xref: /openbmc/linux/net/socket.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117 
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135 
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 	struct socket *sock = f->private_data;
140 	const struct proto_ops *ops = READ_ONCE(sock->ops);
141 
142 	if (ops->show_fdinfo)
143 		ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148 
149 /*
150  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151  *	in the operation structures but are done directly via the socketcall() multiplexor.
152  */
153 
154 static const struct file_operations socket_file_ops = {
155 	.owner =	THIS_MODULE,
156 	.llseek =	no_llseek,
157 	.read_iter =	sock_read_iter,
158 	.write_iter =	sock_write_iter,
159 	.poll =		sock_poll,
160 	.unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 	.compat_ioctl = compat_sock_ioctl,
163 #endif
164 	.uring_cmd =    io_uring_cmd_sock,
165 	.mmap =		sock_mmap,
166 	.release =	sock_close,
167 	.fasync =	sock_fasync,
168 	.splice_write = splice_to_socket,
169 	.splice_read =	sock_splice_read,
170 	.splice_eof =	sock_splice_eof,
171 	.show_fdinfo =	sock_show_fdinfo,
172 };
173 
174 static const char * const pf_family_names[] = {
175 	[PF_UNSPEC]	= "PF_UNSPEC",
176 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
177 	[PF_INET]	= "PF_INET",
178 	[PF_AX25]	= "PF_AX25",
179 	[PF_IPX]	= "PF_IPX",
180 	[PF_APPLETALK]	= "PF_APPLETALK",
181 	[PF_NETROM]	= "PF_NETROM",
182 	[PF_BRIDGE]	= "PF_BRIDGE",
183 	[PF_ATMPVC]	= "PF_ATMPVC",
184 	[PF_X25]	= "PF_X25",
185 	[PF_INET6]	= "PF_INET6",
186 	[PF_ROSE]	= "PF_ROSE",
187 	[PF_DECnet]	= "PF_DECnet",
188 	[PF_NETBEUI]	= "PF_NETBEUI",
189 	[PF_SECURITY]	= "PF_SECURITY",
190 	[PF_KEY]	= "PF_KEY",
191 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
192 	[PF_PACKET]	= "PF_PACKET",
193 	[PF_ASH]	= "PF_ASH",
194 	[PF_ECONET]	= "PF_ECONET",
195 	[PF_ATMSVC]	= "PF_ATMSVC",
196 	[PF_RDS]	= "PF_RDS",
197 	[PF_SNA]	= "PF_SNA",
198 	[PF_IRDA]	= "PF_IRDA",
199 	[PF_PPPOX]	= "PF_PPPOX",
200 	[PF_WANPIPE]	= "PF_WANPIPE",
201 	[PF_LLC]	= "PF_LLC",
202 	[PF_IB]		= "PF_IB",
203 	[PF_MPLS]	= "PF_MPLS",
204 	[PF_CAN]	= "PF_CAN",
205 	[PF_TIPC]	= "PF_TIPC",
206 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
207 	[PF_IUCV]	= "PF_IUCV",
208 	[PF_RXRPC]	= "PF_RXRPC",
209 	[PF_ISDN]	= "PF_ISDN",
210 	[PF_PHONET]	= "PF_PHONET",
211 	[PF_IEEE802154]	= "PF_IEEE802154",
212 	[PF_CAIF]	= "PF_CAIF",
213 	[PF_ALG]	= "PF_ALG",
214 	[PF_NFC]	= "PF_NFC",
215 	[PF_VSOCK]	= "PF_VSOCK",
216 	[PF_KCM]	= "PF_KCM",
217 	[PF_QIPCRTR]	= "PF_QIPCRTR",
218 	[PF_SMC]	= "PF_SMC",
219 	[PF_XDP]	= "PF_XDP",
220 	[PF_MCTP]	= "PF_MCTP",
221 };
222 
223 /*
224  *	The protocol list. Each protocol is registered in here.
225  */
226 
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229 
230 /*
231  * Support routines.
232  * Move socket addresses back and forth across the kernel/user
233  * divide and look after the messy bits.
234  */
235 
236 /**
237  *	move_addr_to_kernel	-	copy a socket address into kernel space
238  *	@uaddr: Address in user space
239  *	@kaddr: Address in kernel space
240  *	@ulen: Length in user space
241  *
242  *	The address is copied into kernel space. If the provided address is
243  *	too long an error code of -EINVAL is returned. If the copy gives
244  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
245  */
246 
247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 		return -EINVAL;
251 	if (ulen == 0)
252 		return 0;
253 	if (copy_from_user(kaddr, uaddr, ulen))
254 		return -EFAULT;
255 	return audit_sockaddr(ulen, kaddr);
256 }
257 
258 /**
259  *	move_addr_to_user	-	copy an address to user space
260  *	@kaddr: kernel space address
261  *	@klen: length of address in kernel
262  *	@uaddr: user space address
263  *	@ulen: pointer to user length field
264  *
265  *	The value pointed to by ulen on entry is the buffer length available.
266  *	This is overwritten with the buffer space used. -EINVAL is returned
267  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
268  *	is returned if either the buffer or the length field are not
269  *	accessible.
270  *	After copying the data up to the limit the user specifies, the true
271  *	length of the data is written over the length limit the user
272  *	specified. Zero is returned for a success.
273  */
274 
275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 			     void __user *uaddr, int __user *ulen)
277 {
278 	int err;
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 	err = get_user(len, ulen);
283 	if (err)
284 		return err;
285 	if (len > klen)
286 		len = klen;
287 	if (len < 0)
288 		return -EINVAL;
289 	if (len) {
290 		if (audit_sockaddr(klen, kaddr))
291 			return -ENOMEM;
292 		if (copy_to_user(uaddr, kaddr, len))
293 			return -EFAULT;
294 	}
295 	/*
296 	 *      "fromlen shall refer to the value before truncation.."
297 	 *                      1003.1g
298 	 */
299 	return __put_user(klen, ulen);
300 }
301 
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303 
304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 	struct socket_alloc *ei;
307 
308 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 	if (!ei)
310 		return NULL;
311 	init_waitqueue_head(&ei->socket.wq.wait);
312 	ei->socket.wq.fasync_list = NULL;
313 	ei->socket.wq.flags = 0;
314 
315 	ei->socket.state = SS_UNCONNECTED;
316 	ei->socket.flags = 0;
317 	ei->socket.ops = NULL;
318 	ei->socket.sk = NULL;
319 	ei->socket.file = NULL;
320 
321 	return &ei->vfs_inode;
322 }
323 
324 static void sock_free_inode(struct inode *inode)
325 {
326 	struct socket_alloc *ei;
327 
328 	ei = container_of(inode, struct socket_alloc, vfs_inode);
329 	kmem_cache_free(sock_inode_cachep, ei);
330 }
331 
332 static void init_once(void *foo)
333 {
334 	struct socket_alloc *ei = (struct socket_alloc *)foo;
335 
336 	inode_init_once(&ei->vfs_inode);
337 }
338 
339 static void init_inodecache(void)
340 {
341 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 					      sizeof(struct socket_alloc),
343 					      0,
344 					      (SLAB_HWCACHE_ALIGN |
345 					       SLAB_RECLAIM_ACCOUNT |
346 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
347 					      init_once);
348 	BUG_ON(sock_inode_cachep == NULL);
349 }
350 
351 static const struct super_operations sockfs_ops = {
352 	.alloc_inode	= sock_alloc_inode,
353 	.free_inode	= sock_free_inode,
354 	.statfs		= simple_statfs,
355 };
356 
357 /*
358  * sockfs_dname() is called from d_path().
359  */
360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 				d_inode(dentry)->i_ino);
364 }
365 
366 static const struct dentry_operations sockfs_dentry_operations = {
367 	.d_dname  = sockfs_dname,
368 };
369 
370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 			    struct dentry *dentry, struct inode *inode,
372 			    const char *suffix, void *value, size_t size)
373 {
374 	if (value) {
375 		if (dentry->d_name.len + 1 > size)
376 			return -ERANGE;
377 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 	}
379 	return dentry->d_name.len + 1;
380 }
381 
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 
386 static const struct xattr_handler sockfs_xattr_handler = {
387 	.name = XATTR_NAME_SOCKPROTONAME,
388 	.get = sockfs_xattr_get,
389 };
390 
391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 				     struct mnt_idmap *idmap,
393 				     struct dentry *dentry, struct inode *inode,
394 				     const char *suffix, const void *value,
395 				     size_t size, int flags)
396 {
397 	/* Handled by LSM. */
398 	return -EAGAIN;
399 }
400 
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 	.prefix = XATTR_SECURITY_PREFIX,
403 	.set = sockfs_security_xattr_set,
404 };
405 
406 static const struct xattr_handler *sockfs_xattr_handlers[] = {
407 	&sockfs_xattr_handler,
408 	&sockfs_security_xattr_handler,
409 	NULL
410 };
411 
412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 	if (!ctx)
416 		return -ENOMEM;
417 	ctx->ops = &sockfs_ops;
418 	ctx->dops = &sockfs_dentry_operations;
419 	ctx->xattr = sockfs_xattr_handlers;
420 	return 0;
421 }
422 
423 static struct vfsmount *sock_mnt __read_mostly;
424 
425 static struct file_system_type sock_fs_type = {
426 	.name =		"sockfs",
427 	.init_fs_context = sockfs_init_fs_context,
428 	.kill_sb =	kill_anon_super,
429 };
430 
431 /*
432  *	Obtains the first available file descriptor and sets it up for use.
433  *
434  *	These functions create file structures and maps them to fd space
435  *	of the current process. On success it returns file descriptor
436  *	and file struct implicitly stored in sock->file.
437  *	Note that another thread may close file descriptor before we return
438  *	from this function. We use the fact that now we do not refer
439  *	to socket after mapping. If one day we will need it, this
440  *	function will increment ref. count on file by 1.
441  *
442  *	In any case returned fd MAY BE not valid!
443  *	This race condition is unavoidable
444  *	with shared fd spaces, we cannot solve it inside kernel,
445  *	but we take care of internal coherence yet.
446  */
447 
448 /**
449  *	sock_alloc_file - Bind a &socket to a &file
450  *	@sock: socket
451  *	@flags: file status flags
452  *	@dname: protocol name
453  *
454  *	Returns the &file bound with @sock, implicitly storing it
455  *	in sock->file. If dname is %NULL, sets to "".
456  *
457  *	On failure @sock is released, and an ERR pointer is returned.
458  *
459  *	This function uses GFP_KERNEL internally.
460  */
461 
462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 	struct file *file;
465 
466 	if (!dname)
467 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468 
469 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 				O_RDWR | (flags & O_NONBLOCK),
471 				&socket_file_ops);
472 	if (IS_ERR(file)) {
473 		sock_release(sock);
474 		return file;
475 	}
476 
477 	file->f_mode |= FMODE_NOWAIT;
478 	sock->file = file;
479 	file->private_data = sock;
480 	stream_open(SOCK_INODE(sock), file);
481 	return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484 
485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 	struct file *newfile;
488 	int fd = get_unused_fd_flags(flags);
489 	if (unlikely(fd < 0)) {
490 		sock_release(sock);
491 		return fd;
492 	}
493 
494 	newfile = sock_alloc_file(sock, flags, NULL);
495 	if (!IS_ERR(newfile)) {
496 		fd_install(fd, newfile);
497 		return fd;
498 	}
499 
500 	put_unused_fd(fd);
501 	return PTR_ERR(newfile);
502 }
503 
504 /**
505  *	sock_from_file - Return the &socket bounded to @file.
506  *	@file: file
507  *
508  *	On failure returns %NULL.
509  */
510 
511 struct socket *sock_from_file(struct file *file)
512 {
513 	if (file->f_op == &socket_file_ops)
514 		return file->private_data;	/* set in sock_alloc_file */
515 
516 	return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519 
520 /**
521  *	sockfd_lookup - Go from a file number to its socket slot
522  *	@fd: file handle
523  *	@err: pointer to an error code return
524  *
525  *	The file handle passed in is locked and the socket it is bound
526  *	to is returned. If an error occurs the err pointer is overwritten
527  *	with a negative errno code and NULL is returned. The function checks
528  *	for both invalid handles and passing a handle which is not a socket.
529  *
530  *	On a success the socket object pointer is returned.
