xref: /openbmc/linux/net/socket.c (revision 4a3fad70)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static void init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	BUG_ON(sock_inode_cachep == NULL);
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 /*
309  * sockfs_dname() is called from d_path().
310  */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 				d_inode(dentry)->i_ino);
315 }
316 
317 static const struct dentry_operations sockfs_dentry_operations = {
318 	.d_dname  = sockfs_dname,
319 };
320 
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 			    struct dentry *dentry, struct inode *inode,
323 			    const char *suffix, void *value, size_t size)
324 {
325 	if (value) {
326 		if (dentry->d_name.len + 1 > size)
327 			return -ERANGE;
328 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 	}
330 	return dentry->d_name.len + 1;
331 }
332 
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336 
337 static const struct xattr_handler sockfs_xattr_handler = {
338 	.name = XATTR_NAME_SOCKPROTONAME,
339 	.get = sockfs_xattr_get,
340 };
341 
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 				     struct dentry *dentry, struct inode *inode,
344 				     const char *suffix, const void *value,
345 				     size_t size, int flags)
346 {
347 	/* Handled by LSM. */
348 	return -EAGAIN;
349 }
350 
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 	.prefix = XATTR_SECURITY_PREFIX,
353 	.set = sockfs_security_xattr_set,
354 };
355 
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 	&sockfs_xattr_handler,
358 	&sockfs_security_xattr_handler,
359 	NULL
360 };
361 
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 			 int flags, const char *dev_name, void *data)
364 {
365 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 				  sockfs_xattr_handlers,
367 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369 
370 static struct vfsmount *sock_mnt __read_mostly;
371 
372 static struct file_system_type sock_fs_type = {
373 	.name =		"sockfs",
374 	.mount =	sockfs_mount,
375 	.kill_sb =	kill_anon_super,
376 };
377 
378 /*
379  *	Obtains the first available file descriptor and sets it up for use.
380  *
381  *	These functions create file structures and maps them to fd space
382  *	of the current process. On success it returns file descriptor
383  *	and file struct implicitly stored in sock->file.
384  *	Note that another thread may close file descriptor before we return
385  *	from this function. We use the fact that now we do not refer
386  *	to socket after mapping. If one day we will need it, this
387  *	function will increment ref. count on file by 1.
388  *
389  *	In any case returned fd MAY BE not valid!
390  *	This race condition is unavoidable
391  *	with shared fd spaces, we cannot solve it inside kernel,
392  *	but we take care of internal coherence yet.
393  */
394 
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 	struct qstr name = { .name = "" };
398 	struct path path;
399 	struct file *file;
400 
401 	if (dname) {
402 		name.name = dname;
403 		name.len = strlen(name.name);
404 	} else if (sock->sk) {
405 		name.name = sock->sk->sk_prot_creator->name;
406 		name.len = strlen(name.name);
407 	}
408 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 	if (unlikely(!path.dentry)) {
410 		sock_release(sock);
411 		return ERR_PTR(-ENOMEM);
412 	}
413 	path.mnt = mntget(sock_mnt);
414 
415 	d_instantiate(path.dentry, SOCK_INODE(sock));
416 
417 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 		  &socket_file_ops);
419 	if (IS_ERR(file)) {
420 		/* drop dentry, keep inode for a bit */
421 		ihold(d_inode(path.dentry));
422 		path_put(&path);
423 		/* ... and now kill it properly */
424 		sock_release(sock);
425 		return file;
426 	}
427 
428 	sock->file = file;
429 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
430 	file->private_data = sock;
431 	return file;
432 }
433 EXPORT_SYMBOL(sock_alloc_file);
434 
435 static int sock_map_fd(struct socket *sock, int flags)
436 {
437 	struct file *newfile;
438 	int fd = get_unused_fd_flags(flags);
439 	if (unlikely(fd < 0))
440 		return fd;
441 
442 	newfile = sock_alloc_file(sock, flags, NULL);
443 	if (likely(!IS_ERR(newfile))) {
444 		fd_install(fd, newfile);
445 		return fd;
446 	}
447 
448 	put_unused_fd(fd);
449 	return PTR_ERR(newfile);
450 }
451 
452 struct socket *sock_from_file(struct file *file, int *err)
453 {
454 	if (file->f_op == &socket_file_ops)
455 		return file->private_data;	/* set in sock_map_fd */
456 
457 	*err = -ENOTSOCK;
458 	return NULL;
459 }
460 EXPORT_SYMBOL(sock_from_file);
461 
462 /**
463  *	sockfd_lookup - Go from a file number to its socket slot
464  *	@fd: file handle
465  *	@err: pointer to an error code return
466  *
467  *	The file handle passed in is locked and the socket it is bound
468  *	to is returned. If an error occurs the err pointer is overwritten
469  *	with a negative errno code and NULL is returned. The function checks
470  *	for both invalid handles and passing a handle which is not a socket.
471  *
472  *	On a success the socket object pointer is returned.
473  */
474 
475 struct socket *sockfd_lookup(int fd, int *err)
476 {
477 	struct file *file;
478 	struct socket *sock;
479 
480 	file = fget(fd);
481 	if (!file) {
482 		*err = -EBADF;
483 		return NULL;
484 	}
485 
486 	sock = sock_from_file(file, err);
487 	if (!sock)
488 		fput(file);
489 	return sock;
490 }
491 EXPORT_SYMBOL(sockfd_lookup);
492 
493 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
494 {
495 	struct fd f = fdget(fd);
496 	struct socket *sock;
497 
498 	*err = -EBADF;
499 	if (f.file) {
500 		sock = sock_from_file(f.file, err);
501 		if (likely(sock)) {
502 			*fput_needed = f.flags;
503 			return sock;
504 		}
505 		fdput(f);
506 	}
507 	return NULL;
508 }
509 
510 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
511 				size_t size)
512 {
513 	ssize_t len;
514 	ssize_t used = 0;
515 
516 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
517 	if (len < 0)
518 		return len;
519 	used += len;
520 	if (buffer) {
521 		if (size < used)
522 			return -ERANGE;
523 		buffer += len;
524 	}
525 
526 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
527 	used += len;
528 	if (buffer) {
529 		if (size < used)
530 			return -ERANGE;
531 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
532 		buffer += len;
533 	}
534 
535 	return used;
536 }
537 
538 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
539 {
540 	int err = simple_setattr(dentry, iattr);
541 
542 	if (!err && (iattr->ia_valid & ATTR_UID)) {
543 		struct socket *sock = SOCKET_I(d_inode(dentry));
544 
545 		sock->sk->sk_uid = iattr->ia_uid;
546 	}
547 
548 	return err;
549 }
550 
551 static const struct inode_operations sockfs_inode_ops = {
552 	.listxattr = sockfs_listxattr,
553 	.setattr = sockfs_setattr,
554 };
555 
556 /**
557  *	sock_alloc	-	allocate a socket
558  *
559  *	Allocate a new inode and socket object. The two are bound together
560  *	and initialised. The socket is then returned. If we are out of inodes
561  *	NULL is returned.
562  */
563 
564 struct socket *sock_alloc(void)
565 {
566 	struct inode *inode;
567 	struct socket *sock;
568 
569 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
570 	if (!inode)
571 		return NULL;
572 
573 	sock = SOCKET_I(inode);
574 
575 	inode->i_ino = get_next_ino();
576 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
577 	inode->i_uid = current_fsuid();
578 	inode->i_gid = current_fsgid();
579 	inode->i_op = &sockfs_inode_ops;
580 
581 	this_cpu_add(sockets_in_use, 1);
582 	return sock;
583 }
584 EXPORT_SYMBOL(sock_alloc);
585 
586 /**
587  *	sock_release	-	close a socket
588  *	@sock: socket to close
589  *
590  *	The socket is released from the protocol stack if it has a release
591  *	callback, and the inode is then released if the socket is bound to
592  *	an inode not a file.
593  */
594 
595 void sock_release(struct socket *sock)
596 {
597 	if (sock->ops) {
598 		struct module *owner = sock->ops->owner;
599 
600 		sock->ops->release(sock);
601 		sock->ops = NULL;
602 		module_put(owner);
603 	}
604 
605 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
606 		pr_err("%s: fasync list not empty!\n", __func__);
607 
608 	this_cpu_sub(sockets_in_use, 1);
609 	if (!sock->file) {
610 		iput(SOCK_INODE(sock));
611 		return;
612 	}
613 	sock->file = NULL;
614 }
615 EXPORT_SYMBOL(sock_release);
616 
617 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
618 {
619 	u8 flags = *tx_flags;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
622 		flags |= SKBTX_HW_TSTAMP;
623 
624 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
625 		flags |= SKBTX_SW_TSTAMP;
626 
627 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
628 		flags |= SKBTX_SCHED_TSTAMP;
629 
630 	*tx_flags = flags;
631 }
632 EXPORT_SYMBOL(__sock_tx_timestamp);
633 
634 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
635 {
636 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
637 	BUG_ON(ret == -EIOCBQUEUED);
638 	return ret;
639 }
640 
641 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
642 {
643 	int err = security_socket_sendmsg(sock, msg,
644 					  msg_data_left(msg));
645 
646 	return err ?: sock_sendmsg_nosec(sock, msg);
647 }
648 EXPORT_SYMBOL(sock_sendmsg);
649 
650 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
651 		   struct kvec *vec, size_t num, size_t size)
652 {
653 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
654 	return sock_sendmsg(sock, msg);
655 }
656 EXPORT_SYMBOL(kernel_sendmsg);
657 
658 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
659 			  struct kvec *vec, size_t num, size_t size)
660 {
661 	struct socket *sock = sk->sk_socket;
662 
663 	if (!sock->ops->sendmsg_locked)
664 		return sock_no_sendmsg_locked(sk, msg, size);
665 
666 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
667 
668 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
669 }
670 EXPORT_SYMBOL(kernel_sendmsg_locked);
671 
672 static bool skb_is_err_queue(const struct sk_buff *skb)
673 {
674 	/* pkt_type of skbs enqueued on the error queue are set to
675 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
676 	 * in recvmsg, since skbs received on a local socket will never
677 	 * have a pkt_type of PACKET_OUTGOING.
678 	 */
679 	return skb->pkt_type == PACKET_OUTGOING;
680 }
681 
682 /* On transmit, software and hardware timestamps are returned independently.
683  * As the two skb clones share the hardware timestamp, which may be updated
684  * before the software timestamp is received, a hardware TX timestamp may be
685  * returned only if there is no software TX timestamp. Ignore false software
686  * timestamps, which may be made in the __sock_recv_timestamp() call when the
687  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
688  * hardware timestamp.
