1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/config.h> 62 #include <linux/mm.h> 63 #include <linux/smp_lock.h> 64 #include <linux/socket.h> 65 #include <linux/file.h> 66 #include <linux/net.h> 67 #include <linux/interrupt.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/init.h> 74 #include <linux/poll.h> 75 #include <linux/cache.h> 76 #include <linux/module.h> 77 #include <linux/highmem.h> 78 #include <linux/divert.h> 79 #include <linux/mount.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/compat.h> 83 #include <linux/kmod.h> 84 #include <linux/audit.h> 85 86 #ifdef CONFIG_NET_RADIO 87 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 88 #endif /* CONFIG_NET_RADIO */ 89 90 #include <asm/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 95 #include <net/sock.h> 96 #include <linux/netfilter.h> 97 98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 100 size_t size, loff_t pos); 101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 102 size_t size, loff_t pos); 103 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 104 105 static int sock_close(struct inode *inode, struct file *file); 106 static unsigned int sock_poll(struct file *file, 107 struct poll_table_struct *wait); 108 static long sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 static int sock_fasync(int fd, struct file *filp, int on); 111 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 112 unsigned long count, loff_t *ppos); 113 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 114 unsigned long count, loff_t *ppos); 115 static ssize_t sock_sendpage(struct file *file, struct page *page, 116 int offset, size_t size, loff_t *ppos, int more); 117 118 119 /* 120 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 121 * in the operation structures but are done directly via the socketcall() multiplexor. 122 */ 123 124 static struct file_operations socket_file_ops = { 125 .owner = THIS_MODULE, 126 .llseek = no_llseek, 127 .aio_read = sock_aio_read, 128 .aio_write = sock_aio_write, 129 .poll = sock_poll, 130 .unlocked_ioctl = sock_ioctl, 131 .mmap = sock_mmap, 132 .open = sock_no_open, /* special open code to disallow open via /proc */ 133 .release = sock_close, 134 .fasync = sock_fasync, 135 .readv = sock_readv, 136 .writev = sock_writev, 137 .sendpage = sock_sendpage 138 }; 139 140 /* 141 * The protocol list. Each protocol is registered in here. 142 */ 143 144 static struct net_proto_family *net_families[NPROTO]; 145 146 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 147 static atomic_t net_family_lockct = ATOMIC_INIT(0); 148 static DEFINE_SPINLOCK(net_family_lock); 149 150 /* The strategy is: modifications net_family vector are short, do not 151 sleep and veeery rare, but read access should be free of any exclusive 152 locks. 153 */ 154 155 static void net_family_write_lock(void) 156 { 157 spin_lock(&net_family_lock); 158 while (atomic_read(&net_family_lockct) != 0) { 159 spin_unlock(&net_family_lock); 160 161 yield(); 162 163 spin_lock(&net_family_lock); 164 } 165 } 166 167 static __inline__ void net_family_write_unlock(void) 168 { 169 spin_unlock(&net_family_lock); 170 } 171 172 static __inline__ void net_family_read_lock(void) 173 { 174 atomic_inc(&net_family_lockct); 175 spin_unlock_wait(&net_family_lock); 176 } 177 178 static __inline__ void net_family_read_unlock(void) 179 { 180 atomic_dec(&net_family_lockct); 181 } 182 183 #else 184 #define net_family_write_lock() do { } while(0) 185 #define net_family_write_unlock() do { } while(0) 186 #define net_family_read_lock() do { } while(0) 187 #define net_family_read_unlock() do { } while(0) 188 #endif 189 190 191 /* 192 * Statistics counters of the socket lists 193 */ 194 195 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 196 197 /* 198 * Support routines. Move socket addresses back and forth across the kernel/user 199 * divide and look after the messy bits. 200 */ 201 202 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 203 16 for IP, 16 for IPX, 204 24 for IPv6, 205 about 80 for AX.25 206 must be at least one bigger than 207 the AF_UNIX size (see net/unix/af_unix.c 208 :unix_mkname()). 209 */ 210 211 /** 212 * move_addr_to_kernel - copy a socket address into kernel space 213 * @uaddr: Address in user space 214 * @kaddr: Address in kernel space 215 * @ulen: Length in user space 216 * 217 * The address is copied into kernel space. If the provided address is 218 * too long an error code of -EINVAL is returned. If the copy gives 219 * invalid addresses -EFAULT is returned. On a success 0 is returned. 220 */ 221 222 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 223 { 224 if(ulen<0||ulen>MAX_SOCK_ADDR) 225 return -EINVAL; 226 if(ulen==0) 227 return 0; 228 if(copy_from_user(kaddr,uaddr,ulen)) 229 return -EFAULT; 230 return audit_sockaddr(ulen, kaddr); 231 } 232 233 /** 234 * move_addr_to_user - copy an address to user space 235 * @kaddr: kernel space address 236 * @klen: length of address in kernel 237 * @uaddr: user space address 238 * @ulen: pointer to user length field 239 * 240 * The value pointed to by ulen on entry is the buffer length available. 241 * This is overwritten with the buffer space used. -EINVAL is returned 242 * if an overlong buffer is specified or a negative buffer size. -EFAULT 243 * is returned if either the buffer or the length field are not 244 * accessible. 245 * After copying the data up to the limit the user specifies, the true 246 * length of the data is written over the length limit the user 247 * specified. Zero is returned for a success. 248 */ 249 250 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 251 { 252 int err; 253 int len; 254 255 if((err=get_user(len, ulen))) 256 return err; 257 if(len>klen) 258 len=klen; 259 if(len<0 || len> MAX_SOCK_ADDR) 260 return -EINVAL; 261 if(len) 262 { 263 if(copy_to_user(uaddr,kaddr,len)) 264 return -EFAULT; 265 } 266 /* 267 * "fromlen shall refer to the value before truncation.." 