xref: /openbmc/linux/net/socket.c (revision 51eb7492)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90 
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 			      struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 			      unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 			     int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 
134 #ifdef CONFIG_PROC_FS
135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 {
137 	struct socket *sock = f->private_data;
138 
139 	if (sock->ops->show_fdinfo)
140 		sock->ops->show_fdinfo(m, sock);
141 }
142 #else
143 #define sock_show_fdinfo NULL
144 #endif
145 
146 /*
147  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148  *	in the operation structures but are done directly via the socketcall() multiplexor.
149  */
150 
151 static const struct file_operations socket_file_ops = {
152 	.owner =	THIS_MODULE,
153 	.llseek =	no_llseek,
154 	.read_iter =	sock_read_iter,
155 	.write_iter =	sock_write_iter,
156 	.poll =		sock_poll,
157 	.unlocked_ioctl = sock_ioctl,
158 #ifdef CONFIG_COMPAT
159 	.compat_ioctl = compat_sock_ioctl,
160 #endif
161 	.mmap =		sock_mmap,
162 	.release =	sock_close,
163 	.fasync =	sock_fasync,
164 	.sendpage =	sock_sendpage,
165 	.splice_write = generic_splice_sendpage,
166 	.splice_read =	sock_splice_read,
167 	.show_fdinfo =	sock_show_fdinfo,
168 };
169 
170 static const char * const pf_family_names[] = {
171 	[PF_UNSPEC]	= "PF_UNSPEC",
172 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
173 	[PF_INET]	= "PF_INET",
174 	[PF_AX25]	= "PF_AX25",
175 	[PF_IPX]	= "PF_IPX",
176 	[PF_APPLETALK]	= "PF_APPLETALK",
177 	[PF_NETROM]	= "PF_NETROM",
178 	[PF_BRIDGE]	= "PF_BRIDGE",
179 	[PF_ATMPVC]	= "PF_ATMPVC",
180 	[PF_X25]	= "PF_X25",
181 	[PF_INET6]	= "PF_INET6",
182 	[PF_ROSE]	= "PF_ROSE",
183 	[PF_DECnet]	= "PF_DECnet",
184 	[PF_NETBEUI]	= "PF_NETBEUI",
185 	[PF_SECURITY]	= "PF_SECURITY",
186 	[PF_KEY]	= "PF_KEY",
187 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
188 	[PF_PACKET]	= "PF_PACKET",
189 	[PF_ASH]	= "PF_ASH",
190 	[PF_ECONET]	= "PF_ECONET",
191 	[PF_ATMSVC]	= "PF_ATMSVC",
192 	[PF_RDS]	= "PF_RDS",
193 	[PF_SNA]	= "PF_SNA",
194 	[PF_IRDA]	= "PF_IRDA",
195 	[PF_PPPOX]	= "PF_PPPOX",
196 	[PF_WANPIPE]	= "PF_WANPIPE",
197 	[PF_LLC]	= "PF_LLC",
198 	[PF_IB]		= "PF_IB",
199 	[PF_MPLS]	= "PF_MPLS",
200 	[PF_CAN]	= "PF_CAN",
201 	[PF_TIPC]	= "PF_TIPC",
202 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
203 	[PF_IUCV]	= "PF_IUCV",
204 	[PF_RXRPC]	= "PF_RXRPC",
205 	[PF_ISDN]	= "PF_ISDN",
206 	[PF_PHONET]	= "PF_PHONET",
207 	[PF_IEEE802154]	= "PF_IEEE802154",
208 	[PF_CAIF]	= "PF_CAIF",
209 	[PF_ALG]	= "PF_ALG",
210 	[PF_NFC]	= "PF_NFC",
211 	[PF_VSOCK]	= "PF_VSOCK",
212 	[PF_KCM]	= "PF_KCM",
213 	[PF_QIPCRTR]	= "PF_QIPCRTR",
214 	[PF_SMC]	= "PF_SMC",
215 	[PF_XDP]	= "PF_XDP",
216 	[PF_MCTP]	= "PF_MCTP",
217 };
218 
219 /*
220  *	The protocol list. Each protocol is registered in here.
221  */
222 
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225 
226 /*
227  * Support routines.
228  * Move socket addresses back and forth across the kernel/user
229  * divide and look after the messy bits.
230  */
231 
232 /**
233  *	move_addr_to_kernel	-	copy a socket address into kernel space
234  *	@uaddr: Address in user space
235  *	@kaddr: Address in kernel space
236  *	@ulen: Length in user space
237  *
238  *	The address is copied into kernel space. If the provided address is
239  *	too long an error code of -EINVAL is returned. If the copy gives
240  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
241  */
242 
243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 {
245 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 		return -EINVAL;
247 	if (ulen == 0)
248 		return 0;
249 	if (copy_from_user(kaddr, uaddr, ulen))
250 		return -EFAULT;
251 	return audit_sockaddr(ulen, kaddr);
252 }
253 
254 /**
255  *	move_addr_to_user	-	copy an address to user space
256  *	@kaddr: kernel space address
257  *	@klen: length of address in kernel
258  *	@uaddr: user space address
259  *	@ulen: pointer to user length field
260  *
261  *	The value pointed to by ulen on entry is the buffer length available.
262  *	This is overwritten with the buffer space used. -EINVAL is returned
263  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
264  *	is returned if either the buffer or the length field are not
265  *	accessible.
266  *	After copying the data up to the limit the user specifies, the true
267  *	length of the data is written over the length limit the user
268  *	specified. Zero is returned for a success.
269  */
270 
271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 			     void __user *uaddr, int __user *ulen)
273 {
274 	int err;
275 	int len;
276 
277 	BUG_ON(klen > sizeof(struct sockaddr_storage));
278 	err = get_user(len, ulen);
279 	if (err)
280 		return err;
281 	if (len > klen)
282 		len = klen;
283 	if (len < 0)
284 		return -EINVAL;
285 	if (len) {
286 		if (audit_sockaddr(klen, kaddr))
287 			return -ENOMEM;
288 		if (copy_to_user(uaddr, kaddr, len))
289 			return -EFAULT;
290 	}
291 	/*
292 	 *      "fromlen shall refer to the value before truncation.."
293 	 *                      1003.1g
294 	 */
295 	return __put_user(klen, ulen);
296 }
297 
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299 
300 static struct inode *sock_alloc_inode(struct super_block *sb)
301 {
302 	struct socket_alloc *ei;
303 
304 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
305 	if (!ei)
306 		return NULL;
307 	init_waitqueue_head(&ei->socket.wq.wait);
308 	ei->socket.wq.fasync_list = NULL;
309 	ei->socket.wq.flags = 0;
310 
311 	ei->socket.state = SS_UNCONNECTED;
312 	ei->socket.flags = 0;
313 	ei->socket.ops = NULL;
314 	ei->socket.sk = NULL;
315 	ei->socket.file = NULL;
316 
317 	return &ei->vfs_inode;
318 }
319 
320 static void sock_free_inode(struct inode *inode)
321 {
322 	struct socket_alloc *ei;
323 
324 	ei = container_of(inode, struct socket_alloc, vfs_inode);
325 	kmem_cache_free(sock_inode_cachep, ei);
326 }
327 
328 static void init_once(void *foo)
329 {
330 	struct socket_alloc *ei = (struct socket_alloc *)foo;
331 
332 	inode_init_once(&ei->vfs_inode);
333 }
334 
335 static void init_inodecache(void)
336 {
337 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 					      sizeof(struct socket_alloc),
339 					      0,
340 					      (SLAB_HWCACHE_ALIGN |
341 					       SLAB_RECLAIM_ACCOUNT |
342 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 					      init_once);
344 	BUG_ON(sock_inode_cachep == NULL);
345 }
346 
347 static const struct super_operations sockfs_ops = {
348 	.alloc_inode	= sock_alloc_inode,
349 	.free_inode	= sock_free_inode,
350 	.statfs		= simple_statfs,
351 };
352 
353 /*
354  * sockfs_dname() is called from d_path().
355  */
356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 {
358 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
359 				d_inode(dentry)->i_ino);
360 }
361 
362 static const struct dentry_operations sockfs_dentry_operations = {
363 	.d_dname  = sockfs_dname,
364 };
365 
366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367 			    struct dentry *dentry, struct inode *inode,
368 			    const char *suffix, void *value, size_t size)
369 {
370 	if (value) {
371 		if (dentry->d_name.len + 1 > size)
372 			return -ERANGE;
373 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 	}
375 	return dentry->d_name.len + 1;
376 }
377 
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381 
382 static const struct xattr_handler sockfs_xattr_handler = {
383 	.name = XATTR_NAME_SOCKPROTONAME,
384 	.get = sockfs_xattr_get,
385 };
386 
387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 				     struct user_namespace *mnt_userns,
389 				     struct dentry *dentry, struct inode *inode,
390 				     const char *suffix, const void *value,
391 				     size_t size, int flags)
392 {
393 	/* Handled by LSM. */
394 	return -EAGAIN;
395 }
396 
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398 	.prefix = XATTR_SECURITY_PREFIX,
399 	.set = sockfs_security_xattr_set,
400 };
401 
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 	&sockfs_xattr_handler,
404 	&sockfs_security_xattr_handler,
405 	NULL
406 };
407 
408 static int sockfs_init_fs_context(struct fs_context *fc)
409 {
410 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 	if (!ctx)
412 		return -ENOMEM;
413 	ctx->ops = &sockfs_ops;
414 	ctx->dops = &sockfs_dentry_operations;
415 	ctx->xattr = sockfs_xattr_handlers;
416 	return 0;
417 }
418 
419 static struct vfsmount *sock_mnt __read_mostly;
420 
421 static struct file_system_type sock_fs_type = {
422 	.name =		"sockfs",
423 	.init_fs_context = sockfs_init_fs_context,
424 	.kill_sb =	kill_anon_super,
425 };
426 
427 /*
428  *	Obtains the first available file descriptor and sets it up for use.
429  *
430  *	These functions create file structures and maps them to fd space
431  *	of the current process. On success it returns file descriptor
432  *	and file struct implicitly stored in sock->file.
433  *	Note that another thread may close file descriptor before we return
434  *	from this function. We use the fact that now we do not refer
435  *	to socket after mapping. If one day we will need it, this
436  *	function will increment ref. count on file by 1.
437  *
438  *	In any case returned fd MAY BE not valid!
439  *	This race condition is unavoidable
440  *	with shared fd spaces, we cannot solve it inside kernel,
441  *	but we take care of internal coherence yet.
442  */
443 
444 /**
445  *	sock_alloc_file - Bind a &socket to a &file
446  *	@sock: socket
447  *	@flags: file status flags
448  *	@dname: protocol name
449  *
450  *	Returns the &file bound with @sock, implicitly storing it
451  *	in sock->file. If dname is %NULL, sets to "".
452  *	On failure the return is a ERR pointer (see linux/err.h).
453  *	This function uses GFP_KERNEL internally.
454  */
455 
456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457 {
458 	struct file *file;
459 
460 	if (!dname)
461 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462 
463 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 				O_RDWR | (flags & O_NONBLOCK),
465 				&socket_file_ops);
466 	if (IS_ERR(file)) {
467 		sock_release(sock);
468 		return file;
469 	}
470 
471 	sock->file = file;
472 	file->private_data = sock;
473 	stream_open(SOCK_INODE(sock), file);
474 	return file;
475 }
476 EXPORT_SYMBOL(sock_alloc_file);
477 
478 static int sock_map_fd(struct socket *sock, int flags)
479 {
480 	struct file *newfile;
481 	int fd = get_unused_fd_flags(flags);
482 	if (unlikely(fd < 0)) {
483 		sock_release(sock);
484 		return fd;
485 	}
486 
487 	newfile = sock_alloc_file(sock, flags, NULL);
488 	if (!IS_ERR(newfile)) {
489 		fd_install(fd, newfile);
490 		return fd;
491 	}
492 
493 	put_unused_fd(fd);
494 	return PTR_ERR(newfile);
495 }
496 
497 /**
498  *	sock_from_file - Return the &socket bounded to @file.
499  *	@file: file
500  *
501  *	On failure returns %NULL.
502  */
503 
504 struct socket *sock_from_file(struct file *file)
505 {
506 	if (file->f_op == &socket_file_ops)
507 		return file->private_data;	/* set in sock_map_fd */
508 
509 	return NULL;
510 }
511 EXPORT_SYMBOL(sock_from_file);
512 
513 /**
514  *	sockfd_lookup - Go from a file number to its socket slot
515  *	@fd: file handle
516  *	@err: pointer to an error code return
517  *
518  *	The file handle passed in is locked and the socket it is bound
519  *	to is returned. If an error occurs the err pointer is overwritten
520  *	with a negative errno code and NULL is returned. The function checks
521  *	for both invalid handles and passing a handle which is not a socket.
522  *
523  *	On a success the socket object pointer is returned.
