1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396 { 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) 410 return ERR_PTR(-ENOMEM); 411 path.mnt = mntget(sock_mnt); 412 413 d_instantiate(path.dentry, SOCK_INODE(sock)); 414 415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 /* drop dentry, keep inode */ 419 ihold(d_inode(path.dentry)); 420 path_put(&path); 421 return file; 422 } 423 424 sock->file = file; 425 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 426 file->private_data = sock; 427 return file; 428 } 429 EXPORT_SYMBOL(sock_alloc_file); 430 431 static int sock_map_fd(struct socket *sock, int flags) 432 { 433 struct file *newfile; 434 int fd = get_unused_fd_flags(flags); 435 if (unlikely(fd < 0)) 436 return fd; 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * to is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 kmemcheck_annotate_bitfield(sock, type); 572 inode->i_ino = get_next_ino(); 573 inode->i_mode = S_IFSOCK | S_IRWXUGO; 574 inode->i_uid = current_fsuid(); 575 inode->i_gid = current_fsgid(); 576 inode->i_op = &sockfs_inode_ops; 577 578 this_cpu_add(sockets_in_use, 1); 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 void sock_release(struct socket *sock) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 sock->ops->release(sock); 598 sock->ops = NULL; 599 module_put(owner); 600 } 601 602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 603 pr_err("%s: fasync list not empty!\n", __func__); 604 605 this_cpu_sub(sockets_in_use, 1); 606 if (!sock->file) { 607 iput(SOCK_INODE(sock)); 608 return; 609 } 610 sock->file = NULL; 611 } 612 EXPORT_SYMBOL(sock_release); 613 614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615 { 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628 } 629 EXPORT_SYMBOL(__sock_tx_timestamp); 630 631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632 { 633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 634 BUG_ON(ret == -EIOCBQUEUED); 635 return ret; 636 } 637 638 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 639 { 640 int err = security_socket_sendmsg(sock, msg, 641 msg_data_left(msg)); 642 643 return err ?: sock_sendmsg_nosec(sock, msg); 644 } 645 EXPORT_SYMBOL(sock_sendmsg); 646 647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 648 struct kvec *vec, size_t num, size_t size) 649 { 650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 651 return sock_sendmsg(sock, msg); 652 } 653 EXPORT_SYMBOL(kernel_sendmsg); 654 655 static bool skb_is_err_queue(const struct sk_buff *skb) 656 { 657 /* pkt_type of skbs enqueued on the error queue are set to 658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 659 * in recvmsg, since skbs received on a local socket will never 660 * have a pkt_type of PACKET_OUTGOING. 661 */ 662 return skb->pkt_type == PACKET_OUTGOING; 663 } 664 665 /* On transmit, software and hardware timestamps are returned independently. 666 * As the two skb clones share the hardware timestamp, which may be updated 667 * before the software timestamp is received, a hardware TX timestamp may be 668 * returned only if there is no software TX timestamp. Ignore false software 669 * timestamps, which may be made in the __sock_recv_timestamp() call when the 670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 671 * hardware timestamp. 672 */ 673 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 674 { 675 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 676 } 677 678 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 679 { 680 struct scm_ts_pktinfo ts_pktinfo; 681 struct net_device *orig_dev; 682 683 if (!skb_mac_header_was_set(skb)) 684 return; 685 686 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 687 688 rcu_read_lock(); 689 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 690 if (orig_dev) 691 ts_pktinfo.if_index = orig_dev->ifindex; 692 rcu_read_unlock(); 693 694 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 695 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 696 sizeof(ts_pktinfo), &ts_pktinfo); 697 } 698 699 /* 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 701 */ 702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704 { 705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 706 struct scm_timestamping tss; 707 int empty = 1, false_tstamp = 0; 708 struct skb_shared_hwtstamps *shhwtstamps = 709 skb_hwtstamps(skb); 710 711 /* Race occurred between timestamp enabling and packet 712 receiving. Fill in the current time for now. */ 713 if (need_software_tstamp && skb->tstamp == 0) { 714 __net_timestamp(skb); 715 false_tstamp = 1; 716 } 717 718 if (need_software_tstamp) { 719 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 720 struct timeval tv; 721 skb_get_timestamp(skb, &tv); 722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 723 sizeof(tv), &tv); 724 } else { 725 struct timespec ts; 726 skb_get_timestampns(skb, &ts); 727 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 728 sizeof(ts), &ts); 729 } 730 } 731 732 memset(&tss, 0, sizeof(tss)); 733 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 734 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 735 empty = 0; 736 if (shhwtstamps && 737 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 738 !skb_is_swtx_tstamp(skb, false_tstamp) && 739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 740 empty = 0; 741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 742 !skb_is_err_queue(skb)) 743 put_ts_pktinfo(msg, skb); 744 } 745 if (!empty) { 746 put_cmsg(msg, SOL_SOCKET, 747 SCM_TIMESTAMPING, sizeof(tss), &tss); 748 749 if (skb_is_err_queue(skb) && skb->len && 750 SKB_EXT_ERR(skb)->opt_stats) 751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 752 skb->len, skb->data); 753 } 754 } 755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 756 757 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 758 struct sk_buff *skb) 759 { 760 int ack; 761 762 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 763 return; 764 if (!skb->wifi_acked_valid) 765 return; 766 767 ack = skb->wifi_acked; 768 769 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 770 } 771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 772 773 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 774 struct sk_buff *skb) 775 { 776 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 777 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 778 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 779 } 780 781 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 782 struct sk_buff *skb) 783 { 784 sock_recv_timestamp(msg, sk, skb); 785 sock_recv_drops(msg, sk, skb); 786 } 787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 788 789 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 790 int flags) 791 { 792 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 793 } 794 795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 796 { 797 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 798 799 return err ?: sock_recvmsg_nosec(sock, msg, flags); 800 } 801 EXPORT_SYMBOL(sock_recvmsg); 802 803 /** 804 * kernel_recvmsg - Receive a message from a socket (kernel space) 805 * @sock: The socket to receive the message from 806 * @msg: Received message 807 * @vec: Input s/g array for message data 808 * @num: Size of input s/g array 809 * @size: Number of bytes to read 810 * @flags: Message flags (MSG_DONTWAIT, etc...) 811 * 812 * On return the msg structure contains the scatter/gather array passed in the 813 * vec argument. The array is modified so that it consists of the unfilled 814 * portion of the original array. 815 * 816 * The returned value is the total number of bytes received, or an error. 817 */ 818 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 819 struct kvec *vec, size_t num, size_t size, int flags) 820 { 821 mm_segment_t oldfs = get_fs(); 822 int result; 823 824 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 825 set_fs(KERNEL_DS); 826 result = sock_recvmsg(sock, msg, flags); 827 set_fs(oldfs); 828 return result; 829 } 830 EXPORT_SYMBOL(kernel_recvmsg); 831 832 static ssize_t sock_sendpage(struct file *file, struct page *page, 833 int offset, size_t size, loff_t *ppos, int more) 834 { 835 struct socket *sock; 836 int flags; 837 838 sock = file->private_data; 839 840 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 841 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 842 flags |= more; 843 844 return kernel_sendpage(sock, page, offset, size, flags); 845 } 846 847 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 848 struct pipe_inode_info *pipe, size_t len, 849 unsigned int flags) 850 { 851 struct socket *sock = file->private_data; 852 853 if (unlikely(!sock->ops->splice_read)) 854 return -EINVAL; 855 856 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 857 } 858 859 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 860 { 861 struct file *file = iocb->ki_filp; 862 struct socket *sock = file->private_data; 863 struct msghdr msg = {.msg_iter = *to, 864 .msg_iocb = iocb}; 865 ssize_t res; 866 867 if (file->f_flags & O_NONBLOCK) 868 msg.msg_flags = MSG_DONTWAIT; 869 870 if (iocb->ki_pos != 0) 871 return -ESPIPE; 872 873 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 874 return 0; 875 876 res = sock_recvmsg(sock, &msg, msg.msg_flags); 877 *to = msg.msg_iter; 878 return res; 879 } 880 881 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 882 { 883 struct file *file = iocb->ki_filp; 884 struct socket *sock = file->private_data; 885 struct msghdr msg = {.msg_iter = *from, 886 .msg_iocb = iocb}; 887 ssize_t res; 888 889 if (iocb->ki_pos != 0) 890 return -ESPIPE; 891 892 if (file->f_flags & O_NONBLOCK) 893 msg.msg_flags = MSG_DONTWAIT; 894 895 if (sock->type == SOCK_SEQPACKET) 896 msg.msg_flags |= MSG_EOR; 897 898 res = sock_sendmsg(sock, &msg); 899 *from = msg.msg_iter; 900 return res; 901 } 902 903 /* 904 * Atomic setting of ioctl hooks to avoid race 905 * with module unload. 