268 * 1003.1g 269 */ 270 return __put_user(klen, ulen); 271 } 272 273 #define SOCKFS_MAGIC 0x534F434B 274 275 static kmem_cache_t * sock_inode_cachep; 276 277 static struct inode *sock_alloc_inode(struct super_block *sb) 278 { 279 struct socket_alloc *ei; 280 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 281 if (!ei) 282 return NULL; 283 init_waitqueue_head(&ei->socket.wait); 284 285 ei->socket.fasync_list = NULL; 286 ei->socket.state = SS_UNCONNECTED; 287 ei->socket.flags = 0; 288 ei->socket.ops = NULL; 289 ei->socket.sk = NULL; 290 ei->socket.file = NULL; 291 ei->socket.flags = 0; 292 293 return &ei->vfs_inode; 294 } 295 296 static void sock_destroy_inode(struct inode *inode) 297 { 298 kmem_cache_free(sock_inode_cachep, 299 container_of(inode, struct socket_alloc, vfs_inode)); 300 } 301 302 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 303 { 304 struct socket_alloc *ei = (struct socket_alloc *) foo; 305 306 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 307 SLAB_CTOR_CONSTRUCTOR) 308 inode_init_once(&ei->vfs_inode); 309 } 310 311 static int init_inodecache(void) 312 { 313 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 314 sizeof(struct socket_alloc), 315 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 316 init_once, NULL); 317 if (sock_inode_cachep == NULL) 318 return -ENOMEM; 319 return 0; 320 } 321 322 static struct super_operations sockfs_ops = { 323 .alloc_inode = sock_alloc_inode, 324 .destroy_inode =sock_destroy_inode, 325 .statfs = simple_statfs, 326 }; 327 328 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 329 int flags, const char *dev_name, void *data) 330 { 331 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 332 } 333 334 static struct vfsmount *sock_mnt; 335 336 static struct file_system_type sock_fs_type = { 337 .name = "sockfs", 338 .get_sb = sockfs_get_sb, 339 .kill_sb = kill_anon_super, 340 }; 341 static int sockfs_delete_dentry(struct dentry *dentry) 342 { 343 return 1; 344 } 345 static struct dentry_operations sockfs_dentry_operations = { 346 .d_delete = sockfs_delete_dentry, 347 }; 348 349 /* 350 * Obtains the first available file descriptor and sets it up for use. 351 * 352 * This function creates file structure and maps it to fd space 353 * of current process. On success it returns file descriptor 354 * and file struct implicitly stored in sock->file. 355 * Note that another thread may close file descriptor before we return 356 * from this function. We use the fact that now we do not refer 357 * to socket after mapping. If one day we will need it, this 358 * function will increment ref. count on file by 1. 359 * 360 * In any case returned fd MAY BE not valid! 361 * This race condition is unavoidable 362 * with shared fd spaces, we cannot solve it inside kernel, 363 * but we take care of internal coherence yet. 364 */ 365 366 int sock_map_fd(struct socket *sock) 367 { 368 int fd; 369 struct qstr this; 370 char name[32]; 371 372 /* 373 * Find a file descriptor suitable for return to the user. 374 */ 375 376 fd = get_unused_fd(); 377 if (fd >= 0) { 378 struct file *file = get_empty_filp(); 379 380 if (!file) { 381 put_unused_fd(fd); 382 fd = -ENFILE; 383 goto out; 384 } 385 386 sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 387 this.name = name; 388 this.len = strlen(name); 389 this.hash = SOCK_INODE(sock)->i_ino; 390 391 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 392 if (!file->f_dentry) { 393 put_filp(file); 394 put_unused_fd(fd); 395 fd = -ENOMEM; 396 goto out; 397 } 398 file->f_dentry->d_op = &sockfs_dentry_operations; 399 d_add(file->f_dentry, SOCK_INODE(sock)); 400 file->f_vfsmnt = mntget(sock_mnt); 401 file->f_mapping = file->f_dentry->d_inode->i_mapping; 402 403 sock->file = file; 404 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 405 file->f_mode = FMODE_READ | FMODE_WRITE; 406 file->f_flags = O_RDWR; 407 file->f_pos = 0; 408 fd_install(fd, file); 409 } 410 411 out: 412 return fd; 413 } 414 415 /** 416 * sockfd_lookup - Go from a file number to its socket slot 417 * @fd: file handle 418 * @err: pointer to an error code return 419 * 420 * The file handle passed in is locked and the socket it is bound 421 * too is returned. If an error occurs the err pointer is overwritten 422 * with a negative errno code and NULL is returned. The function checks 423 * for both invalid handles and passing a handle which is not a socket. 424 * 425 * On a success the socket object pointer is returned. 426 */ 427 428 struct socket *sockfd_lookup(int fd, int *err) 429 { 430 struct file *file; 431 struct inode *inode; 432 struct socket *sock; 433 434 if (!(file = fget(fd))) 435 { 436 *err = -EBADF; 437 return NULL; 438 } 439 440 inode = file->f_dentry->d_inode; 441 if (!S_ISSOCK(inode->i_mode)) { 442 *err = -ENOTSOCK; 443 fput(file); 444 return NULL; 445 } 446 447 sock = SOCKET_I(inode); 448 if (sock->file != file) { 449 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 450 sock->file = file; 451 } 452 return sock; 453 } 454 455 /** 456 * sock_alloc - allocate a socket 457 * 458 * Allocate a new inode and socket object. The two are bound together 459 * and initialised. The socket is then returned. If we are out of inodes 460 * NULL is returned. 461 */ 462 463 static struct socket *sock_alloc(void) 464 { 465 struct inode * inode; 466 struct socket * sock; 467 468 inode = new_inode(sock_mnt->mnt_sb); 469 if (!inode) 470 return NULL; 471 472 sock = SOCKET_I(inode); 473 474 inode->i_mode = S_IFSOCK|S_IRWXUGO; 475 inode->i_uid = current->fsuid; 476 inode->i_gid = current->fsgid; 477 478 get_cpu_var(sockets_in_use)++; 479 put_cpu_var(sockets_in_use); 480 return sock; 481 } 482 483 /* 484 * In theory you can't get an open on this inode, but /proc provides 485 * a back door. Remember to keep it shut otherwise you'll let the 486 * creepy crawlies in. 487 */ 488 489 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 490 { 491 return -ENXIO; 492 } 493 494 struct file_operations bad_sock_fops = { 495 .owner = THIS_MODULE, 496 .open = sock_no_open, 497 }; 498 499 /** 500 * sock_release - close a socket 501 * @sock: socket to close 502 * 503 * The socket is released from the protocol stack if it has a release 504 * callback, and the inode is then released if the socket is bound to 505 * an inode not a file. 506 */ 507 508 void sock_release(struct socket *sock) 509 { 510 if (sock->ops) { 511 struct module *owner = sock->ops->owner; 512 513 sock->ops->release(sock); 514 sock->ops = NULL; 515 module_put(owner); 516 } 517 518 if (sock->fasync_list) 519 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 520 521 get_cpu_var(sockets_in_use)--; 522 put_cpu_var(sockets_in_use); 523 if (!sock->file) { 524 iput(SOCK_INODE(sock)); 525 return; 526 } 527 sock->file=NULL; 528 } 529 530 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 531 struct msghdr *msg, size_t size) 532 { 533 struct sock_iocb *si = kiocb_to_siocb(iocb); 534 int err; 535 536 si->sock = sock; 537 si->scm = NULL; 538 si->msg = msg; 539 si->size = size; 540 541 err = security_socket_sendmsg(sock, msg, size); 542 if (err) 543 return err; 544 545 return sock->ops->sendmsg(iocb, sock, msg, size); 546 } 547 548 