524  */
525 
526 struct socket *sockfd_lookup(int fd, int *err)
527 {
528 	struct file *file;
529 	struct socket *sock;
530 
531 	file = fget(fd);
532 	if (!file) {
533 		*err = -EBADF;
534 		return NULL;
535 	}
536 
537 	sock = sock_from_file(file);
538 	if (!sock) {
539 		*err = -ENOTSOCK;
540 		fput(file);
541 	}
542 	return sock;
543 }
544 EXPORT_SYMBOL(sockfd_lookup);
545 
546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547 {
548 	struct fd f = fdget(fd);
549 	struct socket *sock;
550 
551 	*err = -EBADF;
552 	if (f.file) {
553 		sock = sock_from_file(f.file);
554 		if (likely(sock)) {
555 			*fput_needed = f.flags & FDPUT_FPUT;
556 			return sock;
557 		}
558 		*err = -ENOTSOCK;
559 		fdput(f);
560 	}
561 	return NULL;
562 }
563 
564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565 				size_t size)
566 {
567 	ssize_t len;
568 	ssize_t used = 0;
569 
570 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571 	if (len < 0)
572 		return len;
573 	used += len;
574 	if (buffer) {
575 		if (size < used)
576 			return -ERANGE;
577 		buffer += len;
578 	}
579 
580 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581 	used += len;
582 	if (buffer) {
583 		if (size < used)
584 			return -ERANGE;
585 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586 		buffer += len;
587 	}
588 
589 	return used;
590 }
591 
592 static int sockfs_setattr(struct user_namespace *mnt_userns,
593 			  struct dentry *dentry, struct iattr *iattr)
594 {
595 	int err = simple_setattr(&init_user_ns, dentry, iattr);
596 
597 	if (!err && (iattr->ia_valid & ATTR_UID)) {
598 		struct socket *sock = SOCKET_I(d_inode(dentry));
599 
600 		if (sock->sk)
601 			sock->sk->sk_uid = iattr->ia_uid;
602 		else
603 			err = -ENOENT;
604 	}
605 
606 	return err;
607 }
608 
609 static const struct inode_operations sockfs_inode_ops = {
610 	.listxattr = sockfs_listxattr,
611 	.setattr = sockfs_setattr,
612 };
613 
614 /**
615  *	sock_alloc - allocate a socket
616  *
617  *	Allocate a new inode and socket object. The two are bound together
618  *	and initialised. The socket is then returned. If we are out of inodes
619  *	NULL is returned. This functions uses GFP_KERNEL internally.
620  */
621 
622 struct socket *sock_alloc(void)
623 {
624 	struct inode *inode;
625 	struct socket *sock;
626 
627 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
628 	if (!inode)
629 		return NULL;
630 
631 	sock = SOCKET_I(inode);
632 
633 	inode->i_ino = get_next_ino();
634 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 	inode->i_uid = current_fsuid();
636 	inode->i_gid = current_fsgid();
637 	inode->i_op = &sockfs_inode_ops;
638 
639 	return sock;
640 }
641 EXPORT_SYMBOL(sock_alloc);
642 
643 static void __sock_release(struct socket *sock, struct inode *inode)
644 {
645 	if (sock->ops) {
646 		struct module *owner = sock->ops->owner;
647 
648 		if (inode)
649 			inode_lock(inode);
650 		sock->ops->release(sock);
651 		sock->sk = NULL;
652 		if (inode)
653 			inode_unlock(inode);
654 		sock->ops = NULL;
655 		module_put(owner);
656 	}
657 
658 	if (sock->wq.fasync_list)
659 		pr_err("%s: fasync list not empty!\n", __func__);
660 
661 	if (!sock->file) {
662 		iput(SOCK_INODE(sock));
663 		return;
664 	}
665 	sock->file = NULL;
666 }
667 
668 /**
669  *	sock_release - close a socket
670  *	@sock: socket to close
671  *
672  *	The socket is released from the protocol stack if it has a release
673  *	callback, and the inode is then released if the socket is bound to
674  *	an inode not a file.
675  */
676 void sock_release(struct socket *sock)
677 {
678 	__sock_release(sock, NULL);
679 }
680 EXPORT_SYMBOL(sock_release);
681 
682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683 {
684 	u8 flags = *tx_flags;
685 
686 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
687 		flags |= SKBTX_HW_TSTAMP;
688 
689 		/* PTP hardware clocks can provide a free running cycle counter
690 		 * as a time base for virtual clocks. Tell driver to use the
691 		 * free running cycle counter for timestamp if socket is bound
692 		 * to virtual clock.
693 		 */
694 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
695 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
696 	}
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
699 		flags |= SKBTX_SW_TSTAMP;
700 
701 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
702 		flags |= SKBTX_SCHED_TSTAMP;
703 
704 	*tx_flags = flags;
705 }
706 EXPORT_SYMBOL(__sock_tx_timestamp);
707 
708 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
709 					   size_t));
710 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
711 					    size_t));
712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
713 {
714 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
715 				     inet_sendmsg, sock, msg,
716 				     msg_data_left(msg));
717 	BUG_ON(ret == -EIOCBQUEUED);
718 	return ret;
719 }
720 
721 /**
722  *	sock_sendmsg - send a message through @sock
723  *	@sock: socket
724  *	@msg: message to send
725  *
726  *	Sends @msg through @sock, passing through LSM.
727  *	Returns the number of bytes sent, or an error code.
728  */
729 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
730 {
731 	int err = security_socket_sendmsg(sock, msg,
732 					  msg_data_left(msg));
733 
734 	return err ?: sock_sendmsg_nosec(sock, msg);
735 }
736 EXPORT_SYMBOL(sock_sendmsg);
737 
738 /**
739  *	kernel_sendmsg - send a message through @sock (kernel-space)
740  *	@sock: socket
741  *	@msg: message header
742  *	@vec: kernel vec
743  *	@num: vec array length
744  *	@size: total message data size
745  *
746  *	Builds the message data with @vec and sends it through @sock.
747  *	Returns the number of bytes sent, or an error code.
748  */
749 
750 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
751 		   struct kvec *vec, size_t num, size_t size)
752 {
753 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
754 	return sock_sendmsg(sock, msg);
755 }
756 EXPORT_SYMBOL(kernel_sendmsg);
757 
758 /**
759  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
760  *	@sk: sock
761  *	@msg: message header
762  *	@vec: output s/g array
763  *	@num: output s/g array length
764  *	@size: total message data size
765  *
766  *	Builds the message data with @vec and sends it through @sock.
767  *	Returns the number of bytes sent, or an error code.
768  *	Caller must hold @sk.
769  */
770 
771 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
772 			  struct kvec *vec, size_t num, size_t size)
773 {
774 	struct socket *sock = sk->sk_socket;
775 
776 	if (!sock->ops->sendmsg_locked)
777 		return sock_no_sendmsg_locked(sk, msg, size);
778 
779 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
780 
781 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
782 }
783 EXPORT_SYMBOL(kernel_sendmsg_locked);
784 
785 static bool skb_is_err_queue(const struct sk_buff *skb)
786 {
787 	/* pkt_type of skbs enqueued on the error queue are set to
788 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
789 	 * in recvmsg, since skbs received on a local socket will never
790 	 * have a pkt_type of PACKET_OUTGOING.
791 	 */
792 	return skb->pkt_type == PACKET_OUTGOING;
793 }
794 
795 /* On transmit, software and hardware timestamps are returned independently.
796  * As the two skb clones share the hardware timestamp, which may be updated
797  * before the software timestamp is received, a hardware TX timestamp may be
798  * returned only if there is no software TX timestamp. Ignore false software
799  * timestamps, which may be made in the __sock_recv_timestamp() call when the
800  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
801  * hardware timestamp.
802  */
803 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
804 {
805 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
806 }
807 
808 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
809 {
810 	struct scm_ts_pktinfo ts_pktinfo;
811 	struct net_device *orig_dev;
812 
813 	if (!skb_mac_header_was_set(skb))
814 		return;
815 
816 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
817 
818 	rcu_read_lock();
819 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
820 	if (orig_dev)
821 		ts_pktinfo.if_index = orig_dev->ifindex;
822 	rcu_read_unlock();
823 
824 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
825 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
826 		 sizeof(ts_pktinfo), &ts_pktinfo);
827 }
828 
829 /*
830  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
831  */
832 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
833 	struct sk_buff *skb)
834 {
835 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
836 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
837 	struct scm_timestamping_internal tss;
838 
839 	int empty = 1, false_tstamp = 0;
840 	struct skb_shared_hwtstamps *shhwtstamps =
841 		skb_hwtstamps(skb);
842 	ktime_t hwtstamp;
843 
844 	/* Race occurred between timestamp enabling and packet
845 	   receiving.  Fill in the current time for now. */
846 	if (need_software_tstamp && skb->tstamp == 0) {
847 		__net_timestamp(skb);
848 		false_tstamp = 1;
849 	}
850 
851 	if (need_software_tstamp) {
852 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
853 			if (new_tstamp) {
854 				struct __kernel_sock_timeval tv;
855 
856 				skb_get_new_timestamp(skb, &tv);
857 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
858 					 sizeof(tv), &tv);
859 			} else {
860 				struct __kernel_old_timeval tv;
861 
862 				skb_get_timestamp(skb, &tv);
863 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
864 					 sizeof(tv), &tv);
865 			}
866 		} else {
867 			if (new_tstamp) {
868 				struct __kernel_timespec ts;
869 
870 				skb_get_new_timestampns(skb, &ts);
871 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
872 					 sizeof(ts), &ts);
873 			} else {
874 				struct __kernel_old_timespec ts;
875 
876 				skb_get_timestampns(skb, &ts);
877 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
878 					 sizeof(ts), &ts);
879 			}
880 		}
881 	}
882 
883 	memset(&tss, 0, sizeof(tss));
884 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
885 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
886 		empty = 0;
887 	if (shhwtstamps &&
888 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
889 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
890 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
891 			hwtstamp = ptp_convert_timestamp(shhwtstamps,
892 							 sk->sk_bind_phc);
893 		else
894 			hwtstamp = shhwtstamps->hwtstamp;
895 
896 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
897 			empty = 0;
898 
899 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
900 			    !skb_is_err_queue(skb))
901 				put_ts_pktinfo(msg, skb);
902 		}
903 	}
904 	if (!empty) {
905 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
906 			put_cmsg_scm_timestamping64(msg, &tss);
907 		else
908 			put_cmsg_scm_timestamping(msg, &tss);
909 
910 		if (skb_is_err_queue(skb) && skb->len &&
911 		    SKB_EXT_ERR(skb)->opt_stats)
912 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
913 				 skb->len, skb->data);
914 	}
915 }
916 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
917 
918 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
919 	struct sk_buff *skb)
920 {
921 	int ack;
922 
923 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
924 		return;
925 	if (!skb->wifi_acked_valid)
926 		return;
927 
928 	ack = skb->wifi_acked;
929 
930 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
931 }
932 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
933 
934 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
935 				   struct sk_buff *skb)
936 {
937 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
938 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
939 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
940 }
941 
942 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
943 			   struct sk_buff *skb)
944 {
945 	if (sock_flag(sk, SOCK_RCVMARK) && skb)
946 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32),
947 			 &skb->mark);
948 }
949 
950 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
951 		       struct sk_buff *skb)
952 {
953 	sock_recv_timestamp(msg, sk, skb);
954 	sock_recv_drops(msg, sk, skb);
955 	sock_recv_mark(msg, sk, skb);
956 }
957 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
958 
959 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
960 					   size_t, int));
961 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
962 					    size_t, int));
963 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
964 				     int flags)
965 {
966 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
967 				  inet_recvmsg, sock, msg, msg_data_left(msg),
968 				  flags);
969 }
970 
971 /**
972  *	sock_recvmsg - receive a message from @sock
973  *	@sock: socket
974  *	@msg: message to receive
975  *	@flags: message flags
976  *
977  *	Receives @msg from @sock, passing through LSM. Returns the total number
978  *	of bytes received, or an error.
979  */
980 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
981 {
982 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
983 
984 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
985 }
986 EXPORT_SYMBOL(sock_recvmsg);
987 
988 /**
989  *	kernel_recvmsg - Receive a message from a socket (kernel space)
990  *	@sock: The socket to receive the message from
991  *	@msg: Received message
992  *	@vec: Input s/g array for message data
993  *	@num: Size of input s/g array
994  *	@size: Number of bytes to read
995  *	@flags: Message flags (MSG_DONTWAIT, etc...)
996  *
997  *	On return the msg structure contains the scatter/gather array passed in the
998  *	vec argument. The array is modified so that it consists of the unfilled
999  *	portion of the original array.
1000  *
1001  *	The returned value is the total number of bytes received, or an error.