906 */ 907 908 static DEFINE_MUTEX(br_ioctl_mutex); 909 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 910 911 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 912 { 913 mutex_lock(&br_ioctl_mutex); 914 br_ioctl_hook = hook; 915 mutex_unlock(&br_ioctl_mutex); 916 } 917 EXPORT_SYMBOL(brioctl_set); 918 919 static DEFINE_MUTEX(vlan_ioctl_mutex); 920 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 921 922 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 923 { 924 mutex_lock(&vlan_ioctl_mutex); 925 vlan_ioctl_hook = hook; 926 mutex_unlock(&vlan_ioctl_mutex); 927 } 928 EXPORT_SYMBOL(vlan_ioctl_set); 929 930 static DEFINE_MUTEX(dlci_ioctl_mutex); 931 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 932 933 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 934 { 935 mutex_lock(&dlci_ioctl_mutex); 936 dlci_ioctl_hook = hook; 937 mutex_unlock(&dlci_ioctl_mutex); 938 } 939 EXPORT_SYMBOL(dlci_ioctl_set); 940 941 static long sock_do_ioctl(struct net *net, struct socket *sock, 942 unsigned int cmd, unsigned long arg) 943 { 944 int err; 945 void __user *argp = (void __user *)arg; 946 947 err = sock->ops->ioctl(sock, cmd, arg); 948 949 /* 950 * If this ioctl is unknown try to hand it down 951 * to the NIC driver. 952 */ 953 if (err == -ENOIOCTLCMD) 954 err = dev_ioctl(net, cmd, argp); 955 956 return err; 957 } 958 959 /* 960 * With an ioctl, arg may well be a user mode pointer, but we don't know 961 * what to do with it - that's up to the protocol still. 962 */ 963 964 static struct ns_common *get_net_ns(struct ns_common *ns) 965 { 966 return &get_net(container_of(ns, struct net, ns))->ns; 967 } 968 969 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 970 { 971 struct socket *sock; 972 struct sock *sk; 973 void __user *argp = (void __user *)arg; 974 int pid, err; 975 struct net *net; 976 977 sock = file->private_data; 978 sk = sock->sk; 979 net = sock_net(sk); 980 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 981 err = dev_ioctl(net, cmd, argp); 982 } else 983 #ifdef CONFIG_WEXT_CORE 984 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 985 err = dev_ioctl(net, cmd, argp); 986 } else 987 #endif 988 switch (cmd) { 989 case FIOSETOWN: 990 case SIOCSPGRP: 991 err = -EFAULT; 992 if (get_user(pid, (int __user *)argp)) 993 break; 994 err = f_setown(sock->file, pid, 1); 995 break; 996 case FIOGETOWN: 997 case SIOCGPGRP: 998 err = put_user(f_getown(sock->file), 999 (int __user *)argp); 1000 break; 1001 case SIOCGIFBR: 1002 case SIOCSIFBR: 1003 case SIOCBRADDBR: 1004 case SIOCBRDELBR: 1005 err = -ENOPKG; 1006 if (!br_ioctl_hook) 1007 request_module("bridge"); 1008 1009 mutex_lock(&br_ioctl_mutex); 1010 if (br_ioctl_hook) 1011 err = br_ioctl_hook(net, cmd, argp); 1012 mutex_unlock(&br_ioctl_mutex); 1013 break; 1014 case SIOCGIFVLAN: 1015 case SIOCSIFVLAN: 1016 err = -ENOPKG; 1017 if (!vlan_ioctl_hook) 1018 request_module("8021q"); 1019 1020 mutex_lock(&vlan_ioctl_mutex); 1021 if (vlan_ioctl_hook) 1022 err = vlan_ioctl_hook(net, argp); 1023 mutex_unlock(&vlan_ioctl_mutex); 1024 break; 1025 case SIOCADDDLCI: 1026 case SIOCDELDLCI: 1027 err = -ENOPKG; 1028 if (!dlci_ioctl_hook) 1029 request_module("dlci"); 1030 1031 mutex_lock(&dlci_ioctl_mutex); 1032 if (dlci_ioctl_hook) 1033 err = dlci_ioctl_hook(cmd, argp); 1034 mutex_unlock(&dlci_ioctl_mutex); 1035 break; 1036 case SIOCGSKNS: 1037 err = -EPERM; 1038 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1039 break; 1040 1041 err = open_related_ns(&net->ns, get_net_ns); 1042 break; 1043 default: 1044 err = sock_do_ioctl(net, sock, cmd, arg); 1045 break; 1046 } 1047 return err; 1048 } 1049 1050 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1051 { 1052 int err; 1053 struct socket *sock = NULL; 1054 1055 err = security_socket_create(family, type, protocol, 1); 1056 if (err) 1057 goto out; 1058 1059 sock = sock_alloc(); 1060 if (!sock) { 1061 err = -ENOMEM; 1062 goto out; 1063 } 1064 1065 sock->type = type; 1066 err = security_socket_post_create(sock, family, type, protocol, 1); 1067 if (err) 1068 goto out_release; 1069 1070 out: 1071 *res = sock; 1072 return err; 1073 out_release: 1074 sock_release(sock); 1075 sock = NULL; 1076 goto out; 1077 } 1078 EXPORT_SYMBOL(sock_create_lite); 1079 1080 /* No kernel lock held - perfect */ 1081 static unsigned int sock_poll(struct file *file, poll_table *wait) 1082 { 1083 unsigned int busy_flag = 0; 1084 struct socket *sock; 1085 1086 /* 1087 * We can't return errors to poll, so it's either yes or no. 1088 */ 1089 sock = file->private_data; 1090 1091 if (sk_can_busy_loop(sock->sk)) { 1092 /* this socket can poll_ll so tell the system call */ 1093 busy_flag = POLL_BUSY_LOOP; 1094 1095 /* once, only if requested by syscall */ 1096 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1097 sk_busy_loop(sock->sk, 1); 1098 } 1099 1100 return busy_flag | sock->ops->poll(file, sock, wait); 1101 } 1102 1103 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1104 { 1105 struct socket *sock = file->private_data; 1106 1107 return sock->ops->mmap(file, sock, vma); 1108 } 1109 1110 static int sock_close(struct inode *inode, struct file *filp) 1111 { 1112 sock_release(SOCKET_I(inode)); 1113 return 0; 1114 } 1115 1116 /* 1117 * Update the socket async list 1118 * 1119 * Fasync_list locking strategy. 1120 * 1121 * 1. fasync_list is modified only under process context socket lock 1122 * i.e. under semaphore. 1123 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1124 * or under socket lock 1125 */ 1126 1127 static int sock_fasync(int fd, struct file *filp, int on) 1128 { 1129 struct socket *sock = filp->private_data; 1130 struct sock *sk = sock->sk; 1131 struct socket_wq *wq; 1132 1133 if (sk == NULL) 1134 return -EINVAL; 1135 1136 lock_sock(sk); 1137 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1138 fasync_helper(fd, filp, on, &wq->fasync_list); 1139 1140 if (!wq->fasync_list) 1141 sock_reset_flag(sk, SOCK_FASYNC); 1142 else 1143 sock_set_flag(sk, SOCK_FASYNC); 1144 1145 release_sock(sk); 1146 return 0; 1147 } 1148 1149 /* This function may be called only under rcu_lock */ 1150 1151 int sock_wake_async(struct socket_wq *wq, int how, int band) 1152 { 1153 if (!wq || !wq->fasync_list) 1154 return -1; 1155 1156 switch (how) { 1157 case SOCK_WAKE_WAITD: 1158 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1159 break; 1160 goto call_kill; 1161 case SOCK_WAKE_SPACE: 1162 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1163 break; 1164 /* fall through */ 1165 case SOCK_WAKE_IO: 1166 call_kill: 1167 kill_fasync(&wq->fasync_list, SIGIO, band); 1168 break; 1169 case SOCK_WAKE_URG: 1170 kill_fasync(&wq->fasync_list, SIGURG, band); 1171 } 1172 1173 return 0; 1174 } 1175 EXPORT_SYMBOL(sock_wake_async); 1176 1177 int __sock_create(struct net *net, int family, int type, int protocol, 1178 struct socket **res, int kern) 1179 { 1180 int err; 1181 struct socket *sock; 1182 const struct net_proto_family *pf; 1183 1184 /* 1185 * Check protocol is in range 1186 */ 1187 if (family < 0 || family >= NPROTO) 1188 return -EAFNOSUPPORT; 1189 if (type < 0 || type >= SOCK_MAX) 1190 return -EINVAL; 1191 1192 /* Compatibility. 1193 1194 This uglymoron is moved from INET layer to here to avoid 1195 deadlock in module load. 1196 */ 1197 if (family == PF_INET && type == SOCK_PACKET) { 1198 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1199 current->comm); 1200 family = PF_PACKET; 1201 } 1202 1203 err = security_socket_create(family, type, protocol, kern); 1204 if (err) 1205 return err; 1206 1207 /* 1208 * Allocate the socket and allow the family to set things up. if 1209 * the protocol is 0, the family is instructed to select an appropriate 1210 * default. 1211 */ 1212 sock = sock_alloc(); 1213 if (!sock) { 1214 net_warn_ratelimited("socket: no more sockets\n"); 1215 return -ENFILE; /* Not exactly a match, but its the 1216 closest posix thing */ 1217 } 1218 1219 sock->type = type; 1220 1221 #ifdef CONFIG_MODULES 1222 /* Attempt to load a protocol module if the find failed. 1223 * 1224 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1225 * requested real, full-featured networking support upon configuration. 1226 * Otherwise module support will break! 1227 */ 1228 if (rcu_access_pointer(net_families[family]) == NULL) 1229 request_module("net-pf-%d", family); 1230 #endif 1231 1232 rcu_read_lock(); 1233 pf = rcu_dereference(net_families[family]); 1234 err = -EAFNOSUPPORT; 1235 if (!pf) 1236 goto out_release; 1237 1238 /* 1239 * We will call the ->create function, that possibly is in a loadable 1240 * module, so we have to bump that loadable module refcnt first. 1241 */ 1242 if (!try_module_get(pf->owner)) 1243 goto out_release; 1244 1245 /* Now protected by module ref count */ 1246 rcu_read_unlock(); 1247 1248 err = pf->create(net, sock, protocol, kern); 1249 if (err < 0) 1250 goto out_module_put; 1251 1252 /* 1253 * Now to bump the refcnt of the [loadable] module that owns this 1254 * socket at sock_release time we decrement its refcnt. 