689  */
690 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
691 {
692 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
693 }
694 
695 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
696 {
697 	struct scm_ts_pktinfo ts_pktinfo;
698 	struct net_device *orig_dev;
699 
700 	if (!skb_mac_header_was_set(skb))
701 		return;
702 
703 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
704 
705 	rcu_read_lock();
706 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
707 	if (orig_dev)
708 		ts_pktinfo.if_index = orig_dev->ifindex;
709 	rcu_read_unlock();
710 
711 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
712 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
713 		 sizeof(ts_pktinfo), &ts_pktinfo);
714 }
715 
716 /*
717  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
718  */
719 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
720 	struct sk_buff *skb)
721 {
722 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
723 	struct scm_timestamping tss;
724 	int empty = 1, false_tstamp = 0;
725 	struct skb_shared_hwtstamps *shhwtstamps =
726 		skb_hwtstamps(skb);
727 
728 	/* Race occurred between timestamp enabling and packet
729 	   receiving.  Fill in the current time for now. */
730 	if (need_software_tstamp && skb->tstamp == 0) {
731 		__net_timestamp(skb);
732 		false_tstamp = 1;
733 	}
734 
735 	if (need_software_tstamp) {
736 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
737 			struct timeval tv;
738 			skb_get_timestamp(skb, &tv);
739 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
740 				 sizeof(tv), &tv);
741 		} else {
742 			struct timespec ts;
743 			skb_get_timestampns(skb, &ts);
744 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
745 				 sizeof(ts), &ts);
746 		}
747 	}
748 
749 	memset(&tss, 0, sizeof(tss));
750 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
751 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
752 		empty = 0;
753 	if (shhwtstamps &&
754 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
755 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
756 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
757 		empty = 0;
758 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
759 		    !skb_is_err_queue(skb))
760 			put_ts_pktinfo(msg, skb);
761 	}
762 	if (!empty) {
763 		put_cmsg(msg, SOL_SOCKET,
764 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
765 
766 		if (skb_is_err_queue(skb) && skb->len &&
767 		    SKB_EXT_ERR(skb)->opt_stats)
768 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
769 				 skb->len, skb->data);
770 	}
771 }
772 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
773 
774 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
775 	struct sk_buff *skb)
776 {
777 	int ack;
778 
779 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
780 		return;
781 	if (!skb->wifi_acked_valid)
782 		return;
783 
784 	ack = skb->wifi_acked;
785 
786 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
787 }
788 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
789 
790 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
791 				   struct sk_buff *skb)
792 {
793 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
794 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
795 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
796 }
797 
798 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
799 	struct sk_buff *skb)
800 {
801 	sock_recv_timestamp(msg, sk, skb);
802 	sock_recv_drops(msg, sk, skb);
803 }
804 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
805 
806 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
807 				     int flags)
808 {
809 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
810 }
811 
812 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
813 {
814 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
815 
816 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
817 }
818 EXPORT_SYMBOL(sock_recvmsg);
819 
820 /**
821  * kernel_recvmsg - Receive a message from a socket (kernel space)
822  * @sock:       The socket to receive the message from
823  * @msg:        Received message
824  * @vec:        Input s/g array for message data
825  * @num:        Size of input s/g array
826  * @size:       Number of bytes to read
827  * @flags:      Message flags (MSG_DONTWAIT, etc...)
828  *
829  * On return the msg structure contains the scatter/gather array passed in the
830  * vec argument. The array is modified so that it consists of the unfilled
831  * portion of the original array.
832  *
833  * The returned value is the total number of bytes received, or an error.
834  */
835 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
836 		   struct kvec *vec, size_t num, size_t size, int flags)
837 {
838 	mm_segment_t oldfs = get_fs();
839 	int result;
840 
841 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
842 	set_fs(KERNEL_DS);
843 	result = sock_recvmsg(sock, msg, flags);
844 	set_fs(oldfs);
845 	return result;
846 }
847 EXPORT_SYMBOL(kernel_recvmsg);
848 
849 static ssize_t sock_sendpage(struct file *file, struct page *page,
850 			     int offset, size_t size, loff_t *ppos, int more)
851 {
852 	struct socket *sock;
853 	int flags;
854 
855 	sock = file->private_data;
856 
857 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
858 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
859 	flags |= more;
860 
861 	return kernel_sendpage(sock, page, offset, size, flags);
862 }
863 
864 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
865 				struct pipe_inode_info *pipe, size_t len,
866 				unsigned int flags)
867 {
868 	struct socket *sock = file->private_data;
869 
870 	if (unlikely(!sock->ops->splice_read))
871 		return -EINVAL;
872 
873 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
874 }
875 
876 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
877 {
878 	struct file *file = iocb->ki_filp;
879 	struct socket *sock = file->private_data;
880 	struct msghdr msg = {.msg_iter = *to,
881 			     .msg_iocb = iocb};
882 	ssize_t res;
883 
884 	if (file->f_flags & O_NONBLOCK)
885 		msg.msg_flags = MSG_DONTWAIT;
886 
887 	if (iocb->ki_pos != 0)
888 		return -ESPIPE;
889 
890 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
891 		return 0;
892 
893 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
894 	*to = msg.msg_iter;
895 	return res;
896 }
897 
898 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
899 {
900 	struct file *file = iocb->ki_filp;
901 	struct socket *sock = file->private_data;
902 	struct msghdr msg = {.msg_iter = *from,
903 			     .msg_iocb = iocb};
904 	ssize_t res;
905 
906 	if (iocb->ki_pos != 0)
907 		return -ESPIPE;
908 
909 	if (file->f_flags & O_NONBLOCK)
910 		msg.msg_flags = MSG_DONTWAIT;
911 
912 	if (sock->type == SOCK_SEQPACKET)
913 		msg.msg_flags |= MSG_EOR;
914 
915 	res = sock_sendmsg(sock, &msg);
916 	*from = msg.msg_iter;
917 	return res;
918 }
919 
920 /*
921  * Atomic setting of ioctl hooks to avoid race
922  * with module unload.
923  */
924 
925 static DEFINE_MUTEX(br_ioctl_mutex);
926 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
927 
928 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
929 {
930 	mutex_lock(&br_ioctl_mutex);
931 	br_ioctl_hook = hook;
932 	mutex_unlock(&br_ioctl_mutex);
933 }
934 EXPORT_SYMBOL(brioctl_set);
935 
936 static DEFINE_MUTEX(vlan_ioctl_mutex);
937 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
938 
939 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
940 {
941 	mutex_lock(&vlan_ioctl_mutex);
942 	vlan_ioctl_hook = hook;
943 	mutex_unlock(&vlan_ioctl_mutex);
944 }
945 EXPORT_SYMBOL(vlan_ioctl_set);
946 
947 static DEFINE_MUTEX(dlci_ioctl_mutex);
948 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
949 
950 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
951 {
952 	mutex_lock(&dlci_ioctl_mutex);
953 	dlci_ioctl_hook = hook;
954 	mutex_unlock(&dlci_ioctl_mutex);
955 }
956 EXPORT_SYMBOL(dlci_ioctl_set);
957 
958 static long sock_do_ioctl(struct net *net, struct socket *sock,
959 				 unsigned int cmd, unsigned long arg)
960 {
961 	int err;
962 	void __user *argp = (void __user *)arg;
963 
964 	err = sock->ops->ioctl(sock, cmd, arg);
965 
966 	/*
967 	 * If this ioctl is unknown try to hand it down
968 	 * to the NIC driver.
969 	 */
970 	if (err == -ENOIOCTLCMD)
971 		err = dev_ioctl(net, cmd, argp);
972 
973 	return err;
974 }
975 
976 /*
977  *	With an ioctl, arg may well be a user mode pointer, but we don't know
978  *	what to do with it - that's up to the protocol still.
979  */
980 
981 static struct ns_common *get_net_ns(struct ns_common *ns)
982 {
983 	return &get_net(container_of(ns, struct net, ns))->ns;
984 }
985 
986 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
987 {
988 	struct socket *sock;
989 	struct sock *sk;
990 	void __user *argp = (void __user *)arg;
991 	int pid, err;
992 	struct net *net;
993 
994 	sock = file->private_data;
995 	sk = sock->sk;
996 	net = sock_net(sk);
997 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
998 		err = dev_ioctl(net, cmd, argp);
999 	} else
1000 #ifdef CONFIG_WEXT_CORE
1001 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1002 		err = dev_ioctl(net, cmd, argp);
1003 	} else
1004 #endif
1005 		switch (cmd) {
1006 		case FIOSETOWN:
1007 		case SIOCSPGRP:
1008 			err = -EFAULT;
1009 			if (get_user(pid, (int __user *)argp))
1010 				break;
1011 			err = f_setown(sock->file, pid, 1);
1012 			break;
1013 		case FIOGETOWN:
1014 		case SIOCGPGRP:
1015 			err = put_user(f_getown(sock->file),
1016 				       (int __user *)argp);
1017 			break;
1018 		case SIOCGIFBR:
1019 		case SIOCSIFBR:
1020 		case SIOCBRADDBR:
1021 		case SIOCBRDELBR:
1022 			err = -ENOPKG;
1023 			if (!br_ioctl_hook)
1024 				request_module("bridge");
1025 
1026 			mutex_lock(&br_ioctl_mutex);
1027 			if (br_ioctl_hook)
1028 				err = br_ioctl_hook(net, cmd, argp);
1029 			mutex_unlock(&br_ioctl_mutex);
1030 			break;
1031 		case SIOCGIFVLAN:
1032 		case SIOCSIFVLAN:
1033 			err = -ENOPKG;
1034 			if (!vlan_ioctl_hook)
1035 				request_module("8021q");
1036 
1037 			mutex_lock(&vlan_ioctl_mutex);
1038 			if (vlan_ioctl_hook)
1039 				err = vlan_ioctl_hook(net, argp);
1040 			mutex_unlock(&vlan_ioctl_mutex);
1041 			break;
1042 		case SIOCADDDLCI:
1043 		case SIOCDELDLCI:
1044 			err = -ENOPKG;
1045 			if (!dlci_ioctl_hook)
1046 				request_module("dlci");
1047 
1048 			mutex_lock(&dlci_ioctl_mutex);
1049 			if (dlci_ioctl_hook)
1050 				err = dlci_ioctl_hook(cmd, argp);
1051 			mutex_unlock(&dlci_ioctl_mutex);
1052 			break;
1053 		case SIOCGSKNS:
1054 			err = -EPERM;
1055 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1056 				break;
1057 
1058 			err = open_related_ns(&net->ns, get_net_ns);
1059 			break;
1060 		default:
1061 			err = sock_do_ioctl(net, sock, cmd, arg);
1062 			break;
1063 		}
1064 	return err;
1065 }
1066 
1067 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1068 {
1069 	int err;
1070 	struct socket *sock = NULL;
1071 
1072 	err = security_socket_create(family, type, protocol, 1);
1073 	if (err)
1074 		goto out;
1075 
1076 	sock = sock_alloc();
1077 	if (!sock) {
1078 		err = -ENOMEM;
1079 		goto out;
1080 	}
1081 
1082 	sock->type = type;
1083 	err = security_socket_post_create(sock, family, type, protocol, 1);
1084 	if (err)
1085 		goto out_release;
1086 
1087 out:
1088 	*res = sock;
1089 	return err;
1090 out_release:
1091 	sock_release(sock);
1092 	sock = NULL;
1093 	goto out;
1094 }
1095 EXPORT_SYMBOL(sock_create_lite);
1096 
1097 /* No kernel lock held - perfect */
1098 static unsigned int sock_poll(struct file *file, poll_table *wait)
1099 {
1100 	unsigned int busy_flag = 0;
1101 	struct socket *sock;
1102 
1103 	/*
1104 	 *      We can't return errors to poll, so it's either yes or no.
1105 	 */
1106 	sock = file->private_data;
1107 
1108 	if (sk_can_busy_loop(sock->sk)) {
1109 		/* this socket can poll_ll so tell the system call */
1110 		busy_flag = POLL_BUSY_LOOP;
1111 
1112 		/* once, only if requested by syscall */
1113 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1114 			sk_busy_loop(sock->sk, 1);
1115 	}
1116 
1117 	return busy_flag | sock->ops->poll(file, sock, wait);
1118 }
1119 
1120 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1121 {
1122 	struct socket *sock = file->private_data;
1123 
1124 	return sock->ops->mmap(file, sock, vma);
1125 }
1126 
1127 static int sock_close(struct inode *inode, struct file *filp)
1128 {
1129 	sock_release(SOCKET_I(inode));
1130 	return 0;
1131 }
1132 
1133 /*
1134  *	Update the socket async list
1135  *
1136  *	Fasync_list locking strategy.
