xref: /openbmc/linux/net/socket.c (revision 4bcff1b3)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/init.h>
74 #include <linux/poll.h>
75 #include <linux/cache.h>
76 #include <linux/module.h>
77 #include <linux/highmem.h>
78 #include <linux/divert.h>
79 #include <linux/mount.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/compat.h>
83 #include <linux/kmod.h>
84 #include <linux/audit.h>
85 
86 #ifdef CONFIG_NET_RADIO
87 #include <linux/wireless.h>		/* Note : will define WIRELESS_EXT */
88 #endif	/* CONFIG_NET_RADIO */
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
97 
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
100 			 size_t size, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
102 			  size_t size, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104 
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 			      struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file,
109 		      unsigned int cmd, unsigned long arg);
110 static int sock_fasync(int fd, struct file *filp, int on);
111 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
112 			  unsigned long count, loff_t *ppos);
113 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
114 			  unsigned long count, loff_t *ppos);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 			     int offset, size_t size, loff_t *ppos, int more);
117 
118 
119 /*
120  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121  *	in the operation structures but are done directly via the socketcall() multiplexor.
122  */
123 
124 static struct file_operations socket_file_ops = {
125 	.owner =	THIS_MODULE,
126 	.llseek =	no_llseek,
127 	.aio_read =	sock_aio_read,
128 	.aio_write =	sock_aio_write,
129 	.poll =		sock_poll,
130 	.unlocked_ioctl = sock_ioctl,
131 	.mmap =		sock_mmap,
132 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
133 	.release =	sock_close,
134 	.fasync =	sock_fasync,
135 	.readv =	sock_readv,
136 	.writev =	sock_writev,
137 	.sendpage =	sock_sendpage
138 };
139 
140 /*
141  *	The protocol list. Each protocol is registered in here.
142  */
143 
144 static struct net_proto_family *net_families[NPROTO];
145 
146 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
147 static atomic_t net_family_lockct = ATOMIC_INIT(0);
148 static DEFINE_SPINLOCK(net_family_lock);
149 
150 /* The strategy is: modifications net_family vector are short, do not
151    sleep and veeery rare, but read access should be free of any exclusive
152    locks.
153  */
154 
155 static void net_family_write_lock(void)
156 {
157 	spin_lock(&net_family_lock);
158 	while (atomic_read(&net_family_lockct) != 0) {
159 		spin_unlock(&net_family_lock);
160 
161 		yield();
162 
163 		spin_lock(&net_family_lock);
164 	}
165 }
166 
167 static __inline__ void net_family_write_unlock(void)
168 {
169 	spin_unlock(&net_family_lock);
170 }
171 
172 static __inline__ void net_family_read_lock(void)
173 {
174 	atomic_inc(&net_family_lockct);
175 	spin_unlock_wait(&net_family_lock);
176 }
177 
178 static __inline__ void net_family_read_unlock(void)
179 {
180 	atomic_dec(&net_family_lockct);
181 }
182 
183 #else
184 #define net_family_write_lock() do { } while(0)
185 #define net_family_write_unlock() do { } while(0)
186 #define net_family_read_lock() do { } while(0)
187 #define net_family_read_unlock() do { } while(0)
188 #endif
189 
190 
191 /*
192  *	Statistics counters of the socket lists
193  */
194 
195 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
196 
197 /*
198  *	Support routines. Move socket addresses back and forth across the kernel/user
199  *	divide and look after the messy bits.
200  */
201 
202 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
203 					   16 for IP, 16 for IPX,
204 					   24 for IPv6,
205 					   about 80 for AX.25
206 					   must be at least one bigger than
207 					   the AF_UNIX size (see net/unix/af_unix.c
208 					   :unix_mkname()).
209 					 */
210 
211 /**
212  *	move_addr_to_kernel	-	copy a socket address into kernel space
213  *	@uaddr: Address in user space
214  *	@kaddr: Address in kernel space
215  *	@ulen: Length in user space
216  *
217  *	The address is copied into kernel space. If the provided address is
218  *	too long an error code of -EINVAL is returned. If the copy gives
219  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
220  */
221 
222 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
223 {
224 	if(ulen<0||ulen>MAX_SOCK_ADDR)
225 		return -EINVAL;
226 	if(ulen==0)
227 		return 0;
228 	if(copy_from_user(kaddr,uaddr,ulen))
229 		return -EFAULT;
230 	return audit_sockaddr(ulen, kaddr);
231 }
232 
233 /**
234  *	move_addr_to_user	-	copy an address to user space
235  *	@kaddr: kernel space address
236  *	@klen: length of address in kernel
237  *	@uaddr: user space address
238  *	@ulen: pointer to user length field
239  *
240  *	The value pointed to by ulen on entry is the buffer length available.
241  *	This is overwritten with the buffer space used. -EINVAL is returned
242  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
243  *	is returned if either the buffer or the length field are not
244  *	accessible.
245  *	After copying the data up to the limit the user specifies, the true
246  *	length of the data is written over the length limit the user
247  *	specified. Zero is returned for a success.
248  */
249 
250 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
251 {
252 	int err;
253 	int len;
254 
255 	if((err=get_user(len, ulen)))
256 		return err;
257 	if(len>klen)
258 		len=klen;
259 	if(len<0 || len> MAX_SOCK_ADDR)
260 		return -EINVAL;
261 	if(len)
262 	{
263 		if(copy_to_user(uaddr,kaddr,len))
264 			return -EFAULT;
265 	}
266 	/*
267 	 *	"fromlen shall refer to the value before truncation.."
268 	 *			1003.1g
269 	 */
270 	return __put_user(klen, ulen);
271 }
272 
273 #define SOCKFS_MAGIC 0x534F434B
274 
275 static kmem_cache_t * sock_inode_cachep;
276 
277 static struct inode *sock_alloc_inode(struct super_block *sb)
278 {
279 	struct socket_alloc *ei;
280 	ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
281 	if (!ei)
282 		return NULL;
283 	init_waitqueue_head(&ei->socket.wait);
284 
285 	ei->socket.fasync_list = NULL;
286 	ei->socket.state = SS_UNCONNECTED;
287 	ei->socket.flags = 0;
288 	ei->socket.ops = NULL;
289 	ei->socket.sk = NULL;
290 	ei->socket.file = NULL;
291 	ei->socket.flags = 0;
292 
293 	return &ei->vfs_inode;
294 }
295 
296 static void sock_destroy_inode(struct inode *inode)
297 {
298 	kmem_cache_free(sock_inode_cachep,
299 			container_of(inode, struct socket_alloc, vfs_inode));
300 }
301 
302 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
303 {
304 	struct socket_alloc *ei = (struct socket_alloc *) foo;
305 
306 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
307 	    SLAB_CTOR_CONSTRUCTOR)
308 		inode_init_once(&ei->vfs_inode);
309 }
310 
311 static int init_inodecache(void)
312 {
313 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
314 				sizeof(struct socket_alloc),
315 				0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
316 				init_once, NULL);
317 	if (sock_inode_cachep == NULL)
318 		return -ENOMEM;
319 	return 0;
320 }
321 
322 static struct super_operations sockfs_ops = {
323 	.alloc_inode =	sock_alloc_inode,
324 	.destroy_inode =sock_destroy_inode,
325 	.statfs =	simple_statfs,
326 };
327 
328 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
329 	int flags, const char *dev_name, void *data)
330 {
331 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
332 }
333 
334 static struct vfsmount *sock_mnt;
335 
336 static struct file_system_type sock_fs_type = {
337 	.name =		"sockfs",
338 	.get_sb =	sockfs_get_sb,
339 	.kill_sb =	kill_anon_super,
340 };
341 static int sockfs_delete_dentry(struct dentry *dentry)
342 {
343 	return 1;
344 }
345 static struct dentry_operations sockfs_dentry_operations = {
346 	.d_delete =	sockfs_delete_dentry,
347 };
348 
349 /*
350  *	Obtains the first available file descriptor and sets it up for use.
