1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/security.h> 77 #include <linux/syscalls.h> 78 #include <linux/compat.h> 79 #include <linux/kmod.h> 80 #include <linux/audit.h> 81 #include <linux/wireless.h> 82 #include <linux/nsproxy.h> 83 #include <linux/magic.h> 84 #include <linux/slab.h> 85 #include <linux/xattr.h> 86 #include <linux/nospec.h> 87 #include <linux/indirect_call_wrapper.h> 88 89 #include <linux/uaccess.h> 90 #include <asm/unistd.h> 91 92 #include <net/compat.h> 93 #include <net/wext.h> 94 #include <net/cls_cgroup.h> 95 96 #include <net/sock.h> 97 #include <linux/netfilter.h> 98 99 #include <linux/if_tun.h> 100 #include <linux/ipv6_route.h> 101 #include <linux/route.h> 102 #include <linux/sockios.h> 103 #include <net/busy_poll.h> 104 #include <linux/errqueue.h> 105 106 #ifdef CONFIG_NET_RX_BUSY_POLL 107 unsigned int sysctl_net_busy_read __read_mostly; 108 unsigned int sysctl_net_busy_poll __read_mostly; 109 #endif 110 111 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 112 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static __poll_t sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .read_iter = sock_read_iter, 139 .write_iter = sock_write_iter, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .release = sock_close, 147 .fasync = sock_fasync, 148 .sendpage = sock_sendpage, 149 .splice_write = generic_splice_sendpage, 150 .splice_read = sock_splice_read, 151 }; 152 153 /* 154 * The protocol list. Each protocol is registered in here. 155 */ 156 157 static DEFINE_SPINLOCK(net_family_lock); 158 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 159 160 /* 161 * Support routines. 162 * Move socket addresses back and forth across the kernel/user 163 * divide and look after the messy bits. 164 */ 165 166 /** 167 * move_addr_to_kernel - copy a socket address into kernel space 168 * @uaddr: Address in user space 169 * @kaddr: Address in kernel space 170 * @ulen: Length in user space 171 * 172 * The address is copied into kernel space. If the provided address is 173 * too long an error code of -EINVAL is returned. If the copy gives 174 * invalid addresses -EFAULT is returned. On a success 0 is returned. 175 */ 176 177 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 178 { 179 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 180 return -EINVAL; 181 if (ulen == 0) 182 return 0; 183 if (copy_from_user(kaddr, uaddr, ulen)) 184 return -EFAULT; 185 return audit_sockaddr(ulen, kaddr); 186 } 187 188 /** 189 * move_addr_to_user - copy an address to user space 190 * @kaddr: kernel space address 191 * @klen: length of address in kernel 192 * @uaddr: user space address 193 * @ulen: pointer to user length field 194 * 195 * The value pointed to by ulen on entry is the buffer length available. 196 * This is overwritten with the buffer space used. -EINVAL is returned 197 * if an overlong buffer is specified or a negative buffer size. -EFAULT 198 * is returned if either the buffer or the length field are not 199 * accessible. 200 * After copying the data up to the limit the user specifies, the true 201 * length of the data is written over the length limit the user 202 * specified. Zero is returned for a success. 203 */ 204 205 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 206 void __user *uaddr, int __user *ulen) 207 { 208 int err; 209 int len; 210 211 BUG_ON(klen > sizeof(struct sockaddr_storage)); 212 err = get_user(len, ulen); 213 if (err) 214 return err; 215 if (len > klen) 216 len = klen; 217 if (len < 0) 218 return -EINVAL; 219 if (len) { 220 if (audit_sockaddr(klen, kaddr)) 221 return -ENOMEM; 222 if (copy_to_user(uaddr, kaddr, len)) 223 return -EFAULT; 224 } 225 /* 226 * "fromlen shall refer to the value before truncation.." 227 * 1003.1g 228 */ 229 return __put_user(klen, ulen); 230 } 231 232 static struct kmem_cache *sock_inode_cachep __ro_after_init; 233 234 static struct inode *sock_alloc_inode(struct super_block *sb) 235 { 236 struct socket_alloc *ei; 237 238 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 239 if (!ei) 240 return NULL; 241 init_waitqueue_head(&ei->socket.wq.wait); 242 ei->socket.wq.fasync_list = NULL; 243 ei->socket.wq.flags = 0; 244 245 ei->socket.state = SS_UNCONNECTED; 246 ei->socket.flags = 0; 247 ei->socket.ops = NULL; 248 ei->socket.sk = NULL; 249 ei->socket.file = NULL; 250 251 return &ei->vfs_inode; 252 } 253 254 static void sock_free_inode(struct inode *inode) 255 { 256 struct socket_alloc *ei; 257 258 ei = container_of(inode, struct socket_alloc, vfs_inode); 259 kmem_cache_free(sock_inode_cachep, ei); 260 } 261 262 static void init_once(void *foo) 263 { 264 struct socket_alloc *ei = (struct socket_alloc *)foo; 265 266 inode_init_once(&ei->vfs_inode); 267 } 268 269 static void init_inodecache(void) 270 { 271 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 272 sizeof(struct socket_alloc), 273 0, 274 (SLAB_HWCACHE_ALIGN | 275 SLAB_RECLAIM_ACCOUNT | 276 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 277 init_once); 278 BUG_ON(sock_inode_cachep == NULL); 279 } 280 281 static const struct super_operations sockfs_ops = { 282 .alloc_inode = sock_alloc_inode, 283 .free_inode = sock_free_inode, 284 .statfs = simple_statfs, 285 }; 286 287 /* 288 * sockfs_dname() is called from d_path(). 289 */ 290 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 291 { 292 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 293 d_inode(dentry)->i_ino); 294 } 295 296 static const struct dentry_operations sockfs_dentry_operations = { 297 .d_dname = sockfs_dname, 298 }; 299 300 static int sockfs_xattr_get(const struct xattr_handler *handler, 301 struct dentry *dentry, struct inode *inode, 302 const char *suffix, void *value, size_t size) 303 { 304 if (value) { 305 if (dentry->d_name.len + 1 > size) 306 return -ERANGE; 307 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 308 } 309 return dentry->d_name.len + 1; 310 } 311 312 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 313 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 314 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 315 316 static const struct xattr_handler sockfs_xattr_handler = { 317 .name = XATTR_NAME_SOCKPROTONAME, 318 .get = sockfs_xattr_get, 319 }; 320 321 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, const void *value, 324 size_t size, int flags) 325 { 326 /* Handled by LSM. */ 327 return -EAGAIN; 328 } 329 330 static const struct xattr_handler sockfs_security_xattr_handler = { 331 .prefix = XATTR_SECURITY_PREFIX, 332 .set = sockfs_security_xattr_set, 333 }; 334 335 static const struct xattr_handler *sockfs_xattr_handlers[] = { 336 &sockfs_xattr_handler, 337 &sockfs_security_xattr_handler, 338 NULL 339 }; 340 341 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 342 int flags, const char *dev_name, void *data) 343 { 344 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 345 sockfs_xattr_handlers, 346 &sockfs_dentry_operations, SOCKFS_MAGIC); 347 } 348 349 static struct vfsmount *sock_mnt __read_mostly; 350 351 static struct file_system_type sock_fs_type = { 352 .name = "sockfs", 353 .mount = sockfs_mount, 354 .kill_sb = kill_anon_super, 355 }; 356 357 /* 358 * Obtains the first available file descriptor and sets it up for use. 359 * 360 * These functions create file structures and maps them to fd space 361 * of the current process. On success it returns file descriptor 362 * and file struct implicitly stored in sock->file. 363 * Note that another thread may close file descriptor before we return 364 * from this function. We use the fact that now we do not refer 365 * to socket after mapping. If one day we will need it, this 366 * function will increment ref. count on file by 1. 367 * 368 * In any case returned fd MAY BE not valid! 369 * This race condition is unavoidable 370 * with shared fd spaces, we cannot solve it inside kernel, 371 * but we take care of internal coherence yet. 372 */ 373 374 /** 375 * sock_alloc_file - Bind a &socket to a &file 376 * @sock: socket 377 * @flags: file status flags 378 * @dname: protocol name 379 * 380 * Returns the &file bound with @sock, implicitly storing it 381 * in sock->file. If dname is %NULL, sets to "". 382 * On failure the return is a ERR pointer (see linux/err.h). 383 * This function uses GFP_KERNEL internally. 384 */ 385 386 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 387 { 388 struct file *file; 389 390 if (!dname) 391 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 392 393 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 394 O_RDWR | (flags & O_NONBLOCK), 395 &socket_file_ops); 396 if (IS_ERR(file)) { 397 sock_release(sock); 398 return file; 399 } 400 401 sock->file = file; 402 file->private_data = sock; 403 return file; 404 } 405 EXPORT_SYMBOL(sock_alloc_file); 406 407 static int sock_map_fd(struct socket *sock, int flags) 408 { 409 struct file *newfile; 410 int fd = get_unused_fd_flags(flags); 411 if (unlikely(fd < 0)) { 412 sock_release(sock); 413 return fd; 414 } 415 416 newfile = sock_alloc_file(sock, flags, NULL); 417 if (!IS_ERR(newfile)) { 418 fd_install(fd, newfile); 419 return fd; 420 } 421 422 put_unused_fd(fd); 423 return PTR_ERR(newfile); 424 } 425 426 /** 427 * sock_from_file - Return the &socket bounded to @file. 428 * @file: file 429 * @err: pointer to an error code return 430 * 431 * On failure returns %NULL and assigns -ENOTSOCK to @err. 432 */ 433 434 struct socket *sock_from_file(struct file *file, int *err) 435 { 436 if (file->f_op == &socket_file_ops) 437 return file->private_data; /* set in sock_map_fd */ 438 439 *err = -ENOTSOCK; 440 return NULL; 441 } 442 EXPORT_SYMBOL(sock_from_file); 443 444 /** 445 * sockfd_lookup - Go from a file number to its socket slot 446 * @fd: file handle 447 * @err: pointer to an error code return 448 * 449 * The file handle passed in is locked and the socket it is bound 450 * to is returned. If an error occurs the err pointer is overwritten 451 * with a negative errno code and NULL is returned. The function checks 452 * for both invalid handles and passing a handle which is not a socket. 453 * 454 * On a success the socket object pointer is returned. 455 */ 456 457 struct socket *sockfd_lookup(int fd, int *err) 458 { 459 struct file *file; 460 struct socket *sock; 461 462 file = fget(fd); 463 if (!file) { 464 *err = -EBADF; 465 return NULL; 466 } 467 468 sock = sock_from_file(file, err); 469 if (!sock) 470 fput(file); 471 return sock; 472 } 473 EXPORT_SYMBOL(sockfd_lookup); 474 475 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 476 { 477 struct fd f = fdget(fd); 478 struct socket *sock; 479 480 *err = -EBADF; 481 if (f.file) { 482 sock = sock_from_file(f.file, err); 483 if (likely(sock)) { 484 *fput_needed = f.flags; 485 return sock; 486 } 487 fdput(f); 488 } 489 return NULL; 490 } 491 492 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 493 size_t size) 494 { 495 ssize_t len; 496 ssize_t used = 0; 497 498 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 499 if (len < 0) 500 return len; 501 used += len; 502 if (buffer) { 503 if (size < used) 504 return -ERANGE; 505 buffer += len; 506 } 507 508 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 509 used += len; 510 if (buffer) { 511 if (size < used) 512 return -ERANGE; 513 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 514 buffer += len; 515 } 516 517 return used; 518 } 519 520 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 521 { 522 int err = simple_setattr(dentry, iattr); 523 524 if (!err && (iattr->ia_valid & ATTR_UID)) { 525 struct socket *sock = SOCKET_I(d_inode(dentry)); 526 527 if (sock->sk) 528 sock->sk->sk_uid = iattr->ia_uid; 529 else 530 err = -ENOENT; 531 } 532 533 return err; 534 } 535 536 static const struct inode_operations sockfs_inode_ops = { 537 .listxattr = sockfs_listxattr, 538 .setattr = sockfs_setattr, 539 }; 540 541 /** 542 * sock_alloc - allocate a socket 543 * 544 * Allocate a new inode and socket object. The two are bound together 545 * and initialised. The socket is then returned. If we are out of inodes 546 * NULL is returned. This functions uses GFP_KERNEL internally. 