1137  *
1138  *	1. fasync_list is modified only under process context socket lock
1139  *	   i.e. under semaphore.
1140  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1141  *	   or under socket lock
1142  */
1143 
1144 static int sock_fasync(int fd, struct file *filp, int on)
1145 {
1146 	struct socket *sock = filp->private_data;
1147 	struct sock *sk = sock->sk;
1148 	struct socket_wq *wq;
1149 
1150 	if (sk == NULL)
1151 		return -EINVAL;
1152 
1153 	lock_sock(sk);
1154 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1155 	fasync_helper(fd, filp, on, &wq->fasync_list);
1156 
1157 	if (!wq->fasync_list)
1158 		sock_reset_flag(sk, SOCK_FASYNC);
1159 	else
1160 		sock_set_flag(sk, SOCK_FASYNC);
1161 
1162 	release_sock(sk);
1163 	return 0;
1164 }
1165 
1166 /* This function may be called only under rcu_lock */
1167 
1168 int sock_wake_async(struct socket_wq *wq, int how, int band)
1169 {
1170 	if (!wq || !wq->fasync_list)
1171 		return -1;
1172 
1173 	switch (how) {
1174 	case SOCK_WAKE_WAITD:
1175 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1176 			break;
1177 		goto call_kill;
1178 	case SOCK_WAKE_SPACE:
1179 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1180 			break;
1181 		/* fall through */
1182 	case SOCK_WAKE_IO:
1183 call_kill:
1184 		kill_fasync(&wq->fasync_list, SIGIO, band);
1185 		break;
1186 	case SOCK_WAKE_URG:
1187 		kill_fasync(&wq->fasync_list, SIGURG, band);
1188 	}
1189 
1190 	return 0;
1191 }
1192 EXPORT_SYMBOL(sock_wake_async);
1193 
1194 int __sock_create(struct net *net, int family, int type, int protocol,
1195 			 struct socket **res, int kern)
1196 {
1197 	int err;
1198 	struct socket *sock;
1199 	const struct net_proto_family *pf;
1200 
1201 	/*
1202 	 *      Check protocol is in range
1203 	 */
1204 	if (family < 0 || family >= NPROTO)
1205 		return -EAFNOSUPPORT;
1206 	if (type < 0 || type >= SOCK_MAX)
1207 		return -EINVAL;
1208 
1209 	/* Compatibility.
1210 
1211 	   This uglymoron is moved from INET layer to here to avoid
1212 	   deadlock in module load.
1213 	 */
1214 	if (family == PF_INET && type == SOCK_PACKET) {
1215 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1216 			     current->comm);
1217 		family = PF_PACKET;
1218 	}
1219 
1220 	err = security_socket_create(family, type, protocol, kern);
1221 	if (err)
1222 		return err;
1223 
1224 	/*
1225 	 *	Allocate the socket and allow the family to set things up. if
1226 	 *	the protocol is 0, the family is instructed to select an appropriate
1227 	 *	default.
1228 	 */
1229 	sock = sock_alloc();
1230 	if (!sock) {
1231 		net_warn_ratelimited("socket: no more sockets\n");
1232 		return -ENFILE;	/* Not exactly a match, but its the
1233 				   closest posix thing */
1234 	}
1235 
1236 	sock->type = type;
1237 
1238 #ifdef CONFIG_MODULES
1239 	/* Attempt to load a protocol module if the find failed.
1240 	 *
1241 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1242 	 * requested real, full-featured networking support upon configuration.
1243 	 * Otherwise module support will break!
1244 	 */
1245 	if (rcu_access_pointer(net_families[family]) == NULL)
1246 		request_module("net-pf-%d", family);
1247 #endif
1248 
1249 	rcu_read_lock();
1250 	pf = rcu_dereference(net_families[family]);
1251 	err = -EAFNOSUPPORT;
1252 	if (!pf)
1253 		goto out_release;
1254 
1255 	/*
1256 	 * We will call the ->create function, that possibly is in a loadable
1257 	 * module, so we have to bump that loadable module refcnt first.
1258 	 */
1259 	if (!try_module_get(pf->owner))
1260 		goto out_release;
1261 
1262 	/* Now protected by module ref count */
1263 	rcu_read_unlock();
1264 
1265 	err = pf->create(net, sock, protocol, kern);
1266 	if (err < 0)
1267 		goto out_module_put;
1268 
1269 	/*
1270 	 * Now to bump the refcnt of the [loadable] module that owns this
1271 	 * socket at sock_release time we decrement its refcnt.
1272 	 */
1273 	if (!try_module_get(sock->ops->owner))
1274 		goto out_module_busy;
1275 
1276 	/*
1277 	 * Now that we're done with the ->create function, the [loadable]
1278 	 * module can have its refcnt decremented
1279 	 */
1280 	module_put(pf->owner);
1281 	err = security_socket_post_create(sock, family, type, protocol, kern);
1282 	if (err)
1283 		goto out_sock_release;
1284 	*res = sock;
1285 
1286 	return 0;
1287 
1288 out_module_busy:
1289 	err = -EAFNOSUPPORT;
1290 out_module_put:
1291 	sock->ops = NULL;
1292 	module_put(pf->owner);
1293 out_sock_release:
1294 	sock_release(sock);
1295 	return err;
1296 
1297 out_release:
1298 	rcu_read_unlock();
1299 	goto out_sock_release;
1300 }
1301 EXPORT_SYMBOL(__sock_create);
1302 
1303 int sock_create(int family, int type, int protocol, struct socket **res)
1304 {
1305 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1306 }
1307 EXPORT_SYMBOL(sock_create);
1308 
1309 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1310 {
1311 	return __sock_create(net, family, type, protocol, res, 1);
1312 }
1313 EXPORT_SYMBOL(sock_create_kern);
1314 
1315 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1316 {
1317 	int retval;
1318 	struct socket *sock;
1319 	int flags;
1320 
1321 	/* Check the SOCK_* constants for consistency.  */
1322 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1323 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1324 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1325 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1326 
1327 	flags = type & ~SOCK_TYPE_MASK;
1328 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1329 		return -EINVAL;
1330 	type &= SOCK_TYPE_MASK;
1331 
1332 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1333 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1334 
1335 	retval = sock_create(family, type, protocol, &sock);
1336 	if (retval < 0)
1337 		return retval;
1338 
1339 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1340 }
1341 
1342 /*
1343  *	Create a pair of connected sockets.
1344  */
1345 
1346 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1347 		int __user *, usockvec)
1348 {
1349 	struct socket *sock1, *sock2;
1350 	int fd1, fd2, err;
1351 	struct file *newfile1, *newfile2;
1352 	int flags;
1353 
1354 	flags = type & ~SOCK_TYPE_MASK;
1355 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1356 		return -EINVAL;
1357 	type &= SOCK_TYPE_MASK;
1358 
1359 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1360 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1361 
1362 	/*
1363 	 * reserve descriptors and make sure we won't fail
1364 	 * to return them to userland.
1365 	 */
1366 	fd1 = get_unused_fd_flags(flags);
1367 	if (unlikely(fd1 < 0))
1368 		return fd1;
1369 
1370 	fd2 = get_unused_fd_flags(flags);
1371 	if (unlikely(fd2 < 0)) {
1372 		put_unused_fd(fd1);
1373 		return fd2;
1374 	}
1375 
1376 	err = put_user(fd1, &usockvec[0]);
1377 	if (err)
1378 		goto out;
1379 
1380 	err = put_user(fd2, &usockvec[1]);
1381 	if (err)
1382 		goto out;
1383 
1384 	/*
1385 	 * Obtain the first socket and check if the underlying protocol
1386 	 * supports the socketpair call.
1387 	 */
1388 
1389 	err = sock_create(family, type, protocol, &sock1);
1390 	if (unlikely(err < 0))
1391 		goto out;
1392 
1393 	err = sock_create(family, type, protocol, &sock2);
1394 	if (unlikely(err < 0)) {
1395 		sock_release(sock1);
1396 		goto out;
1397 	}
1398 
1399 	err = sock1->ops->socketpair(sock1, sock2);
1400 	if (unlikely(err < 0)) {
1401 		sock_release(sock2);
1402 		sock_release(sock1);
1403 		goto out;
1404 	}
1405 
1406 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1407 	if (IS_ERR(newfile1)) {
1408 		err = PTR_ERR(newfile1);
1409 		sock_release(sock2);
1410 		goto out;
1411 	}
1412 
1413 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1414 	if (IS_ERR(newfile2)) {
1415 		err = PTR_ERR(newfile2);
1416 		fput(newfile1);
1417 		goto out;
1418 	}
1419 
1420 	audit_fd_pair(fd1, fd2);
1421 
1422 	fd_install(fd1, newfile1);
1423 	fd_install(fd2, newfile2);
1424 	return 0;
1425 
1426 out:
1427 	put_unused_fd(fd2);
1428 	put_unused_fd(fd1);
1429 	return err;
1430 }
1431 
1432 /*
1433  *	Bind a name to a socket. Nothing much to do here since it's
1434  *	the protocol's responsibility to handle the local address.
1435  *
1436  *	We move the socket address to kernel space before we call
1437  *	the protocol layer (having also checked the address is ok).
1438  */
1439 
1440 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1441 {
1442 	struct socket *sock;
1443 	struct sockaddr_storage address;
1444 	int err, fput_needed;
1445 
1446 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1447 	if (sock) {
1448 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1449 		if (err >= 0) {
1450 			err = security_socket_bind(sock,
1451 						   (struct sockaddr *)&address,
1452 						   addrlen);
1453 			if (!err)
1454 				err = sock->ops->bind(sock,
1455 						      (struct sockaddr *)
1456 						      &address, addrlen);
1457 		}
1458 		fput_light(sock->file, fput_needed);
1459 	}
1460 	return err;
1461 }
1462 
1463 /*
1464  *	Perform a listen. Basically, we allow the protocol to do anything
1465  *	necessary for a listen, and if that works, we mark the socket as
1466  *	ready for listening.
1467  */
1468 
1469 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1470 {
1471 	struct socket *sock;
1472 	int err, fput_needed;
1473 	int somaxconn;
1474 
1475 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476 	if (sock) {
1477 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1478 		if ((unsigned int)backlog > somaxconn)
1479 			backlog = somaxconn;
1480 
1481 		err = security_socket_listen(sock, backlog);
1482 		if (!err)
1483 			err = sock->ops->listen(sock, backlog);
1484 
1485 		fput_light(sock->file, fput_needed);
1486 	}
1487 	return err;
1488 }
1489 
1490 /*
1491  *	For accept, we attempt to create a new socket, set up the link
1492  *	with the client, wake up the client, then return the new
1493  *	connected fd. We collect the address of the connector in kernel
1494  *	space and move it to user at the very end. This is unclean because
1495  *	we open the socket then return an error.
1496  *
1497  *	1003.1g adds the ability to recvmsg() to query connection pending
1498  *	status to recvmsg. We need to add that support in a way thats
1499  *	clean when we restucture accept also.
