1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396 { 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) { 410 sock_release(sock); 411 return ERR_PTR(-ENOMEM); 412 } 413 path.mnt = mntget(sock_mnt); 414 415 d_instantiate(path.dentry, SOCK_INODE(sock)); 416 417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 418 &socket_file_ops); 419 if (IS_ERR(file)) { 420 /* drop dentry, keep inode for a bit */ 421 ihold(d_inode(path.dentry)); 422 path_put(&path); 423 /* ... and now kill it properly */ 424 sock_release(sock); 425 return file; 426 } 427 428 sock->file = file; 429 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 430 file->private_data = sock; 431 return file; 432 } 433 EXPORT_SYMBOL(sock_alloc_file); 434 435 static int sock_map_fd(struct socket *sock, int flags) 436 { 437 struct file *newfile; 438 int fd = get_unused_fd_flags(flags); 439 if (unlikely(fd < 0)) 440 return fd; 441 442 newfile = sock_alloc_file(sock, flags, NULL); 443 if (likely(!IS_ERR(newfile))) { 444 fd_install(fd, newfile); 445 return fd; 446 } 447 448 put_unused_fd(fd); 449 return PTR_ERR(newfile); 450 } 451 452 struct socket *sock_from_file(struct file *file, int *err) 453 { 454 if (file->f_op == &socket_file_ops) 455 return file->private_data; /* set in sock_map_fd */ 456 457 *err = -ENOTSOCK; 458 return NULL; 459 } 460 EXPORT_SYMBOL(sock_from_file); 461 462 /** 463 * sockfd_lookup - Go from a file number to its socket slot 464 * @fd: file handle 465 * @err: pointer to an error code return 466 * 467 * The file handle passed in is locked and the socket it is bound 468 * to is returned. If an error occurs the err pointer is overwritten 469 * with a negative errno code and NULL is returned. The function checks 470 * for both invalid handles and passing a handle which is not a socket. 471 * 472 * On a success the socket object pointer is returned. 473 */ 474 475 struct socket *sockfd_lookup(int fd, int *err) 476 { 477 struct file *file; 478 struct socket *sock; 479 480 file = fget(fd); 481 if (!file) { 482 *err = -EBADF; 483 return NULL; 484 } 485 486 sock = sock_from_file(file, err); 487 if (!sock) 488 fput(file); 489 return sock; 490 } 491 EXPORT_SYMBOL(sockfd_lookup); 492 493 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 494 { 495 struct fd f = fdget(fd); 496 struct socket *sock; 497 498 *err = -EBADF; 499 if (f.file) { 500 sock = sock_from_file(f.file, err); 501 if (likely(sock)) { 502 *fput_needed = f.flags; 503 return sock; 504 } 505 fdput(f); 506 } 507 return NULL; 508 } 509 510 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 511 size_t size) 512 { 513 ssize_t len; 514 ssize_t used = 0; 515 516 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 517 if (len < 0) 518 return len; 519 used += len; 520 if (buffer) { 521 if (size < used) 522 return -ERANGE; 523 buffer += len; 524 } 525 526 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 527 used += len; 528 if (buffer) { 529 if (size < used) 530 return -ERANGE; 531 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 532 buffer += len; 533 } 534 535 return used; 536 } 537 538 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 539 { 540 int err = simple_setattr(dentry, iattr); 541 542 if (!err && (iattr->ia_valid & ATTR_UID)) { 543 struct socket *sock = SOCKET_I(d_inode(dentry)); 544 545 sock->sk->sk_uid = iattr->ia_uid; 546 } 547 548 return err; 549 } 550 551 static const struct inode_operations sockfs_inode_ops = { 552 .listxattr = sockfs_listxattr, 553 .setattr = sockfs_setattr, 554 }; 555 556 /** 557 * sock_alloc - allocate a socket 558 * 559 * Allocate a new inode and socket object. The two are bound together 560 * and initialised. The socket is then returned. If we are out of inodes 561 * NULL is returned. 562 */ 563 564 struct socket *sock_alloc(void) 565 { 566 struct inode *inode; 567 struct socket *sock; 568 569 inode = new_inode_pseudo(sock_mnt->mnt_sb); 570 if (!inode) 571 return NULL; 572 573 sock = SOCKET_I(inode); 574 575 inode->i_ino = get_next_ino(); 576 inode->i_mode = S_IFSOCK | S_IRWXUGO; 577 inode->i_uid = current_fsuid(); 578 inode->i_gid = current_fsgid(); 579 inode->i_op = &sockfs_inode_ops; 580 581 this_cpu_add(sockets_in_use, 1); 582 return sock; 583 } 584 EXPORT_SYMBOL(sock_alloc); 585 586 /** 587 * sock_release - close a socket 588 * @sock: socket to close 589 * 590 * The socket is released from the protocol stack if it has a release 591 * callback, and the inode is then released if the socket is bound to 592 * an inode not a file. 593 */ 594 595 void sock_release(struct socket *sock) 596 { 597 if (sock->ops) { 598 struct module *owner = sock->ops->owner; 599 600 sock->ops->release(sock); 601 sock->ops = NULL; 602 module_put(owner); 603 } 604 605 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 606 pr_err("%s: fasync list not empty!\n", __func__); 607 608 this_cpu_sub(sockets_in_use, 1); 609 if (!sock->file) { 610 iput(SOCK_INODE(sock)); 611 return; 612 } 613 sock->file = NULL; 614 } 615 EXPORT_SYMBOL(sock_release); 616 617 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 618 { 619 u8 flags = *tx_flags; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 622 flags |= SKBTX_HW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 625 flags |= SKBTX_SW_TSTAMP; 626 627 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 628 flags |= SKBTX_SCHED_TSTAMP; 629 630 *tx_flags = flags; 631 } 632 EXPORT_SYMBOL(__sock_tx_timestamp); 633 634 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 635 { 636 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 637 BUG_ON(ret == -EIOCBQUEUED); 638 return ret; 639 } 640 641 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 642 { 643 int err = security_socket_sendmsg(sock, msg, 644 msg_data_left(msg)); 645 646 return err ?: sock_sendmsg_nosec(sock, msg); 647 } 648 EXPORT_SYMBOL(sock_sendmsg); 649 650 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 651 struct kvec *vec, size_t num, size_t size) 652 { 653 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 654 return sock_sendmsg(sock, msg); 655 } 656 EXPORT_SYMBOL(kernel_sendmsg); 657 658 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 659 struct kvec *vec, size_t num, size_t size) 660 { 661 struct socket *sock = sk->sk_socket; 662 663 if (!sock->ops->sendmsg_locked) 664 return sock_no_sendmsg_locked(sk, msg, size); 665 666 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 667 668 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 669 } 670 EXPORT_SYMBOL(kernel_sendmsg_locked); 671 672 static bool skb_is_err_queue(const struct sk_buff *skb) 673 { 674 /* pkt_type of skbs enqueued on the error queue are set to 675 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 676 * in recvmsg, since skbs received on a local socket will never 677 * have a pkt_type of PACKET_OUTGOING. 678 */ 679 return skb->pkt_type == PACKET_OUTGOING; 680 } 681 682 /* On transmit, software and hardware timestamps are returned independently. 683 * As the two skb clones share the hardware timestamp, which may be updated 684 * before the software timestamp is received, a hardware TX timestamp may be 685 * returned only if there is no software TX timestamp. Ignore false software 686 * timestamps, which may be made in the __sock_recv_timestamp() call when the 687 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 688 * hardware timestamp. 689 */ 690 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 691 { 692 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 693 } 694 695 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 696 { 697 struct scm_ts_pktinfo ts_pktinfo; 698 struct net_device *orig_dev; 699 700 if (!skb_mac_header_was_set(skb)) 701 return; 702 703 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 704 705 rcu_read_lock(); 706 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 707 if (orig_dev) 708 ts_pktinfo.if_index = orig_dev->ifindex; 709 rcu_read_unlock(); 710 711 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 712 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 713 sizeof(ts_pktinfo), &ts_pktinfo); 714 } 715 716 /* 717 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 718 */ 719 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 720 struct sk_buff *skb) 721 { 722 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 723 struct scm_timestamping tss; 724 int empty = 1, false_tstamp = 0; 725 struct skb_shared_hwtstamps *shhwtstamps = 726 skb_hwtstamps(skb); 727 728 /* Race occurred between timestamp enabling and packet 729 receiving. Fill in the current time for now. */ 730 if (need_software_tstamp && skb->tstamp == 0) { 731 __net_timestamp(skb); 732 false_tstamp = 1; 733 } 734 735 if (need_software_tstamp) { 736 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 737 struct timeval tv; 738 skb_get_timestamp(skb, &tv); 739 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 740 sizeof(tv), &tv); 741 } else { 742 struct timespec ts; 743 skb_get_timestampns(skb, &ts); 744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 745 sizeof(ts), &ts); 746 } 747 } 748 749 memset(&tss, 0, sizeof(tss)); 750 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 751 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 752 empty = 0; 753 if (shhwtstamps && 754 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 755 !skb_is_swtx_tstamp(skb, false_tstamp) && 756 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 757 empty = 0; 758 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 759 !skb_is_err_queue(skb)) 760 put_ts_pktinfo(msg, skb); 761 } 762 if (!empty) { 763 put_cmsg(msg, SOL_SOCKET, 764 SCM_TIMESTAMPING, sizeof(tss), &tss); 765 766 if (skb_is_err_queue(skb) && skb->len && 767 SKB_EXT_ERR(skb)->opt_stats) 768 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 769 skb->len, skb->data); 770 } 771 } 772 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 773 774 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 775 struct sk_buff *skb) 776 { 777 int ack; 778 779 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 780 return; 781 if (!skb->wifi_acked_valid) 782 return; 783 784 ack = skb->wifi_acked; 785 786 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 787 } 788 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 789 790 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 791 struct sk_buff *skb) 792 { 793 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 794 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 795 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 796 } 797 798 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 799 struct sk_buff *skb) 800 { 801 sock_recv_timestamp(msg, sk, skb); 802 sock_recv_drops(msg, sk, skb); 803 } 804 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 805 806 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 807 int flags) 808 { 809 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 810 } 811 812 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 813 { 814 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 815 816 return err ?: sock_recvmsg_nosec(sock, msg, flags); 817 } 818 EXPORT_SYMBOL(sock_recvmsg); 819 820 /** 821 * kernel_recvmsg - Receive a message from a socket (kernel space) 822 * @sock: The socket to receive the message from 823 * @msg: Received message 824 * @vec: Input s/g array for message data 825 * @num: Size of input s/g array 826 * @size: Number of bytes to read 827 * @flags: Message flags (MSG_DONTWAIT, etc...) 828 * 829 * On return the msg structure contains the scatter/gather array passed in the 830 * vec argument. The array is modified so that it consists of the unfilled 831 * portion of the original array. 