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 549 { 550 struct kiocb iocb; 551 struct sock_iocb siocb; 552 int ret; 553 554 init_sync_kiocb(&iocb, NULL); 555 iocb.private = &siocb; 556 ret = __sock_sendmsg(&iocb, sock, msg, size); 557 if (-EIOCBQUEUED == ret) 558 ret = wait_on_sync_kiocb(&iocb); 559 return ret; 560 } 561 562 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 563 struct kvec *vec, size_t num, size_t size) 564 { 565 mm_segment_t oldfs = get_fs(); 566 int result; 567 568 set_fs(KERNEL_DS); 569 /* 570 * the following is safe, since for compiler definitions of kvec and 571 * iovec are identical, yielding the same in-core layout and alignment 572 */ 573 msg->msg_iov = (struct iovec *)vec, 574 msg->msg_iovlen = num; 575 result = sock_sendmsg(sock, msg, size); 576 set_fs(oldfs); 577 return result; 578 } 579 580 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 581 struct msghdr *msg, size_t size, int flags) 582 { 583 int err; 584 struct sock_iocb *si = kiocb_to_siocb(iocb); 585 586 si->sock = sock; 587 si->scm = NULL; 588 si->msg = msg; 589 si->size = size; 590 si->flags = flags; 591 592 err = security_socket_recvmsg(sock, msg, size, flags); 593 if (err) 594 return err; 595 596 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 597 } 598 599 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 600 size_t size, int flags) 601 { 602 struct kiocb iocb; 603 struct sock_iocb siocb; 604 int ret; 605 606 init_sync_kiocb(&iocb, NULL); 607 iocb.private = &siocb; 608 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 609 if (-EIOCBQUEUED == ret) 610 ret = wait_on_sync_kiocb(&iocb); 611 return ret; 612 } 613 614 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 615 struct kvec *vec, size_t num, 616 size_t size, int flags) 617 { 618 mm_segment_t oldfs = get_fs(); 619 int result; 620 621 set_fs(KERNEL_DS); 622 /* 623 * the following is safe, since for compiler definitions of kvec and 624 * iovec are identical, yielding the same in-core layout and alignment 625 */ 626 msg->msg_iov = (struct iovec *)vec, 627 msg->msg_iovlen = num; 628 result = sock_recvmsg(sock, msg, size, flags); 629 set_fs(oldfs); 630 return result; 631 } 632 633 static void sock_aio_dtor(struct kiocb *iocb) 634 { 635 kfree(iocb->private); 636 } 637 638 /* 639 * Read data from a socket. ubuf is a user mode pointer. We make sure the user 640 * area ubuf...ubuf+size-1 is writable before asking the protocol. 641 */ 642 643 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 644 size_t size, loff_t pos) 645 { 646 struct sock_iocb *x, siocb; 647 struct socket *sock; 648 int flags; 649 650 if (pos != 0) 651 return -ESPIPE; 652 if (size==0) /* Match SYS5 behaviour */ 653 return 0; 654 655 if (is_sync_kiocb(iocb)) 656 x = &siocb; 657 else { 658 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 659 if (!x) 660 return -ENOMEM; 661 iocb->ki_dtor = sock_aio_dtor; 662 } 663 iocb->private = x; 664 x->kiocb = iocb; 665 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode); 666 667 x->async_msg.msg_name = NULL; 668 x->async_msg.msg_namelen = 0; 669 x->async_msg.msg_iov = &x->async_iov; 670 x->async_msg.msg_iovlen = 1; 671 x->async_msg.msg_control = NULL; 672 x->async_msg.msg_controllen = 0; 673 x->async_iov.iov_base = ubuf; 674 x->async_iov.iov_len = size; 675 flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 676 677 return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags); 678 } 679 680 681 /* 682 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1 683 * is readable by the user process. 684 */ 685 686 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 687 size_t size, loff_t pos) 688 { 689 struct sock_iocb *x, siocb; 690 struct socket *sock; 691 692 if (pos != 0) 693 return -ESPIPE; 694 if(size==0) /* Match SYS5 behaviour */ 695 return 0; 696 697 if (is_sync_kiocb(iocb)) 698 x = &siocb; 699 else { 700 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 701 if (!x) 702 return -ENOMEM; 703 iocb->ki_dtor = sock_aio_dtor; 704 } 705 iocb->private = x; 706 x->kiocb = iocb; 707 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode); 708 709 x->async_msg.msg_name = NULL; 710 x->async_msg.msg_namelen = 0; 711 x->async_msg.msg_iov = &x->async_iov; 712 x->async_msg.msg_iovlen = 1; 713 x->async_msg.msg_control = NULL; 714 x->async_msg.msg_controllen = 0; 715 x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 716 if (sock->type == SOCK_SEQPACKET) 717 x->async_msg.msg_flags |= MSG_EOR; 718 x->async_iov.iov_base = (void __user *)ubuf; 719 x->async_iov.iov_len = size; 720 721 return __sock_sendmsg(iocb, sock, &x->async_msg, size); 722 } 723 724 ssize_t sock_sendpage(struct file *file, struct page *page, 725 int offset, size_t size, loff_t *ppos, int more) 726 { 727 struct socket *sock; 728 int flags; 729 730 sock = SOCKET_I(file->f_dentry->d_inode); 731 732 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 733 if (more) 734 flags |= MSG_MORE; 735 736 return sock->ops->sendpage(sock, page, offset, size, flags); 737 } 738 739 static int sock_readv_writev(int type, struct inode * inode, 740 struct file * file, const struct iovec * iov, 741 long count, size_t size) 742 { 743 struct msghdr msg; 744 struct socket *sock; 745 746 sock = SOCKET_I(inode); 747 748 msg.msg_name = NULL; 749 msg.msg_namelen = 0; 750 msg.msg_control = NULL; 751 msg.msg_controllen = 0; 752 msg.msg_iov = (struct iovec *) iov; 753 msg.msg_iovlen = count; 754 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 755 756 /* read() does a VERIFY_WRITE */ 757 if (type == VERIFY_WRITE) 758 return sock_recvmsg(sock, &msg, size, msg.msg_flags); 759 760 if (sock->type == SOCK_SEQPACKET) 761 msg.msg_flags |= MSG_EOR; 762 763 return sock_sendmsg(sock, &msg, size); 764 } 765 766 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 767 unsigned long count, loff_t *ppos) 768 { 769 size_t tot_len = 0; 770 int i; 771 for (i = 0 ; i < count ; i++) 772 tot_len += vector[i].iov_len; 773 return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode, 774 file, vector, count, tot_len); 775 } 776 777 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 778 unsigned long count, loff_t *ppos) 779 { 780 size_t tot_len = 0; 781 int i; 782 for (i = 0 ; i < count ; i++) 783 tot_len += vector[i].iov_len; 784 return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode, 785 file, vector, count, tot_len); 786 } 787 788 789 /* 790 * Atomic setting of ioctl hooks to avoid race 791 * with module unload. 