizeof(*uifr)); 2865 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2866 return -EFAULT; 2867 2868 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2869 return -EFAULT; 2870 2871 datap = compat_ptr(data); 2872 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2873 return -EFAULT; 2874 2875 return dev_ioctl(net, cmd, uifr); 2876 default: 2877 return -EINVAL; 2878 } 2879 } 2880 2881 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2882 struct compat_ifreq __user *u_ifreq32) 2883 { 2884 struct ifreq __user *u_ifreq64; 2885 char tmp_buf[IFNAMSIZ]; 2886 void __user *data64; 2887 u32 data32; 2888 2889 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2890 IFNAMSIZ)) 2891 return -EFAULT; 2892 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2893 return -EFAULT; 2894 data64 = compat_ptr(data32); 2895 2896 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2897 2898 /* Don't check these user accesses, just let that get trapped 2899 * in the ioctl handler instead. 2900 */ 2901 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2902 IFNAMSIZ)) 2903 return -EFAULT; 2904 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2905 return -EFAULT; 2906 2907 return dev_ioctl(net, cmd, u_ifreq64); 2908 } 2909 2910 static int dev_ifsioc(struct net *net, struct socket *sock, 2911 unsigned int cmd, struct compat_ifreq __user *uifr32) 2912 { 2913 struct ifreq __user *uifr; 2914 int err; 2915 2916 uifr = compat_alloc_user_space(sizeof(*uifr)); 2917 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2918 return -EFAULT; 2919 2920 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2921 2922 if (!err) { 2923 switch (cmd) { 2924 case SIOCGIFFLAGS: 2925 case SIOCGIFMETRIC: 2926 case SIOCGIFMTU: 2927 case SIOCGIFMEM: 2928 case SIOCGIFHWADDR: 2929 case SIOCGIFINDEX: 2930 case SIOCGIFADDR: 2931 case SIOCGIFBRDADDR: 2932 case SIOCGIFDSTADDR: 2933 case SIOCGIFNETMASK: 2934 case SIOCGIFPFLAGS: 2935 case SIOCGIFTXQLEN: 2936 case SIOCGMIIPHY: 2937 case SIOCGMIIREG: 2938 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2939 err = -EFAULT; 2940 break; 2941 } 2942 } 2943 return err; 2944 } 2945 2946 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2947 struct compat_ifreq __user *uifr32) 2948 { 2949 struct ifreq ifr; 2950 struct compat_ifmap __user *uifmap32; 2951 mm_segment_t old_fs; 2952 int err; 2953 2954 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2955 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2956 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2957 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2958 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2959 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2960 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2961 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2962 if (err) 2963 return -EFAULT; 2964 2965 old_fs = get_fs(); 2966 set_fs(KERNEL_DS); 2967 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2968 set_fs(old_fs); 2969 2970 if (cmd == SIOCGIFMAP && !err) { 2971 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2972 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2973 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2974 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2975 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2976 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2977 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2978 if (err) 2979 err = -EFAULT; 2980 } 2981 return err; 2982 } 2983 2984 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2985 { 2986 void __user *uptr; 2987 compat_uptr_t uptr32; 2988 struct ifreq __user *uifr; 2989 2990 uifr = compat_alloc_user_space(sizeof(*uifr)); 2991 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2992 return -EFAULT; 2993 2994 if (get_user(uptr32, &uifr32->ifr_data)) 2995 return -EFAULT; 2996 2997 uptr = compat_ptr(uptr32); 2998 2999 if (put_user(uptr, &uifr->ifr_data)) 3000 return -EFAULT; 3001 3002 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3003 } 3004 3005 struct rtentry32 { 3006 u32 rt_pad1; 3007 struct sockaddr rt_dst; /* target address */ 3008 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3009 struct sockaddr rt_genmask; /* target network mask (IP) */ 3010 unsigned short rt_flags; 3011 short rt_pad2; 3012 u32 rt_pad3; 3013 unsigned char rt_tos; 3014 unsigned char rt_class; 3015 short rt_pad4; 3016 short rt_metric; /* +1 for binary compatibility! */ 3017 /* char * */ u32 rt_dev; /* forcing the device at add */ 3018 u32 rt_mtu; /* per route MTU/Window */ 3019 u32 rt_window; /* Window clamping */ 3020 unsigned short rt_irtt; /* Initial RTT */ 3021 }; 3022 3023 struct in6_rtmsg32 { 3024 struct in6_addr rtmsg_dst; 3025 struct in6_addr rtmsg_src; 3026 struct in6_addr rtmsg_gateway; 3027 u32 rtmsg_type; 3028 u16 rtmsg_dst_len; 3029 u16 rtmsg_src_len; 3030 u32 rtmsg_metric; 3031 u32 rtmsg_info; 3032 u32 rtmsg_flags; 3033 s32 rtmsg_ifindex; 3034 }; 3035 3036 static int routing_ioctl(struct net *net, struct socket *sock, 3037 unsigned int cmd, void __user *argp) 3038 { 3039 int ret; 3040 void *r = NULL; 3041 struct in6_rtmsg r6; 3042 struct rtentry r4; 3043 char devname[16]; 3044 u32 rtdev; 3045 mm_segment_t old_fs = get_fs(); 3046 3047 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3048 struct in6_rtmsg32 __user *ur6 = argp; 3049 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3050 3 * sizeof(struct in6_addr)); 3051 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3052 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3053 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3054 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3055 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3056 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3057 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3058 3059 r = (void *) &r6; 3060 } else { /* ipv4 */ 3061 struct rtentry32 __user *ur4 = argp; 3062 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3063 3 * sizeof(struct sockaddr)); 3064 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3065 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3066 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3067 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3068 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3069 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3070 if (rtdev) { 3071 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3072 r4.rt_dev = (char __user __force *)devname; 3073 devname[15] = 0; 3074 } else 3075 r4.rt_dev = NULL; 3076 3077 r = (void *) &r4; 3078 } 3079 3080 if (ret) { 3081 ret = -EFAULT; 3082 goto out; 3083 } 3084 3085 set_fs(KERNEL_DS); 3086 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3087 set_fs(old_fs); 3088 3089 out: 3090 return ret; 3091 } 3092 3093 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3094 * for some operations; this forces use of the newer bridge-utils that 3095 * use compatible ioctls 3096 */ 3097 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3098 { 3099 compat_ulong_t tmp; 3100 3101 if (get_user(tmp, argp)) 3102 return -EFAULT; 3103 if (tmp == BRCTL_GET_VERSION) 3104 return BRCTL_VERSION + 1; 3105 return -EINVAL; 3106 } 3107 3108 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3109 unsigned int cmd, unsigned long arg) 3110 { 3111 void __user *argp = compat_ptr(arg); 3112 struct sock *sk = sock->sk; 3113 struct net *net = sock_net(sk); 3114 3115 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3116 return siocdevprivate_ioctl(net, cmd, argp); 3117 3118 switch (cmd) { 3119 case SIOCSIFBR: 3120 case SIOCGIFBR: 3121 return old_bridge_ioctl(argp); 3122 case SIOCGIFNAME: 3123 return dev_ifname32(net, argp); 3124 case SIOCGIFCONF: 3125 return dev_ifconf(net, argp); 3126 case SIOCETHTOOL: 3127 return ethtool_ioctl(net, argp); 3128 case SIOCWANDEV: 3129 return compat_siocwandev(net, argp); 3130 case SIOCGIFMAP: 3131 case SIOCSIFMAP: 3132 return compat_sioc_ifmap(net, cmd, argp); 3133 case SIOCBONDENSLAVE: 3134 case SIOCBONDRELEASE: 3135 case SIOCBONDSETHWADDR: 3136 case SIOCBONDSLAVEINFOQUERY: 3137 case SIOCBONDINFOQUERY: 3138 case SIOCBONDCHANGEACTIVE: 3139 return bond_ioctl(net, cmd, argp); 3140 case SIOCADDRT: 3141 case SIOCDELRT: 3142 return routing_ioctl(net, sock, cmd, argp); 3143 case SIOCGSTAMP: 3144 return do_siocgstamp(net, sock, cmd, argp); 3145 case SIOCGSTAMPNS: 3146 return do_siocgstampns(net, sock, cmd, argp); 3147 case SIOCSHWTSTAMP: 3148 return compat_siocshwtstamp(net, argp); 3149 3150 case FIOSETOWN: 3151 case SIOCSPGRP: 3152 case FIOGETOWN: 3153 case SIOCGPGRP: 3154 case SIOCBRADDBR: 3155 case SIOCBRDELBR: 3156 case SIOCGIFVLAN: 3157 case SIOCSIFVLAN: 3158 case SIOCADDDLCI: 3159 case SIOCDELDLCI: 3160 return sock_ioctl(file, cmd, arg); 3161 3162 case SIOCGIFFLAGS: 3163 case SIOCSIFFLAGS: 3164 case SIOCGIFMETRIC: 3165 case SIOCSIFMETRIC: 3166 case SIOCGIFMTU: 3167 case SIOCSIFMTU: 3168 case SIOCGIFMEM: 3169 case SIOCSIFMEM: 3170 case SIOCGIFHWADDR: 3171 case SIOCSIFHWADDR: 3172 case SIOCADDMULTI: 3173 case SIOCDELMULTI: 3174 case SIOCGIFINDEX: 3175 case SIOCGIFADDR: 3176 case SIOCSIFADDR: 3177 case SIOCSIFHWBROADCAST: 3178 case SIOCDIFADDR: 3179 case SIOCGIFBRDADDR: 3180 case SIOCSIFBRDADDR: 3181 case SIOCGIFDSTADDR: 3182 case SIOCSIFDSTADDR: 3183 case SIOCGIFNETMASK: 3184 case SIOCSIFNETMASK: 3185 case SIOCSIFPFLAGS: 3186 case SIOCGIFPFLAGS: 3187 case SIOCGIFTXQLEN: 3188 case SIOCSIFTXQLEN: 3189 case SIOCBRADDIF: 3190 case SIOCBRDELIF: 3191 case SIOCSIFNAME: 3192 case SIOCGMIIPHY: 3193 case SIOCGMIIREG: 3194 case SIOCSMIIREG: 3195 return dev_ifsioc(net, sock, cmd, argp); 3196 3197 case SIOCSARP: 3198 case SIOCGARP: 3199 case SIOCDARP: 3200 case SIOCATMARK: 3201 return sock_do_ioctl(net, sock, cmd, arg); 3202 } 3203 3204 /* Prevent warning from compat_sys_ioctl, these always 3205 * result in -EINVAL in the native case anyway. */ 3206 switch (cmd) { 3207 case SIOCRTMSG: 3208 case SIOCGIFCOUNT: 3209 case SIOCSRARP: 3210 case SIOCGRARP: 3211 case SIOCDRARP: 3212 case SIOCSIFLINK: 3213 case SIOCGIFSLAVE: 3214 case SIOCSIFSLAVE: 3215 return -EINVAL; 3216 } 3217 3218 return -ENOIOCTLCMD; 3219 } 3220 3221 static long compat_sock_ioctl(struct file *file, unsigned cmd, 3222 unsigned long arg) 3223 { 3224 struct socket *sock = file->private_data; 3225 int ret = -ENOIOCTLCMD; 3226 struct sock *sk; 3227 struct net *net; 3228 3229 sk = sock->sk; 3230 net = sock_net(sk); 3231 3232 if (sock->ops->compat_ioctl) 3233 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3234 3235 if (ret == -ENOIOCTLCMD && 3236 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3237 