351  *
352  *	This function creates file structure and maps it to fd space
353  *	of current process. On success it returns file descriptor
354  *	and file struct implicitly stored in sock->file.
355  *	Note that another thread may close file descriptor before we return
356  *	from this function. We use the fact that now we do not refer
357  *	to socket after mapping. If one day we will need it, this
358  *	function will increment ref. count on file by 1.
359  *
360  *	In any case returned fd MAY BE not valid!
361  *	This race condition is unavoidable
362  *	with shared fd spaces, we cannot solve it inside kernel,
363  *	but we take care of internal coherence yet.
364  */
365 
366 int sock_map_fd(struct socket *sock)
367 {
368 	int fd;
369 	struct qstr this;
370 	char name[32];
371 
372 	/*
373 	 *	Find a file descriptor suitable for return to the user.
374 	 */
375 
376 	fd = get_unused_fd();
377 	if (fd >= 0) {
378 		struct file *file = get_empty_filp();
379 
380 		if (!file) {
381 			put_unused_fd(fd);
382 			fd = -ENFILE;
383 			goto out;
384 		}
385 
386 		sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
387 		this.name = name;
388 		this.len = strlen(name);
389 		this.hash = SOCK_INODE(sock)->i_ino;
390 
391 		file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
392 		if (!file->f_dentry) {
393 			put_filp(file);
394 			put_unused_fd(fd);
395 			fd = -ENOMEM;
396 			goto out;
397 		}
398 		file->f_dentry->d_op = &sockfs_dentry_operations;
399 		d_add(file->f_dentry, SOCK_INODE(sock));
400 		file->f_vfsmnt = mntget(sock_mnt);
401 		file->f_mapping = file->f_dentry->d_inode->i_mapping;
402 
403 		sock->file = file;
404 		file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
405 		file->f_mode = FMODE_READ | FMODE_WRITE;
406 		file->f_flags = O_RDWR;
407 		file->f_pos = 0;
408 		fd_install(fd, file);
409 	}
410 
411 out:
412 	return fd;
413 }
414 
415 /**
416  *	sockfd_lookup	- 	Go from a file number to its socket slot
417  *	@fd: file handle
418  *	@err: pointer to an error code return
419  *
420  *	The file handle passed in is locked and the socket it is bound
421  *	too is returned. If an error occurs the err pointer is overwritten
422  *	with a negative errno code and NULL is returned. The function checks
423  *	for both invalid handles and passing a handle which is not a socket.
424  *
425  *	On a success the socket object pointer is returned.
426  */
427 
428 struct socket *sockfd_lookup(int fd, int *err)
429 {
430 	struct file *file;
431 	struct inode *inode;
432 	struct socket *sock;
433 
434 	if (!(file = fget(fd)))
435 	{
436 		*err = -EBADF;
437 		return NULL;
438 	}
439 
440 	inode = file->f_dentry->d_inode;
441 	if (!S_ISSOCK(inode->i_mode)) {
442 		*err = -ENOTSOCK;
443 		fput(file);
444 		return NULL;
445 	}
446 
447 	sock = SOCKET_I(inode);
448 	if (sock->file != file) {
449 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
450 		sock->file = file;
451 	}
452 	return sock;
453 }
454 
455 /**
456  *	sock_alloc	-	allocate a socket
457  *
458  *	Allocate a new inode and socket object. The two are bound together
459  *	and initialised. The socket is then returned. If we are out of inodes
460  *	NULL is returned.
461  */
462 
463 static struct socket *sock_alloc(void)
464 {
465 	struct inode * inode;
466 	struct socket * sock;
467 
468 	inode = new_inode(sock_mnt->mnt_sb);
469 	if (!inode)
470 		return NULL;
471 
472 	sock = SOCKET_I(inode);
473 
474 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
475 	inode->i_uid = current->fsuid;
476 	inode->i_gid = current->fsgid;
477 
478 	get_cpu_var(sockets_in_use)++;
479 	put_cpu_var(sockets_in_use);
480 	return sock;
481 }
482 
483 /*
484  *	In theory you can't get an open on this inode, but /proc provides
485  *	a back door. Remember to keep it shut otherwise you'll let the
486  *	creepy crawlies in.
487  */
488 
489 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
490 {
491 	return -ENXIO;
492 }
493 
494 struct file_operations bad_sock_fops = {
495 	.owner = THIS_MODULE,
496 	.open = sock_no_open,
497 };
498 
499 /**
500  *	sock_release	-	close a socket
501  *	@sock: socket to close
502  *
503  *	The socket is released from the protocol stack if it has a release
504  *	callback, and the inode is then released if the socket is bound to
505  *	an inode not a file.
506  */
507 
508 void sock_release(struct socket *sock)
509 {
510 	if (sock->ops) {
511 		struct module *owner = sock->ops->owner;
512 
513 		sock->ops->release(sock);
514 		sock->ops = NULL;
515 		module_put(owner);
516 	}
517 
518 	if (sock->fasync_list)
519 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
520 
521 	get_cpu_var(sockets_in_use)--;
522 	put_cpu_var(sockets_in_use);
523 	if (!sock->file) {
524 		iput(SOCK_INODE(sock));
525 		return;
526 	}
527 	sock->file=NULL;
528 }
529 
530 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
531 				 struct msghdr *msg, size_t size)
532 {
533 	struct sock_iocb *si = kiocb_to_siocb(iocb);
534 	int err;
535 
536 	si->sock = sock;
537 	si->scm = NULL;
538 	si->msg = msg;
539 	si->size = size;
540 
541 	err = security_socket_sendmsg(sock, msg, size);
542 	if (err)
543 		return err;
544 
545 	return sock->ops->sendmsg(iocb, sock, msg, size);
546 }
547 
548 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
549 {
550 	struct kiocb iocb;
551 	struct sock_iocb siocb;
552 	int ret;
553 
554 	init_sync_kiocb(&iocb, NULL);
555 	iocb.private = &siocb;
556 	ret = __sock_sendmsg(&iocb, sock, msg, size);
557 	if (-EIOCBQUEUED == ret)
558 		ret = wait_on_sync_kiocb(&iocb);
559 	return ret;
560 }
561 
562 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
563 		   struct kvec *vec, size_t num, size_t size)
564 {
565 	mm_segment_t oldfs = get_fs();
566 	int result;
567 
568 	set_fs(KERNEL_DS);
569 	/*
570 	 * the following is safe, since for compiler definitions of kvec and
571 	 * iovec are identical, yielding the same in-core layout and alignment
572 	 */
573 	msg->msg_iov = (struct iovec *)vec,
574 	msg->msg_iovlen = num;
575 	result = sock_sendmsg(sock, msg, size);
576 	set_fs(oldfs);
577 	return result;
578 }
579 
580 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
581 				 struct msghdr *msg, size_t size, int flags)
582 {
583 	int err;
584 	struct sock_iocb *si = kiocb_to_siocb(iocb);
585 
586 	si->sock = sock;
587 	si->scm = NULL;
588 	si->msg = msg;
589 	si->size = size;
590 	si->flags = flags;
591 
592 	err = security_socket_recvmsg(sock, msg, size, flags);
593 	if (err)
594 		return err;
595 
596 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
597 }
598 
599 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
600 		 size_t size, int flags)
601 {
602 	struct kiocb iocb;
603 	struct sock_iocb siocb;
604 	int ret;
605 
606         init_sync_kiocb(&iocb, NULL);
607 	iocb.private = &siocb;
608 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
609 	if (-EIOCBQUEUED == ret)
610 		ret = wait_on_sync_kiocb(&iocb);
611 	return ret;
612 }
613 
614 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
615 		   struct kvec *vec, size_t num,
616 		   size_t size, int flags)
617 {
618 	mm_segment_t oldfs = get_fs();
619 	int result;
620 
621 	set_fs(KERNEL_DS);
622 	/*
623 	 * the following is safe, since for compiler definitions of kvec and
624 	 * iovec are identical, yielding the same in-core layout and alignment
625 	 */
626 	msg->msg_iov = (struct iovec *)vec,
627 	msg->msg_iovlen = num;
628 	result = sock_recvmsg(sock, msg, size, flags);
629 	set_fs(oldfs);
630 	return result;
631 }
632 
633 static void sock_aio_dtor(struct kiocb *iocb)
634 {
635 	kfree(iocb->private);
636 }
637 
638 /*
639  *	Read data from a socket. ubuf is a user mode pointer. We make sure the user
640  *	area ubuf...ubuf+size-1 is writable before asking the protocol.
