xref: /openbmc/linux/net/socket.c (revision 4dc7ccf7)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/sockios.h>
105 #include <linux/atalk.h>
106 
107 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
108 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
109 			 unsigned long nr_segs, loff_t pos);
110 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
111 			  unsigned long nr_segs, loff_t pos);
112 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
113 
114 static int sock_close(struct inode *inode, struct file *file);
115 static unsigned int sock_poll(struct file *file,
116 			      struct poll_table_struct *wait);
117 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
118 #ifdef CONFIG_COMPAT
119 static long compat_sock_ioctl(struct file *file,
120 			      unsigned int cmd, unsigned long arg);
121 #endif
122 static int sock_fasync(int fd, struct file *filp, int on);
123 static ssize_t sock_sendpage(struct file *file, struct page *page,
124 			     int offset, size_t size, loff_t *ppos, int more);
125 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
126 			        struct pipe_inode_info *pipe, size_t len,
127 				unsigned int flags);
128 
129 /*
130  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
131  *	in the operation structures but are done directly via the socketcall() multiplexor.
132  */
133 
134 static const struct file_operations socket_file_ops = {
135 	.owner =	THIS_MODULE,
136 	.llseek =	no_llseek,
137 	.aio_read =	sock_aio_read,
138 	.aio_write =	sock_aio_write,
139 	.poll =		sock_poll,
140 	.unlocked_ioctl = sock_ioctl,
141 #ifdef CONFIG_COMPAT
142 	.compat_ioctl = compat_sock_ioctl,
143 #endif
144 	.mmap =		sock_mmap,
145 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
146 	.release =	sock_close,
147 	.fasync =	sock_fasync,
148 	.sendpage =	sock_sendpage,
149 	.splice_write = generic_splice_sendpage,
150 	.splice_read =	sock_splice_read,
151 };
152 
153 /*
154  *	The protocol list. Each protocol is registered in here.
155  */
156 
157 static DEFINE_SPINLOCK(net_family_lock);
158 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
159 
160 /*
161  *	Statistics counters of the socket lists
162  */
163 
164 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
165 
166 /*
167  * Support routines.
168  * Move socket addresses back and forth across the kernel/user
169  * divide and look after the messy bits.
170  */
171 
172 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
173 					   16 for IP, 16 for IPX,
174 					   24 for IPv6,
175 					   about 80 for AX.25
176 					   must be at least one bigger than
177 					   the AF_UNIX size (see net/unix/af_unix.c
178 					   :unix_mkname()).
179 					 */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
221 		      int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	err = get_user(len, ulen);
227 	if (err)
228 		return err;
229 	if (len > klen)
230 		len = klen;
231 	if (len < 0 || len > sizeof(struct sockaddr_storage))
232 		return -EINVAL;
233 	if (len) {
234 		if (audit_sockaddr(klen, kaddr))
235 			return -ENOMEM;
236 		if (copy_to_user(uaddr, kaddr, len))
237 			return -EFAULT;
238 	}
239 	/*
240 	 *      "fromlen shall refer to the value before truncation.."
241 	 *                      1003.1g
242 	 */
243 	return __put_user(klen, ulen);
244 }
245 
246 static struct kmem_cache *sock_inode_cachep __read_mostly;
247 
248 static struct inode *sock_alloc_inode(struct super_block *sb)
249 {
250 	struct socket_alloc *ei;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	init_waitqueue_head(&ei->socket.wait);
256 
257 	ei->socket.fasync_list = NULL;
258 	ei->socket.state = SS_UNCONNECTED;
259 	ei->socket.flags = 0;
260 	ei->socket.ops = NULL;
261 	ei->socket.sk = NULL;
262 	ei->socket.file = NULL;
263 
264 	return &ei->vfs_inode;
265 }
266 
267 static void sock_destroy_inode(struct inode *inode)
268 {
269 	kmem_cache_free(sock_inode_cachep,
270 			container_of(inode, struct socket_alloc, vfs_inode));
271 }
272 
273 static void init_once(void *foo)
274 {
275 	struct socket_alloc *ei = (struct socket_alloc *)foo;
276 
277 	inode_init_once(&ei->vfs_inode);
278 }
279 
280 static int init_inodecache(void)
281 {
282 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
283 					      sizeof(struct socket_alloc),
284 					      0,
285 					      (SLAB_HWCACHE_ALIGN |
286 					       SLAB_RECLAIM_ACCOUNT |
287 					       SLAB_MEM_SPREAD),
288 					      init_once);
289 	if (sock_inode_cachep == NULL)
290 		return -ENOMEM;
291 	return 0;
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode =	sock_alloc_inode,
296 	.destroy_inode =sock_destroy_inode,
297 	.statfs =	simple_statfs,
298 };
299 
300 static int sockfs_get_sb(struct file_system_type *fs_type,
301 			 int flags, const char *dev_name, void *data,
302 			 struct vfsmount *mnt)
303 {
304 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
305 			     mnt);
306 }
307 
308 static struct vfsmount *sock_mnt __read_mostly;
309 
310 static struct file_system_type sock_fs_type = {
311 	.name =		"sockfs",
312 	.get_sb =	sockfs_get_sb,
313 	.kill_sb =	kill_anon_super,
314 };
315 
316 /*
317  * sockfs_dname() is called from d_path().
318  */
319 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
320 {
321 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
322 				dentry->d_inode->i_ino);
323 }
324 
325 static const struct dentry_operations sockfs_dentry_operations = {
326 	.d_dname  = sockfs_dname,
327 };
328 
329 /*
330  *	Obtains the first available file descriptor and sets it up for use.
331  *
332  *	These functions create file structures and maps them to fd space
333  *	of the current process. On success it returns file descriptor
334  *	and file struct implicitly stored in sock->file.
335  *	Note that another thread may close file descriptor before we return
336  *	from this function. We use the fact that now we do not refer
337  *	to socket after mapping. If one day we will need it, this
338  *	function will increment ref. count on file by 1.
339  *
340  *	In any case returned fd MAY BE not valid!
341  *	This race condition is unavoidable
342  *	with shared fd spaces, we cannot solve it inside kernel,
343  *	but we take care of internal coherence yet.
344  */
345 
346 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
347 {
348 	struct qstr name = { .name = "" };
349 	struct path path;
350 	struct file *file;
351 	int fd;
352 
353 	fd = get_unused_fd_flags(flags);
354 	if (unlikely(fd < 0))
355 		return fd;
356 
357 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
358 	if (unlikely(!path.dentry)) {
359 		put_unused_fd(fd);
360 		return -ENOMEM;
361 	}
362 	path.mnt = mntget(sock_mnt);
363 
364 	path.dentry->d_op = &sockfs_dentry_operations;
365 	d_instantiate(path.dentry, SOCK_INODE(sock));
366 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
367 
368 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
369 		  &socket_file_ops);
370 	if (unlikely(!file)) {
371 		/* drop dentry, keep inode */
372 		atomic_inc(&path.dentry->d_inode->i_count);
373 		path_put(&path);
374 		put_unused_fd(fd);
375 		return -ENFILE;
376 	}
377 
378 	sock->file = file;
379 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
380 	file->f_pos = 0;
381 	file->private_data = sock;
382 
383 	*f = file;
384 	return fd;
385 }
386 
387 int sock_map_fd(struct socket *sock, int flags)
388 {
389 	struct file *newfile;
390 	int fd = sock_alloc_file(sock, &newfile, flags);
391 
392 	if (likely(fd >= 0))
393 		fd_install(fd, newfile);
394 
395 	return fd;
396 }
397 
398 static struct socket *sock_from_file(struct file *file, int *err)
399 {
400 	if (file->f_op == &socket_file_ops)
401 		return file->private_data;	/* set in sock_map_fd */
402 
403 	*err = -ENOTSOCK;
404 	return NULL;
405 }
406 
407 /**
408  *	sockfd_lookup	- 	Go from a file number to its socket slot
409  *	@fd: file handle
410  *	@err: pointer to an error code return
411  *
412  *	The file handle passed in is locked and the socket it is bound
413  *	too is returned. If an error occurs the err pointer is overwritten
414  *	with a negative errno code and NULL is returned. The function checks
415  *	for both invalid handles and passing a handle which is not a socket.
416  *
417  *	On a success the socket object pointer is returned.
418  */
419 
420 struct socket *sockfd_lookup(int fd, int *err)
421 {
422 	struct file *file;
423 	struct socket *sock;
424 
425 	file = fget(fd);
426 	if (!file) {
427 		*err = -EBADF;
428 		return NULL;
429 	}
430 
431 	sock = sock_from_file(file, err);
432 	if (!sock)
433 		fput(file);
434 	return sock;
435 }
436 
437 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
438 {
439 	struct file *file;
440 	struct socket *sock;
441 
442 	*err = -EBADF;
443 	file = fget_light(fd, fput_needed);
444 	if (file) {
445 		sock = sock_from_file(file, err);
446 		if (sock)
447 			return sock;
448 		fput_light(file, *fput_needed);
449 	}
450 	return NULL;
451 }
452 
453 /**
454  *	sock_alloc	-	allocate a socket
455  *
456  *	Allocate a new inode and socket object. The two are bound together
457  *	and initialised. The socket is then returned. If we are out of inodes
458  *	NULL is returned.
459  */
460 
461 static struct socket *sock_alloc(void)
462 {
463 	struct inode *inode;
464 	struct socket *sock;
465 
466 	inode = new_inode(sock_mnt->mnt_sb);
467 	if (!inode)
468 		return NULL;
469 
470 	sock = SOCKET_I(inode);
471 
472 	kmemcheck_annotate_bitfield(sock, type);
473 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
474 	inode->i_uid = current_fsuid();
475 	inode->i_gid = current_fsgid();
476 
477 	percpu_add(sockets_in_use, 1);
478 	return sock;
479 }
480 
481 /*
482  *	In theory you can't get an open on this inode, but /proc provides
483  *	a back door. Remember to keep it shut otherwise you'll let the
484  *	creepy crawlies in.
485  */
486 
487 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
488 {
489 	return -ENXIO;
490 }
491 
492 const struct file_operations bad_sock_fops = {
493 	.owner = THIS_MODULE,
494 	.open = sock_no_open,
495 };
496 
497 /**
498  *	sock_release	-	close a socket
499  *	@sock: socket to close
500  *
501  *	The socket is released from the protocol stack if it has a release
502  *	callback, and the inode is then released if the socket is bound to
503  *	an inode not a file.
