1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 #include <linux/magic.h> 89 #include <linux/slab.h> 90 #include <linux/xattr.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 #include <net/busy_poll.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 116 unsigned long nr_segs, loff_t pos); 117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 118 unsigned long nr_segs, loff_t pos); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static unsigned int sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_sendpage(struct file *file, struct page *page, 131 int offset, size_t size, loff_t *ppos, int more); 132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 133 struct pipe_inode_info *pipe, size_t len, 134 unsigned int flags); 135 136 /* 137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 138 * in the operation structures but are done directly via the socketcall() multiplexor. 139 */ 140 141 static const struct file_operations socket_file_ops = { 142 .owner = THIS_MODULE, 143 .llseek = no_llseek, 144 .aio_read = sock_aio_read, 145 .aio_write = sock_aio_write, 146 .poll = sock_poll, 147 .unlocked_ioctl = sock_ioctl, 148 #ifdef CONFIG_COMPAT 149 .compat_ioctl = compat_sock_ioctl, 150 #endif 151 .mmap = sock_mmap, 152 .open = sock_no_open, /* special open code to disallow open via /proc */ 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 BUG_ON(klen > sizeof(struct sockaddr_storage)); 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 struct socket_wq *wq; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 256 if (!wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&wq->wait); 261 wq->fasync_list = NULL; 262 RCU_INIT_POINTER(ei->socket.wq, wq); 263 264 ei->socket.state = SS_UNCONNECTED; 265 ei->socket.flags = 0; 266 ei->socket.ops = NULL; 267 ei->socket.sk = NULL; 268 ei->socket.file = NULL; 269 270 return &ei->vfs_inode; 271 } 272 273 static void sock_destroy_inode(struct inode *inode) 274 { 275 struct socket_alloc *ei; 276 struct socket_wq *wq; 277 278 ei = container_of(inode, struct socket_alloc, vfs_inode); 279 wq = rcu_dereference_protected(ei->socket.wq, 1); 280 kfree_rcu(wq, rcu); 281 kmem_cache_free(sock_inode_cachep, ei); 282 } 283 284 static void init_once(void *foo) 285 { 286 struct socket_alloc *ei = (struct socket_alloc *)foo; 287 288 inode_init_once(&ei->vfs_inode); 289 } 290 291 static int init_inodecache(void) 292 { 293 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 294 sizeof(struct socket_alloc), 295 0, 296 (SLAB_HWCACHE_ALIGN | 297 SLAB_RECLAIM_ACCOUNT | 298 SLAB_MEM_SPREAD), 299 init_once); 300 if (sock_inode_cachep == NULL) 301 return -ENOMEM; 302 return 0; 303 } 304 305 static const struct super_operations sockfs_ops = { 306 .alloc_inode = sock_alloc_inode, 307 .destroy_inode = sock_destroy_inode, 308 .statfs = simple_statfs, 309 }; 310 311 /* 312 * sockfs_dname() is called from d_path(). 313 */ 314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 315 { 316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 317 dentry->d_inode->i_ino); 318 } 319 320 static const struct dentry_operations sockfs_dentry_operations = { 321 .d_dname = sockfs_dname, 322 }; 323 324 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 325 int flags, const char *dev_name, void *data) 326 { 327 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 328 &sockfs_dentry_operations, SOCKFS_MAGIC); 329 } 330 331 static struct vfsmount *sock_mnt __read_mostly; 332 333 static struct file_system_type sock_fs_type = { 334 .name = "sockfs", 335 .mount = sockfs_mount, 336 .kill_sb = kill_anon_super, 337 }; 338 339 /* 340 * Obtains the first available file descriptor and sets it up for use. 341 * 342 * These functions create file structures and maps them to fd space 343 * of the current process. On success it returns file descriptor 344 * and file struct implicitly stored in sock->file. 345 * Note that another thread may close file descriptor before we return 346 * from this function. We use the fact that now we do not refer 347 * to socket after mapping. If one day we will need it, this 348 * function will increment ref. count on file by 1. 349 * 350 * In any case returned fd MAY BE not valid! 351 * This race condition is unavoidable 352 * with shared fd spaces, we cannot solve it inside kernel, 353 * but we take care of internal coherence yet. 354 */ 355 356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 357 { 358 struct qstr name = { .name = "" }; 359 struct path path; 360 struct file *file; 361 362 if (dname) { 363 name.name = dname; 364 name.len = strlen(name.name); 365 } else if (sock->sk) { 366 name.name = sock->sk->sk_prot_creator->name; 367 name.len = strlen(name.name); 368 } 369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 370 if (unlikely(!path.dentry)) 371 return ERR_PTR(-ENOMEM); 372 path.mnt = mntget(sock_mnt); 373 374 d_instantiate(path.dentry, SOCK_INODE(sock)); 375 SOCK_INODE(sock)->i_fop = &socket_file_ops; 376 377 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 378 &socket_file_ops); 379 if (unlikely(IS_ERR(file))) { 380 /* drop dentry, keep inode */ 381 ihold(path.dentry->d_inode); 382 path_put(&path); 383 return file; 384 } 385 386 sock->file = file; 387 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 388 file->private_data = sock; 389 return file; 390 } 391 EXPORT_SYMBOL(sock_alloc_file); 392 393 static int sock_map_fd(struct socket *sock, int flags) 394 { 395 struct file *newfile; 396 int fd = get_unused_fd_flags(flags); 397 if (unlikely(fd < 0)) 398 return fd; 399 400 newfile = sock_alloc_file(sock, flags, NULL); 401 if (likely(!IS_ERR(newfile))) { 402 fd_install(fd, newfile); 403 return fd; 404 } 405 406 put_unused_fd(fd); 407 return PTR_ERR(newfile); 408 } 409 410 struct socket *sock_from_file(struct file *file, int *err) 411 { 412 if (file->f_op == &socket_file_ops) 413 return file->private_data; /* set in sock_map_fd */ 414 415 *err = -ENOTSOCK; 416 return NULL; 417 } 418 EXPORT_SYMBOL(sock_from_file); 419 420 /** 421 * sockfd_lookup - Go from a file number to its socket slot 422 * @fd: file handle 423 * @err: pointer to an error code return 424 * 425 * The file handle passed in is locked and the socket it is bound 426 * too is returned. If an error occurs the err pointer is overwritten 427 * with a negative errno code and NULL is returned. The function checks 428 * for both invalid handles and passing a handle which is not a socket. 429 * 430 * On a success the socket object pointer is returned. 431 */ 432 433 struct socket *sockfd_lookup(int fd, int *err) 434 { 435 struct file *file; 436 struct socket *sock; 437 438 file = fget(fd); 439 if (!file) { 440 *err = -EBADF; 441 return NULL; 442 } 443 444 sock = sock_from_file(file, err); 445 if (!sock) 446 fput(file); 447 return sock; 448 } 449 EXPORT_SYMBOL(sockfd_lookup); 450 451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 452 { 453 struct file *file; 454 struct socket *sock; 455 456 *err = -EBADF; 457 file = fget_light(fd, fput_needed); 458 if (file) { 459 sock = sock_from_file(file, err); 460 if (sock) 461 return sock; 462 fput_light(file, *fput_needed); 463 } 464 return NULL; 465 } 466 467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 470 static ssize_t sockfs_getxattr(struct dentry *dentry, 471 const char *name, void *value, size_t size) 472 { 473 const char *proto_name; 474 size_t proto_size; 475 int error; 476 477 error = -ENODATA; 478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 479 proto_name = dentry->d_name.name; 480 proto_size = strlen(proto_name); 481 482 if (value) { 483 error = -ERANGE; 484 if (proto_size + 1 > size) 485 goto out; 486 487 strncpy(value, proto_name, proto_size + 1); 488 } 489 error = proto_size + 1; 490 } 491 492 out: 493 return error; 494 } 495 496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 497 size_t size) 498 { 499 ssize_t len; 500 ssize_t used = 0; 501 502 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 503 if (len < 0) 504 return len; 505 used += len; 506 if (buffer) { 507 if (size < used) 508 return -ERANGE; 509 buffer += len; 510 } 511 512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 513 used += len; 514 if (buffer) { 515 if (size < used) 516 return -ERANGE; 517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 518 buffer += len; 519 } 520 521 return used; 522 } 523 524 static const struct inode_operations sockfs_inode_ops = { 525 .getxattr = sockfs_getxattr, 526 .listxattr = sockfs_listxattr, 527 }; 528 529 /** 530 * sock_alloc - allocate a socket 531 * 532 * Allocate a new inode and socket object. The two are bound together 533 * and initialised. The socket is then returned. If we are out of inodes 534 * NULL is returned. 535 */ 536 537 static struct socket *sock_alloc(void) 538 { 539 struct inode *inode; 540 struct socket *sock; 541 542 inode = new_inode_pseudo(sock_mnt->mnt_sb); 543 if (!inode) 544 return NULL; 545 546 sock = SOCKET_I(inode); 547 548 kmemcheck_annotate_bitfield(sock, type); 549 inode->i_ino = get_next_ino(); 550 inode->i_mode = S_IFSOCK | S_IRWXUGO; 551 inode->i_uid = current_fsuid(); 552 inode->i_gid = current_fsgid(); 553 inode->i_op = &sockfs_inode_ops; 554 555 this_cpu_add(sockets_in_use, 1); 556 return sock; 557 } 558 559 /* 560 * In theory you can't get an open on this inode, but /proc provides 561 * a back door. Remember to keep it shut otherwise you'll let the 562 * creepy crawlies in. 563 */ 564 565 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 566 { 567 return -ENXIO; 568 } 569 570 const struct file_operations bad_sock_fops = { 571 .owner = THIS_MODULE, 572 .open = sock_no_open, 573 .llseek = noop_llseek, 574 }; 575 576 /** 577 * sock_release - close a socket 578 * @sock: socket to close 579 * 580 * The socket is released from the protocol stack if it has a release 581 * callback, and the inode is then released if the socket is bound to 582 * an inode not a file. 583 */ 584 585 void sock_release(struct socket *sock) 586 { 587 if (sock->ops) { 588 struct module *owner = sock->ops->owner; 589 590 sock->ops->release(sock); 591 sock->ops = NULL; 592 module_put(owner); 593 } 594 595 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 596 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 597 598 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 599 return; 600 601 this_cpu_sub(sockets_in_use, 1); 602 if (!sock->file) { 603 iput(SOCK_INODE(sock)); 604 return; 605 } 606 sock->file = NULL; 607 } 608 EXPORT_SYMBOL(sock_release); 609 610 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 611 { 612 *tx_flags = 0; 613 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 614 *tx_flags |= SKBTX_HW_TSTAMP; 615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 616 *tx_flags |= SKBTX_SW_TSTAMP; 617 if (sock_flag(sk, SOCK_WIFI_STATUS)) 618 *tx_flags |= SKBTX_WIFI_STATUS; 619 } 620 EXPORT_SYMBOL(sock_tx_timestamp); 621 622 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 