641  */
642 
643 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
644 			 size_t size, loff_t pos)
645 {
646 	struct sock_iocb *x, siocb;
647 	struct socket *sock;
648 	int flags;
649 
650 	if (pos != 0)
651 		return -ESPIPE;
652 	if (size==0)		/* Match SYS5 behaviour */
653 		return 0;
654 
655 	if (is_sync_kiocb(iocb))
656 		x = &siocb;
657 	else {
658 		x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
659 		if (!x)
660 			return -ENOMEM;
661 		iocb->ki_dtor = sock_aio_dtor;
662 	}
663 	iocb->private = x;
664 	x->kiocb = iocb;
665 	sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
666 
667 	x->async_msg.msg_name = NULL;
668 	x->async_msg.msg_namelen = 0;
669 	x->async_msg.msg_iov = &x->async_iov;
670 	x->async_msg.msg_iovlen = 1;
671 	x->async_msg.msg_control = NULL;
672 	x->async_msg.msg_controllen = 0;
673 	x->async_iov.iov_base = ubuf;
674 	x->async_iov.iov_len = size;
675 	flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
676 
677 	return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags);
678 }
679 
680 
681 /*
682  *	Write data to a socket. We verify that the user area ubuf..ubuf+size-1
683  *	is readable by the user process.
684  */
685 
686 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
687 			  size_t size, loff_t pos)
688 {
689 	struct sock_iocb *x, siocb;
690 	struct socket *sock;
691 
692 	if (pos != 0)
693 		return -ESPIPE;
694 	if(size==0)		/* Match SYS5 behaviour */
695 		return 0;
696 
697 	if (is_sync_kiocb(iocb))
698 		x = &siocb;
699 	else {
700 		x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
701 		if (!x)
702 			return -ENOMEM;
703 		iocb->ki_dtor = sock_aio_dtor;
704 	}
705 	iocb->private = x;
706 	x->kiocb = iocb;
707 	sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
708 
709 	x->async_msg.msg_name = NULL;
710 	x->async_msg.msg_namelen = 0;
711 	x->async_msg.msg_iov = &x->async_iov;
712 	x->async_msg.msg_iovlen = 1;
713 	x->async_msg.msg_control = NULL;
714 	x->async_msg.msg_controllen = 0;
715 	x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
716 	if (sock->type == SOCK_SEQPACKET)
717 		x->async_msg.msg_flags |= MSG_EOR;
718 	x->async_iov.iov_base = (void __user *)ubuf;
719 	x->async_iov.iov_len = size;
720 
721 	return __sock_sendmsg(iocb, sock, &x->async_msg, size);
722 }
723 
724 ssize_t sock_sendpage(struct file *file, struct page *page,
725 		      int offset, size_t size, loff_t *ppos, int more)
726 {
727 	struct socket *sock;
728 	int flags;
729 
730 	sock = SOCKET_I(file->f_dentry->d_inode);
731 
732 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
733 	if (more)
734 		flags |= MSG_MORE;
735 
736 	return sock->ops->sendpage(sock, page, offset, size, flags);
737 }
738 
739 static int sock_readv_writev(int type, struct inode * inode,
740 			     struct file * file, const struct iovec * iov,
741 			     long count, size_t size)
742 {
743 	struct msghdr msg;
744 	struct socket *sock;
745 
746 	sock = SOCKET_I(inode);
747 
748 	msg.msg_name = NULL;
749 	msg.msg_namelen = 0;
750 	msg.msg_control = NULL;
751 	msg.msg_controllen = 0;
752 	msg.msg_iov = (struct iovec *) iov;
753 	msg.msg_iovlen = count;
754 	msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
755 
756 	/* read() does a VERIFY_WRITE */
757 	if (type == VERIFY_WRITE)
758 		return sock_recvmsg(sock, &msg, size, msg.msg_flags);
759 
760 	if (sock->type == SOCK_SEQPACKET)
761 		msg.msg_flags |= MSG_EOR;
762 
763 	return sock_sendmsg(sock, &msg, size);
764 }
765 
766 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
767 			  unsigned long count, loff_t *ppos)
768 {
769 	size_t tot_len = 0;
770 	int i;
771         for (i = 0 ; i < count ; i++)
772                 tot_len += vector[i].iov_len;
773 	return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
774 				 file, vector, count, tot_len);
775 }
776 
777 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
778 			   unsigned long count, loff_t *ppos)
779 {
780 	size_t tot_len = 0;
781 	int i;
782         for (i = 0 ; i < count ; i++)
783                 tot_len += vector[i].iov_len;
784 	return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
785 				 file, vector, count, tot_len);
786 }
787 
788 
789 /*
790  * Atomic setting of ioctl hooks to avoid race
791  * with module unload.
792  */
793 
794 static DECLARE_MUTEX(br_ioctl_mutex);
795 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
796 
797 void brioctl_set(int (*hook)(unsigned int, void __user *))
798 {
799 	down(&br_ioctl_mutex);
800 	br_ioctl_hook = hook;
801 	up(&br_ioctl_mutex);
802 }
803 EXPORT_SYMBOL(brioctl_set);
804 
805 static DECLARE_MUTEX(vlan_ioctl_mutex);
806 static int (*vlan_ioctl_hook)(void __user *arg);
807 
808 void vlan_ioctl_set(int (*hook)(void __user *))
809 {
810 	down(&vlan_ioctl_mutex);
811 	vlan_ioctl_hook = hook;
812 	up(&vlan_ioctl_mutex);
813 }
814 EXPORT_SYMBOL(vlan_ioctl_set);
815 
816 static DECLARE_MUTEX(dlci_ioctl_mutex);
817 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
818 
819 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
820 {
821 	down(&dlci_ioctl_mutex);
822 	dlci_ioctl_hook = hook;
823 	up(&dlci_ioctl_mutex);
824 }
825 EXPORT_SYMBOL(dlci_ioctl_set);
826 
827 /*
828  *	With an ioctl, arg may well be a user mode pointer, but we don't know
829  *	what to do with it - that's up to the protocol still.