504  */
505 
506 void sock_release(struct socket *sock)
507 {
508 	if (sock->ops) {
509 		struct module *owner = sock->ops->owner;
510 
511 		sock->ops->release(sock);
512 		sock->ops = NULL;
513 		module_put(owner);
514 	}
515 
516 	if (sock->fasync_list)
517 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
518 
519 	percpu_sub(sockets_in_use, 1);
520 	if (!sock->file) {
521 		iput(SOCK_INODE(sock));
522 		return;
523 	}
524 	sock->file = NULL;
525 }
526 
527 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
528 		      union skb_shared_tx *shtx)
529 {
530 	shtx->flags = 0;
531 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
532 		shtx->hardware = 1;
533 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
534 		shtx->software = 1;
535 	return 0;
536 }
537 EXPORT_SYMBOL(sock_tx_timestamp);
538 
539 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
540 				 struct msghdr *msg, size_t size)
541 {
542 	struct sock_iocb *si = kiocb_to_siocb(iocb);
543 	int err;
544 
545 	si->sock = sock;
546 	si->scm = NULL;
547 	si->msg = msg;
548 	si->size = size;
549 
550 	err = security_socket_sendmsg(sock, msg, size);
551 	if (err)
552 		return err;
553 
554 	return sock->ops->sendmsg(iocb, sock, msg, size);
555 }
556 
557 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
558 {
559 	struct kiocb iocb;
560 	struct sock_iocb siocb;
561 	int ret;
562 
563 	init_sync_kiocb(&iocb, NULL);
564 	iocb.private = &siocb;
565 	ret = __sock_sendmsg(&iocb, sock, msg, size);
566 	if (-EIOCBQUEUED == ret)
567 		ret = wait_on_sync_kiocb(&iocb);
568 	return ret;
569 }
570 
571 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
572 		   struct kvec *vec, size_t num, size_t size)
573 {
574 	mm_segment_t oldfs = get_fs();
575 	int result;
576 
577 	set_fs(KERNEL_DS);
578 	/*
579 	 * the following is safe, since for compiler definitions of kvec and
580 	 * iovec are identical, yielding the same in-core layout and alignment
581 	 */
582 	msg->msg_iov = (struct iovec *)vec;
583 	msg->msg_iovlen = num;
584 	result = sock_sendmsg(sock, msg, size);
585 	set_fs(oldfs);
586 	return result;
587 }
588 
589 static int ktime2ts(ktime_t kt, struct timespec *ts)
590 {
591 	if (kt.tv64) {
592 		*ts = ktime_to_timespec(kt);
593 		return 1;
594 	} else {
595 		return 0;
596 	}
597 }
598 
599 /*
600  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
601  */
602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
603 	struct sk_buff *skb)
604 {
605 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
606 	struct timespec ts[3];
607 	int empty = 1;
608 	struct skb_shared_hwtstamps *shhwtstamps =
609 		skb_hwtstamps(skb);
610 
611 	/* Race occurred between timestamp enabling and packet
612 	   receiving.  Fill in the current time for now. */
613 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
614 		__net_timestamp(skb);
615 
616 	if (need_software_tstamp) {
617 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
618 			struct timeval tv;
619 			skb_get_timestamp(skb, &tv);
620 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
621 				 sizeof(tv), &tv);
622 		} else {
623 			struct timespec ts;
624 			skb_get_timestampns(skb, &ts);
625 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
626 				 sizeof(ts), &ts);
627 		}
628 	}
629 
630 
631 	memset(ts, 0, sizeof(ts));
632 	if (skb->tstamp.tv64 &&
633 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
634 		skb_get_timestampns(skb, ts + 0);
635 		empty = 0;
636 	}
637 	if (shhwtstamps) {
638 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
639 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
640 			empty = 0;
641 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
642 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
643 			empty = 0;
644 	}
645 	if (!empty)
646 		put_cmsg(msg, SOL_SOCKET,
647 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
648 }
649 
650 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
651 
652 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
653 {
654 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
655 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
656 			sizeof(__u32), &skb->dropcount);
657 }
658 
659 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
660 	struct sk_buff *skb)
661 {
662 	sock_recv_timestamp(msg, sk, skb);
663 	sock_recv_drops(msg, sk, skb);
664 }
665 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
666 
667 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
668 				       struct msghdr *msg, size_t size, int flags)
669 {
670 	struct sock_iocb *si = kiocb_to_siocb(iocb);
671 
672 	si->sock = sock;
673 	si->scm = NULL;
674 	si->msg = msg;
675 	si->size = size;
676 	si->flags = flags;
677 
678 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
679 }
680 
681 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
682 				 struct msghdr *msg, size_t size, int flags)
683 {
684 	int err = security_socket_recvmsg(sock, msg, size, flags);
685 
686 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
687 }
688 
689 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
690 		 size_t size, int flags)
691 {
692 	struct kiocb iocb;
693 	struct sock_iocb siocb;
694 	int ret;
695 
696 	init_sync_kiocb(&iocb, NULL);
697 	iocb.private = &siocb;
698 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
699 	if (-EIOCBQUEUED == ret)
700 		ret = wait_on_sync_kiocb(&iocb);
701 	return ret;
702 }
703 
704 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
705 			      size_t size, int flags)
706 {
707 	struct kiocb iocb;
708 	struct sock_iocb siocb;
709 	int ret;
710 
711 	init_sync_kiocb(&iocb, NULL);
712 	iocb.private = &siocb;
713 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
714 	if (-EIOCBQUEUED == ret)
715 		ret = wait_on_sync_kiocb(&iocb);
716 	return ret;
717 }
718 
719 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
720 		   struct kvec *vec, size_t num, size_t size, int flags)
721 {
722 	mm_segment_t oldfs = get_fs();
723 	int result;
724 
725 	set_fs(KERNEL_DS);
726 	/*
727 	 * the following is safe, since for compiler definitions of kvec and
728 	 * iovec are identical, yielding the same in-core layout and alignment
729 	 */
730 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
731 	result = sock_recvmsg(sock, msg, size, flags);
732 	set_fs(oldfs);
733 	return result;
734 }
735 
736 static void sock_aio_dtor(struct kiocb *iocb)
737 {
738 	kfree(iocb->private);
739 }
740 
741 static ssize_t sock_sendpage(struct file *file, struct page *page,
742 			     int offset, size_t size, loff_t *ppos, int more)
743 {
744 	struct socket *sock;
745 	int flags;
746 
747 	sock = file->private_data;
748 
749 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
750 	if (more)
751 		flags |= MSG_MORE;
752 
753 	return kernel_sendpage(sock, page, offset, size, flags);
754 }
755 
756 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
757 			        struct pipe_inode_info *pipe, size_t len,
758 				unsigned int flags)
759 {
760 	struct socket *sock = file->private_data;
761 
762 	if (unlikely(!sock->ops->splice_read))
763 		return -EINVAL;
764 
765 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
766 }
767 
768 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
769 					 struct sock_iocb *siocb)
770 {
771 	if (!is_sync_kiocb(iocb)) {
772 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
773 		if (!siocb)
774 			return NULL;
775 		iocb->ki_dtor = sock_aio_dtor;
776 	}
777 
778 	siocb->kiocb = iocb;
779 	iocb->private = siocb;
780 	return siocb;
781 }
782 
783 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
784 		struct file *file, const struct iovec *iov,
785 		unsigned long nr_segs)
786 {
787 	struct socket *sock = file->private_data;
788 	size_t size = 0;
789 	int i;
790 
791 	for (i = 0; i < nr_segs; i++)
792 		size += iov[i].iov_len;
793 
794 	msg->msg_name = NULL;
795 	msg->msg_namelen = 0;
796 	msg->msg_control = NULL;
797 	msg->msg_controllen = 0;
798 	msg->msg_iov = (struct iovec *)iov;
799 	msg->msg_iovlen = nr_segs;
800 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
801 
802 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
803 }
804 
805 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
806 				unsigned long nr_segs, loff_t pos)
807 {
808 	struct sock_iocb siocb, *x;
809 
810 	if (pos != 0)
811 		return -ESPIPE;
812 
813 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
814 		return 0;
815 
816 
817 	x = alloc_sock_iocb(iocb, &siocb);
818 	if (!x)
819 		return -ENOMEM;
820 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
821 }
822 
823 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
824 			struct file *file, const struct iovec *iov,
825 			unsigned long nr_segs)
826 {
827 	struct socket *sock = file->private_data;
828 	size_t size = 0;
829 	int i;
830 
831 	for (i = 0; i < nr_segs; i++)
832 		size += iov[i].iov_len;
833 
834 	msg->msg_name = NULL;
835 	msg->msg_namelen = 0;
836 	msg->msg_control = NULL;
837 	msg->msg_controllen = 0;
838 	msg->msg_iov = (struct iovec *)iov;
839 	msg->msg_iovlen = nr_segs;
840 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
841 	if (sock->type == SOCK_SEQPACKET)
842 		msg->msg_flags |= MSG_EOR;
843 
844 	return __sock_sendmsg(iocb, sock, msg, size);
845 }
846 
847 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
848 			  unsigned long nr_segs, loff_t pos)
849 {
850 	struct sock_iocb siocb, *x;
851 
852 	if (pos != 0)
853 		return -ESPIPE;
854 
855 	x = alloc_sock_iocb(iocb, &siocb);
856 	if (!x)
857 		return -ENOMEM;
858 
859 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
860 }
861 
862 /*
863  * Atomic setting of ioctl hooks to avoid race
864  * with module unload.
865  */
866 
867 static DEFINE_MUTEX(br_ioctl_mutex);
868 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
869 
870 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
871 {
872 	mutex_lock(&br_ioctl_mutex);
873 	br_ioctl_hook = hook;
874 	mutex_unlock(&br_ioctl_mutex);
875 }
876 
877 EXPORT_SYMBOL(brioctl_set);
878 
879 static DEFINE_MUTEX(vlan_ioctl_mutex);
880 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
881 
882 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
883 {
884 	mutex_lock(&vlan_ioctl_mutex);
885 	vlan_ioctl_hook = hook;
886 	mutex_unlock(&vlan_ioctl_mutex);
887 }
888 
889 EXPORT_SYMBOL(vlan_ioctl_set);
890 
891 static DEFINE_MUTEX(dlci_ioctl_mutex);
892 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
893 
894 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
895 {
896 	mutex_lock(&dlci_ioctl_mutex);
897 	dlci_ioctl_hook = hook;
898 	mutex_unlock(&dlci_ioctl_mutex);
899 }
900 
901 EXPORT_SYMBOL(dlci_ioctl_set);
902 
903 static long sock_do_ioctl(struct net *net, struct socket *sock,
904 				 unsigned int cmd, unsigned long arg)
905 {
906 	int err;
907 	void __user *argp = (void __user *)arg;
908 
909 	err = sock->ops->ioctl(sock, cmd, arg);
910 
911 	/*
912 	 * If this ioctl is unknown try to hand it down
913 	 * to the NIC driver.
914 	 */
915 	if (err == -ENOIOCTLCMD)
916 		err = dev_ioctl(net, cmd, argp);
917 
918 	return err;
919 }
920 
921 /*
922  *	With an ioctl, arg may well be a user mode pointer, but we don't know
923  *	what to do with it - that's up to the protocol still.