547 */ 548 549 struct socket *sock_alloc(void) 550 { 551 struct inode *inode; 552 struct socket *sock; 553 554 inode = new_inode_pseudo(sock_mnt->mnt_sb); 555 if (!inode) 556 return NULL; 557 558 sock = SOCKET_I(inode); 559 560 inode->i_ino = get_next_ino(); 561 inode->i_mode = S_IFSOCK | S_IRWXUGO; 562 inode->i_uid = current_fsuid(); 563 inode->i_gid = current_fsgid(); 564 inode->i_op = &sockfs_inode_ops; 565 566 return sock; 567 } 568 EXPORT_SYMBOL(sock_alloc); 569 570 /** 571 * sock_release - close a socket 572 * @sock: socket to close 573 * 574 * The socket is released from the protocol stack if it has a release 575 * callback, and the inode is then released if the socket is bound to 576 * an inode not a file. 577 */ 578 579 static void __sock_release(struct socket *sock, struct inode *inode) 580 { 581 if (sock->ops) { 582 struct module *owner = sock->ops->owner; 583 584 if (inode) 585 inode_lock(inode); 586 sock->ops->release(sock); 587 sock->sk = NULL; 588 if (inode) 589 inode_unlock(inode); 590 sock->ops = NULL; 591 module_put(owner); 592 } 593 594 if (sock->wq.fasync_list) 595 pr_err("%s: fasync list not empty!\n", __func__); 596 597 if (!sock->file) { 598 iput(SOCK_INODE(sock)); 599 return; 600 } 601 sock->file = NULL; 602 } 603 604 void sock_release(struct socket *sock) 605 { 606 __sock_release(sock, NULL); 607 } 608 EXPORT_SYMBOL(sock_release); 609 610 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 611 { 612 u8 flags = *tx_flags; 613 614 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 615 flags |= SKBTX_HW_TSTAMP; 616 617 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 618 flags |= SKBTX_SW_TSTAMP; 619 620 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 621 flags |= SKBTX_SCHED_TSTAMP; 622 623 *tx_flags = flags; 624 } 625 EXPORT_SYMBOL(__sock_tx_timestamp); 626 627 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 628 size_t)); 629 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 630 size_t)); 631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632 { 633 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 634 inet_sendmsg, sock, msg, 635 msg_data_left(msg)); 636 BUG_ON(ret == -EIOCBQUEUED); 637 return ret; 638 } 639 640 /** 641 * sock_sendmsg - send a message through @sock 642 * @sock: socket 643 * @msg: message to send 644 * 645 * Sends @msg through @sock, passing through LSM. 646 * Returns the number of bytes sent, or an error code. 647 */ 648 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 649 { 650 int err = security_socket_sendmsg(sock, msg, 651 msg_data_left(msg)); 652 653 return err ?: sock_sendmsg_nosec(sock, msg); 654 } 655 EXPORT_SYMBOL(sock_sendmsg); 656 657 /** 658 * kernel_sendmsg - send a message through @sock (kernel-space) 659 * @sock: socket 660 * @msg: message header 661 * @vec: kernel vec 662 * @num: vec array length 663 * @size: total message data size 664 * 665 * Builds the message data with @vec and sends it through @sock. 666 * Returns the number of bytes sent, or an error code. 667 */ 668 669 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 670 struct kvec *vec, size_t num, size_t size) 671 { 672 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 673 return sock_sendmsg(sock, msg); 674 } 675 EXPORT_SYMBOL(kernel_sendmsg); 676 677 /** 678 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 679 * @sk: sock 680 * @msg: message header 681 * @vec: output s/g array 682 * @num: output s/g array length 683 * @size: total message data size 684 * 685 * Builds the message data with @vec and sends it through @sock. 686 * Returns the number of bytes sent, or an error code. 687 * Caller must hold @sk. 688 */ 689 690 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 691 struct kvec *vec, size_t num, size_t size) 692 { 693 struct socket *sock = sk->sk_socket; 694 695 if (!sock->ops->sendmsg_locked) 696 return sock_no_sendmsg_locked(sk, msg, size); 697 698 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 699 700 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 701 } 702 EXPORT_SYMBOL(kernel_sendmsg_locked); 703 704 static bool skb_is_err_queue(const struct sk_buff *skb) 705 { 706 /* pkt_type of skbs enqueued on the error queue are set to 707 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 708 * in recvmsg, since skbs received on a local socket will never 709 * have a pkt_type of PACKET_OUTGOING. 710 */ 711 return skb->pkt_type == PACKET_OUTGOING; 712 } 713 714 /* On transmit, software and hardware timestamps are returned independently. 715 * As the two skb clones share the hardware timestamp, which may be updated 716 * before the software timestamp is received, a hardware TX timestamp may be 717 * returned only if there is no software TX timestamp. Ignore false software 718 * timestamps, which may be made in the __sock_recv_timestamp() call when the 719 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 720 * hardware timestamp. 721 */ 722 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 723 { 724 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 725 } 726 727 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 728 { 729 struct scm_ts_pktinfo ts_pktinfo; 730 struct net_device *orig_dev; 731 732 if (!skb_mac_header_was_set(skb)) 733 return; 734 735 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 736 737 rcu_read_lock(); 738 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 739 if (orig_dev) 740 ts_pktinfo.if_index = orig_dev->ifindex; 741 rcu_read_unlock(); 742 743 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 745 sizeof(ts_pktinfo), &ts_pktinfo); 746 } 747 748 /* 749 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 750 */ 751 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 752 struct sk_buff *skb) 753 { 754 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 755 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 756 struct scm_timestamping_internal tss; 757 758 int empty = 1, false_tstamp = 0; 759 struct skb_shared_hwtstamps *shhwtstamps = 760 skb_hwtstamps(skb); 761 762 /* Race occurred between timestamp enabling and packet 763 receiving. Fill in the current time for now. */ 764 if (need_software_tstamp && skb->tstamp == 0) { 765 __net_timestamp(skb); 766 false_tstamp = 1; 767 } 768 769 if (need_software_tstamp) { 770 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 771 if (new_tstamp) { 772 struct __kernel_sock_timeval tv; 773 774 skb_get_new_timestamp(skb, &tv); 775 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 776 sizeof(tv), &tv); 777 } else { 778 struct __kernel_old_timeval tv; 779 780 skb_get_timestamp(skb, &tv); 781 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 782 sizeof(tv), &tv); 783 } 784 } else { 785 if (new_tstamp) { 786 struct __kernel_timespec ts; 787 788 skb_get_new_timestampns(skb, &ts); 789 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 790 sizeof(ts), &ts); 791 } else { 792 struct timespec ts; 793 794 skb_get_timestampns(skb, &ts); 795 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 796 sizeof(ts), &ts); 797 } 798 } 799 } 800 801 memset(&tss, 0, sizeof(tss)); 802 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 803 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 804 empty = 0; 805 if (shhwtstamps && 806 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 807 !skb_is_swtx_tstamp(skb, false_tstamp) && 808 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 809 empty = 0; 810 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 811 !skb_is_err_queue(skb)) 812 put_ts_pktinfo(msg, skb); 813 } 814 if (!empty) { 815 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 816 put_cmsg_scm_timestamping64(msg, &tss); 817 else 818 put_cmsg_scm_timestamping(msg, &tss); 819 820 if (skb_is_err_queue(skb) && skb->len && 821 SKB_EXT_ERR(skb)->opt_stats) 822 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 823 skb->len, skb->data); 824 } 825 } 826 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 827 828 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 829 struct sk_buff *skb) 830 { 831 int ack; 832 833 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 834 return; 835 if (!skb->wifi_acked_valid) 836 return; 837 838 ack = skb->wifi_acked; 839 840 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 841 } 842 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 843 844 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 845 struct sk_buff *skb) 846 { 847 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 848 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 849 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 850 } 851 852 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 853 struct sk_buff *skb) 854 { 855 sock_recv_timestamp(msg, sk, skb); 856 sock_recv_drops(msg, sk, skb); 857 } 858 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 859 860 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 861 size_t, int)); 862 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 863 size_t, int)); 864 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 865 int flags) 866 { 867 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 868 inet_recvmsg, sock, msg, msg_data_left(msg), 869 flags); 870 } 871 872 /** 873 * sock_recvmsg - receive a message from @sock 874 * @sock: socket 875 * @msg: message to receive 876 * @flags: message flags 877 * 878 * Receives @msg from @sock, passing through LSM. Returns the total number 879 * of bytes received, or an error. 880 */ 881 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 882 { 883 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 884 885 return err ?: sock_recvmsg_nosec(sock, msg, flags); 886 } 887 EXPORT_SYMBOL(sock_recvmsg); 888 889 /** 890 * kernel_recvmsg - Receive a message from a socket (kernel space) 891 * @sock: The socket to receive the message from 892 * @msg: Received message 893 * @vec: Input s/g array for message data 894 * @num: Size of input s/g array 895 * @size: Number of bytes to read 896 * @flags: Message flags (MSG_DONTWAIT, etc...) 897 * 898 * On return the msg structure contains the scatter/gather array passed in the 899 * vec argument. The array is modified so that it consists of the unfilled 900 * portion of the original array. 901 * 902 * The returned value is the total number of bytes received, or an error. 903 */ 904 905 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 906 struct kvec *vec, size_t num, size_t size, int flags) 907 { 908 mm_segment_t oldfs = get_fs(); 909 int result; 910 911 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 912 set_fs(KERNEL_DS); 913 result = sock_recvmsg(sock, msg, flags); 914 set_fs(oldfs); 915 return result; 916 } 917 EXPORT_SYMBOL(kernel_recvmsg); 918 919 static ssize_t sock_sendpage(struct file *file, struct page *page, 920 int offset, size_t size, loff_t *ppos, int more) 921 { 922 struct socket *sock; 923 int flags; 924 925 sock = file->private_data; 926 927 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 928 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 929 flags |= more; 930 931 return kernel_sendpage(sock, page, offset, size, flags); 932 } 933 934 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 935 struct pipe_inode_info *pipe, size_t len, 936 unsigned int flags) 937 { 938 struct socket *sock = file->private_data; 939 940 if (unlikely(!sock->ops->splice_read)) 941 return generic_file_splice_read(file, ppos, pipe, len, flags); 942 943 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 944 } 945 946 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 947 { 948 struct file *file = iocb->ki_filp; 949 struct socket *sock = file->private_data; 950 struct msghdr msg = {.msg_iter = *to, 951 .msg_iocb = iocb}; 952 ssize_t res; 953 954 if (file->f_flags & O_NONBLOCK) 955 msg.msg_flags = MSG_DONTWAIT; 956 957 if (iocb->ki_pos != 0) 958 return -ESPIPE; 959 960 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 961 return 0; 962 963 res = sock_recvmsg(sock, &msg, msg.msg_flags); 964 *to = msg.msg_iter; 965 return res; 966 } 967 968 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 969 { 970 struct file *file = iocb->ki_filp; 971 struct socket *sock = file->private_data; 972 struct msghdr msg = {.msg_iter = *from, 973 .msg_iocb = iocb}; 974 ssize_t res; 975 976 if (iocb->ki_pos != 0) 977 return -ESPIPE; 978 979 if (file->f_flags & O_NONBLOCK) 980 msg.msg_flags = MSG_DONTWAIT; 981 982 if (sock->type == SOCK_SEQPACKET) 983 msg.msg_flags |= MSG_EOR; 984 985 res = sock_sendmsg(sock, &msg); 986 *from = msg.msg_iter; 987 return res; 988 } 989 990 /* 991 * Atomic setting of ioctl hooks to avoid race 992 * with module unload. 