792 */ 793 794 static DECLARE_MUTEX(br_ioctl_mutex); 795 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 796 797 void brioctl_set(int (*hook)(unsigned int, void __user *)) 798 { 799 down(&br_ioctl_mutex); 800 br_ioctl_hook = hook; 801 up(&br_ioctl_mutex); 802 } 803 EXPORT_SYMBOL(brioctl_set); 804 805 static DECLARE_MUTEX(vlan_ioctl_mutex); 806 static int (*vlan_ioctl_hook)(void __user *arg); 807 808 void vlan_ioctl_set(int (*hook)(void __user *)) 809 { 810 down(&vlan_ioctl_mutex); 811 vlan_ioctl_hook = hook; 812 up(&vlan_ioctl_mutex); 813 } 814 EXPORT_SYMBOL(vlan_ioctl_set); 815 816 static DECLARE_MUTEX(dlci_ioctl_mutex); 817 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 818 819 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 820 { 821 down(&dlci_ioctl_mutex); 822 dlci_ioctl_hook = hook; 823 up(&dlci_ioctl_mutex); 824 } 825 EXPORT_SYMBOL(dlci_ioctl_set); 826 827 /* 828 * With an ioctl, arg may well be a user mode pointer, but we don't know 829 * what to do with it - that's up to the protocol still. 830 */ 831 832 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 833 { 834 struct socket *sock; 835 void __user *argp = (void __user *)arg; 836 int pid, err; 837 838 sock = SOCKET_I(file->f_dentry->d_inode); 839 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 840 err = dev_ioctl(cmd, argp); 841 } else 842 #ifdef WIRELESS_EXT 843 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 844 err = dev_ioctl(cmd, argp); 845 } else 846 #endif /* WIRELESS_EXT */ 847 switch (cmd) { 848 case FIOSETOWN: 849 case SIOCSPGRP: 850 err = -EFAULT; 851 if (get_user(pid, (int __user *)argp)) 852 break; 853 err = f_setown(sock->file, pid, 1); 854 break; 855 case FIOGETOWN: 856 case SIOCGPGRP: 857 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 858 break; 859 case SIOCGIFBR: 860 case SIOCSIFBR: 861 case SIOCBRADDBR: 862 case SIOCBRDELBR: 863 err = -ENOPKG; 864 if (!br_ioctl_hook) 865 request_module("bridge"); 866 867 down(&br_ioctl_mutex); 868 if (br_ioctl_hook) 869 err = br_ioctl_hook(cmd, argp); 870 up(&br_ioctl_mutex); 871 break; 872 case SIOCGIFVLAN: 873 case SIOCSIFVLAN: 874 err = -ENOPKG; 875 if (!vlan_ioctl_hook) 876 request_module("8021q"); 877 878 down(&vlan_ioctl_mutex); 879 if (vlan_ioctl_hook) 880 err = vlan_ioctl_hook(argp); 881 up(&vlan_ioctl_mutex); 882 break; 883 case SIOCGIFDIVERT: 884 case SIOCSIFDIVERT: 885 /* Convert this to call through a hook */ 886 err = divert_ioctl(cmd, argp); 887 break; 888 case SIOCADDDLCI: 889 case SIOCDELDLCI: 890 err = -ENOPKG; 891 if (!dlci_ioctl_hook) 892 request_module("dlci"); 893 894 if (dlci_ioctl_hook) { 895 down(&dlci_ioctl_mutex); 896 err = dlci_ioctl_hook(cmd, argp); 897 up(&dlci_ioctl_mutex); 898 } 899 break; 900 default: 901 err = sock->ops->ioctl(sock, cmd, arg); 902 break; 903 } 904 return err; 905 } 906 907 int sock_create_lite(int family, int type, int protocol, struct socket **res) 908 { 909 int err; 910 struct socket *sock = NULL; 911 912 err = security_socket_create(family, type, protocol, 1); 913 if (err) 914 goto out; 915 916 sock = sock_alloc(); 917 if (!sock) { 918 err = -ENOMEM; 919 goto out; 920 } 921 922 security_socket_post_create(sock, family, type, protocol, 1); 923 sock->type = type; 924 out: 925 *res = sock; 926 return err; 927 } 928 929 /* No kernel lock held - perfect */ 930 static unsigned int sock_poll(struct file *file, poll_table * wait) 931 { 932 struct socket *sock; 933 934 /* 935 * We can't return errors to poll, so it's either yes or no. 936 */ 937 sock = SOCKET_I(file->f_dentry->d_inode); 938 return sock->ops->poll(file, sock, wait); 939 } 940 941 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 942 { 943 struct socket *sock = SOCKET_I(file->f_dentry->d_inode); 944 945 return sock->ops->mmap(file, sock, vma); 946 } 947 948 int sock_close(struct inode *inode, struct file *filp) 949 { 950 /* 951 * It was possible the inode is NULL we were 952 * closing an unfinished socket. 953 */ 954 955 if (!inode) 956 { 957 printk(KERN_DEBUG "sock_close: NULL inode\n"); 958 return 0; 959 } 960 sock_fasync(-1, filp, 0); 961 sock_release(SOCKET_I(inode)); 962 return 0; 963 } 964 965 /* 966 * Update the socket async list 967 * 968 * Fasync_list locking strategy. 969 * 970 * 1. fasync_list is modified only under process context socket lock 971 * i.e. under semaphore. 972 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 973 * or under socket lock. 974 * 3. fasync_list can be used from softirq context, so that 975 * modification under socket lock have to be enhanced with 976 * write_lock_bh(&sk->sk_callback_lock). 977 * --ANK (990710) 978 */ 979 980 static int sock_fasync(int fd, struct file *filp, int on) 981 { 982 struct fasync_struct *fa, *fna=NULL, **prev; 983 struct socket *sock; 984 struct sock *sk; 985 986 if (on) 987 { 988 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 989 if(fna==NULL) 990 return -ENOMEM; 991 } 992 993 sock = SOCKET_I(filp->f_dentry->d_inode); 994 995 if ((sk=sock->sk) == NULL) { 996 kfree(fna); 997 return -EINVAL; 998 } 999 1000 lock_sock(sk); 1001 1002 prev=&(sock->fasync_list); 1003 1004 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1005 if (fa->fa_file==filp) 1006 break; 1007 1008 if(on) 1009 { 1010 if(fa!=NULL) 1011 { 1012 write_lock_bh(&sk->sk_callback_lock); 1013 fa->fa_fd=fd; 1014 write_unlock_bh(&sk->sk_callback_lock); 1015 1016 kfree(fna); 1017 goto out; 1018 } 1019 fna->fa_file=filp; 1020 fna->fa_fd=fd; 1021 fna->magic=FASYNC_MAGIC; 1022 fna->fa_next=sock->fasync_list; 1023 write_lock_bh(&sk->sk_callback_lock); 1024 sock->fasync_list=fna; 1025 write_unlock_bh(&sk->sk_callback_lock); 1026 } 1027 else 1028 { 1029 if (fa!=NULL) 1030 { 1031 write_lock_bh(&sk->sk_callback_lock); 1032 *prev=fa->fa_next; 1033 write_unlock_bh(&sk->sk_callback_lock); 1034 kfree(fa); 1035 } 1036 } 1037 1038 out: 1039 release_sock(sock->sk); 1040 return 0; 1041 } 1042 1043 /* This function may be called only under socket lock or callback_lock */ 1044 1045 int sock_wake_async(struct socket *sock, int how, int band) 1046 { 1047 if (!sock || !sock->fasync_list) 1048 return -1; 1049 switch (how) 1050 { 1051 case 1: 1052 1053 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1054 break; 1055 goto call_kill; 1056 case 2: 1057 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1058 break; 1059 /* fall through */ 1060 case 0: 1061 call_kill: 1062 __kill_fasync(sock->fasync_list, SIGIO, band); 1063 break; 1064 case 3: 1065 __kill_fasync(sock->fasync_list, SIGURG, band); 1066 } 1067 return 0; 1068 } 1069 1070 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1071 { 1072 int err; 1073 struct socket *sock; 1074 1075 /* 1076 * Check protocol is in range 1077 */ 1078 if (family < 0 || family >= NPROTO) 1079 return -EAFNOSUPPORT; 1080 if (type < 0 || type >= SOCK_MAX) 1081 return -EINVAL; 1082 1083 /* Compatibility. 