924  */
925 
926 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
927 {
928 	struct socket *sock;
929 	struct sock *sk;
930 	void __user *argp = (void __user *)arg;
931 	int pid, err;
932 	struct net *net;
933 
934 	sock = file->private_data;
935 	sk = sock->sk;
936 	net = sock_net(sk);
937 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
938 		err = dev_ioctl(net, cmd, argp);
939 	} else
940 #ifdef CONFIG_WEXT_CORE
941 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
942 		err = dev_ioctl(net, cmd, argp);
943 	} else
944 #endif
945 		switch (cmd) {
946 		case FIOSETOWN:
947 		case SIOCSPGRP:
948 			err = -EFAULT;
949 			if (get_user(pid, (int __user *)argp))
950 				break;
951 			err = f_setown(sock->file, pid, 1);
952 			break;
953 		case FIOGETOWN:
954 		case SIOCGPGRP:
955 			err = put_user(f_getown(sock->file),
956 				       (int __user *)argp);
957 			break;
958 		case SIOCGIFBR:
959 		case SIOCSIFBR:
960 		case SIOCBRADDBR:
961 		case SIOCBRDELBR:
962 			err = -ENOPKG;
963 			if (!br_ioctl_hook)
964 				request_module("bridge");
965 
966 			mutex_lock(&br_ioctl_mutex);
967 			if (br_ioctl_hook)
968 				err = br_ioctl_hook(net, cmd, argp);
969 			mutex_unlock(&br_ioctl_mutex);
970 			break;
971 		case SIOCGIFVLAN:
972 		case SIOCSIFVLAN:
973 			err = -ENOPKG;
974 			if (!vlan_ioctl_hook)
975 				request_module("8021q");
976 
977 			mutex_lock(&vlan_ioctl_mutex);
978 			if (vlan_ioctl_hook)
979 				err = vlan_ioctl_hook(net, argp);
980 			mutex_unlock(&vlan_ioctl_mutex);
981 			break;
982 		case SIOCADDDLCI:
983 		case SIOCDELDLCI:
984 			err = -ENOPKG;
985 			if (!dlci_ioctl_hook)
986 				request_module("dlci");
987 
988 			mutex_lock(&dlci_ioctl_mutex);
989 			if (dlci_ioctl_hook)
990 				err = dlci_ioctl_hook(cmd, argp);
991 			mutex_unlock(&dlci_ioctl_mutex);
992 			break;
993 		default:
994 			err = sock_do_ioctl(net, sock, cmd, arg);
995 			break;
996 		}
997 	return err;
998 }
999 
1000 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1001 {
1002 	int err;
1003 	struct socket *sock = NULL;
1004 
1005 	err = security_socket_create(family, type, protocol, 1);
1006 	if (err)
1007 		goto out;
1008 
1009 	sock = sock_alloc();
1010 	if (!sock) {
1011 		err = -ENOMEM;
1012 		goto out;
1013 	}
1014 
1015 	sock->type = type;
1016 	err = security_socket_post_create(sock, family, type, protocol, 1);
1017 	if (err)
1018 		goto out_release;
1019 
1020 out:
1021 	*res = sock;
1022 	return err;
1023 out_release:
1024 	sock_release(sock);
1025 	sock = NULL;
1026 	goto out;
1027 }
1028 
1029 /* No kernel lock held - perfect */
1030 static unsigned int sock_poll(struct file *file, poll_table *wait)
1031 {
1032 	struct socket *sock;
1033 
1034 	/*
1035 	 *      We can't return errors to poll, so it's either yes or no.
1036 	 */
1037 	sock = file->private_data;
1038 	return sock->ops->poll(file, sock, wait);
1039 }
1040 
1041 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1042 {
1043 	struct socket *sock = file->private_data;
1044 
1045 	return sock->ops->mmap(file, sock, vma);
1046 }
1047 
1048 static int sock_close(struct inode *inode, struct file *filp)
1049 {
1050 	/*
1051 	 *      It was possible the inode is NULL we were
1052 	 *      closing an unfinished socket.
1053 	 */
1054 
1055 	if (!inode) {
1056 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1057 		return 0;
1058 	}
1059 	sock_release(SOCKET_I(inode));
1060 	return 0;
1061 }
1062 
1063 /*
1064  *	Update the socket async list
1065  *
1066  *	Fasync_list locking strategy.
1067  *
1068  *	1. fasync_list is modified only under process context socket lock
1069  *	   i.e. under semaphore.
1070  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1071  *	   or under socket lock.
1072  *	3. fasync_list can be used from softirq context, so that
1073  *	   modification under socket lock have to be enhanced with
1074  *	   write_lock_bh(&sk->sk_callback_lock).
1075  *							--ANK (990710)
1076  */
1077 
1078 static int sock_fasync(int fd, struct file *filp, int on)
1079 {
1080 	struct fasync_struct *fa, *fna = NULL, **prev;
1081 	struct socket *sock;
1082 	struct sock *sk;
1083 
1084 	if (on) {
1085 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1086 		if (fna == NULL)
1087 			return -ENOMEM;
1088 	}
1089 
1090 	sock = filp->private_data;
1091 
1092 	sk = sock->sk;
1093 	if (sk == NULL) {
1094 		kfree(fna);
1095 		return -EINVAL;
1096 	}
1097 
1098 	lock_sock(sk);
1099 
1100 	spin_lock(&filp->f_lock);
1101 	if (on)
1102 		filp->f_flags |= FASYNC;
1103 	else
1104 		filp->f_flags &= ~FASYNC;
1105 	spin_unlock(&filp->f_lock);
1106 
1107 	prev = &(sock->fasync_list);
1108 
1109 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1110 		if (fa->fa_file == filp)
1111 			break;
1112 
1113 	if (on) {
1114 		if (fa != NULL) {
1115 			write_lock_bh(&sk->sk_callback_lock);
1116 			fa->fa_fd = fd;
1117 			write_unlock_bh(&sk->sk_callback_lock);
1118 
1119 			kfree(fna);
1120 			goto out;
1121 		}
1122 		fna->fa_file = filp;
1123 		fna->fa_fd = fd;
1124 		fna->magic = FASYNC_MAGIC;
1125 		fna->fa_next = sock->fasync_list;
1126 		write_lock_bh(&sk->sk_callback_lock);
1127 		sock->fasync_list = fna;
1128 		sock_set_flag(sk, SOCK_FASYNC);
1129 		write_unlock_bh(&sk->sk_callback_lock);
1130 	} else {
1131 		if (fa != NULL) {
1132 			write_lock_bh(&sk->sk_callback_lock);
1133 			*prev = fa->fa_next;
1134 			if (!sock->fasync_list)
1135 				sock_reset_flag(sk, SOCK_FASYNC);
1136 			write_unlock_bh(&sk->sk_callback_lock);
1137 			kfree(fa);
1138 		}
1139 	}
1140 
1141 out:
1142 	release_sock(sock->sk);
1143 	return 0;
1144 }
1145 
1146 /* This function may be called only under socket lock or callback_lock */
1147 
1148 int sock_wake_async(struct socket *sock, int how, int band)
1149 {
1150 	if (!sock || !sock->fasync_list)
1151 		return -1;
1152 	switch (how) {
1153 	case SOCK_WAKE_WAITD:
1154 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1155 			break;
1156 		goto call_kill;
1157 	case SOCK_WAKE_SPACE:
1158 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1159 			break;
1160 		/* fall through */
1161 	case SOCK_WAKE_IO:
1162 call_kill:
1163 		__kill_fasync(sock->fasync_list, SIGIO, band);
1164 		break;
1165 	case SOCK_WAKE_URG:
1166 		__kill_fasync(sock->fasync_list, SIGURG, band);
1167 	}
1168 	return 0;
1169 }
1170 
1171 static int __sock_create(struct net *net, int family, int type, int protocol,
1172 			 struct socket **res, int kern)
1173 {
1174 	int err;
1175 	struct socket *sock;
1176 	const struct net_proto_family *pf;
1177 
1178 	/*
1179 	 *      Check protocol is in range
1180 	 */
1181 	if (family < 0 || family >= NPROTO)
1182 		return -EAFNOSUPPORT;
1183 	if (type < 0 || type >= SOCK_MAX)
1184 		return -EINVAL;
1185 
1186 	/* Compatibility.
1187 
1188 	   This uglymoron is moved from INET layer to here to avoid
1189 	   deadlock in module load.
1190 	 */
1191 	if (family == PF_INET && type == SOCK_PACKET) {
1192 		static int warned;
1193 		if (!warned) {
1194 			warned = 1;
1195 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1196 			       current->comm);
1197 		}
1198 		family = PF_PACKET;
1199 	}
1200 
1201 	err = security_socket_create(family, type, protocol, kern);
1202 	if (err)
1203 		return err;
1204 
1205 	/*
1206 	 *	Allocate the socket and allow the family to set things up. if
1207 	 *	the protocol is 0, the family is instructed to select an appropriate
1208 	 *	default.
1209 	 */
1210 	sock = sock_alloc();
1211 	if (!sock) {
1212 		if (net_ratelimit())
1213 			printk(KERN_WARNING "socket: no more sockets\n");
1214 		return -ENFILE;	/* Not exactly a match, but its the
1215 				   closest posix thing */
1216 	}
1217 
1218 	sock->type = type;
1219 
1220 #ifdef CONFIG_MODULES
1221 	/* Attempt to load a protocol module if the find failed.
1222 	 *
1223 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1224 	 * requested real, full-featured networking support upon configuration.
1225 	 * Otherwise module support will break!
1226 	 */
1227 	if (net_families[family] == NULL)
1228 		request_module("net-pf-%d", family);
1229 #endif
1230 
1231 	rcu_read_lock();
1232 	pf = rcu_dereference(net_families[family]);
1233 	err = -EAFNOSUPPORT;
1234 	if (!pf)
1235 		goto out_release;
1236 
1237 	/*
1238 	 * We will call the ->create function, that possibly is in a loadable
1239 	 * module, so we have to bump that loadable module refcnt first.
1240 	 */
1241 	if (!try_module_get(pf->owner))
1242 		goto out_release;
1243 
1244 	/* Now protected by module ref count */
1245 	rcu_read_unlock();
1246 
1247 	err = pf->create(net, sock, protocol, kern);
1248 	if (err < 0)
1249 		goto out_module_put;
1250 
1251 	/*
1252 	 * Now to bump the refcnt of the [loadable] module that owns this
1253 	 * socket at sock_release time we decrement its refcnt.