1002  */
1003 
1004 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1005 		   struct kvec *vec, size_t num, size_t size, int flags)
1006 {
1007 	msg->msg_control_is_user = false;
1008 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
1009 	return sock_recvmsg(sock, msg, flags);
1010 }
1011 EXPORT_SYMBOL(kernel_recvmsg);
1012 
1013 static ssize_t sock_sendpage(struct file *file, struct page *page,
1014 			     int offset, size_t size, loff_t *ppos, int more)
1015 {
1016 	struct socket *sock;
1017 	int flags;
1018 
1019 	sock = file->private_data;
1020 
1021 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1022 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1023 	flags |= more;
1024 
1025 	return kernel_sendpage(sock, page, offset, size, flags);
1026 }
1027 
1028 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1029 				struct pipe_inode_info *pipe, size_t len,
1030 				unsigned int flags)
1031 {
1032 	struct socket *sock = file->private_data;
1033 
1034 	if (unlikely(!sock->ops->splice_read))
1035 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1036 
1037 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1038 }
1039 
1040 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1041 {
1042 	struct file *file = iocb->ki_filp;
1043 	struct socket *sock = file->private_data;
1044 	struct msghdr msg = {.msg_iter = *to,
1045 			     .msg_iocb = iocb};
1046 	ssize_t res;
1047 
1048 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1049 		msg.msg_flags = MSG_DONTWAIT;
1050 
1051 	if (iocb->ki_pos != 0)
1052 		return -ESPIPE;
1053 
1054 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1055 		return 0;
1056 
1057 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1058 	*to = msg.msg_iter;
1059 	return res;
1060 }
1061 
1062 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1063 {
1064 	struct file *file = iocb->ki_filp;
1065 	struct socket *sock = file->private_data;
1066 	struct msghdr msg = {.msg_iter = *from,
1067 			     .msg_iocb = iocb};
1068 	ssize_t res;
1069 
1070 	if (iocb->ki_pos != 0)
1071 		return -ESPIPE;
1072 
1073 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1074 		msg.msg_flags = MSG_DONTWAIT;
1075 
1076 	if (sock->type == SOCK_SEQPACKET)
1077 		msg.msg_flags |= MSG_EOR;
1078 
1079 	res = sock_sendmsg(sock, &msg);
1080 	*from = msg.msg_iter;
1081 	return res;
1082 }
1083 
1084 /*
1085  * Atomic setting of ioctl hooks to avoid race
1086  * with module unload.
1087  */
1088 
1089 static DEFINE_MUTEX(br_ioctl_mutex);
1090 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1091 			    unsigned int cmd, struct ifreq *ifr,
1092 			    void __user *uarg);
1093 
1094 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1095 			     unsigned int cmd, struct ifreq *ifr,
1096 			     void __user *uarg))
1097 {
1098 	mutex_lock(&br_ioctl_mutex);
1099 	br_ioctl_hook = hook;
1100 	mutex_unlock(&br_ioctl_mutex);
1101 }
1102 EXPORT_SYMBOL(brioctl_set);
1103 
1104 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1105 		  struct ifreq *ifr, void __user *uarg)
1106 {
1107 	int err = -ENOPKG;
1108 
1109 	if (!br_ioctl_hook)
1110 		request_module("bridge");
1111 
1112 	mutex_lock(&br_ioctl_mutex);
1113 	if (br_ioctl_hook)
1114 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1115 	mutex_unlock(&br_ioctl_mutex);
1116 
1117 	return err;
1118 }
1119 
1120 static DEFINE_MUTEX(vlan_ioctl_mutex);
1121 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1122 
1123 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1124 {
1125 	mutex_lock(&vlan_ioctl_mutex);
1126 	vlan_ioctl_hook = hook;
1127 	mutex_unlock(&vlan_ioctl_mutex);
1128 }
1129 EXPORT_SYMBOL(vlan_ioctl_set);
1130 
1131 static long sock_do_ioctl(struct net *net, struct socket *sock,
1132 			  unsigned int cmd, unsigned long arg)
1133 {
1134 	struct ifreq ifr;
1135 	bool need_copyout;
1136 	int err;
1137 	void __user *argp = (void __user *)arg;
1138 	void __user *data;
1139 
1140 	err = sock->ops->ioctl(sock, cmd, arg);
1141 
1142 	/*
1143 	 * If this ioctl is unknown try to hand it down
1144 	 * to the NIC driver.
1145 	 */
1146 	if (err != -ENOIOCTLCMD)
1147 		return err;
1148 
1149 	if (!is_socket_ioctl_cmd(cmd))
1150 		return -ENOTTY;
1151 
1152 	if (get_user_ifreq(&ifr, &data, argp))
1153 		return -EFAULT;
1154 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1155 	if (!err && need_copyout)
1156 		if (put_user_ifreq(&ifr, argp))
1157 			return -EFAULT;
1158 
1159 	return err;
1160 }
1161 
1162 /*
1163  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1164  *	what to do with it - that's up to the protocol still.
1165  */
1166 
1167 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1168 {
1169 	struct socket *sock;
1170 	struct sock *sk;
1171 	void __user *argp = (void __user *)arg;
1172 	int pid, err;
1173 	struct net *net;
1174 
1175 	sock = file->private_data;
1176 	sk = sock->sk;
1177 	net = sock_net(sk);
1178 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1179 		struct ifreq ifr;
1180 		void __user *data;
1181 		bool need_copyout;
1182 		if (get_user_ifreq(&ifr, &data, argp))
1183 			return -EFAULT;
1184 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1185 		if (!err && need_copyout)
1186 			if (put_user_ifreq(&ifr, argp))
1187 				return -EFAULT;
1188 	} else
1189 #ifdef CONFIG_WEXT_CORE
1190 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1191 		err = wext_handle_ioctl(net, cmd, argp);
1192 	} else
1193 #endif
1194 		switch (cmd) {
1195 		case FIOSETOWN:
1196 		case SIOCSPGRP:
1197 			err = -EFAULT;
1198 			if (get_user(pid, (int __user *)argp))
1199 				break;
1200 			err = f_setown(sock->file, pid, 1);
1201 			break;
1202 		case FIOGETOWN:
1203 		case SIOCGPGRP:
1204 			err = put_user(f_getown(sock->file),
1205 				       (int __user *)argp);
1206 			break;
1207 		case SIOCGIFBR:
1208 		case SIOCSIFBR:
1209 		case SIOCBRADDBR:
1210 		case SIOCBRDELBR:
1211 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1212 			break;
1213 		case SIOCGIFVLAN:
1214 		case SIOCSIFVLAN:
1215 			err = -ENOPKG;
1216 			if (!vlan_ioctl_hook)
1217 				request_module("8021q");
1218 
1219 			mutex_lock(&vlan_ioctl_mutex);
1220 			if (vlan_ioctl_hook)
1221 				err = vlan_ioctl_hook(net, argp);
1222 			mutex_unlock(&vlan_ioctl_mutex);
1223 			break;
1224 		case SIOCGSKNS:
1225 			err = -EPERM;
1226 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1227 				break;
1228 
1229 			err = open_related_ns(&net->ns, get_net_ns);
1230 			break;
1231 		case SIOCGSTAMP_OLD:
1232 		case SIOCGSTAMPNS_OLD:
1233 			if (!sock->ops->gettstamp) {
1234 				err = -ENOIOCTLCMD;
1235 				break;
1236 			}
1237 			err = sock->ops->gettstamp(sock, argp,
1238 						   cmd == SIOCGSTAMP_OLD,
1239 						   !IS_ENABLED(CONFIG_64BIT));
1240 			break;
1241 		case SIOCGSTAMP_NEW:
1242 		case SIOCGSTAMPNS_NEW:
1243 			if (!sock->ops->gettstamp) {
1244 				err = -ENOIOCTLCMD;
1245 				break;
1246 			}
1247 			err = sock->ops->gettstamp(sock, argp,
1248 						   cmd == SIOCGSTAMP_NEW,
1249 						   false);
1250 			break;
1251 
1252 		case SIOCGIFCONF:
1253 			err = dev_ifconf(net, argp);
1254 			break;
1255 
1256 		default:
1257 			err = sock_do_ioctl(net, sock, cmd, arg);
1258 			break;
1259 		}
1260 	return err;
1261 }
1262 
1263 /**
1264  *	sock_create_lite - creates a socket
1265  *	@family: protocol family (AF_INET, ...)
1266  *	@type: communication type (SOCK_STREAM, ...)
1267  *	@protocol: protocol (0, ...)
1268  *	@res: new socket
1269  *
1270  *	Creates a new socket and assigns it to @res, passing through LSM.
1271  *	The new socket initialization is not complete, see kernel_accept().
1272  *	Returns 0 or an error. On failure @res is set to %NULL.
1273  *	This function internally uses GFP_KERNEL.
1274  */
1275 
1276 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1277 {
1278 	int err;
1279 	struct socket *sock = NULL;
1280 
1281 	err = security_socket_create(family, type, protocol, 1);
1282 	if (err)
1283 		goto out;
1284 
1285 	sock = sock_alloc();
1286 	if (!sock) {
1287 		err = -ENOMEM;
1288 		goto out;
1289 	}
1290 
1291 	sock->type = type;
1292 	err = security_socket_post_create(sock, family, type, protocol, 1);
1293 	if (err)
1294 		goto out_release;
1295 
1296 out:
1297 	*res = sock;
1298 	return err;
1299 out_release:
1300 	sock_release(sock);
1301 	sock = NULL;
1302 	goto out;
1303 }
1304 EXPORT_SYMBOL(sock_create_lite);
1305 
1306 /* No kernel lock held - perfect */
1307 static __poll_t sock_poll(struct file *file, poll_table *wait)
1308 {
1309 	struct socket *sock = file->private_data;
1310 	__poll_t events = poll_requested_events(wait), flag = 0;
1311 
1312 	if (!sock->ops->poll)
1313 		return 0;
1314 
1315 	if (sk_can_busy_loop(sock->sk)) {
1316 		/* poll once if requested by the syscall */
1317 		if (events & POLL_BUSY_LOOP)
1318 			sk_busy_loop(sock->sk, 1);
1319 
1320 		/* if this socket can poll_ll, tell the system call */
1321 		flag = POLL_BUSY_LOOP;
1322 	}
1323 
1324 	return sock->ops->poll(file, sock, wait) | flag;
1325 }
1326 
1327 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1328 {
1329 	struct socket *sock = file->private_data;
1330 
1331 	return sock->ops->mmap(file, sock, vma);
1332 }
1333 
1334 static int sock_close(struct inode *inode, struct file *filp)
1335 {
1336 	__sock_release(SOCKET_I(inode), inode);
1337 	return 0;
1338 }
1339 
1340 /*
1341  *	Update the socket async list
1342  *
1343  *	Fasync_list locking strategy.
1344  *
1345  *	1. fasync_list is modified only under process context socket lock
1346  *	   i.e. under semaphore.
1347  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1348  *	   or under socket lock
1349  */
1350 
1351 static int sock_fasync(int fd, struct file *filp, int on)
1352 {
1353 	struct socket *sock = filp->private_data;
1354 	struct sock *sk = sock->sk;
1355 	struct socket_wq *wq = &sock->wq;
1356 
1357 	if (sk == NULL)
1358 		return -EINVAL;
1359 
1360 	lock_sock(sk);
1361 	fasync_helper(fd, filp, on, &wq->fasync_list);
1362 
1363 	if (!wq->fasync_list)
1364 		sock_reset_flag(sk, SOCK_FASYNC);
1365 	else
1366 		sock_set_flag(sk, SOCK_FASYNC);
1367 
1368 	release_sock(sk);
1369 	return 0;
1370 }
1371 
1372 /* This function may be called only under rcu_lock */
1373 
1374 int sock_wake_async(struct socket_wq *wq, int how, int band)
1375 {
1376 	if (!wq || !wq->fasync_list)
1377 		return -1;
1378 
1379 	switch (how) {
1380 	case SOCK_WAKE_WAITD:
1381 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1382 			break;
1383 		goto call_kill;
1384 	case SOCK_WAKE_SPACE:
1385 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1386 			break;
1387 		fallthrough;
1388 	case SOCK_WAKE_IO:
1389 call_kill:
1390 		kill_fasync(&wq->fasync_list, SIGIO, band);
1391 		break;
1392 	case SOCK_WAKE_URG:
1393 		kill_fasync(&wq->fasync_list, SIGURG, band);
1394 	}
1395 
1396 	return 0;
1397 }
1398 EXPORT_SYMBOL(sock_wake_async);
1399 
1400 /**
1401  *	__sock_create - creates a socket
1402  *	@net: net namespace
1403  *	@family: protocol family (AF_INET, ...)
1404  *	@type: communication type (SOCK_STREAM, ...)
1405  *	@protocol: protocol (0, ...)
1406  *	@res: new socket
1407  *	@kern: boolean for kernel space sockets
1408  *
1409  *	Creates a new socket and assigns it to @res, passing through LSM.