531  */
532 
533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 	struct file *file;
536 	struct socket *sock;
537 
538 	file = fget(fd);
539 	if (!file) {
540 		*err = -EBADF;
541 		return NULL;
542 	}
543 
544 	sock = sock_from_file(file);
545 	if (!sock) {
546 		*err = -ENOTSOCK;
547 		fput(file);
548 	}
549 	return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552 
553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 	struct fd f = fdget(fd);
556 	struct socket *sock;
557 
558 	*err = -EBADF;
559 	if (f.file) {
560 		sock = sock_from_file(f.file);
561 		if (likely(sock)) {
562 			*fput_needed = f.flags & FDPUT_FPUT;
563 			return sock;
564 		}
565 		*err = -ENOTSOCK;
566 		fdput(f);
567 	}
568 	return NULL;
569 }
570 
571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 				size_t size)
573 {
574 	ssize_t len;
575 	ssize_t used = 0;
576 
577 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 	if (len < 0)
579 		return len;
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		buffer += len;
585 	}
586 
587 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 	used += len;
589 	if (buffer) {
590 		if (size < used)
591 			return -ERANGE;
592 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 		buffer += len;
594 	}
595 
596 	return used;
597 }
598 
599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 			  struct dentry *dentry, struct iattr *iattr)
601 {
602 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603 
604 	if (!err && (iattr->ia_valid & ATTR_UID)) {
605 		struct socket *sock = SOCKET_I(d_inode(dentry));
606 
607 		if (sock->sk)
608 			sock->sk->sk_uid = iattr->ia_uid;
609 		else
610 			err = -ENOENT;
611 	}
612 
613 	return err;
614 }
615 
616 static const struct inode_operations sockfs_inode_ops = {
617 	.listxattr = sockfs_listxattr,
618 	.setattr = sockfs_setattr,
619 };
620 
621 /**
622  *	sock_alloc - allocate a socket
623  *
624  *	Allocate a new inode and socket object. The two are bound together
625  *	and initialised. The socket is then returned. If we are out of inodes
626  *	NULL is returned. This functions uses GFP_KERNEL internally.
627  */
628 
629 struct socket *sock_alloc(void)
630 {
631 	struct inode *inode;
632 	struct socket *sock;
633 
634 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 	if (!inode)
636 		return NULL;
637 
638 	sock = SOCKET_I(inode);
639 
640 	inode->i_ino = get_next_ino();
641 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 	inode->i_uid = current_fsuid();
643 	inode->i_gid = current_fsgid();
644 	inode->i_op = &sockfs_inode_ops;
645 
646 	return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649 
650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 	const struct proto_ops *ops = READ_ONCE(sock->ops);
653 
654 	if (ops) {
655 		struct module *owner = ops->owner;
656 
657 		if (inode)
658 			inode_lock(inode);
659 		ops->release(sock);
660 		sock->sk = NULL;
661 		if (inode)
662 			inode_unlock(inode);
663 		sock->ops = NULL;
664 		module_put(owner);
665 	}
666 
667 	if (sock->wq.fasync_list)
668 		pr_err("%s: fasync list not empty!\n", __func__);
669 
670 	if (!sock->file) {
671 		iput(SOCK_INODE(sock));
672 		return;
673 	}
674 	sock->file = NULL;
675 }
676 
677 /**
678  *	sock_release - close a socket
679  *	@sock: socket to close
680  *
681  *	The socket is released from the protocol stack if it has a release
682  *	callback, and the inode is then released if the socket is bound to
683  *	an inode not a file.
684  */
685 void sock_release(struct socket *sock)
686 {
687 	__sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690 
691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 	u8 flags = *tx_flags;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 		flags |= SKBTX_HW_TSTAMP;
697 
698 		/* PTP hardware clocks can provide a free running cycle counter
699 		 * as a time base for virtual clocks. Tell driver to use the
700 		 * free running cycle counter for timestamp if socket is bound
701 		 * to virtual clock.
702 		 */
703 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 	}
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 		flags |= SKBTX_SW_TSTAMP;
709 
710 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 		flags |= SKBTX_SCHED_TSTAMP;
712 
713 	*tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716 
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 					   size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 					    size_t));
721 
722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 						 int flags)
724 {
725 	trace_sock_send_length(sk, ret, 0);
726 }
727 
728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 				     inet_sendmsg, sock, msg,
732 				     msg_data_left(msg));
733 	BUG_ON(ret == -EIOCBQUEUED);
734 
735 	if (trace_sock_send_length_enabled())
736 		call_trace_sock_send_length(sock->sk, ret, 0);
737 	return ret;
738 }
739 
740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 	int err = security_socket_sendmsg(sock, msg,
743 					  msg_data_left(msg));
744 
745 	return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747 
748 /**
749  *	sock_sendmsg - send a message through @sock
750  *	@sock: socket
751  *	@msg: message to send
752  *
753  *	Sends @msg through @sock, passing through LSM.
754  *	Returns the number of bytes sent, or an error code.
755  */
756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 	struct sockaddr_storage address;
760 	int save_len = msg->msg_namelen;
761 	int ret;
762 
763 	if (msg->msg_name) {
764 		memcpy(&address, msg->msg_name, msg->msg_namelen);
765 		msg->msg_name = &address;
766 	}
767 
768 	ret = __sock_sendmsg(sock, msg);
769 	msg->msg_name = save_addr;
770 	msg->msg_namelen = save_len;
771 
772 	return ret;
773 }
774 EXPORT_SYMBOL(sock_sendmsg);
775 
776 /**
777  *	kernel_sendmsg - send a message through @sock (kernel-space)
778  *	@sock: socket
779  *	@msg: message header
780  *	@vec: kernel vec
781  *	@num: vec array length
782  *	@size: total message data size
783  *
784  *	Builds the message data with @vec and sends it through @sock.
785  *	Returns the number of bytes sent, or an error code.
786  */
787 
788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
789 		   struct kvec *vec, size_t num, size_t size)
790 {
791 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
792 	return sock_sendmsg(sock, msg);
793 }
794 EXPORT_SYMBOL(kernel_sendmsg);
795 
796 /**
797  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
798  *	@sk: sock
799  *	@msg: message header
800  *	@vec: output s/g array
801  *	@num: output s/g array length
802  *	@size: total message data size
803  *
804  *	Builds the message data with @vec and sends it through @sock.
805  *	Returns the number of bytes sent, or an error code.
806  *	Caller must hold @sk.
807  */
808 
809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
810 			  struct kvec *vec, size_t num, size_t size)
811 {
812 	struct socket *sock = sk->sk_socket;
813 	const struct proto_ops *ops = READ_ONCE(sock->ops);
814 
815 	if (!ops->sendmsg_locked)
816 		return sock_no_sendmsg_locked(sk, msg, size);
817 
818 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
819 
820 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
821 }
822 EXPORT_SYMBOL(kernel_sendmsg_locked);
823 
824 static bool skb_is_err_queue(const struct sk_buff *skb)
825 {
826 	/* pkt_type of skbs enqueued on the error queue are set to
827 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
828 	 * in recvmsg, since skbs received on a local socket will never
829 	 * have a pkt_type of PACKET_OUTGOING.
830 	 */
831 	return skb->pkt_type == PACKET_OUTGOING;
832 }
833 
834 /* On transmit, software and hardware timestamps are returned independently.
835  * As the two skb clones share the hardware timestamp, which may be updated
836  * before the software timestamp is received, a hardware TX timestamp may be
837  * returned only if there is no software TX timestamp. Ignore false software
838  * timestamps, which may be made in the __sock_recv_timestamp() call when the
839  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
840  * hardware timestamp.
841  */
842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
843 {
844 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
845 }
846 
847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
848 {
849 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
850 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
851 	struct net_device *orig_dev;
852 	ktime_t hwtstamp;
853 
854 	rcu_read_lock();
855 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 	if (orig_dev) {
857 		*if_index = orig_dev->ifindex;
858 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
859 	} else {
860 		hwtstamp = shhwtstamps->hwtstamp;
861 	}
862 	rcu_read_unlock();
863 
864 	return hwtstamp;
865 }
866 
867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
868 			   int if_index)
869 {
870 	struct scm_ts_pktinfo ts_pktinfo;
871 	struct net_device *orig_dev;
872 
873 	if (!skb_mac_header_was_set(skb))
874 		return;
875 
876 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
877 
878 	if (!if_index) {
879 		rcu_read_lock();
880 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
881 		if (orig_dev)
882 			if_index = orig_dev->ifindex;
883 		rcu_read_unlock();
884 	}
885 	ts_pktinfo.if_index = if_index;
886 
887 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
888 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
889 		 sizeof(ts_pktinfo), &ts_pktinfo);
890 }
891 
892 /*
893  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894  */
895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
896 	struct sk_buff *skb)
897 {
898 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
899 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
900 	struct scm_timestamping_internal tss;
901 	int empty = 1, false_tstamp = 0;
902 	struct skb_shared_hwtstamps *shhwtstamps =
903 		skb_hwtstamps(skb);
904 	int if_index;
905 	ktime_t hwtstamp;
906 	u32 tsflags;
907 
908 	/* Race occurred between timestamp enabling and packet
909 	   receiving.  Fill in the current time for now. */
910 	if (need_software_tstamp && skb->tstamp == 0) {
911 		__net_timestamp(skb);
912 		false_tstamp = 1;
913 	}
914 
915 	if (need_software_tstamp) {
916 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
917 			if (new_tstamp) {
918 				struct __kernel_sock_timeval tv;
919 
920 				skb_get_new_timestamp(skb, &tv);
921 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
922 					 sizeof(tv), &tv);
923 			} else {
924 				struct __kernel_old_timeval tv;
925 
926 				skb_get_timestamp(skb, &tv);
927 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
928 					 sizeof(tv), &tv);
929 			}
930 		} else {
931 			if (new_tstamp) {
932 				struct __kernel_timespec ts;
933 
934 				skb_get_new_timestampns(skb, &ts);
935 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
936 					 sizeof(ts), &ts);
937 			} else {
938 				struct __kernel_old_timespec ts;
939 
940 				skb_get_timestampns(skb, &ts);
941 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
942 					 sizeof(ts), &ts);
943 			}
944 		}
945 	}
946 
947 	memset(&tss, 0, sizeof(tss));
948 	tsflags = READ_ONCE(sk->sk_tsflags);
949 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
950 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
951 		empty = 0;
952 	if (shhwtstamps &&
953 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
954 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
955 		if_index = 0;
956 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
957 			hwtstamp = get_timestamp(sk, skb, &if_index);
958 		else
959 			hwtstamp = shhwtstamps->hwtstamp;
960 
961 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
962 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
963 							 READ_ONCE(sk->sk_bind_phc));
964 
965 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
966 			empty = 0;
967 
968 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
969 			    !skb_is_err_queue(skb))
970 				put_ts_pktinfo(msg, skb, if_index);
971 		}
972 	}
973 	if (!empty) {
974 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
975 			put_cmsg_scm_timestamping64(msg, &tss);
976 		else
977 			put_cmsg_scm_timestamping(msg, &tss);
978 
979 		if (skb_is_err_queue(skb) && skb->len &&
980 		    SKB_EXT_ERR(skb)->opt_stats)
981 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
982 				 skb->len, skb->data);
983 	}
984 }
985 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
986 
987 #ifdef CONFIG_WIRELESS
988 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
989 	struct sk_buff *skb)
990 {
991 	int ack;
992 
993 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
994 		return;
995 	if (!skb->wifi_acked_valid)
996 		return;
997 
998 	ack = skb->wifi_acked;
999 
1000 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1001 }
1002 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1003 #endif
1004 
1005 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1006 				   struct sk_buff *skb)
1007 {
1008 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1009 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1010 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1011 }
1012 
1013 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1014 			   struct sk_buff *skb)
1015 {
1016 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1017 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1018 		__u32 mark = skb->mark;
1019 
1020 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1021 	}
1022 }
1023 
1024 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1025 		       struct sk_buff *skb)
1026 {
1027 	sock_recv_timestamp(msg, sk, skb);
1028 	sock_recv_drops(msg, sk, skb);
1029 	sock_recv_mark(msg, sk, skb);
1030 }
1031 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1032 
1033 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1034 					   size_t, int));
1035 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1036 					    size_t, int));
1037 
1038 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1039 {
1040 	trace_sock_recv_length(sk, ret, flags);
1041 }
1042 
1043 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1044 				     int flags)
1045 {
1046 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1047 				     inet6_recvmsg,
1048 				     inet_recvmsg, sock, msg,
1049 				     msg_data_left(msg), flags);
1050 	if (trace_sock_recv_length_enabled())
1051 		call_trace_sock_recv_length(sock->sk, ret, flags);
1052 	return ret;
1053 }
1054 
1055 /**
1056  *	sock_recvmsg - receive a message from @sock
1057  *	@sock: socket
1058  *	@msg: message to receive
1059  *	@flags: message flags
1060  *
1061  *	Receives @msg from @sock, passing through LSM. Returns the total number
1062  *	of bytes received, or an error.
1063  */
1064 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1065 {
1066 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1067 
1068 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1069 }
1070 EXPORT_SYMBOL(sock_recvmsg);
1071 
1072 /**
1073  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1074  *	@sock: The socket to receive the message from
1075  *	@msg: Received message
1076  *	@vec: Input s/g array for message data
1077  *	@num: Size of input s/g array
1078  *	@size: Number of bytes to read
1079  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1080  *
1081  *	On return the msg structure contains the scatter/gather array passed in the
1082  *	vec argument. The array is modified so that it consists of the unfilled
1083  *	portion of the original array.
1084  *
1085  *	The returned value is the total number of bytes received, or an error.