993 */ 994 995 static DEFINE_MUTEX(br_ioctl_mutex); 996 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 997 998 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 999 { 1000 mutex_lock(&br_ioctl_mutex); 1001 br_ioctl_hook = hook; 1002 mutex_unlock(&br_ioctl_mutex); 1003 } 1004 EXPORT_SYMBOL(brioctl_set); 1005 1006 static DEFINE_MUTEX(vlan_ioctl_mutex); 1007 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1008 1009 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1010 { 1011 mutex_lock(&vlan_ioctl_mutex); 1012 vlan_ioctl_hook = hook; 1013 mutex_unlock(&vlan_ioctl_mutex); 1014 } 1015 EXPORT_SYMBOL(vlan_ioctl_set); 1016 1017 static DEFINE_MUTEX(dlci_ioctl_mutex); 1018 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1019 1020 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1021 { 1022 mutex_lock(&dlci_ioctl_mutex); 1023 dlci_ioctl_hook = hook; 1024 mutex_unlock(&dlci_ioctl_mutex); 1025 } 1026 EXPORT_SYMBOL(dlci_ioctl_set); 1027 1028 static long sock_do_ioctl(struct net *net, struct socket *sock, 1029 unsigned int cmd, unsigned long arg) 1030 { 1031 int err; 1032 void __user *argp = (void __user *)arg; 1033 1034 err = sock->ops->ioctl(sock, cmd, arg); 1035 1036 /* 1037 * If this ioctl is unknown try to hand it down 1038 * to the NIC driver. 1039 */ 1040 if (err != -ENOIOCTLCMD) 1041 return err; 1042 1043 if (cmd == SIOCGIFCONF) { 1044 struct ifconf ifc; 1045 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1046 return -EFAULT; 1047 rtnl_lock(); 1048 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1049 rtnl_unlock(); 1050 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1051 err = -EFAULT; 1052 } else { 1053 struct ifreq ifr; 1054 bool need_copyout; 1055 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1056 return -EFAULT; 1057 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1058 if (!err && need_copyout) 1059 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1060 return -EFAULT; 1061 } 1062 return err; 1063 } 1064 1065 /* 1066 * With an ioctl, arg may well be a user mode pointer, but we don't know 1067 * what to do with it - that's up to the protocol still. 1068 */ 1069 1070 /** 1071 * get_net_ns - increment the refcount of the network namespace 1072 * @ns: common namespace (net) 1073 * 1074 * Returns the net's common namespace. 1075 */ 1076 1077 struct ns_common *get_net_ns(struct ns_common *ns) 1078 { 1079 return &get_net(container_of(ns, struct net, ns))->ns; 1080 } 1081 EXPORT_SYMBOL_GPL(get_net_ns); 1082 1083 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1084 { 1085 struct socket *sock; 1086 struct sock *sk; 1087 void __user *argp = (void __user *)arg; 1088 int pid, err; 1089 struct net *net; 1090 1091 sock = file->private_data; 1092 sk = sock->sk; 1093 net = sock_net(sk); 1094 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1095 struct ifreq ifr; 1096 bool need_copyout; 1097 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1098 return -EFAULT; 1099 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1100 if (!err && need_copyout) 1101 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1102 return -EFAULT; 1103 } else 1104 #ifdef CONFIG_WEXT_CORE 1105 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1106 err = wext_handle_ioctl(net, cmd, argp); 1107 } else 1108 #endif 1109 switch (cmd) { 1110 case FIOSETOWN: 1111 case SIOCSPGRP: 1112 err = -EFAULT; 1113 if (get_user(pid, (int __user *)argp)) 1114 break; 1115 err = f_setown(sock->file, pid, 1); 1116 break; 1117 case FIOGETOWN: 1118 case SIOCGPGRP: 1119 err = put_user(f_getown(sock->file), 1120 (int __user *)argp); 1121 break; 1122 case SIOCGIFBR: 1123 case SIOCSIFBR: 1124 case SIOCBRADDBR: 1125 case SIOCBRDELBR: 1126 err = -ENOPKG; 1127 if (!br_ioctl_hook) 1128 request_module("bridge"); 1129 1130 mutex_lock(&br_ioctl_mutex); 1131 if (br_ioctl_hook) 1132 err = br_ioctl_hook(net, cmd, argp); 1133 mutex_unlock(&br_ioctl_mutex); 1134 break; 1135 case SIOCGIFVLAN: 1136 case SIOCSIFVLAN: 1137 err = -ENOPKG; 1138 if (!vlan_ioctl_hook) 1139 request_module("8021q"); 1140 1141 mutex_lock(&vlan_ioctl_mutex); 1142 if (vlan_ioctl_hook) 1143 err = vlan_ioctl_hook(net, argp); 1144 mutex_unlock(&vlan_ioctl_mutex); 1145 break; 1146 case SIOCADDDLCI: 1147 case SIOCDELDLCI: 1148 err = -ENOPKG; 1149 if (!dlci_ioctl_hook) 1150 request_module("dlci"); 1151 1152 mutex_lock(&dlci_ioctl_mutex); 1153 if (dlci_ioctl_hook) 1154 err = dlci_ioctl_hook(cmd, argp); 1155 mutex_unlock(&dlci_ioctl_mutex); 1156 break; 1157 case SIOCGSKNS: 1158 err = -EPERM; 1159 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1160 break; 1161 1162 err = open_related_ns(&net->ns, get_net_ns); 1163 break; 1164 case SIOCGSTAMP_OLD: 1165 case SIOCGSTAMPNS_OLD: 1166 if (!sock->ops->gettstamp) { 1167 err = -ENOIOCTLCMD; 1168 break; 1169 } 1170 err = sock->ops->gettstamp(sock, argp, 1171 cmd == SIOCGSTAMP_OLD, 1172 !IS_ENABLED(CONFIG_64BIT)); 1173 break; 1174 case SIOCGSTAMP_NEW: 1175 case SIOCGSTAMPNS_NEW: 1176 if (!sock->ops->gettstamp) { 1177 err = -ENOIOCTLCMD; 1178 break; 1179 } 1180 err = sock->ops->gettstamp(sock, argp, 1181 cmd == SIOCGSTAMP_NEW, 1182 false); 1183 break; 1184 default: 1185 err = sock_do_ioctl(net, sock, cmd, arg); 1186 break; 1187 } 1188 return err; 1189 } 1190 1191 /** 1192 * sock_create_lite - creates a socket 1193 * @family: protocol family (AF_INET, ...) 1194 * @type: communication type (SOCK_STREAM, ...) 1195 * @protocol: protocol (0, ...) 1196 * @res: new socket 1197 * 1198 * Creates a new socket and assigns it to @res, passing through LSM. 1199 * The new socket initialization is not complete, see kernel_accept(). 1200 * Returns 0 or an error. On failure @res is set to %NULL. 1201 * This function internally uses GFP_KERNEL. 1202 */ 1203 1204 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1205 { 1206 int err; 1207 struct socket *sock = NULL; 1208 1209 err = security_socket_create(family, type, protocol, 1); 1210 if (err) 1211 goto out; 1212 1213 sock = sock_alloc(); 1214 if (!sock) { 1215 err = -ENOMEM; 1216 goto out; 1217 } 1218 1219 sock->type = type; 1220 err = security_socket_post_create(sock, family, type, protocol, 1); 1221 if (err) 1222 goto out_release; 1223 1224 out: 1225 *res = sock; 1226 return err; 1227 out_release: 1228 sock_release(sock); 1229 sock = NULL; 1230 goto out; 1231 } 1232 EXPORT_SYMBOL(sock_create_lite); 1233 1234 /* No kernel lock held - perfect */ 1235 static __poll_t sock_poll(struct file *file, poll_table *wait) 1236 { 1237 struct socket *sock = file->private_data; 1238 __poll_t events = poll_requested_events(wait), flag = 0; 1239 1240 if (!sock->ops->poll) 1241 return 0; 1242 1243 if (sk_can_busy_loop(sock->sk)) { 1244 /* poll once if requested by the syscall */ 1245 if (events & POLL_BUSY_LOOP) 1246 sk_busy_loop(sock->sk, 1); 1247 1248 /* if this socket can poll_ll, tell the system call */ 1249 flag = POLL_BUSY_LOOP; 1250 } 1251 1252 return sock->ops->poll(file, sock, wait) | flag; 1253 } 1254 1255 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1256 { 1257 struct socket *sock = file->private_data; 1258 1259 return sock->ops->mmap(file, sock, vma); 1260 } 1261 1262 static int sock_close(struct inode *inode, struct file *filp) 1263 { 1264 __sock_release(SOCKET_I(inode), inode); 1265 return 0; 1266 } 1267 1268 /* 1269 * Update the socket async list 1270 * 1271 * Fasync_list locking strategy. 1272 * 1273 * 1. fasync_list is modified only under process context socket lock 1274 * i.e. under semaphore. 1275 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1276 * or under socket lock 1277 */ 1278 1279 static int sock_fasync(int fd, struct file *filp, int on) 1280 { 1281 struct socket *sock = filp->private_data; 1282 struct sock *sk = sock->sk; 1283 struct socket_wq *wq = &sock->wq; 1284 1285 if (sk == NULL) 1286 return -EINVAL; 1287 1288 lock_sock(sk); 1289 fasync_helper(fd, filp, on, &wq->fasync_list); 1290 1291 if (!wq->fasync_list) 1292 sock_reset_flag(sk, SOCK_FASYNC); 1293 else 1294 sock_set_flag(sk, SOCK_FASYNC); 1295 1296 release_sock(sk); 1297 return 0; 1298 } 1299 1300 /* This function may be called only under rcu_lock */ 1301 1302 int sock_wake_async(struct socket_wq *wq, int how, int band) 1303 { 1304 if (!wq || !wq->fasync_list) 1305 return -1; 1306 1307 switch (how) { 1308 case SOCK_WAKE_WAITD: 1309 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1310 break; 1311 goto call_kill; 1312 case SOCK_WAKE_SPACE: 1313 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1314 break; 1315 /* fall through */ 1316 case SOCK_WAKE_IO: 1317 call_kill: 1318 kill_fasync(&wq->fasync_list, SIGIO, band); 1319 break; 1320 case SOCK_WAKE_URG: 1321 kill_fasync(&wq->fasync_list, SIGURG, band); 1322 } 1323 1324 return 0; 1325 } 1326 EXPORT_SYMBOL(sock_wake_async); 1327 1328 /** 1329 * __sock_create - creates a socket 1330 * @net: net namespace 1331 * @family: protocol family (AF_INET, ...) 1332 * @type: communication type (SOCK_STREAM, ...) 1333 * @protocol: protocol (0, ...) 1334 * @res: new socket 1335 * @kern: boolean for kernel space sockets 1336 * 1337 * Creates a new socket and assigns it to @res, passing through LSM. 1338 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1339 * be set to true if the socket resides in kernel space. 1340 * This function internally uses GFP_KERNEL. 1341 */ 1342 1343 int __sock_create(struct net *net, int family, int type, int protocol, 1344 struct socket **res, int kern) 1345 { 1346 int err; 1347 struct socket *sock; 1348 const struct net_proto_family *pf; 1349 1350 /* 1351 * Check protocol is in range 1352 */ 1353 if (family < 0 || family >= NPROTO) 1354 return -EAFNOSUPPORT; 1355 if (type < 0 || type >= SOCK_MAX) 1356 return -EINVAL; 1357 1358 /* Compatibility. 1359 1360 This uglymoron is moved from INET layer to here to avoid 1361 deadlock in module load. 1362 */ 1363 if (family == PF_INET && type == SOCK_PACKET) { 1364 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1365 current->comm); 1366 family = PF_PACKET; 1367 } 1368 1369 err = security_socket_create(family, type, protocol, kern); 1370 if (err) 1371 return err; 1372 1373 /* 1374 * Allocate the socket and allow the family to set things up. if 1375 * the protocol is 0, the family is instructed to select an appropriate 1376 * default. 1377 */ 1378 sock = sock_alloc(); 1379 if (!sock) { 1380 net_warn_ratelimited("socket: no more sockets\n"); 1381 return -ENFILE; /* Not exactly a match, but its the 1382 closest posix thing */ 1383 } 1384 1385 sock->type = type; 1386 1387 #ifdef CONFIG_MODULES 1388 /* Attempt to load a protocol module if the find failed. 1389 * 1390 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1391 * requested real, full-featured networking support upon configuration. 1392 * Otherwise module support will break! 1393 */ 1394 if (rcu_access_pointer(net_families[family]) == NULL) 1395 request_module("net-pf-%d", family); 1396 #endif 1397 1398 rcu_read_lock(); 1399 pf = rcu_dereference(net_families[family]); 1400 err = -EAFNOSUPPORT; 1401 if (!pf) 1402 goto out_release; 1403 1404 /* 1405 * We will call the ->create function, that possibly is in a loadable 1406 * module, so we have to bump that loadable module refcnt first. 1407 */ 1408 if (!try_module_get(pf->owner)) 1409 goto out_release; 1410 1411 /* Now protected by module ref count */ 1412 rcu_read_unlock(); 1413 1414 err = pf->create(net, sock, protocol, kern); 1415 if (err < 0) 1416 goto out_module_put; 1417 1418 /* 1419 * Now to bump the refcnt of the [loadable] module that owns this 1420 * socket at sock_release time we decrement its refcnt. 1421 */ 1422 if (!try_module_get(sock->ops->owner)) 1423 goto out_module_busy; 1424 1425 /* 1426 * Now that we're done with the ->create function, the [loadable] 1427 * module can have its refcnt decremented 1428 */ 1429 module_put(pf->owner); 1430 err = security_socket_post_create(sock, family, type, protocol, kern); 1431 if (err) 1432 goto out_sock_release; 1433 *res = sock; 1434 1435 return 0; 1436 1437 out_module_busy: 1438 err = -EAFNOSUPPORT; 1439 out_module_put: 1440 sock->ops = NULL; 1441 module_put(pf->owner); 1442 out_sock_release: 1443 sock_release(sock); 1444 return err; 1445 1446 out_release: 1447 rcu_read_unlock(); 1448 goto out_sock_release; 1449 } 1450 EXPORT_SYMBOL(__sock_create); 1451 1452 /** 1453 * sock_create - creates a socket 1454 * @family: protocol family (AF_INET, ...) 1455 * @type: communication type (SOCK_STREAM, ...) 1456 * @protocol: protocol (0, ...) 1457 * @res: new socket 1458 * 1459 * A wrapper around __sock_create(). 1460 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1461 */ 1462 1463 int sock_create(int family, int type, int protocol, struct socket **res) 1464 { 1465 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1466 } 1467 EXPORT_SYMBOL(sock_create); 1468 1469 /** 1470 * sock_create_kern - creates a socket (kernel space) 1471 * @net: net namespace 1472 * @family: protocol family (AF_INET, ...) 