830  */
831 
832 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
833 {
834 	struct socket *sock;
835 	void __user *argp = (void __user *)arg;
836 	int pid, err;
837 
838 	sock = SOCKET_I(file->f_dentry->d_inode);
839 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
840 		err = dev_ioctl(cmd, argp);
841 	} else
842 #ifdef WIRELESS_EXT
843 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
844 		err = dev_ioctl(cmd, argp);
845 	} else
846 #endif	/* WIRELESS_EXT */
847 	switch (cmd) {
848 		case FIOSETOWN:
849 		case SIOCSPGRP:
850 			err = -EFAULT;
851 			if (get_user(pid, (int __user *)argp))
852 				break;
853 			err = f_setown(sock->file, pid, 1);
854 			break;
855 		case FIOGETOWN:
856 		case SIOCGPGRP:
857 			err = put_user(sock->file->f_owner.pid, (int __user *)argp);
858 			break;
859 		case SIOCGIFBR:
860 		case SIOCSIFBR:
861 		case SIOCBRADDBR:
862 		case SIOCBRDELBR:
863 			err = -ENOPKG;
864 			if (!br_ioctl_hook)
865 				request_module("bridge");
866 
867 			down(&br_ioctl_mutex);
868 			if (br_ioctl_hook)
869 				err = br_ioctl_hook(cmd, argp);
870 			up(&br_ioctl_mutex);
871 			break;
872 		case SIOCGIFVLAN:
873 		case SIOCSIFVLAN:
874 			err = -ENOPKG;
875 			if (!vlan_ioctl_hook)
876 				request_module("8021q");
877 
878 			down(&vlan_ioctl_mutex);
879 			if (vlan_ioctl_hook)
880 				err = vlan_ioctl_hook(argp);
881 			up(&vlan_ioctl_mutex);
882 			break;
883 		case SIOCGIFDIVERT:
884 		case SIOCSIFDIVERT:
885 		/* Convert this to call through a hook */
886 			err = divert_ioctl(cmd, argp);
887 			break;
888 		case SIOCADDDLCI:
889 		case SIOCDELDLCI:
890 			err = -ENOPKG;
891 			if (!dlci_ioctl_hook)
892 				request_module("dlci");
893 
894 			if (dlci_ioctl_hook) {
895 				down(&dlci_ioctl_mutex);
896 				err = dlci_ioctl_hook(cmd, argp);
897 				up(&dlci_ioctl_mutex);
898 			}
899 			break;
900 		default:
901 			err = sock->ops->ioctl(sock, cmd, arg);
902 			break;
903 	}
904 	return err;
905 }
906 
907 int sock_create_lite(int family, int type, int protocol, struct socket **res)
908 {
909 	int err;
910 	struct socket *sock = NULL;
911 
912 	err = security_socket_create(family, type, protocol, 1);
913 	if (err)
914 		goto out;
915 
916 	sock = sock_alloc();
917 	if (!sock) {
918 		err = -ENOMEM;
919 		goto out;
920 	}
921 
922 	security_socket_post_create(sock, family, type, protocol, 1);
923 	sock->type = type;
924 out:
925 	*res = sock;
926 	return err;
927 }
928 
929 /* No kernel lock held - perfect */
930 static unsigned int sock_poll(struct file *file, poll_table * wait)
931 {
932 	struct socket *sock;
933 
934 	/*
935 	 *	We can't return errors to poll, so it's either yes or no.
936 	 */
937 	sock = SOCKET_I(file->f_dentry->d_inode);
938 	return sock->ops->poll(file, sock, wait);
939 }
940 
941 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
942 {
943 	struct socket *sock = SOCKET_I(file->f_dentry->d_inode);
944 
945 	return sock->ops->mmap(file, sock, vma);
946 }
947 
948 int sock_close(struct inode *inode, struct file *filp)
949 {
950 	/*
951 	 *	It was possible the inode is NULL we were
952 	 *	closing an unfinished socket.
953 	 */
954 
955 	if (!inode)
956 	{
957 		printk(KERN_DEBUG "sock_close: NULL inode\n");
958 		return 0;
959 	}
960 	sock_fasync(-1, filp, 0);
961 	sock_release(SOCKET_I(inode));
962 	return 0;
963 }
964 
965 /*
966  *	Update the socket async list
967  *
968  *	Fasync_list locking strategy.
969  *
970  *	1. fasync_list is modified only under process context socket lock
971  *	   i.e. under semaphore.
972  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
973  *	   or under socket lock.
974  *	3. fasync_list can be used from softirq context, so that
975  *	   modification under socket lock have to be enhanced with
976  *	   write_lock_bh(&sk->sk_callback_lock).
977  *							--ANK (990710)
978  */
979 
980 static int sock_fasync(int fd, struct file *filp, int on)
981 {
982 	struct fasync_struct *fa, *fna=NULL, **prev;
983 	struct socket *sock;
984 	struct sock *sk;
985 
986 	if (on)
987 	{
988 		fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
989 		if(fna==NULL)
990 			return -ENOMEM;
991 	}
992 
993 	sock = SOCKET_I(filp->f_dentry->d_inode);
994 
995 	if ((sk=sock->sk) == NULL) {
996 		kfree(fna);
997 		return -EINVAL;
998 	}
999 
1000 	lock_sock(sk);
1001 
1002 	prev=&(sock->fasync_list);
1003 
1004 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1005 		if (fa->fa_file==filp)
1006 			break;
1007 
1008 	if(on)
1009 	{
1010 		if(fa!=NULL)
1011 		{
1012 			write_lock_bh(&sk->sk_callback_lock);
1013 			fa->fa_fd=fd;
1014 			write_unlock_bh(&sk->sk_callback_lock);
1015 
1016 			kfree(fna);
1017 			goto out;
1018 		}
1019 		fna->fa_file=filp;
1020 		fna->fa_fd=fd;
1021 		fna->magic=FASYNC_MAGIC;
1022 		fna->fa_next=sock->fasync_list;
1023 		write_lock_bh(&sk->sk_callback_lock);
1024 		sock->fasync_list=fna;
1025 		write_unlock_bh(&sk->sk_callback_lock);
1026 	}
1027 	else
1028 	{
1029 		if (fa!=NULL)
1030 		{
1031 			write_lock_bh(&sk->sk_callback_lock);
1032 			*prev=fa->fa_next;
1033 			write_unlock_bh(&sk->sk_callback_lock);
1034 			kfree(fa);
1035 		}
1036 	}
1037 
1038 out:
1039 	release_sock(sock->sk);
1040 	return 0;
1041 }
1042 
1043 /* This function may be called only under socket lock or callback_lock */
1044 
1045 int sock_wake_async(struct socket *sock, int how, int band)
1046 {
1047 	if (!sock || !sock->fasync_list)
1048 		return -1;
1049 	switch (how)
1050 	{
1051 	case 1:
1052 
1053 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1054 			break;
1055 		goto call_kill;
1056 	case 2:
1057 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1058 			break;
1059 		/* fall through */
1060 	case 0:
1061 	call_kill:
1062 		__kill_fasync(sock->fasync_list, SIGIO, band);
1063 		break;
1064 	case 3:
1065 		__kill_fasync(sock->fasync_list, SIGURG, band);
1066 	}
1067 	return 0;
1068 }
1069 
1070 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1071 {
1072 	int err;
1073 	struct socket *sock;
1074 
1075 	/*
1076 	 *	Check protocol is in range
1077 	 */
1078 	if (family < 0 || family >= NPROTO)
1079 		return -EAFNOSUPPORT;
1080 	if (type < 0 || type >= SOCK_MAX)
1081 		return -EINVAL;
1082 
1083 	/* Compatibility.