1086  */
1087 
1088 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1089 		   struct kvec *vec, size_t num, size_t size, int flags)
1090 {
1091 	msg->msg_control_is_user = false;
1092 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1093 	return sock_recvmsg(sock, msg, flags);
1094 }
1095 EXPORT_SYMBOL(kernel_recvmsg);
1096 
1097 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1098 				struct pipe_inode_info *pipe, size_t len,
1099 				unsigned int flags)
1100 {
1101 	struct socket *sock = file->private_data;
1102 	const struct proto_ops *ops;
1103 
1104 	ops = READ_ONCE(sock->ops);
1105 	if (unlikely(!ops->splice_read))
1106 		return copy_splice_read(file, ppos, pipe, len, flags);
1107 
1108 	return ops->splice_read(sock, ppos, pipe, len, flags);
1109 }
1110 
1111 static void sock_splice_eof(struct file *file)
1112 {
1113 	struct socket *sock = file->private_data;
1114 	const struct proto_ops *ops;
1115 
1116 	ops = READ_ONCE(sock->ops);
1117 	if (ops->splice_eof)
1118 		ops->splice_eof(sock);
1119 }
1120 
1121 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1122 {
1123 	struct file *file = iocb->ki_filp;
1124 	struct socket *sock = file->private_data;
1125 	struct msghdr msg = {.msg_iter = *to,
1126 			     .msg_iocb = iocb};
1127 	ssize_t res;
1128 
1129 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1130 		msg.msg_flags = MSG_DONTWAIT;
1131 
1132 	if (iocb->ki_pos != 0)
1133 		return -ESPIPE;
1134 
1135 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1136 		return 0;
1137 
1138 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1139 	*to = msg.msg_iter;
1140 	return res;
1141 }
1142 
1143 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1144 {
1145 	struct file *file = iocb->ki_filp;
1146 	struct socket *sock = file->private_data;
1147 	struct msghdr msg = {.msg_iter = *from,
1148 			     .msg_iocb = iocb};
1149 	ssize_t res;
1150 
1151 	if (iocb->ki_pos != 0)
1152 		return -ESPIPE;
1153 
1154 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1155 		msg.msg_flags = MSG_DONTWAIT;
1156 
1157 	if (sock->type == SOCK_SEQPACKET)
1158 		msg.msg_flags |= MSG_EOR;
1159 
1160 	res = __sock_sendmsg(sock, &msg);
1161 	*from = msg.msg_iter;
1162 	return res;
1163 }
1164 
1165 /*
1166  * Atomic setting of ioctl hooks to avoid race
1167  * with module unload.
1168  */
1169 
1170 static DEFINE_MUTEX(br_ioctl_mutex);
1171 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1172 			    unsigned int cmd, struct ifreq *ifr,
1173 			    void __user *uarg);
1174 
1175 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1176 			     unsigned int cmd, struct ifreq *ifr,
1177 			     void __user *uarg))
1178 {
1179 	mutex_lock(&br_ioctl_mutex);
1180 	br_ioctl_hook = hook;
1181 	mutex_unlock(&br_ioctl_mutex);
1182 }
1183 EXPORT_SYMBOL(brioctl_set);
1184 
1185 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1186 		  struct ifreq *ifr, void __user *uarg)
1187 {
1188 	int err = -ENOPKG;
1189 
1190 	if (!br_ioctl_hook)
1191 		request_module("bridge");
1192 
1193 	mutex_lock(&br_ioctl_mutex);
1194 	if (br_ioctl_hook)
1195 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1196 	mutex_unlock(&br_ioctl_mutex);
1197 
1198 	return err;
1199 }
1200 
1201 static DEFINE_MUTEX(vlan_ioctl_mutex);
1202 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1203 
1204 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1205 {
1206 	mutex_lock(&vlan_ioctl_mutex);
1207 	vlan_ioctl_hook = hook;
1208 	mutex_unlock(&vlan_ioctl_mutex);
1209 }
1210 EXPORT_SYMBOL(vlan_ioctl_set);
1211 
1212 static long sock_do_ioctl(struct net *net, struct socket *sock,
1213 			  unsigned int cmd, unsigned long arg)
1214 {
1215 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1216 	struct ifreq ifr;
1217 	bool need_copyout;
1218 	int err;
1219 	void __user *argp = (void __user *)arg;
1220 	void __user *data;
1221 
1222 	err = ops->ioctl(sock, cmd, arg);
1223 
1224 	/*
1225 	 * If this ioctl is unknown try to hand it down
1226 	 * to the NIC driver.
1227 	 */
1228 	if (err != -ENOIOCTLCMD)
1229 		return err;
1230 
1231 	if (!is_socket_ioctl_cmd(cmd))
1232 		return -ENOTTY;
1233 
1234 	if (get_user_ifreq(&ifr, &data, argp))
1235 		return -EFAULT;
1236 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1237 	if (!err && need_copyout)
1238 		if (put_user_ifreq(&ifr, argp))
1239 			return -EFAULT;
1240 
1241 	return err;
1242 }
1243 
1244 /*
1245  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1246  *	what to do with it - that's up to the protocol still.
1247  */
1248 
1249 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1250 {
1251 	const struct proto_ops  *ops;
1252 	struct socket *sock;
1253 	struct sock *sk;
1254 	void __user *argp = (void __user *)arg;
1255 	int pid, err;
1256 	struct net *net;
1257 
1258 	sock = file->private_data;
1259 	ops = READ_ONCE(sock->ops);
1260 	sk = sock->sk;
1261 	net = sock_net(sk);
1262 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1263 		struct ifreq ifr;
1264 		void __user *data;
1265 		bool need_copyout;
1266 		if (get_user_ifreq(&ifr, &data, argp))
1267 			return -EFAULT;
1268 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1269 		if (!err && need_copyout)
1270 			if (put_user_ifreq(&ifr, argp))
1271 				return -EFAULT;
1272 	} else
1273 #ifdef CONFIG_WEXT_CORE
1274 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1275 		err = wext_handle_ioctl(net, cmd, argp);
1276 	} else
1277 #endif
1278 		switch (cmd) {
1279 		case FIOSETOWN:
1280 		case SIOCSPGRP:
1281 			err = -EFAULT;
1282 			if (get_user(pid, (int __user *)argp))
1283 				break;
1284 			err = f_setown(sock->file, pid, 1);
1285 			break;
1286 		case FIOGETOWN:
1287 		case SIOCGPGRP:
1288 			err = put_user(f_getown(sock->file),
1289 				       (int __user *)argp);
1290 			break;
1291 		case SIOCGIFBR:
1292 		case SIOCSIFBR:
1293 		case SIOCBRADDBR:
1294 		case SIOCBRDELBR:
1295 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1296 			break;
1297 		case SIOCGIFVLAN:
1298 		case SIOCSIFVLAN:
1299 			err = -ENOPKG;
1300 			if (!vlan_ioctl_hook)
1301 				request_module("8021q");
1302 
1303 			mutex_lock(&vlan_ioctl_mutex);
1304 			if (vlan_ioctl_hook)
1305 				err = vlan_ioctl_hook(net, argp);
1306 			mutex_unlock(&vlan_ioctl_mutex);
1307 			break;
1308 		case SIOCGSKNS:
1309 			err = -EPERM;
1310 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1311 				break;
1312 
1313 			err = open_related_ns(&net->ns, get_net_ns);
1314 			break;
1315 		case SIOCGSTAMP_OLD:
1316 		case SIOCGSTAMPNS_OLD:
1317 			if (!ops->gettstamp) {
1318 				err = -ENOIOCTLCMD;
1319 				break;
1320 			}
1321 			err = ops->gettstamp(sock, argp,
1322 					     cmd == SIOCGSTAMP_OLD,
1323 					     !IS_ENABLED(CONFIG_64BIT));
1324 			break;
1325 		case SIOCGSTAMP_NEW:
1326 		case SIOCGSTAMPNS_NEW:
1327 			if (!ops->gettstamp) {
1328 				err = -ENOIOCTLCMD;
1329 				break;
1330 			}
1331 			err = ops->gettstamp(sock, argp,
1332 					     cmd == SIOCGSTAMP_NEW,
1333 					     false);
1334 			break;
1335 
1336 		case SIOCGIFCONF:
1337 			err = dev_ifconf(net, argp);
1338 			break;
1339 
1340 		default:
1341 			err = sock_do_ioctl(net, sock, cmd, arg);
1342 			break;
1343 		}
1344 	return err;
1345 }
1346 
1347 /**
1348  *	sock_create_lite - creates a socket
1349  *	@family: protocol family (AF_INET, ...)
1350  *	@type: communication type (SOCK_STREAM, ...)
1351  *	@protocol: protocol (0, ...)
1352  *	@res: new socket
1353  *
1354  *	Creates a new socket and assigns it to @res, passing through LSM.
1355  *	The new socket initialization is not complete, see kernel_accept().
1356  *	Returns 0 or an error. On failure @res is set to %NULL.
1357  *	This function internally uses GFP_KERNEL.
1358  */
1359 
1360 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1361 {
1362 	int err;
1363 	struct socket *sock = NULL;
1364 
1365 	err = security_socket_create(family, type, protocol, 1);
1366 	if (err)
1367 		goto out;
1368 
1369 	sock = sock_alloc();
1370 	if (!sock) {
1371 		err = -ENOMEM;
1372 		goto out;
1373 	}
1374 
1375 	sock->type = type;
1376 	err = security_socket_post_create(sock, family, type, protocol, 1);
1377 	if (err)
1378 		goto out_release;
1379 
1380 out:
1381 	*res = sock;
1382 	return err;
1383 out_release:
1384 	sock_release(sock);
1385 	sock = NULL;
1386 	goto out;
1387 }
1388 EXPORT_SYMBOL(sock_create_lite);
1389 
1390 /* No kernel lock held - perfect */
1391 static __poll_t sock_poll(struct file *file, poll_table *wait)
1392 {
1393 	struct socket *sock = file->private_data;
1394 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1395 	__poll_t events = poll_requested_events(wait), flag = 0;
1396 
1397 	if (!ops->poll)
1398 		return 0;
1399 
1400 	if (sk_can_busy_loop(sock->sk)) {
1401 		/* poll once if requested by the syscall */
1402 		if (events & POLL_BUSY_LOOP)
1403 			sk_busy_loop(sock->sk, 1);
1404 
1405 		/* if this socket can poll_ll, tell the system call */
1406 		flag = POLL_BUSY_LOOP;
1407 	}
1408 
1409 	return ops->poll(file, sock, wait) | flag;
1410 }
1411 
1412 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1413 {
1414 	struct socket *sock = file->private_data;
1415 
1416 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1417 }
1418 
1419 static int sock_close(struct inode *inode, struct file *filp)
1420 {
1421 	__sock_release(SOCKET_I(inode), inode);
1422 	return 0;
1423 }
1424 
1425 /*
1426  *	Update the socket async list
1427  *
1428  *	Fasync_list locking strategy.
1429  *
1430  *	1. fasync_list is modified only under process context socket lock
1431  *	   i.e. under semaphore.
1432  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1433  *	   or under socket lock
1434  */
1435 
1436 static int sock_fasync(int fd, struct file *filp, int on)
1437 {
1438 	struct socket *sock = filp->private_data;
1439 	struct sock *sk = sock->sk;
1440 	struct socket_wq *wq = &sock->wq;
1441 
1442 	if (sk == NULL)
1443 		return -EINVAL;
1444 
1445 	lock_sock(sk);
1446 	fasync_helper(fd, filp, on, &wq->fasync_list);
1447 
1448 	if (!wq->fasync_list)
1449 		sock_reset_flag(sk, SOCK_FASYNC);
1450 	else
1451 		sock_set_flag(sk, SOCK_FASYNC);
1452 
1453 	release_sock(sk);
1454 	return 0;
1455 }
1456 
1457 /* This function may be called only under rcu_lock */
1458 
1459 int sock_wake_async(struct socket_wq *wq, int how, int band)
1460 {
1461 	if (!wq || !wq->fasync_list)
1462 		return -1;
1463 
1464 	switch (how) {
1465 	case SOCK_WAKE_WAITD:
1466 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1467 			break;
1468 		goto call_kill;
1469 	case SOCK_WAKE_SPACE:
1470 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1471 			break;
1472 		fallthrough;
1473 	case SOCK_WAKE_IO:
1474 call_kill:
1475 		kill_fasync(&wq->fasync_list, SIGIO, band);
1476 		break;
1477 	case SOCK_WAKE_URG:
1478 		kill_fasync(&wq->fasync_list, SIGURG, band);
1479 	}
1480 
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(sock_wake_async);
1484 
1485 /**
1486  *	__sock_create - creates a socket
1487  *	@net: net namespace
1488  *	@family: protocol family (AF_INET, ...)
1489  *	@type: communication type (SOCK_STREAM, ...)
1490  *	@protocol: protocol (0, ...)