1254 	 */
1255 	if (!try_module_get(sock->ops->owner))
1256 		goto out_module_busy;
1257 
1258 	/*
1259 	 * Now that we're done with the ->create function, the [loadable]
1260 	 * module can have its refcnt decremented
1261 	 */
1262 	module_put(pf->owner);
1263 	err = security_socket_post_create(sock, family, type, protocol, kern);
1264 	if (err)
1265 		goto out_sock_release;
1266 	*res = sock;
1267 
1268 	return 0;
1269 
1270 out_module_busy:
1271 	err = -EAFNOSUPPORT;
1272 out_module_put:
1273 	sock->ops = NULL;
1274 	module_put(pf->owner);
1275 out_sock_release:
1276 	sock_release(sock);
1277 	return err;
1278 
1279 out_release:
1280 	rcu_read_unlock();
1281 	goto out_sock_release;
1282 }
1283 
1284 int sock_create(int family, int type, int protocol, struct socket **res)
1285 {
1286 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1287 }
1288 
1289 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1290 {
1291 	return __sock_create(&init_net, family, type, protocol, res, 1);
1292 }
1293 
1294 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1295 {
1296 	int retval;
1297 	struct socket *sock;
1298 	int flags;
1299 
1300 	/* Check the SOCK_* constants for consistency.  */
1301 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1302 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1303 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1304 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1305 
1306 	flags = type & ~SOCK_TYPE_MASK;
1307 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1308 		return -EINVAL;
1309 	type &= SOCK_TYPE_MASK;
1310 
1311 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1312 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1313 
1314 	retval = sock_create(family, type, protocol, &sock);
1315 	if (retval < 0)
1316 		goto out;
1317 
1318 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1319 	if (retval < 0)
1320 		goto out_release;
1321 
1322 out:
1323 	/* It may be already another descriptor 8) Not kernel problem. */
1324 	return retval;
1325 
1326 out_release:
1327 	sock_release(sock);
1328 	return retval;
1329 }
1330 
1331 /*
1332  *	Create a pair of connected sockets.
1333  */
1334 
1335 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1336 		int __user *, usockvec)
1337 {
1338 	struct socket *sock1, *sock2;
1339 	int fd1, fd2, err;
1340 	struct file *newfile1, *newfile2;
1341 	int flags;
1342 
1343 	flags = type & ~SOCK_TYPE_MASK;
1344 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1345 		return -EINVAL;
1346 	type &= SOCK_TYPE_MASK;
1347 
1348 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1349 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1350 
1351 	/*
1352 	 * Obtain the first socket and check if the underlying protocol
1353 	 * supports the socketpair call.
1354 	 */
1355 
1356 	err = sock_create(family, type, protocol, &sock1);
1357 	if (err < 0)
1358 		goto out;
1359 
1360 	err = sock_create(family, type, protocol, &sock2);
1361 	if (err < 0)
1362 		goto out_release_1;
1363 
1364 	err = sock1->ops->socketpair(sock1, sock2);
1365 	if (err < 0)
1366 		goto out_release_both;
1367 
1368 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1369 	if (unlikely(fd1 < 0)) {
1370 		err = fd1;
1371 		goto out_release_both;
1372 	}
1373 
1374 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1375 	if (unlikely(fd2 < 0)) {
1376 		err = fd2;
1377 		fput(newfile1);
1378 		put_unused_fd(fd1);
1379 		sock_release(sock2);
1380 		goto out;
1381 	}
1382 
1383 	audit_fd_pair(fd1, fd2);
1384 	fd_install(fd1, newfile1);
1385 	fd_install(fd2, newfile2);
1386 	/* fd1 and fd2 may be already another descriptors.
1387 	 * Not kernel problem.
1388 	 */
1389 
1390 	err = put_user(fd1, &usockvec[0]);
1391 	if (!err)
1392 		err = put_user(fd2, &usockvec[1]);
1393 	if (!err)
1394 		return 0;
1395 
1396 	sys_close(fd2);
1397 	sys_close(fd1);
1398 	return err;
1399 
1400 out_release_both:
1401 	sock_release(sock2);
1402 out_release_1:
1403 	sock_release(sock1);
1404 out:
1405 	return err;
1406 }
1407 
1408 /*
1409  *	Bind a name to a socket. Nothing much to do here since it's
1410  *	the protocol's responsibility to handle the local address.
1411  *
1412  *	We move the socket address to kernel space before we call
1413  *	the protocol layer (having also checked the address is ok).
1414  */
1415 
1416 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1417 {
1418 	struct socket *sock;
1419 	struct sockaddr_storage address;
1420 	int err, fput_needed;
1421 
1422 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1423 	if (sock) {
1424 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1425 		if (err >= 0) {
1426 			err = security_socket_bind(sock,
1427 						   (struct sockaddr *)&address,
1428 						   addrlen);
1429 			if (!err)
1430 				err = sock->ops->bind(sock,
1431 						      (struct sockaddr *)
1432 						      &address, addrlen);
1433 		}
1434 		fput_light(sock->file, fput_needed);
1435 	}
1436 	return err;
1437 }
1438 
1439 /*
1440  *	Perform a listen. Basically, we allow the protocol to do anything
1441  *	necessary for a listen, and if that works, we mark the socket as
1442  *	ready for listening.
1443  */
1444 
1445 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1446 {
1447 	struct socket *sock;
1448 	int err, fput_needed;
1449 	int somaxconn;
1450 
1451 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452 	if (sock) {
1453 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1454 		if ((unsigned)backlog > somaxconn)
1455 			backlog = somaxconn;
1456 
1457 		err = security_socket_listen(sock, backlog);
1458 		if (!err)
1459 			err = sock->ops->listen(sock, backlog);
1460 
1461 		fput_light(sock->file, fput_needed);
1462 	}
1463 	return err;
1464 }
1465 
1466 /*
1467  *	For accept, we attempt to create a new socket, set up the link
1468  *	with the client, wake up the client, then return the new
1469  *	connected fd. We collect the address of the connector in kernel
1470  *	space and move it to user at the very end. This is unclean because
1471  *	we open the socket then return an error.
1472  *
1473  *	1003.1g adds the ability to recvmsg() to query connection pending
1474  *	status to recvmsg. We need to add that support in a way thats
1475  *	clean when we restucture accept also.
1476  */
1477 
1478 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1479 		int __user *, upeer_addrlen, int, flags)
1480 {
1481 	struct socket *sock, *newsock;
1482 	struct file *newfile;
1483 	int err, len, newfd, fput_needed;
1484 	struct sockaddr_storage address;
1485 
1486 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1487 		return -EINVAL;
1488 
1489 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1490 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1491 
1492 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1493 	if (!sock)
1494 		goto out;
1495 
1496 	err = -ENFILE;
1497 	if (!(newsock = sock_alloc()))
1498 		goto out_put;
1499 
1500 	newsock->type = sock->type;
1501 	newsock->ops = sock->ops;
1502 
1503 	/*
1504 	 * We don't need try_module_get here, as the listening socket (sock)
1505 	 * has the protocol module (sock->ops->owner) held.
1506 	 */
1507 	__module_get(newsock->ops->owner);
1508 
1509 	newfd = sock_alloc_file(newsock, &newfile, flags);
1510 	if (unlikely(newfd < 0)) {
1511 		err = newfd;
1512 		sock_release(newsock);
1513 		goto out_put;
1514 	}
1515 
1516 	err = security_socket_accept(sock, newsock);
1517 	if (err)
1518 		goto out_fd;
1519 
1520 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1521 	if (err < 0)
1522 		goto out_fd;
1523 
1524 	if (upeer_sockaddr) {
1525 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1526 					  &len, 2) < 0) {
1527 			err = -ECONNABORTED;
1528 			goto out_fd;
1529 		}
1530 		err = move_addr_to_user((struct sockaddr *)&address,
1531 					len, upeer_sockaddr, upeer_addrlen);
1532 		if (err < 0)
1533 			goto out_fd;
1534 	}
1535 
1536 	/* File flags are not inherited via accept() unlike another OSes. */
1537 
1538 	fd_install(newfd, newfile);
1539 	err = newfd;
1540 
1541 out_put:
1542 	fput_light(sock->file, fput_needed);
1543 out:
1544 	return err;
1545 out_fd:
1546 	fput(newfile);
1547 	put_unused_fd(newfd);
1548 	goto out_put;
1549 }
1550 
1551 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1552 		int __user *, upeer_addrlen)
1553 {
1554 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1555 }
1556 
1557 /*
1558  *	Attempt to connect to a socket with the server address.  The address
1559  *	is in user space so we verify it is OK and move it to kernel space.
1560  *
1561  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1562  *	break bindings
1563  *
1564  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1565  *	other SEQPACKET protocols that take time to connect() as it doesn't
1566  *	include the -EINPROGRESS status for such sockets.
1567  */
1568 
1569 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1570 		int, addrlen)
1571 {
1572 	struct socket *sock;
1573 	struct sockaddr_storage address;
1574 	int err, fput_needed;
1575 
1576 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1577 	if (!sock)
1578 		goto out;
1579 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1580 	if (err < 0)
1581 		goto out_put;
1582 
1583 	err =
1584 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1585 	if (err)
1586 		goto out_put;
1587 
1588 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1589 				 sock->file->f_flags);
1590 out_put:
1591 	fput_light(sock->file, fput_needed);
1592 out:
1593 	return err;
1594 }
1595 
1596 /*
1597  *	Get the local address ('name') of a socket object. Move the obtained
1598  *	name to user space.
1599  */
1600 
1601 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1602 		int __user *, usockaddr_len)
1603 {
1604 	struct socket *sock;
1605 	struct sockaddr_storage address;
1606 	int len, err, fput_needed;
1607 
1608 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1609 	if (!sock)
1610 		goto out;
1611 
1612 	err = security_socket_getsockname(sock);
1613 	if (err)
1614 		goto out_put;
1615 
1616 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1617 	if (err)
1618 		goto out_put;
1619 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1620 
1621 out_put:
1622 	fput_light(sock->file, fput_needed);
1623 out:
1624 	return err;
1625 }
1626 
1627 /*
1628  *	Get the remote address ('name') of a socket object. Move the obtained
1629  *	name to user space.
1630  */
1631 
1632 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1633 		int __user *, usockaddr_len)
1634 {
1635 	struct socket *sock;
1636 	struct sockaddr_storage address;
1637 	int len, err, fput_needed;
1638 
1639 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 	if (sock != NULL) {
1641 		err = security_socket_getpeername(sock);
1642 		if (err) {
1643 			fput_light(sock->file, fput_needed);
1644 			return err;
1645 		}
1646 
1647 		err =
1648 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1649 				       1);
1650 		if (!err)
1651 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1652 						usockaddr_len);
1653 		fput_light(sock->file, fput_needed);
1654 	}
1655 	return err;
1656 }
1657 
1658 /*
1659  *	Send a datagram to a given address. We move the address into kernel
1660  *	space and check the user space data area is readable before invoking
1661  *	the protocol.