832 * 833 * The returned value is the total number of bytes received, or an error. 834 */ 835 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 836 struct kvec *vec, size_t num, size_t size, int flags) 837 { 838 mm_segment_t oldfs = get_fs(); 839 int result; 840 841 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 842 set_fs(KERNEL_DS); 843 result = sock_recvmsg(sock, msg, flags); 844 set_fs(oldfs); 845 return result; 846 } 847 EXPORT_SYMBOL(kernel_recvmsg); 848 849 static ssize_t sock_sendpage(struct file *file, struct page *page, 850 int offset, size_t size, loff_t *ppos, int more) 851 { 852 struct socket *sock; 853 int flags; 854 855 sock = file->private_data; 856 857 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 858 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 859 flags |= more; 860 861 return kernel_sendpage(sock, page, offset, size, flags); 862 } 863 864 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 865 struct pipe_inode_info *pipe, size_t len, 866 unsigned int flags) 867 { 868 struct socket *sock = file->private_data; 869 870 if (unlikely(!sock->ops->splice_read)) 871 return -EINVAL; 872 873 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 874 } 875 876 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 877 { 878 struct file *file = iocb->ki_filp; 879 struct socket *sock = file->private_data; 880 struct msghdr msg = {.msg_iter = *to, 881 .msg_iocb = iocb}; 882 ssize_t res; 883 884 if (file->f_flags & O_NONBLOCK) 885 msg.msg_flags = MSG_DONTWAIT; 886 887 if (iocb->ki_pos != 0) 888 return -ESPIPE; 889 890 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 891 return 0; 892 893 res = sock_recvmsg(sock, &msg, msg.msg_flags); 894 *to = msg.msg_iter; 895 return res; 896 } 897 898 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 899 { 900 struct file *file = iocb->ki_filp; 901 struct socket *sock = file->private_data; 902 struct msghdr msg = {.msg_iter = *from, 903 .msg_iocb = iocb}; 904 ssize_t res; 905 906 if (iocb->ki_pos != 0) 907 return -ESPIPE; 908 909 if (file->f_flags & O_NONBLOCK) 910 msg.msg_flags = MSG_DONTWAIT; 911 912 if (sock->type == SOCK_SEQPACKET) 913 msg.msg_flags |= MSG_EOR; 914 915 res = sock_sendmsg(sock, &msg); 916 *from = msg.msg_iter; 917 return res; 918 } 919 920 /* 921 * Atomic setting of ioctl hooks to avoid race 922 * with module unload. 923 */ 924 925 static DEFINE_MUTEX(br_ioctl_mutex); 926 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 927 928 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 929 { 930 mutex_lock(&br_ioctl_mutex); 931 br_ioctl_hook = hook; 932 mutex_unlock(&br_ioctl_mutex); 933 } 934 EXPORT_SYMBOL(brioctl_set); 935 936 static DEFINE_MUTEX(vlan_ioctl_mutex); 937 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 938 939 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 940 { 941 mutex_lock(&vlan_ioctl_mutex); 942 vlan_ioctl_hook = hook; 943 mutex_unlock(&vlan_ioctl_mutex); 944 } 945 EXPORT_SYMBOL(vlan_ioctl_set); 946 947 static DEFINE_MUTEX(dlci_ioctl_mutex); 948 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 949 950 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 951 { 952 mutex_lock(&dlci_ioctl_mutex); 953 dlci_ioctl_hook = hook; 954 mutex_unlock(&dlci_ioctl_mutex); 955 } 956 EXPORT_SYMBOL(dlci_ioctl_set); 957 958 static long sock_do_ioctl(struct net *net, struct socket *sock, 959 unsigned int cmd, unsigned long arg) 960 { 961 int err; 962 void __user *argp = (void __user *)arg; 963 964 err = sock->ops->ioctl(sock, cmd, arg); 965 966 /* 967 * If this ioctl is unknown try to hand it down 968 * to the NIC driver. 969 */ 970 if (err == -ENOIOCTLCMD) 971 err = dev_ioctl(net, cmd, argp); 972 973 return err; 974 } 975 976 /* 977 * With an ioctl, arg may well be a user mode pointer, but we don't know 978 * what to do with it - that's up to the protocol still. 979 */ 980 981 static struct ns_common *get_net_ns(struct ns_common *ns) 982 { 983 return &get_net(container_of(ns, struct net, ns))->ns; 984 } 985 986 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 987 { 988 struct socket *sock; 989 struct sock *sk; 990 void __user *argp = (void __user *)arg; 991 int pid, err; 992 struct net *net; 993 994 sock = file->private_data; 995 sk = sock->sk; 996 net = sock_net(sk); 997 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 998 err = dev_ioctl(net, cmd, argp); 999 } else 1000 #ifdef CONFIG_WEXT_CORE 1001 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1002 err = dev_ioctl(net, cmd, argp); 1003 } else 1004 #endif 1005 switch (cmd) { 1006 case FIOSETOWN: 1007 case SIOCSPGRP: 1008 err = -EFAULT; 1009 if (get_user(pid, (int __user *)argp)) 1010 break; 1011 err = f_setown(sock->file, pid, 1); 1012 break; 1013 case FIOGETOWN: 1014 case SIOCGPGRP: 1015 err = put_user(f_getown(sock->file), 1016 (int __user *)argp); 1017 break; 1018 case SIOCGIFBR: 1019 case SIOCSIFBR: 1020 case SIOCBRADDBR: 1021 case SIOCBRDELBR: 1022 err = -ENOPKG; 1023 if (!br_ioctl_hook) 1024 request_module("bridge"); 1025 1026 mutex_lock(&br_ioctl_mutex); 1027 if (br_ioctl_hook) 1028 err = br_ioctl_hook(net, cmd, argp); 1029 mutex_unlock(&br_ioctl_mutex); 1030 break; 1031 case SIOCGIFVLAN: 1032 case SIOCSIFVLAN: 1033 err = -ENOPKG; 1034 if (!vlan_ioctl_hook) 1035 request_module("8021q"); 1036 1037 mutex_lock(&vlan_ioctl_mutex); 1038 if (vlan_ioctl_hook) 1039 err = vlan_ioctl_hook(net, argp); 1040 mutex_unlock(&vlan_ioctl_mutex); 1041 break; 1042 case SIOCADDDLCI: 1043 case SIOCDELDLCI: 1044 err = -ENOPKG; 1045 if (!dlci_ioctl_hook) 1046 request_module("dlci"); 1047 1048 mutex_lock(&dlci_ioctl_mutex); 1049 if (dlci_ioctl_hook) 1050 err = dlci_ioctl_hook(cmd, argp); 1051 mutex_unlock(&dlci_ioctl_mutex); 1052 break; 1053 case SIOCGSKNS: 1054 err = -EPERM; 1055 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1056 break; 1057 1058 err = open_related_ns(&net->ns, get_net_ns); 1059 break; 1060 default: 1061 err = sock_do_ioctl(net, sock, cmd, arg); 1062 break; 1063 } 1064 return err; 1065 } 1066 1067 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1068 { 1069 int err; 1070 struct socket *sock = NULL; 1071 1072 err = security_socket_create(family, type, protocol, 1); 1073 if (err) 1074 goto out; 1075 1076 sock = sock_alloc(); 1077 if (!sock) { 1078 err = -ENOMEM; 1079 goto out; 1080 } 1081 1082 sock->type = type; 1083 err = security_socket_post_create(sock, family, type, protocol, 1); 1084 if (err) 1085 goto out_release; 1086 1087 out: 1088 *res = sock; 1089 return err; 1090 out_release: 1091 sock_release(sock); 1092 sock = NULL; 1093 goto out; 1094 } 1095 EXPORT_SYMBOL(sock_create_lite); 1096 1097 /* No kernel lock held - perfect */ 1098 static unsigned int sock_poll(struct file *file, poll_table *wait) 1099 { 1100 unsigned int busy_flag = 0; 1101 struct socket *sock; 1102 1103 /* 1104 * We can't return errors to poll, so it's either yes or no. 1105 */ 1106 sock = file->private_data; 1107 1108 if (sk_can_busy_loop(sock->sk)) { 1109 /* this socket can poll_ll so tell the system call */ 1110 busy_flag = POLL_BUSY_LOOP; 1111 1112 /* once, only if requested by syscall */ 1113 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1114 sk_busy_loop(sock->sk, 1); 1115 } 1116 1117 return busy_flag | sock->ops->poll(file, sock, wait); 1118 } 1119 1120 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1121 { 1122 struct socket *sock = file->private_data; 1123 1124 return sock->ops->mmap(file, sock, vma); 1125 } 1126 1127 static int sock_close(struct inode *inode, struct file *filp) 1128 { 1129 sock_release(SOCKET_I(inode)); 1130 return 0; 1131 } 1132 1133 /* 1134 * Update the socket async list 1135 * 1136 * Fasync_list locking strategy. 1137 * 1138 * 1. fasync_list is modified only under process context socket lock 1139 * i.e. under semaphore. 1140 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1141 * or under socket lock 1142 */ 1143 1144 static int sock_fasync(int fd, struct file *filp, int on) 1145 { 1146 struct socket *sock = filp->private_data; 1147 struct sock *sk = sock->sk; 1148 struct socket_wq *wq; 1149 1150 if (sk == NULL) 1151 return -EINVAL; 1152 1153 lock_sock(sk); 1154 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1155 fasync_helper(fd, filp, on, &wq->fasync_list); 1156 1157 if (!wq->fasync_list) 1158 sock_reset_flag(sk, SOCK_FASYNC); 1159 else 1160 sock_set_flag(sk, SOCK_FASYNC); 1161 1162 release_sock(sk); 1163 return 0; 1164 } 1165 1166 /* This function may be called only under rcu_lock */ 1167 1168 int sock_wake_async(struct socket_wq *wq, int how, int band) 1169 { 1170 if (!wq || !wq->fasync_list) 1171 return -1; 1172 1173 switch (how) { 1174 case SOCK_WAKE_WAITD: 1175 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1176 break; 1177 goto call_kill; 1178 case SOCK_WAKE_SPACE: 1179 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1180 break; 1181 /* fall through */ 1182 case SOCK_WAKE_IO: 1183 call_kill: 1184 kill_fasync(&wq->fasync_list, SIGIO, band); 1185 break; 1186 case SOCK_WAKE_URG: 1187 kill_fasync(&wq->fasync_list, SIGURG, band); 1188 } 1189 1190 return 0; 1191 } 1192 EXPORT_SYMBOL(sock_wake_async); 1193 1194 int __sock_create(struct net *net, int family, int type, int protocol, 1195 struct socket **res, int kern) 1196 { 1197 int err; 1198 struct socket *sock; 1199 const struct net_proto_family *pf; 1200 1201 /* 1202 * Check protocol is in range 1203 */ 1204 if (family < 0 || family >= NPROTO) 1205 return -EAFNOSUPPORT; 1206 if (type < 0 || type >= SOCK_MAX) 1207 return -EINVAL; 1208 1209 /* Compatibility. 