1491  *	@res: new socket
1492  *	@kern: boolean for kernel space sockets
1493  *
1494  *	Creates a new socket and assigns it to @res, passing through LSM.
1495  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1496  *	be set to true if the socket resides in kernel space.
1497  *	This function internally uses GFP_KERNEL.
1498  */
1499 
1500 int __sock_create(struct net *net, int family, int type, int protocol,
1501 			 struct socket **res, int kern)
1502 {
1503 	int err;
1504 	struct socket *sock;
1505 	const struct net_proto_family *pf;
1506 
1507 	/*
1508 	 *      Check protocol is in range
1509 	 */
1510 	if (family < 0 || family >= NPROTO)
1511 		return -EAFNOSUPPORT;
1512 	if (type < 0 || type >= SOCK_MAX)
1513 		return -EINVAL;
1514 
1515 	/* Compatibility.
1516 
1517 	   This uglymoron is moved from INET layer to here to avoid
1518 	   deadlock in module load.
1519 	 */
1520 	if (family == PF_INET && type == SOCK_PACKET) {
1521 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1522 			     current->comm);
1523 		family = PF_PACKET;
1524 	}
1525 
1526 	err = security_socket_create(family, type, protocol, kern);
1527 	if (err)
1528 		return err;
1529 
1530 	/*
1531 	 *	Allocate the socket and allow the family to set things up. if
1532 	 *	the protocol is 0, the family is instructed to select an appropriate
1533 	 *	default.
1534 	 */
1535 	sock = sock_alloc();
1536 	if (!sock) {
1537 		net_warn_ratelimited("socket: no more sockets\n");
1538 		return -ENFILE;	/* Not exactly a match, but its the
1539 				   closest posix thing */
1540 	}
1541 
1542 	sock->type = type;
1543 
1544 #ifdef CONFIG_MODULES
1545 	/* Attempt to load a protocol module if the find failed.
1546 	 *
1547 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1548 	 * requested real, full-featured networking support upon configuration.
1549 	 * Otherwise module support will break!
1550 	 */
1551 	if (rcu_access_pointer(net_families[family]) == NULL)
1552 		request_module("net-pf-%d", family);
1553 #endif
1554 
1555 	rcu_read_lock();
1556 	pf = rcu_dereference(net_families[family]);
1557 	err = -EAFNOSUPPORT;
1558 	if (!pf)
1559 		goto out_release;
1560 
1561 	/*
1562 	 * We will call the ->create function, that possibly is in a loadable
1563 	 * module, so we have to bump that loadable module refcnt first.
1564 	 */
1565 	if (!try_module_get(pf->owner))
1566 		goto out_release;
1567 
1568 	/* Now protected by module ref count */
1569 	rcu_read_unlock();
1570 
1571 	err = pf->create(net, sock, protocol, kern);
1572 	if (err < 0) {
1573 		/* ->create should release the allocated sock->sk object on error
1574 		 * but it may leave the dangling pointer
1575 		 */
1576 		sock->sk = NULL;
1577 		goto out_module_put;
1578 	}
1579 
1580 	/*
1581 	 * Now to bump the refcnt of the [loadable] module that owns this
1582 	 * socket at sock_release time we decrement its refcnt.
1583 	 */
1584 	if (!try_module_get(sock->ops->owner))
1585 		goto out_module_busy;
1586 
1587 	/*
1588 	 * Now that we're done with the ->create function, the [loadable]
1589 	 * module can have its refcnt decremented
1590 	 */
1591 	module_put(pf->owner);
1592 	err = security_socket_post_create(sock, family, type, protocol, kern);
1593 	if (err)
1594 		goto out_sock_release;
1595 	*res = sock;
1596 
1597 	return 0;
1598 
1599 out_module_busy:
1600 	err = -EAFNOSUPPORT;
1601 out_module_put:
1602 	sock->ops = NULL;
1603 	module_put(pf->owner);
1604 out_sock_release:
1605 	sock_release(sock);
1606 	return err;
1607 
1608 out_release:
1609 	rcu_read_unlock();
1610 	goto out_sock_release;
1611 }
1612 EXPORT_SYMBOL(__sock_create);
1613 
1614 /**
1615  *	sock_create - creates a socket
1616  *	@family: protocol family (AF_INET, ...)
1617  *	@type: communication type (SOCK_STREAM, ...)
1618  *	@protocol: protocol (0, ...)
1619  *	@res: new socket
1620  *
1621  *	A wrapper around __sock_create().
1622  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1623  */
1624 
1625 int sock_create(int family, int type, int protocol, struct socket **res)
1626 {
1627 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1628 }
1629 EXPORT_SYMBOL(sock_create);
1630 
1631 /**
1632  *	sock_create_kern - creates a socket (kernel space)
1633  *	@net: net namespace
1634  *	@family: protocol family (AF_INET, ...)
1635  *	@type: communication type (SOCK_STREAM, ...)
1636  *	@protocol: protocol (0, ...)
1637  *	@res: new socket
1638  *
1639  *	A wrapper around __sock_create().
1640  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1641  */
1642 
1643 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1644 {
1645 	return __sock_create(net, family, type, protocol, res, 1);
1646 }
1647 EXPORT_SYMBOL(sock_create_kern);
1648 
1649 static struct socket *__sys_socket_create(int family, int type, int protocol)
1650 {
1651 	struct socket *sock;
1652 	int retval;
1653 
1654 	/* Check the SOCK_* constants for consistency.  */
1655 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1656 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1657 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1658 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1659 
1660 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1661 		return ERR_PTR(-EINVAL);
1662 	type &= SOCK_TYPE_MASK;
1663 
1664 	retval = sock_create(family, type, protocol, &sock);
1665 	if (retval < 0)
1666 		return ERR_PTR(retval);
1667 
1668 	return sock;
1669 }
1670 
1671 struct file *__sys_socket_file(int family, int type, int protocol)
1672 {
1673 	struct socket *sock;
1674 	int flags;
1675 
1676 	sock = __sys_socket_create(family, type, protocol);
1677 	if (IS_ERR(sock))
1678 		return ERR_CAST(sock);
1679 
1680 	flags = type & ~SOCK_TYPE_MASK;
1681 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1682 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1683 
1684 	return sock_alloc_file(sock, flags, NULL);
1685 }
1686 
1687 /*	A hook for bpf progs to attach to and update socket protocol.
1688  *
1689  *	A static noinline declaration here could cause the compiler to
1690  *	optimize away the function. A global noinline declaration will
1691  *	keep the definition, but may optimize away the callsite.
1692  *	Therefore, __weak is needed to ensure that the call is still
1693  *	emitted, by telling the compiler that we don't know what the
1694  *	function might eventually be.
1695  *
1696  *	__diag_* below are needed to dismiss the missing prototype warning.
1697  */
1698 
1699 __diag_push();
1700 __diag_ignore_all("-Wmissing-prototypes",
1701 		  "A fmod_ret entry point for BPF programs");
1702 
1703 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1704 {
1705 	return protocol;
1706 }
1707 
1708 __diag_pop();
1709 
1710 int __sys_socket(int family, int type, int protocol)
1711 {
1712 	struct socket *sock;
1713 	int flags;
1714 
1715 	sock = __sys_socket_create(family, type,
1716 				   update_socket_protocol(family, type, protocol));
1717 	if (IS_ERR(sock))
1718 		return PTR_ERR(sock);
1719 
1720 	flags = type & ~SOCK_TYPE_MASK;
1721 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1722 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1723 
1724 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1725 }
1726 
1727 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1728 {
1729 	return __sys_socket(family, type, protocol);
1730 }
1731 
1732 /*
1733  *	Create a pair of connected sockets.
1734  */
1735 
1736 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1737 {
1738 	struct socket *sock1, *sock2;
1739 	int fd1, fd2, err;
1740 	struct file *newfile1, *newfile2;
1741 	int flags;
1742 
1743 	flags = type & ~SOCK_TYPE_MASK;
1744 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1745 		return -EINVAL;
1746 	type &= SOCK_TYPE_MASK;
1747 
1748 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1749 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1750 
1751 	/*
1752 	 * reserve descriptors and make sure we won't fail
1753 	 * to return them to userland.
1754 	 */
1755 	fd1 = get_unused_fd_flags(flags);
1756 	if (unlikely(fd1 < 0))
1757 		return fd1;
1758 
1759 	fd2 = get_unused_fd_flags(flags);
1760 	if (unlikely(fd2 < 0)) {
1761 		put_unused_fd(fd1);
1762 		return fd2;
1763 	}
1764 
1765 	err = put_user(fd1, &usockvec[0]);
1766 	if (err)
1767 		goto out;
1768 
1769 	err = put_user(fd2, &usockvec[1]);
1770 	if (err)
1771 		goto out;
1772 
1773 	/*
1774 	 * Obtain the first socket and check if the underlying protocol
1775 	 * supports the socketpair call.
1776 	 */
1777 
1778 	err = sock_create(family, type, protocol, &sock1);
1779 	if (unlikely(err < 0))
1780 		goto out;
1781 
1782 	err = sock_create(family, type, protocol, &sock2);
1783 	if (unlikely(err < 0)) {
1784 		sock_release(sock1);
1785 		goto out;
1786 	}
1787 
1788 	err = security_socket_socketpair(sock1, sock2);
1789 	if (unlikely(err)) {
1790 		sock_release(sock2);
1791 		sock_release(sock1);
1792 		goto out;
1793 	}
1794 
1795 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1796 	if (unlikely(err < 0)) {
1797 		sock_release(sock2);
1798 		sock_release(sock1);
1799 		goto out;
1800 	}
1801 
1802 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1803 	if (IS_ERR(newfile1)) {
1804 		err = PTR_ERR(newfile1);
1805 		sock_release(sock2);
1806 		goto out;
1807 	}
1808 
1809 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1810 	if (IS_ERR(newfile2)) {
1811 		err = PTR_ERR(newfile2);
1812 		fput(newfile1);
1813 		goto out;
1814 	}
1815 
1816 	audit_fd_pair(fd1, fd2);
1817 
1818 	fd_install(fd1, newfile1);
1819 	fd_install(fd2, newfile2);
1820 	return 0;
1821 
1822 out:
1823 	put_unused_fd(fd2);
1824 	put_unused_fd(fd1);
1825 	return err;
1826 }
1827 
1828 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1829 		int __user *, usockvec)
1830 {
1831 	return __sys_socketpair(family, type, protocol, usockvec);
1832 }
1833 
1834 /*
1835  *	Bind a name to a socket. Nothing much to do here since it's
1836  *	the protocol's responsibility to handle the local address.
1837  *
1838  *	We move the socket address to kernel space before we call
1839  *	the protocol layer (having also checked the address is ok).
1840  */
1841 
1842 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1843 {
1844 	struct socket *sock;
1845 	struct sockaddr_storage address;
1846 	int err, fput_needed;
1847 
1848 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 	if (sock) {
1850 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1851 		if (!err) {
1852 			err = security_socket_bind(sock,
1853 						   (struct sockaddr *)&address,
1854 						   addrlen);
1855 			if (!err)
1856 				err = READ_ONCE(sock->ops)->bind(sock,
1857 						      (struct sockaddr *)
1858 						      &address, addrlen);
1859 		}
1860 		fput_light(sock->file, fput_needed);
1861 	}
1862 	return err;
1863 }
1864 
1865 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1866 {
1867 	return __sys_bind(fd, umyaddr, addrlen);
1868 }
1869 
1870 /*
1871  *	Perform a listen. Basically, we allow the protocol to do anything
1872  *	necessary for a listen, and if that works, we mark the socket as
1873  *	ready for listening.
1874  */
1875 
1876 int __sys_listen(int fd, int backlog)
1877 {
1878 	struct socket *sock;
1879 	int err, fput_needed;
1880 	int somaxconn;
1881 
1882 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1883 	if (sock) {
1884 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1885 		if ((unsigned int)backlog > somaxconn)
1886 			backlog = somaxconn;
1887 
1888 		err = security_socket_listen(sock, backlog);
1889 		if (!err)
1890 			err = READ_ONCE(sock->ops)->listen(sock, backlog);
1891 
1892 		fput_light(sock->file, fput_needed);
1893 	}
1894 	return err;
1895 }
1896 
1897 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1898 {
1899 	return __sys_listen(fd, backlog);
1900 }
1901 
1902 struct file *do_accept(struct file *file, unsigned file_flags,
1903 		       struct sockaddr __user *upeer_sockaddr,
1904 		       int __user *upeer_addrlen, int flags)
1905 {
1906 	struct socket *sock, *newsock;
1907 	struct file *newfile;
1908 	int err, len;
1909 	struct sockaddr_storage address;
1910 	const struct proto_ops *ops;
1911 
1912 	sock = sock_from_file(file);
1913 	if (!sock)
1914 		return ERR_PTR(-ENOTSOCK);
1915 
1916 	newsock = sock_alloc();
1917 	if (!newsock)
1918 		return ERR_PTR(-ENFILE);
1919 	ops = READ_ONCE(sock->ops);
1920 
1921 	newsock->type = sock->type;
1922 	newsock->ops = ops;
1923 
1924 	/*
1925 	 * We don't need try_module_get here, as the listening socket (sock)
1926 	 * has the protocol module (sock->ops->owner) held.