1084 1085 This uglymoron is moved from INET layer to here to avoid 1086 deadlock in module load. 1087 */ 1088 if (family == PF_INET && type == SOCK_PACKET) { 1089 static int warned; 1090 if (!warned) { 1091 warned = 1; 1092 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1093 } 1094 family = PF_PACKET; 1095 } 1096 1097 err = security_socket_create(family, type, protocol, kern); 1098 if (err) 1099 return err; 1100 1101 #if defined(CONFIG_KMOD) 1102 /* Attempt to load a protocol module if the find failed. 1103 * 1104 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1105 * requested real, full-featured networking support upon configuration. 1106 * Otherwise module support will break! 1107 */ 1108 if (net_families[family]==NULL) 1109 { 1110 request_module("net-pf-%d",family); 1111 } 1112 #endif 1113 1114 net_family_read_lock(); 1115 if (net_families[family] == NULL) { 1116 err = -EAFNOSUPPORT; 1117 goto out; 1118 } 1119 1120 /* 1121 * Allocate the socket and allow the family to set things up. if 1122 * the protocol is 0, the family is instructed to select an appropriate 1123 * default. 1124 */ 1125 1126 if (!(sock = sock_alloc())) { 1127 printk(KERN_WARNING "socket: no more sockets\n"); 1128 err = -ENFILE; /* Not exactly a match, but its the 1129 closest posix thing */ 1130 goto out; 1131 } 1132 1133 sock->type = type; 1134 1135 /* 1136 * We will call the ->create function, that possibly is in a loadable 1137 * module, so we have to bump that loadable module refcnt first. 1138 */ 1139 err = -EAFNOSUPPORT; 1140 if (!try_module_get(net_families[family]->owner)) 1141 goto out_release; 1142 1143 if ((err = net_families[family]->create(sock, protocol)) < 0) 1144 goto out_module_put; 1145 /* 1146 * Now to bump the refcnt of the [loadable] module that owns this 1147 * socket at sock_release time we decrement its refcnt. 1148 */ 1149 if (!try_module_get(sock->ops->owner)) { 1150 sock->ops = NULL; 1151 goto out_module_put; 1152 } 1153 /* 1154 * Now that we're done with the ->create function, the [loadable] 1155 * module can have its refcnt decremented 1156 */ 1157 module_put(net_families[family]->owner); 1158 *res = sock; 1159 security_socket_post_create(sock, family, type, protocol, kern); 1160 1161 out: 1162 net_family_read_unlock(); 1163 return err; 1164 out_module_put: 1165 module_put(net_families[family]->owner); 1166 out_release: 1167 sock_release(sock); 1168 goto out; 1169 } 1170 1171 int sock_create(int family, int type, int protocol, struct socket **res) 1172 { 1173 return __sock_create(family, type, protocol, res, 0); 1174 } 1175 1176 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1177 { 1178 return __sock_create(family, type, protocol, res, 1); 1179 } 1180 1181 asmlinkage long sys_socket(int family, int type, int protocol) 1182 { 1183 int retval; 1184 struct socket *sock; 1185 1186 retval = sock_create(family, type, protocol, &sock); 1187 if (retval < 0) 1188 goto out; 1189 1190 retval = sock_map_fd(sock); 1191 if (retval < 0) 1192 goto out_release; 1193 1194 out: 1195 /* It may be already another descriptor 8) Not kernel problem. */ 1196 return retval; 1197 1198 out_release: 1199 sock_release(sock); 1200 return retval; 1201 } 1202 1203 /* 1204 * Create a pair of connected sockets. 1205 */ 1206 1207 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1208 { 1209 struct socket *sock1, *sock2; 1210 int fd1, fd2, err; 1211 1212 /* 1213 * Obtain the first socket and check if the underlying protocol 1214 * supports the socketpair call. 1215 */ 1216 1217 err = sock_create(family, type, protocol, &sock1); 1218 if (err < 0) 1219 goto out; 1220 1221 err = sock_create(family, type, protocol, &sock2); 1222 if (err < 0) 1223 goto out_release_1; 1224 1225 err = sock1->ops->socketpair(sock1, sock2); 1226 if (err < 0) 1227 goto out_release_both; 1228 1229 fd1 = fd2 = -1; 1230 1231 err = sock_map_fd(sock1); 1232 if (err < 0) 1233 goto out_release_both; 1234 fd1 = err; 1235 1236 err = sock_map_fd(sock2); 1237 if (err < 0) 1238 goto out_close_1; 1239 fd2 = err; 1240 1241 /* fd1 and fd2 may be already another descriptors. 1242 * Not kernel problem. 1243 */ 1244 1245 err = put_user(fd1, &usockvec[0]); 1246 if (!err) 1247 err = put_user(fd2, &usockvec[1]); 1248 if (!err) 1249 return 0; 1250 1251 sys_close(fd2); 1252 sys_close(fd1); 1253 return err; 1254 1255 out_close_1: 1256 sock_release(sock2); 1257 sys_close(fd1); 1258 return err; 1259 1260 out_release_both: 1261 sock_release(sock2); 1262 out_release_1: 1263 sock_release(sock1); 1264 out: 1265 return err; 1266 } 1267 1268 1269 /* 1270 * Bind a name to a socket. Nothing much to do here since it's 1271 * the protocol's responsibility to handle the local address. 1272 * 1273 * We move the socket address to kernel space before we call 1274 * the protocol layer (having also checked the address is ok). 1275 */ 1276 1277 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1278 { 1279 struct socket *sock; 1280 char address[MAX_SOCK_ADDR]; 1281 int err; 1282 1283 if((sock = sockfd_lookup(fd,&err))!=NULL) 1284 { 1285 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1286 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1287 if (err) { 1288 sockfd_put(sock); 1289 return err; 1290 } 1291 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen); 1292 } 1293 sockfd_put(sock); 1294 } 1295 return err; 1296 } 1297 1298 1299 /* 1300 * Perform a listen. Basically, we allow the protocol to do anything 1301 * necessary for a listen, and if that works, we mark the socket as 1302 * ready for listening. 1303 */ 1304 1305 int sysctl_somaxconn = SOMAXCONN; 1306 1307 asmlinkage long sys_listen(int fd, int backlog) 1308 { 1309 struct socket *sock; 1310 int err; 1311 1312 if ((sock = sockfd_lookup(fd, &err)) != NULL) { 1313 if ((unsigned) backlog > sysctl_somaxconn) 1314 backlog = sysctl_somaxconn; 1315 1316 err = security_socket_listen(sock, backlog); 1317 if (err) { 1318 sockfd_put(sock); 1319 return err; 1320 } 1321 1322 err=sock->ops->listen(sock, backlog); 1323 sockfd_put(sock); 1324 } 1325 return err; 1326 } 1327 1328 1329 /* 1330 * For accept, we attempt to create a new socket, set up the link 1331 * with the client, wake up the client, then return the new 1332 * connected fd. We collect the address of the connector in kernel 1333 * space and move it to user at the very end. This is unclean because 1334 * we open the socket then return an error. 