ret = compat_wext_handle_ioctl(net, cmd, arg); 3238 3239 if (ret == -ENOIOCTLCMD) 3240 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3241 3242 return ret; 3243 } 3244 #endif 3245 3246 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3247 { 3248 return sock->ops->bind(sock, addr, addrlen); 3249 } 3250 EXPORT_SYMBOL(kernel_bind); 3251 3252 int kernel_listen(struct socket *sock, int backlog) 3253 { 3254 return sock->ops->listen(sock, backlog); 3255 } 3256 EXPORT_SYMBOL(kernel_listen); 3257 3258 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3259 { 3260 struct sock *sk = sock->sk; 3261 int err; 3262 3263 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3264 newsock); 3265 if (err < 0) 3266 goto done; 3267 3268 err = sock->ops->accept(sock, *newsock, flags); 3269 if (err < 0) { 3270 sock_release(*newsock); 3271 *newsock = NULL; 3272 goto done; 3273 } 3274 3275 (*newsock)->ops = sock->ops; 3276 __module_get((*newsock)->ops->owner); 3277 3278 done: 3279 return err; 3280 } 3281 EXPORT_SYMBOL(kernel_accept); 3282 3283 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3284 int flags) 3285 { 3286 return sock->ops->connect(sock, addr, addrlen, flags); 3287 } 3288 EXPORT_SYMBOL(kernel_connect); 3289 3290 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3291 int *addrlen) 3292 { 3293 return sock->ops->getname(sock, addr, addrlen, 0); 3294 } 3295 EXPORT_SYMBOL(kernel_getsockname); 3296 3297 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3298 int *addrlen) 3299 { 3300 return sock->ops->getname(sock, addr, addrlen, 1); 3301 } 3302 EXPORT_SYMBOL(kernel_getpeername); 3303 3304 int kernel_getsockopt(struct socket *sock, int level, int optname, 3305 char *optval, int *optlen) 3306 { 3307 mm_segment_t oldfs = get_fs(); 3308 char __user *uoptval; 3309 int __user *uoptlen; 3310 int err; 3311 3312 uoptval = (char __user __force *) optval; 3313 uoptlen = (int __user __force *) optlen; 3314 3315 set_fs(KERNEL_DS); 3316 if (level == SOL_SOCKET) 3317 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3318 else 3319 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3320 uoptlen); 3321 set_fs(oldfs); 3322 return err; 3323 } 3324 EXPORT_SYMBOL(kernel_getsockopt); 3325 3326 int kernel_setsockopt(struct socket *sock, int level, int optname, 3327 char *optval, unsigned int optlen) 3328 { 3329 mm_segment_t oldfs = get_fs(); 3330 char __user *uoptval; 3331 int err; 3332 3333 uoptval = (char __user __force *) optval; 3334 3335 set_fs(KERNEL_DS); 3336 if (level == SOL_SOCKET) 3337 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3338 else 3339 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3340 optlen); 3341 set_fs(oldfs); 3342 return err; 3343 } 3344 EXPORT_SYMBOL(kernel_setsockopt); 3345 3346 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3347 size_t size, int flags) 3348 { 3349 sock_update_classid(sock->sk); 3350 3351 if (sock->ops->sendpage) 3352 return sock->ops->sendpage(sock, page, offset, size, flags); 3353 3354 return sock_no_sendpage(sock, page, offset, size, flags); 3355 } 3356 EXPORT_SYMBOL(kernel_sendpage); 3357 3358 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3359 { 3360 mm_segment_t oldfs = get_fs(); 3361 int err; 3362 3363 set_fs(KERNEL_DS); 3364 err = sock->ops->ioctl(sock, cmd, arg); 3365 set_fs(oldfs); 3366 3367 return err; 3368 } 3369 EXPORT_SYMBOL(kernel_sock_ioctl); 3370 3371 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3372 { 3373 return sock->ops->shutdown(sock, how); 3374 } 3375 EXPORT_SYMBOL(kernel_sock_shutdown); 3376