1927 	 */
1928 	__module_get(ops->owner);
1929 
1930 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1931 	if (IS_ERR(newfile))
1932 		return newfile;
1933 
1934 	err = security_socket_accept(sock, newsock);
1935 	if (err)
1936 		goto out_fd;
1937 
1938 	err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1939 					false);
1940 	if (err < 0)
1941 		goto out_fd;
1942 
1943 	if (upeer_sockaddr) {
1944 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1945 		if (len < 0) {
1946 			err = -ECONNABORTED;
1947 			goto out_fd;
1948 		}
1949 		err = move_addr_to_user(&address,
1950 					len, upeer_sockaddr, upeer_addrlen);
1951 		if (err < 0)
1952 			goto out_fd;
1953 	}
1954 
1955 	/* File flags are not inherited via accept() unlike another OSes. */
1956 	return newfile;
1957 out_fd:
1958 	fput(newfile);
1959 	return ERR_PTR(err);
1960 }
1961 
1962 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1963 			      int __user *upeer_addrlen, int flags)
1964 {
1965 	struct file *newfile;
1966 	int newfd;
1967 
1968 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1969 		return -EINVAL;
1970 
1971 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1972 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1973 
1974 	newfd = get_unused_fd_flags(flags);
1975 	if (unlikely(newfd < 0))
1976 		return newfd;
1977 
1978 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1979 			    flags);
1980 	if (IS_ERR(newfile)) {
1981 		put_unused_fd(newfd);
1982 		return PTR_ERR(newfile);
1983 	}
1984 	fd_install(newfd, newfile);
1985 	return newfd;
1986 }
1987 
1988 /*
1989  *	For accept, we attempt to create a new socket, set up the link
1990  *	with the client, wake up the client, then return the new
1991  *	connected fd. We collect the address of the connector in kernel
1992  *	space and move it to user at the very end. This is unclean because
1993  *	we open the socket then return an error.
1994  *
1995  *	1003.1g adds the ability to recvmsg() to query connection pending
1996  *	status to recvmsg. We need to add that support in a way thats
1997  *	clean when we restructure accept also.
1998  */
1999 
2000 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2001 		  int __user *upeer_addrlen, int flags)
2002 {
2003 	int ret = -EBADF;
2004 	struct fd f;
2005 
2006 	f = fdget(fd);
2007 	if (f.file) {
2008 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
2009 					 upeer_addrlen, flags);
2010 		fdput(f);
2011 	}
2012 
2013 	return ret;
2014 }
2015 
2016 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2017 		int __user *, upeer_addrlen, int, flags)
2018 {
2019 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2020 }
2021 
2022 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2023 		int __user *, upeer_addrlen)
2024 {
2025 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2026 }
2027 
2028 /*
2029  *	Attempt to connect to a socket with the server address.  The address
2030  *	is in user space so we verify it is OK and move it to kernel space.
2031  *
2032  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2033  *	break bindings
2034  *
2035  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2036  *	other SEQPACKET protocols that take time to connect() as it doesn't
2037  *	include the -EINPROGRESS status for such sockets.
2038  */
2039 
2040 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2041 		       int addrlen, int file_flags)
2042 {
2043 	struct socket *sock;
2044 	int err;
2045 
2046 	sock = sock_from_file(file);
2047 	if (!sock) {
2048 		err = -ENOTSOCK;
2049 		goto out;
2050 	}
2051 
2052 	err =
2053 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2054 	if (err)
2055 		goto out;
2056 
2057 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2058 				addrlen, sock->file->f_flags | file_flags);
2059 out:
2060 	return err;
2061 }
2062 
2063 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2064 {
2065 	int ret = -EBADF;
2066 	struct fd f;
2067 
2068 	f = fdget(fd);
2069 	if (f.file) {
2070 		struct sockaddr_storage address;
2071 
2072 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2073 		if (!ret)
2074 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2075 		fdput(f);
2076 	}
2077 
2078 	return ret;
2079 }
2080 
2081 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2082 		int, addrlen)
2083 {
2084 	return __sys_connect(fd, uservaddr, addrlen);
2085 }
2086 
2087 /*
2088  *	Get the local address ('name') of a socket object. Move the obtained
2089  *	name to user space.
2090  */
2091 
2092 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2093 		      int __user *usockaddr_len)
2094 {
2095 	struct socket *sock;
2096 	struct sockaddr_storage address;
2097 	int err, fput_needed;
2098 
2099 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2100 	if (!sock)
2101 		goto out;
2102 
2103 	err = security_socket_getsockname(sock);
2104 	if (err)
2105 		goto out_put;
2106 
2107 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2108 	if (err < 0)
2109 		goto out_put;
2110 	/* "err" is actually length in this case */
2111 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2112 
2113 out_put:
2114 	fput_light(sock->file, fput_needed);
2115 out:
2116 	return err;
2117 }
2118 
2119 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2120 		int __user *, usockaddr_len)
2121 {
2122 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2123 }
2124 
2125 /*
2126  *	Get the remote address ('name') of a socket object. Move the obtained
2127  *	name to user space.
2128  */
2129 
2130 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2131 		      int __user *usockaddr_len)
2132 {
2133 	struct socket *sock;
2134 	struct sockaddr_storage address;
2135 	int err, fput_needed;
2136 
2137 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2138 	if (sock != NULL) {
2139 		const struct proto_ops *ops = READ_ONCE(sock->ops);
2140 
2141 		err = security_socket_getpeername(sock);
2142 		if (err) {
2143 			fput_light(sock->file, fput_needed);
2144 			return err;
2145 		}
2146 
2147 		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2148 		if (err >= 0)
2149 			/* "err" is actually length in this case */
2150 			err = move_addr_to_user(&address, err, usockaddr,
2151 						usockaddr_len);
2152 		fput_light(sock->file, fput_needed);
2153 	}
2154 	return err;
2155 }
2156 
2157 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2158 		int __user *, usockaddr_len)
2159 {
2160 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2161 }
2162 
2163 /*
2164  *	Send a datagram to a given address. We move the address into kernel
2165  *	space and check the user space data area is readable before invoking
2166  *	the protocol.
2167  */
2168 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2169 		 struct sockaddr __user *addr,  int addr_len)
2170 {
2171 	struct socket *sock;
2172 	struct sockaddr_storage address;
2173 	int err;
2174 	struct msghdr msg;
2175 	struct iovec iov;
2176 	int fput_needed;
2177 
2178 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2179 	if (unlikely(err))
2180 		return err;
2181 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2182 	if (!sock)
2183 		goto out;
2184 
2185 	msg.msg_name = NULL;
2186 	msg.msg_control = NULL;
2187 	msg.msg_controllen = 0;
2188 	msg.msg_namelen = 0;
2189 	msg.msg_ubuf = NULL;
2190 	if (addr) {
2191 		err = move_addr_to_kernel(addr, addr_len, &address);
2192 		if (err < 0)
2193 			goto out_put;
2194 		msg.msg_name = (struct sockaddr *)&address;
2195 		msg.msg_namelen = addr_len;
2196 	}
2197 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2198 	if (sock->file->f_flags & O_NONBLOCK)
2199 		flags |= MSG_DONTWAIT;
2200 	msg.msg_flags = flags;
2201 	err = __sock_sendmsg(sock, &msg);
2202 
2203 out_put:
2204 	fput_light(sock->file, fput_needed);
2205 out:
2206 	return err;
2207 }
2208 
2209 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2210 		unsigned int, flags, struct sockaddr __user *, addr,
2211 		int, addr_len)
2212 {
2213 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2214 }
2215 
2216 /*
2217  *	Send a datagram down a socket.
2218  */
2219 
2220 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2221 		unsigned int, flags)
2222 {
2223 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2224 }
2225 
2226 /*
2227  *	Receive a frame from the socket and optionally record the address of the
2228  *	sender. We verify the buffers are writable and if needed move the
2229  *	sender address from kernel to user space.
2230  */
2231 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2232 		   struct sockaddr __user *addr, int __user *addr_len)
2233 {
2234 	struct sockaddr_storage address;
2235 	struct msghdr msg = {
2236 		/* Save some cycles and don't copy the address if not needed */
2237 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2238 	};
2239 	struct socket *sock;
2240 	struct iovec iov;
2241 	int err, err2;
2242 	int fput_needed;
2243 
2244 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2245 	if (unlikely(err))
2246 		return err;
2247 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2248 	if (!sock)
2249 		goto out;
2250 
2251 	if (sock->file->f_flags & O_NONBLOCK)
2252 		flags |= MSG_DONTWAIT;
2253 	err = sock_recvmsg(sock, &msg, flags);
2254 
2255 	if (err >= 0 && addr != NULL) {
2256 		err2 = move_addr_to_user(&address,
2257 					 msg.msg_namelen, addr, addr_len);
2258 		if (err2 < 0)
2259 			err = err2;
2260 	}
2261 
2262 	fput_light(sock->file, fput_needed);
2263 out:
2264 	return err;
2265 }
2266 
2267 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2268 		unsigned int, flags, struct sockaddr __user *, addr,
2269 		int __user *, addr_len)
2270 {
2271 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2272 }
2273 
2274 /*
2275  *	Receive a datagram from a socket.
2276  */
2277 
2278 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2279 		unsigned int, flags)
2280 {
2281 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2282 }
2283 
2284 static bool sock_use_custom_sol_socket(const struct socket *sock)
2285 {
2286 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2287 }
2288 
2289 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2290 		       int optname, sockptr_t optval, int optlen)
2291 {
2292 	const struct proto_ops *ops;
2293 	char *kernel_optval = NULL;
2294 	int err;
2295 
2296 	if (optlen < 0)
2297 		return -EINVAL;
2298 
2299 	err = security_socket_setsockopt(sock, level, optname);
2300 	if (err)
2301 		goto out_put;
2302 
2303 	if (!compat)
2304 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2305 						     optval, &optlen,
2306 						     &kernel_optval);
2307 	if (err < 0)
2308 		goto out_put;
2309 	if (err > 0) {
2310 		err = 0;
2311 		goto out_put;
2312 	}
2313 
2314 	if (kernel_optval)
2315 		optval = KERNEL_SOCKPTR(kernel_optval);
2316 	ops = READ_ONCE(sock->ops);
2317 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2318 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2319 	else if (unlikely(!ops->setsockopt))
2320 		err = -EOPNOTSUPP;
2321 	else
2322 		err = ops->setsockopt(sock, level, optname, optval,
2323 					    optlen);
2324 	kfree(kernel_optval);
2325 out_put:
2326 	return err;
2327 }
2328 EXPORT_SYMBOL(do_sock_setsockopt);
2329 
2330 /* Set a socket option. Because we don't know the option lengths we have
2331  * to pass the user mode parameter for the protocols to sort out.
2332  */
2333 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2334 		     int optlen)
2335 {
2336 	sockptr_t optval = USER_SOCKPTR(user_optval);
2337 	bool compat = in_compat_syscall();
2338 	int err, fput_needed;
2339 	struct socket *sock;
2340 
2341 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2342 	if (!sock)
2343 		return err;
2344 
2345 	err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2346 
2347 	fput_light(sock->file, fput_needed);
2348 	return err;
2349 }
2350 
2351 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2352 		char __user *, optval, int, optlen)
2353 {
2354 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2355 }
2356 
2357 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2358 							 int optname));
2359 
2360 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2361 		       int optname, sockptr_t optval, sockptr_t optlen)
2362 {
2363 	int max_optlen __maybe_unused = 0;
2364 	const struct proto_ops *ops;
2365 	int err;
2366 
2367 	err = security_socket_getsockopt(sock, level, optname);
2368 	if (err)
2369 		return err;
2370 
2371 	if (!compat)
2372 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2373 
2374 	ops = READ_ONCE(sock->ops);
2375 	if (level == SOL_SOCKET) {
2376 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2377 	} else if (unlikely(!ops->getsockopt)) {
2378 		err = -EOPNOTSUPP;
2379 	} else {
2380 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2381 			      "Invalid argument type"))
2382 			return -EOPNOTSUPP;
2383 
2384 		err = ops->getsockopt(sock, level, optname, optval.user,
2385 				      optlen.user);
2386 	}
2387 
2388 	if (!compat)
2389 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2390 						     optval, optlen, max_optlen,
2391 						     err);
2392 
2393 	return err;
2394 }
2395 EXPORT_SYMBOL(do_sock_getsockopt);
2396 
2397 /*
2398  *	Get a socket option. Because we don't know the option lengths we have
2399  *	to pass a user mode parameter for the protocols to sort out.