1335 * 1336 * 1003.1g adds the ability to recvmsg() to query connection pending 1337 * status to recvmsg. We need to add that support in a way thats 1338 * clean when we restucture accept also. 1339 */ 1340 1341 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1342 { 1343 struct socket *sock, *newsock; 1344 int err, len; 1345 char address[MAX_SOCK_ADDR]; 1346 1347 sock = sockfd_lookup(fd, &err); 1348 if (!sock) 1349 goto out; 1350 1351 err = -ENFILE; 1352 if (!(newsock = sock_alloc())) 1353 goto out_put; 1354 1355 newsock->type = sock->type; 1356 newsock->ops = sock->ops; 1357 1358 err = security_socket_accept(sock, newsock); 1359 if (err) 1360 goto out_release; 1361 1362 /* 1363 * We don't need try_module_get here, as the listening socket (sock) 1364 * has the protocol module (sock->ops->owner) held. 1365 */ 1366 __module_get(newsock->ops->owner); 1367 1368 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1369 if (err < 0) 1370 goto out_release; 1371 1372 if (upeer_sockaddr) { 1373 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1374 err = -ECONNABORTED; 1375 goto out_release; 1376 } 1377 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1378 if (err < 0) 1379 goto out_release; 1380 } 1381 1382 /* File flags are not inherited via accept() unlike another OSes. */ 1383 1384 if ((err = sock_map_fd(newsock)) < 0) 1385 goto out_release; 1386 1387 security_socket_post_accept(sock, newsock); 1388 1389 out_put: 1390 sockfd_put(sock); 1391 out: 1392 return err; 1393 out_release: 1394 sock_release(newsock); 1395 goto out_put; 1396 } 1397 1398 1399 /* 1400 * Attempt to connect to a socket with the server address. The address 1401 * is in user space so we verify it is OK and move it to kernel space. 1402 * 1403 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1404 * break bindings 1405 * 1406 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1407 * other SEQPACKET protocols that take time to connect() as it doesn't 1408 * include the -EINPROGRESS status for such sockets. 1409 */ 1410 1411 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1412 { 1413 struct socket *sock; 1414 char address[MAX_SOCK_ADDR]; 1415 int err; 1416 1417 sock = sockfd_lookup(fd, &err); 1418 if (!sock) 1419 goto out; 1420 err = move_addr_to_kernel(uservaddr, addrlen, address); 1421 if (err < 0) 1422 goto out_put; 1423 1424 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1425 if (err) 1426 goto out_put; 1427 1428 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1429 sock->file->f_flags); 1430 out_put: 1431 sockfd_put(sock); 1432 out: 1433 return err; 1434 } 1435 1436 /* 1437 * Get the local address ('name') of a socket object. Move the obtained 1438 * name to user space. 1439 */ 1440 1441 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1442 { 1443 struct socket *sock; 1444 char address[MAX_SOCK_ADDR]; 1445 int len, err; 1446 1447 sock = sockfd_lookup(fd, &err); 1448 if (!sock) 1449 goto out; 1450 1451 err = security_socket_getsockname(sock); 1452 if (err) 1453 goto out_put; 1454 1455 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1456 if (err) 1457 goto out_put; 1458 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1459 1460 out_put: 1461 sockfd_put(sock); 1462 out: 1463 return err; 1464 } 1465 1466 /* 1467 * Get the remote address ('name') of a socket object. Move the obtained 1468 * name to user space. 1469 */ 1470 1471 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1472 { 1473 struct socket *sock; 1474 char address[MAX_SOCK_ADDR]; 1475 int len, err; 1476 1477 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1478 { 1479 err = security_socket_getpeername(sock); 1480 if (err) { 1481 sockfd_put(sock); 1482 return err; 1483 } 1484 1485 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1486 if (!err) 1487 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1488 sockfd_put(sock); 1489 } 1490 return err; 1491 } 1492 1493 /* 1494 * Send a datagram to a given address. We move the address into kernel 1495 * space and check the user space data area is readable before invoking 1496 * the protocol. 1497 */ 1498 1499 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1500 struct sockaddr __user *addr, int addr_len) 1501 { 1502 struct socket *sock; 1503 char address[MAX_SOCK_ADDR]; 1504 int err; 1505 struct msghdr msg; 1506 struct iovec iov; 1507 1508 sock = sockfd_lookup(fd, &err); 1509 if (!sock) 1510 goto out; 1511 iov.iov_base=buff; 1512 iov.iov_len=len; 1513 msg.msg_name=NULL; 1514 msg.msg_iov=&iov; 1515 msg.msg_iovlen=1; 1516 msg.msg_control=NULL; 1517 msg.msg_controllen=0; 1518 msg.msg_namelen=0; 1519 if(addr) 1520 { 1521 err = move_addr_to_kernel(addr, addr_len, address); 1522 if (err < 0) 1523 goto out_put; 1524 msg.msg_name=address; 1525 msg.msg_namelen=addr_len; 1526 } 1527 if (sock->file->f_flags & O_NONBLOCK) 1528 flags |= MSG_DONTWAIT; 1529 msg.msg_flags = flags; 1530 err = sock_sendmsg(sock, &msg, len); 1531 1532 out_put: 1533 sockfd_put(sock); 1534 out: 1535 return err; 1536 } 1537 1538 /* 1539 * Send a datagram down a socket. 1540 */ 1541 1542 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1543 { 1544 return sys_sendto(fd, buff, len, flags, NULL, 0); 1545 } 1546 1547 /* 1548 * Receive a frame from the socket and optionally record the address of the 1549 * sender. We verify the buffers are writable and if needed move the 1550 * sender address from kernel to user space. 1551 */ 1552 1553 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1554 struct sockaddr __user *addr, int __user *addr_len) 1555 { 1556 struct socket *sock; 1557 struct iovec iov; 1558 struct msghdr msg; 1559 char address[MAX_SOCK_ADDR]; 1560 int err,err2; 1561 1562 sock = sockfd_lookup(fd, &err); 1563 if (!sock) 1564 goto out; 1565 1566 msg.msg_control=NULL; 1567 msg.msg_controllen=0; 1568 msg.msg_iovlen=1; 1569 msg.msg_iov=&iov; 1570 iov.iov_len=size; 1571 iov.iov_base=ubuf; 1572 msg.msg_name=address; 1573 msg.msg_namelen=MAX_SOCK_ADDR; 1574 if (sock->file->f_flags & O_NONBLOCK) 1575 flags |= MSG_DONTWAIT; 1576 err=sock_recvmsg(sock, &msg, size, flags); 1577 1578 if(err >= 0 && addr != NULL) 1579 { 1580 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1581 if(err2<0) 1582 err=err2; 1583 } 1584 sockfd_put(sock); 1585 out: 1586 return err; 1587 } 1588 1589 /* 1590 * Receive a datagram from a socket. 