1410  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1411  *	be set to true if the socket resides in kernel space.
1412  *	This function internally uses GFP_KERNEL.
1413  */
1414 
1415 int __sock_create(struct net *net, int family, int type, int protocol,
1416 			 struct socket **res, int kern)
1417 {
1418 	int err;
1419 	struct socket *sock;
1420 	const struct net_proto_family *pf;
1421 
1422 	/*
1423 	 *      Check protocol is in range
1424 	 */
1425 	if (family < 0 || family >= NPROTO)
1426 		return -EAFNOSUPPORT;
1427 	if (type < 0 || type >= SOCK_MAX)
1428 		return -EINVAL;
1429 
1430 	/* Compatibility.
1431 
1432 	   This uglymoron is moved from INET layer to here to avoid
1433 	   deadlock in module load.
1434 	 */
1435 	if (family == PF_INET && type == SOCK_PACKET) {
1436 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1437 			     current->comm);
1438 		family = PF_PACKET;
1439 	}
1440 
1441 	err = security_socket_create(family, type, protocol, kern);
1442 	if (err)
1443 		return err;
1444 
1445 	/*
1446 	 *	Allocate the socket and allow the family to set things up. if
1447 	 *	the protocol is 0, the family is instructed to select an appropriate
1448 	 *	default.
1449 	 */
1450 	sock = sock_alloc();
1451 	if (!sock) {
1452 		net_warn_ratelimited("socket: no more sockets\n");
1453 		return -ENFILE;	/* Not exactly a match, but its the
1454 				   closest posix thing */
1455 	}
1456 
1457 	sock->type = type;
1458 
1459 #ifdef CONFIG_MODULES
1460 	/* Attempt to load a protocol module if the find failed.
1461 	 *
1462 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1463 	 * requested real, full-featured networking support upon configuration.
1464 	 * Otherwise module support will break!
1465 	 */
1466 	if (rcu_access_pointer(net_families[family]) == NULL)
1467 		request_module("net-pf-%d", family);
1468 #endif
1469 
1470 	rcu_read_lock();
1471 	pf = rcu_dereference(net_families[family]);
1472 	err = -EAFNOSUPPORT;
1473 	if (!pf)
1474 		goto out_release;
1475 
1476 	/*
1477 	 * We will call the ->create function, that possibly is in a loadable
1478 	 * module, so we have to bump that loadable module refcnt first.
1479 	 */
1480 	if (!try_module_get(pf->owner))
1481 		goto out_release;
1482 
1483 	/* Now protected by module ref count */
1484 	rcu_read_unlock();
1485 
1486 	err = pf->create(net, sock, protocol, kern);
1487 	if (err < 0)
1488 		goto out_module_put;
1489 
1490 	/*
1491 	 * Now to bump the refcnt of the [loadable] module that owns this
1492 	 * socket at sock_release time we decrement its refcnt.
1493 	 */
1494 	if (!try_module_get(sock->ops->owner))
1495 		goto out_module_busy;
1496 
1497 	/*
1498 	 * Now that we're done with the ->create function, the [loadable]
1499 	 * module can have its refcnt decremented
1500 	 */
1501 	module_put(pf->owner);
1502 	err = security_socket_post_create(sock, family, type, protocol, kern);
1503 	if (err)
1504 		goto out_sock_release;
1505 	*res = sock;
1506 
1507 	return 0;
1508 
1509 out_module_busy:
1510 	err = -EAFNOSUPPORT;
1511 out_module_put:
1512 	sock->ops = NULL;
1513 	module_put(pf->owner);
1514 out_sock_release:
1515 	sock_release(sock);
1516 	return err;
1517 
1518 out_release:
1519 	rcu_read_unlock();
1520 	goto out_sock_release;
1521 }
1522 EXPORT_SYMBOL(__sock_create);
1523 
1524 /**
1525  *	sock_create - creates a socket
1526  *	@family: protocol family (AF_INET, ...)
1527  *	@type: communication type (SOCK_STREAM, ...)
1528  *	@protocol: protocol (0, ...)
1529  *	@res: new socket
1530  *
1531  *	A wrapper around __sock_create().
1532  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1533  */
1534 
1535 int sock_create(int family, int type, int protocol, struct socket **res)
1536 {
1537 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1538 }
1539 EXPORT_SYMBOL(sock_create);
1540 
1541 /**
1542  *	sock_create_kern - creates a socket (kernel space)
1543  *	@net: net namespace
1544  *	@family: protocol family (AF_INET, ...)
1545  *	@type: communication type (SOCK_STREAM, ...)
1546  *	@protocol: protocol (0, ...)
1547  *	@res: new socket
1548  *
1549  *	A wrapper around __sock_create().
1550  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1551  */
1552 
1553 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1554 {
1555 	return __sock_create(net, family, type, protocol, res, 1);
1556 }
1557 EXPORT_SYMBOL(sock_create_kern);
1558 
1559 int __sys_socket(int family, int type, int protocol)
1560 {
1561 	int retval;
1562 	struct socket *sock;
1563 	int flags;
1564 
1565 	/* Check the SOCK_* constants for consistency.  */
1566 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1567 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1568 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1569 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1570 
1571 	flags = type & ~SOCK_TYPE_MASK;
1572 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1573 		return -EINVAL;
1574 	type &= SOCK_TYPE_MASK;
1575 
1576 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1577 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1578 
1579 	retval = sock_create(family, type, protocol, &sock);
1580 	if (retval < 0)
1581 		return retval;
1582 
1583 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1584 }
1585 
1586 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1587 {
1588 	return __sys_socket(family, type, protocol);
1589 }
1590 
1591 /*
1592  *	Create a pair of connected sockets.
1593  */
1594 
1595 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1596 {
1597 	struct socket *sock1, *sock2;
1598 	int fd1, fd2, err;
1599 	struct file *newfile1, *newfile2;
1600 	int flags;
1601 
1602 	flags = type & ~SOCK_TYPE_MASK;
1603 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1604 		return -EINVAL;
1605 	type &= SOCK_TYPE_MASK;
1606 
1607 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1608 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1609 
1610 	/*
1611 	 * reserve descriptors and make sure we won't fail
1612 	 * to return them to userland.
1613 	 */
1614 	fd1 = get_unused_fd_flags(flags);
1615 	if (unlikely(fd1 < 0))
1616 		return fd1;
1617 
1618 	fd2 = get_unused_fd_flags(flags);
1619 	if (unlikely(fd2 < 0)) {
1620 		put_unused_fd(fd1);
1621 		return fd2;
1622 	}
1623 
1624 	err = put_user(fd1, &usockvec[0]);
1625 	if (err)
1626 		goto out;
1627 
1628 	err = put_user(fd2, &usockvec[1]);
1629 	if (err)
1630 		goto out;
1631 
1632 	/*
1633 	 * Obtain the first socket and check if the underlying protocol
1634 	 * supports the socketpair call.
1635 	 */
1636 
1637 	err = sock_create(family, type, protocol, &sock1);
1638 	if (unlikely(err < 0))
1639 		goto out;
1640 
1641 	err = sock_create(family, type, protocol, &sock2);
1642 	if (unlikely(err < 0)) {
1643 		sock_release(sock1);
1644 		goto out;
1645 	}
1646 
1647 	err = security_socket_socketpair(sock1, sock2);
1648 	if (unlikely(err)) {
1649 		sock_release(sock2);
1650 		sock_release(sock1);
1651 		goto out;
1652 	}
1653 
1654 	err = sock1->ops->socketpair(sock1, sock2);
1655 	if (unlikely(err < 0)) {
1656 		sock_release(sock2);
1657 		sock_release(sock1);
1658 		goto out;
1659 	}
1660 
1661 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1662 	if (IS_ERR(newfile1)) {
1663 		err = PTR_ERR(newfile1);
1664 		sock_release(sock2);
1665 		goto out;
1666 	}
1667 
1668 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1669 	if (IS_ERR(newfile2)) {
1670 		err = PTR_ERR(newfile2);
1671 		fput(newfile1);
1672 		goto out;
1673 	}
1674 
1675 	audit_fd_pair(fd1, fd2);
1676 
1677 	fd_install(fd1, newfile1);
1678 	fd_install(fd2, newfile2);
1679 	return 0;
1680 
1681 out:
1682 	put_unused_fd(fd2);
1683 	put_unused_fd(fd1);
1684 	return err;
1685 }
1686 
1687 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1688 		int __user *, usockvec)
1689 {
1690 	return __sys_socketpair(family, type, protocol, usockvec);
1691 }
1692 
1693 /*
1694  *	Bind a name to a socket. Nothing much to do here since it's
1695  *	the protocol's responsibility to handle the local address.
1696  *
1697  *	We move the socket address to kernel space before we call
1698  *	the protocol layer (having also checked the address is ok).
1699  */
1700 
1701 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1702 {
1703 	struct socket *sock;
1704 	struct sockaddr_storage address;
1705 	int err, fput_needed;
1706 
1707 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 	if (sock) {
1709 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1710 		if (!err) {
1711 			err = security_socket_bind(sock,
1712 						   (struct sockaddr *)&address,
1713 						   addrlen);
1714 			if (!err)
1715 				err = sock->ops->bind(sock,
1716 						      (struct sockaddr *)
1717 						      &address, addrlen);
1718 		}
1719 		fput_light(sock->file, fput_needed);
1720 	}
1721 	return err;
1722 }
1723 
1724 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1725 {
1726 	return __sys_bind(fd, umyaddr, addrlen);
1727 }
1728 
1729 /*
1730  *	Perform a listen. Basically, we allow the protocol to do anything
1731  *	necessary for a listen, and if that works, we mark the socket as
1732  *	ready for listening.
1733  */
1734 
1735 int __sys_listen(int fd, int backlog)
1736 {
1737 	struct socket *sock;
1738 	int err, fput_needed;
1739 	int somaxconn;
1740 
1741 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1742 	if (sock) {
1743 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1744 		if ((unsigned int)backlog > somaxconn)
1745 			backlog = somaxconn;
1746 
1747 		err = security_socket_listen(sock, backlog);
1748 		if (!err)
1749 			err = sock->ops->listen(sock, backlog);
1750 
1751 		fput_light(sock->file, fput_needed);
1752 	}
1753 	return err;
1754 }
1755 
1756 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1757 {
1758 	return __sys_listen(fd, backlog);
1759 }
1760 
1761 struct file *do_accept(struct file *file, unsigned file_flags,
1762 		       struct sockaddr __user *upeer_sockaddr,
1763 		       int __user *upeer_addrlen, int flags)
1764 {
1765 	struct socket *sock, *newsock;
1766 	struct file *newfile;
1767 	int err, len;
1768 	struct sockaddr_storage address;
1769 
1770 	sock = sock_from_file(file);
1771 	if (!sock)
1772 		return ERR_PTR(-ENOTSOCK);
1773 
1774 	newsock = sock_alloc();
1775 	if (!newsock)
1776 		return ERR_PTR(-ENFILE);
1777 
1778 	newsock->type = sock->type;
1779 	newsock->ops = sock->ops;
1780 
1781 	/*
1782 	 * We don't need try_module_get here, as the listening socket (sock)
1783 	 * has the protocol module (sock->ops->owner) held.
1784 	 */
1785 	__module_get(newsock->ops->owner);
1786 
1787 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1788 	if (IS_ERR(newfile))
1789 		return newfile;
1790 
1791 	err = security_socket_accept(sock, newsock);
1792 	if (err)
1793 		goto out_fd;
1794 
1795 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1796 					false);
1797 	if (err < 0)
1798 		goto out_fd;
1799 
1800 	if (upeer_sockaddr) {
1801 		len = newsock->ops->getname(newsock,
1802 					(struct sockaddr *)&address, 2);
1803 		if (len < 0) {
1804 			err = -ECONNABORTED;
1805 			goto out_fd;
1806 		}
1807 		err = move_addr_to_user(&address,
1808 					len, upeer_sockaddr, upeer_addrlen);
1809 		if (err < 0)
1810 			goto out_fd;
1811 	}
1812 
1813 	/* File flags are not inherited via accept() unlike another OSes. */
1814 	return newfile;
1815 out_fd:
1816 	fput(newfile);
1817 	return ERR_PTR(err);
1818 }
1819 
1820 int __sys_accept4_file(struct file *file, unsigned file_flags,
1821 		       struct sockaddr __user *upeer_sockaddr,
1822 		       int __user *upeer_addrlen, int flags,
1823 		       unsigned long nofile)
1824 {
1825 	struct file *newfile;
1826 	int newfd;
1827 
1828 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1829 		return -EINVAL;
1830 
1831 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1832 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1833 
1834 	newfd = __get_unused_fd_flags(flags, nofile);
1835 	if (unlikely(newfd < 0))
1836 		return newfd;
1837 
1838 	newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1839 			    flags);
1840 	if (IS_ERR(newfile)) {
1841 		put_unused_fd(newfd);
1842 		return PTR_ERR(newfile);
1843 	}
1844 	fd_install(newfd, newfile);
1845 	return newfd;
1846 }
1847 
1848 /*
1849  *	For accept, we attempt to create a new socket, set up the link
1850  *	with the client, wake up the client, then return the new
1851  *	connected fd. We collect the address of the connector in kernel
1852  *	space and move it to user at the very end. This is unclean because
1853  *	we open the socket then return an error.