1255 */ 1256 if (!try_module_get(sock->ops->owner)) 1257 goto out_module_busy; 1258 1259 /* 1260 * Now that we're done with the ->create function, the [loadable] 1261 * module can have its refcnt decremented 1262 */ 1263 module_put(pf->owner); 1264 err = security_socket_post_create(sock, family, type, protocol, kern); 1265 if (err) 1266 goto out_sock_release; 1267 *res = sock; 1268 1269 return 0; 1270 1271 out_module_busy: 1272 err = -EAFNOSUPPORT; 1273 out_module_put: 1274 sock->ops = NULL; 1275 module_put(pf->owner); 1276 out_sock_release: 1277 sock_release(sock); 1278 return err; 1279 1280 out_release: 1281 rcu_read_unlock(); 1282 goto out_sock_release; 1283 } 1284 EXPORT_SYMBOL(__sock_create); 1285 1286 int sock_create(int family, int type, int protocol, struct socket **res) 1287 { 1288 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1289 } 1290 EXPORT_SYMBOL(sock_create); 1291 1292 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1293 { 1294 return __sock_create(net, family, type, protocol, res, 1); 1295 } 1296 EXPORT_SYMBOL(sock_create_kern); 1297 1298 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1299 { 1300 int retval; 1301 struct socket *sock; 1302 int flags; 1303 1304 /* Check the SOCK_* constants for consistency. */ 1305 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1306 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1307 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1308 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1309 1310 flags = type & ~SOCK_TYPE_MASK; 1311 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1312 return -EINVAL; 1313 type &= SOCK_TYPE_MASK; 1314 1315 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1316 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1317 1318 retval = sock_create(family, type, protocol, &sock); 1319 if (retval < 0) 1320 goto out; 1321 1322 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1323 if (retval < 0) 1324 goto out_release; 1325 1326 out: 1327 /* It may be already another descriptor 8) Not kernel problem. */ 1328 return retval; 1329 1330 out_release: 1331 sock_release(sock); 1332 return retval; 1333 } 1334 1335 /* 1336 * Create a pair of connected sockets. 1337 */ 1338 1339 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1340 int __user *, usockvec) 1341 { 1342 struct socket *sock1, *sock2; 1343 int fd1, fd2, err; 1344 struct file *newfile1, *newfile2; 1345 int flags; 1346 1347 flags = type & ~SOCK_TYPE_MASK; 1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1349 return -EINVAL; 1350 type &= SOCK_TYPE_MASK; 1351 1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1354 1355 /* 1356 * Obtain the first socket and check if the underlying protocol 1357 * supports the socketpair call. 1358 */ 1359 1360 err = sock_create(family, type, protocol, &sock1); 1361 if (err < 0) 1362 goto out; 1363 1364 err = sock_create(family, type, protocol, &sock2); 1365 if (err < 0) 1366 goto out_release_1; 1367 1368 err = sock1->ops->socketpair(sock1, sock2); 1369 if (err < 0) 1370 goto out_release_both; 1371 1372 fd1 = get_unused_fd_flags(flags); 1373 if (unlikely(fd1 < 0)) { 1374 err = fd1; 1375 goto out_release_both; 1376 } 1377 1378 fd2 = get_unused_fd_flags(flags); 1379 if (unlikely(fd2 < 0)) { 1380 err = fd2; 1381 goto out_put_unused_1; 1382 } 1383 1384 newfile1 = sock_alloc_file(sock1, flags, NULL); 1385 if (IS_ERR(newfile1)) { 1386 err = PTR_ERR(newfile1); 1387 goto out_put_unused_both; 1388 } 1389 1390 newfile2 = sock_alloc_file(sock2, flags, NULL); 1391 if (IS_ERR(newfile2)) { 1392 err = PTR_ERR(newfile2); 1393 goto out_fput_1; 1394 } 1395 1396 err = put_user(fd1, &usockvec[0]); 1397 if (err) 1398 goto out_fput_both; 1399 1400 err = put_user(fd2, &usockvec[1]); 1401 if (err) 1402 goto out_fput_both; 1403 1404 audit_fd_pair(fd1, fd2); 1405 1406 fd_install(fd1, newfile1); 1407 fd_install(fd2, newfile2); 1408 /* fd1 and fd2 may be already another descriptors. 1409 * Not kernel problem. 1410 */ 1411 1412 return 0; 1413 1414 out_fput_both: 1415 fput(newfile2); 1416 fput(newfile1); 1417 put_unused_fd(fd2); 1418 put_unused_fd(fd1); 1419 goto out; 1420 1421 out_fput_1: 1422 fput(newfile1); 1423 put_unused_fd(fd2); 1424 put_unused_fd(fd1); 1425 sock_release(sock2); 1426 goto out; 1427 1428 out_put_unused_both: 1429 put_unused_fd(fd2); 1430 out_put_unused_1: 1431 put_unused_fd(fd1); 1432 out_release_both: 1433 sock_release(sock2); 1434 out_release_1: 1435 sock_release(sock1); 1436 out: 1437 return err; 1438 } 1439 1440 /* 1441 * Bind a name to a socket. Nothing much to do here since it's 1442 * the protocol's responsibility to handle the local address. 1443 * 1444 * We move the socket address to kernel space before we call 1445 * the protocol layer (having also checked the address is ok). 1446 */ 1447 1448 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1449 { 1450 struct socket *sock; 1451 struct sockaddr_storage address; 1452 int err, fput_needed; 1453 1454 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1455 if (sock) { 1456 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1457 if (err >= 0) { 1458 err = security_socket_bind(sock, 1459 (struct sockaddr *)&address, 1460 addrlen); 1461 if (!err) 1462 err = sock->ops->bind(sock, 1463 (struct sockaddr *) 1464 &address, addrlen); 1465 } 1466 fput_light(sock->file, fput_needed); 1467 } 1468 return err; 1469 } 1470 1471 /* 1472 * Perform a listen. Basically, we allow the protocol to do anything 1473 * necessary for a listen, and if that works, we mark the socket as 1474 * ready for listening. 1475 */ 1476 1477 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1478 { 1479 struct socket *sock; 1480 int err, fput_needed; 1481 int somaxconn; 1482 1483 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1484 if (sock) { 1485 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1486 if ((unsigned int)backlog > somaxconn) 1487 backlog = somaxconn; 1488 1489 err = security_socket_listen(sock, backlog); 1490 if (!err) 1491 err = sock->ops->listen(sock, backlog); 1492 1493 fput_light(sock->file, fput_needed); 1494 } 1495 return err; 1496 } 1497 1498 /* 1499 * For accept, we attempt to create a new socket, set up the link 1500 * with the client, wake up the client, then return the new 1501 * connected fd. We collect the address of the connector in kernel 1502 * space and move it to user at the very end. This is unclean because 1503 * we open the socket then return an error. 1504 * 1505 * 1003.1g adds the ability to recvmsg() to query connection pending 1506 * status to recvmsg. We need to add that support in a way thats 1507 * clean when we restucture accept also. 1508 */ 1509 1510 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1511 int __user *, upeer_addrlen, int, flags) 1512 { 1513 struct socket *sock, *newsock; 1514 struct file *newfile; 1515 int err, len, newfd, fput_needed; 1516 struct sockaddr_storage address; 1517 1518 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1519 return -EINVAL; 1520 1521 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1522 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1523 1524 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1525 if (!sock) 1526 goto out; 1527 1528 err = -ENFILE; 1529 newsock = sock_alloc(); 1530 if (!newsock) 1531 goto out_put; 1532 1533 newsock->type = sock->type; 1534 newsock->ops = sock->ops; 1535 1536 /* 1537 * We don't need try_module_get here, as the listening socket (sock) 1538 * has the protocol module (sock->ops->owner) held. 1539 */ 1540 __module_get(newsock->ops->owner); 1541 1542 newfd = get_unused_fd_flags(flags); 1543 if (unlikely(newfd < 0)) { 1544 err = newfd; 1545 sock_release(newsock); 1546 goto out_put; 1547 } 1548 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1549 if (IS_ERR(newfile)) { 1550 err = PTR_ERR(newfile); 1551 put_unused_fd(newfd); 1552 sock_release(newsock); 1553 goto out_put; 1554 } 1555 1556 err = security_socket_accept(sock, newsock); 1557 if (err) 1558 goto out_fd; 1559 1560 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1561 if (err < 0) 1562 goto out_fd; 1563 1564 if (upeer_sockaddr) { 1565 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1566 &len, 2) < 0) { 1567 err = -ECONNABORTED; 1568 goto out_fd; 1569 } 1570 err = move_addr_to_user(&address, 1571 len, upeer_sockaddr, upeer_addrlen); 1572 if (err < 0) 1573 goto out_fd; 1574 } 1575 1576 /* File flags are not inherited via accept() unlike another OSes. */ 1577 1578 fd_install(newfd, newfile); 1579 err = newfd; 1580 1581 out_put: 1582 fput_light(sock->file, fput_needed); 1583 out: 1584 return err; 1585 out_fd: 1586 fput(newfile); 1587 put_unused_fd(newfd); 1588 goto out_put; 1589 } 1590 1591 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1592 int __user *, upeer_addrlen) 1593 { 1594 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1595 } 1596 1597 /* 1598 * Attempt to connect to a socket with the server address. The address 1599 * is in user space so we verify it is OK and move it to kernel space. 1600 * 1601 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1602 * break bindings 1603 * 1604 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1605 * other SEQPACKET protocols that take time to connect() as it doesn't 1606 * include the -EINPROGRESS status for such sockets. 1607 */ 1608 1609 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1610 int, addrlen) 1611 { 1612 struct socket *sock; 1613 struct sockaddr_storage address; 1614 int err, fput_needed; 1615 1616 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1617 if (!sock) 1618 goto out; 1619 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1620 if (err < 0) 1621 goto out_put; 1622 1623 err = 1624 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1625 if (err) 1626 goto out_put; 1627 1628 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1629 sock->file->f_flags); 1630 out_put: 1631 fput_light(sock->file, fput_needed); 1632 out: 1633 return err; 1634 } 1635 1636 /* 1637 * Get the local address ('name') of a socket object. Move the obtained 1638 * name to user space. 