1473 * @type: communication type (SOCK_STREAM, ...) 1474 * @protocol: protocol (0, ...) 1475 * @res: new socket 1476 * 1477 * A wrapper around __sock_create(). 1478 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1479 */ 1480 1481 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1482 { 1483 return __sock_create(net, family, type, protocol, res, 1); 1484 } 1485 EXPORT_SYMBOL(sock_create_kern); 1486 1487 int __sys_socket(int family, int type, int protocol) 1488 { 1489 int retval; 1490 struct socket *sock; 1491 int flags; 1492 1493 /* Check the SOCK_* constants for consistency. */ 1494 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1495 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1496 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1497 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1498 1499 flags = type & ~SOCK_TYPE_MASK; 1500 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1501 return -EINVAL; 1502 type &= SOCK_TYPE_MASK; 1503 1504 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1505 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1506 1507 retval = sock_create(family, type, protocol, &sock); 1508 if (retval < 0) 1509 return retval; 1510 1511 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1512 } 1513 1514 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1515 { 1516 return __sys_socket(family, type, protocol); 1517 } 1518 1519 /* 1520 * Create a pair of connected sockets. 1521 */ 1522 1523 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1524 { 1525 struct socket *sock1, *sock2; 1526 int fd1, fd2, err; 1527 struct file *newfile1, *newfile2; 1528 int flags; 1529 1530 flags = type & ~SOCK_TYPE_MASK; 1531 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1532 return -EINVAL; 1533 type &= SOCK_TYPE_MASK; 1534 1535 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1536 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1537 1538 /* 1539 * reserve descriptors and make sure we won't fail 1540 * to return them to userland. 1541 */ 1542 fd1 = get_unused_fd_flags(flags); 1543 if (unlikely(fd1 < 0)) 1544 return fd1; 1545 1546 fd2 = get_unused_fd_flags(flags); 1547 if (unlikely(fd2 < 0)) { 1548 put_unused_fd(fd1); 1549 return fd2; 1550 } 1551 1552 err = put_user(fd1, &usockvec[0]); 1553 if (err) 1554 goto out; 1555 1556 err = put_user(fd2, &usockvec[1]); 1557 if (err) 1558 goto out; 1559 1560 /* 1561 * Obtain the first socket and check if the underlying protocol 1562 * supports the socketpair call. 1563 */ 1564 1565 err = sock_create(family, type, protocol, &sock1); 1566 if (unlikely(err < 0)) 1567 goto out; 1568 1569 err = sock_create(family, type, protocol, &sock2); 1570 if (unlikely(err < 0)) { 1571 sock_release(sock1); 1572 goto out; 1573 } 1574 1575 err = security_socket_socketpair(sock1, sock2); 1576 if (unlikely(err)) { 1577 sock_release(sock2); 1578 sock_release(sock1); 1579 goto out; 1580 } 1581 1582 err = sock1->ops->socketpair(sock1, sock2); 1583 if (unlikely(err < 0)) { 1584 sock_release(sock2); 1585 sock_release(sock1); 1586 goto out; 1587 } 1588 1589 newfile1 = sock_alloc_file(sock1, flags, NULL); 1590 if (IS_ERR(newfile1)) { 1591 err = PTR_ERR(newfile1); 1592 sock_release(sock2); 1593 goto out; 1594 } 1595 1596 newfile2 = sock_alloc_file(sock2, flags, NULL); 1597 if (IS_ERR(newfile2)) { 1598 err = PTR_ERR(newfile2); 1599 fput(newfile1); 1600 goto out; 1601 } 1602 1603 audit_fd_pair(fd1, fd2); 1604 1605 fd_install(fd1, newfile1); 1606 fd_install(fd2, newfile2); 1607 return 0; 1608 1609 out: 1610 put_unused_fd(fd2); 1611 put_unused_fd(fd1); 1612 return err; 1613 } 1614 1615 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1616 int __user *, usockvec) 1617 { 1618 return __sys_socketpair(family, type, protocol, usockvec); 1619 } 1620 1621 /* 1622 * Bind a name to a socket. Nothing much to do here since it's 1623 * the protocol's responsibility to handle the local address. 1624 * 1625 * We move the socket address to kernel space before we call 1626 * the protocol layer (having also checked the address is ok). 1627 */ 1628 1629 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1630 { 1631 struct socket *sock; 1632 struct sockaddr_storage address; 1633 int err, fput_needed; 1634 1635 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1636 if (sock) { 1637 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1638 if (!err) { 1639 err = security_socket_bind(sock, 1640 (struct sockaddr *)&address, 1641 addrlen); 1642 if (!err) 1643 err = sock->ops->bind(sock, 1644 (struct sockaddr *) 1645 &address, addrlen); 1646 } 1647 fput_light(sock->file, fput_needed); 1648 } 1649 return err; 1650 } 1651 1652 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1653 { 1654 return __sys_bind(fd, umyaddr, addrlen); 1655 } 1656 1657 /* 1658 * Perform a listen. Basically, we allow the protocol to do anything 1659 * necessary for a listen, and if that works, we mark the socket as 1660 * ready for listening. 1661 */ 1662 1663 int __sys_listen(int fd, int backlog) 1664 { 1665 struct socket *sock; 1666 int err, fput_needed; 1667 int somaxconn; 1668 1669 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1670 if (sock) { 1671 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1672 if ((unsigned int)backlog > somaxconn) 1673 backlog = somaxconn; 1674 1675 err = security_socket_listen(sock, backlog); 1676 if (!err) 1677 err = sock->ops->listen(sock, backlog); 1678 1679 fput_light(sock->file, fput_needed); 1680 } 1681 return err; 1682 } 1683 1684 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1685 { 1686 return __sys_listen(fd, backlog); 1687 } 1688 1689 /* 1690 * For accept, we attempt to create a new socket, set up the link 1691 * with the client, wake up the client, then return the new 1692 * connected fd. We collect the address of the connector in kernel 1693 * space and move it to user at the very end. This is unclean because 1694 * we open the socket then return an error. 1695 * 1696 * 1003.1g adds the ability to recvmsg() to query connection pending 1697 * status to recvmsg. We need to add that support in a way thats 1698 * clean when we restructure accept also. 1699 */ 1700 1701 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1702 int __user *upeer_addrlen, int flags) 1703 { 1704 struct socket *sock, *newsock; 1705 struct file *newfile; 1706 int err, len, newfd, fput_needed; 1707 struct sockaddr_storage address; 1708 1709 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1710 return -EINVAL; 1711 1712 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1713 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1714 1715 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1716 if (!sock) 1717 goto out; 1718 1719 err = -ENFILE; 1720 newsock = sock_alloc(); 1721 if (!newsock) 1722 goto out_put; 1723 1724 newsock->type = sock->type; 1725 newsock->ops = sock->ops; 1726 1727 /* 1728 * We don't need try_module_get here, as the listening socket (sock) 1729 * has the protocol module (sock->ops->owner) held. 1730 */ 1731 __module_get(newsock->ops->owner); 1732 1733 newfd = get_unused_fd_flags(flags); 1734 if (unlikely(newfd < 0)) { 1735 err = newfd; 1736 sock_release(newsock); 1737 goto out_put; 1738 } 1739 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1740 if (IS_ERR(newfile)) { 1741 err = PTR_ERR(newfile); 1742 put_unused_fd(newfd); 1743 goto out_put; 1744 } 1745 1746 err = security_socket_accept(sock, newsock); 1747 if (err) 1748 goto out_fd; 1749 1750 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1751 if (err < 0) 1752 goto out_fd; 1753 1754 if (upeer_sockaddr) { 1755 len = newsock->ops->getname(newsock, 1756 (struct sockaddr *)&address, 2); 1757 if (len < 0) { 1758 err = -ECONNABORTED; 1759 goto out_fd; 1760 } 1761 err = move_addr_to_user(&address, 1762 len, upeer_sockaddr, upeer_addrlen); 1763 if (err < 0) 1764 goto out_fd; 1765 } 1766 1767 /* File flags are not inherited via accept() unlike another OSes. */ 1768 1769 fd_install(newfd, newfile); 1770 err = newfd; 1771 1772 out_put: 1773 fput_light(sock->file, fput_needed); 1774 out: 1775 return err; 1776 out_fd: 1777 fput(newfile); 1778 put_unused_fd(newfd); 1779 goto out_put; 1780 } 1781 1782 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1783 int __user *, upeer_addrlen, int, flags) 1784 { 1785 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1786 } 1787 1788 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1789 int __user *, upeer_addrlen) 1790 { 1791 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1792 } 1793 1794 /* 1795 * Attempt to connect to a socket with the server address. The address 1796 * is in user space so we verify it is OK and move it to kernel space. 1797 * 1798 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1799 * break bindings 1800 * 1801 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1802 * other SEQPACKET protocols that take time to connect() as it doesn't 1803 * include the -EINPROGRESS status for such sockets. 1804 */ 1805 1806 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1807 { 1808 struct socket *sock; 1809 struct sockaddr_storage address; 1810 int err, fput_needed; 1811 1812 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1813 if (!sock) 1814 goto out; 1815 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1816 if (err < 0) 1817 goto out_put; 1818 1819 err = 1820 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1821 if (err) 1822 goto out_put; 1823 1824 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1825 sock->file->f_flags); 1826 out_put: 1827 fput_light(sock->file, fput_needed); 1828 out: 1829 return err; 1830 } 1831 1832 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1833 int, addrlen) 1834 { 1835 return __sys_connect(fd, uservaddr, addrlen); 1836 } 1837 1838 /* 1839 * Get the local address ('name') of a socket object. Move the obtained 1840 * name to user space. 1841 */ 1842 1843 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1844 int __user *usockaddr_len) 1845 { 1846 struct socket *sock; 1847 struct sockaddr_storage address; 1848 int err, fput_needed; 1849 1850 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1851 if (!sock) 1852 goto out; 1853 1854 err = security_socket_getsockname(sock); 1855 if (err) 1856 goto out_put; 1857 1858 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1859 if (err < 0) 1860 goto out_put; 1861 /* "err" is actually length in this case */ 1862 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1863 1864 out_put: 1865 fput_light(sock->file, fput_needed); 1866 out: 1867 return err; 1868 } 1869 1870 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1871 int __user *, usockaddr_len) 1872 { 1873 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1874 } 1875 1876 /* 1877 * Get the remote address ('name') of a socket object. Move the obtained 1878 * name to user space. 1879 */ 1880 1881 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1882 int __user *usockaddr_len) 1883 { 1884 struct socket *sock; 1885 struct sockaddr_storage address; 1886 int err, fput_needed; 1887 1888 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1889 if (sock != NULL) { 1890 err = security_socket_getpeername(sock); 1891 if (err) { 1892 fput_light(sock->file, fput_needed); 1893 return err; 1894 } 1895 1896 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1897 if (err >= 0) 1898 /* "err" is actually length in this case */ 1899 err = move_addr_to_user(&address, err, usockaddr, 1900 usockaddr_len); 1901 fput_light(sock->file, fput_needed); 1902 } 1903 return err; 1904 } 1905 1906 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1907 int __user *, usockaddr_len) 1908 { 1909 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1910 } 1911 1912 /* 1913 * Send a datagram to a given address. We move the address into kernel 1914 * space and check the user space data area is readable before invoking 1915 * the protocol. 1916 */ 1917 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1918 struct sockaddr __user *addr, int addr_len) 1919 { 1920 struct socket *sock; 1921 struct sockaddr_storage address; 1922 int err; 1923 struct msghdr msg; 1924 struct iovec iov; 1925 int fput_needed; 1926 1927 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1928 if (unlikely(err)) 1929 return err; 1930 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1931 if (!sock) 1932 goto out; 1933 1934 msg.msg_name = NULL; 1935 msg.msg_control = NULL; 1936 msg.msg_controllen = 0; 1937 msg.msg_namelen = 0; 1938 if (addr) { 1939 err = move_addr_to_kernel(addr, addr_len, &address); 1940 if (err < 0) 1941 goto out_put; 1942 msg.msg_name = (struct sockaddr *)&address; 1943 msg.msg_namelen = addr_len; 1944 } 1945 if (sock->file->f_flags & O_NONBLOCK) 1946 flags |= MSG_DONTWAIT; 1947 msg.msg_flags = flags; 1948 err = sock_sendmsg(sock, &msg); 1949 1950 out_put: 1951 fput_light(sock->file, fput_needed); 1952 out: 1953 return err; 1954 } 1955 1956 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1957 unsigned int, flags, struct sockaddr __user *, addr, 1958 int, addr_len) 1959 { 1960 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1961 } 1962 1963 /* 1964 * Send a datagram down a socket. 