1854  *
1855  *	1003.1g adds the ability to recvmsg() to query connection pending
1856  *	status to recvmsg. We need to add that support in a way thats
1857  *	clean when we restructure accept also.
1858  */
1859 
1860 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1861 		  int __user *upeer_addrlen, int flags)
1862 {
1863 	int ret = -EBADF;
1864 	struct fd f;
1865 
1866 	f = fdget(fd);
1867 	if (f.file) {
1868 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1869 						upeer_addrlen, flags,
1870 						rlimit(RLIMIT_NOFILE));
1871 		fdput(f);
1872 	}
1873 
1874 	return ret;
1875 }
1876 
1877 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1878 		int __user *, upeer_addrlen, int, flags)
1879 {
1880 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1881 }
1882 
1883 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1884 		int __user *, upeer_addrlen)
1885 {
1886 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1887 }
1888 
1889 /*
1890  *	Attempt to connect to a socket with the server address.  The address
1891  *	is in user space so we verify it is OK and move it to kernel space.
1892  *
1893  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1894  *	break bindings
1895  *
1896  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1897  *	other SEQPACKET protocols that take time to connect() as it doesn't
1898  *	include the -EINPROGRESS status for such sockets.
1899  */
1900 
1901 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1902 		       int addrlen, int file_flags)
1903 {
1904 	struct socket *sock;
1905 	int err;
1906 
1907 	sock = sock_from_file(file);
1908 	if (!sock) {
1909 		err = -ENOTSOCK;
1910 		goto out;
1911 	}
1912 
1913 	err =
1914 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1915 	if (err)
1916 		goto out;
1917 
1918 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1919 				 sock->file->f_flags | file_flags);
1920 out:
1921 	return err;
1922 }
1923 
1924 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1925 {
1926 	int ret = -EBADF;
1927 	struct fd f;
1928 
1929 	f = fdget(fd);
1930 	if (f.file) {
1931 		struct sockaddr_storage address;
1932 
1933 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1934 		if (!ret)
1935 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1936 		fdput(f);
1937 	}
1938 
1939 	return ret;
1940 }
1941 
1942 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1943 		int, addrlen)
1944 {
1945 	return __sys_connect(fd, uservaddr, addrlen);
1946 }
1947 
1948 /*
1949  *	Get the local address ('name') of a socket object. Move the obtained
1950  *	name to user space.
1951  */
1952 
1953 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1954 		      int __user *usockaddr_len)
1955 {
1956 	struct socket *sock;
1957 	struct sockaddr_storage address;
1958 	int err, fput_needed;
1959 
1960 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1961 	if (!sock)
1962 		goto out;
1963 
1964 	err = security_socket_getsockname(sock);
1965 	if (err)
1966 		goto out_put;
1967 
1968 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1969 	if (err < 0)
1970 		goto out_put;
1971 	/* "err" is actually length in this case */
1972 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1973 
1974 out_put:
1975 	fput_light(sock->file, fput_needed);
1976 out:
1977 	return err;
1978 }
1979 
1980 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1981 		int __user *, usockaddr_len)
1982 {
1983 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1984 }
1985 
1986 /*
1987  *	Get the remote address ('name') of a socket object. Move the obtained
1988  *	name to user space.
1989  */
1990 
1991 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1992 		      int __user *usockaddr_len)
1993 {
1994 	struct socket *sock;
1995 	struct sockaddr_storage address;
1996 	int err, fput_needed;
1997 
1998 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1999 	if (sock != NULL) {
2000 		err = security_socket_getpeername(sock);
2001 		if (err) {
2002 			fput_light(sock->file, fput_needed);
2003 			return err;
2004 		}
2005 
2006 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2007 		if (err >= 0)
2008 			/* "err" is actually length in this case */
2009 			err = move_addr_to_user(&address, err, usockaddr,
2010 						usockaddr_len);
2011 		fput_light(sock->file, fput_needed);
2012 	}
2013 	return err;
2014 }
2015 
2016 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2017 		int __user *, usockaddr_len)
2018 {
2019 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2020 }
2021 
2022 /*
2023  *	Send a datagram to a given address. We move the address into kernel
2024  *	space and check the user space data area is readable before invoking
2025  *	the protocol.
2026  */
2027 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2028 		 struct sockaddr __user *addr,  int addr_len)
2029 {
2030 	struct socket *sock;
2031 	struct sockaddr_storage address;
2032 	int err;
2033 	struct msghdr msg;
2034 	struct iovec iov;
2035 	int fput_needed;
2036 
2037 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2038 	if (unlikely(err))
2039 		return err;
2040 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2041 	if (!sock)
2042 		goto out;
2043 
2044 	msg.msg_name = NULL;
2045 	msg.msg_control = NULL;
2046 	msg.msg_controllen = 0;
2047 	msg.msg_namelen = 0;
2048 	if (addr) {
2049 		err = move_addr_to_kernel(addr, addr_len, &address);
2050 		if (err < 0)
2051 			goto out_put;
2052 		msg.msg_name = (struct sockaddr *)&address;
2053 		msg.msg_namelen = addr_len;
2054 	}
2055 	if (sock->file->f_flags & O_NONBLOCK)
2056 		flags |= MSG_DONTWAIT;
2057 	msg.msg_flags = flags;
2058 	err = sock_sendmsg(sock, &msg);
2059 
2060 out_put:
2061 	fput_light(sock->file, fput_needed);
2062 out:
2063 	return err;
2064 }
2065 
2066 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2067 		unsigned int, flags, struct sockaddr __user *, addr,
2068 		int, addr_len)
2069 {
2070 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2071 }
2072 
2073 /*
2074  *	Send a datagram down a socket.
2075  */
2076 
2077 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2078 		unsigned int, flags)
2079 {
2080 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2081 }
2082 
2083 /*
2084  *	Receive a frame from the socket and optionally record the address of the
2085  *	sender. We verify the buffers are writable and if needed move the
2086  *	sender address from kernel to user space.
2087  */
2088 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2089 		   struct sockaddr __user *addr, int __user *addr_len)
2090 {
2091 	struct socket *sock;
2092 	struct iovec iov;
2093 	struct msghdr msg;
2094 	struct sockaddr_storage address;
2095 	int err, err2;
2096 	int fput_needed;
2097 
2098 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2099 	if (unlikely(err))
2100 		return err;
2101 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 	if (!sock)
2103 		goto out;
2104 
2105 	msg.msg_control = NULL;
2106 	msg.msg_controllen = 0;
2107 	/* Save some cycles and don't copy the address if not needed */
2108 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2109 	/* We assume all kernel code knows the size of sockaddr_storage */
2110 	msg.msg_namelen = 0;
2111 	msg.msg_iocb = NULL;
2112 	msg.msg_flags = 0;
2113 	if (sock->file->f_flags & O_NONBLOCK)
2114 		flags |= MSG_DONTWAIT;
2115 	err = sock_recvmsg(sock, &msg, flags);
2116 
2117 	if (err >= 0 && addr != NULL) {
2118 		err2 = move_addr_to_user(&address,
2119 					 msg.msg_namelen, addr, addr_len);
2120 		if (err2 < 0)
2121 			err = err2;
2122 	}
2123 
2124 	fput_light(sock->file, fput_needed);
2125 out:
2126 	return err;
2127 }
2128 
2129 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2130 		unsigned int, flags, struct sockaddr __user *, addr,
2131 		int __user *, addr_len)
2132 {
2133 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2134 }
2135 
2136 /*
2137  *	Receive a datagram from a socket.
2138  */
2139 
2140 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2141 		unsigned int, flags)
2142 {
2143 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2144 }
2145 
2146 static bool sock_use_custom_sol_socket(const struct socket *sock)
2147 {
2148 	const struct sock *sk = sock->sk;
2149 
2150 	/* Use sock->ops->setsockopt() for MPTCP */
2151 	return IS_ENABLED(CONFIG_MPTCP) &&
2152 	       sk->sk_protocol == IPPROTO_MPTCP &&
2153 	       sk->sk_type == SOCK_STREAM &&
2154 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2155 }
2156 
2157 /*
2158  *	Set a socket option. Because we don't know the option lengths we have
2159  *	to pass the user mode parameter for the protocols to sort out.
2160  */
2161 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2162 		int optlen)
2163 {
2164 	sockptr_t optval = USER_SOCKPTR(user_optval);
2165 	char *kernel_optval = NULL;
2166 	int err, fput_needed;
2167 	struct socket *sock;
2168 
2169 	if (optlen < 0)
2170 		return -EINVAL;
2171 
2172 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2173 	if (!sock)
2174 		return err;
2175 
2176 	err = security_socket_setsockopt(sock, level, optname);
2177 	if (err)
2178 		goto out_put;
2179 
2180 	if (!in_compat_syscall())
2181 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2182 						     user_optval, &optlen,
2183 						     &kernel_optval);
2184 	if (err < 0)
2185 		goto out_put;
2186 	if (err > 0) {
2187 		err = 0;
2188 		goto out_put;
2189 	}
2190 
2191 	if (kernel_optval)
2192 		optval = KERNEL_SOCKPTR(kernel_optval);
2193 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2194 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2195 	else if (unlikely(!sock->ops->setsockopt))
2196 		err = -EOPNOTSUPP;
2197 	else
2198 		err = sock->ops->setsockopt(sock, level, optname, optval,
2199 					    optlen);
2200 	kfree(kernel_optval);
2201 out_put:
2202 	fput_light(sock->file, fput_needed);
2203 	return err;
2204 }
2205 
2206 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2207 		char __user *, optval, int, optlen)
2208 {
2209 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2210 }
2211 
2212 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2213 							 int optname));
2214 
2215 /*
2216  *	Get a socket option. Because we don't know the option lengths we have
2217  *	to pass a user mode parameter for the protocols to sort out.
2218  */
2219 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2220 		int __user *optlen)
2221 {
2222 	int err, fput_needed;
2223 	struct socket *sock;
2224 	int max_optlen;
2225 
2226 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 	if (!sock)
2228 		return err;
2229 
2230 	err = security_socket_getsockopt(sock, level, optname);
2231 	if (err)
2232 		goto out_put;
2233 
2234 	if (!in_compat_syscall())
2235 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2236 
2237 	if (level == SOL_SOCKET)
2238 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2239 	else if (unlikely(!sock->ops->getsockopt))
2240 		err = -EOPNOTSUPP;
2241 	else
2242 		err = sock->ops->getsockopt(sock, level, optname, optval,
2243 					    optlen);
2244 
2245 	if (!in_compat_syscall())
2246 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2247 						     optval, optlen, max_optlen,
2248 						     err);
2249 out_put:
2250 	fput_light(sock->file, fput_needed);
2251 	return err;
2252 }
2253 
2254 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2255 		char __user *, optval, int __user *, optlen)
2256 {
2257 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2258 }
2259 
2260 /*
2261  *	Shutdown a socket.
2262  */
2263 
2264 int __sys_shutdown_sock(struct socket *sock, int how)
2265 {
2266 	int err;
2267 
2268 	err = security_socket_shutdown(sock, how);
2269 	if (!err)
2270 		err = sock->ops->shutdown(sock, how);
2271 
2272 	return err;
2273 }
2274 
2275 int __sys_shutdown(int fd, int how)
2276 {
2277 	int err, fput_needed;
2278 	struct socket *sock;
2279 
2280 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2281 	if (sock != NULL) {
2282 		err = __sys_shutdown_sock(sock, how);
2283 		fput_light(sock->file, fput_needed);
2284 	}
2285 	return err;
2286 }
2287 
2288 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2289 {
2290 	return __sys_shutdown(fd, how);
2291 }
2292 
2293 /* A couple of helpful macros for getting the address of the 32/64 bit
2294  * fields which are the same type (int / unsigned) on our platforms.