623 struct msghdr *msg, size_t size) 624 { 625 struct sock_iocb *si = kiocb_to_siocb(iocb); 626 627 si->sock = sock; 628 si->scm = NULL; 629 si->msg = msg; 630 si->size = size; 631 632 return sock->ops->sendmsg(iocb, sock, msg, size); 633 } 634 635 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 636 struct msghdr *msg, size_t size) 637 { 638 int err = security_socket_sendmsg(sock, msg, size); 639 640 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 641 } 642 643 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 644 { 645 struct kiocb iocb; 646 struct sock_iocb siocb; 647 int ret; 648 649 init_sync_kiocb(&iocb, NULL); 650 iocb.private = &siocb; 651 ret = __sock_sendmsg(&iocb, sock, msg, size); 652 if (-EIOCBQUEUED == ret) 653 ret = wait_on_sync_kiocb(&iocb); 654 return ret; 655 } 656 EXPORT_SYMBOL(sock_sendmsg); 657 658 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 659 { 660 struct kiocb iocb; 661 struct sock_iocb siocb; 662 int ret; 663 664 init_sync_kiocb(&iocb, NULL); 665 iocb.private = &siocb; 666 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 667 if (-EIOCBQUEUED == ret) 668 ret = wait_on_sync_kiocb(&iocb); 669 return ret; 670 } 671 672 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 673 struct kvec *vec, size_t num, size_t size) 674 { 675 mm_segment_t oldfs = get_fs(); 676 int result; 677 678 set_fs(KERNEL_DS); 679 /* 680 * the following is safe, since for compiler definitions of kvec and 681 * iovec are identical, yielding the same in-core layout and alignment 682 */ 683 msg->msg_iov = (struct iovec *)vec; 684 msg->msg_iovlen = num; 685 result = sock_sendmsg(sock, msg, size); 686 set_fs(oldfs); 687 return result; 688 } 689 EXPORT_SYMBOL(kernel_sendmsg); 690 691 /* 692 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 693 */ 694 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 695 struct sk_buff *skb) 696 { 697 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 698 struct timespec ts[3]; 699 int empty = 1; 700 struct skb_shared_hwtstamps *shhwtstamps = 701 skb_hwtstamps(skb); 702 703 /* Race occurred between timestamp enabling and packet 704 receiving. Fill in the current time for now. */ 705 if (need_software_tstamp && skb->tstamp.tv64 == 0) 706 __net_timestamp(skb); 707 708 if (need_software_tstamp) { 709 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 710 struct timeval tv; 711 skb_get_timestamp(skb, &tv); 712 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 713 sizeof(tv), &tv); 714 } else { 715 skb_get_timestampns(skb, &ts[0]); 716 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 717 sizeof(ts[0]), &ts[0]); 718 } 719 } 720 721 722 memset(ts, 0, sizeof(ts)); 723 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) && 724 ktime_to_timespec_cond(skb->tstamp, ts + 0)) 725 empty = 0; 726 if (shhwtstamps) { 727 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 728 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1)) 729 empty = 0; 730 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 731 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2)) 732 empty = 0; 733 } 734 if (!empty) 735 put_cmsg(msg, SOL_SOCKET, 736 SCM_TIMESTAMPING, sizeof(ts), &ts); 737 } 738 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 739 740 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 741 struct sk_buff *skb) 742 { 743 int ack; 744 745 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 746 return; 747 if (!skb->wifi_acked_valid) 748 return; 749 750 ack = skb->wifi_acked; 751 752 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 753 } 754 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 755 756 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 757 struct sk_buff *skb) 758 { 759 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 760 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 761 sizeof(__u32), &skb->dropcount); 762 } 763 764 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 765 struct sk_buff *skb) 766 { 767 sock_recv_timestamp(msg, sk, skb); 768 sock_recv_drops(msg, sk, skb); 769 } 770 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 771 772 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 773 struct msghdr *msg, size_t size, int flags) 774 { 775 struct sock_iocb *si = kiocb_to_siocb(iocb); 776 777 si->sock = sock; 778 si->scm = NULL; 779 si->msg = msg; 780 si->size = size; 781 si->flags = flags; 782 783 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 784 } 785 786 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 787 struct msghdr *msg, size_t size, int flags) 788 { 789 int err = security_socket_recvmsg(sock, msg, size, flags); 790 791 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 792 } 793 794 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 795 size_t size, int flags) 796 { 797 struct kiocb iocb; 798 struct sock_iocb siocb; 799 int ret; 800 801 init_sync_kiocb(&iocb, NULL); 802 iocb.private = &siocb; 803 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 804 if (-EIOCBQUEUED == ret) 805 ret = wait_on_sync_kiocb(&iocb); 806 return ret; 807 } 808 EXPORT_SYMBOL(sock_recvmsg); 809 810 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 811 size_t size, int flags) 812 { 813 struct kiocb iocb; 814 struct sock_iocb siocb; 815 int ret; 816 817 init_sync_kiocb(&iocb, NULL); 818 iocb.private = &siocb; 819 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 820 if (-EIOCBQUEUED == ret) 821 ret = wait_on_sync_kiocb(&iocb); 822 return ret; 823 } 824 825 /** 826 * kernel_recvmsg - Receive a message from a socket (kernel space) 827 * @sock: The socket to receive the message from 828 * @msg: Received message 829 * @vec: Input s/g array for message data 830 * @num: Size of input s/g array 831 * @size: Number of bytes to read 832 * @flags: Message flags (MSG_DONTWAIT, etc...) 833 * 834 * On return the msg structure contains the scatter/gather array passed in the 835 * vec argument. The array is modified so that it consists of the unfilled 836 * portion of the original array. 837 * 838 * The returned value is the total number of bytes received, or an error. 839 */ 840 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 841 struct kvec *vec, size_t num, size_t size, int flags) 842 { 843 mm_segment_t oldfs = get_fs(); 844 int result; 845 846 set_fs(KERNEL_DS); 847 /* 848 * the following is safe, since for compiler definitions of kvec and 849 * iovec are identical, yielding the same in-core layout and alignment 850 */ 851 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 852 result = sock_recvmsg(sock, msg, size, flags); 853 set_fs(oldfs); 854 return result; 855 } 856 EXPORT_SYMBOL(kernel_recvmsg); 857 858 static ssize_t sock_sendpage(struct file *file, struct page *page, 859 int offset, size_t size, loff_t *ppos, int more) 860 { 861 struct socket *sock; 862 int flags; 863 864 sock = file->private_data; 865 866 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 867 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 868 flags |= more; 869 870 return kernel_sendpage(sock, page, offset, size, flags); 871 } 872 873 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 874 struct pipe_inode_info *pipe, size_t len, 875 unsigned int flags) 876 { 877 struct socket *sock = file->private_data; 878 879 if (unlikely(!sock->ops->splice_read)) 880 return -EINVAL; 881 882 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 883 } 884 885 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 886 struct sock_iocb *siocb) 887 { 888 if (!is_sync_kiocb(iocb)) 889 BUG(); 890 891 siocb->kiocb = iocb; 892 iocb->private = siocb; 893 return siocb; 894 } 895 896 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 897 struct file *file, const struct iovec *iov, 898 unsigned long nr_segs) 899 { 900 struct socket *sock = file->private_data; 901 size_t size = 0; 902 int i; 903 904 for (i = 0; i < nr_segs; i++) 905 size += iov[i].iov_len; 906 907 msg->msg_name = NULL; 908 msg->msg_namelen = 0; 909 msg->msg_control = NULL; 910 msg->msg_controllen = 0; 911 msg->msg_iov = (struct iovec *)iov; 912 msg->msg_iovlen = nr_segs; 913 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 914 915 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 916 } 917 918 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 919 unsigned long nr_segs, loff_t pos) 920 { 921 struct sock_iocb siocb, *x; 922 923 if (pos != 0) 924 return -ESPIPE; 925 926 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 927 return 0; 928 929 930 x = alloc_sock_iocb(iocb, &siocb); 931 if (!x) 932 return -ENOMEM; 933 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 934 } 935 936 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 937 struct file *file, const struct iovec *iov, 938 unsigned long nr_segs) 939 { 940 struct socket *sock = file->private_data; 941 size_t size = 0; 942 int i; 943 944 for (i = 0; i < nr_segs; i++) 945 size += iov[i].iov_len; 946 947 msg->msg_name = NULL; 948 msg->msg_namelen = 0; 949 msg->msg_control = NULL; 950 msg->msg_controllen = 0; 951 msg->msg_iov = (struct iovec *)iov; 952 msg->msg_iovlen = nr_segs; 953 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 954 if (sock->type == SOCK_SEQPACKET) 955 msg->msg_flags |= MSG_EOR; 956 957 return __sock_sendmsg(iocb, sock, msg, size); 958 } 959 960 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 961 unsigned long nr_segs, loff_t pos) 962 { 963 struct sock_iocb siocb, *x; 964 965 if (pos != 0) 966 return -ESPIPE; 967 968 x = alloc_sock_iocb(iocb, &siocb); 969 if (!x) 970 return -ENOMEM; 971 972 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 973 } 974 975 /* 976 * Atomic setting of ioctl hooks to avoid race 977 * with module unload. 978 */ 979 980 static DEFINE_MUTEX(br_ioctl_mutex); 981 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 982 983 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 984 { 985 mutex_lock(&br_ioctl_mutex); 986 br_ioctl_hook = hook; 987 mutex_unlock(&br_ioctl_mutex); 988 } 989 EXPORT_SYMBOL(brioctl_set); 990 991 static DEFINE_MUTEX(vlan_ioctl_mutex); 992 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 993 994 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 995 { 996 mutex_lock(&vlan_ioctl_mutex); 997 vlan_ioctl_hook = hook; 998 mutex_unlock(&vlan_ioctl_mutex); 999 } 1000 EXPORT_SYMBOL(vlan_ioctl_set); 1001 1002 static DEFINE_MUTEX(dlci_ioctl_mutex); 1003 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1004 1005 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1006 { 1007 mutex_lock(&dlci_ioctl_mutex); 1008 dlci_ioctl_hook = hook; 1009 mutex_unlock(&dlci_ioctl_mutex); 1010 } 1011 EXPORT_SYMBOL(dlci_ioctl_set); 1012 1013 static long sock_do_ioctl(struct net *net, struct socket *sock, 1014 unsigned int cmd, unsigned long arg) 1015 { 1016 int err; 1017 void __user *argp = (void __user *)arg; 1018 1019 err = sock->ops->ioctl(sock, cmd, arg); 1020 1021 /* 1022 * If this ioctl is unknown try to hand it down 1023 * to the NIC driver. 