1084 
1085 	   This uglymoron is moved from INET layer to here to avoid
1086 	   deadlock in module load.
1087 	 */
1088 	if (family == PF_INET && type == SOCK_PACKET) {
1089 		static int warned;
1090 		if (!warned) {
1091 			warned = 1;
1092 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1093 		}
1094 		family = PF_PACKET;
1095 	}
1096 
1097 	err = security_socket_create(family, type, protocol, kern);
1098 	if (err)
1099 		return err;
1100 
1101 #if defined(CONFIG_KMOD)
1102 	/* Attempt to load a protocol module if the find failed.
1103 	 *
1104 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1105 	 * requested real, full-featured networking support upon configuration.
1106 	 * Otherwise module support will break!
1107 	 */
1108 	if (net_families[family]==NULL)
1109 	{
1110 		request_module("net-pf-%d",family);
1111 	}
1112 #endif
1113 
1114 	net_family_read_lock();
1115 	if (net_families[family] == NULL) {
1116 		err = -EAFNOSUPPORT;
1117 		goto out;
1118 	}
1119 
1120 /*
1121  *	Allocate the socket and allow the family to set things up. if
1122  *	the protocol is 0, the family is instructed to select an appropriate
1123  *	default.
1124  */
1125 
1126 	if (!(sock = sock_alloc())) {
1127 		printk(KERN_WARNING "socket: no more sockets\n");
1128 		err = -ENFILE;		/* Not exactly a match, but its the
1129 					   closest posix thing */
1130 		goto out;
1131 	}
1132 
1133 	sock->type  = type;
1134 
1135 	/*
1136 	 * We will call the ->create function, that possibly is in a loadable
1137 	 * module, so we have to bump that loadable module refcnt first.
1138 	 */
1139 	err = -EAFNOSUPPORT;
1140 	if (!try_module_get(net_families[family]->owner))
1141 		goto out_release;
1142 
1143 	if ((err = net_families[family]->create(sock, protocol)) < 0)
1144 		goto out_module_put;
1145 	/*
1146 	 * Now to bump the refcnt of the [loadable] module that owns this
1147 	 * socket at sock_release time we decrement its refcnt.
1148 	 */
1149 	if (!try_module_get(sock->ops->owner)) {
1150 		sock->ops = NULL;
1151 		goto out_module_put;
1152 	}
1153 	/*
1154 	 * Now that we're done with the ->create function, the [loadable]
1155 	 * module can have its refcnt decremented
1156 	 */
1157 	module_put(net_families[family]->owner);
1158 	*res = sock;
1159 	security_socket_post_create(sock, family, type, protocol, kern);
1160 
1161 out:
1162 	net_family_read_unlock();
1163 	return err;
1164 out_module_put:
1165 	module_put(net_families[family]->owner);
1166 out_release:
1167 	sock_release(sock);
1168 	goto out;
1169 }
1170 
1171 int sock_create(int family, int type, int protocol, struct socket **res)
1172 {
1173 	return __sock_create(family, type, protocol, res, 0);
1174 }
1175 
1176 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1177 {
1178 	return __sock_create(family, type, protocol, res, 1);
1179 }
1180 
1181 asmlinkage long sys_socket(int family, int type, int protocol)
1182 {
1183 	int retval;
1184 	struct socket *sock;
1185 
1186 	retval = sock_create(family, type, protocol, &sock);
1187 	if (retval < 0)
1188 		goto out;
1189 
1190 	retval = sock_map_fd(sock);
1191 	if (retval < 0)
1192 		goto out_release;
1193 
1194 out:
1195 	/* It may be already another descriptor 8) Not kernel problem. */
1196 	return retval;
1197 
1198 out_release:
1199 	sock_release(sock);
1200 	return retval;
1201 }
1202 
1203 /*
1204  *	Create a pair of connected sockets.
1205  */
1206 
1207 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1208 {
1209 	struct socket *sock1, *sock2;
1210 	int fd1, fd2, err;
1211 
1212 	/*
1213 	 * Obtain the first socket and check if the underlying protocol
1214 	 * supports the socketpair call.
1215 	 */
1216 
1217 	err = sock_create(family, type, protocol, &sock1);
1218 	if (err < 0)
1219 		goto out;
1220 
1221 	err = sock_create(family, type, protocol, &sock2);
1222 	if (err < 0)
1223 		goto out_release_1;
1224 
1225 	err = sock1->ops->socketpair(sock1, sock2);
1226 	if (err < 0)
1227 		goto out_release_both;
1228 
1229 	fd1 = fd2 = -1;
1230 
1231 	err = sock_map_fd(sock1);
1232 	if (err < 0)
1233 		goto out_release_both;
1234 	fd1 = err;
1235 
1236 	err = sock_map_fd(sock2);
1237 	if (err < 0)
1238 		goto out_close_1;
1239 	fd2 = err;
1240 
1241 	/* fd1 and fd2 may be already another descriptors.
1242 	 * Not kernel problem.
1243 	 */
1244 
1245 	err = put_user(fd1, &usockvec[0]);
1246 	if (!err)
1247 		err = put_user(fd2, &usockvec[1]);
1248 	if (!err)
1249 		return 0;
1250 
1251 	sys_close(fd2);
1252 	sys_close(fd1);
1253 	return err;
1254 
1255 out_close_1:
1256         sock_release(sock2);
1257 	sys_close(fd1);
1258 	return err;
1259 
1260 out_release_both:
1261         sock_release(sock2);
1262 out_release_1:
1263         sock_release(sock1);
1264 out:
1265 	return err;
1266 }
1267 
1268 
1269 /*
1270  *	Bind a name to a socket. Nothing much to do here since it's
1271  *	the protocol's responsibility to handle the local address.
1272  *
1273  *	We move the socket address to kernel space before we call
1274  *	the protocol layer (having also checked the address is ok).
1275  */
1276 
1277 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1278 {
1279 	struct socket *sock;
1280 	char address[MAX_SOCK_ADDR];
1281 	int err;
1282 
1283 	if((sock = sockfd_lookup(fd,&err))!=NULL)
1284 	{
1285 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1286 			err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1287 			if (err) {
1288 				sockfd_put(sock);
1289 				return err;
1290 			}
1291 			err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1292 		}
1293 		sockfd_put(sock);
1294 	}
1295 	return err;
1296 }
1297 
1298 
1299 /*
1300  *	Perform a listen. Basically, we allow the protocol to do anything
1301  *	necessary for a listen, and if that works, we mark the socket as
1302  *	ready for listening.