2400  */
2401 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2402 		int __user *optlen)
2403 {
2404 	int err, fput_needed;
2405 	struct socket *sock;
2406 	bool compat;
2407 
2408 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2409 	if (!sock)
2410 		return err;
2411 
2412 	compat = in_compat_syscall();
2413 	err = do_sock_getsockopt(sock, compat, level, optname,
2414 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2415 
2416 	fput_light(sock->file, fput_needed);
2417 	return err;
2418 }
2419 
2420 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2421 		char __user *, optval, int __user *, optlen)
2422 {
2423 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2424 }
2425 
2426 /*
2427  *	Shutdown a socket.
2428  */
2429 
2430 int __sys_shutdown_sock(struct socket *sock, int how)
2431 {
2432 	int err;
2433 
2434 	err = security_socket_shutdown(sock, how);
2435 	if (!err)
2436 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2437 
2438 	return err;
2439 }
2440 
2441 int __sys_shutdown(int fd, int how)
2442 {
2443 	int err, fput_needed;
2444 	struct socket *sock;
2445 
2446 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2447 	if (sock != NULL) {
2448 		err = __sys_shutdown_sock(sock, how);
2449 		fput_light(sock->file, fput_needed);
2450 	}
2451 	return err;
2452 }
2453 
2454 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2455 {
2456 	return __sys_shutdown(fd, how);
2457 }
2458 
2459 /* A couple of helpful macros for getting the address of the 32/64 bit
2460  * fields which are the same type (int / unsigned) on our platforms.
2461  */
2462 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2463 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2464 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2465 
2466 struct used_address {
2467 	struct sockaddr_storage name;
2468 	unsigned int name_len;
2469 };
2470 
2471 int __copy_msghdr(struct msghdr *kmsg,
2472 		  struct user_msghdr *msg,
2473 		  struct sockaddr __user **save_addr)
2474 {
2475 	ssize_t err;
2476 
2477 	kmsg->msg_control_is_user = true;
2478 	kmsg->msg_get_inq = 0;
2479 	kmsg->msg_control_user = msg->msg_control;
2480 	kmsg->msg_controllen = msg->msg_controllen;
2481 	kmsg->msg_flags = msg->msg_flags;
2482 
2483 	kmsg->msg_namelen = msg->msg_namelen;
2484 	if (!msg->msg_name)
2485 		kmsg->msg_namelen = 0;
2486 
2487 	if (kmsg->msg_namelen < 0)
2488 		return -EINVAL;
2489 
2490 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2491 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2492 
2493 	if (save_addr)
2494 		*save_addr = msg->msg_name;
2495 
2496 	if (msg->msg_name && kmsg->msg_namelen) {
2497 		if (!save_addr) {
2498 			err = move_addr_to_kernel(msg->msg_name,
2499 						  kmsg->msg_namelen,
2500 						  kmsg->msg_name);
2501 			if (err < 0)
2502 				return err;
2503 		}
2504 	} else {
2505 		kmsg->msg_name = NULL;
2506 		kmsg->msg_namelen = 0;
2507 	}
2508 
2509 	if (msg->msg_iovlen > UIO_MAXIOV)
2510 		return -EMSGSIZE;
2511 
2512 	kmsg->msg_iocb = NULL;
2513 	kmsg->msg_ubuf = NULL;
2514 	return 0;
2515 }
2516 
2517 static int copy_msghdr_from_user(struct msghdr *kmsg,
2518 				 struct user_msghdr __user *umsg,
2519 				 struct sockaddr __user **save_addr,
2520 				 struct iovec **iov)
2521 {
2522 	struct user_msghdr msg;
2523 	ssize_t err;
2524 
2525 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2526 		return -EFAULT;
2527 
2528 	err = __copy_msghdr(kmsg, &msg, save_addr);
2529 	if (err)
2530 		return err;
2531 
2532 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2533 			    msg.msg_iov, msg.msg_iovlen,
2534 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2535 	return err < 0 ? err : 0;
2536 }
2537 
2538 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2539 			   unsigned int flags, struct used_address *used_address,
2540 			   unsigned int allowed_msghdr_flags)
2541 {
2542 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2543 				__aligned(sizeof(__kernel_size_t));
2544 	/* 20 is size of ipv6_pktinfo */
2545 	unsigned char *ctl_buf = ctl;
2546 	int ctl_len;
2547 	ssize_t err;
2548 
2549 	err = -ENOBUFS;
2550 
2551 	if (msg_sys->msg_controllen > INT_MAX)
2552 		goto out;
2553 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2554 	ctl_len = msg_sys->msg_controllen;
2555 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2556 		err =
2557 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2558 						     sizeof(ctl));
2559 		if (err)
2560 			goto out;
2561 		ctl_buf = msg_sys->msg_control;
2562 		ctl_len = msg_sys->msg_controllen;
2563 	} else if (ctl_len) {
2564 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2565 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2566 		if (ctl_len > sizeof(ctl)) {
2567 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2568 			if (ctl_buf == NULL)
2569 				goto out;
2570 		}
2571 		err = -EFAULT;
2572 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2573 			goto out_freectl;
2574 		msg_sys->msg_control = ctl_buf;
2575 		msg_sys->msg_control_is_user = false;
2576 	}
2577 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2578 	msg_sys->msg_flags = flags;
2579 
2580 	if (sock->file->f_flags & O_NONBLOCK)
2581 		msg_sys->msg_flags |= MSG_DONTWAIT;
2582 	/*
2583 	 * If this is sendmmsg() and current destination address is same as
2584 	 * previously succeeded address, omit asking LSM's decision.
2585 	 * used_address->name_len is initialized to UINT_MAX so that the first
2586 	 * destination address never matches.
2587 	 */
2588 	if (used_address && msg_sys->msg_name &&
2589 	    used_address->name_len == msg_sys->msg_namelen &&
2590 	    !memcmp(&used_address->name, msg_sys->msg_name,
2591 		    used_address->name_len)) {
2592 		err = sock_sendmsg_nosec(sock, msg_sys);
2593 		goto out_freectl;
2594 	}
2595 	err = __sock_sendmsg(sock, msg_sys);
2596 	/*
2597 	 * If this is sendmmsg() and sending to current destination address was
2598 	 * successful, remember it.
2599 	 */
2600 	if (used_address && err >= 0) {
2601 		used_address->name_len = msg_sys->msg_namelen;
2602 		if (msg_sys->msg_name)
2603 			memcpy(&used_address->name, msg_sys->msg_name,
2604 			       used_address->name_len);
2605 	}
2606 
2607 out_freectl:
2608 	if (ctl_buf != ctl)
2609 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2610 out:
2611 	return err;
2612 }
2613 
2614 int sendmsg_copy_msghdr(struct msghdr *msg,
2615 			struct user_msghdr __user *umsg, unsigned flags,
2616 			struct iovec **iov)
2617 {
2618 	int err;
2619 
2620 	if (flags & MSG_CMSG_COMPAT) {
2621 		struct compat_msghdr __user *msg_compat;
2622 
2623 		msg_compat = (struct compat_msghdr __user *) umsg;
2624 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2625 	} else {
2626 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2627 	}
2628 	if (err < 0)
2629 		return err;
2630 
2631 	return 0;
2632 }
2633 
2634 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2635 			 struct msghdr *msg_sys, unsigned int flags,
2636 			 struct used_address *used_address,
2637 			 unsigned int allowed_msghdr_flags)
2638 {
2639 	struct sockaddr_storage address;
2640 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2641 	ssize_t err;
2642 
2643 	msg_sys->msg_name = &address;
2644 
2645 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2646 	if (err < 0)
2647 		return err;
2648 
2649 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2650 				allowed_msghdr_flags);
2651 	kfree(iov);
2652 	return err;
2653 }
2654 
2655 /*
2656  *	BSD sendmsg interface
2657  */
2658 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2659 			unsigned int flags)
2660 {
2661 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2662 }
2663 
2664 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2665 		   bool forbid_cmsg_compat)
2666 {
2667 	int fput_needed, err;
2668 	struct msghdr msg_sys;
2669 	struct socket *sock;
2670 
2671 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2672 		return -EINVAL;
2673 
2674 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2675 	if (!sock)
2676 		goto out;
2677 
2678 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2679 
2680 	fput_light(sock->file, fput_needed);
2681 out:
2682 	return err;
2683 }
2684 
2685 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2686 {
2687 	return __sys_sendmsg(fd, msg, flags, true);
2688 }
2689 
2690 /*
2691  *	Linux sendmmsg interface
2692  */
2693 
2694 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2695 		   unsigned int flags, bool forbid_cmsg_compat)
2696 {
2697 	int fput_needed, err, datagrams;
2698 	struct socket *sock;
2699 	struct mmsghdr __user *entry;
2700 	struct compat_mmsghdr __user *compat_entry;
2701 	struct msghdr msg_sys;
2702 	struct used_address used_address;
2703 	unsigned int oflags = flags;
2704 
2705 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2706 		return -EINVAL;
2707 
2708 	if (vlen > UIO_MAXIOV)
2709 		vlen = UIO_MAXIOV;
2710 
2711 	datagrams = 0;
2712 
2713 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2714 	if (!sock)
2715 		return err;
2716 
2717 	used_address.name_len = UINT_MAX;
2718 	entry = mmsg;
2719 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2720 	err = 0;
2721 	flags |= MSG_BATCH;
2722 
2723 	while (datagrams < vlen) {
2724 		if (datagrams == vlen - 1)
2725 			flags = oflags;
2726 
2727 		if (MSG_CMSG_COMPAT & flags) {
2728 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2729 					     &msg_sys, flags, &used_address, MSG_EOR);
2730 			if (err < 0)
2731 				break;
2732 			err = __put_user(err, &compat_entry->msg_len);
2733 			++compat_entry;
2734 		} else {
2735 			err = ___sys_sendmsg(sock,
2736 					     (struct user_msghdr __user *)entry,
2737 					     &msg_sys, flags, &used_address, MSG_EOR);
2738 			if (err < 0)
2739 				break;
2740 			err = put_user(err, &entry->msg_len);
2741 			++entry;
2742 		}
2743 
2744 		if (err)
2745 			break;
2746 		++datagrams;
2747 		if (msg_data_left(&msg_sys))
2748 			break;
2749 		cond_resched();
2750 	}
2751 
2752 	fput_light(sock->file, fput_needed);
2753 
2754 	/* We only return an error if no datagrams were able to be sent */
2755 	if (datagrams != 0)
2756 		return datagrams;
2757 
2758 	return err;
2759 }
2760 
2761 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2762 		unsigned int, vlen, unsigned int, flags)
2763 {
2764 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2765 }
2766 
2767 int recvmsg_copy_msghdr(struct msghdr *msg,
2768 			struct user_msghdr __user *umsg, unsigned flags,
2769 			struct sockaddr __user **uaddr,
2770 			struct iovec **iov)
2771 {
2772 	ssize_t err;
2773 
2774 	if (MSG_CMSG_COMPAT & flags) {
2775 		struct compat_msghdr __user *msg_compat;
2776 
2777 		msg_compat = (struct compat_msghdr __user *) umsg;
2778 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2779 	} else {
2780 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2781 	}
2782 	if (err < 0)
2783 		return err;
2784 
2785 	return 0;
2786 }
2787 
2788 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2789 			   struct user_msghdr __user *msg,
2790 			   struct sockaddr __user *uaddr,
2791 			   unsigned int flags, int nosec)
2792 {
2793 	struct compat_msghdr __user *msg_compat =
2794 					(struct compat_msghdr __user *) msg;
2795 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2796 	struct sockaddr_storage addr;
2797 	unsigned long cmsg_ptr;
2798 	int len;
2799 	ssize_t err;
2800 
2801 	msg_sys->msg_name = &addr;
2802 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2803 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2804 
2805 	/* We assume all kernel code knows the size of sockaddr_storage */
2806 	msg_sys->msg_namelen = 0;
2807 
2808 	if (sock->file->f_flags & O_NONBLOCK)
2809 		flags |= MSG_DONTWAIT;
2810 
2811 	if (unlikely(nosec))
2812 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2813 	else
2814 		err = sock_recvmsg(sock, msg_sys, flags);
2815 
2816 	if (err < 0)
2817 		goto out;
2818 	len = err;
2819 
2820 	if (uaddr != NULL) {
2821 		err = move_addr_to_user(&addr,
2822 					msg_sys->msg_namelen, uaddr,
2823 					uaddr_len);
2824 		if (err < 0)
2825 			goto out;
2826 	}
2827 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2828 			 COMPAT_FLAGS(msg));
2829 	if (err)
2830 		goto out;
2831 	if (MSG_CMSG_COMPAT & flags)
2832 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2833 				 &msg_compat->msg_controllen);
2834 	else
2835 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2836 				 &msg->msg_controllen);
2837 	if (err)
2838 		goto out;
2839 	err = len;
2840 out:
2841 	return err;
2842 }
2843 
2844 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2845 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2846 {
2847 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2848 	/* user mode address pointers */
2849 	struct sockaddr __user *uaddr;
2850 	ssize_t err;
2851 
2852 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2853 	if (err < 0)
2854 		return err;
2855 
2856 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2857 	kfree(iov);
2858 	return err;
2859 }
2860 
2861 /*
2862  *	BSD recvmsg interface
2863  */
2864 
2865 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2866 			struct user_msghdr __user *umsg,
2867 			struct sockaddr __user *uaddr, unsigned int flags)
2868 {
2869 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2870 }
2871 
2872 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2873 		   bool forbid_cmsg_compat)
2874 {
2875 	int fput_needed, err;
2876 	struct msghdr msg_sys;
2877 	struct socket *sock;
2878 
2879 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2880 		return -EINVAL;
2881 
2882 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2883 	if (!sock)
2884 		goto out;
2885 
2886 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2887 
2888 	fput_light(sock->file, fput_needed);
2889 out:
2890 	return err;
2891 }
2892 
2893 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2894 		unsigned int, flags)
2895 {
2896 	return __sys_recvmsg(fd, msg, flags, true);
2897 }
2898 
2899 /*
2900  *     Linux recvmmsg interface
2901  */
2902 
2903 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2904 			  unsigned int vlen, unsigned int flags,
2905 			  struct timespec64 *timeout)
2906 {
2907 	int fput_needed, err, datagrams;
2908 	struct socket *sock;
2909 	struct mmsghdr __user *entry;
2910 	struct compat_mmsghdr __user *compat_entry;
2911 	struct msghdr msg_sys;
2912 	struct timespec64 end_time;
2913 	struct timespec64 timeout64;
2914 
2915 	if (timeout &&
2916 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2917 				    timeout->tv_nsec))
2918 		return -EINVAL;
2919 
2920 	datagrams = 0;
2921 
2922 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2923 	if (!sock)
2924 		return err;
2925 
2926 	if (likely(!(flags & MSG_ERRQUEUE))) {
2927 		err = sock_error(sock->sk);
2928 		if (err) {
2929 			datagrams = err;
2930 			goto out_put;
2931 		}
2932 	}
2933 
2934 	entry = mmsg;
2935 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2936 
2937 	while (datagrams < vlen) {
2938 		/*
2939 		 * No need to ask LSM for more than the first datagram.