1591 */ 1592 1593 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1594 { 1595 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1596 } 1597 1598 /* 1599 * Set a socket option. Because we don't know the option lengths we have 1600 * to pass the user mode parameter for the protocols to sort out. 1601 */ 1602 1603 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1604 { 1605 int err; 1606 struct socket *sock; 1607 1608 if (optlen < 0) 1609 return -EINVAL; 1610 1611 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1612 { 1613 err = security_socket_setsockopt(sock,level,optname); 1614 if (err) { 1615 sockfd_put(sock); 1616 return err; 1617 } 1618 1619 if (level == SOL_SOCKET) 1620 err=sock_setsockopt(sock,level,optname,optval,optlen); 1621 else 1622 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1623 sockfd_put(sock); 1624 } 1625 return err; 1626 } 1627 1628 /* 1629 * Get a socket option. Because we don't know the option lengths we have 1630 * to pass a user mode parameter for the protocols to sort out. 1631 */ 1632 1633 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1634 { 1635 int err; 1636 struct socket *sock; 1637 1638 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1639 { 1640 err = security_socket_getsockopt(sock, level, 1641 optname); 1642 if (err) { 1643 sockfd_put(sock); 1644 return err; 1645 } 1646 1647 if (level == SOL_SOCKET) 1648 err=sock_getsockopt(sock,level,optname,optval,optlen); 1649 else 1650 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1651 sockfd_put(sock); 1652 } 1653 return err; 1654 } 1655 1656 1657 /* 1658 * Shutdown a socket. 1659 */ 1660 1661 asmlinkage long sys_shutdown(int fd, int how) 1662 { 1663 int err; 1664 struct socket *sock; 1665 1666 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1667 { 1668 err = security_socket_shutdown(sock, how); 1669 if (err) { 1670 sockfd_put(sock); 1671 return err; 1672 } 1673 1674 err=sock->ops->shutdown(sock, how); 1675 sockfd_put(sock); 1676 } 1677 return err; 1678 } 1679 1680 /* A couple of helpful macros for getting the address of the 32/64 bit 1681 * fields which are the same type (int / unsigned) on our platforms. 1682 */ 1683 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1684 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1685 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1686 1687 1688 /* 1689 * BSD sendmsg interface 1690 */ 1691 1692 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1693 { 1694 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1695 struct socket *sock; 1696 char address[MAX_SOCK_ADDR]; 1697 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1698 unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ 1699 unsigned char *ctl_buf = ctl; 1700 struct msghdr msg_sys; 1701 int err, ctl_len, iov_size, total_len; 1702 1703 err = -EFAULT; 1704 if (MSG_CMSG_COMPAT & flags) { 1705 if (get_compat_msghdr(&msg_sys, msg_compat)) 1706 return -EFAULT; 1707 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1708 return -EFAULT; 1709 1710 sock = sockfd_lookup(fd, &err); 1711 if (!sock) 1712 goto out; 1713 1714 /* do not move before msg_sys is valid */ 1715 err = -EMSGSIZE; 1716 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1717 goto out_put; 1718 1719 /* Check whether to allocate the iovec area*/ 1720 err = -ENOMEM; 1721 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1722 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1723 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1724 if (!iov) 1725 goto out_put; 1726 } 1727 1728 /* This will also move the address data into kernel space */ 1729 if (MSG_CMSG_COMPAT & flags) { 1730 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1731 } else 1732 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1733 if (err < 0) 1734 goto out_freeiov; 1735 total_len = err; 1736 1737 err = -ENOBUFS; 1738 1739 if (msg_sys.msg_controllen > INT_MAX) 1740 goto out_freeiov; 1741 ctl_len = msg_sys.msg_controllen; 1742 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1743 err = cmsghdr_from_user_compat_to_kern(&msg_sys, ctl, sizeof(ctl)); 1744 if (err) 1745 goto out_freeiov; 1746 ctl_buf = msg_sys.msg_control; 1747 } else if (ctl_len) { 1748 if (ctl_len > sizeof(ctl)) 1749 { 1750 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1751 if (ctl_buf == NULL) 1752 goto out_freeiov; 1753 } 1754 err = -EFAULT; 1755 /* 1756 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1757 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1758 * checking falls down on this. 1759 */ 1760 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1761 goto out_freectl; 1762 msg_sys.msg_control = ctl_buf; 1763 } 1764 msg_sys.msg_flags = flags; 1765 1766 if (sock->file->f_flags & O_NONBLOCK) 1767 msg_sys.msg_flags |= MSG_DONTWAIT; 1768 err = sock_sendmsg(sock, &msg_sys, total_len); 1769 1770 out_freectl: 1771 if (ctl_buf != ctl) 1772 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1773 out_freeiov: 1774 if (iov != iovstack) 1775 sock_kfree_s(sock->sk, iov, iov_size); 1776 out_put: 1777 sockfd_put(sock); 1778 out: 1779 return err; 1780 } 1781 1782 /* 1783 * BSD recvmsg interface 1784 */ 1785 1786 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1787 { 1788 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1789 struct socket *sock; 1790 struct iovec iovstack[UIO_FASTIOV]; 1791 struct iovec *iov=iovstack; 1792 struct msghdr msg_sys; 1793 unsigned long cmsg_ptr; 1794 int err, iov_size, total_len, len; 1795 1796 /* kernel mode address */ 1797 char addr[MAX_SOCK_ADDR]; 1798 1799 /* user mode address pointers */ 1800 struct sockaddr __user *uaddr; 1801 int __user *uaddr_len; 1802 1803 if (MSG_CMSG_COMPAT & flags) { 1804 if (get_compat_msghdr(&msg_sys, msg_compat)) 1805 return -EFAULT; 1806 } else 1807 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1808 return -EFAULT; 1809 1810 sock = sockfd_lookup(fd, &err); 1811 if (!sock) 1812 goto out; 1813 1814 err = -EMSGSIZE; 1815 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1816 goto out_put; 1817 1818 /* Check whether to allocate the iovec area*/ 1819 err = -ENOMEM; 1820 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1821 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1822 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1823 if (!iov) 1824 goto out_put; 1825 } 1826 1827 /* 1828 * Save the user-mode address (verify_iovec will change the 1829 * kernel msghdr to use the kernel address space) 1830 */ 1831 1832 uaddr = (void __user *) msg_sys.msg_name; 1833 uaddr_len = COMPAT_NAMELEN(msg); 1834 if (MSG_CMSG_COMPAT & flags) { 1835 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1836 } else 1837 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1838 if (err < 0) 1839 goto out_freeiov; 1840 total_len=err; 1841 1842 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1843 