1024 */ 1025 if (err == -ENOIOCTLCMD) 1026 err = dev_ioctl(net, cmd, argp); 1027 1028 return err; 1029 } 1030 1031 /* 1032 * With an ioctl, arg may well be a user mode pointer, but we don't know 1033 * what to do with it - that's up to the protocol still. 1034 */ 1035 1036 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1037 { 1038 struct socket *sock; 1039 struct sock *sk; 1040 void __user *argp = (void __user *)arg; 1041 int pid, err; 1042 struct net *net; 1043 1044 sock = file->private_data; 1045 sk = sock->sk; 1046 net = sock_net(sk); 1047 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1048 err = dev_ioctl(net, cmd, argp); 1049 } else 1050 #ifdef CONFIG_WEXT_CORE 1051 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1052 err = dev_ioctl(net, cmd, argp); 1053 } else 1054 #endif 1055 switch (cmd) { 1056 case FIOSETOWN: 1057 case SIOCSPGRP: 1058 err = -EFAULT; 1059 if (get_user(pid, (int __user *)argp)) 1060 break; 1061 err = f_setown(sock->file, pid, 1); 1062 break; 1063 case FIOGETOWN: 1064 case SIOCGPGRP: 1065 err = put_user(f_getown(sock->file), 1066 (int __user *)argp); 1067 break; 1068 case SIOCGIFBR: 1069 case SIOCSIFBR: 1070 case SIOCBRADDBR: 1071 case SIOCBRDELBR: 1072 err = -ENOPKG; 1073 if (!br_ioctl_hook) 1074 request_module("bridge"); 1075 1076 mutex_lock(&br_ioctl_mutex); 1077 if (br_ioctl_hook) 1078 err = br_ioctl_hook(net, cmd, argp); 1079 mutex_unlock(&br_ioctl_mutex); 1080 break; 1081 case SIOCGIFVLAN: 1082 case SIOCSIFVLAN: 1083 err = -ENOPKG; 1084 if (!vlan_ioctl_hook) 1085 request_module("8021q"); 1086 1087 mutex_lock(&vlan_ioctl_mutex); 1088 if (vlan_ioctl_hook) 1089 err = vlan_ioctl_hook(net, argp); 1090 mutex_unlock(&vlan_ioctl_mutex); 1091 break; 1092 case SIOCADDDLCI: 1093 case SIOCDELDLCI: 1094 err = -ENOPKG; 1095 if (!dlci_ioctl_hook) 1096 request_module("dlci"); 1097 1098 mutex_lock(&dlci_ioctl_mutex); 1099 if (dlci_ioctl_hook) 1100 err = dlci_ioctl_hook(cmd, argp); 1101 mutex_unlock(&dlci_ioctl_mutex); 1102 break; 1103 default: 1104 err = sock_do_ioctl(net, sock, cmd, arg); 1105 break; 1106 } 1107 return err; 1108 } 1109 1110 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1111 { 1112 int err; 1113 struct socket *sock = NULL; 1114 1115 err = security_socket_create(family, type, protocol, 1); 1116 if (err) 1117 goto out; 1118 1119 sock = sock_alloc(); 1120 if (!sock) { 1121 err = -ENOMEM; 1122 goto out; 1123 } 1124 1125 sock->type = type; 1126 err = security_socket_post_create(sock, family, type, protocol, 1); 1127 if (err) 1128 goto out_release; 1129 1130 out: 1131 *res = sock; 1132 return err; 1133 out_release: 1134 sock_release(sock); 1135 sock = NULL; 1136 goto out; 1137 } 1138 EXPORT_SYMBOL(sock_create_lite); 1139 1140 /* No kernel lock held - perfect */ 1141 static unsigned int sock_poll(struct file *file, poll_table *wait) 1142 { 1143 unsigned int busy_flag = 0; 1144 struct socket *sock; 1145 1146 /* 1147 * We can't return errors to poll, so it's either yes or no. 1148 */ 1149 sock = file->private_data; 1150 1151 if (sk_can_busy_loop(sock->sk)) { 1152 /* this socket can poll_ll so tell the system call */ 1153 busy_flag = POLL_BUSY_LOOP; 1154 1155 /* once, only if requested by syscall */ 1156 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1157 sk_busy_loop(sock->sk, 1); 1158 } 1159 1160 return busy_flag | sock->ops->poll(file, sock, wait); 1161 } 1162 1163 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1164 { 1165 struct socket *sock = file->private_data; 1166 1167 return sock->ops->mmap(file, sock, vma); 1168 } 1169 1170 static int sock_close(struct inode *inode, struct file *filp) 1171 { 1172 sock_release(SOCKET_I(inode)); 1173 return 0; 1174 } 1175 1176 /* 1177 * Update the socket async list 1178 * 1179 * Fasync_list locking strategy. 1180 * 1181 * 1. fasync_list is modified only under process context socket lock 1182 * i.e. under semaphore. 1183 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1184 * or under socket lock 1185 */ 1186 1187 static int sock_fasync(int fd, struct file *filp, int on) 1188 { 1189 struct socket *sock = filp->private_data; 1190 struct sock *sk = sock->sk; 1191 struct socket_wq *wq; 1192 1193 if (sk == NULL) 1194 return -EINVAL; 1195 1196 lock_sock(sk); 1197 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1198 fasync_helper(fd, filp, on, &wq->fasync_list); 1199 1200 if (!wq->fasync_list) 1201 sock_reset_flag(sk, SOCK_FASYNC); 1202 else 1203 sock_set_flag(sk, SOCK_FASYNC); 1204 1205 release_sock(sk); 1206 return 0; 1207 } 1208 1209 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1210 1211 int sock_wake_async(struct socket *sock, int how, int band) 1212 { 1213 struct socket_wq *wq; 1214 1215 if (!sock) 1216 return -1; 1217 rcu_read_lock(); 1218 wq = rcu_dereference(sock->wq); 1219 if (!wq || !wq->fasync_list) { 1220 rcu_read_unlock(); 1221 return -1; 1222 } 1223 switch (how) { 1224 case SOCK_WAKE_WAITD: 1225 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1226 break; 1227 goto call_kill; 1228 case SOCK_WAKE_SPACE: 1229 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1230 break; 1231 /* fall through */ 1232 case SOCK_WAKE_IO: 1233 call_kill: 1234 kill_fasync(&wq->fasync_list, SIGIO, band); 1235 break; 1236 case SOCK_WAKE_URG: 1237 kill_fasync(&wq->fasync_list, SIGURG, band); 1238 } 1239 rcu_read_unlock(); 1240 return 0; 1241 } 1242 EXPORT_SYMBOL(sock_wake_async); 1243 1244 int __sock_create(struct net *net, int family, int type, int protocol, 1245 struct socket **res, int kern) 1246 { 1247 int err; 1248 struct socket *sock; 1249 const struct net_proto_family *pf; 1250 1251 /* 1252 * Check protocol is in range 1253 */ 1254 if (family < 0 || family >= NPROTO) 1255 return -EAFNOSUPPORT; 1256 if (type < 0 || type >= SOCK_MAX) 1257 return -EINVAL; 1258 1259 /* Compatibility. 1260 1261 This uglymoron is moved from INET layer to here to avoid 1262 deadlock in module load. 1263 */ 1264 if (family == PF_INET && type == SOCK_PACKET) { 1265 static int warned; 1266 if (!warned) { 1267 warned = 1; 1268 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1269 current->comm); 1270 } 1271 family = PF_PACKET; 1272 } 1273 1274 err = security_socket_create(family, type, protocol, kern); 1275 if (err) 1276 return err; 1277 1278 /* 1279 * Allocate the socket and allow the family to set things up. if 1280 * the protocol is 0, the family is instructed to select an appropriate 1281 * default. 1282 */ 1283 sock = sock_alloc(); 1284 if (!sock) { 1285 net_warn_ratelimited("socket: no more sockets\n"); 1286 return -ENFILE; /* Not exactly a match, but its the 1287 closest posix thing */ 1288 } 1289 1290 sock->type = type; 1291 1292 #ifdef CONFIG_MODULES 1293 /* Attempt to load a protocol module if the find failed. 1294 * 1295 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1296 * requested real, full-featured networking support upon configuration. 1297 * Otherwise module support will break! 1298 */ 1299 if (rcu_access_pointer(net_families[family]) == NULL) 1300 request_module("net-pf-%d", family); 1301 #endif 1302 1303 rcu_read_lock(); 1304 pf = rcu_dereference(net_families[family]); 1305 err = -EAFNOSUPPORT; 1306 if (!pf) 1307 goto out_release; 1308 1309 /* 1310 * We will call the ->create function, that possibly is in a loadable 1311 * module, so we have to bump that loadable module refcnt first. 1312 */ 1313 if (!try_module_get(pf->owner)) 1314 goto out_release; 1315 1316 /* Now protected by module ref count */ 1317 rcu_read_unlock(); 1318 1319 err = pf->create(net, sock, protocol, kern); 1320 if (err < 0) 1321 goto out_module_put; 1322 1323 /* 1324 * Now to bump the refcnt of the [loadable] module that owns this 1325 * socket at sock_release time we decrement its refcnt. 1326 */ 1327 if (!try_module_get(sock->ops->owner)) 1328 goto out_module_busy; 1329 1330 /* 1331 * Now that we're done with the ->create function, the [loadable] 1332 * module can have its refcnt decremented 1333 */ 1334 module_put(pf->owner); 1335 err = security_socket_post_create(sock, family, type, protocol, kern); 1336 if (err) 1337 goto out_sock_release; 1338 *res = sock; 1339 1340 return 0; 1341 1342 out_module_busy: 1343 err = -EAFNOSUPPORT; 1344 out_module_put: 1345 sock->ops = NULL; 1346 module_put(pf->owner); 1347 out_sock_release: 1348 sock_release(sock); 1349 return err; 1350 1351 out_release: 1352 rcu_read_unlock(); 1353 goto out_sock_release; 1354 } 1355 EXPORT_SYMBOL(__sock_create); 1356 1357 int sock_create(int family, int type, int protocol, struct socket **res) 1358 { 1359 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1360 } 1361 EXPORT_SYMBOL(sock_create); 1362 1363 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1364 { 1365 return __sock_create(&init_net, family, type, protocol, res, 1); 1366 } 1367 EXPORT_SYMBOL(sock_create_kern); 1368 1369 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1370 { 1371 int retval; 1372 struct socket *sock; 1373 int flags; 1374 1375 /* Check the SOCK_* constants for consistency. */ 1376 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1377 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1378 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1379 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1380 1381 flags = type & ~SOCK_TYPE_MASK; 1382 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1383 return -EINVAL; 1384 type &= SOCK_TYPE_MASK; 1385 1386 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1387 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1388 1389 retval = sock_create(family, type, protocol, &sock); 1390 if (retval < 0) 1391 goto out; 1392 1393 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1394 if (retval < 0) 1395 goto out_release; 1396 1397 out: 1398 /* It may be already another descriptor 8) Not kernel problem. */ 1399 return retval; 1400 1401 out_release: 1402 sock_release(sock); 1403 return retval; 1404 } 1405 1406 /* 1407 * Create a pair of connected sockets. 1408 */ 1409 1410 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1411 int __user *, usockvec) 1412 { 1413 struct socket *sock1, *sock2; 1414 int fd1, fd2, err; 1415 struct file *newfile1, *newfile2; 1416 int flags; 1417 1418 flags = type & ~SOCK_TYPE_MASK; 1419 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1420 return -EINVAL; 1421 type &= SOCK_TYPE_MASK; 1422 1423 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1424 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1425 1426 /* 1427 * Obtain the first socket and check if the underlying protocol 1428 * supports the socketpair call. 1429 */ 1430 1431 err = sock_create(family, type, protocol, &sock1); 1432 if (err < 0) 1433 goto out; 1434 1435 err = sock_create(family, type, protocol, &sock2); 1436 if (err < 0) 1437 goto out_release_1; 1438 1439 err = sock1->ops->socketpair(sock1, sock2); 1440 if (err < 0) 1441 goto out_release_both; 1442 1443 fd1 = get_unused_fd_flags(flags); 1444 if (unlikely(fd1 < 0)) { 1445 err = fd1; 1446 goto out_release_both; 1447 } 1448 1449 fd2 = get_unused_fd_flags(flags); 1450 if (unlikely(fd2 < 0)) { 1451 err = fd2; 1452 goto out_put_unused_1; 1453 } 1454 1455 newfile1 = sock_alloc_file(sock1, flags, NULL); 1456 if (unlikely(IS_ERR(newfile1))) { 1457 err = PTR_ERR(newfile1); 1458 goto out_put_unused_both; 1459 } 1460 1461 newfile2 = sock_alloc_file(sock2, flags, NULL); 1462 if (IS_ERR(newfile2)) { 1463 err = PTR_ERR(newfile2); 1464 goto out_fput_1; 1465 } 1466 1467 err = put_user(fd1, &usockvec[0]); 1468 if (err) 1469 goto out_fput_both; 1470 1471 err = put_user(fd2, &usockvec[1]); 1472 if (err) 1473 goto out_fput_both; 1474 1475 audit_fd_pair(fd1, fd2); 1476 1477 fd_install(fd1, newfile1); 1478 fd_install(fd2, newfile2); 1479 /* fd1 and fd2 may be already another descriptors. 