1639 */ 1640 1641 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1642 int __user *, usockaddr_len) 1643 { 1644 struct socket *sock; 1645 struct sockaddr_storage address; 1646 int len, err, fput_needed; 1647 1648 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1649 if (!sock) 1650 goto out; 1651 1652 err = security_socket_getsockname(sock); 1653 if (err) 1654 goto out_put; 1655 1656 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1657 if (err) 1658 goto out_put; 1659 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1660 1661 out_put: 1662 fput_light(sock->file, fput_needed); 1663 out: 1664 return err; 1665 } 1666 1667 /* 1668 * Get the remote address ('name') of a socket object. Move the obtained 1669 * name to user space. 1670 */ 1671 1672 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1673 int __user *, usockaddr_len) 1674 { 1675 struct socket *sock; 1676 struct sockaddr_storage address; 1677 int len, err, fput_needed; 1678 1679 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1680 if (sock != NULL) { 1681 err = security_socket_getpeername(sock); 1682 if (err) { 1683 fput_light(sock->file, fput_needed); 1684 return err; 1685 } 1686 1687 err = 1688 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1689 1); 1690 if (!err) 1691 err = move_addr_to_user(&address, len, usockaddr, 1692 usockaddr_len); 1693 fput_light(sock->file, fput_needed); 1694 } 1695 return err; 1696 } 1697 1698 /* 1699 * Send a datagram to a given address. We move the address into kernel 1700 * space and check the user space data area is readable before invoking 1701 * the protocol. 1702 */ 1703 1704 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1705 unsigned int, flags, struct sockaddr __user *, addr, 1706 int, addr_len) 1707 { 1708 struct socket *sock; 1709 struct sockaddr_storage address; 1710 int err; 1711 struct msghdr msg; 1712 struct iovec iov; 1713 int fput_needed; 1714 1715 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1716 if (unlikely(err)) 1717 return err; 1718 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1719 if (!sock) 1720 goto out; 1721 1722 msg.msg_name = NULL; 1723 msg.msg_control = NULL; 1724 msg.msg_controllen = 0; 1725 msg.msg_namelen = 0; 1726 if (addr) { 1727 err = move_addr_to_kernel(addr, addr_len, &address); 1728 if (err < 0) 1729 goto out_put; 1730 msg.msg_name = (struct sockaddr *)&address; 1731 msg.msg_namelen = addr_len; 1732 } 1733 if (sock->file->f_flags & O_NONBLOCK) 1734 flags |= MSG_DONTWAIT; 1735 msg.msg_flags = flags; 1736 err = sock_sendmsg(sock, &msg); 1737 1738 out_put: 1739 fput_light(sock->file, fput_needed); 1740 out: 1741 return err; 1742 } 1743 1744 /* 1745 * Send a datagram down a socket. 1746 */ 1747 1748 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1749 unsigned int, flags) 1750 { 1751 return sys_sendto(fd, buff, len, flags, NULL, 0); 1752 } 1753 1754 /* 1755 * Receive a frame from the socket and optionally record the address of the 1756 * sender. We verify the buffers are writable and if needed move the 1757 * sender address from kernel to user space. 1758 */ 1759 1760 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1761 unsigned int, flags, struct sockaddr __user *, addr, 1762 int __user *, addr_len) 1763 { 1764 struct socket *sock; 1765 struct iovec iov; 1766 struct msghdr msg; 1767 struct sockaddr_storage address; 1768 int err, err2; 1769 int fput_needed; 1770 1771 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1772 if (unlikely(err)) 1773 return err; 1774 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1775 if (!sock) 1776 goto out; 1777 1778 msg.msg_control = NULL; 1779 msg.msg_controllen = 0; 1780 /* Save some cycles and don't copy the address if not needed */ 1781 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1782 /* We assume all kernel code knows the size of sockaddr_storage */ 1783 msg.msg_namelen = 0; 1784 msg.msg_iocb = NULL; 1785 msg.msg_flags = 0; 1786 if (sock->file->f_flags & O_NONBLOCK) 1787 flags |= MSG_DONTWAIT; 1788 err = sock_recvmsg(sock, &msg, flags); 1789 1790 if (err >= 0 && addr != NULL) { 1791 err2 = move_addr_to_user(&address, 1792 msg.msg_namelen, addr, addr_len); 1793 if (err2 < 0) 1794 err = err2; 1795 } 1796 1797 fput_light(sock->file, fput_needed); 1798 out: 1799 return err; 1800 } 1801 1802 /* 1803 * Receive a datagram from a socket. 1804 */ 1805 1806 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1807 unsigned int, flags) 1808 { 1809 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1810 } 1811 1812 /* 1813 * Set a socket option. Because we don't know the option lengths we have 1814 * to pass the user mode parameter for the protocols to sort out. 1815 */ 1816 1817 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1818 char __user *, optval, int, optlen) 1819 { 1820 int err, fput_needed; 1821 struct socket *sock; 1822 1823 if (optlen < 0) 1824 return -EINVAL; 1825 1826 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1827 if (sock != NULL) { 1828 err = security_socket_setsockopt(sock, level, optname); 1829 if (err) 1830 goto out_put; 1831 1832 if (level == SOL_SOCKET) 1833 err = 1834 sock_setsockopt(sock, level, optname, optval, 1835 optlen); 1836 else 1837 err = 1838 sock->ops->setsockopt(sock, level, optname, optval, 1839 optlen); 1840 out_put: 1841 fput_light(sock->file, fput_needed); 1842 } 1843 return err; 1844 } 1845 1846 /* 1847 * Get a socket option. Because we don't know the option lengths we have 1848 * to pass a user mode parameter for the protocols to sort out. 1849 */ 1850 1851 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1852 char __user *, optval, int __user *, optlen) 1853 { 1854 int err, fput_needed; 1855 struct socket *sock; 1856 1857 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1858 if (sock != NULL) { 1859 err = security_socket_getsockopt(sock, level, optname); 1860 if (err) 1861 goto out_put; 1862 1863 if (level == SOL_SOCKET) 1864 err = 1865 sock_getsockopt(sock, level, optname, optval, 1866 optlen); 1867 else 1868 err = 1869 sock->ops->getsockopt(sock, level, optname, optval, 1870 optlen); 1871 out_put: 1872 fput_light(sock->file, fput_needed); 1873 } 1874 return err; 1875 } 1876 1877 /* 1878 * Shutdown a socket. 1879 */ 1880 1881 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1882 { 1883 int err, fput_needed; 1884 struct socket *sock; 1885 1886 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1887 if (sock != NULL) { 1888 err = security_socket_shutdown(sock, how); 1889 if (!err) 1890 err = sock->ops->shutdown(sock, how); 1891 fput_light(sock->file, fput_needed); 1892 } 1893 return err; 1894 } 1895 1896 /* A couple of helpful macros for getting the address of the 32/64 bit 1897 * fields which are the same type (int / unsigned) on our platforms. 1898 */ 1899 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1900 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1901 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1902 1903 struct used_address { 1904 struct sockaddr_storage name; 1905 unsigned int name_len; 1906 }; 1907 1908 static int copy_msghdr_from_user(struct msghdr *kmsg, 1909 struct user_msghdr __user *umsg, 1910 struct sockaddr __user **save_addr, 1911 struct iovec **iov) 1912 { 1913 struct user_msghdr msg; 1914 ssize_t err; 1915 1916 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1917 return -EFAULT; 1918 1919 kmsg->msg_control = msg.msg_control; 1920 kmsg->msg_controllen = msg.msg_controllen; 1921 kmsg->msg_flags = msg.msg_flags; 1922 1923 kmsg->msg_namelen = msg.msg_namelen; 1924 if (!msg.msg_name) 1925 kmsg->msg_namelen = 0; 1926 1927 if (kmsg->msg_namelen < 0) 1928 return -EINVAL; 1929 1930 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1931 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1932 1933 if (save_addr) 1934 *save_addr = msg.msg_name; 1935 1936 if (msg.msg_name && kmsg->msg_namelen) { 1937 if (!save_addr) { 1938 err = move_addr_to_kernel(msg.msg_name, kmsg->msg_namelen, 1939 kmsg->msg_name); 1940 if (err < 0) 1941 return err; 1942 } 1943 } else { 1944 kmsg->msg_name = NULL; 1945 kmsg->msg_namelen = 0; 1946 } 1947 1948 if (msg.msg_iovlen > UIO_MAXIOV) 1949 return -EMSGSIZE; 1950 1951 kmsg->msg_iocb = NULL; 1952 1953 return import_iovec(save_addr ? READ : WRITE, 1954 msg.msg_iov, msg.msg_iovlen, 1955 UIO_FASTIOV, iov, &kmsg->msg_iter); 1956 } 1957 1958 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1959 struct msghdr *msg_sys, unsigned int flags, 1960 struct used_address *used_address, 1961 unsigned int allowed_msghdr_flags) 1962 { 1963 struct compat_msghdr __user *msg_compat = 1964 (struct compat_msghdr __user *)msg; 1965 struct sockaddr_storage address; 1966 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1967 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1968 __aligned(sizeof(__kernel_size_t)); 1969 /* 20 is size of ipv6_pktinfo */ 1970 unsigned char *ctl_buf = ctl; 1971 int ctl_len; 1972 ssize_t err; 1973 1974 msg_sys->msg_name = &address; 1975 1976 if (MSG_CMSG_COMPAT & flags) 1977 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1978 else 1979 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1980 if (err < 0) 1981 return err; 1982 1983 err = -ENOBUFS; 1984 1985 if (msg_sys->msg_controllen > INT_MAX) 1986 goto out_freeiov; 1987 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1988 ctl_len = msg_sys->msg_controllen; 1989 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1990 err = 1991 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1992 sizeof(ctl)); 1993 if (err) 1994 goto out_freeiov; 1995 ctl_buf = msg_sys->msg_control; 1996 ctl_len = msg_sys->msg_controllen; 1997 } else if (ctl_len) { 1998 BUILD_BUG_ON(sizeof(struct cmsghdr) != 1999 CMSG_ALIGN(sizeof(struct cmsghdr))); 2000 if (ctl_len > sizeof(ctl)) { 2001 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2002 if (ctl_buf == NULL) 2003 goto out_freeiov; 2004 } 2005 err = -EFAULT; 2006 /* 2007 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2008 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2009 * checking falls down on this. 2010 */ 2011 if (copy_from_user(ctl_buf, 2012 (void __user __force *)msg_sys->msg_control, 2013 ctl_len)) 2014 goto out_freectl; 2015 msg_sys->msg_control = ctl_buf; 2016 } 2017 msg_sys->msg_flags = flags; 2018 2019 if (sock->file->f_flags & O_NONBLOCK) 2020 msg_sys->msg_flags |= MSG_DONTWAIT; 2021 /* 2022 * If this is sendmmsg() and current destination address is same as 2023 * previously succeeded address, omit asking LSM's decision. 