1303  */
1304 
1305 int sysctl_somaxconn = SOMAXCONN;
1306 
1307 asmlinkage long sys_listen(int fd, int backlog)
1308 {
1309 	struct socket *sock;
1310 	int err;
1311 
1312 	if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1313 		if ((unsigned) backlog > sysctl_somaxconn)
1314 			backlog = sysctl_somaxconn;
1315 
1316 		err = security_socket_listen(sock, backlog);
1317 		if (err) {
1318 			sockfd_put(sock);
1319 			return err;
1320 		}
1321 
1322 		err=sock->ops->listen(sock, backlog);
1323 		sockfd_put(sock);
1324 	}
1325 	return err;
1326 }
1327 
1328 
1329 /*
1330  *	For accept, we attempt to create a new socket, set up the link
1331  *	with the client, wake up the client, then return the new
1332  *	connected fd. We collect the address of the connector in kernel
1333  *	space and move it to user at the very end. This is unclean because
1334  *	we open the socket then return an error.
1335  *
1336  *	1003.1g adds the ability to recvmsg() to query connection pending
1337  *	status to recvmsg. We need to add that support in a way thats
1338  *	clean when we restucture accept also.
1339  */
1340 
1341 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1342 {
1343 	struct socket *sock, *newsock;
1344 	int err, len;
1345 	char address[MAX_SOCK_ADDR];
1346 
1347 	sock = sockfd_lookup(fd, &err);
1348 	if (!sock)
1349 		goto out;
1350 
1351 	err = -ENFILE;
1352 	if (!(newsock = sock_alloc()))
1353 		goto out_put;
1354 
1355 	newsock->type = sock->type;
1356 	newsock->ops = sock->ops;
1357 
1358 	err = security_socket_accept(sock, newsock);
1359 	if (err)
1360 		goto out_release;
1361 
1362 	/*
1363 	 * We don't need try_module_get here, as the listening socket (sock)
1364 	 * has the protocol module (sock->ops->owner) held.
1365 	 */
1366 	__module_get(newsock->ops->owner);
1367 
1368 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1369 	if (err < 0)
1370 		goto out_release;
1371 
1372 	if (upeer_sockaddr) {
1373 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1374 			err = -ECONNABORTED;
1375 			goto out_release;
1376 		}
1377 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1378 		if (err < 0)
1379 			goto out_release;
1380 	}
1381 
1382 	/* File flags are not inherited via accept() unlike another OSes. */
1383 
1384 	if ((err = sock_map_fd(newsock)) < 0)
1385 		goto out_release;
1386 
1387 	security_socket_post_accept(sock, newsock);
1388 
1389 out_put:
1390 	sockfd_put(sock);
1391 out:
1392 	return err;
1393 out_release:
1394 	sock_release(newsock);
1395 	goto out_put;
1396 }
1397 
1398 
1399 /*
1400  *	Attempt to connect to a socket with the server address.  The address
1401  *	is in user space so we verify it is OK and move it to kernel space.
1402  *
1403  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1404  *	break bindings
1405  *
1406  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1407  *	other SEQPACKET protocols that take time to connect() as it doesn't
1408  *	include the -EINPROGRESS status for such sockets.
1409  */
1410 
1411 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1412 {
1413 	struct socket *sock;
1414 	char address[MAX_SOCK_ADDR];
1415 	int err;
1416 
1417 	sock = sockfd_lookup(fd, &err);
1418 	if (!sock)
1419 		goto out;
1420 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1421 	if (err < 0)
1422 		goto out_put;
1423 
1424 	err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1425 	if (err)
1426 		goto out_put;
1427 
1428 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1429 				 sock->file->f_flags);
1430 out_put:
1431 	sockfd_put(sock);
1432 out:
1433 	return err;
1434 }
1435 
1436 /*
1437  *	Get the local address ('name') of a socket object. Move the obtained
1438  *	name to user space.
1439  */
1440 
1441 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1442 {
1443 	struct socket *sock;
1444 	char address[MAX_SOCK_ADDR];
1445 	int len, err;
1446 
1447 	sock = sockfd_lookup(fd, &err);
1448 	if (!sock)
1449 		goto out;
1450 
1451 	err = security_socket_getsockname(sock);
1452 	if (err)
1453 		goto out_put;
1454 
1455 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1456 	if (err)
1457 		goto out_put;
1458 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1459 
1460 out_put:
1461 	sockfd_put(sock);
1462 out:
1463 	return err;
1464 }
1465 
1466 /*
1467  *	Get the remote address ('name') of a socket object. Move the obtained
1468  *	name to user space.
1469  */
1470 
1471 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1472 {
1473 	struct socket *sock;
1474 	char address[MAX_SOCK_ADDR];
1475 	int len, err;
1476 
1477 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1478 	{
1479 		err = security_socket_getpeername(sock);
1480 		if (err) {
1481 			sockfd_put(sock);
1482 			return err;
1483 		}
1484 
1485 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1486 		if (!err)
1487 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1488 		sockfd_put(sock);
1489 	}
1490 	return err;
1491 }
1492 
1493 /*
1494  *	Send a datagram to a given address. We move the address into kernel
1495  *	space and check the user space data area is readable before invoking
1496  *	the protocol.
1497  */
1498 
1499 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1500 			   struct sockaddr __user *addr, int addr_len)
1501 {
1502 	struct socket *sock;
1503 	char address[MAX_SOCK_ADDR];
1504 	int err;
1505 	struct msghdr msg;
1506 	struct iovec iov;
1507 
1508 	sock = sockfd_lookup(fd, &err);
1509 	if (!sock)
1510 		goto out;
1511 	iov.iov_base=buff;
1512 	iov.iov_len=len;
1513 	msg.msg_name=NULL;
1514 	msg.msg_iov=&iov;
1515 	msg.msg_iovlen=1;
1516 	msg.msg_control=NULL;
1517 	msg.msg_controllen=0;
1518 	msg.msg_namelen=0;
1519 	if(addr)
1520 	{
1521 		err = move_addr_to_kernel(addr, addr_len, address);
1522 		if (err < 0)
1523 			goto out_put;
1524 		msg.msg_name=address;
1525 		msg.msg_namelen=addr_len;
1526 	}
1527 	if (sock->file->f_flags & O_NONBLOCK)
1528 		flags |= MSG_DONTWAIT;
1529 	msg.msg_flags = flags;
1530 	err = sock_sendmsg(sock, &msg, len);
1531 
1532 out_put:
1533 	sockfd_put(sock);
1534 out:
1535 	return err;
1536 }
1537 
1538 /*
1539  *	Send a datagram down a socket.
1540  */
1541 
1542 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1543 {
1544 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1545 }
1546 
1547 /*
1548  *	Receive a frame from the socket and optionally record the address of the
1549  *	sender. We verify the buffers are writable and if needed move the
1550  *	sender address from kernel to user space.
1551  */
1552 
1553 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1554 			     struct sockaddr __user *addr, int __user *addr_len)
1555 {
1556 	struct socket *sock;
1557 	struct iovec iov;
1558 	struct msghdr msg;
1559 	char address[MAX_SOCK_ADDR];
1560 	int err,err2;
1561 
1562 	sock = sockfd_lookup(fd, &err);
1563 	if (!sock)
1564 		goto out;
1565 
1566 	msg.msg_control=NULL;
1567 	msg.msg_controllen=0;
1568 	msg.msg_iovlen=1;
1569 	msg.msg_iov=&iov;
1570 	iov.iov_len=size;
1571 	iov.iov_base=ubuf;
1572 	msg.msg_name=address;
1573 	msg.msg_namelen=MAX_SOCK_ADDR;
1574 	if (sock->file->f_flags & O_NONBLOCK)
1575 		flags |= MSG_DONTWAIT;
1576 	err=sock_recvmsg(sock, &msg, size, flags);
1577 
1578 	if(err >= 0 && addr != NULL)
1579 	{
1580 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1581 		if(err2<0)
1582 			err=err2;
1583 	}
1584 	sockfd_put(sock);
1585 out:
1586 	return err;
1587 }
1588 
1589 /*
1590  *	Receive a datagram from a socket.