1662  */
1663 
1664 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1665 		unsigned, flags, struct sockaddr __user *, addr,
1666 		int, addr_len)
1667 {
1668 	struct socket *sock;
1669 	struct sockaddr_storage address;
1670 	int err;
1671 	struct msghdr msg;
1672 	struct iovec iov;
1673 	int fput_needed;
1674 
1675 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1676 	if (!sock)
1677 		goto out;
1678 
1679 	iov.iov_base = buff;
1680 	iov.iov_len = len;
1681 	msg.msg_name = NULL;
1682 	msg.msg_iov = &iov;
1683 	msg.msg_iovlen = 1;
1684 	msg.msg_control = NULL;
1685 	msg.msg_controllen = 0;
1686 	msg.msg_namelen = 0;
1687 	if (addr) {
1688 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1689 		if (err < 0)
1690 			goto out_put;
1691 		msg.msg_name = (struct sockaddr *)&address;
1692 		msg.msg_namelen = addr_len;
1693 	}
1694 	if (sock->file->f_flags & O_NONBLOCK)
1695 		flags |= MSG_DONTWAIT;
1696 	msg.msg_flags = flags;
1697 	err = sock_sendmsg(sock, &msg, len);
1698 
1699 out_put:
1700 	fput_light(sock->file, fput_needed);
1701 out:
1702 	return err;
1703 }
1704 
1705 /*
1706  *	Send a datagram down a socket.
1707  */
1708 
1709 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1710 		unsigned, flags)
1711 {
1712 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1713 }
1714 
1715 /*
1716  *	Receive a frame from the socket and optionally record the address of the
1717  *	sender. We verify the buffers are writable and if needed move the
1718  *	sender address from kernel to user space.
1719  */
1720 
1721 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1722 		unsigned, flags, struct sockaddr __user *, addr,
1723 		int __user *, addr_len)
1724 {
1725 	struct socket *sock;
1726 	struct iovec iov;
1727 	struct msghdr msg;
1728 	struct sockaddr_storage address;
1729 	int err, err2;
1730 	int fput_needed;
1731 
1732 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1733 	if (!sock)
1734 		goto out;
1735 
1736 	msg.msg_control = NULL;
1737 	msg.msg_controllen = 0;
1738 	msg.msg_iovlen = 1;
1739 	msg.msg_iov = &iov;
1740 	iov.iov_len = size;
1741 	iov.iov_base = ubuf;
1742 	msg.msg_name = (struct sockaddr *)&address;
1743 	msg.msg_namelen = sizeof(address);
1744 	if (sock->file->f_flags & O_NONBLOCK)
1745 		flags |= MSG_DONTWAIT;
1746 	err = sock_recvmsg(sock, &msg, size, flags);
1747 
1748 	if (err >= 0 && addr != NULL) {
1749 		err2 = move_addr_to_user((struct sockaddr *)&address,
1750 					 msg.msg_namelen, addr, addr_len);
1751 		if (err2 < 0)
1752 			err = err2;
1753 	}
1754 
1755 	fput_light(sock->file, fput_needed);
1756 out:
1757 	return err;
1758 }
1759 
1760 /*
1761  *	Receive a datagram from a socket.
1762  */
1763 
1764 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1765 			 unsigned flags)
1766 {
1767 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1768 }
1769 
1770 /*
1771  *	Set a socket option. Because we don't know the option lengths we have
1772  *	to pass the user mode parameter for the protocols to sort out.
1773  */
1774 
1775 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1776 		char __user *, optval, int, optlen)
1777 {
1778 	int err, fput_needed;
1779 	struct socket *sock;
1780 
1781 	if (optlen < 0)
1782 		return -EINVAL;
1783 
1784 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1785 	if (sock != NULL) {
1786 		err = security_socket_setsockopt(sock, level, optname);
1787 		if (err)
1788 			goto out_put;
1789 
1790 		if (level == SOL_SOCKET)
1791 			err =
1792 			    sock_setsockopt(sock, level, optname, optval,
1793 					    optlen);
1794 		else
1795 			err =
1796 			    sock->ops->setsockopt(sock, level, optname, optval,
1797 						  optlen);
1798 out_put:
1799 		fput_light(sock->file, fput_needed);
1800 	}
1801 	return err;
1802 }
1803 
1804 /*
1805  *	Get a socket option. Because we don't know the option lengths we have
1806  *	to pass a user mode parameter for the protocols to sort out.
1807  */
1808 
1809 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1810 		char __user *, optval, int __user *, optlen)
1811 {
1812 	int err, fput_needed;
1813 	struct socket *sock;
1814 
1815 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1816 	if (sock != NULL) {
1817 		err = security_socket_getsockopt(sock, level, optname);
1818 		if (err)
1819 			goto out_put;
1820 
1821 		if (level == SOL_SOCKET)
1822 			err =
1823 			    sock_getsockopt(sock, level, optname, optval,
1824 					    optlen);
1825 		else
1826 			err =
1827 			    sock->ops->getsockopt(sock, level, optname, optval,
1828 						  optlen);
1829 out_put:
1830 		fput_light(sock->file, fput_needed);
1831 	}
1832 	return err;
1833 }
1834 
1835 /*
1836  *	Shutdown a socket.
1837  */
1838 
1839 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1840 {
1841 	int err, fput_needed;
1842 	struct socket *sock;
1843 
1844 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1845 	if (sock != NULL) {
1846 		err = security_socket_shutdown(sock, how);
1847 		if (!err)
1848 			err = sock->ops->shutdown(sock, how);
1849 		fput_light(sock->file, fput_needed);
1850 	}
1851 	return err;
1852 }
1853 
1854 /* A couple of helpful macros for getting the address of the 32/64 bit
1855  * fields which are the same type (int / unsigned) on our platforms.
1856  */
1857 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1858 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1859 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1860 
1861 /*
1862  *	BSD sendmsg interface
1863  */
1864 
1865 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1866 {
1867 	struct compat_msghdr __user *msg_compat =
1868 	    (struct compat_msghdr __user *)msg;
1869 	struct socket *sock;
1870 	struct sockaddr_storage address;
1871 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1872 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1873 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1874 	/* 20 is size of ipv6_pktinfo */
1875 	unsigned char *ctl_buf = ctl;
1876 	struct msghdr msg_sys;
1877 	int err, ctl_len, iov_size, total_len;
1878 	int fput_needed;
1879 
1880 	err = -EFAULT;
1881 	if (MSG_CMSG_COMPAT & flags) {
1882 		if (get_compat_msghdr(&msg_sys, msg_compat))
1883 			return -EFAULT;
1884 	}
1885 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1886 		return -EFAULT;
1887 
1888 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1889 	if (!sock)
1890 		goto out;
1891 
1892 	/* do not move before msg_sys is valid */
1893 	err = -EMSGSIZE;
1894 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1895 		goto out_put;
1896 
1897 	/* Check whether to allocate the iovec area */
1898 	err = -ENOMEM;
1899 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1900 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1901 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1902 		if (!iov)
1903 			goto out_put;
1904 	}
1905 
1906 	/* This will also move the address data into kernel space */
1907 	if (MSG_CMSG_COMPAT & flags) {
1908 		err = verify_compat_iovec(&msg_sys, iov,
1909 					  (struct sockaddr *)&address,
1910 					  VERIFY_READ);
1911 	} else
1912 		err = verify_iovec(&msg_sys, iov,
1913 				   (struct sockaddr *)&address,
1914 				   VERIFY_READ);
1915 	if (err < 0)
1916 		goto out_freeiov;
1917 	total_len = err;
1918 
1919 	err = -ENOBUFS;
1920 
1921 	if (msg_sys.msg_controllen > INT_MAX)
1922 		goto out_freeiov;
1923 	ctl_len = msg_sys.msg_controllen;
1924 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1925 		err =
1926 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1927 						     sizeof(ctl));
1928 		if (err)
1929 			goto out_freeiov;
1930 		ctl_buf = msg_sys.msg_control;
1931 		ctl_len = msg_sys.msg_controllen;
1932 	} else if (ctl_len) {
1933 		if (ctl_len > sizeof(ctl)) {
1934 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1935 			if (ctl_buf == NULL)
1936 				goto out_freeiov;
1937 		}
1938 		err = -EFAULT;
1939 		/*
1940 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1941 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1942 		 * checking falls down on this.
1943 		 */
1944 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1945 				   ctl_len))
1946 			goto out_freectl;
1947 		msg_sys.msg_control = ctl_buf;
1948 	}
1949 	msg_sys.msg_flags = flags;
1950 
1951 	if (sock->file->f_flags & O_NONBLOCK)
1952 		msg_sys.msg_flags |= MSG_DONTWAIT;
1953 	err = sock_sendmsg(sock, &msg_sys, total_len);
1954 
1955 out_freectl:
1956 	if (ctl_buf != ctl)
1957 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1958 out_freeiov:
1959 	if (iov != iovstack)
1960 		sock_kfree_s(sock->sk, iov, iov_size);
1961 out_put:
1962 	fput_light(sock->file, fput_needed);
1963 out:
1964 	return err;
1965 }
1966 
1967 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1968 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1969 {
1970 	struct compat_msghdr __user *msg_compat =
1971 	    (struct compat_msghdr __user *)msg;
1972 	struct iovec iovstack[UIO_FASTIOV];
1973 	struct iovec *iov = iovstack;
1974 	unsigned long cmsg_ptr;
1975 	int err, iov_size, total_len, len;
1976 
1977 	/* kernel mode address */
1978 	struct sockaddr_storage addr;
1979 
1980 	/* user mode address pointers */
1981 	struct sockaddr __user *uaddr;
1982 	int __user *uaddr_len;
1983 
1984 	if (MSG_CMSG_COMPAT & flags) {
1985 		if (get_compat_msghdr(msg_sys, msg_compat))
1986 			return -EFAULT;
1987 	}
1988 	else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1989 		return -EFAULT;
1990 
1991 	err = -EMSGSIZE;
1992 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1993 		goto out;
1994 
1995 	/* Check whether to allocate the iovec area */
1996 	err = -ENOMEM;
1997 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1998 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1999 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2000 		if (!iov)
2001 			goto out;
2002 	}
2003 
2004 	/*
2005 	 *      Save the user-mode address (verify_iovec will change the
2006 	 *      kernel msghdr to use the kernel address space)
2007 	 */
2008 
2009 	uaddr = (__force void __user *)msg_sys->msg_name;
2010 	uaddr_len = COMPAT_NAMELEN(msg);
2011 	if (MSG_CMSG_COMPAT & flags) {
2012 		err = verify_compat_iovec(msg_sys, iov,
2013 					  (struct sockaddr *)&addr,
2014 					  VERIFY_WRITE);
2015 	} else
2016 		err = verify_iovec(msg_sys, iov,
2017 				   (struct sockaddr *)&addr,
2018 				   VERIFY_WRITE);
2019 	if (err < 0)
2020 		goto out_freeiov;
2021 	total_len = err;
2022 
2023 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2024 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2025 
2026 	if (sock->file->f_flags & O_NONBLOCK)
2027 		flags |= MSG_DONTWAIT;
2028 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2029 							  total_len, flags);
2030 	if (err < 0)
2031 		goto out_freeiov;
2032 	len = err;
2033 
2034 	if (uaddr != NULL) {
2035 		err = move_addr_to_user((struct sockaddr *)&addr,
2036 					msg_sys->msg_namelen, uaddr,
2037 					uaddr_len);
2038 		if (err < 0)
2039 			goto out_freeiov;
2040 	}
2041 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2042 			 COMPAT_FLAGS(msg));
2043 	if (err)
2044 		goto out_freeiov;
2045 	if (MSG_CMSG_COMPAT & flags)
2046 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2047 				 &msg_compat->msg_controllen);
2048 	else
2049 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2050 				 &msg->msg_controllen);
2051 	if (err)
2052 		goto out_freeiov;
2053 	err = len;
2054 
2055 out_freeiov:
2056 	if (iov != iovstack)
2057 		sock_kfree_s(sock->sk, iov, iov_size);
2058 out:
2059 	return err;
2060 }
2061 
2062 /*
2063  *	BSD recvmsg interface
2064  */
2065 
2066 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2067 		unsigned int, flags)
2068 {
2069 	int fput_needed, err;
2070 	struct msghdr msg_sys;
2071 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2072 
2073 	if (!sock)
2074 		goto out;
2075 
2076 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2077 
2078 	fput_light(sock->file, fput_needed);
2079 out:
2080 	return err;
2081 }
2082 
2083 /*
2084  *     Linux recvmmsg interface
2085  */
2086 
2087 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2088 		   unsigned int flags, struct timespec *timeout)
2089 {
2090 	int fput_needed, err, datagrams;
2091 	struct socket *sock;
2092 	struct mmsghdr __user *entry;
2093 	struct compat_mmsghdr __user *compat_entry;
2094 	struct msghdr msg_sys;
2095 	struct timespec end_time;
2096 
2097 	if (timeout &&
2098 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2099 				    timeout->tv_nsec))
2100 		return -EINVAL;
2101 
2102 	datagrams = 0;
2103 
2104 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2105 	if (!sock)
2106 		return err;
2107 
2108 	err = sock_error(sock->sk);
2109 	if (err)
2110 		goto out_put;
2111 
2112 	entry = mmsg;
2113 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2114 
2115 	while (datagrams < vlen) {
2116 		/*
2117 		 * No need to ask LSM for more than the first datagram.