1480 * Not kernel problem. 1481 */ 1482 1483 return 0; 1484 1485 out_fput_both: 1486 fput(newfile2); 1487 fput(newfile1); 1488 put_unused_fd(fd2); 1489 put_unused_fd(fd1); 1490 goto out; 1491 1492 out_fput_1: 1493 fput(newfile1); 1494 put_unused_fd(fd2); 1495 put_unused_fd(fd1); 1496 sock_release(sock2); 1497 goto out; 1498 1499 out_put_unused_both: 1500 put_unused_fd(fd2); 1501 out_put_unused_1: 1502 put_unused_fd(fd1); 1503 out_release_both: 1504 sock_release(sock2); 1505 out_release_1: 1506 sock_release(sock1); 1507 out: 1508 return err; 1509 } 1510 1511 /* 1512 * Bind a name to a socket. Nothing much to do here since it's 1513 * the protocol's responsibility to handle the local address. 1514 * 1515 * We move the socket address to kernel space before we call 1516 * the protocol layer (having also checked the address is ok). 1517 */ 1518 1519 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1520 { 1521 struct socket *sock; 1522 struct sockaddr_storage address; 1523 int err, fput_needed; 1524 1525 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1526 if (sock) { 1527 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1528 if (err >= 0) { 1529 err = security_socket_bind(sock, 1530 (struct sockaddr *)&address, 1531 addrlen); 1532 if (!err) 1533 err = sock->ops->bind(sock, 1534 (struct sockaddr *) 1535 &address, addrlen); 1536 } 1537 fput_light(sock->file, fput_needed); 1538 } 1539 return err; 1540 } 1541 1542 /* 1543 * Perform a listen. Basically, we allow the protocol to do anything 1544 * necessary for a listen, and if that works, we mark the socket as 1545 * ready for listening. 1546 */ 1547 1548 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1549 { 1550 struct socket *sock; 1551 int err, fput_needed; 1552 int somaxconn; 1553 1554 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1555 if (sock) { 1556 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1557 if ((unsigned int)backlog > somaxconn) 1558 backlog = somaxconn; 1559 1560 err = security_socket_listen(sock, backlog); 1561 if (!err) 1562 err = sock->ops->listen(sock, backlog); 1563 1564 fput_light(sock->file, fput_needed); 1565 } 1566 return err; 1567 } 1568 1569 /* 1570 * For accept, we attempt to create a new socket, set up the link 1571 * with the client, wake up the client, then return the new 1572 * connected fd. We collect the address of the connector in kernel 1573 * space and move it to user at the very end. This is unclean because 1574 * we open the socket then return an error. 1575 * 1576 * 1003.1g adds the ability to recvmsg() to query connection pending 1577 * status to recvmsg. We need to add that support in a way thats 1578 * clean when we restucture accept also. 1579 */ 1580 1581 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1582 int __user *, upeer_addrlen, int, flags) 1583 { 1584 struct socket *sock, *newsock; 1585 struct file *newfile; 1586 int err, len, newfd, fput_needed; 1587 struct sockaddr_storage address; 1588 1589 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1590 return -EINVAL; 1591 1592 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1593 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1594 1595 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1596 if (!sock) 1597 goto out; 1598 1599 err = -ENFILE; 1600 newsock = sock_alloc(); 1601 if (!newsock) 1602 goto out_put; 1603 1604 newsock->type = sock->type; 1605 newsock->ops = sock->ops; 1606 1607 /* 1608 * We don't need try_module_get here, as the listening socket (sock) 1609 * has the protocol module (sock->ops->owner) held. 1610 */ 1611 __module_get(newsock->ops->owner); 1612 1613 newfd = get_unused_fd_flags(flags); 1614 if (unlikely(newfd < 0)) { 1615 err = newfd; 1616 sock_release(newsock); 1617 goto out_put; 1618 } 1619 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1620 if (unlikely(IS_ERR(newfile))) { 1621 err = PTR_ERR(newfile); 1622 put_unused_fd(newfd); 1623 sock_release(newsock); 1624 goto out_put; 1625 } 1626 1627 err = security_socket_accept(sock, newsock); 1628 if (err) 1629 goto out_fd; 1630 1631 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1632 if (err < 0) 1633 goto out_fd; 1634 1635 if (upeer_sockaddr) { 1636 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1637 &len, 2) < 0) { 1638 err = -ECONNABORTED; 1639 goto out_fd; 1640 } 1641 err = move_addr_to_user(&address, 1642 len, upeer_sockaddr, upeer_addrlen); 1643 if (err < 0) 1644 goto out_fd; 1645 } 1646 1647 /* File flags are not inherited via accept() unlike another OSes. */ 1648 1649 fd_install(newfd, newfile); 1650 err = newfd; 1651 1652 out_put: 1653 fput_light(sock->file, fput_needed); 1654 out: 1655 return err; 1656 out_fd: 1657 fput(newfile); 1658 put_unused_fd(newfd); 1659 goto out_put; 1660 } 1661 1662 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1663 int __user *, upeer_addrlen) 1664 { 1665 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1666 } 1667 1668 /* 1669 * Attempt to connect to a socket with the server address. The address 1670 * is in user space so we verify it is OK and move it to kernel space. 1671 * 1672 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1673 * break bindings 1674 * 1675 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1676 * other SEQPACKET protocols that take time to connect() as it doesn't 1677 * include the -EINPROGRESS status for such sockets. 1678 */ 1679 1680 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1681 int, addrlen) 1682 { 1683 struct socket *sock; 1684 struct sockaddr_storage address; 1685 int err, fput_needed; 1686 1687 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1688 if (!sock) 1689 goto out; 1690 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1691 if (err < 0) 1692 goto out_put; 1693 1694 err = 1695 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1696 if (err) 1697 goto out_put; 1698 1699 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1700 sock->file->f_flags); 1701 out_put: 1702 fput_light(sock->file, fput_needed); 1703 out: 1704 return err; 1705 } 1706 1707 /* 1708 * Get the local address ('name') of a socket object. Move the obtained 1709 * name to user space. 1710 */ 1711 1712 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1713 int __user *, usockaddr_len) 1714 { 1715 struct socket *sock; 1716 struct sockaddr_storage address; 1717 int len, err, fput_needed; 1718 1719 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1720 if (!sock) 1721 goto out; 1722 1723 err = security_socket_getsockname(sock); 1724 if (err) 1725 goto out_put; 1726 1727 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1728 if (err) 1729 goto out_put; 1730 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1731 1732 out_put: 1733 fput_light(sock->file, fput_needed); 1734 out: 1735 return err; 1736 } 1737 1738 /* 1739 * Get the remote address ('name') of a socket object. Move the obtained 1740 * name to user space. 1741 */ 1742 1743 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1744 int __user *, usockaddr_len) 1745 { 1746 struct socket *sock; 1747 struct sockaddr_storage address; 1748 int len, err, fput_needed; 1749 1750 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1751 if (sock != NULL) { 1752 err = security_socket_getpeername(sock); 1753 if (err) { 1754 fput_light(sock->file, fput_needed); 1755 return err; 1756 } 1757 1758 err = 1759 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1760 1); 1761 if (!err) 1762 err = move_addr_to_user(&address, len, usockaddr, 1763 usockaddr_len); 1764 fput_light(sock->file, fput_needed); 1765 } 1766 return err; 1767 } 1768 1769 /* 1770 * Send a datagram to a given address. We move the address into kernel 1771 * space and check the user space data area is readable before invoking 1772 * the protocol. 1773 */ 1774 1775 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1776 unsigned int, flags, struct sockaddr __user *, addr, 1777 int, addr_len) 1778 { 1779 struct socket *sock; 1780 struct sockaddr_storage address; 1781 int err; 1782 struct msghdr msg; 1783 struct iovec iov; 1784 int fput_needed; 1785 1786 if (len > INT_MAX) 1787 len = INT_MAX; 1788 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1789 if (!sock) 1790 goto out; 1791 1792 iov.iov_base = buff; 1793 iov.iov_len = len; 1794 msg.msg_name = NULL; 1795 msg.msg_iov = &iov; 1796 msg.msg_iovlen = 1; 1797 msg.msg_control = NULL; 1798 msg.msg_controllen = 0; 1799 msg.msg_namelen = 0; 1800 if (addr) { 1801 err = move_addr_to_kernel(addr, addr_len, &address); 1802 if (err < 0) 1803 goto out_put; 1804 msg.msg_name = (struct sockaddr *)&address; 1805 msg.msg_namelen = addr_len; 1806 } 1807 if (sock->file->f_flags & O_NONBLOCK) 1808 flags |= MSG_DONTWAIT; 1809 msg.msg_flags = flags; 1810 err = sock_sendmsg(sock, &msg, len); 1811 1812 out_put: 1813 fput_light(sock->file, fput_needed); 1814 out: 1815 return err; 1816 } 1817 1818 /* 1819 * Send a datagram down a socket. 1820 */ 1821 1822 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1823 unsigned int, flags) 1824 { 1825 return sys_sendto(fd, buff, len, flags, NULL, 0); 1826 } 1827 1828 /* 1829 * Receive a frame from the socket and optionally record the address of the 1830 * sender. We verify the buffers are writable and if needed move the 1831 * sender address from kernel to user space. 1832 */ 1833 1834 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1835 unsigned int, flags, struct sockaddr __user *, addr, 1836 int __user *, addr_len) 1837 { 1838 struct socket *sock; 1839 struct iovec iov; 1840 struct msghdr msg; 1841 struct sockaddr_storage address; 1842 int err, err2; 1843 int fput_needed; 1844 1845 if (size > INT_MAX) 1846 size = INT_MAX; 1847 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1848 if (!sock) 1849 goto out; 1850 1851 msg.msg_control = NULL; 1852 msg.msg_controllen = 0; 1853 msg.msg_iovlen = 1; 1854 msg.msg_iov = &iov; 1855 iov.iov_len = size; 1856 iov.iov_base = ubuf; 1857 /* Save some cycles and don't copy the address if not needed */ 1858 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1859 /* We assume all kernel code knows the size of sockaddr_storage */ 1860 msg.msg_namelen = 0; 1861 if (sock->file->f_flags & O_NONBLOCK) 1862 flags |= MSG_DONTWAIT; 1863 err = sock_recvmsg(sock, &msg, size, flags); 1864 1865 if (err >= 0 && addr != NULL) { 1866 err2 = move_addr_to_user(&address, 1867 msg.msg_namelen, addr, addr_len); 1868 if (err2 < 0) 1869 err = err2; 1870 } 1871 1872 fput_light(sock->file, fput_needed); 1873 out: 1874 return err; 1875 } 1876 1877 /* 1878 * Receive a datagram from a socket. 