2024 * used_address->name_len is initialized to UINT_MAX so that the first 2025 * destination address never matches. 2026 */ 2027 if (used_address && msg_sys->msg_name && 2028 used_address->name_len == msg_sys->msg_namelen && 2029 !memcmp(&used_address->name, msg_sys->msg_name, 2030 used_address->name_len)) { 2031 err = sock_sendmsg_nosec(sock, msg_sys); 2032 goto out_freectl; 2033 } 2034 err = sock_sendmsg(sock, msg_sys); 2035 /* 2036 * If this is sendmmsg() and sending to current destination address was 2037 * successful, remember it. 2038 */ 2039 if (used_address && err >= 0) { 2040 used_address->name_len = msg_sys->msg_namelen; 2041 if (msg_sys->msg_name) 2042 memcpy(&used_address->name, msg_sys->msg_name, 2043 used_address->name_len); 2044 } 2045 2046 out_freectl: 2047 if (ctl_buf != ctl) 2048 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2049 out_freeiov: 2050 kfree(iov); 2051 return err; 2052 } 2053 2054 /* 2055 * BSD sendmsg interface 2056 */ 2057 2058 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2059 { 2060 int fput_needed, err; 2061 struct msghdr msg_sys; 2062 struct socket *sock; 2063 2064 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2065 if (!sock) 2066 goto out; 2067 2068 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2069 2070 fput_light(sock->file, fput_needed); 2071 out: 2072 return err; 2073 } 2074 2075 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2076 { 2077 if (flags & MSG_CMSG_COMPAT) 2078 return -EINVAL; 2079 return __sys_sendmsg(fd, msg, flags); 2080 } 2081 2082 /* 2083 * Linux sendmmsg interface 2084 */ 2085 2086 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2087 unsigned int flags) 2088 { 2089 int fput_needed, err, datagrams; 2090 struct socket *sock; 2091 struct mmsghdr __user *entry; 2092 struct compat_mmsghdr __user *compat_entry; 2093 struct msghdr msg_sys; 2094 struct used_address used_address; 2095 unsigned int oflags = flags; 2096 2097 if (vlen > UIO_MAXIOV) 2098 vlen = UIO_MAXIOV; 2099 2100 datagrams = 0; 2101 2102 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2103 if (!sock) 2104 return err; 2105 2106 used_address.name_len = UINT_MAX; 2107 entry = mmsg; 2108 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2109 err = 0; 2110 flags |= MSG_BATCH; 2111 2112 while (datagrams < vlen) { 2113 if (datagrams == vlen - 1) 2114 flags = oflags; 2115 2116 if (MSG_CMSG_COMPAT & flags) { 2117 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2118 &msg_sys, flags, &used_address, MSG_EOR); 2119 if (err < 0) 2120 break; 2121 err = __put_user(err, &compat_entry->msg_len); 2122 ++compat_entry; 2123 } else { 2124 err = ___sys_sendmsg(sock, 2125 (struct user_msghdr __user *)entry, 2126 &msg_sys, flags, &used_address, MSG_EOR); 2127 if (err < 0) 2128 break; 2129 err = put_user(err, &entry->msg_len); 2130 ++entry; 2131 } 2132 2133 if (err) 2134 break; 2135 ++datagrams; 2136 if (msg_data_left(&msg_sys)) 2137 break; 2138 cond_resched(); 2139 } 2140 2141 fput_light(sock->file, fput_needed); 2142 2143 /* We only return an error if no datagrams were able to be sent */ 2144 if (datagrams != 0) 2145 return datagrams; 2146 2147 return err; 2148 } 2149 2150 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2151 unsigned int, vlen, unsigned int, flags) 2152 { 2153 if (flags & MSG_CMSG_COMPAT) 2154 return -EINVAL; 2155 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2156 } 2157 2158 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2159 struct msghdr *msg_sys, unsigned int flags, int nosec) 2160 { 2161 struct compat_msghdr __user *msg_compat = 2162 (struct compat_msghdr __user *)msg; 2163 struct iovec iovstack[UIO_FASTIOV]; 2164 struct iovec *iov = iovstack; 2165 unsigned long cmsg_ptr; 2166 int len; 2167 ssize_t err; 2168 2169 /* kernel mode address */ 2170 struct sockaddr_storage addr; 2171 2172 /* user mode address pointers */ 2173 struct sockaddr __user *uaddr; 2174 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2175 2176 msg_sys->msg_name = &addr; 2177 2178 if (MSG_CMSG_COMPAT & flags) 2179 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2180 else 2181 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2182 if (err < 0) 2183 return err; 2184 2185 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2186 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2187 2188 /* We assume all kernel code knows the size of sockaddr_storage */ 2189 msg_sys->msg_namelen = 0; 2190 2191 if (sock->file->f_flags & O_NONBLOCK) 2192 flags |= MSG_DONTWAIT; 2193 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2194 if (err < 0) 2195 goto out_freeiov; 2196 len = err; 2197 2198 if (uaddr != NULL) { 2199 err = move_addr_to_user(&addr, 2200 msg_sys->msg_namelen, uaddr, 2201 uaddr_len); 2202 if (err < 0) 2203 goto out_freeiov; 2204 } 2205 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2206 COMPAT_FLAGS(msg)); 2207 if (err) 2208 goto out_freeiov; 2209 if (MSG_CMSG_COMPAT & flags) 2210 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2211 &msg_compat->msg_controllen); 2212 else 2213 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2214 &msg->msg_controllen); 2215 if (err) 2216 goto out_freeiov; 2217 err = len; 2218 2219 out_freeiov: 2220 kfree(iov); 2221 return err; 2222 } 2223 2224 /* 2225 * BSD recvmsg interface 2226 */ 2227 2228 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2229 { 2230 int fput_needed, err; 2231 struct msghdr msg_sys; 2232 struct socket *sock; 2233 2234 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2235 if (!sock) 2236 goto out; 2237 2238 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2239 2240 fput_light(sock->file, fput_needed); 2241 out: 2242 return err; 2243 } 2244 2245 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2246 unsigned int, flags) 2247 { 2248 if (flags & MSG_CMSG_COMPAT) 2249 return -EINVAL; 2250 return __sys_recvmsg(fd, msg, flags); 2251 } 2252 2253 /* 2254 * Linux recvmmsg interface 2255 */ 2256 2257 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2258 unsigned int flags, struct timespec *timeout) 2259 { 2260 int fput_needed, err, datagrams; 2261 struct socket *sock; 2262 struct mmsghdr __user *entry; 2263 struct compat_mmsghdr __user *compat_entry; 2264 struct msghdr msg_sys; 2265 struct timespec64 end_time; 2266 struct timespec64 timeout64; 2267 2268 if (timeout && 2269 poll_select_set_timeout(&end_time, timeout->tv_sec, 2270 timeout->tv_nsec)) 2271 return -EINVAL; 2272 2273 datagrams = 0; 2274 2275 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2276 if (!sock) 2277 return err; 2278 2279 err = sock_error(sock->sk); 2280 if (err) { 2281 datagrams = err; 2282 goto out_put; 2283 } 2284 2285 entry = mmsg; 2286 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2287 2288 while (datagrams < vlen) { 2289 /* 2290 * No need to ask LSM for more than the first datagram. 2291 */ 2292 if (MSG_CMSG_COMPAT & flags) { 2293 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2294 &msg_sys, flags & ~MSG_WAITFORONE, 2295 datagrams); 2296 if (err < 0) 2297 break; 2298 err = __put_user(err, &compat_entry->msg_len); 2299 ++compat_entry; 2300 } else { 2301 err = ___sys_recvmsg(sock, 2302 (struct user_msghdr __user *)entry, 2303 &msg_sys, flags & ~MSG_WAITFORONE, 2304 datagrams); 2305 if (err < 0) 2306 break; 2307 err = put_user(err, &entry->msg_len); 2308 ++entry; 2309 } 2310 2311 if (err) 2312 break; 2313 ++datagrams; 2314 2315 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2316 if (flags & MSG_WAITFORONE) 2317 flags |= MSG_DONTWAIT; 2318 2319 if (timeout) { 2320 ktime_get_ts64(&timeout64); 2321 *timeout = timespec64_to_timespec( 2322 timespec64_sub(end_time, timeout64)); 2323 if (timeout->tv_sec < 0) { 2324 timeout->tv_sec = timeout->tv_nsec = 0; 2325 break; 2326 } 2327 2328 /* Timeout, return less than vlen datagrams */ 2329 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2330 break; 2331 } 2332 2333 /* Out of band data, return right away */ 2334 if (msg_sys.msg_flags & MSG_OOB) 2335 break; 2336 cond_resched(); 2337 } 2338 2339 if (err == 0) 2340 goto out_put; 2341 2342 if (datagrams == 0) { 2343 datagrams = err; 2344 goto out_put; 2345 } 2346 2347 /* 2348 * We may return less entries than requested (vlen) if the 2349 * sock is non block and there aren't enough datagrams... 2350 */ 2351 if (err != -EAGAIN) { 2352 /* 2353 * ... or if recvmsg returns an error after we 2354 * received some datagrams, where we record the 2355 * error to return on the next call or if the 2356 * app asks about it using getsockopt(SO_ERROR). 2357 */ 2358 sock->sk->sk_err = -err; 2359 } 2360 out_put: 2361 fput_light(sock->file, fput_needed); 2362 2363 return datagrams; 2364 } 2365 2366 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2367 unsigned int, vlen, unsigned int, flags, 2368 struct timespec __user *, timeout) 2369 { 2370 int datagrams; 2371 struct timespec timeout_sys; 2372 2373 if (flags & MSG_CMSG_COMPAT) 2374 return -EINVAL; 2375 2376 if (!timeout) 2377 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2378 2379 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2380 return -EFAULT; 2381 2382 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2383 2384 if (datagrams > 0 && 2385 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2386 datagrams = -EFAULT; 2387 2388 return datagrams; 2389 } 2390 2391 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2392 /* Argument list sizes for sys_socketcall */ 2393 #define AL(x) ((x) * sizeof(unsigned long)) 2394 static const unsigned char nargs[21] = { 2395 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2396 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2397 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2398 AL(4), AL(5), AL(4) 2399 }; 2400 2401 #undef AL 2402 2403 /* 2404 * System call vectors. 