2118 		 */
2119 		if (MSG_CMSG_COMPAT & flags) {
2120 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2121 					    &msg_sys, flags, datagrams);
2122 			if (err < 0)
2123 				break;
2124 			err = __put_user(err, &compat_entry->msg_len);
2125 			++compat_entry;
2126 		} else {
2127 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2128 					    &msg_sys, flags, datagrams);
2129 			if (err < 0)
2130 				break;
2131 			err = put_user(err, &entry->msg_len);
2132 			++entry;
2133 		}
2134 
2135 		if (err)
2136 			break;
2137 		++datagrams;
2138 
2139 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2140 		if (flags & MSG_WAITFORONE)
2141 			flags |= MSG_DONTWAIT;
2142 
2143 		if (timeout) {
2144 			ktime_get_ts(timeout);
2145 			*timeout = timespec_sub(end_time, *timeout);
2146 			if (timeout->tv_sec < 0) {
2147 				timeout->tv_sec = timeout->tv_nsec = 0;
2148 				break;
2149 			}
2150 
2151 			/* Timeout, return less than vlen datagrams */
2152 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2153 				break;
2154 		}
2155 
2156 		/* Out of band data, return right away */
2157 		if (msg_sys.msg_flags & MSG_OOB)
2158 			break;
2159 	}
2160 
2161 out_put:
2162 	fput_light(sock->file, fput_needed);
2163 
2164 	if (err == 0)
2165 		return datagrams;
2166 
2167 	if (datagrams != 0) {
2168 		/*
2169 		 * We may return less entries than requested (vlen) if the
2170 		 * sock is non block and there aren't enough datagrams...
2171 		 */
2172 		if (err != -EAGAIN) {
2173 			/*
2174 			 * ... or  if recvmsg returns an error after we
2175 			 * received some datagrams, where we record the
2176 			 * error to return on the next call or if the
2177 			 * app asks about it using getsockopt(SO_ERROR).
2178 			 */
2179 			sock->sk->sk_err = -err;
2180 		}
2181 
2182 		return datagrams;
2183 	}
2184 
2185 	return err;
2186 }
2187 
2188 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2189 		unsigned int, vlen, unsigned int, flags,
2190 		struct timespec __user *, timeout)
2191 {
2192 	int datagrams;
2193 	struct timespec timeout_sys;
2194 
2195 	if (!timeout)
2196 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2197 
2198 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2199 		return -EFAULT;
2200 
2201 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2202 
2203 	if (datagrams > 0 &&
2204 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2205 		datagrams = -EFAULT;
2206 
2207 	return datagrams;
2208 }
2209 
2210 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2211 /* Argument list sizes for sys_socketcall */
2212 #define AL(x) ((x) * sizeof(unsigned long))
2213 static const unsigned char nargs[20] = {
2214 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2215 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2216 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2217 	AL(4),AL(5)
2218 };
2219 
2220 #undef AL
2221 
2222 /*
2223  *	System call vectors.
2224  *
2225  *	Argument checking cleaned up. Saved 20% in size.
2226  *  This function doesn't need to set the kernel lock because
2227  *  it is set by the callees.
2228  */
2229 
2230 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2231 {
2232 	unsigned long a[6];
2233 	unsigned long a0, a1;
2234 	int err;
2235 	unsigned int len;
2236 
2237 	if (call < 1 || call > SYS_RECVMMSG)
2238 		return -EINVAL;
2239 
2240 	len = nargs[call];
2241 	if (len > sizeof(a))
2242 		return -EINVAL;
2243 
2244 	/* copy_from_user should be SMP safe. */
2245 	if (copy_from_user(a, args, len))
2246 		return -EFAULT;
2247 
2248 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2249 
2250 	a0 = a[0];
2251 	a1 = a[1];
2252 
2253 	switch (call) {
2254 	case SYS_SOCKET:
2255 		err = sys_socket(a0, a1, a[2]);
2256 		break;
2257 	case SYS_BIND:
2258 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2259 		break;
2260 	case SYS_CONNECT:
2261 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2262 		break;
2263 	case SYS_LISTEN:
2264 		err = sys_listen(a0, a1);
2265 		break;
2266 	case SYS_ACCEPT:
2267 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2268 				  (int __user *)a[2], 0);
2269 		break;
2270 	case SYS_GETSOCKNAME:
2271 		err =
2272 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2273 				    (int __user *)a[2]);
2274 		break;
2275 	case SYS_GETPEERNAME:
2276 		err =
2277 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2278 				    (int __user *)a[2]);
2279 		break;
2280 	case SYS_SOCKETPAIR:
2281 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2282 		break;
2283 	case SYS_SEND:
2284 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2285 		break;
2286 	case SYS_SENDTO:
2287 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2288 				 (struct sockaddr __user *)a[4], a[5]);
2289 		break;
2290 	case SYS_RECV:
2291 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2292 		break;
2293 	case SYS_RECVFROM:
2294 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2295 				   (struct sockaddr __user *)a[4],
2296 				   (int __user *)a[5]);
2297 		break;
2298 	case SYS_SHUTDOWN:
2299 		err = sys_shutdown(a0, a1);
2300 		break;
2301 	case SYS_SETSOCKOPT:
2302 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2303 		break;
2304 	case SYS_GETSOCKOPT:
2305 		err =
2306 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2307 				   (int __user *)a[4]);
2308 		break;
2309 	case SYS_SENDMSG:
2310 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2311 		break;
2312 	case SYS_RECVMSG:
2313 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2314 		break;
2315 	case SYS_RECVMMSG:
2316 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2317 				   (struct timespec __user *)a[4]);
2318 		break;
2319 	case SYS_ACCEPT4:
2320 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2321 				  (int __user *)a[2], a[3]);
2322 		break;
2323 	default:
2324 		err = -EINVAL;
2325 		break;
2326 	}
2327 	return err;
2328 }
2329 
2330 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2331 
2332 /**
2333  *	sock_register - add a socket protocol handler
2334  *	@ops: description of protocol
2335  *
2336  *	This function is called by a protocol handler that wants to
2337  *	advertise its address family, and have it linked into the
2338  *	socket interface. The value ops->family coresponds to the
2339  *	socket system call protocol family.
2340  */
2341 int sock_register(const struct net_proto_family *ops)
2342 {
2343 	int err;
2344 
2345 	if (ops->family >= NPROTO) {
2346 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2347 		       NPROTO);
2348 		return -ENOBUFS;
2349 	}
2350 
2351 	spin_lock(&net_family_lock);
2352 	if (net_families[ops->family])
2353 		err = -EEXIST;
2354 	else {
2355 		net_families[ops->family] = ops;
2356 		err = 0;
2357 	}
2358 	spin_unlock(&net_family_lock);
2359 
2360 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2361 	return err;
2362 }
2363 
2364 /**
2365  *	sock_unregister - remove a protocol handler
2366  *	@family: protocol family to remove
2367  *
2368  *	This function is called by a protocol handler that wants to
2369  *	remove its address family, and have it unlinked from the
2370  *	new socket creation.
2371  *
2372  *	If protocol handler is a module, then it can use module reference
2373  *	counts to protect against new references. If protocol handler is not
2374  *	a module then it needs to provide its own protection in
2375  *	the ops->create routine.
2376  */
2377 void sock_unregister(int family)
2378 {
2379 	BUG_ON(family < 0 || family >= NPROTO);
2380 
2381 	spin_lock(&net_family_lock);
2382 	net_families[family] = NULL;
2383 	spin_unlock(&net_family_lock);
2384 
2385 	synchronize_rcu();
2386 
2387 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2388 }
2389 
2390 static int __init sock_init(void)
2391 {
2392 	/*
2393 	 *      Initialize sock SLAB cache.
2394 	 */
2395 
2396 	sk_init();
2397 
2398 	/*
2399 	 *      Initialize skbuff SLAB cache
2400 	 */
2401 	skb_init();
2402 
2403 	/*
2404 	 *      Initialize the protocols module.
2405 	 */
2406 
2407 	init_inodecache();
2408 	register_filesystem(&sock_fs_type);
2409 	sock_mnt = kern_mount(&sock_fs_type);
2410 
2411 	/* The real protocol initialization is performed in later initcalls.