msg_sys.msg_flags = 0; 1844 if (MSG_CMSG_COMPAT & flags) 1845 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1846 1847 if (sock->file->f_flags & O_NONBLOCK) 1848 flags |= MSG_DONTWAIT; 1849 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1850 if (err < 0) 1851 goto out_freeiov; 1852 len = err; 1853 1854 if (uaddr != NULL) { 1855 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1856 if (err < 0) 1857 goto out_freeiov; 1858 } 1859 err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg)); 1860 if (err) 1861 goto out_freeiov; 1862 if (MSG_CMSG_COMPAT & flags) 1863 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1864 &msg_compat->msg_controllen); 1865 else 1866 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1867 &msg->msg_controllen); 1868 if (err) 1869 goto out_freeiov; 1870 err = len; 1871 1872 out_freeiov: 1873 if (iov != iovstack) 1874 sock_kfree_s(sock->sk, iov, iov_size); 1875 out_put: 1876 sockfd_put(sock); 1877 out: 1878 return err; 1879 } 1880 1881 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1882 1883 /* Argument list sizes for sys_socketcall */ 1884 #define AL(x) ((x) * sizeof(unsigned long)) 1885 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1886 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1887 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1888 #undef AL 1889 1890 /* 1891 * System call vectors. 1892 * 1893 * Argument checking cleaned up. Saved 20% in size. 1894 * This function doesn't need to set the kernel lock because 1895 * it is set by the callees. 1896 */ 1897 1898 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1899 { 1900 unsigned long a[6]; 1901 unsigned long a0,a1; 1902 int err; 1903 1904 if(call<1||call>SYS_RECVMSG) 1905 return -EINVAL; 1906 1907 /* copy_from_user should be SMP safe. */ 1908 if (copy_from_user(a, args, nargs[call])) 1909 return -EFAULT; 1910 1911 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1912 if (err) 1913 return err; 1914 1915 a0=a[0]; 1916 a1=a[1]; 1917 1918 switch(call) 1919 { 1920 case SYS_SOCKET: 1921 err = sys_socket(a0,a1,a[2]); 1922 break; 1923 case SYS_BIND: 1924 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1925 break; 1926 case SYS_CONNECT: 1927 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1928 break; 1929 case SYS_LISTEN: 1930 err = sys_listen(a0,a1); 1931 break; 1932 case SYS_ACCEPT: 1933 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1934 break; 1935 case SYS_GETSOCKNAME: 1936 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1937 break; 1938 case SYS_GETPEERNAME: 1939 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 1940 break; 1941 case SYS_SOCKETPAIR: 1942 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 1943 break; 1944 case SYS_SEND: 1945 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1946 break; 1947 case SYS_SENDTO: 1948 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 1949 (struct sockaddr __user *)a[4], a[5]); 1950 break; 1951 case SYS_RECV: 1952 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 1953 break; 1954 case SYS_RECVFROM: 1955 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 1956 (struct sockaddr __user *)a[4], (int __user *)a[5]); 1957 break; 1958 case SYS_SHUTDOWN: 1959 err = sys_shutdown(a0,a1); 1960 break; 1961 case SYS_SETSOCKOPT: 1962 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 1963 break; 1964 case SYS_GETSOCKOPT: 1965 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 1966 break; 1967 case SYS_SENDMSG: 1968 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 1969 break; 1970 case SYS_RECVMSG: 1971 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 1972 break; 1973 default: 1974 err = -EINVAL; 1975 break; 1976 } 1977 return err; 1978 } 1979 1980 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 1981 1982 /* 1983 * This function is called by a protocol handler that wants to 1984 * advertise its address family, and have it linked into the 1985 * SOCKET module. 1986 */ 1987 1988 int sock_register(struct net_proto_family *ops) 1989 { 1990 int err; 1991 1992 if (ops->family >= NPROTO) { 1993 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 1994 return -ENOBUFS; 1995 } 1996 net_family_write_lock(); 1997 err = -EEXIST; 1998 if (net_families[ops->family] == NULL) { 1999 net_families[ops->family]=ops; 2000 err = 0; 2001 } 2002 net_family_write_unlock(); 2003 printk(KERN_INFO "NET: Registered protocol family %d\n", 2004 ops->family); 2005 return err; 2006 } 2007 2008 /* 2009 * This function is called by a protocol handler that wants to 2010 * remove its address family, and have it unlinked from the 2011 * SOCKET module. 2012 */ 2013 2014 int sock_unregister(int family) 2015 { 2016 if (family < 0 || family >= NPROTO) 2017 return -1; 2018 2019 net_family_write_lock(); 2020 net_families[family]=NULL; 2021 net_family_write_unlock(); 2022 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2023 family); 2024 return 0; 2025 } 2026 2027 2028 extern void sk_init(void); 2029 2030 void __init sock_init(void) 2031 { 2032 /* 2033 * Initialize sock SLAB cache. 2034 */ 2035 2036 sk_init(); 2037 2038 #ifdef SLAB_SKB 2039 /* 2040 * Initialize skbuff SLAB cache 2041 */ 2042 skb_init(); 2043 #endif 2044 2045 /* 2046 * Initialize the protocols module. 2047 */ 2048 2049 init_inodecache(); 2050 register_filesystem(&sock_fs_type); 2051 sock_mnt = kern_mount(&sock_fs_type); 2052 /* The real protocol initialization is performed when 2053 * do_initcalls is run. 2054 */ 2055 2056 #ifdef CONFIG_NETFILTER 2057 netfilter_init(); 2058 #endif 2059 } 2060 2061 #ifdef CONFIG_PROC_FS 2062 void socket_seq_show(struct seq_file *seq) 2063 { 2064 int cpu; 2065 int counter = 0; 2066 2067 for (cpu = 0; cpu < NR_CPUS; cpu++) 2068 counter += per_cpu(sockets_in_use, cpu); 2069 2070 /* It can be negative, by the way. 8) */ 2071 if (counter < 0) 2072 counter = 0; 2073 2074 seq_printf(seq, "sockets: used %d\n", counter); 2075 } 2076 #endif /* CONFIG_PROC_FS */ 2077 2078 /* ABI emulation layers need these two */ 2079 EXPORT_SYMBOL(move_addr_to_kernel); 2080 EXPORT_SYMBOL(move_addr_to_user); 2081 EXPORT_SYMBOL(sock_create); 2082 EXPORT_SYMBOL(sock_create_kern); 2083 EXPORT_SYMBOL(sock_create_lite); 2084 EXPORT_SYMBOL(sock_map_fd); 2085 EXPORT_SYMBOL(sock_recvmsg); 2086 EXPORT_SYMBOL(sock_register); 2087 EXPORT_SYMBOL(sock_release); 2088 EXPORT_SYMBOL(sock_sendmsg); 2089 EXPORT_SYMBOL(sock_unregister); 2090 EXPORT_SYMBOL(sock_wake_async); 2091 EXPORT_SYMBOL(sockfd_lookup); 2092 EXPORT_SYMBOL(kernel_sendmsg); 2093 EXPORT_SYMBOL(kernel_recvmsg); 2094