1210 1211 This uglymoron is moved from INET layer to here to avoid 1212 deadlock in module load. 1213 */ 1214 if (family == PF_INET && type == SOCK_PACKET) { 1215 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1216 current->comm); 1217 family = PF_PACKET; 1218 } 1219 1220 err = security_socket_create(family, type, protocol, kern); 1221 if (err) 1222 return err; 1223 1224 /* 1225 * Allocate the socket and allow the family to set things up. if 1226 * the protocol is 0, the family is instructed to select an appropriate 1227 * default. 1228 */ 1229 sock = sock_alloc(); 1230 if (!sock) { 1231 net_warn_ratelimited("socket: no more sockets\n"); 1232 return -ENFILE; /* Not exactly a match, but its the 1233 closest posix thing */ 1234 } 1235 1236 sock->type = type; 1237 1238 #ifdef CONFIG_MODULES 1239 /* Attempt to load a protocol module if the find failed. 1240 * 1241 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1242 * requested real, full-featured networking support upon configuration. 1243 * Otherwise module support will break! 1244 */ 1245 if (rcu_access_pointer(net_families[family]) == NULL) 1246 request_module("net-pf-%d", family); 1247 #endif 1248 1249 rcu_read_lock(); 1250 pf = rcu_dereference(net_families[family]); 1251 err = -EAFNOSUPPORT; 1252 if (!pf) 1253 goto out_release; 1254 1255 /* 1256 * We will call the ->create function, that possibly is in a loadable 1257 * module, so we have to bump that loadable module refcnt first. 1258 */ 1259 if (!try_module_get(pf->owner)) 1260 goto out_release; 1261 1262 /* Now protected by module ref count */ 1263 rcu_read_unlock(); 1264 1265 err = pf->create(net, sock, protocol, kern); 1266 if (err < 0) 1267 goto out_module_put; 1268 1269 /* 1270 * Now to bump the refcnt of the [loadable] module that owns this 1271 * socket at sock_release time we decrement its refcnt. 1272 */ 1273 if (!try_module_get(sock->ops->owner)) 1274 goto out_module_busy; 1275 1276 /* 1277 * Now that we're done with the ->create function, the [loadable] 1278 * module can have its refcnt decremented 1279 */ 1280 module_put(pf->owner); 1281 err = security_socket_post_create(sock, family, type, protocol, kern); 1282 if (err) 1283 goto out_sock_release; 1284 *res = sock; 1285 1286 return 0; 1287 1288 out_module_busy: 1289 err = -EAFNOSUPPORT; 1290 out_module_put: 1291 sock->ops = NULL; 1292 module_put(pf->owner); 1293 out_sock_release: 1294 sock_release(sock); 1295 return err; 1296 1297 out_release: 1298 rcu_read_unlock(); 1299 goto out_sock_release; 1300 } 1301 EXPORT_SYMBOL(__sock_create); 1302 1303 int sock_create(int family, int type, int protocol, struct socket **res) 1304 { 1305 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1306 } 1307 EXPORT_SYMBOL(sock_create); 1308 1309 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1310 { 1311 return __sock_create(net, family, type, protocol, res, 1); 1312 } 1313 EXPORT_SYMBOL(sock_create_kern); 1314 1315 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1316 { 1317 int retval; 1318 struct socket *sock; 1319 int flags; 1320 1321 /* Check the SOCK_* constants for consistency. */ 1322 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1323 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1324 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1325 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1326 1327 flags = type & ~SOCK_TYPE_MASK; 1328 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1329 return -EINVAL; 1330 type &= SOCK_TYPE_MASK; 1331 1332 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1333 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1334 1335 retval = sock_create(family, type, protocol, &sock); 1336 if (retval < 0) 1337 return retval; 1338 1339 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1340 } 1341 1342 /* 1343 * Create a pair of connected sockets. 1344 */ 1345 1346 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1347 int __user *, usockvec) 1348 { 1349 struct socket *sock1, *sock2; 1350 int fd1, fd2, err; 1351 struct file *newfile1, *newfile2; 1352 int flags; 1353 1354 flags = type & ~SOCK_TYPE_MASK; 1355 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1356 return -EINVAL; 1357 type &= SOCK_TYPE_MASK; 1358 1359 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1360 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1361 1362 /* 1363 * reserve descriptors and make sure we won't fail 1364 * to return them to userland. 1365 */ 1366 fd1 = get_unused_fd_flags(flags); 1367 if (unlikely(fd1 < 0)) 1368 return fd1; 1369 1370 fd2 = get_unused_fd_flags(flags); 1371 if (unlikely(fd2 < 0)) { 1372 put_unused_fd(fd1); 1373 return fd2; 1374 } 1375 1376 err = put_user(fd1, &usockvec[0]); 1377 if (err) 1378 goto out; 1379 1380 err = put_user(fd2, &usockvec[1]); 1381 if (err) 1382 goto out; 1383 1384 /* 1385 * Obtain the first socket and check if the underlying protocol 1386 * supports the socketpair call. 1387 */ 1388 1389 err = sock_create(family, type, protocol, &sock1); 1390 if (unlikely(err < 0)) 1391 goto out; 1392 1393 err = sock_create(family, type, protocol, &sock2); 1394 if (unlikely(err < 0)) { 1395 sock_release(sock1); 1396 goto out; 1397 } 1398 1399 err = sock1->ops->socketpair(sock1, sock2); 1400 if (unlikely(err < 0)) { 1401 sock_release(sock2); 1402 sock_release(sock1); 1403 goto out; 1404 } 1405 1406 newfile1 = sock_alloc_file(sock1, flags, NULL); 1407 if (IS_ERR(newfile1)) { 1408 err = PTR_ERR(newfile1); 1409 sock_release(sock2); 1410 goto out; 1411 } 1412 1413 newfile2 = sock_alloc_file(sock2, flags, NULL); 1414 if (IS_ERR(newfile2)) { 1415 err = PTR_ERR(newfile2); 1416 fput(newfile1); 1417 goto out; 1418 } 1419 1420 audit_fd_pair(fd1, fd2); 1421 1422 fd_install(fd1, newfile1); 1423 fd_install(fd2, newfile2); 1424 return 0; 1425 1426 out: 1427 put_unused_fd(fd2); 1428 put_unused_fd(fd1); 1429 return err; 1430 } 1431 1432 /* 1433 * Bind a name to a socket. Nothing much to do here since it's 1434 * the protocol's responsibility to handle the local address. 1435 * 1436 * We move the socket address to kernel space before we call 1437 * the protocol layer (having also checked the address is ok). 1438 */ 1439 1440 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1441 { 1442 struct socket *sock; 1443 struct sockaddr_storage address; 1444 int err, fput_needed; 1445 1446 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1447 if (sock) { 1448 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1449 if (err >= 0) { 1450 err = security_socket_bind(sock, 1451 (struct sockaddr *)&address, 1452 addrlen); 1453 if (!err) 1454 err = sock->ops->bind(sock, 1455 (struct sockaddr *) 1456 &address, addrlen); 1457 } 1458 fput_light(sock->file, fput_needed); 1459 } 1460 return err; 1461 } 1462 1463 /* 1464 * Perform a listen. Basically, we allow the protocol to do anything 1465 * necessary for a listen, and if that works, we mark the socket as 1466 * ready for listening. 1467 */ 1468 1469 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1470 { 1471 struct socket *sock; 1472 int err, fput_needed; 1473 int somaxconn; 1474 1475 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1476 if (sock) { 1477 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1478 if ((unsigned int)backlog > somaxconn) 1479 backlog = somaxconn; 1480 1481 err = security_socket_listen(sock, backlog); 1482 if (!err) 1483 err = sock->ops->listen(sock, backlog); 1484 1485 fput_light(sock->file, fput_needed); 1486 } 1487 return err; 1488 } 1489 1490 /* 1491 * For accept, we attempt to create a new socket, set up the link 1492 * with the client, wake up the client, then return the new 1493 * connected fd. We collect the address of the connector in kernel 1494 * space and move it to user at the very end. This is unclean because 1495 * we open the socket then return an error. 1496 * 1497 * 1003.1g adds the ability to recvmsg() to query connection pending 1498 * status to recvmsg. We need to add that support in a way thats 1499 * clean when we restucture accept also. 1500 */ 1501 1502 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1503 int __user *, upeer_addrlen, int, flags) 1504 { 1505 struct socket *sock, *newsock; 1506 struct file *newfile; 1507 int err, len, newfd, fput_needed; 1508 struct sockaddr_storage address; 1509 1510 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1511 return -EINVAL; 1512 1513 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1514 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1515 1516 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1517 if (!sock) 1518 goto out; 1519 1520 err = -ENFILE; 1521 newsock = sock_alloc(); 1522 if (!newsock) 1523 goto out_put; 1524 1525 newsock->type = sock->type; 1526 newsock->ops = sock->ops; 1527 1528 /* 1529 * We don't need try_module_get here, as the listening socket (sock) 1530 * has the protocol module (sock->ops->owner) held. 1531 */ 1532 __module_get(newsock->ops->owner); 1533 1534 newfd = get_unused_fd_flags(flags); 1535 if (unlikely(newfd < 0)) { 1536 err = newfd; 1537 sock_release(newsock); 1538 goto out_put; 1539 } 1540 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1541 if (IS_ERR(newfile)) { 1542 err = PTR_ERR(newfile); 1543 put_unused_fd(newfd); 1544 goto out_put; 1545 } 1546 1547 err = security_socket_accept(sock, newsock); 1548 if (err) 1549 goto out_fd; 1550 1551 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1552 if (err < 0) 1553 goto out_fd; 1554 1555 if (upeer_sockaddr) { 1556 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1557 &len, 2) < 0) { 1558 err = -ECONNABORTED; 1559 goto out_fd; 1560 } 1561 err = move_addr_to_user(&address, 1562 len, upeer_sockaddr, upeer_addrlen); 1563 if (err < 0) 1564 goto out_fd; 1565 } 1566 1567 /* File flags are not inherited via accept() unlike another OSes. */ 1568 1569 fd_install(newfd, newfile); 1570 err = newfd; 1571 1572 out_put: 1573 fput_light(sock->file, fput_needed); 1574 out: 1575 return err; 1576 out_fd: 1577 fput(newfile); 1578 put_unused_fd(newfd); 1579 goto out_put; 1580 } 1581 1582 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1583 int __user *, upeer_addrlen) 1584 { 1585 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1586 } 1587 1588 /* 1589 * Attempt to connect to a socket with the server address. The address 1590 * is in user space so we verify it is OK and move it to kernel space. 