1500  */
1501 
1502 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1503 		int __user *, upeer_addrlen, int, flags)
1504 {
1505 	struct socket *sock, *newsock;
1506 	struct file *newfile;
1507 	int err, len, newfd, fput_needed;
1508 	struct sockaddr_storage address;
1509 
1510 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1511 		return -EINVAL;
1512 
1513 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1514 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1515 
1516 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1517 	if (!sock)
1518 		goto out;
1519 
1520 	err = -ENFILE;
1521 	newsock = sock_alloc();
1522 	if (!newsock)
1523 		goto out_put;
1524 
1525 	newsock->type = sock->type;
1526 	newsock->ops = sock->ops;
1527 
1528 	/*
1529 	 * We don't need try_module_get here, as the listening socket (sock)
1530 	 * has the protocol module (sock->ops->owner) held.
1531 	 */
1532 	__module_get(newsock->ops->owner);
1533 
1534 	newfd = get_unused_fd_flags(flags);
1535 	if (unlikely(newfd < 0)) {
1536 		err = newfd;
1537 		sock_release(newsock);
1538 		goto out_put;
1539 	}
1540 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1541 	if (IS_ERR(newfile)) {
1542 		err = PTR_ERR(newfile);
1543 		put_unused_fd(newfd);
1544 		goto out_put;
1545 	}
1546 
1547 	err = security_socket_accept(sock, newsock);
1548 	if (err)
1549 		goto out_fd;
1550 
1551 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1552 	if (err < 0)
1553 		goto out_fd;
1554 
1555 	if (upeer_sockaddr) {
1556 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1557 					  &len, 2) < 0) {
1558 			err = -ECONNABORTED;
1559 			goto out_fd;
1560 		}
1561 		err = move_addr_to_user(&address,
1562 					len, upeer_sockaddr, upeer_addrlen);
1563 		if (err < 0)
1564 			goto out_fd;
1565 	}
1566 
1567 	/* File flags are not inherited via accept() unlike another OSes. */
1568 
1569 	fd_install(newfd, newfile);
1570 	err = newfd;
1571 
1572 out_put:
1573 	fput_light(sock->file, fput_needed);
1574 out:
1575 	return err;
1576 out_fd:
1577 	fput(newfile);
1578 	put_unused_fd(newfd);
1579 	goto out_put;
1580 }
1581 
1582 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583 		int __user *, upeer_addrlen)
1584 {
1585 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1586 }
1587 
1588 /*
1589  *	Attempt to connect to a socket with the server address.  The address
1590  *	is in user space so we verify it is OK and move it to kernel space.
1591  *
1592  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1593  *	break bindings
1594  *
1595  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1596  *	other SEQPACKET protocols that take time to connect() as it doesn't
1597  *	include the -EINPROGRESS status for such sockets.
1598  */
1599 
1600 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1601 		int, addrlen)
1602 {
1603 	struct socket *sock;
1604 	struct sockaddr_storage address;
1605 	int err, fput_needed;
1606 
1607 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608 	if (!sock)
1609 		goto out;
1610 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1611 	if (err < 0)
1612 		goto out_put;
1613 
1614 	err =
1615 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1616 	if (err)
1617 		goto out_put;
1618 
1619 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1620 				 sock->file->f_flags);
1621 out_put:
1622 	fput_light(sock->file, fput_needed);
1623 out:
1624 	return err;
1625 }
1626 
1627 /*
1628  *	Get the local address ('name') of a socket object. Move the obtained
1629  *	name to user space.
1630  */
1631 
1632 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1633 		int __user *, usockaddr_len)
1634 {
1635 	struct socket *sock;
1636 	struct sockaddr_storage address;
1637 	int len, err, fput_needed;
1638 
1639 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 	if (!sock)
1641 		goto out;
1642 
1643 	err = security_socket_getsockname(sock);
1644 	if (err)
1645 		goto out_put;
1646 
1647 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1648 	if (err)
1649 		goto out_put;
1650 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1651 
1652 out_put:
1653 	fput_light(sock->file, fput_needed);
1654 out:
1655 	return err;
1656 }
1657 
1658 /*
1659  *	Get the remote address ('name') of a socket object. Move the obtained
1660  *	name to user space.
1661  */
1662 
1663 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1664 		int __user *, usockaddr_len)
1665 {
1666 	struct socket *sock;
1667 	struct sockaddr_storage address;
1668 	int len, err, fput_needed;
1669 
1670 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671 	if (sock != NULL) {
1672 		err = security_socket_getpeername(sock);
1673 		if (err) {
1674 			fput_light(sock->file, fput_needed);
1675 			return err;
1676 		}
1677 
1678 		err =
1679 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1680 				       1);
1681 		if (!err)
1682 			err = move_addr_to_user(&address, len, usockaddr,
1683 						usockaddr_len);
1684 		fput_light(sock->file, fput_needed);
1685 	}
1686 	return err;
1687 }
1688 
1689 /*
1690  *	Send a datagram to a given address. We move the address into kernel
1691  *	space and check the user space data area is readable before invoking
1692  *	the protocol.
1693  */
1694 
1695 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1696 		unsigned int, flags, struct sockaddr __user *, addr,
1697 		int, addr_len)
1698 {
1699 	struct socket *sock;
1700 	struct sockaddr_storage address;
1701 	int err;
1702 	struct msghdr msg;
1703 	struct iovec iov;
1704 	int fput_needed;
1705 
1706 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1707 	if (unlikely(err))
1708 		return err;
1709 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1710 	if (!sock)
1711 		goto out;
1712 
1713 	msg.msg_name = NULL;
1714 	msg.msg_control = NULL;
1715 	msg.msg_controllen = 0;
1716 	msg.msg_namelen = 0;
1717 	if (addr) {
1718 		err = move_addr_to_kernel(addr, addr_len, &address);
1719 		if (err < 0)
1720 			goto out_put;
1721 		msg.msg_name = (struct sockaddr *)&address;
1722 		msg.msg_namelen = addr_len;
1723 	}
1724 	if (sock->file->f_flags & O_NONBLOCK)
1725 		flags |= MSG_DONTWAIT;
1726 	msg.msg_flags = flags;
1727 	err = sock_sendmsg(sock, &msg);
1728 
1729 out_put:
1730 	fput_light(sock->file, fput_needed);
1731 out:
1732 	return err;
1733 }
1734 
1735 /*
1736  *	Send a datagram down a socket.
1737  */
1738 
1739 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1740 		unsigned int, flags)
1741 {
1742 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1743 }
1744 
1745 /*
1746  *	Receive a frame from the socket and optionally record the address of the
1747  *	sender. We verify the buffers are writable and if needed move the
1748  *	sender address from kernel to user space.
1749  */
1750 
1751 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1752 		unsigned int, flags, struct sockaddr __user *, addr,
1753 		int __user *, addr_len)
1754 {
1755 	struct socket *sock;
1756 	struct iovec iov;
1757 	struct msghdr msg;
1758 	struct sockaddr_storage address;
1759 	int err, err2;
1760 	int fput_needed;
1761 
1762 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1763 	if (unlikely(err))
1764 		return err;
1765 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1766 	if (!sock)
1767 		goto out;
1768 
1769 	msg.msg_control = NULL;
1770 	msg.msg_controllen = 0;
1771 	/* Save some cycles and don't copy the address if not needed */
1772 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1773 	/* We assume all kernel code knows the size of sockaddr_storage */
1774 	msg.msg_namelen = 0;
1775 	msg.msg_iocb = NULL;
1776 	msg.msg_flags = 0;
1777 	if (sock->file->f_flags & O_NONBLOCK)
1778 		flags |= MSG_DONTWAIT;
1779 	err = sock_recvmsg(sock, &msg, flags);
1780 
1781 	if (err >= 0 && addr != NULL) {
1782 		err2 = move_addr_to_user(&address,
1783 					 msg.msg_namelen, addr, addr_len);
1784 		if (err2 < 0)
1785 			err = err2;
1786 	}
1787 
1788 	fput_light(sock->file, fput_needed);
1789 out:
1790 	return err;
1791 }
1792 
1793 /*
1794  *	Receive a datagram from a socket.
1795  */
1796 
1797 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1798 		unsigned int, flags)
1799 {
1800 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1801 }
1802 
1803 /*
1804  *	Set a socket option. Because we don't know the option lengths we have
1805  *	to pass the user mode parameter for the protocols to sort out.
1806  */
1807 
1808 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1809 		char __user *, optval, int, optlen)
1810 {
1811 	int err, fput_needed;
1812 	struct socket *sock;
1813 
1814 	if (optlen < 0)
1815 		return -EINVAL;
1816 
1817 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 	if (sock != NULL) {
1819 		err = security_socket_setsockopt(sock, level, optname);
1820 		if (err)
1821 			goto out_put;
1822 
1823 		if (level == SOL_SOCKET)
1824 			err =
1825 			    sock_setsockopt(sock, level, optname, optval,
1826 					    optlen);
1827 		else
1828 			err =
1829 			    sock->ops->setsockopt(sock, level, optname, optval,
1830 						  optlen);
1831 out_put:
1832 		fput_light(sock->file, fput_needed);
1833 	}
1834 	return err;
1835 }
1836 
1837 /*
1838  *	Get a socket option. Because we don't know the option lengths we have
1839  *	to pass a user mode parameter for the protocols to sort out.
1840  */
1841 
1842 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1843 		char __user *, optval, int __user *, optlen)
1844 {
1845 	int err, fput_needed;
1846 	struct socket *sock;
1847 
1848 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 	if (sock != NULL) {
1850 		err = security_socket_getsockopt(sock, level, optname);
1851 		if (err)
1852 			goto out_put;
1853 
1854 		if (level == SOL_SOCKET)
1855 			err =
1856 			    sock_getsockopt(sock, level, optname, optval,
1857 					    optlen);
1858 		else
1859 			err =
1860 			    sock->ops->getsockopt(sock, level, optname, optval,
1861 						  optlen);
1862 out_put:
1863 		fput_light(sock->file, fput_needed);
1864 	}
1865 	return err;
1866 }
1867 
1868 /*
1869  *	Shutdown a socket.
1870  */
1871 
1872 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1873 {
1874 	int err, fput_needed;
1875 	struct socket *sock;
1876 
1877 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878 	if (sock != NULL) {
1879 		err = security_socket_shutdown(sock, how);
1880 		if (!err)
1881 			err = sock->ops->shutdown(sock, how);
1882 		fput_light(sock->file, fput_needed);
1883 	}
1884 	return err;
1885 }
1886 
1887 /* A couple of helpful macros for getting the address of the 32/64 bit
1888  * fields which are the same type (int / unsigned) on our platforms.