2405 * 2406 * Argument checking cleaned up. Saved 20% in size. 2407 * This function doesn't need to set the kernel lock because 2408 * it is set by the callees. 2409 */ 2410 2411 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2412 { 2413 unsigned long a[AUDITSC_ARGS]; 2414 unsigned long a0, a1; 2415 int err; 2416 unsigned int len; 2417 2418 if (call < 1 || call > SYS_SENDMMSG) 2419 return -EINVAL; 2420 2421 len = nargs[call]; 2422 if (len > sizeof(a)) 2423 return -EINVAL; 2424 2425 /* copy_from_user should be SMP safe. */ 2426 if (copy_from_user(a, args, len)) 2427 return -EFAULT; 2428 2429 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2430 if (err) 2431 return err; 2432 2433 a0 = a[0]; 2434 a1 = a[1]; 2435 2436 switch (call) { 2437 case SYS_SOCKET: 2438 err = sys_socket(a0, a1, a[2]); 2439 break; 2440 case SYS_BIND: 2441 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2442 break; 2443 case SYS_CONNECT: 2444 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2445 break; 2446 case SYS_LISTEN: 2447 err = sys_listen(a0, a1); 2448 break; 2449 case SYS_ACCEPT: 2450 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2451 (int __user *)a[2], 0); 2452 break; 2453 case SYS_GETSOCKNAME: 2454 err = 2455 sys_getsockname(a0, (struct sockaddr __user *)a1, 2456 (int __user *)a[2]); 2457 break; 2458 case SYS_GETPEERNAME: 2459 err = 2460 sys_getpeername(a0, (struct sockaddr __user *)a1, 2461 (int __user *)a[2]); 2462 break; 2463 case SYS_SOCKETPAIR: 2464 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2465 break; 2466 case SYS_SEND: 2467 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2468 break; 2469 case SYS_SENDTO: 2470 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2471 (struct sockaddr __user *)a[4], a[5]); 2472 break; 2473 case SYS_RECV: 2474 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2475 break; 2476 case SYS_RECVFROM: 2477 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2478 (struct sockaddr __user *)a[4], 2479 (int __user *)a[5]); 2480 break; 2481 case SYS_SHUTDOWN: 2482 err = sys_shutdown(a0, a1); 2483 break; 2484 case SYS_SETSOCKOPT: 2485 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2486 break; 2487 case SYS_GETSOCKOPT: 2488 err = 2489 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2490 (int __user *)a[4]); 2491 break; 2492 case SYS_SENDMSG: 2493 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2494 break; 2495 case SYS_SENDMMSG: 2496 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2497 break; 2498 case SYS_RECVMSG: 2499 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2500 break; 2501 case SYS_RECVMMSG: 2502 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2503 (struct timespec __user *)a[4]); 2504 break; 2505 case SYS_ACCEPT4: 2506 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2507 (int __user *)a[2], a[3]); 2508 break; 2509 default: 2510 err = -EINVAL; 2511 break; 2512 } 2513 return err; 2514 } 2515 2516 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2517 2518 /** 2519 * sock_register - add a socket protocol handler 2520 * @ops: description of protocol 2521 * 2522 * This function is called by a protocol handler that wants to 2523 * advertise its address family, and have it linked into the 2524 * socket interface. The value ops->family corresponds to the 2525 * socket system call protocol family. 2526 */ 2527 int sock_register(const struct net_proto_family *ops) 2528 { 2529 int err; 2530 2531 if (ops->family >= NPROTO) { 2532 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2533 return -ENOBUFS; 2534 } 2535 2536 spin_lock(&net_family_lock); 2537 if (rcu_dereference_protected(net_families[ops->family], 2538 lockdep_is_held(&net_family_lock))) 2539 err = -EEXIST; 2540 else { 2541 rcu_assign_pointer(net_families[ops->family], ops); 2542 err = 0; 2543 } 2544 spin_unlock(&net_family_lock); 2545 2546 pr_info("NET: Registered protocol family %d\n", ops->family); 2547 return err; 2548 } 2549 EXPORT_SYMBOL(sock_register); 2550 2551 /** 2552 * sock_unregister - remove a protocol handler 2553 * @family: protocol family to remove 2554 * 2555 * This function is called by a protocol handler that wants to 2556 * remove its address family, and have it unlinked from the 2557 * new socket creation. 2558 * 2559 * If protocol handler is a module, then it can use module reference 2560 * counts to protect against new references. If protocol handler is not 2561 * a module then it needs to provide its own protection in 2562 * the ops->create routine. 2563 */ 2564 void sock_unregister(int family) 2565 { 2566 BUG_ON(family < 0 || family >= NPROTO); 2567 2568 spin_lock(&net_family_lock); 2569 RCU_INIT_POINTER(net_families[family], NULL); 2570 spin_unlock(&net_family_lock); 2571 2572 synchronize_rcu(); 2573 2574 pr_info("NET: Unregistered protocol family %d\n", family); 2575 } 2576 EXPORT_SYMBOL(sock_unregister); 2577 2578 static int __init sock_init(void) 2579 { 2580 int err; 2581 /* 2582 * Initialize the network sysctl infrastructure. 2583 */ 2584 err = net_sysctl_init(); 2585 if (err) 2586 goto out; 2587 2588 /* 2589 * Initialize skbuff SLAB cache 2590 */ 2591 skb_init(); 2592 2593 /* 2594 * Initialize the protocols module. 2595 */ 2596 2597 init_inodecache(); 2598 2599 err = register_filesystem(&sock_fs_type); 2600 if (err) 2601 goto out_fs; 2602 sock_mnt = kern_mount(&sock_fs_type); 2603 if (IS_ERR(sock_mnt)) { 2604 err = PTR_ERR(sock_mnt); 2605 goto out_mount; 2606 } 2607 2608 /* The real protocol initialization is performed in later initcalls. 2609 */ 2610 2611 #ifdef CONFIG_NETFILTER 2612 err = netfilter_init(); 2613 if (err) 2614 goto out; 2615 #endif 2616 2617 ptp_classifier_init(); 2618 2619 out: 2620 return err; 2621 2622 out_mount: 2623 unregister_filesystem(&sock_fs_type); 2624 out_fs: 2625 goto out; 2626 } 2627 2628 core_initcall(sock_init); /* early initcall */ 2629 2630 #ifdef CONFIG_PROC_FS 2631 void socket_seq_show(struct seq_file *seq) 2632 { 2633 int cpu; 2634 int counter = 0; 2635 2636 for_each_possible_cpu(cpu) 2637 counter += per_cpu(sockets_in_use, cpu); 2638 2639 /* It can be negative, by the way. 8) */ 2640 if (counter < 0) 2641 counter = 0; 2642 2643 seq_printf(seq, "sockets: used %d\n", counter); 2644 } 2645 #endif /* CONFIG_PROC_FS */ 2646 2647 #ifdef CONFIG_COMPAT 2648 static int do_siocgstamp(struct net *net, struct socket *sock, 2649 unsigned int cmd, void __user *up) 2650 { 2651 mm_segment_t old_fs = get_fs(); 2652 struct timeval ktv; 2653 int err; 2654 2655 set_fs(KERNEL_DS); 2656 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2657 set_fs(old_fs); 2658 if (!err) 2659 err = compat_put_timeval(&ktv, up); 2660 2661 return err; 2662 } 2663 2664 static int do_siocgstampns(struct net *net, struct socket *sock, 2665 unsigned int cmd, void __user *up) 2666 { 2667 mm_segment_t old_fs = get_fs(); 2668 struct timespec kts; 2669 int err; 2670 2671 set_fs(KERNEL_DS); 2672 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2673 set_fs(old_fs); 2674 if (!err) 2675 err = compat_put_timespec(&kts, up); 2676 2677 return err; 2678 } 2679 2680 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2681 { 2682 struct ifreq __user *uifr; 2683 int err; 2684 2685 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2686 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2687 return -EFAULT; 2688 2689 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2690 if (err) 2691 return err; 2692 2693 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2694 return -EFAULT; 2695 2696 return 0; 2697 } 2698 2699 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2700 { 2701 struct compat_ifconf ifc32; 2702 struct ifconf ifc; 2703 struct ifconf __user *uifc; 2704 struct compat_ifreq __user *ifr32; 2705 struct ifreq __user *ifr; 2706 unsigned int i, j; 2707 int err; 2708 2709 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2710 return -EFAULT; 2711 2712 memset(&ifc, 0, sizeof(ifc)); 2713 if (ifc32.ifcbuf == 0) { 2714 ifc32.ifc_len = 0; 2715 ifc.ifc_len = 0; 2716 ifc.ifc_req = NULL; 2717 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2718 } else { 2719 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2720 sizeof(struct ifreq); 2721 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2722 ifc.ifc_len = len; 2723 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2724 ifr32 = compat_ptr(ifc32.ifcbuf); 2725 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2726 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2727 return -EFAULT; 2728 ifr++; 2729 ifr32++; 2730 } 2731 } 2732 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2733 return -EFAULT; 2734 2735 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2736 if (err) 2737 return err; 2738 2739 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2740 return -EFAULT; 2741 2742 ifr = ifc.ifc_req; 2743 ifr32 = compat_ptr(ifc32.ifcbuf); 2744 for (i = 0, j = 0; 2745 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2746 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2747 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2748 return -EFAULT; 2749 ifr32++; 2750 ifr++; 2751 } 2752 2753 if (ifc32.ifcbuf == 0) { 2754 /* Translate from 64-bit structure multiple to 2755 * a 32-bit one. 2756 */ 2757 i = ifc.ifc_len; 2758 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2759 ifc32.ifc_len = i; 2760 } else { 2761 ifc32.ifc_len = i; 2762 } 2763 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2764 return -EFAULT; 2765 2766 return 0; 2767 } 2768 2769 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2770 { 2771 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2772 bool convert_in = false, convert_out = false; 2773 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2774 struct ethtool_rxnfc __user *rxnfc; 2775 struct ifreq __user *ifr; 2776 u32 rule_cnt = 0, actual_rule_cnt; 2777 u32 ethcmd; 2778 u32 data; 2779 int ret; 2780 2781 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2782 return -EFAULT; 2783 2784 compat_rxnfc = compat_ptr(data); 2785 2786 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2787 return -EFAULT; 2788 2789 /* Most ethtool structures are defined without padding. 