xref: /openbmc/linux/net/socket.c (revision 483eb062)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
108 
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113 
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 			 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 			  unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.aio_read =	sock_aio_read,
145 	.aio_write =	sock_aio_write,
146 	.poll =		sock_poll,
147 	.unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 	.compat_ioctl = compat_sock_ioctl,
150 #endif
151 	.mmap =		sock_mmap,
152 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				dentry->d_inode->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
376 
377 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
378 		  &socket_file_ops);
379 	if (unlikely(IS_ERR(file))) {
380 		/* drop dentry, keep inode */
381 		ihold(path.dentry->d_inode);
382 		path_put(&path);
383 		return file;
384 	}
385 
386 	sock->file = file;
387 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 	file->private_data = sock;
389 	return file;
390 }
391 EXPORT_SYMBOL(sock_alloc_file);
392 
393 static int sock_map_fd(struct socket *sock, int flags)
394 {
395 	struct file *newfile;
396 	int fd = get_unused_fd_flags(flags);
397 	if (unlikely(fd < 0))
398 		return fd;
399 
400 	newfile = sock_alloc_file(sock, flags, NULL);
401 	if (likely(!IS_ERR(newfile))) {
402 		fd_install(fd, newfile);
403 		return fd;
404 	}
405 
406 	put_unused_fd(fd);
407 	return PTR_ERR(newfile);
408 }
409 
410 struct socket *sock_from_file(struct file *file, int *err)
411 {
412 	if (file->f_op == &socket_file_ops)
413 		return file->private_data;	/* set in sock_map_fd */
414 
415 	*err = -ENOTSOCK;
416 	return NULL;
417 }
418 EXPORT_SYMBOL(sock_from_file);
419 
420 /**
421  *	sockfd_lookup - Go from a file number to its socket slot
422  *	@fd: file handle
423  *	@err: pointer to an error code return
424  *
425  *	The file handle passed in is locked and the socket it is bound
426  *	too is returned. If an error occurs the err pointer is overwritten
427  *	with a negative errno code and NULL is returned. The function checks
428  *	for both invalid handles and passing a handle which is not a socket.
429  *
430  *	On a success the socket object pointer is returned.
431  */
432 
433 struct socket *sockfd_lookup(int fd, int *err)
434 {
435 	struct file *file;
436 	struct socket *sock;
437 
438 	file = fget(fd);
439 	if (!file) {
440 		*err = -EBADF;
441 		return NULL;
442 	}
443 
444 	sock = sock_from_file(file, err);
445 	if (!sock)
446 		fput(file);
447 	return sock;
448 }
449 EXPORT_SYMBOL(sockfd_lookup);
450 
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 {
453 	struct file *file;
454 	struct socket *sock;
455 
456 	*err = -EBADF;
457 	file = fget_light(fd, fput_needed);
458 	if (file) {
459 		sock = sock_from_file(file, err);
460 		if (sock)
461 			return sock;
462 		fput_light(file, *fput_needed);
463 	}
464 	return NULL;
465 }
466 
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 			       const char *name, void *value, size_t size)
472 {
473 	const char *proto_name;
474 	size_t proto_size;
475 	int error;
476 
477 	error = -ENODATA;
478 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 		proto_name = dentry->d_name.name;
480 		proto_size = strlen(proto_name);
481 
482 		if (value) {
483 			error = -ERANGE;
484 			if (proto_size + 1 > size)
485 				goto out;
486 
487 			strncpy(value, proto_name, proto_size + 1);
488 		}
489 		error = proto_size + 1;
490 	}
491 
492 out:
493 	return error;
494 }
495 
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 				size_t size)
498 {
499 	ssize_t len;
500 	ssize_t used = 0;
501 
502 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 	if (len < 0)
504 		return len;
505 	used += len;
506 	if (buffer) {
507 		if (size < used)
508 			return -ERANGE;
509 		buffer += len;
510 	}
511 
512 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 		buffer += len;
519 	}
520 
521 	return used;
522 }
523 
524 static const struct inode_operations sockfs_inode_ops = {
525 	.getxattr = sockfs_getxattr,
526 	.listxattr = sockfs_listxattr,
527 };
528 
529 /**
530  *	sock_alloc	-	allocate a socket
531  *
532  *	Allocate a new inode and socket object. The two are bound together
533  *	and initialised. The socket is then returned. If we are out of inodes
534  *	NULL is returned.