1591 * 1592 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1593 * break bindings 1594 * 1595 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1596 * other SEQPACKET protocols that take time to connect() as it doesn't 1597 * include the -EINPROGRESS status for such sockets. 1598 */ 1599 1600 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1601 int, addrlen) 1602 { 1603 struct socket *sock; 1604 struct sockaddr_storage address; 1605 int err, fput_needed; 1606 1607 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1608 if (!sock) 1609 goto out; 1610 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1611 if (err < 0) 1612 goto out_put; 1613 1614 err = 1615 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1616 if (err) 1617 goto out_put; 1618 1619 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1620 sock->file->f_flags); 1621 out_put: 1622 fput_light(sock->file, fput_needed); 1623 out: 1624 return err; 1625 } 1626 1627 /* 1628 * Get the local address ('name') of a socket object. Move the obtained 1629 * name to user space. 1630 */ 1631 1632 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1633 int __user *, usockaddr_len) 1634 { 1635 struct socket *sock; 1636 struct sockaddr_storage address; 1637 int len, err, fput_needed; 1638 1639 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1640 if (!sock) 1641 goto out; 1642 1643 err = security_socket_getsockname(sock); 1644 if (err) 1645 goto out_put; 1646 1647 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1648 if (err) 1649 goto out_put; 1650 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1651 1652 out_put: 1653 fput_light(sock->file, fput_needed); 1654 out: 1655 return err; 1656 } 1657 1658 /* 1659 * Get the remote address ('name') of a socket object. Move the obtained 1660 * name to user space. 1661 */ 1662 1663 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1664 int __user *, usockaddr_len) 1665 { 1666 struct socket *sock; 1667 struct sockaddr_storage address; 1668 int len, err, fput_needed; 1669 1670 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1671 if (sock != NULL) { 1672 err = security_socket_getpeername(sock); 1673 if (err) { 1674 fput_light(sock->file, fput_needed); 1675 return err; 1676 } 1677 1678 err = 1679 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1680 1); 1681 if (!err) 1682 err = move_addr_to_user(&address, len, usockaddr, 1683 usockaddr_len); 1684 fput_light(sock->file, fput_needed); 1685 } 1686 return err; 1687 } 1688 1689 /* 1690 * Send a datagram to a given address. We move the address into kernel 1691 * space and check the user space data area is readable before invoking 1692 * the protocol. 1693 */ 1694 1695 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1696 unsigned int, flags, struct sockaddr __user *, addr, 1697 int, addr_len) 1698 { 1699 struct socket *sock; 1700 struct sockaddr_storage address; 1701 int err; 1702 struct msghdr msg; 1703 struct iovec iov; 1704 int fput_needed; 1705 1706 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1707 if (unlikely(err)) 1708 return err; 1709 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1710 if (!sock) 1711 goto out; 1712 1713 msg.msg_name = NULL; 1714 msg.msg_control = NULL; 1715 msg.msg_controllen = 0; 1716 msg.msg_namelen = 0; 1717 if (addr) { 1718 err = move_addr_to_kernel(addr, addr_len, &address); 1719 if (err < 0) 1720 goto out_put; 1721 msg.msg_name = (struct sockaddr *)&address; 1722 msg.msg_namelen = addr_len; 1723 } 1724 if (sock->file->f_flags & O_NONBLOCK) 1725 flags |= MSG_DONTWAIT; 1726 msg.msg_flags = flags; 1727 err = sock_sendmsg(sock, &msg); 1728 1729 out_put: 1730 fput_light(sock->file, fput_needed); 1731 out: 1732 return err; 1733 } 1734 1735 /* 1736 * Send a datagram down a socket. 1737 */ 1738 1739 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1740 unsigned int, flags) 1741 { 1742 return sys_sendto(fd, buff, len, flags, NULL, 0); 1743 } 1744 1745 /* 1746 * Receive a frame from the socket and optionally record the address of the 1747 * sender. We verify the buffers are writable and if needed move the 1748 * sender address from kernel to user space. 1749 */ 1750 1751 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1752 unsigned int, flags, struct sockaddr __user *, addr, 1753 int __user *, addr_len) 1754 { 1755 struct socket *sock; 1756 struct iovec iov; 1757 struct msghdr msg; 1758 struct sockaddr_storage address; 1759 int err, err2; 1760 int fput_needed; 1761 1762 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1763 if (unlikely(err)) 1764 return err; 1765 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1766 if (!sock) 1767 goto out; 1768 1769 msg.msg_control = NULL; 1770 msg.msg_controllen = 0; 1771 /* Save some cycles and don't copy the address if not needed */ 1772 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1773 /* We assume all kernel code knows the size of sockaddr_storage */ 1774 msg.msg_namelen = 0; 1775 msg.msg_iocb = NULL; 1776 msg.msg_flags = 0; 1777 if (sock->file->f_flags & O_NONBLOCK) 1778 flags |= MSG_DONTWAIT; 1779 err = sock_recvmsg(sock, &msg, flags); 1780 1781 if (err >= 0 && addr != NULL) { 1782 err2 = move_addr_to_user(&address, 1783 msg.msg_namelen, addr, addr_len); 1784 if (err2 < 0) 1785 err = err2; 1786 } 1787 1788 fput_light(sock->file, fput_needed); 1789 out: 1790 return err; 1791 } 1792 1793 /* 1794 * Receive a datagram from a socket. 1795 */ 1796 1797 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1798 unsigned int, flags) 1799 { 1800 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1801 } 1802 1803 /* 1804 * Set a socket option. Because we don't know the option lengths we have 1805 * to pass the user mode parameter for the protocols to sort out. 1806 */ 1807 1808 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1809 char __user *, optval, int, optlen) 1810 { 1811 int err, fput_needed; 1812 struct socket *sock; 1813 1814 if (optlen < 0) 1815 return -EINVAL; 1816 1817 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1818 if (sock != NULL) { 1819 err = security_socket_setsockopt(sock, level, optname); 1820 if (err) 1821 goto out_put; 1822 1823 if (level == SOL_SOCKET) 1824 err = 1825 sock_setsockopt(sock, level, optname, optval, 1826 optlen); 1827 else 1828 err = 1829 sock->ops->setsockopt(sock, level, optname, optval, 1830 optlen); 1831 out_put: 1832 fput_light(sock->file, fput_needed); 1833 } 1834 return err; 1835 } 1836 1837 /* 1838 * Get a socket option. Because we don't know the option lengths we have 1839 * to pass a user mode parameter for the protocols to sort out. 1840 */ 1841 1842 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1843 char __user *, optval, int __user *, optlen) 1844 { 1845 int err, fput_needed; 1846 struct socket *sock; 1847 1848 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1849 if (sock != NULL) { 1850 err = security_socket_getsockopt(sock, level, optname); 1851 if (err) 1852 goto out_put; 1853 1854 if (level == SOL_SOCKET) 1855 err = 1856 sock_getsockopt(sock, level, optname, optval, 1857 optlen); 1858 else 1859 err = 1860 sock->ops->getsockopt(sock, level, optname, optval, 1861 optlen); 1862 out_put: 1863 fput_light(sock->file, fput_needed); 1864 } 1865 return err; 1866 } 1867 1868 /* 1869 * Shutdown a socket. 1870 */ 1871 1872 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1873 { 1874 int err, fput_needed; 1875 struct socket *sock; 1876 1877 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1878 if (sock != NULL) { 1879 err = security_socket_shutdown(sock, how); 1880 if (!err) 1881 err = sock->ops->shutdown(sock, how); 1882 fput_light(sock->file, fput_needed); 1883 } 1884 return err; 1885 } 1886 1887 /* A couple of helpful macros for getting the address of the 32/64 bit 1888 * fields which are the same type (int / unsigned) on our platforms. 1889 */ 1890 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1891 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1892 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1893 1894 struct used_address { 1895 struct sockaddr_storage name; 1896 unsigned int name_len; 1897 }; 1898 1899 static int copy_msghdr_from_user(struct msghdr *kmsg, 1900 struct user_msghdr __user *umsg, 1901 struct sockaddr __user **save_addr, 1902 struct iovec **iov) 1903 { 1904 struct user_msghdr msg; 1905 ssize_t err; 1906 1907 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1908 return -EFAULT; 1909 1910 kmsg->msg_control = (void __force *)msg.msg_control; 1911 kmsg->msg_controllen = msg.msg_controllen; 1912 kmsg->msg_flags = msg.msg_flags; 1913 1914 kmsg->msg_namelen = msg.msg_namelen; 1915 if (!msg.msg_name) 1916 kmsg->msg_namelen = 0; 1917 1918 if (kmsg->msg_namelen < 0) 1919 return -EINVAL; 1920 1921 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1922 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1923 1924 if (save_addr) 1925 *save_addr = msg.msg_name; 1926 1927 if (msg.msg_name && kmsg->msg_namelen) { 1928 if (!save_addr) { 1929 err = move_addr_to_kernel(msg.msg_name, 1930 kmsg->msg_namelen, 1931 kmsg->msg_name); 1932 if (err < 0) 1933 return err; 1934 } 1935 } else { 1936 kmsg->msg_name = NULL; 1937 kmsg->msg_namelen = 0; 1938 } 1939 1940 if (msg.msg_iovlen > UIO_MAXIOV) 1941 return -EMSGSIZE; 1942 1943 kmsg->msg_iocb = NULL; 1944 1945 return import_iovec(save_addr ? READ : WRITE, 1946 msg.msg_iov, msg.msg_iovlen, 1947 UIO_FASTIOV, iov, &kmsg->msg_iter); 1948 } 1949 1950 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1951 struct msghdr *msg_sys, unsigned int flags, 1952 