1879 */ 1880 1881 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1882 unsigned int flags) 1883 { 1884 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1885 } 1886 1887 /* 1888 * Set a socket option. Because we don't know the option lengths we have 1889 * to pass the user mode parameter for the protocols to sort out. 1890 */ 1891 1892 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1893 char __user *, optval, int, optlen) 1894 { 1895 int err, fput_needed; 1896 struct socket *sock; 1897 1898 if (optlen < 0) 1899 return -EINVAL; 1900 1901 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1902 if (sock != NULL) { 1903 err = security_socket_setsockopt(sock, level, optname); 1904 if (err) 1905 goto out_put; 1906 1907 if (level == SOL_SOCKET) 1908 err = 1909 sock_setsockopt(sock, level, optname, optval, 1910 optlen); 1911 else 1912 err = 1913 sock->ops->setsockopt(sock, level, optname, optval, 1914 optlen); 1915 out_put: 1916 fput_light(sock->file, fput_needed); 1917 } 1918 return err; 1919 } 1920 1921 /* 1922 * Get a socket option. Because we don't know the option lengths we have 1923 * to pass a user mode parameter for the protocols to sort out. 1924 */ 1925 1926 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1927 char __user *, optval, int __user *, optlen) 1928 { 1929 int err, fput_needed; 1930 struct socket *sock; 1931 1932 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1933 if (sock != NULL) { 1934 err = security_socket_getsockopt(sock, level, optname); 1935 if (err) 1936 goto out_put; 1937 1938 if (level == SOL_SOCKET) 1939 err = 1940 sock_getsockopt(sock, level, optname, optval, 1941 optlen); 1942 else 1943 err = 1944 sock->ops->getsockopt(sock, level, optname, optval, 1945 optlen); 1946 out_put: 1947 fput_light(sock->file, fput_needed); 1948 } 1949 return err; 1950 } 1951 1952 /* 1953 * Shutdown a socket. 1954 */ 1955 1956 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1957 { 1958 int err, fput_needed; 1959 struct socket *sock; 1960 1961 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1962 if (sock != NULL) { 1963 err = security_socket_shutdown(sock, how); 1964 if (!err) 1965 err = sock->ops->shutdown(sock, how); 1966 fput_light(sock->file, fput_needed); 1967 } 1968 return err; 1969 } 1970 1971 /* A couple of helpful macros for getting the address of the 32/64 bit 1972 * fields which are the same type (int / unsigned) on our platforms. 1973 */ 1974 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1975 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1976 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1977 1978 struct used_address { 1979 struct sockaddr_storage name; 1980 unsigned int name_len; 1981 }; 1982 1983 static int copy_msghdr_from_user(struct msghdr *kmsg, 1984 struct msghdr __user *umsg) 1985 { 1986 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1987 return -EFAULT; 1988 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1989 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1990 return 0; 1991 } 1992 1993 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1994 struct msghdr *msg_sys, unsigned int flags, 1995 struct used_address *used_address) 1996 { 1997 struct compat_msghdr __user *msg_compat = 1998 (struct compat_msghdr __user *)msg; 1999 struct sockaddr_storage address; 2000 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2001 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2002 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2003 /* 20 is size of ipv6_pktinfo */ 2004 unsigned char *ctl_buf = ctl; 2005 int err, ctl_len, total_len; 2006 2007 err = -EFAULT; 2008 if (MSG_CMSG_COMPAT & flags) { 2009 if (get_compat_msghdr(msg_sys, msg_compat)) 2010 return -EFAULT; 2011 } else { 2012 err = copy_msghdr_from_user(msg_sys, msg); 2013 if (err) 2014 return err; 2015 } 2016 2017 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2018 err = -EMSGSIZE; 2019 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2020 goto out; 2021 err = -ENOMEM; 2022 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2023 GFP_KERNEL); 2024 if (!iov) 2025 goto out; 2026 } 2027 2028 /* This will also move the address data into kernel space */ 2029 if (MSG_CMSG_COMPAT & flags) { 2030 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2031 } else 2032 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2033 if (err < 0) 2034 goto out_freeiov; 2035 total_len = err; 2036 2037 err = -ENOBUFS; 2038 2039 if (msg_sys->msg_controllen > INT_MAX) 2040 goto out_freeiov; 2041 ctl_len = msg_sys->msg_controllen; 2042 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2043 err = 2044 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2045 sizeof(ctl)); 2046 if (err) 2047 goto out_freeiov; 2048 ctl_buf = msg_sys->msg_control; 2049 ctl_len = msg_sys->msg_controllen; 2050 } else if (ctl_len) { 2051 if (ctl_len > sizeof(ctl)) { 2052 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2053 if (ctl_buf == NULL) 2054 goto out_freeiov; 2055 } 2056 err = -EFAULT; 2057 /* 2058 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2059 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2060 * checking falls down on this. 2061 */ 2062 if (copy_from_user(ctl_buf, 2063 (void __user __force *)msg_sys->msg_control, 2064 ctl_len)) 2065 goto out_freectl; 2066 msg_sys->msg_control = ctl_buf; 2067 } 2068 msg_sys->msg_flags = flags; 2069 2070 if (sock->file->f_flags & O_NONBLOCK) 2071 msg_sys->msg_flags |= MSG_DONTWAIT; 2072 /* 2073 * If this is sendmmsg() and current destination address is same as 2074 * previously succeeded address, omit asking LSM's decision. 2075 * used_address->name_len is initialized to UINT_MAX so that the first 2076 * destination address never matches. 2077 */ 2078 if (used_address && msg_sys->msg_name && 2079 used_address->name_len == msg_sys->msg_namelen && 2080 !memcmp(&used_address->name, msg_sys->msg_name, 2081 used_address->name_len)) { 2082 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2083 goto out_freectl; 2084 } 2085 err = sock_sendmsg(sock, msg_sys, total_len); 2086 /* 2087 * If this is sendmmsg() and sending to current destination address was 2088 * successful, remember it. 2089 */ 2090 if (used_address && err >= 0) { 2091 used_address->name_len = msg_sys->msg_namelen; 2092 if (msg_sys->msg_name) 2093 memcpy(&used_address->name, msg_sys->msg_name, 2094 used_address->name_len); 2095 } 2096 2097 out_freectl: 2098 if (ctl_buf != ctl) 2099 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2100 out_freeiov: 2101 if (iov != iovstack) 2102 kfree(iov); 2103 out: 2104 return err; 2105 } 2106 2107 /* 2108 * BSD sendmsg interface 2109 */ 2110 2111 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2112 { 2113 int fput_needed, err; 2114 struct msghdr msg_sys; 2115 struct socket *sock; 2116 2117 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2118 if (!sock) 2119 goto out; 2120 2121 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2122 2123 fput_light(sock->file, fput_needed); 2124 out: 2125 return err; 2126 } 2127 2128 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2129 { 2130 if (flags & MSG_CMSG_COMPAT) 2131 return -EINVAL; 2132 return __sys_sendmsg(fd, msg, flags); 2133 } 2134 2135 /* 2136 * Linux sendmmsg interface 2137 */ 2138 2139 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2140 unsigned int flags) 2141 { 2142 int fput_needed, err, datagrams; 2143 struct socket *sock; 2144 struct mmsghdr __user *entry; 2145 struct compat_mmsghdr __user *compat_entry; 2146 struct msghdr msg_sys; 2147 struct used_address used_address; 2148 2149 if (vlen > UIO_MAXIOV) 2150 vlen = UIO_MAXIOV; 2151 2152 datagrams = 0; 2153 2154 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2155 if (!sock) 2156 return err; 2157 2158 used_address.name_len = UINT_MAX; 2159 entry = mmsg; 2160 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2161 err = 0; 2162 2163 while (datagrams < vlen) { 2164 if (MSG_CMSG_COMPAT & flags) { 2165 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2166 &msg_sys, flags, &used_address); 2167 if (err < 0) 2168 break; 2169 err = __put_user(err, &compat_entry->msg_len); 2170 ++compat_entry; 2171 } else { 2172 err = ___sys_sendmsg(sock, 2173 (struct msghdr __user *)entry, 2174 &msg_sys, flags, &used_address); 2175 if (err < 0) 2176 break; 2177 err = put_user(err, &entry->msg_len); 2178 ++entry; 2179 } 2180 2181 if (err) 2182 break; 2183 ++datagrams; 2184 } 2185 2186 fput_light(sock->file, fput_needed); 2187 2188 /* We only return an error if no datagrams were able to be sent */ 2189 if (datagrams != 0) 2190 return datagrams; 2191 2192 return err; 2193 } 2194 2195 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2196 unsigned int, vlen, unsigned int, flags) 2197 { 2198 if (flags & MSG_CMSG_COMPAT) 2199 return -EINVAL; 2200 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2201 } 2202 2203 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2204 struct msghdr *msg_sys, unsigned int flags, int nosec) 2205 { 2206 struct compat_msghdr __user *msg_compat = 2207 (struct compat_msghdr __user *)msg; 2208 struct iovec iovstack[UIO_FASTIOV]; 2209 struct iovec *iov = iovstack; 2210 unsigned long cmsg_ptr; 2211 int err, total_len, len; 2212 2213 /* kernel mode address */ 2214 struct sockaddr_storage addr; 2215 2216 /* user mode address pointers */ 2217 struct sockaddr __user *uaddr; 2218 int __user *uaddr_len; 2219 2220 if (MSG_CMSG_COMPAT & flags) { 2221 if (get_compat_msghdr(msg_sys, msg_compat)) 2222 return -EFAULT; 2223 } else { 2224 err = copy_msghdr_from_user(msg_sys, msg); 2225 if (err) 2226 return err; 2227 } 2228 2229 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2230 err = -EMSGSIZE; 2231 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2232 goto out; 2233 err = -ENOMEM; 2234 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2235 GFP_KERNEL); 2236 if (!iov) 2237 goto out; 2238 } 2239 2240 /* Save the user-mode address (verify_iovec will change the 2241 * kernel msghdr to use the kernel address space) 2242 */ 2243 uaddr = (__force void __user *)msg_sys->msg_name; 2244 uaddr_len = COMPAT_NAMELEN(msg); 2245 if (MSG_CMSG_COMPAT & flags) 2246 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2247 else 2248 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2249 if (err < 0) 2250 goto out_freeiov; 2251 total_len = err; 2252 2253 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2254 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2255 2256 /* We assume all kernel code knows the size of