1965 */ 1966 1967 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1968 unsigned int, flags) 1969 { 1970 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1971 } 1972 1973 /* 1974 * Receive a frame from the socket and optionally record the address of the 1975 * sender. We verify the buffers are writable and if needed move the 1976 * sender address from kernel to user space. 1977 */ 1978 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1979 struct sockaddr __user *addr, int __user *addr_len) 1980 { 1981 struct socket *sock; 1982 struct iovec iov; 1983 struct msghdr msg; 1984 struct sockaddr_storage address; 1985 int err, err2; 1986 int fput_needed; 1987 1988 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1989 if (unlikely(err)) 1990 return err; 1991 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1992 if (!sock) 1993 goto out; 1994 1995 msg.msg_control = NULL; 1996 msg.msg_controllen = 0; 1997 /* Save some cycles and don't copy the address if not needed */ 1998 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1999 /* We assume all kernel code knows the size of sockaddr_storage */ 2000 msg.msg_namelen = 0; 2001 msg.msg_iocb = NULL; 2002 msg.msg_flags = 0; 2003 if (sock->file->f_flags & O_NONBLOCK) 2004 flags |= MSG_DONTWAIT; 2005 err = sock_recvmsg(sock, &msg, flags); 2006 2007 if (err >= 0 && addr != NULL) { 2008 err2 = move_addr_to_user(&address, 2009 msg.msg_namelen, addr, addr_len); 2010 if (err2 < 0) 2011 err = err2; 2012 } 2013 2014 fput_light(sock->file, fput_needed); 2015 out: 2016 return err; 2017 } 2018 2019 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2020 unsigned int, flags, struct sockaddr __user *, addr, 2021 int __user *, addr_len) 2022 { 2023 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2024 } 2025 2026 /* 2027 * Receive a datagram from a socket. 2028 */ 2029 2030 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2031 unsigned int, flags) 2032 { 2033 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2034 } 2035 2036 /* 2037 * Set a socket option. Because we don't know the option lengths we have 2038 * to pass the user mode parameter for the protocols to sort out. 2039 */ 2040 2041 static int __sys_setsockopt(int fd, int level, int optname, 2042 char __user *optval, int optlen) 2043 { 2044 mm_segment_t oldfs = get_fs(); 2045 char *kernel_optval = NULL; 2046 int err, fput_needed; 2047 struct socket *sock; 2048 2049 if (optlen < 0) 2050 return -EINVAL; 2051 2052 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2053 if (sock != NULL) { 2054 err = security_socket_setsockopt(sock, level, optname); 2055 if (err) 2056 goto out_put; 2057 2058 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, 2059 &optname, optval, &optlen, 2060 &kernel_optval); 2061 2062 if (err < 0) { 2063 goto out_put; 2064 } else if (err > 0) { 2065 err = 0; 2066 goto out_put; 2067 } 2068 2069 if (kernel_optval) { 2070 set_fs(KERNEL_DS); 2071 optval = (char __user __force *)kernel_optval; 2072 } 2073 2074 if (level == SOL_SOCKET) 2075 err = 2076 sock_setsockopt(sock, level, optname, optval, 2077 optlen); 2078 else 2079 err = 2080 sock->ops->setsockopt(sock, level, optname, optval, 2081 optlen); 2082 2083 if (kernel_optval) { 2084 set_fs(oldfs); 2085 kfree(kernel_optval); 2086 } 2087 out_put: 2088 fput_light(sock->file, fput_needed); 2089 } 2090 return err; 2091 } 2092 2093 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2094 char __user *, optval, int, optlen) 2095 { 2096 return __sys_setsockopt(fd, level, optname, optval, optlen); 2097 } 2098 2099 /* 2100 * Get a socket option. Because we don't know the option lengths we have 2101 * to pass a user mode parameter for the protocols to sort out. 2102 */ 2103 2104 static int __sys_getsockopt(int fd, int level, int optname, 2105 char __user *optval, int __user *optlen) 2106 { 2107 int err, fput_needed; 2108 struct socket *sock; 2109 int max_optlen; 2110 2111 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2112 if (sock != NULL) { 2113 err = security_socket_getsockopt(sock, level, optname); 2114 if (err) 2115 goto out_put; 2116 2117 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2118 2119 if (level == SOL_SOCKET) 2120 err = 2121 sock_getsockopt(sock, level, optname, optval, 2122 optlen); 2123 else 2124 err = 2125 sock->ops->getsockopt(sock, level, optname, optval, 2126 optlen); 2127 2128 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2129 optval, optlen, 2130 max_optlen, err); 2131 out_put: 2132 fput_light(sock->file, fput_needed); 2133 } 2134 return err; 2135 } 2136 2137 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2138 char __user *, optval, int __user *, optlen) 2139 { 2140 return __sys_getsockopt(fd, level, optname, optval, optlen); 2141 } 2142 2143 /* 2144 * Shutdown a socket. 2145 */ 2146 2147 int __sys_shutdown(int fd, int how) 2148 { 2149 int err, fput_needed; 2150 struct socket *sock; 2151 2152 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2153 if (sock != NULL) { 2154 err = security_socket_shutdown(sock, how); 2155 if (!err) 2156 err = sock->ops->shutdown(sock, how); 2157 fput_light(sock->file, fput_needed); 2158 } 2159 return err; 2160 } 2161 2162 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2163 { 2164 return __sys_shutdown(fd, how); 2165 } 2166 2167 /* A couple of helpful macros for getting the address of the 32/64 bit 2168 * fields which are the same type (int / unsigned) on our platforms. 2169 */ 2170 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2171 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2172 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2173 2174 struct used_address { 2175 struct sockaddr_storage name; 2176 unsigned int name_len; 2177 }; 2178 2179 static int copy_msghdr_from_user(struct msghdr *kmsg, 2180 struct user_msghdr __user *umsg, 2181 struct sockaddr __user **save_addr, 2182 struct iovec **iov) 2183 { 2184 struct user_msghdr msg; 2185 ssize_t err; 2186 2187 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2188 return -EFAULT; 2189 2190 kmsg->msg_control = (void __force *)msg.msg_control; 2191 kmsg->msg_controllen = msg.msg_controllen; 2192 kmsg->msg_flags = msg.msg_flags; 2193 2194 kmsg->msg_namelen = msg.msg_namelen; 2195 if (!msg.msg_name) 2196 kmsg->msg_namelen = 0; 2197 2198 if (kmsg->msg_namelen < 0) 2199 return -EINVAL; 2200 2201 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2202 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2203 2204 if (save_addr) 2205 *save_addr = msg.msg_name; 2206 2207 if (msg.msg_name && kmsg->msg_namelen) { 2208 if (!save_addr) { 2209 err = move_addr_to_kernel(msg.msg_name, 2210 kmsg->msg_namelen, 2211 kmsg->msg_name); 2212 if (err < 0) 2213 return err; 2214 } 2215 } else { 2216 kmsg->msg_name = NULL; 2217 kmsg->msg_namelen = 0; 2218 } 2219 2220 if (msg.msg_iovlen > UIO_MAXIOV) 2221 return -EMSGSIZE; 2222 2223 kmsg->msg_iocb = NULL; 2224 2225 return import_iovec(save_addr ? READ : WRITE, 2226 msg.msg_iov, msg.msg_iovlen, 2227 UIO_FASTIOV, iov, &kmsg->msg_iter); 2228 } 2229 2230 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2231 struct msghdr *msg_sys, unsigned int flags, 2232 struct used_address *used_address, 2233 unsigned int allowed_msghdr_flags) 2234 { 2235 struct compat_msghdr __user *msg_compat = 2236 (struct compat_msghdr __user *)msg; 2237 struct sockaddr_storage address; 2238 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2239 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2240 __aligned(sizeof(__kernel_size_t)); 2241 /* 20 is size of ipv6_pktinfo */ 2242 unsigned char *ctl_buf = ctl; 2243 int ctl_len; 2244 ssize_t err; 2245 2246 msg_sys->msg_name = &address; 2247 2248 if (MSG_CMSG_COMPAT & flags) 2249 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2250 else 2251 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2252 if (err < 0) 2253 return err; 2254 2255 err = -ENOBUFS; 2256 2257 if (msg_sys->msg_controllen > INT_MAX) 2258 goto out_freeiov; 2259 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2260 ctl_len = msg_sys->msg_controllen; 2261 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2262 err = 2263 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2264 sizeof(ctl)); 2265 if (err) 2266 goto out_freeiov; 2267 ctl_buf = msg_sys->msg_control; 2268 ctl_len = msg_sys->msg_controllen; 2269 } else if (ctl_len) { 2270 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2271 CMSG_ALIGN(sizeof(struct cmsghdr))); 2272 if (ctl_len > sizeof(ctl)) { 2273 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2274 if (ctl_buf == NULL) 2275 goto out_freeiov; 2276 } 2277 err = -EFAULT; 2278 /* 2279 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2280 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2281 * checking falls down on this. 2282 */ 2283 if (copy_from_user(ctl_buf, 2284 (void __user __force *)msg_sys->msg_control, 2285 ctl_len)) 2286 goto out_freectl; 2287 msg_sys->msg_control = ctl_buf; 2288 } 2289 msg_sys->msg_flags = flags; 2290 2291 if (sock->file->f_flags & O_NONBLOCK) 2292 msg_sys->msg_flags |= MSG_DONTWAIT; 2293 /* 2294 * If this is sendmmsg() and current destination address is same as 2295 * previously succeeded address, omit asking LSM's decision. 2296 * used_address->name_len is initialized to UINT_MAX so that the first 2297 * destination address never matches. 2298 */ 2299 if (used_address && msg_sys->msg_name && 2300 used_address->name_len == msg_sys->msg_namelen && 2301 !memcmp(&used_address->name, msg_sys->msg_name, 2302 used_address->name_len)) { 2303 err = sock_sendmsg_nosec(sock, msg_sys); 2304 goto out_freectl; 2305 } 2306 err = sock_sendmsg(sock, msg_sys); 2307 /* 2308 * If this is sendmmsg() and sending to current destination address was 2309 * successful, remember it. 2310 */ 2311 if (used_address && err >= 0) { 2312 used_address->name_len = msg_sys->msg_namelen; 2313 if (msg_sys->msg_name) 2314 memcpy(&used_address->name, msg_sys->msg_name, 2315 used_address->name_len); 2316 } 2317 2318 out_freectl: 2319 if (ctl_buf != ctl) 2320 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2321 out_freeiov: 2322 kfree(iov); 2323 return err; 2324 } 2325 2326 /* 2327 * BSD sendmsg interface 2328 */ 2329 2330 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2331 bool forbid_cmsg_compat) 2332 { 2333 int fput_needed, err; 2334 struct msghdr msg_sys; 2335 struct socket *sock; 2336 2337 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2338 return -EINVAL; 2339 2340 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2341 if (!sock) 2342 goto out; 2343 2344 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2345 2346 fput_light(sock->file, fput_needed); 2347 out: 2348 return err; 2349 } 2350 2351 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2352 { 2353 return __sys_sendmsg(fd, msg, flags, true); 2354 } 2355 2356 /* 2357 * Linux sendmmsg interface 2358 */ 2359 2360 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2361 unsigned int flags, bool forbid_cmsg_compat) 2362 { 2363 int fput_needed, err, datagrams; 2364 struct socket *sock; 2365 struct mmsghdr __user *entry; 2366 struct compat_mmsghdr __user *compat_entry; 2367 struct msghdr msg_sys; 2368 struct used_address used_address; 2369 unsigned int oflags = flags; 2370 2371 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2372 return -EINVAL; 2373 2374 if (vlen > UIO_MAXIOV) 2375 vlen = UIO_MAXIOV; 2376 2377 datagrams = 0; 2378 2379 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2380 if (!sock) 2381 return err; 2382 2383 used_address.name_len = UINT_MAX; 2384 entry = mmsg; 2385 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2386 err = 0; 2387 flags |= MSG_BATCH; 2388 2389 while (datagrams < vlen) { 2390 if (datagrams == vlen - 1) 2391 flags = oflags; 2392 2393 if (MSG_CMSG_COMPAT & flags) { 2394 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2395 &msg_sys, flags, &used_address, MSG_EOR); 2396 if (err < 0) 2397 break; 2398 err = __put_user(err, &compat_entry->msg_len); 