1889  */
1890 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1891 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1892 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1893 
1894 struct used_address {
1895 	struct sockaddr_storage name;
1896 	unsigned int name_len;
1897 };
1898 
1899 static int copy_msghdr_from_user(struct msghdr *kmsg,
1900 				 struct user_msghdr __user *umsg,
1901 				 struct sockaddr __user **save_addr,
1902 				 struct iovec **iov)
1903 {
1904 	struct user_msghdr msg;
1905 	ssize_t err;
1906 
1907 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1908 		return -EFAULT;
1909 
1910 	kmsg->msg_control = (void __force *)msg.msg_control;
1911 	kmsg->msg_controllen = msg.msg_controllen;
1912 	kmsg->msg_flags = msg.msg_flags;
1913 
1914 	kmsg->msg_namelen = msg.msg_namelen;
1915 	if (!msg.msg_name)
1916 		kmsg->msg_namelen = 0;
1917 
1918 	if (kmsg->msg_namelen < 0)
1919 		return -EINVAL;
1920 
1921 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1922 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1923 
1924 	if (save_addr)
1925 		*save_addr = msg.msg_name;
1926 
1927 	if (msg.msg_name && kmsg->msg_namelen) {
1928 		if (!save_addr) {
1929 			err = move_addr_to_kernel(msg.msg_name,
1930 						  kmsg->msg_namelen,
1931 						  kmsg->msg_name);
1932 			if (err < 0)
1933 				return err;
1934 		}
1935 	} else {
1936 		kmsg->msg_name = NULL;
1937 		kmsg->msg_namelen = 0;
1938 	}
1939 
1940 	if (msg.msg_iovlen > UIO_MAXIOV)
1941 		return -EMSGSIZE;
1942 
1943 	kmsg->msg_iocb = NULL;
1944 
1945 	return import_iovec(save_addr ? READ : WRITE,
1946 			    msg.msg_iov, msg.msg_iovlen,
1947 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1948 }
1949 
1950 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1951 			 struct msghdr *msg_sys, unsigned int flags,
1952 			 struct used_address *used_address,
1953 			 unsigned int allowed_msghdr_flags)
1954 {
1955 	struct compat_msghdr __user *msg_compat =
1956 	    (struct compat_msghdr __user *)msg;
1957 	struct sockaddr_storage address;
1958 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1959 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1960 				__aligned(sizeof(__kernel_size_t));
1961 	/* 20 is size of ipv6_pktinfo */
1962 	unsigned char *ctl_buf = ctl;
1963 	int ctl_len;
1964 	ssize_t err;
1965 
1966 	msg_sys->msg_name = &address;
1967 
1968 	if (MSG_CMSG_COMPAT & flags)
1969 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1970 	else
1971 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1972 	if (err < 0)
1973 		return err;
1974 
1975 	err = -ENOBUFS;
1976 
1977 	if (msg_sys->msg_controllen > INT_MAX)
1978 		goto out_freeiov;
1979 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1980 	ctl_len = msg_sys->msg_controllen;
1981 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1982 		err =
1983 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1984 						     sizeof(ctl));
1985 		if (err)
1986 			goto out_freeiov;
1987 		ctl_buf = msg_sys->msg_control;
1988 		ctl_len = msg_sys->msg_controllen;
1989 	} else if (ctl_len) {
1990 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1991 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
1992 		if (ctl_len > sizeof(ctl)) {
1993 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1994 			if (ctl_buf == NULL)
1995 				goto out_freeiov;
1996 		}
1997 		err = -EFAULT;
1998 		/*
1999 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2000 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2001 		 * checking falls down on this.
2002 		 */
2003 		if (copy_from_user(ctl_buf,
2004 				   (void __user __force *)msg_sys->msg_control,
2005 				   ctl_len))
2006 			goto out_freectl;
2007 		msg_sys->msg_control = ctl_buf;
2008 	}
2009 	msg_sys->msg_flags = flags;
2010 
2011 	if (sock->file->f_flags & O_NONBLOCK)
2012 		msg_sys->msg_flags |= MSG_DONTWAIT;
2013 	/*
2014 	 * If this is sendmmsg() and current destination address is same as
2015 	 * previously succeeded address, omit asking LSM's decision.
2016 	 * used_address->name_len is initialized to UINT_MAX so that the first
2017 	 * destination address never matches.
2018 	 */
2019 	if (used_address && msg_sys->msg_name &&
2020 	    used_address->name_len == msg_sys->msg_namelen &&
2021 	    !memcmp(&used_address->name, msg_sys->msg_name,
2022 		    used_address->name_len)) {
2023 		err = sock_sendmsg_nosec(sock, msg_sys);
2024 		goto out_freectl;
2025 	}
2026 	err = sock_sendmsg(sock, msg_sys);
2027 	/*
2028 	 * If this is sendmmsg() and sending to current destination address was
2029 	 * successful, remember it.
2030 	 */
2031 	if (used_address && err >= 0) {
2032 		used_address->name_len = msg_sys->msg_namelen;
2033 		if (msg_sys->msg_name)
2034 			memcpy(&used_address->name, msg_sys->msg_name,
2035 			       used_address->name_len);
2036 	}
2037 
2038 out_freectl:
2039 	if (ctl_buf != ctl)
2040 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2041 out_freeiov:
2042 	kfree(iov);
2043 	return err;
2044 }
2045 
2046 /*
2047  *	BSD sendmsg interface
2048  */
2049 
2050 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2051 {
2052 	int fput_needed, err;
2053 	struct msghdr msg_sys;
2054 	struct socket *sock;
2055 
2056 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057 	if (!sock)
2058 		goto out;
2059 
2060 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2061 
2062 	fput_light(sock->file, fput_needed);
2063 out:
2064 	return err;
2065 }
2066 
2067 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2068 {
2069 	if (flags & MSG_CMSG_COMPAT)
2070 		return -EINVAL;
2071 	return __sys_sendmsg(fd, msg, flags);
2072 }
2073 
2074 /*
2075  *	Linux sendmmsg interface
2076  */
2077 
2078 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2079 		   unsigned int flags)
2080 {
2081 	int fput_needed, err, datagrams;
2082 	struct socket *sock;
2083 	struct mmsghdr __user *entry;
2084 	struct compat_mmsghdr __user *compat_entry;
2085 	struct msghdr msg_sys;
2086 	struct used_address used_address;
2087 	unsigned int oflags = flags;
2088 
2089 	if (vlen > UIO_MAXIOV)
2090 		vlen = UIO_MAXIOV;
2091 
2092 	datagrams = 0;
2093 
2094 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2095 	if (!sock)
2096 		return err;
2097 
2098 	used_address.name_len = UINT_MAX;
2099 	entry = mmsg;
2100 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2101 	err = 0;
2102 	flags |= MSG_BATCH;
2103 
2104 	while (datagrams < vlen) {
2105 		if (datagrams == vlen - 1)
2106 			flags = oflags;
2107 
2108 		if (MSG_CMSG_COMPAT & flags) {
2109 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2110 					     &msg_sys, flags, &used_address, MSG_EOR);
2111 			if (err < 0)
2112 				break;
2113 			err = __put_user(err, &compat_entry->msg_len);
2114 			++compat_entry;
2115 		} else {
2116 			err = ___sys_sendmsg(sock,
2117 					     (struct user_msghdr __user *)entry,
2118 					     &msg_sys, flags, &used_address, MSG_EOR);
2119 			if (err < 0)
2120 				break;
2121 			err = put_user(err, &entry->msg_len);
2122 			++entry;
2123 		}
2124 
2125 		if (err)
2126 			break;
2127 		++datagrams;
2128 		if (msg_data_left(&msg_sys))
2129 			break;
2130 		cond_resched();
2131 	}
2132 
2133 	fput_light(sock->file, fput_needed);
2134 
2135 	/* We only return an error if no datagrams were able to be sent */
2136 	if (datagrams != 0)
2137 		return datagrams;
2138 
2139 	return err;
2140 }
2141 
2142 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2143 		unsigned int, vlen, unsigned int, flags)
2144 {
2145 	if (flags & MSG_CMSG_COMPAT)
2146 		return -EINVAL;
2147 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2148 }
2149 
2150 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2151 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2152 {
2153 	struct compat_msghdr __user *msg_compat =
2154 	    (struct compat_msghdr __user *)msg;
2155 	struct iovec iovstack[UIO_FASTIOV];
2156 	struct iovec *iov = iovstack;
2157 	unsigned long cmsg_ptr;
2158 	int len;
2159 	ssize_t err;
2160 
2161 	/* kernel mode address */
2162 	struct sockaddr_storage addr;
2163 
2164 	/* user mode address pointers */
2165 	struct sockaddr __user *uaddr;
2166 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2167 
2168 	msg_sys->msg_name = &addr;
2169 
2170 	if (MSG_CMSG_COMPAT & flags)
2171 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2172 	else
2173 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2174 	if (err < 0)
2175 		return err;
2176 
2177 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2178 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2179 
2180 	/* We assume all kernel code knows the size of sockaddr_storage */
2181 	msg_sys->msg_namelen = 0;
2182 
2183 	if (sock->file->f_flags & O_NONBLOCK)
2184 		flags |= MSG_DONTWAIT;
2185 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2186 	if (err < 0)
2187 		goto out_freeiov;
2188 	len = err;
2189 
2190 	if (uaddr != NULL) {
2191 		err = move_addr_to_user(&addr,
2192 					msg_sys->msg_namelen, uaddr,
2193 					uaddr_len);
2194 		if (err < 0)
2195 			goto out_freeiov;
2196 	}
2197 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2198 			 COMPAT_FLAGS(msg));
2199 	if (err)
2200 		goto out_freeiov;
2201 	if (MSG_CMSG_COMPAT & flags)
2202 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2203 				 &msg_compat->msg_controllen);
2204 	else
2205 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2206 				 &msg->msg_controllen);
2207 	if (err)
2208 		goto out_freeiov;
2209 	err = len;
2210 
2211 out_freeiov:
2212 	kfree(iov);
2213 	return err;
2214 }
2215 
2216 /*
2217  *	BSD recvmsg interface
2218  */
2219 
2220 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2221 {
2222 	int fput_needed, err;
2223 	struct msghdr msg_sys;
2224 	struct socket *sock;
2225 
2226 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 	if (!sock)
2228 		goto out;
2229 
2230 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2231 
2232 	fput_light(sock->file, fput_needed);
2233 out:
2234 	return err;
2235 }
2236 
2237 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2238 		unsigned int, flags)
2239 {
2240 	if (flags & MSG_CMSG_COMPAT)
2241 		return -EINVAL;
2242 	return __sys_recvmsg(fd, msg, flags);
2243 }
2244 
2245 /*
2246  *     Linux recvmmsg interface
2247  */
2248 
2249 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2250 		   unsigned int flags, struct timespec *timeout)
2251 {
2252 	int fput_needed, err, datagrams;
2253 	struct socket *sock;
2254 	struct mmsghdr __user *entry;
2255 	struct compat_mmsghdr __user *compat_entry;
2256 	struct msghdr msg_sys;
2257 	struct timespec64 end_time;
2258 	struct timespec64 timeout64;
2259 
2260 	if (timeout &&
2261 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2262 				    timeout->tv_nsec))
2263 		return -EINVAL;
2264 
2265 	datagrams = 0;
2266 
2267 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2268 	if (!sock)
2269 		return err;
2270 
2271 	err = sock_error(sock->sk);
2272 	if (err) {
2273 		datagrams = err;
2274 		goto out_put;
2275 	}
2276 
2277 	entry = mmsg;
2278 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2279 
2280 	while (datagrams < vlen) {
2281 		/*
2282 		 * No need to ask LSM for more than the first datagram.