sockaddr_storage */ 2257 msg_sys->msg_namelen = 0; 2258 2259 if (sock->file->f_flags & O_NONBLOCK) 2260 flags |= MSG_DONTWAIT; 2261 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2262 total_len, flags); 2263 if (err < 0) 2264 goto out_freeiov; 2265 len = err; 2266 2267 if (uaddr != NULL) { 2268 err = move_addr_to_user(&addr, 2269 msg_sys->msg_namelen, uaddr, 2270 uaddr_len); 2271 if (err < 0) 2272 goto out_freeiov; 2273 } 2274 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2275 COMPAT_FLAGS(msg)); 2276 if (err) 2277 goto out_freeiov; 2278 if (MSG_CMSG_COMPAT & flags) 2279 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2280 &msg_compat->msg_controllen); 2281 else 2282 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2283 &msg->msg_controllen); 2284 if (err) 2285 goto out_freeiov; 2286 err = len; 2287 2288 out_freeiov: 2289 if (iov != iovstack) 2290 kfree(iov); 2291 out: 2292 return err; 2293 } 2294 2295 /* 2296 * BSD recvmsg interface 2297 */ 2298 2299 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2300 { 2301 int fput_needed, err; 2302 struct msghdr msg_sys; 2303 struct socket *sock; 2304 2305 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2306 if (!sock) 2307 goto out; 2308 2309 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2310 2311 fput_light(sock->file, fput_needed); 2312 out: 2313 return err; 2314 } 2315 2316 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2317 unsigned int, flags) 2318 { 2319 if (flags & MSG_CMSG_COMPAT) 2320 return -EINVAL; 2321 return __sys_recvmsg(fd, msg, flags); 2322 } 2323 2324 /* 2325 * Linux recvmmsg interface 2326 */ 2327 2328 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2329 unsigned int flags, struct timespec *timeout) 2330 { 2331 int fput_needed, err, datagrams; 2332 struct socket *sock; 2333 struct mmsghdr __user *entry; 2334 struct compat_mmsghdr __user *compat_entry; 2335 struct msghdr msg_sys; 2336 struct timespec end_time; 2337 2338 if (timeout && 2339 poll_select_set_timeout(&end_time, timeout->tv_sec, 2340 timeout->tv_nsec)) 2341 return -EINVAL; 2342 2343 datagrams = 0; 2344 2345 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2346 if (!sock) 2347 return err; 2348 2349 err = sock_error(sock->sk); 2350 if (err) 2351 goto out_put; 2352 2353 entry = mmsg; 2354 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2355 2356 while (datagrams < vlen) { 2357 /* 2358 * No need to ask LSM for more than the first datagram. 2359 */ 2360 if (MSG_CMSG_COMPAT & flags) { 2361 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2362 &msg_sys, flags & ~MSG_WAITFORONE, 2363 datagrams); 2364 if (err < 0) 2365 break; 2366 err = __put_user(err, &compat_entry->msg_len); 2367 ++compat_entry; 2368 } else { 2369 err = ___sys_recvmsg(sock, 2370 (struct msghdr __user *)entry, 2371 &msg_sys, flags & ~MSG_WAITFORONE, 2372 datagrams); 2373 if (err < 0) 2374 break; 2375 err = put_user(err, &entry->msg_len); 2376 ++entry; 2377 } 2378 2379 if (err) 2380 break; 2381 ++datagrams; 2382 2383 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2384 if (flags & MSG_WAITFORONE) 2385 flags |= MSG_DONTWAIT; 2386 2387 if (timeout) { 2388 ktime_get_ts(timeout); 2389 *timeout = timespec_sub(end_time, *timeout); 2390 if (timeout->tv_sec < 0) { 2391 timeout->tv_sec = timeout->tv_nsec = 0; 2392 break; 2393 } 2394 2395 /* Timeout, return less than vlen datagrams */ 2396 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2397 break; 2398 } 2399 2400 /* Out of band data, return right away */ 2401 if (msg_sys.msg_flags & MSG_OOB) 2402 break; 2403 } 2404 2405 out_put: 2406 fput_light(sock->file, fput_needed); 2407 2408 if (err == 0) 2409 return datagrams; 2410 2411 if (datagrams != 0) { 2412 /* 2413 * We may return less entries than requested (vlen) if the 2414 * sock is non block and there aren't enough datagrams... 2415 */ 2416 if (err != -EAGAIN) { 2417 /* 2418 * ... or if recvmsg returns an error after we 2419 * received some datagrams, where we record the 2420 * error to return on the next call or if the 2421 * app asks about it using getsockopt(SO_ERROR). 2422 */ 2423 sock->sk->sk_err = -err; 2424 } 2425 2426 return datagrams; 2427 } 2428 2429 return err; 2430 } 2431 2432 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2433 unsigned int, vlen, unsigned int, flags, 2434 struct timespec __user *, timeout) 2435 { 2436 int datagrams; 2437 struct timespec timeout_sys; 2438 2439 if (flags & MSG_CMSG_COMPAT) 2440 return -EINVAL; 2441 2442 if (!timeout) 2443 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2444 2445 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2446 return -EFAULT; 2447 2448 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2449 2450 if (datagrams > 0 && 2451 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2452 datagrams = -EFAULT; 2453 2454 return datagrams; 2455 } 2456 2457 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2458 /* Argument list sizes for sys_socketcall */ 2459 #define AL(x) ((x) * sizeof(unsigned long)) 2460 static const unsigned char nargs[21] = { 2461 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2462 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2463 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2464 AL(4), AL(5), AL(4) 2465 }; 2466 2467 #undef AL 2468 2469 /* 2470 * System call vectors. 2471 * 2472 * Argument checking cleaned up. Saved 20% in size. 2473 * This function doesn't need to set the kernel lock because 2474 * it is set by the callees. 2475 */ 2476 2477 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2478 { 2479 unsigned long a[AUDITSC_ARGS]; 2480 unsigned long a0, a1; 2481 int err; 2482 unsigned int len; 2483 2484 if (call < 1 || call > SYS_SENDMMSG) 2485 return -EINVAL; 2486 2487 len = nargs[call]; 2488 if (len > sizeof(a)) 2489 return -EINVAL; 2490 2491 /* copy_from_user should be SMP safe. */ 2492 if (copy_from_user(a, args, len)) 2493 return -EFAULT; 2494 2495 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2496 if (err) 2497 return err; 2498 2499 a0 = a[0]; 2500 a1 = a[1]; 2501 2502 switch (call) { 2503 case SYS_SOCKET: 2504 err = sys_socket(a0, a1, a[2]); 2505 break; 2506 case SYS_BIND: 2507 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2508 break; 2509 case SYS_CONNECT: 2510 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2511 break; 2512 case SYS_LISTEN: 2513 err = sys_listen(a0, a1); 2514 break; 2515 case SYS_ACCEPT: 2516 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2517 (int __user *)a[2], 0); 2518 break; 2519 case SYS_GETSOCKNAME: 2520 err = 2521 sys_getsockname(a0, (struct sockaddr __user *)a1, 2522 (int __user *)a[2]); 2523 break; 2524 case SYS_GETPEERNAME: 2525 err = 2526 sys_getpeername(a0, (struct sockaddr __user *)a1, 2527 (int __user *)a[2]); 2528 break; 2529 case SYS_SOCKETPAIR: 2530 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2531 break; 2532 case SYS_SEND: 2533 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2534 break; 2535 case SYS_SENDTO: 2536 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2537 (struct sockaddr __user *)a[4], a[5]); 2538 break; 2539 case SYS_RECV: 2540 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2541 break; 2542 case SYS_RECVFROM: 2543 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2544 (struct sockaddr __user *)a[4], 2545 (int __user *)a[5]); 2546 break; 2547 case SYS_SHUTDOWN: 2548 err = sys_shutdown(a0, a1); 2549 break; 2550 case SYS_SETSOCKOPT: 2551 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2552 break; 2553 case SYS_GETSOCKOPT: 2554 err = 2555 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2556 (int __user *)a[4]); 2557 break; 2558 case SYS_SENDMSG: 2559 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2560 break; 2561 case SYS_SENDMMSG: 2562 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2563 break; 2564 case SYS_RECVMSG: 2565 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2566 break; 2567 case SYS_RECVMMSG: 2568 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2569 (struct timespec __user *)a[4]); 2570 break; 2571 case SYS_ACCEPT4: 2572 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2573 (int __user *)a[2], a[3]); 2574 break; 2575 default: 2576 err = -EINVAL; 2577 break; 2578 } 2579 return err; 2580 } 2581 2582 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2583 2584 /** 2585 * sock_register - add a socket protocol handler 2586 * @ops: description of protocol 2587 * 2588 * This function is called by a protocol handler that wants to 2589 * advertise its address family, and have it linked into the 2590 * socket interface. The value ops->family coresponds to the 2591 * socket system call protocol family. 2592 */ 2593 int sock_register(const struct net_proto_family *ops) 2594 { 2595 int err; 2596 2597 if (ops->family >= NPROTO) { 2598 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2599 NPROTO); 2600 return -ENOBUFS; 2601 } 2602 2603 spin_lock(&net_family_lock); 2604 if (rcu_dereference_protected(net_families[ops->family], 2605 lockdep_is_held(&net_family_lock))) 2606 err = -EEXIST; 2607 else { 2608 rcu_assign_pointer(net_families[ops->family], ops); 2609 err = 0; 2610 } 2611 spin_unlock(&net_family_lock); 2612 2613 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2614 return err; 2615 } 2616 EXPORT_SYMBOL(sock_register); 2617 2618 /** 2619 * sock_unregister - remove a protocol handler 2620 * @family: protocol family to remove 2621 * 2622 * This function is called by a protocol handler that wants to 2623 * remove its address family, and have it unlinked from the 2624 * new socket creation. 2625 * 2626 * If protocol handler is a module, then it can use module reference 2627 * counts to protect against new references. If protocol handler is not 2628 * a module then it needs to provide its own protection in 2629 * the ops->create routine. 2630 */ 2631 void sock_unregister(int family) 2632 { 2633 BUG_ON(family < 0 || family >= NPROTO); 2634 2635 spin_lock(&net_family_lock); 2636 RCU_INIT_POINTER(net_families[family], NULL); 2637 spin_unlock(&net_family_lock); 2638 2639 synchronize_rcu(); 2640 2641 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2642 } 2643 EXPORT_SYMBOL(sock_unregister); 2644 2645 static int __init sock_init(void) 2646 { 2647 int err; 2648 /* 2649 * Initialize the network sysctl infrastructure. 2650 */ 2651 err = net_sysctl_init(); 2652 if (err) 2653 goto out; 2654 2655 /* 2656 * Initialize skbuff SLAB cache 2657 */ 2658 skb_init(); 2659 2660 /* 2661 * Initialize the protocols module. 2662 */ 2663 2664 init_inodecache(); 2665 2666 err = register_filesystem(&sock_fs_type); 2667 if (err) 2668 goto out_fs; 2669 sock_mnt = kern_mount(&sock_fs_type); 2670 if (IS_ERR(sock_mnt)) { 2671 err = PTR_ERR(sock_mnt); 2672 goto out_mount; 2673 } 2674 2675 /* The real protocol initialization is performed in later initcalls. 