2399 ++compat_entry; 2400 } else { 2401 err = ___sys_sendmsg(sock, 2402 (struct user_msghdr __user *)entry, 2403 &msg_sys, flags, &used_address, MSG_EOR); 2404 if (err < 0) 2405 break; 2406 err = put_user(err, &entry->msg_len); 2407 ++entry; 2408 } 2409 2410 if (err) 2411 break; 2412 ++datagrams; 2413 if (msg_data_left(&msg_sys)) 2414 break; 2415 cond_resched(); 2416 } 2417 2418 fput_light(sock->file, fput_needed); 2419 2420 /* We only return an error if no datagrams were able to be sent */ 2421 if (datagrams != 0) 2422 return datagrams; 2423 2424 return err; 2425 } 2426 2427 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2428 unsigned int, vlen, unsigned int, flags) 2429 { 2430 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2431 } 2432 2433 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2434 struct msghdr *msg_sys, unsigned int flags, int nosec) 2435 { 2436 struct compat_msghdr __user *msg_compat = 2437 (struct compat_msghdr __user *)msg; 2438 struct iovec iovstack[UIO_FASTIOV]; 2439 struct iovec *iov = iovstack; 2440 unsigned long cmsg_ptr; 2441 int len; 2442 ssize_t err; 2443 2444 /* kernel mode address */ 2445 struct sockaddr_storage addr; 2446 2447 /* user mode address pointers */ 2448 struct sockaddr __user *uaddr; 2449 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2450 2451 msg_sys->msg_name = &addr; 2452 2453 if (MSG_CMSG_COMPAT & flags) 2454 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2455 else 2456 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2457 if (err < 0) 2458 return err; 2459 2460 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2461 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2462 2463 /* We assume all kernel code knows the size of sockaddr_storage */ 2464 msg_sys->msg_namelen = 0; 2465 2466 if (sock->file->f_flags & O_NONBLOCK) 2467 flags |= MSG_DONTWAIT; 2468 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2469 if (err < 0) 2470 goto out_freeiov; 2471 len = err; 2472 2473 if (uaddr != NULL) { 2474 err = move_addr_to_user(&addr, 2475 msg_sys->msg_namelen, uaddr, 2476 uaddr_len); 2477 if (err < 0) 2478 goto out_freeiov; 2479 } 2480 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2481 COMPAT_FLAGS(msg)); 2482 if (err) 2483 goto out_freeiov; 2484 if (MSG_CMSG_COMPAT & flags) 2485 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2486 &msg_compat->msg_controllen); 2487 else 2488 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2489 &msg->msg_controllen); 2490 if (err) 2491 goto out_freeiov; 2492 err = len; 2493 2494 out_freeiov: 2495 kfree(iov); 2496 return err; 2497 } 2498 2499 /* 2500 * BSD recvmsg interface 2501 */ 2502 2503 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2504 bool forbid_cmsg_compat) 2505 { 2506 int fput_needed, err; 2507 struct msghdr msg_sys; 2508 struct socket *sock; 2509 2510 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2511 return -EINVAL; 2512 2513 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2514 if (!sock) 2515 goto out; 2516 2517 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2518 2519 fput_light(sock->file, fput_needed); 2520 out: 2521 return err; 2522 } 2523 2524 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2525 unsigned int, flags) 2526 { 2527 return __sys_recvmsg(fd, msg, flags, true); 2528 } 2529 2530 /* 2531 * Linux recvmmsg interface 2532 */ 2533 2534 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2535 unsigned int vlen, unsigned int flags, 2536 struct timespec64 *timeout) 2537 { 2538 int fput_needed, err, datagrams; 2539 struct socket *sock; 2540 struct mmsghdr __user *entry; 2541 struct compat_mmsghdr __user *compat_entry; 2542 struct msghdr msg_sys; 2543 struct timespec64 end_time; 2544 struct timespec64 timeout64; 2545 2546 if (timeout && 2547 poll_select_set_timeout(&end_time, timeout->tv_sec, 2548 timeout->tv_nsec)) 2549 return -EINVAL; 2550 2551 datagrams = 0; 2552 2553 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2554 if (!sock) 2555 return err; 2556 2557 if (likely(!(flags & MSG_ERRQUEUE))) { 2558 err = sock_error(sock->sk); 2559 if (err) { 2560 datagrams = err; 2561 goto out_put; 2562 } 2563 } 2564 2565 entry = mmsg; 2566 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2567 2568 while (datagrams < vlen) { 2569 /* 2570 * No need to ask LSM for more than the first datagram. 2571 */ 2572 if (MSG_CMSG_COMPAT & flags) { 2573 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2574 &msg_sys, flags & ~MSG_WAITFORONE, 2575 datagrams); 2576 if (err < 0) 2577 break; 2578 err = __put_user(err, &compat_entry->msg_len); 2579 ++compat_entry; 2580 } else { 2581 err = ___sys_recvmsg(sock, 2582 (struct user_msghdr __user *)entry, 2583 &msg_sys, flags & ~MSG_WAITFORONE, 2584 datagrams); 2585 if (err < 0) 2586 break; 2587 err = put_user(err, &entry->msg_len); 2588 ++entry; 2589 } 2590 2591 if (err) 2592 break; 2593 ++datagrams; 2594 2595 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2596 if (flags & MSG_WAITFORONE) 2597 flags |= MSG_DONTWAIT; 2598 2599 if (timeout) { 2600 ktime_get_ts64(&timeout64); 2601 *timeout = timespec64_sub(end_time, timeout64); 2602 if (timeout->tv_sec < 0) { 2603 timeout->tv_sec = timeout->tv_nsec = 0; 2604 break; 2605 } 2606 2607 /* Timeout, return less than vlen datagrams */ 2608 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2609 break; 2610 } 2611 2612 /* Out of band data, return right away */ 2613 if (msg_sys.msg_flags & MSG_OOB) 2614 break; 2615 cond_resched(); 2616 } 2617 2618 if (err == 0) 2619 goto out_put; 2620 2621 if (datagrams == 0) { 2622 datagrams = err; 2623 goto out_put; 2624 } 2625 2626 /* 2627 * We may return less entries than requested (vlen) if the 2628 * sock is non block and there aren't enough datagrams... 2629 */ 2630 if (err != -EAGAIN) { 2631 /* 2632 * ... or if recvmsg returns an error after we 2633 * received some datagrams, where we record the 2634 * error to return on the next call or if the 2635 * app asks about it using getsockopt(SO_ERROR). 2636 */ 2637 sock->sk->sk_err = -err; 2638 } 2639 out_put: 2640 fput_light(sock->file, fput_needed); 2641 2642 return datagrams; 2643 } 2644 2645 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2646 unsigned int vlen, unsigned int flags, 2647 struct __kernel_timespec __user *timeout, 2648 struct old_timespec32 __user *timeout32) 2649 { 2650 int datagrams; 2651 struct timespec64 timeout_sys; 2652 2653 if (timeout && get_timespec64(&timeout_sys, timeout)) 2654 return -EFAULT; 2655 2656 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2657 return -EFAULT; 2658 2659 if (!timeout && !timeout32) 2660 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2661 2662 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2663 2664 if (datagrams <= 0) 2665 return datagrams; 2666 2667 if (timeout && put_timespec64(&timeout_sys, timeout)) 2668 datagrams = -EFAULT; 2669 2670 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2671 datagrams = -EFAULT; 2672 2673 return datagrams; 2674 } 2675 2676 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2677 unsigned int, vlen, unsigned int, flags, 2678 struct __kernel_timespec __user *, timeout) 2679 { 2680 if (flags & MSG_CMSG_COMPAT) 2681 return -EINVAL; 2682 2683 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2684 } 2685 2686 #ifdef CONFIG_COMPAT_32BIT_TIME 2687 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2688 unsigned int, vlen, unsigned int, flags, 2689 struct old_timespec32 __user *, timeout) 2690 { 2691 if (flags & MSG_CMSG_COMPAT) 2692 return -EINVAL; 2693 2694 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2695 } 2696 #endif 2697 2698 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2699 /* Argument list sizes for sys_socketcall */ 2700 #define AL(x) ((x) * sizeof(unsigned long)) 2701 static const unsigned char nargs[21] = { 2702 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2703 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2704 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2705 AL(4), AL(5), AL(4) 2706 }; 2707 2708 #undef AL 2709 2710 /* 2711 * System call vectors. 2712 * 2713 * Argument checking cleaned up. Saved 20% in size. 2714 * This function doesn't need to set the kernel lock because 2715 * it is set by the callees. 2716 */ 2717 2718 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2719 { 2720 unsigned long a[AUDITSC_ARGS]; 2721 unsigned long a0, a1; 2722 int err; 2723 unsigned int len; 2724 2725 if (call < 1 || call > SYS_SENDMMSG) 2726 return -EINVAL; 2727 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2728 2729 len = nargs[call]; 2730 if (len > sizeof(a)) 2731 return -EINVAL; 2732 2733 /* copy_from_user should be SMP safe. */ 2734 if (copy_from_user(a, args, len)) 2735 return -EFAULT; 2736 2737 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2738 if (err) 2739 return err; 2740 2741 a0 = a[0]; 2742 a1 = a[1]; 2743 2744 switch (call) { 2745 case SYS_SOCKET: 2746 err = __sys_socket(a0, a1, a[2]); 2747 break; 2748 case SYS_BIND: 2749 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2750 break; 2751 case SYS_CONNECT: 2752 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2753 break; 2754 case SYS_LISTEN: 2755 err = __sys_listen(a0, a1); 2756 break; 2757 case SYS_ACCEPT: 2758 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2759 (int __user *)a[2], 0); 2760 break; 2761 case SYS_GETSOCKNAME: 2762 err = 2763 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2764 (int __user *)a[2]); 2765 break; 2766 case SYS_GETPEERNAME: 2767 err = 2768 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2769 (int __user *)a[2]); 2770 break; 2771 case SYS_SOCKETPAIR: 2772 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2773 break; 2774 case SYS_SEND: 2775 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2776 NULL, 0); 2777 break; 2778 case SYS_SENDTO: 2779 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2780 (struct sockaddr __user *)a[4], a[5]); 2781 break; 2782 case SYS_RECV: 2783 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2784 NULL, NULL); 2785 break; 2786 case SYS_RECVFROM: 2787 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2788 (struct sockaddr __user *)a[4], 2789 (int __user *)a[5]); 2790 break; 2791 case SYS_SHUTDOWN: 2792 err = __sys_shutdown(a0, a1); 2793 break; 2794 case SYS_SETSOCKOPT: 2795 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2796 a[4]); 2797 break; 2798 case SYS_GETSOCKOPT: 2799 err = 2800 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2801 (int __user *)a[4]); 2802 break; 2803 case SYS_SENDMSG: 2804 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2805 a[2], true); 2806 break; 2807 case SYS_SENDMMSG: 2808 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2809 a[3], true); 2810 break; 2811 case SYS_RECVMSG: 2812 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2813 a[2], true); 2814 break; 2815 case SYS_RECVMMSG: 2816 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2817 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2818 a[2], a[3], 2819 (struct __kernel_timespec __user *)a[4], 2820 NULL); 2821 else 2822 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2823 a[2], a[3], NULL, 2824 (struct old_timespec32 __user *)a[4]); 2825 break; 2826 case SYS_ACCEPT4: 2827 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2828 (int __user *)a[2], a[3]); 2829 break; 2830 default: 2831 err = -EINVAL; 2832 break; 2833 } 2834 return err; 2835 } 2836 2837 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2838 2839 /** 2840 * sock_register - add a socket protocol handler 2841 * @ops: description of protocol 2842 * 2843 * This function is called by a protocol handler that wants to 2844 * advertise its address family, and have it linked into the 2845 * socket interface. The value ops->family corresponds to the 2846 * socket system call protocol family. 2847 */ 2848 int sock_register(const struct net_proto_family *ops) 2849 { 2850 int err; 2851 2852 if (ops->family >= NPROTO) { 2853 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2854 return -ENOBUFS; 2855 } 2856 2857 spin_lock(&net_family_lock); 2858 if (rcu_dereference_protected(net_families[ops->family], 2859 lockdep_is_held(&net_family_lock))) 2860 err = -EEXIST; 2861 else { 2862 rcu_assign_pointer(net_families[ops->family], ops); 2863 err = 0; 2864 } 2865 spin_unlock(&net_family_lock); 2866 2867 pr_info("NET: Registered protocol family %d\n", ops->family); 2868 return err; 2869 } 2870 EXPORT_SYMBOL(sock_register); 2871 2872 /** 2873 * sock_unregister - remove a protocol handler 2874 * @family: protocol family to remove 2875 * 2876 * This function is called by a protocol handler that wants to 2877 * remove its address family, and have it unlinked from the 2878 * new socket creation. 