2940 		 */
2941 		if (MSG_CMSG_COMPAT & flags) {
2942 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2943 					     &msg_sys, flags & ~MSG_WAITFORONE,
2944 					     datagrams);
2945 			if (err < 0)
2946 				break;
2947 			err = __put_user(err, &compat_entry->msg_len);
2948 			++compat_entry;
2949 		} else {
2950 			err = ___sys_recvmsg(sock,
2951 					     (struct user_msghdr __user *)entry,
2952 					     &msg_sys, flags & ~MSG_WAITFORONE,
2953 					     datagrams);
2954 			if (err < 0)
2955 				break;
2956 			err = put_user(err, &entry->msg_len);
2957 			++entry;
2958 		}
2959 
2960 		if (err)
2961 			break;
2962 		++datagrams;
2963 
2964 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2965 		if (flags & MSG_WAITFORONE)
2966 			flags |= MSG_DONTWAIT;
2967 
2968 		if (timeout) {
2969 			ktime_get_ts64(&timeout64);
2970 			*timeout = timespec64_sub(end_time, timeout64);
2971 			if (timeout->tv_sec < 0) {
2972 				timeout->tv_sec = timeout->tv_nsec = 0;
2973 				break;
2974 			}
2975 
2976 			/* Timeout, return less than vlen datagrams */
2977 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2978 				break;
2979 		}
2980 
2981 		/* Out of band data, return right away */
2982 		if (msg_sys.msg_flags & MSG_OOB)
2983 			break;
2984 		cond_resched();
2985 	}
2986 
2987 	if (err == 0)
2988 		goto out_put;
2989 
2990 	if (datagrams == 0) {
2991 		datagrams = err;
2992 		goto out_put;
2993 	}
2994 
2995 	/*
2996 	 * We may return less entries than requested (vlen) if the
2997 	 * sock is non block and there aren't enough datagrams...
2998 	 */
2999 	if (err != -EAGAIN) {
3000 		/*
3001 		 * ... or  if recvmsg returns an error after we
3002 		 * received some datagrams, where we record the
3003 		 * error to return on the next call or if the
3004 		 * app asks about it using getsockopt(SO_ERROR).
3005 		 */
3006 		WRITE_ONCE(sock->sk->sk_err, -err);
3007 	}
3008 out_put:
3009 	fput_light(sock->file, fput_needed);
3010 
3011 	return datagrams;
3012 }
3013 
3014 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3015 		   unsigned int vlen, unsigned int flags,
3016 		   struct __kernel_timespec __user *timeout,
3017 		   struct old_timespec32 __user *timeout32)
3018 {
3019 	int datagrams;
3020 	struct timespec64 timeout_sys;
3021 
3022 	if (timeout && get_timespec64(&timeout_sys, timeout))
3023 		return -EFAULT;
3024 
3025 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3026 		return -EFAULT;
3027 
3028 	if (!timeout && !timeout32)
3029 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3030 
3031 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3032 
3033 	if (datagrams <= 0)
3034 		return datagrams;
3035 
3036 	if (timeout && put_timespec64(&timeout_sys, timeout))
3037 		datagrams = -EFAULT;
3038 
3039 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3040 		datagrams = -EFAULT;
3041 
3042 	return datagrams;
3043 }
3044 
3045 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3046 		unsigned int, vlen, unsigned int, flags,
3047 		struct __kernel_timespec __user *, timeout)
3048 {
3049 	if (flags & MSG_CMSG_COMPAT)
3050 		return -EINVAL;
3051 
3052 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3053 }
3054 
3055 #ifdef CONFIG_COMPAT_32BIT_TIME
3056 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3057 		unsigned int, vlen, unsigned int, flags,
3058 		struct old_timespec32 __user *, timeout)
3059 {
3060 	if (flags & MSG_CMSG_COMPAT)
3061 		return -EINVAL;
3062 
3063 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3064 }
3065 #endif
3066 
3067 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3068 /* Argument list sizes for sys_socketcall */
3069 #define AL(x) ((x) * sizeof(unsigned long))
3070 static const unsigned char nargs[21] = {
3071 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3072 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3073 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3074 	AL(4), AL(5), AL(4)
3075 };
3076 
3077 #undef AL
3078 
3079 /*
3080  *	System call vectors.
3081  *
3082  *	Argument checking cleaned up. Saved 20% in size.
3083  *  This function doesn't need to set the kernel lock because
3084  *  it is set by the callees.
3085  */
3086 
3087 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3088 {
3089 	unsigned long a[AUDITSC_ARGS];
3090 	unsigned long a0, a1;
3091 	int err;
3092 	unsigned int len;
3093 
3094 	if (call < 1 || call > SYS_SENDMMSG)
3095 		return -EINVAL;
3096 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3097 
3098 	len = nargs[call];
3099 	if (len > sizeof(a))
3100 		return -EINVAL;
3101 
3102 	/* copy_from_user should be SMP safe. */
3103 	if (copy_from_user(a, args, len))
3104 		return -EFAULT;
3105 
3106 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3107 	if (err)
3108 		return err;
3109 
3110 	a0 = a[0];
3111 	a1 = a[1];
3112 
3113 	switch (call) {
3114 	case SYS_SOCKET:
3115 		err = __sys_socket(a0, a1, a[2]);
3116 		break;
3117 	case SYS_BIND:
3118 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3119 		break;
3120 	case SYS_CONNECT:
3121 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3122 		break;
3123 	case SYS_LISTEN:
3124 		err = __sys_listen(a0, a1);
3125 		break;
3126 	case SYS_ACCEPT:
3127 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3128 				    (int __user *)a[2], 0);
3129 		break;
3130 	case SYS_GETSOCKNAME:
3131 		err =
3132 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3133 				      (int __user *)a[2]);
3134 		break;
3135 	case SYS_GETPEERNAME:
3136 		err =
3137 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3138 				      (int __user *)a[2]);
3139 		break;
3140 	case SYS_SOCKETPAIR:
3141 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3142 		break;
3143 	case SYS_SEND:
3144 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3145 				   NULL, 0);
3146 		break;
3147 	case SYS_SENDTO:
3148 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3149 				   (struct sockaddr __user *)a[4], a[5]);
3150 		break;
3151 	case SYS_RECV:
3152 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3153 				     NULL, NULL);
3154 		break;
3155 	case SYS_RECVFROM:
3156 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3157 				     (struct sockaddr __user *)a[4],
3158 				     (int __user *)a[5]);
3159 		break;
3160 	case SYS_SHUTDOWN:
3161 		err = __sys_shutdown(a0, a1);
3162 		break;
3163 	case SYS_SETSOCKOPT:
3164 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3165 				       a[4]);
3166 		break;
3167 	case SYS_GETSOCKOPT:
3168 		err =
3169 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3170 				     (int __user *)a[4]);
3171 		break;
3172 	case SYS_SENDMSG:
3173 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3174 				    a[2], true);
3175 		break;
3176 	case SYS_SENDMMSG:
3177 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3178 				     a[3], true);
3179 		break;
3180 	case SYS_RECVMSG:
3181 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3182 				    a[2], true);
3183 		break;
3184 	case SYS_RECVMMSG:
3185 		if (IS_ENABLED(CONFIG_64BIT))
3186 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3187 					     a[2], a[3],
3188 					     (struct __kernel_timespec __user *)a[4],
3189 					     NULL);
3190 		else
3191 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3192 					     a[2], a[3], NULL,
3193 					     (struct old_timespec32 __user *)a[4]);
3194 		break;
3195 	case SYS_ACCEPT4:
3196 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3197 				    (int __user *)a[2], a[3]);
3198 		break;
3199 	default:
3200 		err = -EINVAL;
3201 		break;
3202 	}
3203 	return err;
3204 }
3205 
3206 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3207 
3208 /**
3209  *	sock_register - add a socket protocol handler
3210  *	@ops: description of protocol
3211  *
3212  *	This function is called by a protocol handler that wants to
3213  *	advertise its address family, and have it linked into the
3214  *	socket interface. The value ops->family corresponds to the
3215  *	socket system call protocol family.
3216  */
3217 int sock_register(const struct net_proto_family *ops)
3218 {
3219 	int err;
3220 
3221 	if (ops->family >= NPROTO) {
3222 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3223 		return -ENOBUFS;
3224 	}
3225 
3226 	spin_lock(&net_family_lock);
3227 	if (rcu_dereference_protected(net_families[ops->family],
3228 				      lockdep_is_held(&net_family_lock)))
3229 		err = -EEXIST;
3230 	else {
3231 		rcu_assign_pointer(net_families[ops->family], ops);
3232 		err = 0;
3233 	}
3234 	spin_unlock(&net_family_lock);
3235 
3236 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3237 	return err;
3238 }
3239 EXPORT_SYMBOL(sock_register);
3240 
3241 /**
3242  *	sock_unregister - remove a protocol handler
3243  *	@family: protocol family to remove
3244  *
3245  *	This function is called by a protocol handler that wants to
3246  *	remove its address family, and have it unlinked from the
3247  *	new socket creation.
3248  *
3249  *	If protocol handler is a module, then it can use module reference
3250  *	counts to protect against new references. If protocol handler is not
3251  *	a module then it needs to provide its own protection in
3252  *	the ops->create routine.
3253  */
3254 void sock_unregister(int family)
3255 {
3256 	BUG_ON(family < 0 || family >= NPROTO);
3257 
3258 	spin_lock(&net_family_lock);
3259 	RCU_INIT_POINTER(net_families[family], NULL);
3260 	spin_unlock(&net_family_lock);
3261 
3262 	synchronize_rcu();
3263 
3264 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3265 }
3266 EXPORT_SYMBOL(sock_unregister);
3267 
3268 bool sock_is_registered(int family)
3269 {
3270 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3271 }
3272 
3273 static int __init sock_init(void)
3274 {
3275 	int err;
3276 	/*
3277 	 *      Initialize the network sysctl infrastructure.
3278 	 */
3279 	err = net_sysctl_init();
3280 	if (err)
3281 		goto out;
3282 
3283 	/*
3284 	 *      Initialize skbuff SLAB cache
3285 	 */
3286 	skb_init();
3287 
3288 	/*
3289 	 *      Initialize the protocols module.
3290 	 */
3291 
3292 	init_inodecache();
3293 
3294 	err = register_filesystem(&sock_fs_type);
3295 	if (err)
3296 		goto out;
3297 	sock_mnt = kern_mount(&sock_fs_type);
3298 	if (IS_ERR(sock_mnt)) {
3299 		err = PTR_ERR(sock_mnt);
3300 		goto out_mount;
3301 	}
3302 
3303 	/* The real protocol initialization is performed in later initcalls.