2676 */ 2677 2678 #ifdef CONFIG_NETFILTER 2679 err = netfilter_init(); 2680 if (err) 2681 goto out; 2682 #endif 2683 2684 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2685 skb_timestamping_init(); 2686 #endif 2687 2688 out: 2689 return err; 2690 2691 out_mount: 2692 unregister_filesystem(&sock_fs_type); 2693 out_fs: 2694 goto out; 2695 } 2696 2697 core_initcall(sock_init); /* early initcall */ 2698 2699 #ifdef CONFIG_PROC_FS 2700 void socket_seq_show(struct seq_file *seq) 2701 { 2702 int cpu; 2703 int counter = 0; 2704 2705 for_each_possible_cpu(cpu) 2706 counter += per_cpu(sockets_in_use, cpu); 2707 2708 /* It can be negative, by the way. 8) */ 2709 if (counter < 0) 2710 counter = 0; 2711 2712 seq_printf(seq, "sockets: used %d\n", counter); 2713 } 2714 #endif /* CONFIG_PROC_FS */ 2715 2716 #ifdef CONFIG_COMPAT 2717 static int do_siocgstamp(struct net *net, struct socket *sock, 2718 unsigned int cmd, void __user *up) 2719 { 2720 mm_segment_t old_fs = get_fs(); 2721 struct timeval ktv; 2722 int err; 2723 2724 set_fs(KERNEL_DS); 2725 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2726 set_fs(old_fs); 2727 if (!err) 2728 err = compat_put_timeval(&ktv, up); 2729 2730 return err; 2731 } 2732 2733 static int do_siocgstampns(struct net *net, struct socket *sock, 2734 unsigned int cmd, void __user *up) 2735 { 2736 mm_segment_t old_fs = get_fs(); 2737 struct timespec kts; 2738 int err; 2739 2740 set_fs(KERNEL_DS); 2741 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2742 set_fs(old_fs); 2743 if (!err) 2744 err = compat_put_timespec(&kts, up); 2745 2746 return err; 2747 } 2748 2749 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2750 { 2751 struct ifreq __user *uifr; 2752 int err; 2753 2754 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2755 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2756 return -EFAULT; 2757 2758 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2759 if (err) 2760 return err; 2761 2762 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2763 return -EFAULT; 2764 2765 return 0; 2766 } 2767 2768 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2769 { 2770 struct compat_ifconf ifc32; 2771 struct ifconf ifc; 2772 struct ifconf __user *uifc; 2773 struct compat_ifreq __user *ifr32; 2774 struct ifreq __user *ifr; 2775 unsigned int i, j; 2776 int err; 2777 2778 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2779 return -EFAULT; 2780 2781 memset(&ifc, 0, sizeof(ifc)); 2782 if (ifc32.ifcbuf == 0) { 2783 ifc32.ifc_len = 0; 2784 ifc.ifc_len = 0; 2785 ifc.ifc_req = NULL; 2786 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2787 } else { 2788 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2789 sizeof(struct ifreq); 2790 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2791 ifc.ifc_len = len; 2792 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2793 ifr32 = compat_ptr(ifc32.ifcbuf); 2794 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2795 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2796 return -EFAULT; 2797 ifr++; 2798 ifr32++; 2799 } 2800 } 2801 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2802 return -EFAULT; 2803 2804 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2805 if (err) 2806 return err; 2807 2808 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2809 return -EFAULT; 2810 2811 ifr = ifc.ifc_req; 2812 ifr32 = compat_ptr(ifc32.ifcbuf); 2813 for (i = 0, j = 0; 2814 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2815 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2816 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2817 return -EFAULT; 2818 ifr32++; 2819 ifr++; 2820 } 2821 2822 if (ifc32.ifcbuf == 0) { 2823 /* Translate from 64-bit structure multiple to 2824 * a 32-bit one. 2825 */ 2826 i = ifc.ifc_len; 2827 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2828 ifc32.ifc_len = i; 2829 } else { 2830 ifc32.ifc_len = i; 2831 } 2832 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2833 return -EFAULT; 2834 2835 return 0; 2836 } 2837 2838 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2839 { 2840 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2841 bool convert_in = false, convert_out = false; 2842 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2843 struct ethtool_rxnfc __user *rxnfc; 2844 struct ifreq __user *ifr; 2845 u32 rule_cnt = 0, actual_rule_cnt; 2846 u32 ethcmd; 2847 u32 data; 2848 int ret; 2849 2850 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2851 return -EFAULT; 2852 2853 compat_rxnfc = compat_ptr(data); 2854 2855 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2856 return -EFAULT; 2857 2858 /* Most ethtool structures are defined without padding. 2859 * Unfortunately struct ethtool_rxnfc is an exception. 2860 */ 2861 switch (ethcmd) { 2862 default: 2863 break; 2864 case ETHTOOL_GRXCLSRLALL: 2865 /* Buffer size is variable */ 2866 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2867 return -EFAULT; 2868 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2869 return -ENOMEM; 2870 buf_size += rule_cnt * sizeof(u32); 2871 /* fall through */ 2872 case ETHTOOL_GRXRINGS: 2873 case ETHTOOL_GRXCLSRLCNT: 2874 case ETHTOOL_GRXCLSRULE: 2875 case ETHTOOL_SRXCLSRLINS: 2876 convert_out = true; 2877 /* fall through */ 2878 case ETHTOOL_SRXCLSRLDEL: 2879 buf_size += sizeof(struct ethtool_rxnfc); 2880 convert_in = true; 2881 break; 2882 } 2883 2884 ifr = compat_alloc_user_space(buf_size); 2885 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2886 2887 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2888 return -EFAULT; 2889 2890 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2891 &ifr->ifr_ifru.ifru_data)) 2892 return -EFAULT; 2893 2894 if (convert_in) { 2895 /* We expect there to be holes between fs.m_ext and 2896 * fs.ring_cookie and at the end of fs, but nowhere else. 2897 */ 2898 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2899 sizeof(compat_rxnfc->fs.m_ext) != 2900 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2901 sizeof(rxnfc->fs.m_ext)); 2902 BUILD_BUG_ON( 2903 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2904 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2905 offsetof(struct ethtool_rxnfc, fs.location) - 2906 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2907 2908 if (copy_in_user(rxnfc, compat_rxnfc, 2909 (void __user *)(&rxnfc->fs.m_ext + 1) - 2910 (void __user *)rxnfc) || 2911 copy_in_user(&rxnfc->fs.ring_cookie, 2912 &compat_rxnfc->fs.ring_cookie, 2913 (void __user *)(&rxnfc->fs.location + 1) - 2914 (void __user *)&rxnfc->fs.ring_cookie) || 2915 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2916 sizeof(rxnfc->rule_cnt))) 2917 return -EFAULT; 2918 } 2919 2920 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2921 if (ret) 2922 return ret; 2923 2924 if (convert_out) { 2925 if (copy_in_user(compat_rxnfc, rxnfc, 2926 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2927 (const void __user *)rxnfc) || 2928 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2929 &rxnfc->fs.ring_cookie, 2930 (const void __user *)(&rxnfc->fs.location + 1) - 2931 (const void __user *)&rxnfc->fs.ring_cookie) || 2932 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2933 sizeof(rxnfc->rule_cnt))) 2934 return -EFAULT; 2935 2936 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2937 /* As an optimisation, we only copy the actual 2938 * number of rules that the underlying 2939 * function returned. Since Mallory might 2940 * change the rule count in user memory, we 2941 * check that it is less than the rule count 2942 * originally given (as the user buffer size), 2943 * which has been range-checked. 2944 */ 2945 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2946 return -EFAULT; 2947 if (actual_rule_cnt < rule_cnt) 2948 rule_cnt = actual_rule_cnt; 2949 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2950 &rxnfc->rule_locs[0], 2951 rule_cnt * sizeof(u32))) 2952 return -EFAULT; 2953 } 2954 } 2955 2956 return 0; 2957 } 2958 2959 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2960 { 2961 void __user *uptr; 2962 compat_uptr_t uptr32; 2963 struct ifreq __user *uifr; 2964 2965 uifr = compat_alloc_user_space(sizeof(*uifr)); 2966 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2967 return -EFAULT; 2968 2969 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2970 return -EFAULT; 2971 2972 uptr = compat_ptr(uptr32); 2973 2974 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2975 return -EFAULT; 2976 2977 return dev_ioctl(net, SIOCWANDEV, uifr); 2978 } 2979 2980 static int bond_ioctl(struct net *net, unsigned int cmd, 2981 struct compat_ifreq __user *ifr32) 2982 { 2983 struct ifreq kifr; 2984 mm_segment_t old_fs; 2985 int err; 2986 2987 switch (cmd) { 2988 case SIOCBONDENSLAVE: 2989 case SIOCBONDRELEASE: 2990 case SIOCBONDSETHWADDR: 2991 case SIOCBONDCHANGEACTIVE: 2992 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2993 return -EFAULT; 2994 2995 old_fs = get_fs(); 2996 set_fs(KERNEL_DS); 2997 err = dev_ioctl(net, cmd, 2998 (struct ifreq __user __force *) &kifr); 2999 set_fs(old_fs); 3000 3001 return err; 3002 default: 3003 return -ENOIOCTLCMD; 3004 } 3005 } 3006 3007 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3008 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3009 struct compat_ifreq __user *u_ifreq32) 3010 { 3011 struct ifreq __user *u_ifreq64; 3012 char tmp_buf[IFNAMSIZ]; 3013 void __user *data64; 3014 u32 data32; 3015 3016 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3017 IFNAMSIZ)) 3018 return -EFAULT; 3019 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3020 return -EFAULT; 3021 data64 = compat_ptr(data32); 3022 3023 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3024 3025 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3026 IFNAMSIZ)) 3027 return -EFAULT; 3028 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3029 return -EFAULT; 3030 3031 return dev_ioctl(net, cmd, u_ifreq64); 3032 } 3033 3034 static int dev_ifsioc(struct net *net, struct socket *sock, 3035 unsigned int cmd, struct compat_ifreq __user *uifr32) 3036 { 3037 struct ifreq __user *uifr; 3038 int err; 3039 3040 uifr = compat_alloc_user_space(sizeof(*uifr)); 3041 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3042 return -EFAULT; 3043 3044 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3045 3046 if (!err) { 3047 switch (cmd) { 3048 case SIOCGIFFLAGS: 3049 case SIOCGIFMETRIC: 3050 case SIOCGIFMTU: 3051 case SIOCGIFMEM: 3052 case SIOCGIFHWADDR: 3053 case SIOCGIFINDEX: 3054 case SIOCGIFADDR: 3055 case SIOCGIFBRDADDR: 3056 case SIOCGIFDSTADDR: 3057 case SIOCGIFNETMASK: 3058 case SIOCGIFPFLAGS: 3059 case SIOCGIFTXQLEN: 3060 case SIOCGMIIPHY: 3061 case SIOCGMIIREG: 3062 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3063 err = -EFAULT; 3064 break; 3065 } 3066 } 3067 return err; 3068 } 3069 3070 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3071 struct compat_ifreq __user *uifr32) 3072 { 3073 struct ifreq ifr; 3074 struct compat_ifmap __user *uifmap32; 3075 mm_segment_t