1591  */
1592 
1593 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1594 {
1595 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1596 }
1597 
1598 /*
1599  *	Set a socket option. Because we don't know the option lengths we have
1600  *	to pass the user mode parameter for the protocols to sort out.
1601  */
1602 
1603 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1604 {
1605 	int err;
1606 	struct socket *sock;
1607 
1608 	if (optlen < 0)
1609 		return -EINVAL;
1610 
1611 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1612 	{
1613 		err = security_socket_setsockopt(sock,level,optname);
1614 		if (err) {
1615 			sockfd_put(sock);
1616 			return err;
1617 		}
1618 
1619 		if (level == SOL_SOCKET)
1620 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1621 		else
1622 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1623 		sockfd_put(sock);
1624 	}
1625 	return err;
1626 }
1627 
1628 /*
1629  *	Get a socket option. Because we don't know the option lengths we have
1630  *	to pass a user mode parameter for the protocols to sort out.
1631  */
1632 
1633 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1634 {
1635 	int err;
1636 	struct socket *sock;
1637 
1638 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1639 	{
1640 		err = security_socket_getsockopt(sock, level,
1641 							   optname);
1642 		if (err) {
1643 			sockfd_put(sock);
1644 			return err;
1645 		}
1646 
1647 		if (level == SOL_SOCKET)
1648 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1649 		else
1650 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1651 		sockfd_put(sock);
1652 	}
1653 	return err;
1654 }
1655 
1656 
1657 /*
1658  *	Shutdown a socket.
1659  */
1660 
1661 asmlinkage long sys_shutdown(int fd, int how)
1662 {
1663 	int err;
1664 	struct socket *sock;
1665 
1666 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1667 	{
1668 		err = security_socket_shutdown(sock, how);
1669 		if (err) {
1670 			sockfd_put(sock);
1671 			return err;
1672 		}
1673 
1674 		err=sock->ops->shutdown(sock, how);
1675 		sockfd_put(sock);
1676 	}
1677 	return err;
1678 }
1679 
1680 /* A couple of helpful macros for getting the address of the 32/64 bit
1681  * fields which are the same type (int / unsigned) on our platforms.
1682  */
1683 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1684 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1685 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1686 
1687 
1688 /*
1689  *	BSD sendmsg interface
1690  */
1691 
1692 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1693 {
1694 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1695 	struct socket *sock;
1696 	char address[MAX_SOCK_ADDR];
1697 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1698 	unsigned char ctl[sizeof(struct cmsghdr) + 20];	/* 20 is size of ipv6_pktinfo */
1699 	unsigned char *ctl_buf = ctl;
1700 	struct msghdr msg_sys;
1701 	int err, ctl_len, iov_size, total_len;
1702 
1703 	err = -EFAULT;
1704 	if (MSG_CMSG_COMPAT & flags) {
1705 		if (get_compat_msghdr(&msg_sys, msg_compat))
1706 			return -EFAULT;
1707 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1708 		return -EFAULT;
1709 
1710 	sock = sockfd_lookup(fd, &err);
1711 	if (!sock)
1712 		goto out;
1713 
1714 	/* do not move before msg_sys is valid */
1715 	err = -EMSGSIZE;
1716 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1717 		goto out_put;
1718 
1719 	/* Check whether to allocate the iovec area*/
1720 	err = -ENOMEM;
1721 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1722 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1723 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1724 		if (!iov)
1725 			goto out_put;
1726 	}
1727 
1728 	/* This will also move the address data into kernel space */
1729 	if (MSG_CMSG_COMPAT & flags) {
1730 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1731 	} else
1732 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1733 	if (err < 0)
1734 		goto out_freeiov;
1735 	total_len = err;
1736 
1737 	err = -ENOBUFS;
1738 
1739 	if (msg_sys.msg_controllen > INT_MAX)
1740 		goto out_freeiov;
1741 	ctl_len = msg_sys.msg_controllen;
1742 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1743 		err = cmsghdr_from_user_compat_to_kern(&msg_sys, ctl, sizeof(ctl));
1744 		if (err)
1745 			goto out_freeiov;
1746 		ctl_buf = msg_sys.msg_control;
1747 	} else if (ctl_len) {
1748 		if (ctl_len > sizeof(ctl))
1749 		{
1750 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1751 			if (ctl_buf == NULL)
1752 				goto out_freeiov;
1753 		}
1754 		err = -EFAULT;
1755 		/*
1756 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1757 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1758 		 * checking falls down on this.
1759 		 */
1760 		if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1761 			goto out_freectl;
1762 		msg_sys.msg_control = ctl_buf;
1763 	}
1764 	msg_sys.msg_flags = flags;
1765 
1766 	if (sock->file->f_flags & O_NONBLOCK)
1767 		msg_sys.msg_flags |= MSG_DONTWAIT;
1768 	err = sock_sendmsg(sock, &msg_sys, total_len);
1769 
1770 out_freectl:
1771 	if (ctl_buf != ctl)
1772 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1773 out_freeiov:
1774 	if (iov != iovstack)
1775 		sock_kfree_s(sock->sk, iov, iov_size);
1776 out_put:
1777 	sockfd_put(sock);
1778 out:
1779 	return err;
1780 }
1781 
1782 /*
1783  *	BSD recvmsg interface
1784  */
1785 
1786 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1787 {
1788 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1789 	struct socket *sock;
1790 	struct iovec iovstack[UIO_FASTIOV];
1791 	struct iovec *iov=iovstack;
1792 	struct msghdr msg_sys;
1793 	unsigned long cmsg_ptr;
1794 	int err, iov_size, total_len, len;
1795 
1796 	/* kernel mode address */
1797 	char addr[MAX_SOCK_ADDR];
1798 
1799 	/* user mode address pointers */
1800 	struct sockaddr __user *uaddr;
1801 	int __user *uaddr_len;
1802 
1803 	if (MSG_CMSG_COMPAT & flags) {
1804 		if (get_compat_msghdr(&msg_sys, msg_compat))
1805 			return -EFAULT;
1806 	} else
1807 		if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1808 			return -EFAULT;
1809 
1810 	sock = sockfd_lookup(fd, &err);
1811 	if (!sock)
1812 		goto out;
1813 
1814 	err = -EMSGSIZE;
1815 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1816 		goto out_put;
1817 
1818 	/* Check whether to allocate the iovec area*/
1819 	err = -ENOMEM;
1820 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1821 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1822 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1823 		if (!iov)
1824 			goto out_put;
1825 	}
1826 
1827 	/*
1828 	 *	Save the user-mode address (verify_iovec will change the
1829 	 *	kernel msghdr to use the kernel address space)
1830 	 */
1831 
1832 	uaddr = (void __user *) msg_sys.msg_name;
1833 	uaddr_len = COMPAT_NAMELEN(msg);
1834 	if (MSG_CMSG_COMPAT & flags) {
1835 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1836 	} else
1837 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1838 	if (err < 0)
1839 		goto out_freeiov;
1840 	total_len=err;
1841 
1842 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1843 	msg_sys.msg_flags = 0;
1844 	if (MSG_CMSG_COMPAT & flags)
1845 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1846 
1847 	if (sock->file->f_flags & O_NONBLOCK)
1848 		flags |= MSG_DONTWAIT;
1849 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1850 	if (err < 0)
1851 		goto out_freeiov;
1852 	len = err;
1853 
1854 	if (uaddr != NULL) {
1855 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1856 		if (err < 0)
1857 			goto out_freeiov;
1858 	}
1859 	err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg));
1860 	if (err)
1861 		goto out_freeiov;
1862 	if (MSG_CMSG_COMPAT & flags)
1863 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1864 				 &msg_compat->msg_controllen);
1865 	else
1866 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1867 				 &msg->msg_controllen);
1868 	if (err)
1869 		goto out_freeiov;
1870 	err = len;
1871 
1872 out_freeiov:
1873 	if (iov != iovstack)
1874 		sock_kfree_s(sock->sk, iov, iov_size);
1875 out_put:
1876 	sockfd_put(sock);
1877 out:
1878 	return err;
1879 }
1880 
1881 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1882 
1883 /* Argument list sizes for sys_socketcall */
1884 #define AL(x) ((x) * sizeof(unsigned long))
1885 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1886 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1887 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1888 #undef AL
1889 
1890 /*
1891  *	System call vectors.