2412 	 */
2413 
2414 #ifdef CONFIG_NETFILTER
2415 	netfilter_init();
2416 #endif
2417 
2418 	return 0;
2419 }
2420 
2421 core_initcall(sock_init);	/* early initcall */
2422 
2423 #ifdef CONFIG_PROC_FS
2424 void socket_seq_show(struct seq_file *seq)
2425 {
2426 	int cpu;
2427 	int counter = 0;
2428 
2429 	for_each_possible_cpu(cpu)
2430 	    counter += per_cpu(sockets_in_use, cpu);
2431 
2432 	/* It can be negative, by the way. 8) */
2433 	if (counter < 0)
2434 		counter = 0;
2435 
2436 	seq_printf(seq, "sockets: used %d\n", counter);
2437 }
2438 #endif				/* CONFIG_PROC_FS */
2439 
2440 #ifdef CONFIG_COMPAT
2441 static int do_siocgstamp(struct net *net, struct socket *sock,
2442 			 unsigned int cmd, struct compat_timeval __user *up)
2443 {
2444 	mm_segment_t old_fs = get_fs();
2445 	struct timeval ktv;
2446 	int err;
2447 
2448 	set_fs(KERNEL_DS);
2449 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2450 	set_fs(old_fs);
2451 	if (!err) {
2452 		err = put_user(ktv.tv_sec, &up->tv_sec);
2453 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2454 	}
2455 	return err;
2456 }
2457 
2458 static int do_siocgstampns(struct net *net, struct socket *sock,
2459 			 unsigned int cmd, struct compat_timespec __user *up)
2460 {
2461 	mm_segment_t old_fs = get_fs();
2462 	struct timespec kts;
2463 	int err;
2464 
2465 	set_fs(KERNEL_DS);
2466 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2467 	set_fs(old_fs);
2468 	if (!err) {
2469 		err = put_user(kts.tv_sec, &up->tv_sec);
2470 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2471 	}
2472 	return err;
2473 }
2474 
2475 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2476 {
2477 	struct ifreq __user *uifr;
2478 	int err;
2479 
2480 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2481 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2482 		return -EFAULT;
2483 
2484 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2485 	if (err)
2486 		return err;
2487 
2488 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2489 		return -EFAULT;
2490 
2491 	return 0;
2492 }
2493 
2494 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2495 {
2496 	struct compat_ifconf ifc32;
2497 	struct ifconf ifc;
2498 	struct ifconf __user *uifc;
2499 	struct compat_ifreq __user *ifr32;
2500 	struct ifreq __user *ifr;
2501 	unsigned int i, j;
2502 	int err;
2503 
2504 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2505 		return -EFAULT;
2506 
2507 	if (ifc32.ifcbuf == 0) {
2508 		ifc32.ifc_len = 0;
2509 		ifc.ifc_len = 0;
2510 		ifc.ifc_req = NULL;
2511 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2512 	} else {
2513 		size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2514 			sizeof (struct ifreq);
2515 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2516 		ifc.ifc_len = len;
2517 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2518 		ifr32 = compat_ptr(ifc32.ifcbuf);
2519 		for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2520 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2521 				return -EFAULT;
2522 			ifr++;
2523 			ifr32++;
2524 		}
2525 	}
2526 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2527 		return -EFAULT;
2528 
2529 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2530 	if (err)
2531 		return err;
2532 
2533 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2534 		return -EFAULT;
2535 
2536 	ifr = ifc.ifc_req;
2537 	ifr32 = compat_ptr(ifc32.ifcbuf);
2538 	for (i = 0, j = 0;
2539              i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2540 	     i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2541 		if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2542 			return -EFAULT;
2543 		ifr32++;
2544 		ifr++;
2545 	}
2546 
2547 	if (ifc32.ifcbuf == 0) {
2548 		/* Translate from 64-bit structure multiple to
2549 		 * a 32-bit one.
2550 		 */
2551 		i = ifc.ifc_len;
2552 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2553 		ifc32.ifc_len = i;
2554 	} else {
2555 		ifc32.ifc_len = i;
2556 	}
2557 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2558 		return -EFAULT;
2559 
2560 	return 0;
2561 }
2562 
2563 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2564 {
2565 	struct ifreq __user *ifr;
2566 	u32 data;
2567 	void __user *datap;
2568 
2569 	ifr = compat_alloc_user_space(sizeof(*ifr));
2570 
2571 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2572 		return -EFAULT;
2573 
2574 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2575 		return -EFAULT;
2576 
2577 	datap = compat_ptr(data);
2578 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2579 		return -EFAULT;
2580 
2581 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2582 }
2583 
2584 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2585 {
2586 	void __user *uptr;
2587 	compat_uptr_t uptr32;
2588 	struct ifreq __user *uifr;
2589 
2590 	uifr = compat_alloc_user_space(sizeof (*uifr));
2591 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2592 		return -EFAULT;
2593 
2594 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2595 		return -EFAULT;
2596 
2597 	uptr = compat_ptr(uptr32);
2598 
2599 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2600 		return -EFAULT;
2601 
2602 	return dev_ioctl(net, SIOCWANDEV, uifr);
2603 }
2604 
2605 static int bond_ioctl(struct net *net, unsigned int cmd,
2606 			 struct compat_ifreq __user *ifr32)
2607 {
2608 	struct ifreq kifr;
2609 	struct ifreq __user *uifr;
2610 	mm_segment_t old_fs;
2611 	int err;
2612 	u32 data;
2613 	void __user *datap;
2614 
2615 	switch (cmd) {
2616 	case SIOCBONDENSLAVE:
2617 	case SIOCBONDRELEASE:
2618 	case SIOCBONDSETHWADDR:
2619 	case SIOCBONDCHANGEACTIVE:
2620 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2621 			return -EFAULT;
2622 
2623 		old_fs = get_fs();
2624 		set_fs (KERNEL_DS);
2625 		err = dev_ioctl(net, cmd, &kifr);
2626 		set_fs (old_fs);
2627 
2628 		return err;
2629 	case SIOCBONDSLAVEINFOQUERY:
2630 	case SIOCBONDINFOQUERY:
2631 		uifr = compat_alloc_user_space(sizeof(*uifr));
2632 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2633 			return -EFAULT;
2634 
2635 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2636 			return -EFAULT;
2637 
2638 		datap = compat_ptr(data);
2639 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2640 			return -EFAULT;
2641 
2642 		return dev_ioctl(net, cmd, uifr);
2643 	default:
2644 		return -EINVAL;
2645 	};
2646 }
2647 
2648 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2649 				 struct compat_ifreq __user *u_ifreq32)
2650 {
2651 	struct ifreq __user *u_ifreq64;
2652 	char tmp_buf[IFNAMSIZ];
2653 	void __user *data64;
2654 	u32 data32;
2655 
2656 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2657 			   IFNAMSIZ))
2658 		return -EFAULT;
2659 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2660 		return -EFAULT;
2661 	data64 = compat_ptr(data32);
2662 
2663 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2664 
2665 	/* Don't check these user accesses, just let that get trapped
2666 	 * in the ioctl handler instead.
2667 	 */
2668 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2669 			 IFNAMSIZ))
2670 		return -EFAULT;
2671 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2672 		return -EFAULT;
2673 
2674 	return dev_ioctl(net, cmd, u_ifreq64);
2675 }
2676 
2677 static int dev_ifsioc(struct net *net, struct socket *sock,
2678 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2679 {
2680 	struct ifreq __user *uifr;
2681 	int err;
2682 
2683 	uifr = compat_alloc_user_space(sizeof(*uifr));
2684 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2685 		return -EFAULT;
2686 
2687 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2688 
2689 	if (!err) {
2690 		switch (cmd) {
2691 		case SIOCGIFFLAGS:
2692 		case SIOCGIFMETRIC:
2693 		case SIOCGIFMTU:
2694 		case SIOCGIFMEM:
2695 		case SIOCGIFHWADDR:
2696 		case SIOCGIFINDEX:
2697 		case SIOCGIFADDR:
2698 		case SIOCGIFBRDADDR:
2699 		case SIOCGIFDSTADDR:
2700 		case SIOCGIFNETMASK:
2701 		case SIOCGIFPFLAGS:
2702 		case SIOCGIFTXQLEN:
2703 		case SIOCGMIIPHY:
2704 		case SIOCGMIIREG:
2705 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2706 				err = -EFAULT;
2707 			break;
2708 		}
2709 	}
2710 	return err;
2711 }
2712 
2713 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2714 			struct compat_ifreq __user *uifr32)
2715 {
2716 	struct ifreq ifr;
2717 	struct compat_ifmap __user *uifmap32;
2718 	mm_segment_t old_fs;
2719 	int err;
2720 
2721 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2722 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2723 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2724 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2725 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2726 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2727 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2728 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2729 	if (err)
2730 		return -EFAULT;
2731 
2732 	old_fs = get_fs();
2733 	set_fs (KERNEL_DS);
2734 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2735 	set_fs (old_fs);
2736 
2737 	if (cmd == SIOCGIFMAP && !err) {
2738 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2739 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2740 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2741 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2742 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2743 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2744 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2745 		if (err)
2746 			err = -EFAULT;
2747 	}
2748 	return err;
2749 }
2750 
2751 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2752 {
2753 	void __user *uptr;
2754 	compat_uptr_t uptr32;
2755 	struct ifreq __user *uifr;
2756 
2757 	uifr = compat_alloc_user_space(sizeof (*uifr));
2758 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759 		return -EFAULT;
2760 
2761 	if (get_user(uptr32, &uifr32->ifr_data))
2762 		return -EFAULT;
2763 
2764 	uptr = compat_ptr(uptr32);
2765 
2766 	if (put_user(uptr, &uifr->ifr_data))
2767 		return -EFAULT;
2768 
2769 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2770 }
2771 
2772 struct rtentry32 {
2773 	u32   		rt_pad1;
2774 	struct sockaddr rt_dst;         /* target address               */
2775 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2776 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2777 	unsigned short  rt_flags;
2778 	short           rt_pad2;
2779 	u32   		rt_pad3;
2780 	unsigned char   rt_tos;