2879 * 2880 * If protocol handler is a module, then it can use module reference 2881 * counts to protect against new references. If protocol handler is not 2882 * a module then it needs to provide its own protection in 2883 * the ops->create routine. 2884 */ 2885 void sock_unregister(int family) 2886 { 2887 BUG_ON(family < 0 || family >= NPROTO); 2888 2889 spin_lock(&net_family_lock); 2890 RCU_INIT_POINTER(net_families[family], NULL); 2891 spin_unlock(&net_family_lock); 2892 2893 synchronize_rcu(); 2894 2895 pr_info("NET: Unregistered protocol family %d\n", family); 2896 } 2897 EXPORT_SYMBOL(sock_unregister); 2898 2899 bool sock_is_registered(int family) 2900 { 2901 return family < NPROTO && rcu_access_pointer(net_families[family]); 2902 } 2903 2904 static int __init sock_init(void) 2905 { 2906 int err; 2907 /* 2908 * Initialize the network sysctl infrastructure. 2909 */ 2910 err = net_sysctl_init(); 2911 if (err) 2912 goto out; 2913 2914 /* 2915 * Initialize skbuff SLAB cache 2916 */ 2917 skb_init(); 2918 2919 /* 2920 * Initialize the protocols module. 2921 */ 2922 2923 init_inodecache(); 2924 2925 err = register_filesystem(&sock_fs_type); 2926 if (err) 2927 goto out_fs; 2928 sock_mnt = kern_mount(&sock_fs_type); 2929 if (IS_ERR(sock_mnt)) { 2930 err = PTR_ERR(sock_mnt); 2931 goto out_mount; 2932 } 2933 2934 /* The real protocol initialization is performed in later initcalls. 2935 */ 2936 2937 #ifdef CONFIG_NETFILTER 2938 err = netfilter_init(); 2939 if (err) 2940 goto out; 2941 #endif 2942 2943 ptp_classifier_init(); 2944 2945 out: 2946 return err; 2947 2948 out_mount: 2949 unregister_filesystem(&sock_fs_type); 2950 out_fs: 2951 goto out; 2952 } 2953 2954 core_initcall(sock_init); /* early initcall */ 2955 2956 #ifdef CONFIG_PROC_FS 2957 void socket_seq_show(struct seq_file *seq) 2958 { 2959 seq_printf(seq, "sockets: used %d\n", 2960 sock_inuse_get(seq->private)); 2961 } 2962 #endif /* CONFIG_PROC_FS */ 2963 2964 #ifdef CONFIG_COMPAT 2965 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2966 { 2967 struct compat_ifconf ifc32; 2968 struct ifconf ifc; 2969 int err; 2970 2971 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2972 return -EFAULT; 2973 2974 ifc.ifc_len = ifc32.ifc_len; 2975 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2976 2977 rtnl_lock(); 2978 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2979 rtnl_unlock(); 2980 if (err) 2981 return err; 2982 2983 ifc32.ifc_len = ifc.ifc_len; 2984 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2985 return -EFAULT; 2986 2987 return 0; 2988 } 2989 2990 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2991 { 2992 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2993 bool convert_in = false, convert_out = false; 2994 size_t buf_size = 0; 2995 struct ethtool_rxnfc __user *rxnfc = NULL; 2996 struct ifreq ifr; 2997 u32 rule_cnt = 0, actual_rule_cnt; 2998 u32 ethcmd; 2999 u32 data; 3000 int ret; 3001 3002 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3003 return -EFAULT; 3004 3005 compat_rxnfc = compat_ptr(data); 3006 3007 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3008 return -EFAULT; 3009 3010 /* Most ethtool structures are defined without padding. 3011 * Unfortunately struct ethtool_rxnfc is an exception. 3012 */ 3013 switch (ethcmd) { 3014 default: 3015 break; 3016 case ETHTOOL_GRXCLSRLALL: 3017 /* Buffer size is variable */ 3018 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3019 return -EFAULT; 3020 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3021 return -ENOMEM; 3022 buf_size += rule_cnt * sizeof(u32); 3023 /* fall through */ 3024 case ETHTOOL_GRXRINGS: 3025 case ETHTOOL_GRXCLSRLCNT: 3026 case ETHTOOL_GRXCLSRULE: 3027 case ETHTOOL_SRXCLSRLINS: 3028 convert_out = true; 3029 /* fall through */ 3030 case ETHTOOL_SRXCLSRLDEL: 3031 buf_size += sizeof(struct ethtool_rxnfc); 3032 convert_in = true; 3033 rxnfc = compat_alloc_user_space(buf_size); 3034 break; 3035 } 3036 3037 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3038 return -EFAULT; 3039 3040 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3041 3042 if (convert_in) { 3043 /* We expect there to be holes between fs.m_ext and 3044 * fs.ring_cookie and at the end of fs, but nowhere else. 3045 */ 3046 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3047 sizeof(compat_rxnfc->fs.m_ext) != 3048 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3049 sizeof(rxnfc->fs.m_ext)); 3050 BUILD_BUG_ON( 3051 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3052 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3053 offsetof(struct ethtool_rxnfc, fs.location) - 3054 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3055 3056 if (copy_in_user(rxnfc, compat_rxnfc, 3057 (void __user *)(&rxnfc->fs.m_ext + 1) - 3058 (void __user *)rxnfc) || 3059 copy_in_user(&rxnfc->fs.ring_cookie, 3060 &compat_rxnfc->fs.ring_cookie, 3061 (void __user *)(&rxnfc->fs.location + 1) - 3062 (void __user *)&rxnfc->fs.ring_cookie)) 3063 return -EFAULT; 3064 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3065 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3066 return -EFAULT; 3067 } else if (copy_in_user(&rxnfc->rule_cnt, 3068 &compat_rxnfc->rule_cnt, 3069 sizeof(rxnfc->rule_cnt))) 3070 return -EFAULT; 3071 } 3072 3073 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3074 if (ret) 3075 return ret; 3076 3077 if (convert_out) { 3078 if (copy_in_user(compat_rxnfc, rxnfc, 3079 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3080 (const void __user *)rxnfc) || 3081 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3082 &rxnfc->fs.ring_cookie, 3083 (const void __user *)(&rxnfc->fs.location + 1) - 3084 (const void __user *)&rxnfc->fs.ring_cookie) || 3085 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3086 sizeof(rxnfc->rule_cnt))) 3087 return -EFAULT; 3088 3089 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3090 /* As an optimisation, we only copy the actual 3091 * number of rules that the underlying 3092 * function returned. Since Mallory might 3093 * change the rule count in user memory, we 3094 * check that it is less than the rule count 3095 * originally given (as the user buffer size), 3096 * which has been range-checked. 3097 */ 3098 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3099 return -EFAULT; 3100 if (actual_rule_cnt < rule_cnt) 3101 rule_cnt = actual_rule_cnt; 3102 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3103 &rxnfc->rule_locs[0], 3104 rule_cnt * sizeof(u32))) 3105 return -EFAULT; 3106 } 3107 } 3108 3109 return 0; 3110 } 3111 3112 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3113 { 3114 compat_uptr_t uptr32; 3115 struct ifreq ifr; 3116 void __user *saved; 3117 int err; 3118 3119 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3120 return -EFAULT; 3121 3122 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3123 return -EFAULT; 3124 3125 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3126 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3127 3128 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3129 if (!err) { 3130 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3131 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3132 err = -EFAULT; 3133 } 3134 return err; 3135 } 3136 3137 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3138 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3139 struct compat_ifreq __user *u_ifreq32) 3140 { 3141 struct ifreq ifreq; 3142 u32 data32; 3143 3144 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3145 return -EFAULT; 3146 if (get_user(data32, &u_ifreq32->ifr_data)) 3147 return -EFAULT; 3148 ifreq.ifr_data = compat_ptr(data32); 3149 3150 return dev_ioctl(net, cmd, &ifreq, NULL); 3151 } 3152 3153 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3154 unsigned int cmd, 3155 struct compat_ifreq __user *uifr32) 3156 { 3157 struct ifreq __user *uifr; 3158 int err; 3159 3160 /* Handle the fact that while struct ifreq has the same *layout* on 3161 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3162 * which are handled elsewhere, it still has different *size* due to 3163 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3164 * resulting in struct ifreq being 32 and 40 bytes respectively). 3165 * As a result, if the struct happens to be at the end of a page and 3166 * the next page isn't readable/writable, we get a fault. To prevent 3167 * that, copy back and forth to the full size. 3168 */ 3169 3170 uifr = compat_alloc_user_space(sizeof(*uifr)); 3171 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3172 return -EFAULT; 3173 3174 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3175 3176 if (!err) { 3177 switch (cmd) { 3178 case SIOCGIFFLAGS: 3179 case SIOCGIFMETRIC: 3180 case SIOCGIFMTU: 3181 case SIOCGIFMEM: 3182 case SIOCGIFHWADDR: 3183 case SIOCGIFINDEX: 3184 case SIOCGIFADDR: 3185 case SIOCGIFBRDADDR: 3186 case SIOCGIFDSTADDR: 3187 case SIOCGIFNETMASK: 3188 case SIOCGIFPFLAGS: 3189 case SIOCGIFTXQLEN: 3190 case SIOCGMIIPHY: 3191 case SIOCGMIIREG: 3192 case SIOCGIFNAME: 3193 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3194 err = -EFAULT; 3195 break; 3196 } 3197 } 3198 return err; 3199 } 3200 3201 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3202 struct compat_ifreq __user *uifr32) 3203 { 3204 struct ifreq ifr; 3205 struct compat_ifmap __user *uifmap32; 3206 int err; 3207 3208 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3209 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3210 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3211 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3212 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3213 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3214 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3215 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3216 if (err) 3217 return -EFAULT; 3218 3219 err = dev_ioctl(net, cmd, &ifr, NULL); 3220 3221 if (cmd == SIOCGIFMAP && !err) { 3222 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3223 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3224 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3225 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3226 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3227 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3228 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3229 if (err) 3230 err = -EFAULT; 3231 } 3232 return err; 3233 } 3234 3235 struct rtentry32 { 3236 u32 rt_pad1; 3237 struct sockaddr rt_dst; /* target address */ 3238 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3239 struct sockaddr rt_genmask; /* target network mask (IP) */ 3240 unsigned short rt_flags; 3241 short rt_pad2; 3242 u32 rt_pad3; 3243 unsigned char rt_tos; 3244 unsigned char rt_class; 3245 short rt_pad4; 3246 short rt_metric; /* +1 for binary compatibility! */ 3247 /* char * */ u32 rt_dev; /* forcing the device at add */ 3248 u32 rt_mtu; /* per route MTU/Window */ 3249 u32 rt_window; /* Window clamping */ 3250 unsigned short rt_irtt; /* Initial RTT */ 3251 }; 3252 3253 struct in6_rtmsg32 { 3254 struct in6_addr rtmsg_dst; 3255 struct in6_addr rtmsg_src; 3256 struct in6_addr rtmsg_gateway; 3257 u32 rtmsg_type; 3258 u16 rtmsg_dst_len; 3259 u16 rtmsg_src_len; 3260 u32 rtmsg_metric; 3261 u32 rtmsg_info; 3262 u32 rtmsg_flags; 3263 s32 rtmsg_ifindex; 3264 }; 3265 3266 static int routing_ioctl(struct net *net, struct socket *sock, 3267 unsigned int cmd, void __user *argp) 3268 { 3269 int ret; 3270 void *r = NULL; 3271 struct in6_rtmsg r6; 3272 struct rtentry r4; 3273 char devname[16]; 3274 u32 rtdev; 3275 mm_segment_t old_fs = get_fs(); 3276 3277 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3278 struct in6_rtmsg32 __user *ur6 = argp; 3279 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3280 3 * sizeof(struct in6_addr)); 3281 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3282 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3283 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3284 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3285 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3286 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3287 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3288 3289 r = (void *) &r6; 3290 } else { /* ipv4 */ 3291 struct rtentry32 __user *ur4 = argp; 3292 