535  */
536 
537 static struct socket *sock_alloc(void)
538 {
539 	struct inode *inode;
540 	struct socket *sock;
541 
542 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 	if (!inode)
544 		return NULL;
545 
546 	sock = SOCKET_I(inode);
547 
548 	kmemcheck_annotate_bitfield(sock, type);
549 	inode->i_ino = get_next_ino();
550 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 	inode->i_uid = current_fsuid();
552 	inode->i_gid = current_fsgid();
553 	inode->i_op = &sockfs_inode_ops;
554 
555 	this_cpu_add(sockets_in_use, 1);
556 	return sock;
557 }
558 
559 /*
560  *	In theory you can't get an open on this inode, but /proc provides
561  *	a back door. Remember to keep it shut otherwise you'll let the
562  *	creepy crawlies in.
563  */
564 
565 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
566 {
567 	return -ENXIO;
568 }
569 
570 const struct file_operations bad_sock_fops = {
571 	.owner = THIS_MODULE,
572 	.open = sock_no_open,
573 	.llseek = noop_llseek,
574 };
575 
576 /**
577  *	sock_release	-	close a socket
578  *	@sock: socket to close
579  *
580  *	The socket is released from the protocol stack if it has a release
581  *	callback, and the inode is then released if the socket is bound to
582  *	an inode not a file.
583  */
584 
585 void sock_release(struct socket *sock)
586 {
587 	if (sock->ops) {
588 		struct module *owner = sock->ops->owner;
589 
590 		sock->ops->release(sock);
591 		sock->ops = NULL;
592 		module_put(owner);
593 	}
594 
595 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
596 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
597 
598 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
599 		return;
600 
601 	this_cpu_sub(sockets_in_use, 1);
602 	if (!sock->file) {
603 		iput(SOCK_INODE(sock));
604 		return;
605 	}
606 	sock->file = NULL;
607 }
608 EXPORT_SYMBOL(sock_release);
609 
610 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
611 {
612 	*tx_flags = 0;
613 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
614 		*tx_flags |= SKBTX_HW_TSTAMP;
615 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
616 		*tx_flags |= SKBTX_SW_TSTAMP;
617 	if (sock_flag(sk, SOCK_WIFI_STATUS))
618 		*tx_flags |= SKBTX_WIFI_STATUS;
619 }
620 EXPORT_SYMBOL(sock_tx_timestamp);
621 
622 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
623 				       struct msghdr *msg, size_t size)
624 {
625 	struct sock_iocb *si = kiocb_to_siocb(iocb);
626 
627 	si->sock = sock;
628 	si->scm = NULL;
629 	si->msg = msg;
630 	si->size = size;
631 
632 	return sock->ops->sendmsg(iocb, sock, msg, size);
633 }
634 
635 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
636 				 struct msghdr *msg, size_t size)
637 {
638 	int err = security_socket_sendmsg(sock, msg, size);
639 
640 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
641 }
642 
643 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
644 {
645 	struct kiocb iocb;
646 	struct sock_iocb siocb;
647 	int ret;
648 
649 	init_sync_kiocb(&iocb, NULL);
650 	iocb.private = &siocb;
651 	ret = __sock_sendmsg(&iocb, sock, msg, size);
652 	if (-EIOCBQUEUED == ret)
653 		ret = wait_on_sync_kiocb(&iocb);
654 	return ret;
655 }
656 EXPORT_SYMBOL(sock_sendmsg);
657 
658 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
659 {
660 	struct kiocb iocb;
661 	struct sock_iocb siocb;
662 	int ret;
663 
664 	init_sync_kiocb(&iocb, NULL);
665 	iocb.private = &siocb;
666 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
667 	if (-EIOCBQUEUED == ret)
668 		ret = wait_on_sync_kiocb(&iocb);
669 	return ret;
670 }
671 
672 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
673 		   struct kvec *vec, size_t num, size_t size)
674 {
675 	mm_segment_t oldfs = get_fs();
676 	int result;
677 
678 	set_fs(KERNEL_DS);
679 	/*
680 	 * the following is safe, since for compiler definitions of kvec and
681 	 * iovec are identical, yielding the same in-core layout and alignment
682 	 */
683 	msg->msg_iov = (struct iovec *)vec;
684 	msg->msg_iovlen = num;
685 	result = sock_sendmsg(sock, msg, size);
686 	set_fs(oldfs);
687 	return result;