old_fs; 3076 int err; 3077 3078 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3079 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3080 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3081 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3082 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3083 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3084 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3085 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3086 if (err) 3087 return -EFAULT; 3088 3089 old_fs = get_fs(); 3090 set_fs(KERNEL_DS); 3091 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3092 set_fs(old_fs); 3093 3094 if (cmd == SIOCGIFMAP && !err) { 3095 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3096 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3097 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3098 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3099 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3100 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3101 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3102 if (err) 3103 err = -EFAULT; 3104 } 3105 return err; 3106 } 3107 3108 struct rtentry32 { 3109 u32 rt_pad1; 3110 struct sockaddr rt_dst; /* target address */ 3111 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3112 struct sockaddr rt_genmask; /* target network mask (IP) */ 3113 unsigned short rt_flags; 3114 short rt_pad2; 3115 u32 rt_pad3; 3116 unsigned char rt_tos; 3117 unsigned char rt_class; 3118 short rt_pad4; 3119 short rt_metric; /* +1 for binary compatibility! */ 3120 /* char * */ u32 rt_dev; /* forcing the device at add */ 3121 u32 rt_mtu; /* per route MTU/Window */ 3122 u32 rt_window; /* Window clamping */ 3123 unsigned short rt_irtt; /* Initial RTT */ 3124 }; 3125 3126 struct in6_rtmsg32 { 3127 struct in6_addr rtmsg_dst; 3128 struct in6_addr rtmsg_src; 3129 struct in6_addr rtmsg_gateway; 3130 u32 rtmsg_type; 3131 u16 rtmsg_dst_len; 3132 u16 rtmsg_src_len; 3133 u32 rtmsg_metric; 3134 u32 rtmsg_info; 3135 u32 rtmsg_flags; 3136 s32 rtmsg_ifindex; 3137 }; 3138 3139 static int routing_ioctl(struct net *net, struct socket *sock, 3140 unsigned int cmd, void __user *argp) 3141 { 3142 int ret; 3143 void *r = NULL; 3144 struct in6_rtmsg r6; 3145 struct rtentry r4; 3146 char devname[16]; 3147 u32 rtdev; 3148 mm_segment_t old_fs = get_fs(); 3149 3150 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3151 struct in6_rtmsg32 __user *ur6 = argp; 3152 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3153 3 * sizeof(struct in6_addr)); 3154 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3155 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3156 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3157 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3158 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3159 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3160 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3161 3162 r = (void *) &r6; 3163 } else { /* ipv4 */ 3164 struct rtentry32 __user *ur4 = argp; 3165 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3166 3 * sizeof(struct sockaddr)); 3167 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3168 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3169 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3170 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3171 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3172 ret |= get_user(rtdev, &(ur4->rt_dev)); 3173 if (rtdev) { 3174 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3175 r4.rt_dev = (char __user __force *)devname; 3176 devname[15] = 0; 3177 } else 3178 r4.rt_dev = NULL; 3179 3180 r = (void *) &r4; 3181 } 3182 3183 if (ret) { 3184 ret = -EFAULT; 3185 goto out; 3186 } 3187 3188 set_fs(KERNEL_DS); 3189 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3190 set_fs(old_fs); 3191 3192 out: 3193 return ret; 3194 } 3195 3196 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3197 * for some operations; this forces use of the newer bridge-utils that 3198 * use compatible ioctls 3199 */ 3200 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3201 { 3202 compat_ulong_t tmp; 3203 3204 if (get_user(tmp, argp)) 3205 return -EFAULT; 3206 if (tmp == BRCTL_GET_VERSION) 3207 return BRCTL_VERSION + 1; 3208 return -EINVAL; 3209 } 3210 3211 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3212 unsigned int cmd, unsigned long arg) 3213 { 3214 void __user *argp = compat_ptr(arg); 3215 struct sock *sk = sock->sk; 3216 struct net *net = sock_net(sk); 3217 3218 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3219 return compat_ifr_data_ioctl(net, cmd, argp); 3220 3221 switch (cmd) { 3222 case SIOCSIFBR: 3223 case SIOCGIFBR: 3224 return old_bridge_ioctl(argp); 3225 case SIOCGIFNAME: 3226 return dev_ifname32(net, argp); 3227 case SIOCGIFCONF: 3228 return dev_ifconf(net, argp); 3229 case SIOCETHTOOL: 3230 return ethtool_ioctl(net, argp); 3231 case SIOCWANDEV: 3232 return compat_siocwandev(net, argp); 3233 case SIOCGIFMAP: 3234 case SIOCSIFMAP: 3235 return compat_sioc_ifmap(net, cmd, argp); 3236 case SIOCBONDENSLAVE: 3237 case SIOCBONDRELEASE: 3238 case SIOCBONDSETHWADDR: 3239 case SIOCBONDCHANGEACTIVE: 3240 return bond_ioctl(net, cmd, argp); 3241 case SIOCADDRT: 3242 case SIOCDELRT: 3243 return routing_ioctl(net, sock, cmd, argp); 3244 case SIOCGSTAMP: 3245 return do_siocgstamp(net, sock, cmd, argp); 3246 case SIOCGSTAMPNS: 3247 return do_siocgstampns(net, sock, cmd, argp); 3248 case SIOCBONDSLAVEINFOQUERY: 3249 case SIOCBONDINFOQUERY: 3250 case SIOCSHWTSTAMP: 3251 case SIOCGHWTSTAMP: 3252 return compat_ifr_data_ioctl(net, cmd, argp); 3253 3254 case FIOSETOWN: 3255 case SIOCSPGRP: 3256 case FIOGETOWN: 3257 case SIOCGPGRP: 3258 case SIOCBRADDBR: 3259 case SIOCBRDELBR: 3260 case SIOCGIFVLAN: 3261 case SIOCSIFVLAN: 3262 case SIOCADDDLCI: 3263 case SIOCDELDLCI: 3264 return sock_ioctl(file, cmd, arg); 3265 3266 case SIOCGIFFLAGS: 3267 case SIOCSIFFLAGS: 3268 case SIOCGIFMETRIC: 3269 case SIOCSIFMETRIC: 3270 case SIOCGIFMTU: 3271 case SIOCSIFMTU: 3272 case SIOCGIFMEM: 3273 case SIOCSIFMEM: 3274 case SIOCGIFHWADDR: 3275 case SIOCSIFHWADDR: 3276 case SIOCADDMULTI: 3277 case SIOCDELMULTI: 3278 case SIOCGIFINDEX: 3279 case SIOCGIFADDR: 3280 case SIOCSIFADDR: 3281 case SIOCSIFHWBROADCAST: 3282 case SIOCDIFADDR: 3283 case SIOCGIFBRDADDR: 3284 case SIOCSIFBRDADDR: 3285 case SIOCGIFDSTADDR: 3286 case SIOCSIFDSTADDR: 3287 case SIOCGIFNETMASK: 3288 case SIOCSIFNETMASK: 3289 case SIOCSIFPFLAGS: 3290 case SIOCGIFPFLAGS: 3291 case SIOCGIFTXQLEN: 3292 case SIOCSIFTXQLEN: 3293 case SIOCBRADDIF: 3294 case SIOCBRDELIF: 3295 case SIOCSIFNAME: 3296 case SIOCGMIIPHY: 3297 case SIOCGMIIREG: 3298 case SIOCSMIIREG: 3299 return dev_ifsioc(net, sock, cmd, argp); 3300 3301 case SIOCSARP: 3302 case SIOCGARP: 3303 case SIOCDARP: 3304 case SIOCATMARK: 3305 return sock_do_ioctl(net, sock, cmd, arg); 3306 } 3307 3308 return -ENOIOCTLCMD; 3309 } 3310 3311 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3312 unsigned long arg) 3313 { 3314 struct socket *sock = file->private_data; 3315 int ret = -ENOIOCTLCMD; 3316 struct sock *sk; 3317 struct net *net; 3318 3319 sk = sock->sk; 3320 net = sock_net(sk); 3321 3322 if (sock->ops->compat_ioctl) 3323 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3324 3325 if (ret == -ENOIOCTLCMD && 3326 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3327 ret = compat_wext_handle_ioctl(net, cmd, arg); 3328 3329 if (ret == -ENOIOCTLCMD) 3330 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3331 3332 return ret; 3333 } 3334 #endif 3335 3336 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3337 { 3338 return sock->ops->bind(sock, addr, addrlen); 3339 } 3340 EXPORT_SYMBOL(kernel_bind); 3341 3342 int kernel_listen(struct socket *sock, int backlog) 3343 { 3344 return sock->ops->listen(sock, backlog); 3345 } 3346 EXPORT_SYMBOL(kernel_listen); 3347 3348 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3349 { 3350 struct sock *sk = sock->sk; 3351 int err; 3352 3353 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3354 newsock); 3355 if (err < 0) 3356 goto done; 3357 3358 err = sock->ops->accept(sock, *newsock, flags); 3359 if (err < 0) { 3360 sock_release(*newsock); 3361 *newsock = NULL; 3362 goto done; 3363 } 3364 3365 (*newsock)->ops = sock->ops; 3366 __module_get((*newsock)->ops->owner); 3367 3368 done: 3369 return err; 3370 } 3371 EXPORT_SYMBOL(kernel_accept); 3372 3373 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3374 int flags) 3375 { 3376 return sock->ops->connect(sock, addr, addrlen, flags); 3377 } 3378 EXPORT_SYMBOL(kernel_connect); 3379 3380 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3381 int *addrlen) 3382 { 3383 return sock->ops->getname(sock, addr, addrlen, 0); 3384 } 3385 EXPORT_SYMBOL(kernel_getsockname); 3386 3387 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3388 int *addrlen) 3389 { 3390 return sock->ops->getname(sock, addr, addrlen, 1); 3391 } 3392 EXPORT_SYMBOL(kernel_getpeername); 3393 3394 int kernel_getsockopt(struct socket *sock, int level, int optname, 3395 char *optval, int *optlen) 3396 { 3397 mm_segment_t oldfs = get_fs(); 3398 char __user *uoptval; 3399 int __user *uoptlen; 3400 int err; 3401 3402 uoptval = (char __user __force *) optval; 3403 uoptlen = (int __user __force *) optlen; 3404 3405 set_fs(KERNEL_DS); 3406 if (level == SOL_SOCKET) 3407 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3408 else 3409 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3410 uoptlen); 3411 set_fs(oldfs); 3412 return err; 3413 } 3414 EXPORT_SYMBOL(kernel_getsockopt); 3415 3416 int kernel_setsockopt(struct socket *sock, int level, int optname, 3417 char *optval, unsigned int optlen) 3418 { 3419 mm_segment_t oldfs = get_fs(); 3420 char __user *uoptval; 3421 int err; 3422 3423 uoptval = (char __user __force *) optval; 3424 3425 set_fs(KERNEL_DS); 3426 if (level == SOL_SOCKET) 3427 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3428 else 3429 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3430 optlen); 3431 set_fs(oldfs); 3432 return err; 3433 } 3434 EXPORT_SYMBOL(kernel_setsockopt); 3435 3436 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3437 size_t size, int flags) 3438 { 3439 if (sock->ops->sendpage) 3440 return sock->ops->sendpage(sock, page, offset, size, flags); 3441 3442 return sock_no_sendpage(sock, page, offset, size, flags); 3443 } 3444 EXPORT_SYMBOL(kernel_sendpage); 3445 3446 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3447 { 3448 mm_segment_t oldfs = get_fs(); 3449 int err; 3450 3451 set_fs(KERNEL_DS); 3452 err = sock->ops->ioctl(sock, cmd, arg); 3453 set_fs(oldfs); 3454 3455 return err; 3456 } 3457 EXPORT_SYMBOL(kernel_sock_ioctl); 3458 3459 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3460 { 3461 return sock->ops->shutdown(sock, how); 3462 } 3463 EXPORT_SYMBOL(kernel_sock_shutdown); 3464