2781 	unsigned char   rt_class;
2782 	short           rt_pad4;
2783 	short           rt_metric;      /* +1 for binary compatibility! */
2784 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2785 	u32   		rt_mtu;         /* per route MTU/Window         */
2786 	u32   		rt_window;      /* Window clamping              */
2787 	unsigned short  rt_irtt;        /* Initial RTT                  */
2788 };
2789 
2790 struct in6_rtmsg32 {
2791 	struct in6_addr		rtmsg_dst;
2792 	struct in6_addr		rtmsg_src;
2793 	struct in6_addr		rtmsg_gateway;
2794 	u32			rtmsg_type;
2795 	u16			rtmsg_dst_len;
2796 	u16			rtmsg_src_len;
2797 	u32			rtmsg_metric;
2798 	u32			rtmsg_info;
2799 	u32			rtmsg_flags;
2800 	s32			rtmsg_ifindex;
2801 };
2802 
2803 static int routing_ioctl(struct net *net, struct socket *sock,
2804 			 unsigned int cmd, void __user *argp)
2805 {
2806 	int ret;
2807 	void *r = NULL;
2808 	struct in6_rtmsg r6;
2809 	struct rtentry r4;
2810 	char devname[16];
2811 	u32 rtdev;
2812 	mm_segment_t old_fs = get_fs();
2813 
2814 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2815 		struct in6_rtmsg32 __user *ur6 = argp;
2816 		ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2817 			3 * sizeof(struct in6_addr));
2818 		ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2819 		ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2820 		ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2821 		ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2822 		ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2823 		ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2824 		ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2825 
2826 		r = (void *) &r6;
2827 	} else { /* ipv4 */
2828 		struct rtentry32 __user *ur4 = argp;
2829 		ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2830 					3 * sizeof(struct sockaddr));
2831 		ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2832 		ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2833 		ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2834 		ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2835 		ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2836 		ret |= __get_user (rtdev, &(ur4->rt_dev));
2837 		if (rtdev) {
2838 			ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2839 			r4.rt_dev = devname; devname[15] = 0;
2840 		} else
2841 			r4.rt_dev = NULL;
2842 
2843 		r = (void *) &r4;
2844 	}
2845 
2846 	if (ret) {
2847 		ret = -EFAULT;
2848 		goto out;
2849 	}
2850 
2851 	set_fs (KERNEL_DS);
2852 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2853 	set_fs (old_fs);
2854 
2855 out:
2856 	return ret;
2857 }
2858 
2859 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2860  * for some operations; this forces use of the newer bridge-utils that
2861  * use compatiable ioctls
2862  */
2863 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2864 {
2865 	compat_ulong_t tmp;
2866 
2867 	if (get_user(tmp, argp))
2868 		return -EFAULT;
2869 	if (tmp == BRCTL_GET_VERSION)
2870 		return BRCTL_VERSION + 1;
2871 	return -EINVAL;
2872 }
2873 
2874 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2875 			 unsigned int cmd, unsigned long arg)
2876 {
2877 	void __user *argp = compat_ptr(arg);
2878 	struct sock *sk = sock->sk;
2879 	struct net *net = sock_net(sk);
2880 
2881 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2882 		return siocdevprivate_ioctl(net, cmd, argp);
2883 
2884 	switch (cmd) {
2885 	case SIOCSIFBR:
2886 	case SIOCGIFBR:
2887 		return old_bridge_ioctl(argp);
2888 	case SIOCGIFNAME:
2889 		return dev_ifname32(net, argp);
2890 	case SIOCGIFCONF:
2891 		return dev_ifconf(net, argp);
2892 	case SIOCETHTOOL:
2893 		return ethtool_ioctl(net, argp);
2894 	case SIOCWANDEV:
2895 		return compat_siocwandev(net, argp);
2896 	case SIOCGIFMAP:
2897 	case SIOCSIFMAP:
2898 		return compat_sioc_ifmap(net, cmd, argp);
2899 	case SIOCBONDENSLAVE:
2900 	case SIOCBONDRELEASE:
2901 	case SIOCBONDSETHWADDR:
2902 	case SIOCBONDSLAVEINFOQUERY:
2903 	case SIOCBONDINFOQUERY:
2904 	case SIOCBONDCHANGEACTIVE:
2905 		return bond_ioctl(net, cmd, argp);
2906 	case SIOCADDRT:
2907 	case SIOCDELRT:
2908 		return routing_ioctl(net, sock, cmd, argp);
2909 	case SIOCGSTAMP:
2910 		return do_siocgstamp(net, sock, cmd, argp);
2911 	case SIOCGSTAMPNS:
2912 		return do_siocgstampns(net, sock, cmd, argp);
2913 	case SIOCSHWTSTAMP:
2914 		return compat_siocshwtstamp(net, argp);
2915 
2916 	case FIOSETOWN:
2917 	case SIOCSPGRP:
2918 	case FIOGETOWN:
2919 	case SIOCGPGRP:
2920 	case SIOCBRADDBR:
2921 	case SIOCBRDELBR:
2922 	case SIOCGIFVLAN:
2923 	case SIOCSIFVLAN:
2924 	case SIOCADDDLCI:
2925 	case SIOCDELDLCI:
2926 		return sock_ioctl(file, cmd, arg);
2927 
2928 	case SIOCGIFFLAGS:
2929 	case SIOCSIFFLAGS:
2930 	case SIOCGIFMETRIC:
2931 	case SIOCSIFMETRIC:
2932 	case SIOCGIFMTU:
2933 	case SIOCSIFMTU:
2934 	case SIOCGIFMEM:
2935 	case SIOCSIFMEM:
2936 	case SIOCGIFHWADDR:
2937 	case SIOCSIFHWADDR:
2938 	case SIOCADDMULTI:
2939 	case SIOCDELMULTI:
2940 	case SIOCGIFINDEX:
2941 	case SIOCGIFADDR:
2942 	case SIOCSIFADDR:
2943 	case SIOCSIFHWBROADCAST:
2944 	case SIOCDIFADDR:
2945 	case SIOCGIFBRDADDR:
2946 	case SIOCSIFBRDADDR:
2947 	case SIOCGIFDSTADDR:
2948 	case SIOCSIFDSTADDR:
2949 	case SIOCGIFNETMASK:
2950 	case SIOCSIFNETMASK:
2951 	case SIOCSIFPFLAGS:
2952 	case SIOCGIFPFLAGS:
2953 	case SIOCGIFTXQLEN:
2954 	case SIOCSIFTXQLEN:
2955 	case SIOCBRADDIF:
2956 	case SIOCBRDELIF:
2957 	case SIOCSIFNAME:
2958 	case SIOCGMIIPHY:
2959 	case SIOCGMIIREG:
2960 	case SIOCSMIIREG:
2961 		return dev_ifsioc(net, sock, cmd, argp);
2962 
2963 	case SIOCSARP:
2964 	case SIOCGARP:
2965 	case SIOCDARP:
2966 	case SIOCATMARK:
2967 		return sock_do_ioctl(net, sock, cmd, arg);
2968 	}
2969 
2970 	/* Prevent warning from compat_sys_ioctl, these always
2971 	 * result in -EINVAL in the native case anyway. */
2972 	switch (cmd) {
2973 	case SIOCRTMSG:
2974 	case SIOCGIFCOUNT:
2975 	case SIOCSRARP:
2976 	case SIOCGRARP:
2977 	case SIOCDRARP:
2978 	case SIOCSIFLINK:
2979 	case SIOCGIFSLAVE:
2980 	case SIOCSIFSLAVE:
2981 		return -EINVAL;
2982 	}
2983 
2984 	return -ENOIOCTLCMD;
2985 }
2986 
2987 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2988 			      unsigned long arg)
2989 {
2990 	struct socket *sock = file->private_data;
2991 	int ret = -ENOIOCTLCMD;
2992 	struct sock *sk;
2993 	struct net *net;
2994 
2995 	sk = sock->sk;
2996 	net = sock_net(sk);
2997 
2998 	if (sock->ops->compat_ioctl)
2999 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3000 
3001 	if (ret == -ENOIOCTLCMD &&
3002 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3003 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3004 
3005 	if (ret == -ENOIOCTLCMD)
3006 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3007 
3008 	return ret;
3009 }
3010 #endif
3011 
3012 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3013 {
3014 	return sock->ops->bind(sock, addr, addrlen);
3015 }
3016 
3017 int kernel_listen(struct socket *sock, int backlog)
3018 {
3019 	return sock->ops->listen(sock, backlog);
3020 }
3021 
3022 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3023 {
3024 	struct sock *sk = sock->sk;
3025 	int err;
3026 
3027 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3028 			       newsock);
3029 	if (err < 0)
3030 		goto done;
3031 
3032 	err = sock->ops->accept(sock, *newsock, flags);
3033 	if (err < 0) {
3034 		sock_release(*newsock);
3035 		*newsock = NULL;
3036 		goto done;
3037 	}
3038 
3039 	(*newsock)->ops = sock->ops;
3040 	__module_get((*newsock)->ops->owner);
3041 
3042 done:
3043 	return err;
3044 }
3045 
3046 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3047 		   int flags)
3048 {
3049 	return sock->ops->connect(sock, addr, addrlen, flags);
3050 }
3051 
3052 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3053 			 int *addrlen)
3054 {
3055 	return sock->ops->getname(sock, addr, addrlen, 0);
3056 }
3057 
3058 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3059 			 int *addrlen)
3060 {
3061 	return sock->ops->getname(sock, addr, addrlen, 1);
3062 }
3063 
3064 int kernel_getsockopt(struct socket *sock, int level, int optname,
3065 			char *optval, int *optlen)
3066 {
3067 	mm_segment_t oldfs = get_fs();
3068 	int err;
3069 
3070 	set_fs(KERNEL_DS);
3071 	if (level == SOL_SOCKET)
3072 		err = sock_getsockopt(sock, level, optname, optval, optlen);
3073 	else
3074 		err = sock->ops->getsockopt(sock, level, optname, optval,
3075 					    optlen);
3076 	set_fs(oldfs);
3077 	return err;
3078 }
3079 
3080 int kernel_setsockopt(struct socket *sock, int level, int optname,
3081 			char *optval, unsigned int optlen)
3082 {
3083 	mm_segment_t oldfs = get_fs();
3084 	int err;
3085 
3086 	set_fs(KERNEL_DS);
3087 	if (level == SOL_SOCKET)
3088 		err = sock_setsockopt(sock, level, optname, optval, optlen);
3089 	else
3090 		err = sock->ops->setsockopt(sock, level, optname, optval,
3091 					    optlen);
3092 	set_fs(oldfs);
3093 	return err;
3094 }
3095 
3096 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3097 		    size_t size, int flags)
3098 {
3099 	if (sock->ops->sendpage)
3100 		return sock->ops->sendpage(sock, page, offset, size, flags);
3101 
3102 	return sock_no_sendpage(sock, page, offset, size, flags);
3103 }
3104 
3105 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3106 {
3107 	mm_segment_t oldfs = get_fs();
3108 	int err;
3109 
3110 	set_fs(KERNEL_DS);
3111 	err = sock->ops->ioctl(sock, cmd, arg);
3112 	set_fs(oldfs);
3113 
3114 	return err;
3115 }
3116 
3117 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3118 {
3119 	return sock->ops->shutdown(sock, how);
3120 }
3121 
3122 EXPORT_SYMBOL(sock_create);
3123 EXPORT_SYMBOL(sock_create_kern);
3124 EXPORT_SYMBOL(sock_create_lite);
3125 EXPORT_SYMBOL(sock_map_fd);
3126 EXPORT_SYMBOL(sock_recvmsg);
3127 EXPORT_SYMBOL(sock_register);
3128 EXPORT_SYMBOL(sock_release);
3129 EXPORT_SYMBOL(sock_sendmsg);
3130 EXPORT_SYMBOL(sock_unregister);
3131 EXPORT_SYMBOL(sock_wake_async);
3132 EXPORT_SYMBOL(sockfd_lookup);
3133 EXPORT_SYMBOL(kernel_sendmsg);
3134 EXPORT_SYMBOL(kernel_recvmsg);
3135 EXPORT_SYMBOL(kernel_bind);
3136 EXPORT_SYMBOL(kernel_listen);
3137 EXPORT_SYMBOL(kernel_accept);
3138 EXPORT_SYMBOL(kernel_connect);
3139 EXPORT_SYMBOL(kernel_getsockname);
3140 EXPORT_SYMBOL(kernel_getpeername);
3141 EXPORT_SYMBOL(kernel_getsockopt);
3142 EXPORT_SYMBOL(kernel_setsockopt);
3143 EXPORT_SYMBOL(kernel_sendpage);
3144 EXPORT_SYMBOL(kernel_sock_ioctl);
3145 EXPORT_SYMBOL(kernel_sock_shutdown);
3146