2283 		 */
2284 		if (MSG_CMSG_COMPAT & flags) {
2285 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2286 					     &msg_sys, flags & ~MSG_WAITFORONE,
2287 					     datagrams);
2288 			if (err < 0)
2289 				break;
2290 			err = __put_user(err, &compat_entry->msg_len);
2291 			++compat_entry;
2292 		} else {
2293 			err = ___sys_recvmsg(sock,
2294 					     (struct user_msghdr __user *)entry,
2295 					     &msg_sys, flags & ~MSG_WAITFORONE,
2296 					     datagrams);
2297 			if (err < 0)
2298 				break;
2299 			err = put_user(err, &entry->msg_len);
2300 			++entry;
2301 		}
2302 
2303 		if (err)
2304 			break;
2305 		++datagrams;
2306 
2307 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2308 		if (flags & MSG_WAITFORONE)
2309 			flags |= MSG_DONTWAIT;
2310 
2311 		if (timeout) {
2312 			ktime_get_ts64(&timeout64);
2313 			*timeout = timespec64_to_timespec(
2314 					timespec64_sub(end_time, timeout64));
2315 			if (timeout->tv_sec < 0) {
2316 				timeout->tv_sec = timeout->tv_nsec = 0;
2317 				break;
2318 			}
2319 
2320 			/* Timeout, return less than vlen datagrams */
2321 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2322 				break;
2323 		}
2324 
2325 		/* Out of band data, return right away */
2326 		if (msg_sys.msg_flags & MSG_OOB)
2327 			break;
2328 		cond_resched();
2329 	}
2330 
2331 	if (err == 0)
2332 		goto out_put;
2333 
2334 	if (datagrams == 0) {
2335 		datagrams = err;
2336 		goto out_put;
2337 	}
2338 
2339 	/*
2340 	 * We may return less entries than requested (vlen) if the
2341 	 * sock is non block and there aren't enough datagrams...
2342 	 */
2343 	if (err != -EAGAIN) {
2344 		/*
2345 		 * ... or  if recvmsg returns an error after we
2346 		 * received some datagrams, where we record the
2347 		 * error to return on the next call or if the
2348 		 * app asks about it using getsockopt(SO_ERROR).
2349 		 */
2350 		sock->sk->sk_err = -err;
2351 	}
2352 out_put:
2353 	fput_light(sock->file, fput_needed);
2354 
2355 	return datagrams;
2356 }
2357 
2358 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2359 		unsigned int, vlen, unsigned int, flags,
2360 		struct timespec __user *, timeout)
2361 {
2362 	int datagrams;
2363 	struct timespec timeout_sys;
2364 
2365 	if (flags & MSG_CMSG_COMPAT)
2366 		return -EINVAL;
2367 
2368 	if (!timeout)
2369 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2370 
2371 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2372 		return -EFAULT;
2373 
2374 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2375 
2376 	if (datagrams > 0 &&
2377 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2378 		datagrams = -EFAULT;
2379 
2380 	return datagrams;
2381 }
2382 
2383 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2384 /* Argument list sizes for sys_socketcall */
2385 #define AL(x) ((x) * sizeof(unsigned long))
2386 static const unsigned char nargs[21] = {
2387 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2388 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2389 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2390 	AL(4), AL(5), AL(4)
2391 };
2392 
2393 #undef AL
2394 
2395 /*
2396  *	System call vectors.
2397  *
2398  *	Argument checking cleaned up. Saved 20% in size.
2399  *  This function doesn't need to set the kernel lock because
2400  *  it is set by the callees.
2401  */
2402 
2403 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2404 {
2405 	unsigned long a[AUDITSC_ARGS];
2406 	unsigned long a0, a1;
2407 	int err;
2408 	unsigned int len;
2409 
2410 	if (call < 1 || call > SYS_SENDMMSG)
2411 		return -EINVAL;
2412 
2413 	len = nargs[call];
2414 	if (len > sizeof(a))
2415 		return -EINVAL;
2416 
2417 	/* copy_from_user should be SMP safe. */
2418 	if (copy_from_user(a, args, len))
2419 		return -EFAULT;
2420 
2421 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2422 	if (err)
2423 		return err;
2424 
2425 	a0 = a[0];
2426 	a1 = a[1];
2427 
2428 	switch (call) {
2429 	case SYS_SOCKET:
2430 		err = sys_socket(a0, a1, a[2]);
2431 		break;
2432 	case SYS_BIND:
2433 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2434 		break;
2435 	case SYS_CONNECT:
2436 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2437 		break;
2438 	case SYS_LISTEN:
2439 		err = sys_listen(a0, a1);
2440 		break;
2441 	case SYS_ACCEPT:
2442 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2443 				  (int __user *)a[2], 0);
2444 		break;
2445 	case SYS_GETSOCKNAME:
2446 		err =
2447 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2448 				    (int __user *)a[2]);
2449 		break;
2450 	case SYS_GETPEERNAME:
2451 		err =
2452 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2453 				    (int __user *)a[2]);
2454 		break;
2455 	case SYS_SOCKETPAIR:
2456 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2457 		break;
2458 	case SYS_SEND:
2459 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2460 		break;
2461 	case SYS_SENDTO:
2462 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2463 				 (struct sockaddr __user *)a[4], a[5]);
2464 		break;
2465 	case SYS_RECV:
2466 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2467 		break;
2468 	case SYS_RECVFROM:
2469 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2470 				   (struct sockaddr __user *)a[4],
2471 				   (int __user *)a[5]);
2472 		break;
2473 	case SYS_SHUTDOWN:
2474 		err = sys_shutdown(a0, a1);
2475 		break;
2476 	case SYS_SETSOCKOPT:
2477 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2478 		break;
2479 	case SYS_GETSOCKOPT:
2480 		err =
2481 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2482 				   (int __user *)a[4]);
2483 		break;
2484 	case SYS_SENDMSG:
2485 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2486 		break;
2487 	case SYS_SENDMMSG:
2488 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2489 		break;
2490 	case SYS_RECVMSG:
2491 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2492 		break;
2493 	case SYS_RECVMMSG:
2494 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2495 				   (struct timespec __user *)a[4]);
2496 		break;
2497 	case SYS_ACCEPT4:
2498 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2499 				  (int __user *)a[2], a[3]);
2500 		break;
2501 	default:
2502 		err = -EINVAL;
2503 		break;
2504 	}
2505 	return err;
2506 }
2507 
2508 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2509 
2510 /**
2511  *	sock_register - add a socket protocol handler
2512  *	@ops: description of protocol
2513  *
2514  *	This function is called by a protocol handler that wants to
2515  *	advertise its address family, and have it linked into the
2516  *	socket interface. The value ops->family corresponds to the
2517  *	socket system call protocol family.
2518  */
2519 int sock_register(const struct net_proto_family *ops)
2520 {
2521 	int err;
2522 
2523 	if (ops->family >= NPROTO) {
2524 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2525 		return -ENOBUFS;
2526 	}
2527 
2528 	spin_lock(&net_family_lock);
2529 	if (rcu_dereference_protected(net_families[ops->family],
2530 				      lockdep_is_held(&net_family_lock)))
2531 		err = -EEXIST;
2532 	else {
2533 		rcu_assign_pointer(net_families[ops->family], ops);
2534 		err = 0;
2535 	}
2536 	spin_unlock(&net_family_lock);
2537 
2538 	pr_info("NET: Registered protocol family %d\n", ops->family);
2539 	return err;
2540 }
2541 EXPORT_SYMBOL(sock_register);
2542 
2543 /**
2544  *	sock_unregister - remove a protocol handler
2545  *	@family: protocol family to remove
2546  *
2547  *	This function is called by a protocol handler that wants to
2548  *	remove its address family, and have it unlinked from the
2549  *	new socket creation.
2550  *
2551  *	If protocol handler is a module, then it can use module reference
2552  *	counts to protect against new references. If protocol handler is not
2553  *	a module then it needs to provide its own protection in
2554  *	the ops->create routine.
2555  */
2556 void sock_unregister(int family)
2557 {
2558 	BUG_ON(family < 0 || family >= NPROTO);
2559 
2560 	spin_lock(&net_family_lock);
2561 	RCU_INIT_POINTER(net_families[family], NULL);
2562 	spin_unlock(&net_family_lock);
2563 
2564 	synchronize_rcu();
2565 
2566 	pr_info("NET: Unregistered protocol family %d\n", family);
2567 }
2568 EXPORT_SYMBOL(sock_unregister);
2569 
2570 static int __init sock_init(void)
2571 {
2572 	int err;
2573 	/*
2574 	 *      Initialize the network sysctl infrastructure.
2575 	 */
2576 	err = net_sysctl_init();
2577 	if (err)
2578 		goto out;
2579 
2580 	/*
2581 	 *      Initialize skbuff SLAB cache
2582 	 */
2583 	skb_init();
2584 
2585 	/*
2586 	 *      Initialize the protocols module.
2587 	 */
2588 
2589 	init_inodecache();
2590 
2591 	err = register_filesystem(&sock_fs_type);
2592 	if (err)
2593 		goto out_fs;
2594 	sock_mnt = kern_mount(&sock_fs_type);
2595 	if (IS_ERR(sock_mnt)) {
2596 		err = PTR_ERR(sock_mnt);
2597 		goto out_mount;
2598 	}
2599 
2600 	/* The real protocol initialization is performed in later initcalls.
2601 	 */
2602 
2603 #ifdef CONFIG_NETFILTER
2604 	err = netfilter_init();
2605 	if (err)
2606 		goto out;
2607 #endif
2608 
2609 	ptp_classifier_init();
2610 
2611 out:
2612 	return err;
2613 
2614 out_mount:
2615 	unregister_filesystem(&sock_fs_type);
2616 out_fs:
2617 	goto out;
2618 }
2619 
2620 core_initcall(sock_init);	/* early initcall */
2621 
2622 #ifdef CONFIG_PROC_FS
2623 void socket_seq_show(struct seq_file *seq)
2624 {
2625 	int cpu;
2626 	int counter = 0;
2627 
2628 	for_each_possible_cpu(cpu)
2629 	    counter += per_cpu(sockets_in_use, cpu);
2630 
2631 	/* It can be negative, by the way. 8) */
2632 	if (counter < 0)
2633 		counter = 0;
2634 
2635 	seq_printf(seq, "sockets: used %d\n", counter);
2636 }
2637 #endif				/* CONFIG_PROC_FS */
2638 
2639 #ifdef CONFIG_COMPAT
2640 static int do_siocgstamp(struct net *net, struct socket *sock,
2641 			 unsigned int cmd, void __user *up)
2642 {
2643 	mm_segment_t old_fs = get_fs();
2644 	struct timeval ktv;
2645 	int err;
2646 
2647 	set_fs(KERNEL_DS);
2648 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2649 	set_fs(old_fs);
2650 	if (!err)
2651 		err = compat_put_timeval(&ktv, up);
2652 
2653 	return err;
2654 }
2655 
2656 static int do_siocgstampns(struct net *net, struct socket *sock,
2657 			   unsigned int cmd, void __user *up)
2658 {
2659 	mm_segment_t old_fs = get_fs();
2660 	struct timespec kts;
2661 	int err;
2662 
2663 	set_fs(KERNEL_DS);
2664 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2665 	set_fs(old_fs);
2666 	if (!err)
2667 		err = compat_put_timespec(&kts, up);
2668 
2669 	return err;
2670 }
2671 
2672 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2673 {
2674 	struct ifreq __user *uifr;
2675 	int err;
2676 
2677 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2678 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2679 		return -EFAULT;
2680 
2681 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2682 	if (err)
2683 		return err;
2684 
2685 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2686 		return -EFAULT;
2687 
2688 	return 0;
2689 }
2690 
2691 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2692 {
2693 	struct compat_ifconf ifc32;
2694 	struct ifconf ifc;
2695 	struct ifconf __user *uifc;
2696 	struct compat_ifreq __user *ifr32;
2697 	struct ifreq __user *ifr;
2698 	unsigned int i, j;
2699 	int err;
2700 
2701 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2702 		return -EFAULT;
2703 
2704 	memset(&ifc, 0, sizeof(ifc));
2705 	if (ifc32.ifcbuf == 0) {
2706 		ifc32.ifc_len = 0;
2707 		ifc.ifc_len = 0;
2708 		ifc.ifc_req = NULL;
2709 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2710 	} else {
2711 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2712 			sizeof(struct ifreq);
2713 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2714 		ifc.ifc_len = len;
2715 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2716 		ifr32 = compat_ptr(ifc32.ifcbuf);
2717 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2718 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2719 				return -EFAULT;
2720 			ifr++;
2721 			ifr32++;
2722 		}
2723 	}
2724 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2725 		return -EFAULT;
2726 
2727 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2728 	if (err)
2729 		return err;
2730 
2731 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2732 		return -EFAULT;
2733 
2734 	ifr = ifc.ifc_req;
2735 	ifr32 = compat_ptr(ifc32.ifcbuf);
2736 	for (i = 0, j = 0;
2737 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2738 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2739 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2740 			return -EFAULT;
2741 		ifr32++;
2742 		ifr++;
2743 	}
2744 
2745 	if (ifc32.ifcbuf == 0) {
2746 		/* Translate from 64-bit structure multiple to
2747 		 * a 32-bit one.