2295  */
2296 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2297 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2298 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2299 
2300 struct used_address {
2301 	struct sockaddr_storage name;
2302 	unsigned int name_len;
2303 };
2304 
2305 int __copy_msghdr_from_user(struct msghdr *kmsg,
2306 			    struct user_msghdr __user *umsg,
2307 			    struct sockaddr __user **save_addr,
2308 			    struct iovec __user **uiov, size_t *nsegs)
2309 {
2310 	struct user_msghdr msg;
2311 	ssize_t err;
2312 
2313 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2314 		return -EFAULT;
2315 
2316 	kmsg->msg_control_is_user = true;
2317 	kmsg->msg_control_user = msg.msg_control;
2318 	kmsg->msg_controllen = msg.msg_controllen;
2319 	kmsg->msg_flags = msg.msg_flags;
2320 
2321 	kmsg->msg_namelen = msg.msg_namelen;
2322 	if (!msg.msg_name)
2323 		kmsg->msg_namelen = 0;
2324 
2325 	if (kmsg->msg_namelen < 0)
2326 		return -EINVAL;
2327 
2328 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2329 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2330 
2331 	if (save_addr)
2332 		*save_addr = msg.msg_name;
2333 
2334 	if (msg.msg_name && kmsg->msg_namelen) {
2335 		if (!save_addr) {
2336 			err = move_addr_to_kernel(msg.msg_name,
2337 						  kmsg->msg_namelen,
2338 						  kmsg->msg_name);
2339 			if (err < 0)
2340 				return err;
2341 		}
2342 	} else {
2343 		kmsg->msg_name = NULL;
2344 		kmsg->msg_namelen = 0;
2345 	}
2346 
2347 	if (msg.msg_iovlen > UIO_MAXIOV)
2348 		return -EMSGSIZE;
2349 
2350 	kmsg->msg_iocb = NULL;
2351 	*uiov = msg.msg_iov;
2352 	*nsegs = msg.msg_iovlen;
2353 	return 0;
2354 }
2355 
2356 static int copy_msghdr_from_user(struct msghdr *kmsg,
2357 				 struct user_msghdr __user *umsg,
2358 				 struct sockaddr __user **save_addr,
2359 				 struct iovec **iov)
2360 {
2361 	struct user_msghdr msg;
2362 	ssize_t err;
2363 
2364 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2365 					&msg.msg_iovlen);
2366 	if (err)
2367 		return err;
2368 
2369 	err = import_iovec(save_addr ? READ : WRITE,
2370 			    msg.msg_iov, msg.msg_iovlen,
2371 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2372 	return err < 0 ? err : 0;
2373 }
2374 
2375 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2376 			   unsigned int flags, struct used_address *used_address,
2377 			   unsigned int allowed_msghdr_flags)
2378 {
2379 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2380 				__aligned(sizeof(__kernel_size_t));
2381 	/* 20 is size of ipv6_pktinfo */
2382 	unsigned char *ctl_buf = ctl;
2383 	int ctl_len;
2384 	ssize_t err;
2385 
2386 	err = -ENOBUFS;
2387 
2388 	if (msg_sys->msg_controllen > INT_MAX)
2389 		goto out;
2390 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2391 	ctl_len = msg_sys->msg_controllen;
2392 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2393 		err =
2394 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2395 						     sizeof(ctl));
2396 		if (err)
2397 			goto out;
2398 		ctl_buf = msg_sys->msg_control;
2399 		ctl_len = msg_sys->msg_controllen;
2400 	} else if (ctl_len) {
2401 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2402 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2403 		if (ctl_len > sizeof(ctl)) {
2404 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2405 			if (ctl_buf == NULL)
2406 				goto out;
2407 		}
2408 		err = -EFAULT;
2409 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2410 			goto out_freectl;
2411 		msg_sys->msg_control = ctl_buf;
2412 		msg_sys->msg_control_is_user = false;
2413 	}
2414 	msg_sys->msg_flags = flags;
2415 
2416 	if (sock->file->f_flags & O_NONBLOCK)
2417 		msg_sys->msg_flags |= MSG_DONTWAIT;
2418 	/*
2419 	 * If this is sendmmsg() and current destination address is same as
2420 	 * previously succeeded address, omit asking LSM's decision.
2421 	 * used_address->name_len is initialized to UINT_MAX so that the first
2422 	 * destination address never matches.
2423 	 */
2424 	if (used_address && msg_sys->msg_name &&
2425 	    used_address->name_len == msg_sys->msg_namelen &&
2426 	    !memcmp(&used_address->name, msg_sys->msg_name,
2427 		    used_address->name_len)) {
2428 		err = sock_sendmsg_nosec(sock, msg_sys);
2429 		goto out_freectl;
2430 	}
2431 	err = sock_sendmsg(sock, msg_sys);
2432 	/*
2433 	 * If this is sendmmsg() and sending to current destination address was
2434 	 * successful, remember it.
2435 	 */
2436 	if (used_address && err >= 0) {
2437 		used_address->name_len = msg_sys->msg_namelen;
2438 		if (msg_sys->msg_name)
2439 			memcpy(&used_address->name, msg_sys->msg_name,
2440 			       used_address->name_len);
2441 	}
2442 
2443 out_freectl:
2444 	if (ctl_buf != ctl)
2445 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2446 out:
2447 	return err;
2448 }
2449 
2450 int sendmsg_copy_msghdr(struct msghdr *msg,
2451 			struct user_msghdr __user *umsg, unsigned flags,
2452 			struct iovec **iov)
2453 {
2454 	int err;
2455 
2456 	if (flags & MSG_CMSG_COMPAT) {
2457 		struct compat_msghdr __user *msg_compat;
2458 
2459 		msg_compat = (struct compat_msghdr __user *) umsg;
2460 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2461 	} else {
2462 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2463 	}
2464 	if (err < 0)
2465 		return err;
2466 
2467 	return 0;
2468 }
2469 
2470 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2471 			 struct msghdr *msg_sys, unsigned int flags,
2472 			 struct used_address *used_address,
2473 			 unsigned int allowed_msghdr_flags)
2474 {
2475 	struct sockaddr_storage address;
2476 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2477 	ssize_t err;
2478 
2479 	msg_sys->msg_name = &address;
2480 
2481 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2482 	if (err < 0)
2483 		return err;
2484 
2485 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2486 				allowed_msghdr_flags);
2487 	kfree(iov);
2488 	return err;
2489 }
2490 
2491 /*
2492  *	BSD sendmsg interface
2493  */
2494 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2495 			unsigned int flags)
2496 {
2497 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2498 }
2499 
2500 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2501 		   bool forbid_cmsg_compat)
2502 {
2503 	int fput_needed, err;
2504 	struct msghdr msg_sys;
2505 	struct socket *sock;
2506 
2507 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2508 		return -EINVAL;
2509 
2510 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2511 	if (!sock)
2512 		goto out;
2513 
2514 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2515 
2516 	fput_light(sock->file, fput_needed);
2517 out:
2518 	return err;
2519 }
2520 
2521 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2522 {
2523 	return __sys_sendmsg(fd, msg, flags, true);
2524 }
2525 
2526 /*
2527  *	Linux sendmmsg interface
2528  */
2529 
2530 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2531 		   unsigned int flags, bool forbid_cmsg_compat)
2532 {
2533 	int fput_needed, err, datagrams;
2534 	struct socket *sock;
2535 	struct mmsghdr __user *entry;
2536 	struct compat_mmsghdr __user *compat_entry;
2537 	struct msghdr msg_sys;
2538 	struct used_address used_address;
2539 	unsigned int oflags = flags;
2540 
2541 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2542 		return -EINVAL;
2543 
2544 	if (vlen > UIO_MAXIOV)
2545 		vlen = UIO_MAXIOV;
2546 
2547 	datagrams = 0;
2548 
2549 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2550 	if (!sock)
2551 		return err;
2552 
2553 	used_address.name_len = UINT_MAX;
2554 	entry = mmsg;
2555 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2556 	err = 0;
2557 	flags |= MSG_BATCH;
2558 
2559 	while (datagrams < vlen) {
2560 		if (datagrams == vlen - 1)
2561 			flags = oflags;
2562 
2563 		if (MSG_CMSG_COMPAT & flags) {
2564 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2565 					     &msg_sys, flags, &used_address, MSG_EOR);
2566 			if (err < 0)
2567 				break;
2568 			err = __put_user(err, &compat_entry->msg_len);
2569 			++compat_entry;
2570 		} else {
2571 			err = ___sys_sendmsg(sock,
2572 					     (struct user_msghdr __user *)entry,
2573 					     &msg_sys, flags, &used_address, MSG_EOR);
2574 			if (err < 0)
2575 				break;
2576 			err = put_user(err, &entry->msg_len);
2577 			++entry;
2578 		}
2579 
2580 		if (err)
2581 			break;
2582 		++datagrams;
2583 		if (msg_data_left(&msg_sys))
2584 			break;
2585 		cond_resched();
2586 	}
2587 
2588 	fput_light(sock->file, fput_needed);
2589 
2590 	/* We only return an error if no datagrams were able to be sent */
2591 	if (datagrams != 0)
2592 		return datagrams;
2593 
2594 	return err;
2595 }
2596 
2597 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2598 		unsigned int, vlen, unsigned int, flags)
2599 {
2600 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2601 }
2602 
2603 int recvmsg_copy_msghdr(struct msghdr *msg,
2604 			struct user_msghdr __user *umsg, unsigned flags,
2605 			struct sockaddr __user **uaddr,
2606 			struct iovec **iov)
2607 {
2608 	ssize_t err;
2609 
2610 	if (MSG_CMSG_COMPAT & flags) {
2611 		struct compat_msghdr __user *msg_compat;
2612 
2613 		msg_compat = (struct compat_msghdr __user *) umsg;
2614 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2615 	} else {
2616 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2617 	}
2618 	if (err < 0)
2619 		return err;
2620 
2621 	return 0;
2622 }
2623 
2624 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2625 			   struct user_msghdr __user *msg,
2626 			   struct sockaddr __user *uaddr,
2627 			   unsigned int flags, int nosec)
2628 {
2629 	struct compat_msghdr __user *msg_compat =
2630 					(struct compat_msghdr __user *) msg;
2631 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2632 	struct sockaddr_storage addr;
2633 	unsigned long cmsg_ptr;
2634 	int len;
2635 	ssize_t err;
2636 
2637 	msg_sys->msg_name = &addr;
2638 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2639 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2640 
2641 	/* We assume all kernel code knows the size of sockaddr_storage */
2642 	msg_sys->msg_namelen = 0;
2643 
2644 	if (sock->file->f_flags & O_NONBLOCK)
2645 		flags |= MSG_DONTWAIT;
2646 
2647 	if (unlikely(nosec))
2648 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2649 	else
2650 		err = sock_recvmsg(sock, msg_sys, flags);
2651 
2652 	if (err < 0)
2653 		goto out;
2654 	len = err;
2655 
2656 	if (uaddr != NULL) {
2657 		err = move_addr_to_user(&addr,
2658 					msg_sys->msg_namelen, uaddr,
2659 					uaddr_len);
2660 		if (err < 0)
2661 			goto out;
2662 	}
2663 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2664 			 COMPAT_FLAGS(msg));
2665 	if (err)
2666 		goto out;
2667 	if (MSG_CMSG_COMPAT & flags)
2668 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2669 				 &msg_compat->msg_controllen);
2670 	else
2671 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2672 				 &msg->msg_controllen);
2673 	if (err)
2674 		goto out;
2675 	err = len;
2676 out:
2677 	return err;
2678 }
2679 
2680 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2681 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2682 {
2683 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2684 	/* user mode address pointers */
2685 	struct sockaddr __user *uaddr;
2686 	ssize_t err;
2687 
2688 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2689 	if (err < 0)
2690 		return err;
2691 
2692 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2693 	kfree(iov);
2694 	return err;
2695 }
2696 
2697 /*
2698  *	BSD recvmsg interface
2699  */
2700 
2701 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2702 			struct user_msghdr __user *umsg,
2703 			struct sockaddr __user *uaddr, unsigned int flags)
2704 {
2705 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2706 }
2707 
2708 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2709 		   bool forbid_cmsg_compat)
2710 {
2711 	int fput_needed, err;
2712 	struct msghdr msg_sys;
2713 	struct socket *sock;
2714 
2715 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2716 		return -EINVAL;
2717 
2718 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2719 	if (!sock)
2720 		goto out;
2721 
2722 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2723 
2724 	fput_light(sock->file, fput_needed);
2725 out:
2726 	return err;
2727 }
2728 
2729 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2730 		unsigned int, flags)
2731 {
2732 	return __sys_recvmsg(fd, msg, flags, true);
2733 }
2734 
2735 /*
2736  *     Linux recvmmsg interface
2737  */
2738 
2739 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2740 			  unsigned int vlen, unsigned int flags,
2741 			  struct timespec64 *timeout)
2742 {
2743 	int fput_needed, err, datagrams;
2744 	struct socket *sock;
2745 	struct mmsghdr __user *entry;
2746 	struct compat_mmsghdr __user *compat_entry;
2747 	struct msghdr msg_sys;
2748 	struct timespec64 end_time;
2749 	struct timespec64 timeout64;
2750 
2751 	if (timeout &&
2752 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2753 				    timeout->tv_nsec))
2754 		return -EINVAL;
2755 
2756 	datagrams = 0;
2757 
2758 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2759 	if (!sock)
2760 		return err;
2761 
2762 	if (likely(!(flags & MSG_ERRQUEUE))) {
2763 		err = sock_error(sock->sk);
2764 		if (err) {
2765 			datagrams = err;
2766 			goto out_put;
2767 		}
2768 	}
2769 
2770 	entry = mmsg;
2771 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2772 
2773 	while (datagrams < vlen) {
2774 		/*
2775 		 * No need to ask LSM for more than the first datagram.