struct used_address *used_address, 1953 unsigned int allowed_msghdr_flags) 1954 { 1955 struct compat_msghdr __user *msg_compat = 1956 (struct compat_msghdr __user *)msg; 1957 struct sockaddr_storage address; 1958 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1959 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1960 __aligned(sizeof(__kernel_size_t)); 1961 /* 20 is size of ipv6_pktinfo */ 1962 unsigned char *ctl_buf = ctl; 1963 int ctl_len; 1964 ssize_t err; 1965 1966 msg_sys->msg_name = &address; 1967 1968 if (MSG_CMSG_COMPAT & flags) 1969 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1970 else 1971 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1972 if (err < 0) 1973 return err; 1974 1975 err = -ENOBUFS; 1976 1977 if (msg_sys->msg_controllen > INT_MAX) 1978 goto out_freeiov; 1979 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1980 ctl_len = msg_sys->msg_controllen; 1981 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1982 err = 1983 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1984 sizeof(ctl)); 1985 if (err) 1986 goto out_freeiov; 1987 ctl_buf = msg_sys->msg_control; 1988 ctl_len = msg_sys->msg_controllen; 1989 } else if (ctl_len) { 1990 BUILD_BUG_ON(sizeof(struct cmsghdr) != 1991 CMSG_ALIGN(sizeof(struct cmsghdr))); 1992 if (ctl_len > sizeof(ctl)) { 1993 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1994 if (ctl_buf == NULL) 1995 goto out_freeiov; 1996 } 1997 err = -EFAULT; 1998 /* 1999 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2000 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2001 * checking falls down on this. 2002 */ 2003 if (copy_from_user(ctl_buf, 2004 (void __user __force *)msg_sys->msg_control, 2005 ctl_len)) 2006 goto out_freectl; 2007 msg_sys->msg_control = ctl_buf; 2008 } 2009 msg_sys->msg_flags = flags; 2010 2011 if (sock->file->f_flags & O_NONBLOCK) 2012 msg_sys->msg_flags |= MSG_DONTWAIT; 2013 /* 2014 * If this is sendmmsg() and current destination address is same as 2015 * previously succeeded address, omit asking LSM's decision. 2016 * used_address->name_len is initialized to UINT_MAX so that the first 2017 * destination address never matches. 2018 */ 2019 if (used_address && msg_sys->msg_name && 2020 used_address->name_len == msg_sys->msg_namelen && 2021 !memcmp(&used_address->name, msg_sys->msg_name, 2022 used_address->name_len)) { 2023 err = sock_sendmsg_nosec(sock, msg_sys); 2024 goto out_freectl; 2025 } 2026 err = sock_sendmsg(sock, msg_sys); 2027 /* 2028 * If this is sendmmsg() and sending to current destination address was 2029 * successful, remember it. 2030 */ 2031 if (used_address && err >= 0) { 2032 used_address->name_len = msg_sys->msg_namelen; 2033 if (msg_sys->msg_name) 2034 memcpy(&used_address->name, msg_sys->msg_name, 2035 used_address->name_len); 2036 } 2037 2038 out_freectl: 2039 if (ctl_buf != ctl) 2040 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2041 out_freeiov: 2042 kfree(iov); 2043 return err; 2044 } 2045 2046 /* 2047 * BSD sendmsg interface 2048 */ 2049 2050 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2051 { 2052 int fput_needed, err; 2053 struct msghdr msg_sys; 2054 struct socket *sock; 2055 2056 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2057 if (!sock) 2058 goto out; 2059 2060 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2061 2062 fput_light(sock->file, fput_needed); 2063 out: 2064 return err; 2065 } 2066 2067 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2068 { 2069 if (flags & MSG_CMSG_COMPAT) 2070 return -EINVAL; 2071 return __sys_sendmsg(fd, msg, flags); 2072 } 2073 2074 /* 2075 * Linux sendmmsg interface 2076 */ 2077 2078 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2079 unsigned int flags) 2080 { 2081 int fput_needed, err, datagrams; 2082 struct socket *sock; 2083 struct mmsghdr __user *entry; 2084 struct compat_mmsghdr __user *compat_entry; 2085 struct msghdr msg_sys; 2086 struct used_address used_address; 2087 unsigned int oflags = flags; 2088 2089 if (vlen > UIO_MAXIOV) 2090 vlen = UIO_MAXIOV; 2091 2092 datagrams = 0; 2093 2094 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2095 if (!sock) 2096 return err; 2097 2098 used_address.name_len = UINT_MAX; 2099 entry = mmsg; 2100 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2101 err = 0; 2102 flags |= MSG_BATCH; 2103 2104 while (datagrams < vlen) { 2105 if (datagrams == vlen - 1) 2106 flags = oflags; 2107 2108 if (MSG_CMSG_COMPAT & flags) { 2109 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2110 &msg_sys, flags, &used_address, MSG_EOR); 2111 if (err < 0) 2112 break; 2113 err = __put_user(err, &compat_entry->msg_len); 2114 ++compat_entry; 2115 } else { 2116 err = ___sys_sendmsg(sock, 2117 (struct user_msghdr __user *)entry, 2118 &msg_sys, flags, &used_address, MSG_EOR); 2119 if (err < 0) 2120 break; 2121 err = put_user(err, &entry->msg_len); 2122 ++entry; 2123 } 2124 2125 if (err) 2126 break; 2127 ++datagrams; 2128 if (msg_data_left(&msg_sys)) 2129 break; 2130 cond_resched(); 2131 } 2132 2133 fput_light(sock->file, fput_needed); 2134 2135 /* We only return an error if no datagrams were able to be sent */ 2136 if (datagrams != 0) 2137 return datagrams; 2138 2139 return err; 2140 } 2141 2142 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2143 unsigned int, vlen, unsigned int, flags) 2144 { 2145 if (flags & MSG_CMSG_COMPAT) 2146 return -EINVAL; 2147 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2148 } 2149 2150 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2151 struct msghdr *msg_sys, unsigned int flags, int nosec) 2152 { 2153 struct compat_msghdr __user *msg_compat = 2154 (struct compat_msghdr __user *)msg; 2155 struct iovec iovstack[UIO_FASTIOV]; 2156 struct iovec *iov = iovstack; 2157 unsigned long cmsg_ptr; 2158 int len; 2159 ssize_t err; 2160 2161 /* kernel mode address */ 2162 struct sockaddr_storage addr; 2163 2164 /* user mode address pointers */ 2165 struct sockaddr __user *uaddr; 2166 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2167 2168 msg_sys->msg_name = &addr; 2169 2170 if (MSG_CMSG_COMPAT & flags) 2171 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2172 else 2173 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2174 if (err < 0) 2175 return err; 2176 2177 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2178 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2179 2180 /* We assume all kernel code knows the size of sockaddr_storage */ 2181 msg_sys->msg_namelen = 0; 2182 2183 if (sock->file->f_flags & O_NONBLOCK) 2184 flags |= MSG_DONTWAIT; 2185 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2186 if (err < 0) 2187 goto out_freeiov; 2188 len = err; 2189 2190 if (uaddr != NULL) { 2191 err = move_addr_to_user(&addr, 2192 msg_sys->msg_namelen, uaddr, 2193 uaddr_len); 2194 if (err < 0) 2195 goto out_freeiov; 2196 } 2197 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2198 COMPAT_FLAGS(msg)); 2199 if (err) 2200 goto out_freeiov; 2201 if (MSG_CMSG_COMPAT & flags) 2202 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2203 &msg_compat->msg_controllen); 2204 else 2205 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2206 &msg->msg_controllen); 2207 if (err) 2208 goto out_freeiov; 2209 err = len; 2210 2211 out_freeiov: 2212 kfree(iov); 2213 return err; 2214 } 2215 2216 /* 2217 * BSD recvmsg interface 2218 */ 2219 2220 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2221 { 2222 int fput_needed, err; 2223 struct msghdr msg_sys; 2224 struct socket *sock; 2225 2226 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2227 if (!sock) 2228 goto out; 2229 2230 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2231 2232 fput_light(sock->file, fput_needed); 2233 out: 2234 return err; 2235 } 2236 2237 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2238 unsigned int, flags) 2239 { 2240 if (flags & MSG_CMSG_COMPAT) 2241 return -EINVAL; 2242 return __sys_recvmsg(fd, msg, flags); 2243 } 2244 2245 /* 2246 * Linux recvmmsg interface 2247 */ 2248 2249 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2250 unsigned int flags, struct timespec *timeout) 2251 { 2252 int fput_needed, err, datagrams; 2253 struct socket *sock; 2254 struct mmsghdr __user *entry; 2255 struct compat_mmsghdr __user *compat_entry; 2256 struct msghdr msg_sys; 2257 struct timespec64 end_time; 2258 struct timespec64 timeout64; 2259 2260 if (timeout && 2261 poll_select_set_timeout(&end_time, timeout->tv_sec, 2262 timeout->tv_nsec)) 2263 return -EINVAL; 2264 2265 datagrams = 0; 2266 2267 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2268 if (!sock) 2269 return err; 2270 2271 err = sock_error(sock->sk); 2272 if (err) { 2273 datagrams = err; 2274 goto out_put; 2275 } 2276 2277 entry = mmsg; 2278 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2279 2280 while (datagrams < vlen) { 2281 /* 2282 * No need to ask LSM for more than the first datagram. 2283 */ 2284 if (MSG_CMSG_COMPAT & flags) { 2285 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2286 &msg_sys, flags & ~MSG_WAITFORONE, 2287 datagrams); 2288 if (err < 0) 2289 break; 2290 err = __put_user(err, &compat_entry->msg_len); 2291 ++compat_entry; 2292 } else { 2293 err = ___sys_recvmsg(sock, 2294 (struct user_msghdr __user *)entry, 2295 &msg_sys, flags & ~MSG_WAITFORONE, 2296 datagrams); 2297 if (err < 0) 2298 break; 2299 err = put_user(err, &entry->msg_len); 2300 ++entry; 2301 } 2302 2303 if (err) 2304 break; 2305 ++datagrams; 2306 2307 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2308 if (flags & MSG_WAITFORONE) 2309 flags |= MSG_DONTWAIT; 2310 2311 if (timeout) { 2312 ktime_get_ts64(&timeout64); 2313 *timeout = timespec64_to_timespec( 2314 timespec64_sub(end_time, timeout64)); 2315 if (timeout->tv_sec < 0) { 2316 timeout->tv_sec = timeout->tv_nsec = 0; 2317 break; 2318 } 2319 2320 /* Timeout, return less than vlen datagrams */ 2321 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2322 break; 2323 } 2324 2325 /* Out of band data, return right away */ 2326 if (msg_sys.msg_flags & MSG_OOB) 2327 break; 2328 cond_resched(); 2329 } 2330 2331 if (err == 0) 2332 goto out_put; 2333 2334 if (datagrams == 0) { 2335 datagrams = err; 2336 goto out_put; 2337 } 2338 2339 /* 2340 * We may return less entries than requested (vlen) if the 2341 * sock is non block and there aren't enough datagrams... 