3304 	 */
3305 
3306 #ifdef CONFIG_NETFILTER
3307 	err = netfilter_init();
3308 	if (err)
3309 		goto out;
3310 #endif
3311 
3312 	ptp_classifier_init();
3313 
3314 out:
3315 	return err;
3316 
3317 out_mount:
3318 	unregister_filesystem(&sock_fs_type);
3319 	goto out;
3320 }
3321 
3322 core_initcall(sock_init);	/* early initcall */
3323 
3324 #ifdef CONFIG_PROC_FS
3325 void socket_seq_show(struct seq_file *seq)
3326 {
3327 	seq_printf(seq, "sockets: used %d\n",
3328 		   sock_inuse_get(seq->private));
3329 }
3330 #endif				/* CONFIG_PROC_FS */
3331 
3332 /* Handle the fact that while struct ifreq has the same *layout* on
3333  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3334  * which are handled elsewhere, it still has different *size* due to
3335  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3336  * resulting in struct ifreq being 32 and 40 bytes respectively).
3337  * As a result, if the struct happens to be at the end of a page and
3338  * the next page isn't readable/writable, we get a fault. To prevent
3339  * that, copy back and forth to the full size.
3340  */
3341 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3342 {
3343 	if (in_compat_syscall()) {
3344 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3345 
3346 		memset(ifr, 0, sizeof(*ifr));
3347 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3348 			return -EFAULT;
3349 
3350 		if (ifrdata)
3351 			*ifrdata = compat_ptr(ifr32->ifr_data);
3352 
3353 		return 0;
3354 	}
3355 
3356 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3357 		return -EFAULT;
3358 
3359 	if (ifrdata)
3360 		*ifrdata = ifr->ifr_data;
3361 
3362 	return 0;
3363 }
3364 EXPORT_SYMBOL(get_user_ifreq);
3365 
3366 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3367 {
3368 	size_t size = sizeof(*ifr);
3369 
3370 	if (in_compat_syscall())
3371 		size = sizeof(struct compat_ifreq);
3372 
3373 	if (copy_to_user(arg, ifr, size))
3374 		return -EFAULT;
3375 
3376 	return 0;
3377 }
3378 EXPORT_SYMBOL(put_user_ifreq);
3379 
3380 #ifdef CONFIG_COMPAT
3381 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3382 {
3383 	compat_uptr_t uptr32;
3384 	struct ifreq ifr;
3385 	void __user *saved;
3386 	int err;
3387 
3388 	if (get_user_ifreq(&ifr, NULL, uifr32))
3389 		return -EFAULT;
3390 
3391 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3392 		return -EFAULT;
3393 
3394 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3395 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3396 
3397 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3398 	if (!err) {
3399 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3400 		if (put_user_ifreq(&ifr, uifr32))
3401 			err = -EFAULT;
3402 	}
3403 	return err;
3404 }
3405 
3406 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3407 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3408 				 struct compat_ifreq __user *u_ifreq32)
3409 {
3410 	struct ifreq ifreq;
3411 	void __user *data;
3412 
3413 	if (!is_socket_ioctl_cmd(cmd))
3414 		return -ENOTTY;
3415 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3416 		return -EFAULT;
3417 	ifreq.ifr_data = data;
3418 
3419 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3420 }
3421 
3422 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3423 			 unsigned int cmd, unsigned long arg)
3424 {
3425 	void __user *argp = compat_ptr(arg);
3426 	struct sock *sk = sock->sk;
3427 	struct net *net = sock_net(sk);
3428 	const struct proto_ops *ops;
3429 
3430 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3431 		return sock_ioctl(file, cmd, (unsigned long)argp);
3432 
3433 	switch (cmd) {
3434 	case SIOCWANDEV:
3435 		return compat_siocwandev(net, argp);
3436 	case SIOCGSTAMP_OLD:
3437 	case SIOCGSTAMPNS_OLD:
3438 		ops = READ_ONCE(sock->ops);
3439 		if (!ops->gettstamp)
3440 			return -ENOIOCTLCMD;
3441 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3442 				      !COMPAT_USE_64BIT_TIME);
3443 
3444 	case SIOCETHTOOL:
3445 	case SIOCBONDSLAVEINFOQUERY:
3446 	case SIOCBONDINFOQUERY:
3447 	case SIOCSHWTSTAMP:
3448 	case SIOCGHWTSTAMP:
3449 		return compat_ifr_data_ioctl(net, cmd, argp);
3450 
3451 	case FIOSETOWN:
3452 	case SIOCSPGRP:
3453 	case FIOGETOWN:
3454 	case SIOCGPGRP:
3455 	case SIOCBRADDBR:
3456 	case SIOCBRDELBR:
3457 	case SIOCGIFVLAN:
3458 	case SIOCSIFVLAN:
3459 	case SIOCGSKNS:
3460 	case SIOCGSTAMP_NEW:
3461 	case SIOCGSTAMPNS_NEW:
3462 	case SIOCGIFCONF:
3463 	case SIOCSIFBR:
3464 	case SIOCGIFBR:
3465 		return sock_ioctl(file, cmd, arg);
3466 
3467 	case SIOCGIFFLAGS:
3468 	case SIOCSIFFLAGS:
3469 	case SIOCGIFMAP:
3470 	case SIOCSIFMAP:
3471 	case SIOCGIFMETRIC:
3472 	case SIOCSIFMETRIC:
3473 	case SIOCGIFMTU:
3474 	case SIOCSIFMTU:
3475 	case SIOCGIFMEM:
3476 	case SIOCSIFMEM:
3477 	case SIOCGIFHWADDR:
3478 	case SIOCSIFHWADDR:
3479 	case SIOCADDMULTI:
3480 	case SIOCDELMULTI:
3481 	case SIOCGIFINDEX:
3482 	case SIOCGIFADDR:
3483 	case SIOCSIFADDR:
3484 	case SIOCSIFHWBROADCAST:
3485 	case SIOCDIFADDR:
3486 	case SIOCGIFBRDADDR:
3487 	case SIOCSIFBRDADDR:
3488 	case SIOCGIFDSTADDR:
3489 	case SIOCSIFDSTADDR:
3490 	case SIOCGIFNETMASK:
3491 	case SIOCSIFNETMASK:
3492 	case SIOCSIFPFLAGS:
3493 	case SIOCGIFPFLAGS:
3494 	case SIOCGIFTXQLEN:
3495 	case SIOCSIFTXQLEN:
3496 	case SIOCBRADDIF:
3497 	case SIOCBRDELIF:
3498 	case SIOCGIFNAME:
3499 	case SIOCSIFNAME:
3500 	case SIOCGMIIPHY:
3501 	case SIOCGMIIREG:
3502 	case SIOCSMIIREG:
3503 	case SIOCBONDENSLAVE:
3504 	case SIOCBONDRELEASE:
3505 	case SIOCBONDSETHWADDR:
3506 	case SIOCBONDCHANGEACTIVE:
3507 	case SIOCSARP:
3508 	case SIOCGARP:
3509 	case SIOCDARP:
3510 	case SIOCOUTQ:
3511 	case SIOCOUTQNSD:
3512 	case SIOCATMARK:
3513 		return sock_do_ioctl(net, sock, cmd, arg);
3514 	}
3515 
3516 	return -ENOIOCTLCMD;
3517 }
3518 
3519 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3520 			      unsigned long arg)
3521 {
3522 	struct socket *sock = file->private_data;
3523 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3524 	int ret = -ENOIOCTLCMD;
3525 	struct sock *sk;
3526 	struct net *net;
3527 
3528 	sk = sock->sk;
3529 	net = sock_net(sk);
3530 
3531 	if (ops->compat_ioctl)
3532 		ret = ops->compat_ioctl(sock, cmd, arg);
3533 
3534 	if (ret == -ENOIOCTLCMD &&
3535 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3536 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3537 
3538 	if (ret == -ENOIOCTLCMD)
3539 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3540 
3541 	return ret;
3542 }
3543 #endif
3544 
3545 /**
3546  *	kernel_bind - bind an address to a socket (kernel space)
3547  *	@sock: socket
3548  *	@addr: address
3549  *	@addrlen: length of address
3550  *
3551  *	Returns 0 or an error.
3552  */
3553 
3554 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3555 {
3556 	struct sockaddr_storage address;
3557 
3558 	memcpy(&address, addr, addrlen);
3559 
3560 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3561 					  addrlen);
3562 }
3563 EXPORT_SYMBOL(kernel_bind);
3564 
3565 /**
3566  *	kernel_listen - move socket to listening state (kernel space)
3567  *	@sock: socket
3568  *	@backlog: pending connections queue size
3569  *
3570  *	Returns 0 or an error.
3571  */
3572 
3573 int kernel_listen(struct socket *sock, int backlog)
3574 {
3575 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3576 }
3577 EXPORT_SYMBOL(kernel_listen);
3578 
3579 /**
3580  *	kernel_accept - accept a connection (kernel space)
3581  *	@sock: listening socket
3582  *	@newsock: new connected socket
3583  *	@flags: flags
3584  *
3585  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3586  *	If it fails, @newsock is guaranteed to be %NULL.
3587  *	Returns 0 or an error.
3588  */
3589 
3590 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3591 {
3592 	struct sock *sk = sock->sk;
3593 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3594 	int err;
3595 
3596 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3597 			       newsock);
3598 	if (err < 0)
3599 		goto done;
3600 
3601 	err = ops->accept(sock, *newsock, flags, true);
3602 	if (err < 0) {
3603 		sock_release(*newsock);
3604 		*newsock = NULL;
3605 		goto done;
3606 	}
3607 
3608 	(*newsock)->ops = ops;
3609 	__module_get(ops->owner);
3610 
3611 done:
3612 	return err;
3613 }
3614 EXPORT_SYMBOL(kernel_accept);
3615 
3616 /**
3617  *	kernel_connect - connect a socket (kernel space)
3618  *	@sock: socket
3619  *	@addr: address
3620  *	@addrlen: address length
3621  *	@flags: flags (O_NONBLOCK, ...)
3622  *
3623  *	For datagram sockets, @addr is the address to which datagrams are sent
3624  *	by default, and the only address from which datagrams are received.
3625  *	For stream sockets, attempts to connect to @addr.
3626  *	Returns 0 or an error code.
3627  */
3628 
3629 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3630 		   int flags)
3631 {
3632 	struct sockaddr_storage address;
3633 
3634 	memcpy(&address, addr, addrlen);
3635 
3636 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3637 					     addrlen, flags);
3638 }
3639 EXPORT_SYMBOL(kernel_connect);
3640 
3641 /**
3642  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3643  *	@sock: socket
3644  *	@addr: address holder
3645  *
3646  * 	Fills the @addr pointer with the address which the socket is bound.
3647  *	Returns the length of the address in bytes or an error code.
3648  */
3649 
3650 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3651 {
3652 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3653 }
3654 EXPORT_SYMBOL(kernel_getsockname);
3655 
3656 /**
3657  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3658  *	@sock: socket
3659  *	@addr: address holder
3660  *
3661  * 	Fills the @addr pointer with the address which the socket is connected.
3662  *	Returns the length of the address in bytes or an error code.
3663  */
3664 
3665 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3666 {
3667 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3668 }
3669 EXPORT_SYMBOL(kernel_getpeername);
3670 
3671 /**
3672  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3673  *	@sock: socket
3674  *	@how: connection part
3675  *
3676  *	Returns 0 or an error.
3677  */
3678 
3679 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3680 {
3681 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3682 }
3683 EXPORT_SYMBOL(kernel_sock_shutdown);
3684 
3685 /**
3686  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3687  *	@sk: socket
3688  *
3689  *	This routine returns the IP overhead imposed by a socket i.e.
3690  *	the length of the underlying IP header, depending on whether
3691  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3692  *	on at the socket. Assumes that the caller has a lock on the socket.
3693  */
3694 
3695 u32 kernel_sock_ip_overhead(struct sock *sk)
3696 {
3697 	struct inet_sock *inet;
3698 	struct ip_options_rcu *opt;
3699 	u32 overhead = 0;
3700 #if IS_ENABLED(CONFIG_IPV6)
3701 	struct ipv6_pinfo *np;
3702 	struct ipv6_txoptions *optv6 = NULL;
3703 #endif /* IS_ENABLED(CONFIG_IPV6) */
3704 
3705 	if (!sk)
3706 		return overhead;
3707 
3708 	switch (sk->sk_family) {
3709 	case AF_INET:
3710 		inet = inet_sk(sk);
3711 		overhead += sizeof(struct iphdr);
3712 		opt = rcu_dereference_protected(inet->inet_opt,
3713 						sock_owned_by_user(sk));
3714 		if (opt)
3715 			overhead += opt->opt.optlen;
3716 		return overhead;
3717 #if IS_ENABLED(CONFIG_IPV6)
3718 	case AF_INET6:
3719 		np = inet6_sk(sk);
3720 		overhead += sizeof(struct ipv6hdr);
3721 		if (np)
3722 			optv6 = rcu_dereference_protected(np->opt,
3723 							  sock_owned_by_user(sk));
3724 		if (optv6)
3725 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3726 		return overhead;
3727 #endif /* IS_ENABLED(CONFIG_IPV6) */
3728 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3729 		return overhead;
3730 	}
3731 }
3732 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3733