2776 		 */
2777 		if (MSG_CMSG_COMPAT & flags) {
2778 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2779 					     &msg_sys, flags & ~MSG_WAITFORONE,
2780 					     datagrams);
2781 			if (err < 0)
2782 				break;
2783 			err = __put_user(err, &compat_entry->msg_len);
2784 			++compat_entry;
2785 		} else {
2786 			err = ___sys_recvmsg(sock,
2787 					     (struct user_msghdr __user *)entry,
2788 					     &msg_sys, flags & ~MSG_WAITFORONE,
2789 					     datagrams);
2790 			if (err < 0)
2791 				break;
2792 			err = put_user(err, &entry->msg_len);
2793 			++entry;
2794 		}
2795 
2796 		if (err)
2797 			break;
2798 		++datagrams;
2799 
2800 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2801 		if (flags & MSG_WAITFORONE)
2802 			flags |= MSG_DONTWAIT;
2803 
2804 		if (timeout) {
2805 			ktime_get_ts64(&timeout64);
2806 			*timeout = timespec64_sub(end_time, timeout64);
2807 			if (timeout->tv_sec < 0) {
2808 				timeout->tv_sec = timeout->tv_nsec = 0;
2809 				break;
2810 			}
2811 
2812 			/* Timeout, return less than vlen datagrams */
2813 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2814 				break;
2815 		}
2816 
2817 		/* Out of band data, return right away */
2818 		if (msg_sys.msg_flags & MSG_OOB)
2819 			break;
2820 		cond_resched();
2821 	}
2822 
2823 	if (err == 0)
2824 		goto out_put;
2825 
2826 	if (datagrams == 0) {
2827 		datagrams = err;
2828 		goto out_put;
2829 	}
2830 
2831 	/*
2832 	 * We may return less entries than requested (vlen) if the
2833 	 * sock is non block and there aren't enough datagrams...
2834 	 */
2835 	if (err != -EAGAIN) {
2836 		/*
2837 		 * ... or  if recvmsg returns an error after we
2838 		 * received some datagrams, where we record the
2839 		 * error to return on the next call or if the
2840 		 * app asks about it using getsockopt(SO_ERROR).
2841 		 */
2842 		sock->sk->sk_err = -err;
2843 	}
2844 out_put:
2845 	fput_light(sock->file, fput_needed);
2846 
2847 	return datagrams;
2848 }
2849 
2850 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2851 		   unsigned int vlen, unsigned int flags,
2852 		   struct __kernel_timespec __user *timeout,
2853 		   struct old_timespec32 __user *timeout32)
2854 {
2855 	int datagrams;
2856 	struct timespec64 timeout_sys;
2857 
2858 	if (timeout && get_timespec64(&timeout_sys, timeout))
2859 		return -EFAULT;
2860 
2861 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2862 		return -EFAULT;
2863 
2864 	if (!timeout && !timeout32)
2865 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2866 
2867 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2868 
2869 	if (datagrams <= 0)
2870 		return datagrams;
2871 
2872 	if (timeout && put_timespec64(&timeout_sys, timeout))
2873 		datagrams = -EFAULT;
2874 
2875 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2876 		datagrams = -EFAULT;
2877 
2878 	return datagrams;
2879 }
2880 
2881 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2882 		unsigned int, vlen, unsigned int, flags,
2883 		struct __kernel_timespec __user *, timeout)
2884 {
2885 	if (flags & MSG_CMSG_COMPAT)
2886 		return -EINVAL;
2887 
2888 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2889 }
2890 
2891 #ifdef CONFIG_COMPAT_32BIT_TIME
2892 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2893 		unsigned int, vlen, unsigned int, flags,
2894 		struct old_timespec32 __user *, timeout)
2895 {
2896 	if (flags & MSG_CMSG_COMPAT)
2897 		return -EINVAL;
2898 
2899 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2900 }
2901 #endif
2902 
2903 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2904 /* Argument list sizes for sys_socketcall */
2905 #define AL(x) ((x) * sizeof(unsigned long))
2906 static const unsigned char nargs[21] = {
2907 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2908 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2909 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2910 	AL(4), AL(5), AL(4)
2911 };
2912 
2913 #undef AL
2914 
2915 /*
2916  *	System call vectors.
2917  *
2918  *	Argument checking cleaned up. Saved 20% in size.
2919  *  This function doesn't need to set the kernel lock because
2920  *  it is set by the callees.
2921  */
2922 
2923 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2924 {
2925 	unsigned long a[AUDITSC_ARGS];
2926 	unsigned long a0, a1;
2927 	int err;
2928 	unsigned int len;
2929 
2930 	if (call < 1 || call > SYS_SENDMMSG)
2931 		return -EINVAL;
2932 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2933 
2934 	len = nargs[call];
2935 	if (len > sizeof(a))
2936 		return -EINVAL;
2937 
2938 	/* copy_from_user should be SMP safe. */
2939 	if (copy_from_user(a, args, len))
2940 		return -EFAULT;
2941 
2942 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2943 	if (err)
2944 		return err;
2945 
2946 	a0 = a[0];
2947 	a1 = a[1];
2948 
2949 	switch (call) {
2950 	case SYS_SOCKET:
2951 		err = __sys_socket(a0, a1, a[2]);
2952 		break;
2953 	case SYS_BIND:
2954 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2955 		break;
2956 	case SYS_CONNECT:
2957 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2958 		break;
2959 	case SYS_LISTEN:
2960 		err = __sys_listen(a0, a1);
2961 		break;
2962 	case SYS_ACCEPT:
2963 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2964 				    (int __user *)a[2], 0);
2965 		break;
2966 	case SYS_GETSOCKNAME:
2967 		err =
2968 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2969 				      (int __user *)a[2]);
2970 		break;
2971 	case SYS_GETPEERNAME:
2972 		err =
2973 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2974 				      (int __user *)a[2]);
2975 		break;
2976 	case SYS_SOCKETPAIR:
2977 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2978 		break;
2979 	case SYS_SEND:
2980 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2981 				   NULL, 0);
2982 		break;
2983 	case SYS_SENDTO:
2984 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2985 				   (struct sockaddr __user *)a[4], a[5]);
2986 		break;
2987 	case SYS_RECV:
2988 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2989 				     NULL, NULL);
2990 		break;
2991 	case SYS_RECVFROM:
2992 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2993 				     (struct sockaddr __user *)a[4],
2994 				     (int __user *)a[5]);
2995 		break;
2996 	case SYS_SHUTDOWN:
2997 		err = __sys_shutdown(a0, a1);
2998 		break;
2999 	case SYS_SETSOCKOPT:
3000 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3001 				       a[4]);
3002 		break;
3003 	case SYS_GETSOCKOPT:
3004 		err =
3005 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3006 				     (int __user *)a[4]);
3007 		break;
3008 	case SYS_SENDMSG:
3009 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3010 				    a[2], true);
3011 		break;
3012 	case SYS_SENDMMSG:
3013 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3014 				     a[3], true);
3015 		break;
3016 	case SYS_RECVMSG:
3017 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3018 				    a[2], true);
3019 		break;
3020 	case SYS_RECVMMSG:
3021 		if (IS_ENABLED(CONFIG_64BIT))
3022 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3023 					     a[2], a[3],
3024 					     (struct __kernel_timespec __user *)a[4],
3025 					     NULL);
3026 		else
3027 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3028 					     a[2], a[3], NULL,
3029 					     (struct old_timespec32 __user *)a[4]);
3030 		break;
3031 	case SYS_ACCEPT4:
3032 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3033 				    (int __user *)a[2], a[3]);
3034 		break;
3035 	default:
3036 		err = -EINVAL;
3037 		break;
3038 	}
3039 	return err;
3040 }
3041 
3042 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3043 
3044 /**
3045  *	sock_register - add a socket protocol handler
3046  *	@ops: description of protocol
3047  *
3048  *	This function is called by a protocol handler that wants to
3049  *	advertise its address family, and have it linked into the
3050  *	socket interface. The value ops->family corresponds to the
3051  *	socket system call protocol family.
3052  */
3053 int sock_register(const struct net_proto_family *ops)
3054 {
3055 	int err;
3056 
3057 	if (ops->family >= NPROTO) {
3058 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3059 		return -ENOBUFS;
3060 	}
3061 
3062 	spin_lock(&net_family_lock);
3063 	if (rcu_dereference_protected(net_families[ops->family],
3064 				      lockdep_is_held(&net_family_lock)))
3065 		err = -EEXIST;
3066 	else {
3067 		rcu_assign_pointer(net_families[ops->family], ops);
3068 		err = 0;
3069 	}
3070 	spin_unlock(&net_family_lock);
3071 
3072 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3073 	return err;
3074 }
3075 EXPORT_SYMBOL(sock_register);
3076 
3077 /**
3078  *	sock_unregister - remove a protocol handler
3079  *	@family: protocol family to remove
3080  *
3081  *	This function is called by a protocol handler that wants to
3082  *	remove its address family, and have it unlinked from the
3083  *	new socket creation.
3084  *
3085  *	If protocol handler is a module, then it can use module reference
3086  *	counts to protect against new references. If protocol handler is not
3087  *	a module then it needs to provide its own protection in
3088  *	the ops->create routine.
3089  */
3090 void sock_unregister(int family)
3091 {
3092 	BUG_ON(family < 0 || family >= NPROTO);
3093 
3094 	spin_lock(&net_family_lock);
3095 	RCU_INIT_POINTER(net_families[family], NULL);
3096 	spin_unlock(&net_family_lock);
3097 
3098 	synchronize_rcu();
3099 
3100 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3101 }
3102 EXPORT_SYMBOL(sock_unregister);
3103 
3104 bool sock_is_registered(int family)
3105 {
3106 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3107 }
3108 
3109 static int __init sock_init(void)
3110 {
3111 	int err;
3112 	/*
3113 	 *      Initialize the network sysctl infrastructure.
3114 	 */
3115 	err = net_sysctl_init();
3116 	if (err)
3117 		goto out;
3118 
3119 	/*
3120 	 *      Initialize skbuff SLAB cache
3121 	 */
3122 	skb_init();
3123 
3124 	/*
3125 	 *      Initialize the protocols module.
3126 	 */
3127 
3128 	init_inodecache();
3129 
3130 	err = register_filesystem(&sock_fs_type);
3131 	if (err)
3132 		goto out;
3133 	sock_mnt = kern_mount(&sock_fs_type);
3134 	if (IS_ERR(sock_mnt)) {
3135 		err = PTR_ERR(sock_mnt);
3136 		goto out_mount;
3137 	}
3138 
3139 	/* The real protocol initialization is performed in later initcalls.
3140 	 */
3141 
3142 #ifdef CONFIG_NETFILTER
3143 	err = netfilter_init();
3144 	if (err)
3145 		goto out;
3146 #endif
3147 
3148 	ptp_classifier_init();
3149 
3150 out:
3151 	return err;
3152 
3153 out_mount:
3154 	unregister_filesystem(&sock_fs_type);
3155 	goto out;
3156 }
3157 
3158 core_initcall(sock_init);	/* early initcall */
3159 
3160 #ifdef CONFIG_PROC_FS
3161 void socket_seq_show(struct seq_file *seq)
3162 {
3163 	seq_printf(seq, "sockets: used %d\n",
3164 		   sock_inuse_get(seq->private));
3165 }
3166 #endif				/* CONFIG_PROC_FS */
3167 
3168 /* Handle the fact that while struct ifreq has the same *layout* on
3169  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3170  * which are handled elsewhere, it still has different *size* due to
3171  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3172  * resulting in struct ifreq being 32 and 40 bytes respectively).
3173  * As a result, if the struct happens to be at the end of a page and
3174  * the next page isn't readable/writable, we get a fault. To prevent
3175  * that, copy back and forth to the full size.