2342 */ 2343 if (err != -EAGAIN) { 2344 /* 2345 * ... or if recvmsg returns an error after we 2346 * received some datagrams, where we record the 2347 * error to return on the next call or if the 2348 * app asks about it using getsockopt(SO_ERROR). 2349 */ 2350 sock->sk->sk_err = -err; 2351 } 2352 out_put: 2353 fput_light(sock->file, fput_needed); 2354 2355 return datagrams; 2356 } 2357 2358 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2359 unsigned int, vlen, unsigned int, flags, 2360 struct timespec __user *, timeout) 2361 { 2362 int datagrams; 2363 struct timespec timeout_sys; 2364 2365 if (flags & MSG_CMSG_COMPAT) 2366 return -EINVAL; 2367 2368 if (!timeout) 2369 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2370 2371 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2372 return -EFAULT; 2373 2374 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2375 2376 if (datagrams > 0 && 2377 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2378 datagrams = -EFAULT; 2379 2380 return datagrams; 2381 } 2382 2383 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2384 /* Argument list sizes for sys_socketcall */ 2385 #define AL(x) ((x) * sizeof(unsigned long)) 2386 static const unsigned char nargs[21] = { 2387 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2388 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2389 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2390 AL(4), AL(5), AL(4) 2391 }; 2392 2393 #undef AL 2394 2395 /* 2396 * System call vectors. 2397 * 2398 * Argument checking cleaned up. Saved 20% in size. 2399 * This function doesn't need to set the kernel lock because 2400 * it is set by the callees. 2401 */ 2402 2403 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2404 { 2405 unsigned long a[AUDITSC_ARGS]; 2406 unsigned long a0, a1; 2407 int err; 2408 unsigned int len; 2409 2410 if (call < 1 || call > SYS_SENDMMSG) 2411 return -EINVAL; 2412 2413 len = nargs[call]; 2414 if (len > sizeof(a)) 2415 return -EINVAL; 2416 2417 /* copy_from_user should be SMP safe. */ 2418 if (copy_from_user(a, args, len)) 2419 return -EFAULT; 2420 2421 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2422 if (err) 2423 return err; 2424 2425 a0 = a[0]; 2426 a1 = a[1]; 2427 2428 switch (call) { 2429 case SYS_SOCKET: 2430 err = sys_socket(a0, a1, a[2]); 2431 break; 2432 case SYS_BIND: 2433 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2434 break; 2435 case SYS_CONNECT: 2436 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2437 break; 2438 case SYS_LISTEN: 2439 err = sys_listen(a0, a1); 2440 break; 2441 case SYS_ACCEPT: 2442 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2443 (int __user *)a[2], 0); 2444 break; 2445 case SYS_GETSOCKNAME: 2446 err = 2447 sys_getsockname(a0, (struct sockaddr __user *)a1, 2448 (int __user *)a[2]); 2449 break; 2450 case SYS_GETPEERNAME: 2451 err = 2452 sys_getpeername(a0, (struct sockaddr __user *)a1, 2453 (int __user *)a[2]); 2454 break; 2455 case SYS_SOCKETPAIR: 2456 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2457 break; 2458 case SYS_SEND: 2459 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2460 break; 2461 case SYS_SENDTO: 2462 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2463 (struct sockaddr __user *)a[4], a[5]); 2464 break; 2465 case SYS_RECV: 2466 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2467 break; 2468 case SYS_RECVFROM: 2469 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2470 (struct sockaddr __user *)a[4], 2471 (int __user *)a[5]); 2472 break; 2473 case SYS_SHUTDOWN: 2474 err = sys_shutdown(a0, a1); 2475 break; 2476 case SYS_SETSOCKOPT: 2477 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2478 break; 2479 case SYS_GETSOCKOPT: 2480 err = 2481 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2482 (int __user *)a[4]); 2483 break; 2484 case SYS_SENDMSG: 2485 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2486 break; 2487 case SYS_SENDMMSG: 2488 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2489 break; 2490 case SYS_RECVMSG: 2491 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2492 break; 2493 case SYS_RECVMMSG: 2494 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2495 (struct timespec __user *)a[4]); 2496 break; 2497 case SYS_ACCEPT4: 2498 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2499 (int __user *)a[2], a[3]); 2500 break; 2501 default: 2502 err = -EINVAL; 2503 break; 2504 } 2505 return err; 2506 } 2507 2508 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2509 2510 /** 2511 * sock_register - add a socket protocol handler 2512 * @ops: description of protocol 2513 * 2514 * This function is called by a protocol handler that wants to 2515 * advertise its address family, and have it linked into the 2516 * socket interface. The value ops->family corresponds to the 2517 * socket system call protocol family. 2518 */ 2519 int sock_register(const struct net_proto_family *ops) 2520 { 2521 int err; 2522 2523 if (ops->family >= NPROTO) { 2524 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2525 return -ENOBUFS; 2526 } 2527 2528 spin_lock(&net_family_lock); 2529 if (rcu_dereference_protected(net_families[ops->family], 2530 lockdep_is_held(&net_family_lock))) 2531 err = -EEXIST; 2532 else { 2533 rcu_assign_pointer(net_families[ops->family], ops); 2534 err = 0; 2535 } 2536 spin_unlock(&net_family_lock); 2537 2538 pr_info("NET: Registered protocol family %d\n", ops->family); 2539 return err; 2540 } 2541 EXPORT_SYMBOL(sock_register); 2542 2543 /** 2544 * sock_unregister - remove a protocol handler 2545 * @family: protocol family to remove 2546 * 2547 * This function is called by a protocol handler that wants to 2548 * remove its address family, and have it unlinked from the 2549 * new socket creation. 2550 * 2551 * If protocol handler is a module, then it can use module reference 2552 * counts to protect against new references. If protocol handler is not 2553 * a module then it needs to provide its own protection in 2554 * the ops->create routine. 2555 */ 2556 void sock_unregister(int family) 2557 { 2558 BUG_ON(family < 0 || family >= NPROTO); 2559 2560 spin_lock(&net_family_lock); 2561 RCU_INIT_POINTER(net_families[family], NULL); 2562 spin_unlock(&net_family_lock); 2563 2564 synchronize_rcu(); 2565 2566 pr_info("NET: Unregistered protocol family %d\n", family); 2567 } 2568 EXPORT_SYMBOL(sock_unregister); 2569 2570 static int __init sock_init(void) 2571 { 2572 int err; 2573 /* 2574 * Initialize the network sysctl infrastructure. 2575 */ 2576 err = net_sysctl_init(); 2577 if (err) 2578 goto out; 2579 2580 /* 2581 * Initialize skbuff SLAB cache 2582 */ 2583 skb_init(); 2584 2585 /* 2586 * Initialize the protocols module. 2587 */ 2588 2589 init_inodecache(); 2590 2591 err = register_filesystem(&sock_fs_type); 2592 if (err) 2593 goto out_fs; 2594 sock_mnt = kern_mount(&sock_fs_type); 2595 if (IS_ERR(sock_mnt)) { 2596 err = PTR_ERR(sock_mnt); 2597 goto out_mount; 2598 } 2599 2600 /* The real protocol initialization is performed in later initcalls. 2601 */ 2602 2603 #ifdef CONFIG_NETFILTER 2604 err = netfilter_init(); 2605 if (err) 2606 goto out; 2607 #endif 2608 2609 ptp_classifier_init(); 2610 2611 out: 2612 return err; 2613 2614 out_mount: 2615 unregister_filesystem(&sock_fs_type); 2616 out_fs: 2617 goto out; 2618 } 2619 2620 core_initcall(sock_init); /* early initcall */ 2621 2622 #ifdef CONFIG_PROC_FS 2623 void socket_seq_show(struct seq_file *seq) 2624 { 2625 int cpu; 2626 int counter = 0; 2627 2628 for_each_possible_cpu(cpu) 2629 counter += per_cpu(sockets_in_use, cpu); 2630 2631 /* It can be negative, by the way. 8) */ 2632 if (counter < 0) 2633 counter = 0; 2634 2635 seq_printf(seq, "sockets: used %d\n", counter); 2636 } 2637 #endif /* CONFIG_PROC_FS */ 2638 2639 #ifdef CONFIG_COMPAT 2640 static int do_siocgstamp(struct net *net, struct socket *sock, 2641 unsigned int cmd, void __user *up) 2642 { 2643 mm_segment_t old_fs = get_fs(); 2644 struct timeval ktv; 2645 int err; 2646 2647 set_fs(KERNEL_DS); 2648 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2649 set_fs(old_fs); 2650 if (!err) 2651 err = compat_put_timeval(&ktv, up); 2652 2653 return err; 2654 } 2655 2656 static int do_siocgstampns(struct net *net, struct socket *sock, 2657 unsigned int cmd, void __user *up) 2658 { 2659 mm_segment_t old_fs = get_fs(); 2660 struct timespec kts; 2661 int err; 2662 2663 set_fs(KERNEL_DS); 2664 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2665 set_fs(old_fs); 2666 if (!err) 2667 err = compat_put_timespec(&kts, up); 2668 2669 return err; 2670 } 2671 2672 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2673 { 2674 struct ifreq __user *uifr; 2675 int err; 2676 2677 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2678 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2679 return -EFAULT; 2680 2681 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2682 if (err) 2683 return err; 2684 2685 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2686 return -EFAULT; 2687 2688 return 0; 2689 } 2690 2691 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2692 { 2693 struct compat_ifconf ifc32; 2694 struct ifconf ifc; 2695 struct ifconf __user *uifc; 2696 struct compat_ifreq __user *ifr32; 2697 struct ifreq __user *ifr; 2698 unsigned int i, j; 2699 int err; 2700 2701 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2702 return -EFAULT; 2703 2704 memset(&ifc, 0, sizeof(ifc)); 2705 if (ifc32.ifcbuf == 0) { 2706 ifc32.ifc_len = 0; 2707 ifc.ifc_len = 0; 2708 ifc.ifc_req = NULL; 2709 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2710 } else { 2711 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2712 sizeof(struct ifreq); 2713 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2714 ifc.ifc_len = len; 2715 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2716 ifr32 = compat_ptr(ifc32.ifcbuf); 2717 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2718 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2719 return -EFAULT; 2720 ifr++; 2721 ifr32++; 2722 } 2723 } 2724 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2725 return -EFAULT; 2726 2727 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2728 if (err) 2729 return err; 2730 2731 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2732 return -EFAULT; 2733 2734 ifr = ifc.ifc_req; 2735 ifr32 = compat_ptr(ifc32.ifcbuf); 2736 for (i = 0, j = 0; 2737 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2738 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2739 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2740 return -EFAULT; 2741 ifr32++; 2742 ifr++; 2743 } 2744 2745 if (ifc32.ifcbuf == 0) { 2746 /* Translate from 64-bit structure multiple to 2747 * a 32-bit one. 2748 */ 2749 i = ifc.ifc_len; 2750 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2751 ifc32.ifc_len = i; 2752 } else { 2753 ifc32.ifc_len = i; 2754 } 2755 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2756 return -EFAULT; 2757 2758 return 0; 2759 } 2760 2761 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2762 { 2763 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2764 bool convert_in = false, convert_out = false; 2765 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2766 struct ethtool_rxnfc __user *rxnfc; 2767 struct ifreq __user *ifr; 2768 u32 rule_cnt = 0, actual_rule_cnt; 2769 u32 ethcmd; 2770 u32 data; 2771 int ret; 2772 2773 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2774 return -EFAULT; 2775 2776 compat_rxnfc = compat_ptr(data); 2777 2778 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2779 return -EFAULT; 2780 2781 /* Most ethtool structures are defined without padding. 