2748 		 */
2749 		i = ifc.ifc_len;
2750 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2751 		ifc32.ifc_len = i;
2752 	} else {
2753 		ifc32.ifc_len = i;
2754 	}
2755 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2756 		return -EFAULT;
2757 
2758 	return 0;
2759 }
2760 
2761 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2762 {
2763 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2764 	bool convert_in = false, convert_out = false;
2765 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2766 	struct ethtool_rxnfc __user *rxnfc;
2767 	struct ifreq __user *ifr;
2768 	u32 rule_cnt = 0, actual_rule_cnt;
2769 	u32 ethcmd;
2770 	u32 data;
2771 	int ret;
2772 
2773 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2774 		return -EFAULT;
2775 
2776 	compat_rxnfc = compat_ptr(data);
2777 
2778 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2779 		return -EFAULT;
2780 
2781 	/* Most ethtool structures are defined without padding.
2782 	 * Unfortunately struct ethtool_rxnfc is an exception.
2783 	 */
2784 	switch (ethcmd) {
2785 	default:
2786 		break;
2787 	case ETHTOOL_GRXCLSRLALL:
2788 		/* Buffer size is variable */
2789 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2790 			return -EFAULT;
2791 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2792 			return -ENOMEM;
2793 		buf_size += rule_cnt * sizeof(u32);
2794 		/* fall through */
2795 	case ETHTOOL_GRXRINGS:
2796 	case ETHTOOL_GRXCLSRLCNT:
2797 	case ETHTOOL_GRXCLSRULE:
2798 	case ETHTOOL_SRXCLSRLINS:
2799 		convert_out = true;
2800 		/* fall through */
2801 	case ETHTOOL_SRXCLSRLDEL:
2802 		buf_size += sizeof(struct ethtool_rxnfc);
2803 		convert_in = true;
2804 		break;
2805 	}
2806 
2807 	ifr = compat_alloc_user_space(buf_size);
2808 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2809 
2810 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2811 		return -EFAULT;
2812 
2813 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2814 		     &ifr->ifr_ifru.ifru_data))
2815 		return -EFAULT;
2816 
2817 	if (convert_in) {
2818 		/* We expect there to be holes between fs.m_ext and
2819 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2820 		 */
2821 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2822 			     sizeof(compat_rxnfc->fs.m_ext) !=
2823 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2824 			     sizeof(rxnfc->fs.m_ext));
2825 		BUILD_BUG_ON(
2826 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2827 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2828 			offsetof(struct ethtool_rxnfc, fs.location) -
2829 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2830 
2831 		if (copy_in_user(rxnfc, compat_rxnfc,
2832 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2833 				 (void __user *)rxnfc) ||
2834 		    copy_in_user(&rxnfc->fs.ring_cookie,
2835 				 &compat_rxnfc->fs.ring_cookie,
2836 				 (void __user *)(&rxnfc->fs.location + 1) -
2837 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2838 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2839 				 sizeof(rxnfc->rule_cnt)))
2840 			return -EFAULT;
2841 	}
2842 
2843 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2844 	if (ret)
2845 		return ret;
2846 
2847 	if (convert_out) {
2848 		if (copy_in_user(compat_rxnfc, rxnfc,
2849 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2850 				 (const void __user *)rxnfc) ||
2851 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2852 				 &rxnfc->fs.ring_cookie,
2853 				 (const void __user *)(&rxnfc->fs.location + 1) -
2854 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2855 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2856 				 sizeof(rxnfc->rule_cnt)))
2857 			return -EFAULT;
2858 
2859 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2860 			/* As an optimisation, we only copy the actual
2861 			 * number of rules that the underlying
2862 			 * function returned.  Since Mallory might
2863 			 * change the rule count in user memory, we
2864 			 * check that it is less than the rule count
2865 			 * originally given (as the user buffer size),
2866 			 * which has been range-checked.
2867 			 */
2868 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2869 				return -EFAULT;
2870 			if (actual_rule_cnt < rule_cnt)
2871 				rule_cnt = actual_rule_cnt;
2872 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2873 					 &rxnfc->rule_locs[0],
2874 					 rule_cnt * sizeof(u32)))
2875 				return -EFAULT;
2876 		}
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2883 {
2884 	void __user *uptr;
2885 	compat_uptr_t uptr32;
2886 	struct ifreq __user *uifr;
2887 
2888 	uifr = compat_alloc_user_space(sizeof(*uifr));
2889 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2890 		return -EFAULT;
2891 
2892 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2893 		return -EFAULT;
2894 
2895 	uptr = compat_ptr(uptr32);
2896 
2897 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2898 		return -EFAULT;
2899 
2900 	return dev_ioctl(net, SIOCWANDEV, uifr);
2901 }
2902 
2903 static int bond_ioctl(struct net *net, unsigned int cmd,
2904 			 struct compat_ifreq __user *ifr32)
2905 {
2906 	struct ifreq kifr;
2907 	mm_segment_t old_fs;
2908 	int err;
2909 
2910 	switch (cmd) {
2911 	case SIOCBONDENSLAVE:
2912 	case SIOCBONDRELEASE:
2913 	case SIOCBONDSETHWADDR:
2914 	case SIOCBONDCHANGEACTIVE:
2915 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2916 			return -EFAULT;
2917 
2918 		old_fs = get_fs();
2919 		set_fs(KERNEL_DS);
2920 		err = dev_ioctl(net, cmd,
2921 				(struct ifreq __user __force *) &kifr);
2922 		set_fs(old_fs);
2923 
2924 		return err;
2925 	default:
2926 		return -ENOIOCTLCMD;
2927 	}
2928 }
2929 
2930 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2931 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2932 				 struct compat_ifreq __user *u_ifreq32)
2933 {
2934 	struct ifreq __user *u_ifreq64;
2935 	char tmp_buf[IFNAMSIZ];
2936 	void __user *data64;
2937 	u32 data32;
2938 
2939 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2940 			   IFNAMSIZ))
2941 		return -EFAULT;
2942 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2943 		return -EFAULT;
2944 	data64 = compat_ptr(data32);
2945 
2946 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2947 
2948 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2949 			 IFNAMSIZ))
2950 		return -EFAULT;
2951 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2952 		return -EFAULT;
2953 
2954 	return dev_ioctl(net, cmd, u_ifreq64);
2955 }
2956 
2957 static int dev_ifsioc(struct net *net, struct socket *sock,
2958 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2959 {
2960 	struct ifreq __user *uifr;
2961 	int err;
2962 
2963 	uifr = compat_alloc_user_space(sizeof(*uifr));
2964 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2965 		return -EFAULT;
2966 
2967 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2968 
2969 	if (!err) {
2970 		switch (cmd) {
2971 		case SIOCGIFFLAGS:
2972 		case SIOCGIFMETRIC:
2973 		case SIOCGIFMTU:
2974 		case SIOCGIFMEM:
2975 		case SIOCGIFHWADDR:
2976 		case SIOCGIFINDEX:
2977 		case SIOCGIFADDR:
2978 		case SIOCGIFBRDADDR:
2979 		case SIOCGIFDSTADDR:
2980 		case SIOCGIFNETMASK:
2981 		case SIOCGIFPFLAGS:
2982 		case SIOCGIFTXQLEN:
2983 		case SIOCGMIIPHY:
2984 		case SIOCGMIIREG:
2985 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2986 				err = -EFAULT;
2987 			break;
2988 		}
2989 	}
2990 	return err;
2991 }
2992 
2993 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2994 			struct compat_ifreq __user *uifr32)
2995 {
2996 	struct ifreq ifr;
2997 	struct compat_ifmap __user *uifmap32;
2998 	mm_segment_t old_fs;
2999 	int err;
3000 
3001 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3002 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3003 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3004 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3005 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3006 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3007 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3008 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3009 	if (err)
3010 		return -EFAULT;
3011 
3012 	old_fs = get_fs();
3013 	set_fs(KERNEL_DS);
3014 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3015 	set_fs(old_fs);
3016 
3017 	if (cmd == SIOCGIFMAP && !err) {
3018 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3019 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3020 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3021 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3022 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3023 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3024 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3025 		if (err)
3026 			err = -EFAULT;
3027 	}
3028 	return err;
3029 }
3030 
3031 struct rtentry32 {
3032 	u32		rt_pad1;
3033 	struct sockaddr rt_dst;         /* target address               */
3034 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3035 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3036 	unsigned short	rt_flags;
3037 	short		rt_pad2;
3038 	u32		rt_pad3;
3039 	unsigned char	rt_tos;
3040 	unsigned char	rt_class;
3041 	short		rt_pad4;
3042 	short		rt_metric;      /* +1 for binary compatibility! */
3043 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3044 	u32		rt_mtu;         /* per route MTU/Window         */
3045 	u32		rt_window;      /* Window clamping              */
3046 	unsigned short  rt_irtt;        /* Initial RTT                  */
3047 };
3048 
3049 struct in6_rtmsg32 {
3050 	struct in6_addr		rtmsg_dst;
3051 	struct in6_addr		rtmsg_src;
3052 	struct in6_addr		rtmsg_gateway;
3053 	u32			rtmsg_type;
3054 	u16			rtmsg_dst_len;
3055 	u16			rtmsg_src_len;
3056 	u32			rtmsg_metric;
3057 	u32			rtmsg_info;
3058 	u32			rtmsg_flags;
3059 	s32			rtmsg_ifindex;
3060 };
3061 
3062 static int routing_ioctl(struct net *net, struct socket *sock,
3063 			 unsigned int cmd, void __user *argp)
3064 {
3065 	int ret;
3066 	void *r = NULL;
3067 	struct in6_rtmsg r6;
3068 	struct rtentry r4;
3069 	char devname[16];
3070 	u32 rtdev;
3071 	mm_segment_t old_fs = get_fs();
3072 
3073 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3074 		struct in6_rtmsg32 __user *ur6 = argp;
3075 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3076 			3 * sizeof(struct in6_addr));