1892  *
1893  *	Argument checking cleaned up. Saved 20% in size.
1894  *  This function doesn't need to set the kernel lock because
1895  *  it is set by the callees.
1896  */
1897 
1898 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1899 {
1900 	unsigned long a[6];
1901 	unsigned long a0,a1;
1902 	int err;
1903 
1904 	if(call<1||call>SYS_RECVMSG)
1905 		return -EINVAL;
1906 
1907 	/* copy_from_user should be SMP safe. */
1908 	if (copy_from_user(a, args, nargs[call]))
1909 		return -EFAULT;
1910 
1911 	err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1912 	if (err)
1913 		return err;
1914 
1915 	a0=a[0];
1916 	a1=a[1];
1917 
1918 	switch(call)
1919 	{
1920 		case SYS_SOCKET:
1921 			err = sys_socket(a0,a1,a[2]);
1922 			break;
1923 		case SYS_BIND:
1924 			err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1925 			break;
1926 		case SYS_CONNECT:
1927 			err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1928 			break;
1929 		case SYS_LISTEN:
1930 			err = sys_listen(a0,a1);
1931 			break;
1932 		case SYS_ACCEPT:
1933 			err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1934 			break;
1935 		case SYS_GETSOCKNAME:
1936 			err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1937 			break;
1938 		case SYS_GETPEERNAME:
1939 			err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1940 			break;
1941 		case SYS_SOCKETPAIR:
1942 			err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1943 			break;
1944 		case SYS_SEND:
1945 			err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1946 			break;
1947 		case SYS_SENDTO:
1948 			err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1949 					 (struct sockaddr __user *)a[4], a[5]);
1950 			break;
1951 		case SYS_RECV:
1952 			err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1953 			break;
1954 		case SYS_RECVFROM:
1955 			err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1956 					   (struct sockaddr __user *)a[4], (int __user *)a[5]);
1957 			break;
1958 		case SYS_SHUTDOWN:
1959 			err = sys_shutdown(a0,a1);
1960 			break;
1961 		case SYS_SETSOCKOPT:
1962 			err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
1963 			break;
1964 		case SYS_GETSOCKOPT:
1965 			err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
1966 			break;
1967 		case SYS_SENDMSG:
1968 			err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
1969 			break;
1970 		case SYS_RECVMSG:
1971 			err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
1972 			break;
1973 		default:
1974 			err = -EINVAL;
1975 			break;
1976 	}
1977 	return err;
1978 }
1979 
1980 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
1981 
1982 /*
1983  *	This function is called by a protocol handler that wants to
1984  *	advertise its address family, and have it linked into the
1985  *	SOCKET module.
1986  */
1987 
1988 int sock_register(struct net_proto_family *ops)
1989 {
1990 	int err;
1991 
1992 	if (ops->family >= NPROTO) {
1993 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1994 		return -ENOBUFS;
1995 	}
1996 	net_family_write_lock();
1997 	err = -EEXIST;
1998 	if (net_families[ops->family] == NULL) {
1999 		net_families[ops->family]=ops;
2000 		err = 0;
2001 	}
2002 	net_family_write_unlock();
2003 	printk(KERN_INFO "NET: Registered protocol family %d\n",
2004 	       ops->family);
2005 	return err;
2006 }
2007 
2008 /*
2009  *	This function is called by a protocol handler that wants to
2010  *	remove its address family, and have it unlinked from the
2011  *	SOCKET module.
2012  */
2013 
2014 int sock_unregister(int family)
2015 {
2016 	if (family < 0 || family >= NPROTO)
2017 		return -1;
2018 
2019 	net_family_write_lock();
2020 	net_families[family]=NULL;
2021 	net_family_write_unlock();
2022 	printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2023 	       family);
2024 	return 0;
2025 }
2026 
2027 
2028 extern void sk_init(void);
2029 
2030 void __init sock_init(void)
2031 {
2032 	/*
2033 	 *	Initialize sock SLAB cache.
2034 	 */
2035 
2036 	sk_init();
2037 
2038 #ifdef SLAB_SKB
2039 	/*
2040 	 *	Initialize skbuff SLAB cache
2041 	 */
2042 	skb_init();
2043 #endif
2044 
2045 	/*
2046 	 *	Initialize the protocols module.
2047 	 */
2048 
2049 	init_inodecache();
2050 	register_filesystem(&sock_fs_type);
2051 	sock_mnt = kern_mount(&sock_fs_type);
2052 	/* The real protocol initialization is performed when
2053 	 *  do_initcalls is run.
2054 	 */
2055 
2056 #ifdef CONFIG_NETFILTER
2057 	netfilter_init();
2058 #endif
2059 }
2060 
2061 #ifdef CONFIG_PROC_FS
2062 void socket_seq_show(struct seq_file *seq)
2063 {
2064 	int cpu;
2065 	int counter = 0;
2066 
2067 	for (cpu = 0; cpu < NR_CPUS; cpu++)
2068 		counter += per_cpu(sockets_in_use, cpu);
2069 
2070 	/* It can be negative, by the way. 8) */
2071 	if (counter < 0)
2072 		counter = 0;
2073 
2074 	seq_printf(seq, "sockets: used %d\n", counter);
2075 }
2076 #endif /* CONFIG_PROC_FS */
2077 
2078 /* ABI emulation layers need these two */
2079 EXPORT_SYMBOL(move_addr_to_kernel);
2080 EXPORT_SYMBOL(move_addr_to_user);
2081 EXPORT_SYMBOL(sock_create);
2082 EXPORT_SYMBOL(sock_create_kern);
2083 EXPORT_SYMBOL(sock_create_lite);
2084 EXPORT_SYMBOL(sock_map_fd);
2085 EXPORT_SYMBOL(sock_recvmsg);
2086 EXPORT_SYMBOL(sock_register);
2087 EXPORT_SYMBOL(sock_release);
2088 EXPORT_SYMBOL(sock_sendmsg);
2089 EXPORT_SYMBOL(sock_unregister);
2090 EXPORT_SYMBOL(sock_wake_async);
2091 EXPORT_SYMBOL(sockfd_lookup);
2092 EXPORT_SYMBOL(kernel_sendmsg);
2093 EXPORT_SYMBOL(kernel_recvmsg);
2094