2782 * Unfortunately struct ethtool_rxnfc is an exception. 2783 */ 2784 switch (ethcmd) { 2785 default: 2786 break; 2787 case ETHTOOL_GRXCLSRLALL: 2788 /* Buffer size is variable */ 2789 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2790 return -EFAULT; 2791 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2792 return -ENOMEM; 2793 buf_size += rule_cnt * sizeof(u32); 2794 /* fall through */ 2795 case ETHTOOL_GRXRINGS: 2796 case ETHTOOL_GRXCLSRLCNT: 2797 case ETHTOOL_GRXCLSRULE: 2798 case ETHTOOL_SRXCLSRLINS: 2799 convert_out = true; 2800 /* fall through */ 2801 case ETHTOOL_SRXCLSRLDEL: 2802 buf_size += sizeof(struct ethtool_rxnfc); 2803 convert_in = true; 2804 break; 2805 } 2806 2807 ifr = compat_alloc_user_space(buf_size); 2808 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2809 2810 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2811 return -EFAULT; 2812 2813 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2814 &ifr->ifr_ifru.ifru_data)) 2815 return -EFAULT; 2816 2817 if (convert_in) { 2818 /* We expect there to be holes between fs.m_ext and 2819 * fs.ring_cookie and at the end of fs, but nowhere else. 2820 */ 2821 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2822 sizeof(compat_rxnfc->fs.m_ext) != 2823 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2824 sizeof(rxnfc->fs.m_ext)); 2825 BUILD_BUG_ON( 2826 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2827 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2828 offsetof(struct ethtool_rxnfc, fs.location) - 2829 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2830 2831 if (copy_in_user(rxnfc, compat_rxnfc, 2832 (void __user *)(&rxnfc->fs.m_ext + 1) - 2833 (void __user *)rxnfc) || 2834 copy_in_user(&rxnfc->fs.ring_cookie, 2835 &compat_rxnfc->fs.ring_cookie, 2836 (void __user *)(&rxnfc->fs.location + 1) - 2837 (void __user *)&rxnfc->fs.ring_cookie) || 2838 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2839 sizeof(rxnfc->rule_cnt))) 2840 return -EFAULT; 2841 } 2842 2843 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2844 if (ret) 2845 return ret; 2846 2847 if (convert_out) { 2848 if (copy_in_user(compat_rxnfc, rxnfc, 2849 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2850 (const void __user *)rxnfc) || 2851 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2852 &rxnfc->fs.ring_cookie, 2853 (const void __user *)(&rxnfc->fs.location + 1) - 2854 (const void __user *)&rxnfc->fs.ring_cookie) || 2855 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2856 sizeof(rxnfc->rule_cnt))) 2857 return -EFAULT; 2858 2859 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2860 /* As an optimisation, we only copy the actual 2861 * number of rules that the underlying 2862 * function returned. Since Mallory might 2863 * change the rule count in user memory, we 2864 * check that it is less than the rule count 2865 * originally given (as the user buffer size), 2866 * which has been range-checked. 2867 */ 2868 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2869 return -EFAULT; 2870 if (actual_rule_cnt < rule_cnt) 2871 rule_cnt = actual_rule_cnt; 2872 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2873 &rxnfc->rule_locs[0], 2874 rule_cnt * sizeof(u32))) 2875 return -EFAULT; 2876 } 2877 } 2878 2879 return 0; 2880 } 2881 2882 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2883 { 2884 void __user *uptr; 2885 compat_uptr_t uptr32; 2886 struct ifreq __user *uifr; 2887 2888 uifr = compat_alloc_user_space(sizeof(*uifr)); 2889 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2890 return -EFAULT; 2891 2892 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2893 return -EFAULT; 2894 2895 uptr = compat_ptr(uptr32); 2896 2897 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2898 return -EFAULT; 2899 2900 return dev_ioctl(net, SIOCWANDEV, uifr); 2901 } 2902 2903 static int bond_ioctl(struct net *net, unsigned int cmd, 2904 struct compat_ifreq __user *ifr32) 2905 { 2906 struct ifreq kifr; 2907 mm_segment_t old_fs; 2908 int err; 2909 2910 switch (cmd) { 2911 case SIOCBONDENSLAVE: 2912 case SIOCBONDRELEASE: 2913 case SIOCBONDSETHWADDR: 2914 case SIOCBONDCHANGEACTIVE: 2915 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2916 return -EFAULT; 2917 2918 old_fs = get_fs(); 2919 set_fs(KERNEL_DS); 2920 err = dev_ioctl(net, cmd, 2921 (struct ifreq __user __force *) &kifr); 2922 set_fs(old_fs); 2923 2924 return err; 2925 default: 2926 return -ENOIOCTLCMD; 2927 } 2928 } 2929 2930 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2931 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2932 struct compat_ifreq __user *u_ifreq32) 2933 { 2934 struct ifreq __user *u_ifreq64; 2935 char tmp_buf[IFNAMSIZ]; 2936 void __user *data64; 2937 u32 data32; 2938 2939 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2940 IFNAMSIZ)) 2941 return -EFAULT; 2942 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2943 return -EFAULT; 2944 data64 = compat_ptr(data32); 2945 2946 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2947 2948 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2949 IFNAMSIZ)) 2950 return -EFAULT; 2951 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2952 return -EFAULT; 2953 2954 return dev_ioctl(net, cmd, u_ifreq64); 2955 } 2956 2957 static int dev_ifsioc(struct net *net, struct socket *sock, 2958 unsigned int cmd, struct compat_ifreq __user *uifr32) 2959 { 2960 struct ifreq __user *uifr; 2961 int err; 2962 2963 uifr = compat_alloc_user_space(sizeof(*uifr)); 2964 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2965 return -EFAULT; 2966 2967 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2968 2969 if (!err) { 2970 switch (cmd) { 2971 case SIOCGIFFLAGS: 2972 case SIOCGIFMETRIC: 2973 case SIOCGIFMTU: 2974 case SIOCGIFMEM: 2975 case SIOCGIFHWADDR: 2976 case SIOCGIFINDEX: 2977 case SIOCGIFADDR: 2978 case SIOCGIFBRDADDR: 2979 case SIOCGIFDSTADDR: 2980 case SIOCGIFNETMASK: 2981 case SIOCGIFPFLAGS: 2982 case SIOCGIFTXQLEN: 2983 case SIOCGMIIPHY: 2984 case SIOCGMIIREG: 2985 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2986 err = -EFAULT; 2987 break; 2988 } 2989 } 2990 return err; 2991 } 2992 2993 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2994 struct compat_ifreq __user *uifr32) 2995 { 2996 struct ifreq ifr; 2997 struct compat_ifmap __user *uifmap32; 2998 mm_segment_t old_fs; 2999 int err; 3000 3001 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3002 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3003 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3004 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3005 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3006 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3007 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3008 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3009 if (err) 3010 return -EFAULT; 3011 3012 old_fs = get_fs(); 3013 set_fs(KERNEL_DS); 3014 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3015 set_fs(old_fs); 3016 3017 if (cmd == SIOCGIFMAP && !err) { 3018 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3019 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3020 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3021 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3022 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3023 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3024 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3025 if (err) 3026 err = -EFAULT; 3027 } 3028 return err; 3029 } 3030 3031 struct rtentry32 { 3032 u32 rt_pad1; 3033 struct sockaddr rt_dst; /* target address */ 3034 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3035 struct sockaddr rt_genmask; /* target network mask (IP) */ 3036 unsigned short rt_flags; 3037 short rt_pad2; 3038 u32 rt_pad3; 3039 unsigned char rt_tos; 3040 unsigned char rt_class; 3041 short rt_pad4; 3042 short rt_metric; /* +1 for binary compatibility! */ 3043 /* char * */ u32 rt_dev; /* forcing the device at add */ 3044 u32 rt_mtu; /* per route MTU/Window */ 3045 u32 rt_window; /* Window clamping */ 3046 unsigned short rt_irtt; /* Initial RTT */ 3047 }; 3048 3049 struct in6_rtmsg32 { 3050 struct in6_addr rtmsg_dst; 3051 struct in6_addr rtmsg_src; 3052 struct in6_addr rtmsg_gateway; 3053 u32 rtmsg_type; 3054 u16 rtmsg_dst_len; 3055 u16 rtmsg_src_len; 3056 u32 rtmsg_metric; 3057 u32 rtmsg_info; 3058 u32 rtmsg_flags; 3059 s32 rtmsg_ifindex; 3060 }; 3061 3062 static int routing_ioctl(struct net *net, struct socket *sock, 3063 unsigned int cmd, void __user *argp) 3064 { 3065 int ret; 3066 void *r = NULL; 3067 struct in6_rtmsg r6; 3068 struct rtentry r4; 3069 char devname[16]; 3070 u32 rtdev; 3071 mm_segment_t old_fs = get_fs(); 3072 3073 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3074 struct in6_rtmsg32 __user *ur6 = argp; 3075 