2790 * Unfortunately struct ethtool_rxnfc is an exception. 2791 */ 2792 switch (ethcmd) { 2793 default: 2794 break; 2795 case ETHTOOL_GRXCLSRLALL: 2796 /* Buffer size is variable */ 2797 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2798 return -EFAULT; 2799 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2800 return -ENOMEM; 2801 buf_size += rule_cnt * sizeof(u32); 2802 /* fall through */ 2803 case ETHTOOL_GRXRINGS: 2804 case ETHTOOL_GRXCLSRLCNT: 2805 case ETHTOOL_GRXCLSRULE: 2806 case ETHTOOL_SRXCLSRLINS: 2807 convert_out = true; 2808 /* fall through */ 2809 case ETHTOOL_SRXCLSRLDEL: 2810 buf_size += sizeof(struct ethtool_rxnfc); 2811 convert_in = true; 2812 break; 2813 } 2814 2815 ifr = compat_alloc_user_space(buf_size); 2816 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2817 2818 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2819 return -EFAULT; 2820 2821 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2822 &ifr->ifr_ifru.ifru_data)) 2823 return -EFAULT; 2824 2825 if (convert_in) { 2826 /* We expect there to be holes between fs.m_ext and 2827 * fs.ring_cookie and at the end of fs, but nowhere else. 2828 */ 2829 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2830 sizeof(compat_rxnfc->fs.m_ext) != 2831 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2832 sizeof(rxnfc->fs.m_ext)); 2833 BUILD_BUG_ON( 2834 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2835 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2836 offsetof(struct ethtool_rxnfc, fs.location) - 2837 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2838 2839 if (copy_in_user(rxnfc, compat_rxnfc, 2840 (void __user *)(&rxnfc->fs.m_ext + 1) - 2841 (void __user *)rxnfc) || 2842 copy_in_user(&rxnfc->fs.ring_cookie, 2843 &compat_rxnfc->fs.ring_cookie, 2844 (void __user *)(&rxnfc->fs.location + 1) - 2845 (void __user *)&rxnfc->fs.ring_cookie) || 2846 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2847 sizeof(rxnfc->rule_cnt))) 2848 return -EFAULT; 2849 } 2850 2851 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2852 if (ret) 2853 return ret; 2854 2855 if (convert_out) { 2856 if (copy_in_user(compat_rxnfc, rxnfc, 2857 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2858 (const void __user *)rxnfc) || 2859 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2860 &rxnfc->fs.ring_cookie, 2861 (const void __user *)(&rxnfc->fs.location + 1) - 2862 (const void __user *)&rxnfc->fs.ring_cookie) || 2863 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2864 sizeof(rxnfc->rule_cnt))) 2865 return -EFAULT; 2866 2867 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2868 /* As an optimisation, we only copy the actual 2869 * number of rules that the underlying 2870 * function returned. Since Mallory might 2871 * change the rule count in user memory, we 2872 * check that it is less than the rule count 2873 * originally given (as the user buffer size), 2874 * which has been range-checked. 2875 */ 2876 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2877 return -EFAULT; 2878 if (actual_rule_cnt < rule_cnt) 2879 rule_cnt = actual_rule_cnt; 2880 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2881 &rxnfc->rule_locs[0], 2882 rule_cnt * sizeof(u32))) 2883 return -EFAULT; 2884 } 2885 } 2886 2887 return 0; 2888 } 2889 2890 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2891 { 2892 void __user *uptr; 2893 compat_uptr_t uptr32; 2894 struct ifreq __user *uifr; 2895 2896 uifr = compat_alloc_user_space(sizeof(*uifr)); 2897 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2898 return -EFAULT; 2899 2900 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2901 return -EFAULT; 2902 2903 uptr = compat_ptr(uptr32); 2904 2905 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2906 return -EFAULT; 2907 2908 return dev_ioctl(net, SIOCWANDEV, uifr); 2909 } 2910 2911 static int bond_ioctl(struct net *net, unsigned int cmd, 2912 struct compat_ifreq __user *ifr32) 2913 { 2914 struct ifreq kifr; 2915 mm_segment_t old_fs; 2916 int err; 2917 2918 switch (cmd) { 2919 case SIOCBONDENSLAVE: 2920 case SIOCBONDRELEASE: 2921 case SIOCBONDSETHWADDR: 2922 case SIOCBONDCHANGEACTIVE: 2923 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2924 return -EFAULT; 2925 2926 old_fs = get_fs(); 2927 set_fs(KERNEL_DS); 2928 err = dev_ioctl(net, cmd, 2929 (struct ifreq __user __force *) &kifr); 2930 set_fs(old_fs); 2931 2932 return err; 2933 default: 2934 return -ENOIOCTLCMD; 2935 } 2936 } 2937 2938 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2939 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2940 struct compat_ifreq __user *u_ifreq32) 2941 { 2942 struct ifreq __user *u_ifreq64; 2943 char tmp_buf[IFNAMSIZ]; 2944 void __user *data64; 2945 u32 data32; 2946 2947 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2948 IFNAMSIZ)) 2949 return -EFAULT; 2950 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2951 return -EFAULT; 2952 data64 = compat_ptr(data32); 2953 2954 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2955 2956 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2957 IFNAMSIZ)) 2958 return -EFAULT; 2959 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2960 return -EFAULT; 2961 2962 return dev_ioctl(net, cmd, u_ifreq64); 2963 } 2964 2965 static int dev_ifsioc(struct net *net, struct socket *sock, 2966 unsigned int cmd, struct compat_ifreq __user *uifr32) 2967 { 2968 struct ifreq __user *uifr; 2969 int err; 2970 2971 uifr = compat_alloc_user_space(sizeof(*uifr)); 2972 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2973 return -EFAULT; 2974 2975 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2976 2977 if (!err) { 2978 switch (cmd) { 2979 case SIOCGIFFLAGS: 2980 case SIOCGIFMETRIC: 2981 case SIOCGIFMTU: 2982 case SIOCGIFMEM: 2983 case SIOCGIFHWADDR: 2984 case SIOCGIFINDEX: 2985 case SIOCGIFADDR: 2986 case SIOCGIFBRDADDR: 2987 case SIOCGIFDSTADDR: 2988 case SIOCGIFNETMASK: 2989 case SIOCGIFPFLAGS: 2990 case SIOCGIFTXQLEN: 2991 case SIOCGMIIPHY: 2992 case SIOCGMIIREG: 2993 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2994 err = -EFAULT; 2995 break; 2996 } 2997 } 2998 return err; 2999 } 3000 3001 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3002 struct compat_ifreq __user *uifr32) 3003 { 3004 struct ifreq ifr; 3005 struct compat_ifmap __user *uifmap32; 3006 mm_segment_t old_fs; 3007 int err; 3008 3009 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3010 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3011 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3012 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3013 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3014 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3015 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3016 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3017 if (err) 3018 return -EFAULT; 3019 3020 old_fs = get_fs(); 3021 set_fs(KERNEL_DS); 3022 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3023 set_fs(old_fs); 3024 3025 if (cmd == SIOCGIFMAP && !err) { 3026 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3027 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3028 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3029 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3030 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3031 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3032 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3033 if (err) 3034 err = -EFAULT; 3035 } 3036 return err; 3037 } 3038 3039 struct rtentry32 { 3040 u32 rt_pad1; 3041 struct sockaddr rt_dst; /* target address */ 3042 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3043 struct sockaddr rt_genmask; /* target network mask (IP) */ 3044 unsigned short rt_flags; 3045 short rt_pad2; 3046 u32 rt_pad3; 3047 unsigned char rt_tos; 3048 unsigned char rt_class; 3049 short rt_pad4; 3050 short rt_metric; /* +1 for binary compatibility! */ 3051 /* char * */ u32 rt_dev; /* forcing the device at add */ 3052 u32 rt_mtu; /* per route MTU/Window */ 3053 u32 rt_window; /* Window clamping */ 3054 unsigned short rt_irtt; /* Initial RTT */ 3055 }; 3056 3057 struct in6_rtmsg32 { 3058 struct in6_addr rtmsg_dst; 3059 struct in6_addr rtmsg_src; 3060 struct in6_addr rtmsg_gateway; 3061 u32 rtmsg_type; 3062 u16 rtmsg_dst_len; 3063 u16 rtmsg_src_len; 3064 u32 rtmsg_metric; 3065 u32 rtmsg_info; 3066 u32 rtmsg_flags; 3067 s32 rtmsg_ifindex; 3068 }; 3069 3070 static int routing_ioctl(struct net *net, struct socket *sock, 3071 unsigned int cmd, void __user *argp) 3072 { 3073 int ret; 3074 void *r = NULL; 3075 struct in6_rtmsg r6; 3076 struct rtentry r4; 3077 char devname[16]; 3078 u32 rtdev; 3079 mm_segment_t old_fs = get_fs(); 3080 3081 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3082 struct in6_rtmsg32 __user *ur6 = argp; 3083 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3084 3 * sizeof(struct in6_addr)); 3085 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3086 