3077 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3078 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3079 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3080 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3081 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3082 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3083 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3084 
3085 		r = (void *) &r6;
3086 	} else { /* ipv4 */
3087 		struct rtentry32 __user *ur4 = argp;
3088 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3089 					3 * sizeof(struct sockaddr));
3090 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3091 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3092 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3093 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3094 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3095 		ret |= get_user(rtdev, &(ur4->rt_dev));
3096 		if (rtdev) {
3097 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3098 			r4.rt_dev = (char __user __force *)devname;
3099 			devname[15] = 0;
3100 		} else
3101 			r4.rt_dev = NULL;
3102 
3103 		r = (void *) &r4;
3104 	}
3105 
3106 	if (ret) {
3107 		ret = -EFAULT;
3108 		goto out;
3109 	}
3110 
3111 	set_fs(KERNEL_DS);
3112 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3113 	set_fs(old_fs);
3114 
3115 out:
3116 	return ret;
3117 }
3118 
3119 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3120  * for some operations; this forces use of the newer bridge-utils that
3121  * use compatible ioctls
3122  */
3123 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3124 {
3125 	compat_ulong_t tmp;
3126 
3127 	if (get_user(tmp, argp))
3128 		return -EFAULT;
3129 	if (tmp == BRCTL_GET_VERSION)
3130 		return BRCTL_VERSION + 1;
3131 	return -EINVAL;
3132 }
3133 
3134 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3135 			 unsigned int cmd, unsigned long arg)
3136 {
3137 	void __user *argp = compat_ptr(arg);
3138 	struct sock *sk = sock->sk;
3139 	struct net *net = sock_net(sk);
3140 
3141 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3142 		return compat_ifr_data_ioctl(net, cmd, argp);
3143 
3144 	switch (cmd) {
3145 	case SIOCSIFBR:
3146 	case SIOCGIFBR:
3147 		return old_bridge_ioctl(argp);
3148 	case SIOCGIFNAME:
3149 		return dev_ifname32(net, argp);
3150 	case SIOCGIFCONF:
3151 		return dev_ifconf(net, argp);
3152 	case SIOCETHTOOL:
3153 		return ethtool_ioctl(net, argp);
3154 	case SIOCWANDEV:
3155 		return compat_siocwandev(net, argp);
3156 	case SIOCGIFMAP:
3157 	case SIOCSIFMAP:
3158 		return compat_sioc_ifmap(net, cmd, argp);
3159 	case SIOCBONDENSLAVE:
3160 	case SIOCBONDRELEASE:
3161 	case SIOCBONDSETHWADDR:
3162 	case SIOCBONDCHANGEACTIVE:
3163 		return bond_ioctl(net, cmd, argp);
3164 	case SIOCADDRT:
3165 	case SIOCDELRT:
3166 		return routing_ioctl(net, sock, cmd, argp);
3167 	case SIOCGSTAMP:
3168 		return do_siocgstamp(net, sock, cmd, argp);
3169 	case SIOCGSTAMPNS:
3170 		return do_siocgstampns(net, sock, cmd, argp);
3171 	case SIOCBONDSLAVEINFOQUERY:
3172 	case SIOCBONDINFOQUERY:
3173 	case SIOCSHWTSTAMP:
3174 	case SIOCGHWTSTAMP:
3175 		return compat_ifr_data_ioctl(net, cmd, argp);
3176 
3177 	case FIOSETOWN:
3178 	case SIOCSPGRP:
3179 	case FIOGETOWN:
3180 	case SIOCGPGRP:
3181 	case SIOCBRADDBR:
3182 	case SIOCBRDELBR:
3183 	case SIOCGIFVLAN:
3184 	case SIOCSIFVLAN:
3185 	case SIOCADDDLCI:
3186 	case SIOCDELDLCI:
3187 	case SIOCGSKNS:
3188 		return sock_ioctl(file, cmd, arg);
3189 
3190 	case SIOCGIFFLAGS:
3191 	case SIOCSIFFLAGS:
3192 	case SIOCGIFMETRIC:
3193 	case SIOCSIFMETRIC:
3194 	case SIOCGIFMTU:
3195 	case SIOCSIFMTU:
3196 	case SIOCGIFMEM:
3197 	case SIOCSIFMEM:
3198 	case SIOCGIFHWADDR:
3199 	case SIOCSIFHWADDR:
3200 	case SIOCADDMULTI:
3201 	case SIOCDELMULTI:
3202 	case SIOCGIFINDEX:
3203 	case SIOCGIFADDR:
3204 	case SIOCSIFADDR:
3205 	case SIOCSIFHWBROADCAST:
3206 	case SIOCDIFADDR:
3207 	case SIOCGIFBRDADDR:
3208 	case SIOCSIFBRDADDR:
3209 	case SIOCGIFDSTADDR:
3210 	case SIOCSIFDSTADDR:
3211 	case SIOCGIFNETMASK:
3212 	case SIOCSIFNETMASK:
3213 	case SIOCSIFPFLAGS:
3214 	case SIOCGIFPFLAGS:
3215 	case SIOCGIFTXQLEN:
3216 	case SIOCSIFTXQLEN:
3217 	case SIOCBRADDIF:
3218 	case SIOCBRDELIF:
3219 	case SIOCSIFNAME:
3220 	case SIOCGMIIPHY:
3221 	case SIOCGMIIREG:
3222 	case SIOCSMIIREG:
3223 		return dev_ifsioc(net, sock, cmd, argp);
3224 
3225 	case SIOCSARP:
3226 	case SIOCGARP:
3227 	case SIOCDARP:
3228 	case SIOCATMARK:
3229 		return sock_do_ioctl(net, sock, cmd, arg);
3230 	}
3231 
3232 	return -ENOIOCTLCMD;
3233 }
3234 
3235 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3236 			      unsigned long arg)
3237 {
3238 	struct socket *sock = file->private_data;
3239 	int ret = -ENOIOCTLCMD;
3240 	struct sock *sk;
3241 	struct net *net;
3242 
3243 	sk = sock->sk;
3244 	net = sock_net(sk);
3245 
3246 	if (sock->ops->compat_ioctl)
3247 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3248 
3249 	if (ret == -ENOIOCTLCMD &&
3250 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3251 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3252 
3253 	if (ret == -ENOIOCTLCMD)
3254 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3255 
3256 	return ret;
3257 }
3258 #endif
3259 
3260 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3261 {
3262 	return sock->ops->bind(sock, addr, addrlen);
3263 }
3264 EXPORT_SYMBOL(kernel_bind);
3265 
3266 int kernel_listen(struct socket *sock, int backlog)
3267 {
3268 	return sock->ops->listen(sock, backlog);
3269 }
3270 EXPORT_SYMBOL(kernel_listen);
3271 
3272 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3273 {
3274 	struct sock *sk = sock->sk;
3275 	int err;
3276 
3277 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3278 			       newsock);
3279 	if (err < 0)
3280 		goto done;
3281 
3282 	err = sock->ops->accept(sock, *newsock, flags, true);
3283 	if (err < 0) {
3284 		sock_release(*newsock);
3285 		*newsock = NULL;
3286 		goto done;
3287 	}
3288 
3289 	(*newsock)->ops = sock->ops;
3290 	__module_get((*newsock)->ops->owner);
3291 
3292 done:
3293 	return err;
3294 }
3295 EXPORT_SYMBOL(kernel_accept);
3296 
3297 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3298 		   int flags)
3299 {
3300 	return sock->ops->connect(sock, addr, addrlen, flags);
3301 }
3302 EXPORT_SYMBOL(kernel_connect);
3303 
3304 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3305 			 int *addrlen)
3306 {
3307 	return sock->ops->getname(sock, addr, addrlen, 0);
3308 }
3309 EXPORT_SYMBOL(kernel_getsockname);
3310 
3311 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3312 			 int *addrlen)
3313 {
3314 	return sock->ops->getname(sock, addr, addrlen, 1);
3315 }
3316 EXPORT_SYMBOL(kernel_getpeername);
3317 
3318 int kernel_getsockopt(struct socket *sock, int level, int optname,
3319 			char *optval, int *optlen)
3320 {
3321 	mm_segment_t oldfs = get_fs();
3322 	char __user *uoptval;
3323 	int __user *uoptlen;
3324 	int err;
3325 
3326 	uoptval = (char __user __force *) optval;
3327 	uoptlen = (int __user __force *) optlen;
3328 
3329 	set_fs(KERNEL_DS);
3330 	if (level == SOL_SOCKET)
3331 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3332 	else
3333 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3334 					    uoptlen);
3335 	set_fs(oldfs);
3336 	return err;
3337 }
3338 EXPORT_SYMBOL(kernel_getsockopt);
3339 
3340 int kernel_setsockopt(struct socket *sock, int level, int optname,
3341 			char *optval, unsigned int optlen)
3342 {
3343 	mm_segment_t oldfs = get_fs();
3344 	char __user *uoptval;
3345 	int err;
3346 
3347 	uoptval = (char __user __force *) optval;
3348 
3349 	set_fs(KERNEL_DS);
3350 	if (level == SOL_SOCKET)
3351 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3352 	else
3353 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3354 					    optlen);
3355 	set_fs(oldfs);
3356 	return err;
3357 }
3358 EXPORT_SYMBOL(kernel_setsockopt);
3359 
3360 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3361 		    size_t size, int flags)
3362 {
3363 	if (sock->ops->sendpage)
3364 		return sock->ops->sendpage(sock, page, offset, size, flags);
3365 
3366 	return sock_no_sendpage(sock, page, offset, size, flags);
3367 }
3368 EXPORT_SYMBOL(kernel_sendpage);
3369 
3370 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3371 			   size_t size, int flags)
3372 {
3373 	struct socket *sock = sk->sk_socket;
3374 
3375 	if (sock->ops->sendpage_locked)
3376 		return sock->ops->sendpage_locked(sk, page, offset, size,
3377 						  flags);
3378 
3379 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3380 }
3381 EXPORT_SYMBOL(kernel_sendpage_locked);
3382 
3383 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3384 {
3385 	mm_segment_t oldfs = get_fs();
3386 	int err;
3387 
3388 	set_fs(KERNEL_DS);
3389 	err = sock->ops->ioctl(sock, cmd, arg);
3390 	set_fs(oldfs);
3391 
3392 	return err;
3393 }
3394 EXPORT_SYMBOL(kernel_sock_ioctl);
3395 
3396 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3397 {
3398 	return sock->ops->shutdown(sock, how);
3399 }
3400 EXPORT_SYMBOL(kernel_sock_shutdown);
3401 
3402 /* This routine returns the IP overhead imposed by a socket i.e.
3403  * the length of the underlying IP header, depending on whether
3404  * this is an IPv4 or IPv6 socket and the length from IP options turned
3405  * on at the socket. Assumes that the caller has a lock on the socket.
3406  */
3407 u32 kernel_sock_ip_overhead(struct sock *sk)
3408 {
3409 	struct inet_sock *inet;
3410 	struct ip_options_rcu *opt;
3411 	u32 overhead = 0;
3412 #if IS_ENABLED(CONFIG_IPV6)
3413 	struct ipv6_pinfo *np;
3414 	struct ipv6_txoptions *optv6 = NULL;
3415 #endif /* IS_ENABLED(CONFIG_IPV6) */
3416 
3417 	if (!sk)
3418 		return overhead;
3419 
3420 	switch (sk->sk_family) {
3421 	case AF_INET:
3422 		inet = inet_sk(sk);
3423 		overhead += sizeof(struct iphdr);
3424 		opt = rcu_dereference_protected(inet->inet_opt,
3425 						sock_owned_by_user(sk));
3426 		if (opt)
3427 			overhead += opt->opt.optlen;
3428 		return overhead;
3429 #if IS_ENABLED(CONFIG_IPV6)
3430 	case AF_INET6:
3431 		np = inet6_sk(sk);
3432 		overhead += sizeof(struct ipv6hdr);
3433 		if (np)
3434 			optv6 = rcu_dereference_protected(np->opt,
3435 							  sock_owned_by_user(sk));
3436 		if (optv6)
3437 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3438 		return overhead;
3439 #endif /* IS_ENABLED(CONFIG_IPV6) */
3440 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3441 		return overhead;
3442 	}
3443 }
3444 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3445