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3076 3 * sizeof(struct in6_addr)); 3077 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3078 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3079 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3080 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3081 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3082 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3083 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3084 3085 r = (void *) &r6; 3086 } else { /* ipv4 */ 3087 struct rtentry32 __user *ur4 = argp; 3088 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3089 3 * sizeof(struct sockaddr)); 3090 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3091 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3092 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3093 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3094 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3095 ret |= get_user(rtdev, &(ur4->rt_dev)); 3096 if (rtdev) { 3097 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3098 r4.rt_dev = (char __user __force *)devname; 3099 devname[15] = 0; 3100 } else 3101 r4.rt_dev = NULL; 3102 3103 r = (void *) &r4; 3104 } 3105 3106 if (ret) { 3107 ret = -EFAULT; 3108 goto out; 3109 } 3110 3111 set_fs(KERNEL_DS); 3112 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3113 set_fs(old_fs); 3114 3115 out: 3116 return ret; 3117 } 3118 3119 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3120 * for some operations; this forces use of the newer bridge-utils that 3121 * use compatible ioctls 3122 */ 3123 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3124 { 3125 compat_ulong_t tmp; 3126 3127 if (get_user(tmp, argp)) 3128 return -EFAULT; 3129 if (tmp == BRCTL_GET_VERSION) 3130 return BRCTL_VERSION + 1; 3131 return -EINVAL; 3132 } 3133 3134 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3135 unsigned int cmd, unsigned long arg) 3136 { 3137 void __user *argp = compat_ptr(arg); 3138 struct sock *sk = sock->sk; 3139 struct net *net = sock_net(sk); 3140 3141 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3142 return compat_ifr_data_ioctl(net, cmd, argp); 3143 3144 switch (cmd) { 3145 case SIOCSIFBR: 3146 case SIOCGIFBR: 3147 return old_bridge_ioctl(argp); 3148 case SIOCGIFNAME: 3149 return dev_ifname32(net, argp); 3150 case SIOCGIFCONF: 3151 return dev_ifconf(net, argp); 3152 case SIOCETHTOOL: 3153 return ethtool_ioctl(net, argp); 3154 case SIOCWANDEV: 3155 return compat_siocwandev(net, argp); 3156 case SIOCGIFMAP: 3157 case SIOCSIFMAP: 3158 return compat_sioc_ifmap(net, cmd, argp); 3159 case SIOCBONDENSLAVE: 3160 case SIOCBONDRELEASE: 3161 case SIOCBONDSETHWADDR: 3162 case SIOCBONDCHANGEACTIVE: 3163 return bond_ioctl(net, cmd, argp); 3164 case SIOCADDRT: 3165 case SIOCDELRT: 3166 return routing_ioctl(net, sock, cmd, argp); 3167 case SIOCGSTAMP: 3168 return do_siocgstamp(net, sock, cmd, argp); 3169 case SIOCGSTAMPNS: 3170 return do_siocgstampns(net, sock, cmd, argp); 3171 case SIOCBONDSLAVEINFOQUERY: 3172 case SIOCBONDINFOQUERY: 3173 case SIOCSHWTSTAMP: 3174 case SIOCGHWTSTAMP: 3175 return compat_ifr_data_ioctl(net, cmd, argp); 3176 3177 case FIOSETOWN: 3178 case SIOCSPGRP: 3179 case FIOGETOWN: 3180 case SIOCGPGRP: 3181 case SIOCBRADDBR: 3182 case SIOCBRDELBR: 3183 case SIOCGIFVLAN: 3184 case SIOCSIFVLAN: 3185 case SIOCADDDLCI: 3186 case SIOCDELDLCI: 3187 case SIOCGSKNS: 3188 return sock_ioctl(file, cmd, arg); 3189 3190 case SIOCGIFFLAGS: 3191 case SIOCSIFFLAGS: 3192 case SIOCGIFMETRIC: 3193 case SIOCSIFMETRIC: 3194 case SIOCGIFMTU: 3195 case SIOCSIFMTU: 3196 case SIOCGIFMEM: 3197 case SIOCSIFMEM: 3198 case SIOCGIFHWADDR: 3199 case SIOCSIFHWADDR: 3200 case SIOCADDMULTI: 3201 case SIOCDELMULTI: 3202 case SIOCGIFINDEX: 3203 case SIOCGIFADDR: 3204 case SIOCSIFADDR: 3205 case SIOCSIFHWBROADCAST: 3206 case SIOCDIFADDR: 3207 case SIOCGIFBRDADDR: 3208 case SIOCSIFBRDADDR: 3209 case SIOCGIFDSTADDR: 3210 case SIOCSIFDSTADDR: 3211 case SIOCGIFNETMASK: 3212 case SIOCSIFNETMASK: 3213 case SIOCSIFPFLAGS: 3214 case SIOCGIFPFLAGS: 3215 case SIOCGIFTXQLEN: 3216 case SIOCSIFTXQLEN: 3217 case SIOCBRADDIF: 3218 case SIOCBRDELIF: 3219 case SIOCSIFNAME: 3220 case SIOCGMIIPHY: 3221 case SIOCGMIIREG: 3222 case SIOCSMIIREG: 3223 return dev_ifsioc(net, sock, cmd, argp); 3224 3225 case SIOCSARP: 3226 case SIOCGARP: 3227 case SIOCDARP: 3228 case SIOCATMARK: 3229 return sock_do_ioctl(net, sock, cmd, arg); 3230 } 3231 3232 return -ENOIOCTLCMD; 3233 } 3234 3235 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3236 unsigned long arg) 3237 { 3238 struct socket *sock = file->private_data; 3239 int ret = -ENOIOCTLCMD; 3240 struct sock *sk; 3241 struct net *net; 3242 3243 sk = sock->sk; 3244 net = sock_net(sk); 3245 3246 if (sock->ops->compat_ioctl) 3247 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3248 3249 if (ret == -ENOIOCTLCMD && 3250 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3251 ret = compat_wext_handle_ioctl(net, cmd, arg); 3252 3253 if (ret == -ENOIOCTLCMD) 3254 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3255 3256 return ret; 3257 } 3258 #endif 3259 3260 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3261 { 3262 return sock->ops->bind(sock, addr, addrlen); 3263 } 3264 EXPORT_SYMBOL(kernel_bind); 3265 3266 int kernel_listen(struct socket *sock, int backlog) 3267 { 3268 return sock->ops->listen(sock, backlog); 3269 } 3270 EXPORT_SYMBOL(kernel_listen); 3271 3272 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3273 { 3274 struct sock *sk = sock->sk; 3275 int err; 3276 3277 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3278 newsock); 3279 if (err < 0) 3280 goto done; 3281 3282 err = sock->ops->accept(sock, *newsock, flags, true); 3283 if (err < 0) { 3284 sock_release(*newsock); 3285 *newsock = NULL; 3286 goto done; 3287 } 3288 3289 (*newsock)->ops = sock->ops; 3290 __module_get((*newsock)->ops->owner); 3291 3292 done: 3293 return err; 3294 } 3295 EXPORT_SYMBOL(kernel_accept); 3296 3297 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3298 int flags) 3299 { 3300 return sock->ops->connect(sock, addr, addrlen, flags); 3301 } 3302 EXPORT_SYMBOL(kernel_connect); 3303 3304 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3305 int *addrlen) 3306 { 3307 return sock->ops->getname(sock, addr, addrlen, 0); 3308 } 3309 EXPORT_SYMBOL(kernel_getsockname); 3310 3311 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3312 int *addrlen) 3313 { 3314 return sock->ops->getname(sock, addr, addrlen, 1); 3315 } 3316 EXPORT_SYMBOL(kernel_getpeername); 3317 3318 int kernel_getsockopt(struct socket *sock, int level, int optname, 3319 char *optval, int *optlen) 3320 { 3321 mm_segment_t oldfs = get_fs(); 3322 char __user *uoptval; 3323 int __user *uoptlen; 3324 int err; 3325 3326 uoptval = (char __user __force *) optval; 3327 uoptlen = (int __user __force *) optlen; 3328 3329 set_fs(KERNEL_DS); 3330 if (level == SOL_SOCKET) 3331 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3332 else 3333 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3334 uoptlen); 3335 set_fs(oldfs); 3336 return err; 3337 } 3338 EXPORT_SYMBOL(kernel_getsockopt); 3339 3340 int kernel_setsockopt(struct socket *sock, int level, int optname, 3341 char *optval, unsigned int optlen) 3342 { 3343 mm_segment_t oldfs = get_fs(); 3344 char __user *uoptval; 3345 int err; 3346 3347 uoptval = (char __user __force *) optval; 3348 3349 set_fs(KERNEL_DS); 3350 if (level == SOL_SOCKET) 3351 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3352 else 3353 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3354 optlen); 3355 set_fs(oldfs); 3356 return err; 3357 } 3358 EXPORT_SYMBOL(kernel_setsockopt); 3359 3360 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3361 size_t size, int flags) 3362 { 3363 if (sock->ops->sendpage) 3364 return sock->ops->sendpage(sock, page, offset, size, flags); 3365 3366 return sock_no_sendpage(sock, page, offset, size, flags); 3367 } 3368 EXPORT_SYMBOL(kernel_sendpage); 3369 3370 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3371 size_t size, int flags) 3372 { 3373 struct socket *sock = sk->sk_socket; 3374 3375 if (sock->ops->sendpage_locked) 3376 return sock->ops->sendpage_locked(sk, page, offset, size, 3377 flags); 3378 3379 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3380 } 3381 EXPORT_SYMBOL(kernel_sendpage_locked); 3382 3383 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3384 { 3385 mm_segment_t oldfs = get_fs(); 3386 int err; 3387 3388 set_fs(KERNEL_DS); 3389 err = sock->ops->ioctl(sock, cmd, arg); 3390 set_fs(oldfs); 3391 3392 return err; 3393 } 3394 EXPORT_SYMBOL(kernel_sock_ioctl); 3395 3396 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3397 { 3398 return sock->ops->shutdown(sock, how); 3399 } 3400 EXPORT_SYMBOL(kernel_sock_shutdown); 3401 3402 /* This routine returns the IP overhead imposed by a socket i.e. 3403 * the length of the underlying IP header, depending on whether 3404 * this is an IPv4 or IPv6 socket and the length from IP options turned 3405 * on at the socket. Assumes that the caller has a lock on the socket. 3406 */ 3407 u32 kernel_sock_ip_overhead(struct sock *sk) 3408 { 3409 struct inet_sock *inet; 3410 struct ip_options_rcu *opt; 3411 u32 overhead = 0; 3412 #if IS_ENABLED(CONFIG_IPV6) 3413 struct ipv6_pinfo *np; 3414 struct ipv6_txoptions *optv6 = NULL; 3415 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3416 3417 if (!sk) 3418 return overhead; 3419 3420 switch (sk->sk_family) { 3421 case AF_INET: 3422 inet = inet_sk(sk); 3423 overhead += sizeof(struct iphdr); 3424 opt = rcu_dereference_protected(inet->inet_opt, 3425 sock_owned_by_user(sk)); 3426 if (opt) 3427 overhead += opt->opt.optlen; 3428 return overhead; 3429 #if IS_ENABLED(CONFIG_IPV6) 3430 case AF_INET6: 3431 np = inet6_sk(sk); 3432 overhead += sizeof(struct ipv6hdr); 3433 if (np) 3434 optv6 = rcu_dereference_protected(np->opt, 3435 sock_owned_by_user(sk)); 3436 if (optv6) 3437 overhead += (optv6->opt_flen + optv6->opt_nflen); 3438 return overhead; 3439 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3440 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3441 return overhead; 3442 } 3443 } 3444 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3445