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3087 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3088 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3089 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3090 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3091 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3092 3093 r = (void *) &r6; 3094 } else { /* ipv4 */ 3095 struct rtentry32 __user *ur4 = argp; 3096 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3097 3 * sizeof(struct sockaddr)); 3098 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3099 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3100 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3101 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3102 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3103 ret |= get_user(rtdev, &(ur4->rt_dev)); 3104 if (rtdev) { 3105 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3106 r4.rt_dev = (char __user __force *)devname; 3107 devname[15] = 0; 3108 } else 3109 r4.rt_dev = NULL; 3110 3111 r = (void *) &r4; 3112 } 3113 3114 if (ret) { 3115 ret = -EFAULT; 3116 goto out; 3117 } 3118 3119 set_fs(KERNEL_DS); 3120 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3121 set_fs(old_fs); 3122 3123 out: 3124 return ret; 3125 } 3126 3127 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3128 * for some operations; this forces use of the newer bridge-utils that 3129 * use compatible ioctls 3130 */ 3131 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3132 { 3133 compat_ulong_t tmp; 3134 3135 if (get_user(tmp, argp)) 3136 return -EFAULT; 3137 if (tmp == BRCTL_GET_VERSION) 3138 return BRCTL_VERSION + 1; 3139 return -EINVAL; 3140 } 3141 3142 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3143 unsigned int cmd, unsigned long arg) 3144 { 3145 void __user *argp = compat_ptr(arg); 3146 struct sock *sk = sock->sk; 3147 struct net *net = sock_net(sk); 3148 3149 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3150 return compat_ifr_data_ioctl(net, cmd, argp); 3151 3152 switch (cmd) { 3153 case SIOCSIFBR: 3154 case SIOCGIFBR: 3155 return old_bridge_ioctl(argp); 3156 case SIOCGIFNAME: 3157 return dev_ifname32(net, argp); 3158 case SIOCGIFCONF: 3159 return dev_ifconf(net, argp); 3160 case SIOCETHTOOL: 3161 return ethtool_ioctl(net, argp); 3162 case SIOCWANDEV: 3163 return compat_siocwandev(net, argp); 3164 case SIOCGIFMAP: 3165 case SIOCSIFMAP: 3166 return compat_sioc_ifmap(net, cmd, argp); 3167 case SIOCBONDENSLAVE: 3168 case SIOCBONDRELEASE: 3169 case SIOCBONDSETHWADDR: 3170 case SIOCBONDCHANGEACTIVE: 3171 return bond_ioctl(net, cmd, argp); 3172 case SIOCADDRT: 3173 case SIOCDELRT: 3174 return routing_ioctl(net, sock, cmd, argp); 3175 case SIOCGSTAMP: 3176 return do_siocgstamp(net, sock, cmd, argp); 3177 case SIOCGSTAMPNS: 3178 return do_siocgstampns(net, sock, cmd, argp); 3179 case SIOCBONDSLAVEINFOQUERY: 3180 case SIOCBONDINFOQUERY: 3181 case SIOCSHWTSTAMP: 3182 case SIOCGHWTSTAMP: 3183 return compat_ifr_data_ioctl(net, cmd, argp); 3184 3185 case FIOSETOWN: 3186 case SIOCSPGRP: 3187 case FIOGETOWN: 3188 case SIOCGPGRP: 3189 case SIOCBRADDBR: 3190 case SIOCBRDELBR: 3191 case SIOCGIFVLAN: 3192 case SIOCSIFVLAN: 3193 case SIOCADDDLCI: 3194 case SIOCDELDLCI: 3195 case SIOCGSKNS: 3196 return sock_ioctl(file, cmd, arg); 3197 3198 case SIOCGIFFLAGS: 3199 case SIOCSIFFLAGS: 3200 case SIOCGIFMETRIC: 3201 case SIOCSIFMETRIC: 3202 case SIOCGIFMTU: 3203 case SIOCSIFMTU: 3204 case SIOCGIFMEM: 3205 case SIOCSIFMEM: 3206 case SIOCGIFHWADDR: 3207 case SIOCSIFHWADDR: 3208 case SIOCADDMULTI: 3209 case SIOCDELMULTI: 3210 case SIOCGIFINDEX: 3211 case SIOCGIFADDR: 3212 case SIOCSIFADDR: 3213 case SIOCSIFHWBROADCAST: 3214 case SIOCDIFADDR: 3215 case SIOCGIFBRDADDR: 3216 case SIOCSIFBRDADDR: 3217 case SIOCGIFDSTADDR: 3218 case SIOCSIFDSTADDR: 3219 case SIOCGIFNETMASK: 3220 case SIOCSIFNETMASK: 3221 case SIOCSIFPFLAGS: 3222 case SIOCGIFPFLAGS: 3223 case SIOCGIFTXQLEN: 3224 case SIOCSIFTXQLEN: 3225 case SIOCBRADDIF: 3226 case SIOCBRDELIF: 3227 case SIOCSIFNAME: 3228 case SIOCGMIIPHY: 3229 case SIOCGMIIREG: 3230 case SIOCSMIIREG: 3231 return dev_ifsioc(net, sock, cmd, argp); 3232 3233 case SIOCSARP: 3234 case SIOCGARP: 3235 case SIOCDARP: 3236 case SIOCATMARK: 3237 return sock_do_ioctl(net, sock, cmd, arg); 3238 } 3239 3240 return -ENOIOCTLCMD; 3241 } 3242 3243 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3244 unsigned long arg) 3245 { 3246 struct socket *sock = file->private_data; 3247 int ret = -ENOIOCTLCMD; 3248 struct sock *sk; 3249 struct net *net; 3250 3251 sk = sock->sk; 3252 net = sock_net(sk); 3253 3254 if (sock->ops->compat_ioctl) 3255 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3256 3257 if (ret == -ENOIOCTLCMD && 3258 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3259 ret = compat_wext_handle_ioctl(net, cmd, arg); 3260 3261 if (ret == -ENOIOCTLCMD) 3262 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3263 3264 return ret; 3265 } 3266 #endif 3267 3268 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3269 { 3270 return sock->ops->bind(sock, addr, addrlen); 3271 } 3272 EXPORT_SYMBOL(kernel_bind); 3273 3274 int kernel_listen(struct socket *sock, int backlog) 3275 { 3276 return sock->ops->listen(sock, backlog); 3277 } 3278 EXPORT_SYMBOL(kernel_listen); 3279 3280 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3281 { 3282 struct sock *sk = sock->sk; 3283 int err; 3284 3285 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3286 newsock); 3287 if (err < 0) 3288 goto done; 3289 3290 err = sock->ops->accept(sock, *newsock, flags, true); 3291 if (err < 0) { 3292 sock_release(*newsock); 3293 *newsock = NULL; 3294 goto done; 3295 } 3296 3297 (*newsock)->ops = sock->ops; 3298 __module_get((*newsock)->ops->owner); 3299 3300 done: 3301 return err; 3302 } 3303 EXPORT_SYMBOL(kernel_accept); 3304 3305 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3306 int flags) 3307 { 3308 return sock->ops->connect(sock, addr, addrlen, flags); 3309 } 3310 EXPORT_SYMBOL(kernel_connect); 3311 3312 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3313 int *addrlen) 3314 { 3315 return sock->ops->getname(sock, addr, addrlen, 0); 3316 } 3317 EXPORT_SYMBOL(kernel_getsockname); 3318 3319 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3320 int *addrlen) 3321 { 3322 return sock->ops->getname(sock, addr, addrlen, 1); 3323 } 3324 EXPORT_SYMBOL(kernel_getpeername); 3325 3326 int kernel_getsockopt(struct socket *sock, int level, int optname, 3327 char *optval, int *optlen) 3328 { 3329 mm_segment_t oldfs = get_fs(); 3330 char __user *uoptval; 3331 int __user *uoptlen; 3332 int err; 3333 3334 uoptval = (char __user __force *) optval; 3335 uoptlen = (int __user __force *) optlen; 3336 3337 set_fs(KERNEL_DS); 3338 if (level == SOL_SOCKET) 3339 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3340 else 3341 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3342 uoptlen); 3343 set_fs(oldfs); 3344 return err; 3345 } 3346 EXPORT_SYMBOL(kernel_getsockopt); 3347 3348 int kernel_setsockopt(struct socket *sock, int level, int optname, 3349 char *optval, unsigned int optlen) 3350 { 3351 mm_segment_t oldfs = get_fs(); 3352 char __user *uoptval; 3353 int err; 3354 3355 uoptval = (char __user __force *) optval; 3356 3357 set_fs(KERNEL_DS); 3358 if (level == SOL_SOCKET) 3359 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3360 else 3361 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3362 optlen); 3363 set_fs(oldfs); 3364 return err; 3365 } 3366 EXPORT_SYMBOL(kernel_setsockopt); 3367 3368 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3369 size_t size, int flags) 3370 { 3371 if (sock->ops->sendpage) 3372 return sock->ops->sendpage(sock, page, offset, size, flags); 3373 3374 return sock_no_sendpage(sock, page, offset, size, flags); 3375 } 3376 EXPORT_SYMBOL(kernel_sendpage); 3377 3378 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3379 { 3380 mm_segment_t oldfs = get_fs(); 3381 int err; 3382 3383 set_fs(KERNEL_DS); 3384 err = sock->ops->ioctl(sock, cmd, arg); 3385 set_fs(oldfs); 3386 3387 return err; 3388 } 3389 EXPORT_SYMBOL(kernel_sock_ioctl); 3390 3391 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3392 { 3393 return sock->ops->shutdown(sock, how); 3394 } 3395 EXPORT_SYMBOL(kernel_sock_shutdown); 3396 3397 /* This routine returns the IP overhead imposed by a socket i.e. 3398 * the length of the underlying IP header, depending on whether 3399 * this is an IPv4 or IPv6 socket and the length from IP options turned 3400 * on at the socket. Assumes that the caller has a lock on the socket. 3401 */ 3402 u32 kernel_sock_ip_overhead(struct sock *sk) 3403 { 3404 struct inet_sock *inet; 3405 struct ip_options_rcu *opt; 3406 u32 overhead = 0; 3407 bool owned_by_user; 3408 #if IS_ENABLED(CONFIG_IPV6) 3409 struct ipv6_pinfo *np; 3410 struct ipv6_txoptions *optv6 = NULL; 3411 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3412 3413 if (!sk) 3414 return overhead; 3415 3416 owned_by_user = sock_owned_by_user(sk); 3417 switch (sk->sk_family) { 3418 case AF_INET: 3419 inet = inet_sk(sk); 3420 overhead += sizeof(struct iphdr); 3421 opt = rcu_dereference_protected(inet->inet_opt, 3422 owned_by_user); 3423 if (opt) 3424 overhead += opt->opt.optlen; 3425 return overhead; 3426 #if IS_ENABLED(CONFIG_IPV6) 3427 case AF_INET6: 3428 np = inet6_sk(sk); 3429 overhead += sizeof(struct ipv6hdr); 3430 if (np) 3431 optv6 = rcu_dereference_protected(np->opt, 3432 owned_by_user); 3433 if (optv6) 3434 overhead += (optv6->opt_flen + optv6->opt_nflen); 3435 return overhead; 3436 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3437 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3438 return overhead; 3439 } 3440 } 3441 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3442