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3293 3 * sizeof(struct sockaddr)); 3294 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3295 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3296 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3297 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3298 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3299 ret |= get_user(rtdev, &(ur4->rt_dev)); 3300 if (rtdev) { 3301 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3302 r4.rt_dev = (char __user __force *)devname; 3303 devname[15] = 0; 3304 } else 3305 r4.rt_dev = NULL; 3306 3307 r = (void *) &r4; 3308 } 3309 3310 if (ret) { 3311 ret = -EFAULT; 3312 goto out; 3313 } 3314 3315 set_fs(KERNEL_DS); 3316 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3317 set_fs(old_fs); 3318 3319 out: 3320 return ret; 3321 } 3322 3323 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3324 * for some operations; this forces use of the newer bridge-utils that 3325 * use compatible ioctls 3326 */ 3327 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3328 { 3329 compat_ulong_t tmp; 3330 3331 if (get_user(tmp, argp)) 3332 return -EFAULT; 3333 if (tmp == BRCTL_GET_VERSION) 3334 return BRCTL_VERSION + 1; 3335 return -EINVAL; 3336 } 3337 3338 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3339 unsigned int cmd, unsigned long arg) 3340 { 3341 void __user *argp = compat_ptr(arg); 3342 struct sock *sk = sock->sk; 3343 struct net *net = sock_net(sk); 3344 3345 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3346 return compat_ifr_data_ioctl(net, cmd, argp); 3347 3348 switch (cmd) { 3349 case SIOCSIFBR: 3350 case SIOCGIFBR: 3351 return old_bridge_ioctl(argp); 3352 case SIOCGIFCONF: 3353 return compat_dev_ifconf(net, argp); 3354 case SIOCETHTOOL: 3355 return ethtool_ioctl(net, argp); 3356 case SIOCWANDEV: 3357 return compat_siocwandev(net, argp); 3358 case SIOCGIFMAP: 3359 case SIOCSIFMAP: 3360 return compat_sioc_ifmap(net, cmd, argp); 3361 case SIOCADDRT: 3362 case SIOCDELRT: 3363 return routing_ioctl(net, sock, cmd, argp); 3364 case SIOCGSTAMP_OLD: 3365 case SIOCGSTAMPNS_OLD: 3366 if (!sock->ops->gettstamp) 3367 return -ENOIOCTLCMD; 3368 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3369 !COMPAT_USE_64BIT_TIME); 3370 3371 case SIOCBONDSLAVEINFOQUERY: 3372 case SIOCBONDINFOQUERY: 3373 case SIOCSHWTSTAMP: 3374 case SIOCGHWTSTAMP: 3375 return compat_ifr_data_ioctl(net, cmd, argp); 3376 3377 case FIOSETOWN: 3378 case SIOCSPGRP: 3379 case FIOGETOWN: 3380 case SIOCGPGRP: 3381 case SIOCBRADDBR: 3382 case SIOCBRDELBR: 3383 case SIOCGIFVLAN: 3384 case SIOCSIFVLAN: 3385 case SIOCADDDLCI: 3386 case SIOCDELDLCI: 3387 case SIOCGSKNS: 3388 case SIOCGSTAMP_NEW: 3389 case SIOCGSTAMPNS_NEW: 3390 return sock_ioctl(file, cmd, arg); 3391 3392 case SIOCGIFFLAGS: 3393 case SIOCSIFFLAGS: 3394 case SIOCGIFMETRIC: 3395 case SIOCSIFMETRIC: 3396 case SIOCGIFMTU: 3397 case SIOCSIFMTU: 3398 case SIOCGIFMEM: 3399 case SIOCSIFMEM: 3400 case SIOCGIFHWADDR: 3401 case SIOCSIFHWADDR: 3402 case SIOCADDMULTI: 3403 case SIOCDELMULTI: 3404 case SIOCGIFINDEX: 3405 case SIOCGIFADDR: 3406 case SIOCSIFADDR: 3407 case SIOCSIFHWBROADCAST: 3408 case SIOCDIFADDR: 3409 case SIOCGIFBRDADDR: 3410 case SIOCSIFBRDADDR: 3411 case SIOCGIFDSTADDR: 3412 case SIOCSIFDSTADDR: 3413 case SIOCGIFNETMASK: 3414 case SIOCSIFNETMASK: 3415 case SIOCSIFPFLAGS: 3416 case SIOCGIFPFLAGS: 3417 case SIOCGIFTXQLEN: 3418 case SIOCSIFTXQLEN: 3419 case SIOCBRADDIF: 3420 case SIOCBRDELIF: 3421 case SIOCGIFNAME: 3422 case SIOCSIFNAME: 3423 case SIOCGMIIPHY: 3424 case SIOCGMIIREG: 3425 case SIOCSMIIREG: 3426 case SIOCBONDENSLAVE: 3427 case SIOCBONDRELEASE: 3428 case SIOCBONDSETHWADDR: 3429 case SIOCBONDCHANGEACTIVE: 3430 return compat_ifreq_ioctl(net, sock, cmd, argp); 3431 3432 case SIOCSARP: 3433 case SIOCGARP: 3434 case SIOCDARP: 3435 case SIOCATMARK: 3436 return sock_do_ioctl(net, sock, cmd, arg); 3437 } 3438 3439 return -ENOIOCTLCMD; 3440 } 3441 3442 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3443 unsigned long arg) 3444 { 3445 struct socket *sock = file->private_data; 3446 int ret = -ENOIOCTLCMD; 3447 struct sock *sk; 3448 struct net *net; 3449 3450 sk = sock->sk; 3451 net = sock_net(sk); 3452 3453 if (sock->ops->compat_ioctl) 3454 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3455 3456 if (ret == -ENOIOCTLCMD && 3457 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3458 ret = compat_wext_handle_ioctl(net, cmd, arg); 3459 3460 if (ret == -ENOIOCTLCMD) 3461 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3462 3463 return ret; 3464 } 3465 #endif 3466 3467 /** 3468 * kernel_bind - bind an address to a socket (kernel space) 3469 * @sock: socket 3470 * @addr: address 3471 * @addrlen: length of address 3472 * 3473 * Returns 0 or an error. 3474 */ 3475 3476 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3477 { 3478 return sock->ops->bind(sock, addr, addrlen); 3479 } 3480 EXPORT_SYMBOL(kernel_bind); 3481 3482 /** 3483 * kernel_listen - move socket to listening state (kernel space) 3484 * @sock: socket 3485 * @backlog: pending connections queue size 3486 * 3487 * Returns 0 or an error. 3488 */ 3489 3490 int kernel_listen(struct socket *sock, int backlog) 3491 { 3492 return sock->ops->listen(sock, backlog); 3493 } 3494 EXPORT_SYMBOL(kernel_listen); 3495 3496 /** 3497 * kernel_accept - accept a connection (kernel space) 3498 * @sock: listening socket 3499 * @newsock: new connected socket 3500 * @flags: flags 3501 * 3502 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3503 * If it fails, @newsock is guaranteed to be %NULL. 3504 * Returns 0 or an error. 3505 */ 3506 3507 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3508 { 3509 struct sock *sk = sock->sk; 3510 int err; 3511 3512 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3513 newsock); 3514 if (err < 0) 3515 goto done; 3516 3517 err = sock->ops->accept(sock, *newsock, flags, true); 3518 if (err < 0) { 3519 sock_release(*newsock); 3520 *newsock = NULL; 3521 goto done; 3522 } 3523 3524 (*newsock)->ops = sock->ops; 3525 __module_get((*newsock)->ops->owner); 3526 3527 done: 3528 return err; 3529 } 3530 EXPORT_SYMBOL(kernel_accept); 3531 3532 /** 3533 * kernel_connect - connect a socket (kernel space) 3534 * @sock: socket 3535 * @addr: address 3536 * @addrlen: address length 3537 * @flags: flags (O_NONBLOCK, ...) 3538 * 3539 * For datagram sockets, @addr is the addres to which datagrams are sent 3540 * by default, and the only address from which datagrams are received. 3541 * For stream sockets, attempts to connect to @addr. 3542 * Returns 0 or an error code. 3543 */ 3544 3545 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3546 int flags) 3547 { 3548 return sock->ops->connect(sock, addr, addrlen, flags); 3549 } 3550 EXPORT_SYMBOL(kernel_connect); 3551 3552 /** 3553 * kernel_getsockname - get the address which the socket is bound (kernel space) 3554 * @sock: socket 3555 * @addr: address holder 3556 * 3557 * Fills the @addr pointer with the address which the socket is bound. 3558 * Returns 0 or an error code. 3559 */ 3560 3561 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3562 { 3563 return sock->ops->getname(sock, addr, 0); 3564 } 3565 EXPORT_SYMBOL(kernel_getsockname); 3566 3567 /** 3568 * kernel_peername - get the address which the socket is connected (kernel space) 3569 * @sock: socket 3570 * @addr: address holder 3571 * 3572 * Fills the @addr pointer with the address which the socket is connected. 3573 * Returns 0 or an error code. 3574 */ 3575 3576 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3577 { 3578 return sock->ops->getname(sock, addr, 1); 3579 } 3580 EXPORT_SYMBOL(kernel_getpeername); 3581 3582 /** 3583 * kernel_getsockopt - get a socket option (kernel space) 3584 * @sock: socket 3585 * @level: API level (SOL_SOCKET, ...) 3586 * @optname: option tag 3587 * @optval: option value 3588 * @optlen: option length 3589 * 3590 * Assigns the option length to @optlen. 3591 * Returns 0 or an error. 3592 */ 3593 3594 int kernel_getsockopt(struct socket *sock, int level, int optname, 3595 char *optval, int *optlen) 3596 { 3597 mm_segment_t oldfs = get_fs(); 3598 char __user *uoptval; 3599 int __user *uoptlen; 3600 int err; 3601 3602 uoptval = (char __user __force *) optval; 3603 uoptlen = (int __user __force *) optlen; 3604 3605 set_fs(KERNEL_DS); 3606 if (level == SOL_SOCKET) 3607 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3608 else 3609 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3610 uoptlen); 3611 set_fs(oldfs); 3612 return err; 3613 } 3614 EXPORT_SYMBOL(kernel_getsockopt); 3615 3616 /** 3617 * kernel_setsockopt - set a socket option (kernel space) 3618 * @sock: socket 3619 * @level: API level (SOL_SOCKET, ...) 3620 * @optname: option tag 3621 * @optval: option value 3622 * @optlen: option length 3623 * 3624 * Returns 0 or an error. 3625 */ 3626 3627 int kernel_setsockopt(struct socket *sock, int level, int optname, 3628 char *optval, unsigned int optlen) 3629 { 3630 mm_segment_t oldfs = get_fs(); 3631 char __user *uoptval; 3632 int err; 3633 3634 uoptval = (char __user __force *) optval; 3635 3636 set_fs(KERNEL_DS); 3637 if (level == SOL_SOCKET) 3638 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3639 else 3640 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3641 optlen); 3642 set_fs(oldfs); 3643 return err; 3644 } 3645 EXPORT_SYMBOL(kernel_setsockopt); 3646 3647 /** 3648 * kernel_sendpage - send a &page through a socket (kernel space) 3649 * @sock: socket 3650 * @page: page 3651 * @offset: page offset 3652 * @size: total size in bytes 3653 * @flags: flags (MSG_DONTWAIT, ...) 3654 * 3655 * Returns the total amount sent in bytes or an error. 3656 */ 3657 3658 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3659 size_t size, int flags) 3660 { 3661 if (sock->ops->sendpage) 3662 return sock->ops->sendpage(sock, page, offset, size, flags); 3663 3664 return sock_no_sendpage(sock, page, offset, size, flags); 3665 } 3666 EXPORT_SYMBOL(kernel_sendpage); 3667 3668 /** 3669 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3670 * @sk: sock 3671 * @page: page 3672 * @offset: page offset 3673 * @size: total size in bytes 3674 * @flags: flags (MSG_DONTWAIT, ...) 3675 * 3676 * Returns the total amount sent in bytes or an error. 3677 * Caller must hold @sk. 3678 */ 3679 3680 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3681 size_t size, int flags) 3682 { 3683 struct socket *sock = sk->sk_socket; 3684 3685 if (sock->ops->sendpage_locked) 3686 return sock->ops->sendpage_locked(sk, page, offset, size, 3687 flags); 3688 3689 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3690 } 3691 EXPORT_SYMBOL(kernel_sendpage_locked); 3692 3693 /** 3694 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3695 * @sock: socket 3696 * @how: connection part 3697 * 3698 * Returns 0 or an error. 3699 */ 3700 3701 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3702 { 3703 return sock->ops->shutdown(sock, how); 3704 } 3705 EXPORT_SYMBOL(kernel_sock_shutdown); 3706 3707 /** 3708 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3709 * @sk: socket 3710 * 3711 * This routine returns the IP overhead imposed by a socket i.e. 3712 * the length of the underlying IP header, depending on whether 3713 * this is an IPv4 or IPv6 socket and the length from IP options turned 3714 * on at the socket. Assumes that the caller has a lock on the socket. 3715 */ 3716 3717 u32 kernel_sock_ip_overhead(struct sock *sk) 3718 { 3719 struct inet_sock *inet; 3720 struct ip_options_rcu *opt; 3721 u32 overhead = 0; 3722 #if IS_ENABLED(CONFIG_IPV6) 3723 struct ipv6_pinfo *np; 3724 struct ipv6_txoptions *optv6 = NULL; 3725 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3726 3727 if (!sk) 3728 return overhead; 3729 3730 switch (sk->sk_family) { 3731 case AF_INET: 3732 inet = inet_sk(sk); 3733 overhead += sizeof(struct iphdr); 3734 opt = rcu_dereference_protected(inet->inet_opt, 3735 sock_owned_by_user(sk)); 3736 if (opt) 3737 overhead += opt->opt.optlen; 3738 return overhead; 3739 #if IS_ENABLED(CONFIG_IPV6) 3740 case AF_INET6: 3741 np = inet6_sk(sk); 3742 overhead += sizeof(struct ipv6hdr); 3743 if (np) 3744 optv6 = rcu_dereference_protected(np->opt, 3745 sock_owned_by_user(sk)); 3746 if (optv6) 3747 overhead += (optv6->opt_flen + optv6->opt_nflen); 3748 return overhead; 3749 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3750 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3751 return overhead; 3752 } 3753 } 3754 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3755