3176  */
3177 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3178 {
3179 	if (in_compat_syscall()) {
3180 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3181 
3182 		memset(ifr, 0, sizeof(*ifr));
3183 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3184 			return -EFAULT;
3185 
3186 		if (ifrdata)
3187 			*ifrdata = compat_ptr(ifr32->ifr_data);
3188 
3189 		return 0;
3190 	}
3191 
3192 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3193 		return -EFAULT;
3194 
3195 	if (ifrdata)
3196 		*ifrdata = ifr->ifr_data;
3197 
3198 	return 0;
3199 }
3200 EXPORT_SYMBOL(get_user_ifreq);
3201 
3202 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3203 {
3204 	size_t size = sizeof(*ifr);
3205 
3206 	if (in_compat_syscall())
3207 		size = sizeof(struct compat_ifreq);
3208 
3209 	if (copy_to_user(arg, ifr, size))
3210 		return -EFAULT;
3211 
3212 	return 0;
3213 }
3214 EXPORT_SYMBOL(put_user_ifreq);
3215 
3216 #ifdef CONFIG_COMPAT
3217 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3218 {
3219 	compat_uptr_t uptr32;
3220 	struct ifreq ifr;
3221 	void __user *saved;
3222 	int err;
3223 
3224 	if (get_user_ifreq(&ifr, NULL, uifr32))
3225 		return -EFAULT;
3226 
3227 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3228 		return -EFAULT;
3229 
3230 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3231 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3232 
3233 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3234 	if (!err) {
3235 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3236 		if (put_user_ifreq(&ifr, uifr32))
3237 			err = -EFAULT;
3238 	}
3239 	return err;
3240 }
3241 
3242 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3243 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3244 				 struct compat_ifreq __user *u_ifreq32)
3245 {
3246 	struct ifreq ifreq;
3247 	void __user *data;
3248 
3249 	if (!is_socket_ioctl_cmd(cmd))
3250 		return -ENOTTY;
3251 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3252 		return -EFAULT;
3253 	ifreq.ifr_data = data;
3254 
3255 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3256 }
3257 
3258 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3259 			 unsigned int cmd, unsigned long arg)
3260 {
3261 	void __user *argp = compat_ptr(arg);
3262 	struct sock *sk = sock->sk;
3263 	struct net *net = sock_net(sk);
3264 
3265 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3266 		return sock_ioctl(file, cmd, (unsigned long)argp);
3267 
3268 	switch (cmd) {
3269 	case SIOCWANDEV:
3270 		return compat_siocwandev(net, argp);
3271 	case SIOCGSTAMP_OLD:
3272 	case SIOCGSTAMPNS_OLD:
3273 		if (!sock->ops->gettstamp)
3274 			return -ENOIOCTLCMD;
3275 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3276 					    !COMPAT_USE_64BIT_TIME);
3277 
3278 	case SIOCETHTOOL:
3279 	case SIOCBONDSLAVEINFOQUERY:
3280 	case SIOCBONDINFOQUERY:
3281 	case SIOCSHWTSTAMP:
3282 	case SIOCGHWTSTAMP:
3283 		return compat_ifr_data_ioctl(net, cmd, argp);
3284 
3285 	case FIOSETOWN:
3286 	case SIOCSPGRP:
3287 	case FIOGETOWN:
3288 	case SIOCGPGRP:
3289 	case SIOCBRADDBR:
3290 	case SIOCBRDELBR:
3291 	case SIOCGIFVLAN:
3292 	case SIOCSIFVLAN:
3293 	case SIOCGSKNS:
3294 	case SIOCGSTAMP_NEW:
3295 	case SIOCGSTAMPNS_NEW:
3296 	case SIOCGIFCONF:
3297 	case SIOCSIFBR:
3298 	case SIOCGIFBR:
3299 		return sock_ioctl(file, cmd, arg);
3300 
3301 	case SIOCGIFFLAGS:
3302 	case SIOCSIFFLAGS:
3303 	case SIOCGIFMAP:
3304 	case SIOCSIFMAP:
3305 	case SIOCGIFMETRIC:
3306 	case SIOCSIFMETRIC:
3307 	case SIOCGIFMTU:
3308 	case SIOCSIFMTU:
3309 	case SIOCGIFMEM:
3310 	case SIOCSIFMEM:
3311 	case SIOCGIFHWADDR:
3312 	case SIOCSIFHWADDR:
3313 	case SIOCADDMULTI:
3314 	case SIOCDELMULTI:
3315 	case SIOCGIFINDEX:
3316 	case SIOCGIFADDR:
3317 	case SIOCSIFADDR:
3318 	case SIOCSIFHWBROADCAST:
3319 	case SIOCDIFADDR:
3320 	case SIOCGIFBRDADDR:
3321 	case SIOCSIFBRDADDR:
3322 	case SIOCGIFDSTADDR:
3323 	case SIOCSIFDSTADDR:
3324 	case SIOCGIFNETMASK:
3325 	case SIOCSIFNETMASK:
3326 	case SIOCSIFPFLAGS:
3327 	case SIOCGIFPFLAGS:
3328 	case SIOCGIFTXQLEN:
3329 	case SIOCSIFTXQLEN:
3330 	case SIOCBRADDIF:
3331 	case SIOCBRDELIF:
3332 	case SIOCGIFNAME:
3333 	case SIOCSIFNAME:
3334 	case SIOCGMIIPHY:
3335 	case SIOCGMIIREG:
3336 	case SIOCSMIIREG:
3337 	case SIOCBONDENSLAVE:
3338 	case SIOCBONDRELEASE:
3339 	case SIOCBONDSETHWADDR:
3340 	case SIOCBONDCHANGEACTIVE:
3341 	case SIOCSARP:
3342 	case SIOCGARP:
3343 	case SIOCDARP:
3344 	case SIOCOUTQ:
3345 	case SIOCOUTQNSD:
3346 	case SIOCATMARK:
3347 		return sock_do_ioctl(net, sock, cmd, arg);
3348 	}
3349 
3350 	return -ENOIOCTLCMD;
3351 }
3352 
3353 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3354 			      unsigned long arg)
3355 {
3356 	struct socket *sock = file->private_data;
3357 	int ret = -ENOIOCTLCMD;
3358 	struct sock *sk;
3359 	struct net *net;
3360 
3361 	sk = sock->sk;
3362 	net = sock_net(sk);
3363 
3364 	if (sock->ops->compat_ioctl)
3365 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3366 
3367 	if (ret == -ENOIOCTLCMD &&
3368 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3369 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3370 
3371 	if (ret == -ENOIOCTLCMD)
3372 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3373 
3374 	return ret;
3375 }
3376 #endif
3377 
3378 /**
3379  *	kernel_bind - bind an address to a socket (kernel space)
3380  *	@sock: socket
3381  *	@addr: address
3382  *	@addrlen: length of address
3383  *
3384  *	Returns 0 or an error.
3385  */
3386 
3387 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3388 {
3389 	return sock->ops->bind(sock, addr, addrlen);
3390 }
3391 EXPORT_SYMBOL(kernel_bind);
3392 
3393 /**
3394  *	kernel_listen - move socket to listening state (kernel space)
3395  *	@sock: socket
3396  *	@backlog: pending connections queue size
3397  *
3398  *	Returns 0 or an error.
3399  */
3400 
3401 int kernel_listen(struct socket *sock, int backlog)
3402 {
3403 	return sock->ops->listen(sock, backlog);
3404 }
3405 EXPORT_SYMBOL(kernel_listen);
3406 
3407 /**
3408  *	kernel_accept - accept a connection (kernel space)
3409  *	@sock: listening socket
3410  *	@newsock: new connected socket
3411  *	@flags: flags
3412  *
3413  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3414  *	If it fails, @newsock is guaranteed to be %NULL.
3415  *	Returns 0 or an error.
3416  */
3417 
3418 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3419 {
3420 	struct sock *sk = sock->sk;
3421 	int err;
3422 
3423 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3424 			       newsock);
3425 	if (err < 0)
3426 		goto done;
3427 
3428 	err = sock->ops->accept(sock, *newsock, flags, true);
3429 	if (err < 0) {
3430 		sock_release(*newsock);
3431 		*newsock = NULL;
3432 		goto done;
3433 	}
3434 
3435 	(*newsock)->ops = sock->ops;
3436 	__module_get((*newsock)->ops->owner);
3437 
3438 done:
3439 	return err;
3440 }
3441 EXPORT_SYMBOL(kernel_accept);
3442 
3443 /**
3444  *	kernel_connect - connect a socket (kernel space)
3445  *	@sock: socket
3446  *	@addr: address
3447  *	@addrlen: address length
3448  *	@flags: flags (O_NONBLOCK, ...)
3449  *
3450  *	For datagram sockets, @addr is the address to which datagrams are sent
3451  *	by default, and the only address from which datagrams are received.
3452  *	For stream sockets, attempts to connect to @addr.
3453  *	Returns 0 or an error code.
3454  */
3455 
3456 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3457 		   int flags)
3458 {
3459 	return sock->ops->connect(sock, addr, addrlen, flags);
3460 }
3461 EXPORT_SYMBOL(kernel_connect);
3462 
3463 /**
3464  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3465  *	@sock: socket
3466  *	@addr: address holder
3467  *
3468  * 	Fills the @addr pointer with the address which the socket is bound.
3469  *	Returns the length of the address in bytes or an error code.
3470  */
3471 
3472 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3473 {
3474 	return sock->ops->getname(sock, addr, 0);
3475 }
3476 EXPORT_SYMBOL(kernel_getsockname);
3477 
3478 /**
3479  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3480  *	@sock: socket
3481  *	@addr: address holder
3482  *
3483  * 	Fills the @addr pointer with the address which the socket is connected.
3484  *	Returns the length of the address in bytes or an error code.
3485  */
3486 
3487 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3488 {
3489 	return sock->ops->getname(sock, addr, 1);
3490 }
3491 EXPORT_SYMBOL(kernel_getpeername);
3492 
3493 /**
3494  *	kernel_sendpage - send a &page through a socket (kernel space)
3495  *	@sock: socket
3496  *	@page: page
3497  *	@offset: page offset
3498  *	@size: total size in bytes
3499  *	@flags: flags (MSG_DONTWAIT, ...)
3500  *
3501  *	Returns the total amount sent in bytes or an error.
3502  */
3503 
3504 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3505 		    size_t size, int flags)
3506 {
3507 	if (sock->ops->sendpage) {
3508 		/* Warn in case the improper page to zero-copy send */
3509 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3510 		return sock->ops->sendpage(sock, page, offset, size, flags);
3511 	}
3512 	return sock_no_sendpage(sock, page, offset, size, flags);
3513 }
3514 EXPORT_SYMBOL(kernel_sendpage);
3515 
3516 /**
3517  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3518  *	@sk: sock
3519  *	@page: page
3520  *	@offset: page offset
3521  *	@size: total size in bytes
3522  *	@flags: flags (MSG_DONTWAIT, ...)
3523  *
3524  *	Returns the total amount sent in bytes or an error.
3525  *	Caller must hold @sk.
3526  */
3527 
3528 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3529 			   size_t size, int flags)
3530 {
3531 	struct socket *sock = sk->sk_socket;
3532 
3533 	if (sock->ops->sendpage_locked)
3534 		return sock->ops->sendpage_locked(sk, page, offset, size,
3535 						  flags);
3536 
3537 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3538 }
3539 EXPORT_SYMBOL(kernel_sendpage_locked);
3540 
3541 /**
3542  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3543  *	@sock: socket
3544  *	@how: connection part
3545  *
3546  *	Returns 0 or an error.
3547  */
3548 
3549 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3550 {
3551 	return sock->ops->shutdown(sock, how);
3552 }
3553 EXPORT_SYMBOL(kernel_sock_shutdown);
3554 
3555 /**
3556  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3557  *	@sk: socket
3558  *
3559  *	This routine returns the IP overhead imposed by a socket i.e.
3560  *	the length of the underlying IP header, depending on whether
3561  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3562  *	on at the socket. Assumes that the caller has a lock on the socket.
3563  */
3564 
3565 u32 kernel_sock_ip_overhead(struct sock *sk)
3566 {
3567 	struct inet_sock *inet;
3568 	struct ip_options_rcu *opt;
3569 	u32 overhead = 0;
3570 #if IS_ENABLED(CONFIG_IPV6)
3571 	struct ipv6_pinfo *np;
3572 	struct ipv6_txoptions *optv6 = NULL;
3573 #endif /* IS_ENABLED(CONFIG_IPV6) */
3574 
3575 	if (!sk)
3576 		return overhead;
3577 
3578 	switch (sk->sk_family) {
3579 	case AF_INET:
3580 		inet = inet_sk(sk);
3581 		overhead += sizeof(struct iphdr);
3582 		opt = rcu_dereference_protected(inet->inet_opt,
3583 						sock_owned_by_user(sk));
3584 		if (opt)
3585 			overhead += opt->opt.optlen;
3586 		return overhead;
3587 #if IS_ENABLED(CONFIG_IPV6)
3588 	case AF_INET6:
3589 		np = inet6_sk(sk);
3590 		overhead += sizeof(struct ipv6hdr);
3591 		if (np)
3592 			optv6 = rcu_dereference_protected(np->opt,
3593 							  sock_owned_by_user(sk));
3594 		if (optv6)
3595 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3596 		return overhead;
3597 #endif /* IS_ENABLED(CONFIG_IPV6) */
3598 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3599 		return overhead;
3600 	}
3601 }
3602 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3603