688 }
689 EXPORT_SYMBOL(kernel_sendmsg);
690 
691 /*
692  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
693  */
694 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
695 	struct sk_buff *skb)
696 {
697 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
698 	struct timespec ts[3];
699 	int empty = 1;
700 	struct skb_shared_hwtstamps *shhwtstamps =
701 		skb_hwtstamps(skb);
702 
703 	/* Race occurred between timestamp enabling and packet
704 	   receiving.  Fill in the current time for now. */
705 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
706 		__net_timestamp(skb);
707 
708 	if (need_software_tstamp) {
709 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
710 			struct timeval tv;
711 			skb_get_timestamp(skb, &tv);
712 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
713 				 sizeof(tv), &tv);
714 		} else {
715 			skb_get_timestampns(skb, &ts[0]);
716 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
717 				 sizeof(ts[0]), &ts[0]);
718 		}
719 	}
720 
721 
722 	memset(ts, 0, sizeof(ts));
723 	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
724 	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
725 		empty = 0;
726 	if (shhwtstamps) {
727 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
728 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
729 			empty = 0;
730 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
731 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
732 			empty = 0;
733 	}
734 	if (!empty)
735 		put_cmsg(msg, SOL_SOCKET,
736 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
737 }
738 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
739 
740 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
741 	struct sk_buff *skb)
742 {
743 	int ack;
744 
745 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
746 		return;
747 	if (!skb->wifi_acked_valid)
748 		return;
749 
750 	ack = skb->wifi_acked;
751 
752 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
753 }
754 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
755 
756 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
757 				   struct sk_buff *skb)
758 {
759 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
760 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
761 			sizeof(__u32), &skb->dropcount);
762 }
763 
764 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
765 	struct sk_buff *skb)
766 {
767 	sock_recv_timestamp(msg, sk, skb);
768 	sock_recv_drops(msg, sk, skb);
769 }
770 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
771 
772 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
773 				       struct msghdr *msg, size_t size, int flags)
774 {
775 	struct sock_iocb *si = kiocb_to_siocb(iocb);
776 
777 	si->sock = sock;
778 	si->scm = NULL;
779 	si->msg = msg;
780 	si->size = size;
781 	si->flags = flags;
782 
783 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
784 }
785 
786 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
787 				 struct msghdr *msg, size_t size, int flags)
788 {
789 	int err = security_socket_recvmsg(sock, msg, size, flags);
790 
791 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
792 }
793 
794 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
795 		 size_t size, int flags)
796 {
797 	struct kiocb iocb;
798 	struct sock_iocb siocb;
799 	int ret;
800 
801 	init_sync_kiocb(&iocb, NULL);
802 	iocb.private = &siocb;
803 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
804 	if (-EIOCBQUEUED == ret)
805 		ret = wait_on_sync_kiocb(&iocb);
806 	return ret;
807 }
808 EXPORT_SYMBOL(sock_recvmsg);
809 
810 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
811 			      size_t size, int flags)
812 {
813 	struct kiocb iocb;
814 	struct sock_iocb siocb;
815 	int ret;
816 
817 	init_sync_kiocb(&iocb, NULL);
818 	iocb.private = &siocb;
819 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
820 	if (-EIOCBQUEUED == ret)
821 		ret = wait_on_sync_kiocb(&iocb);
822 	return ret;
823 }
824 
825 /**
826  * kernel_recvmsg - Receive a message from a socket (kernel space)
827  * @sock:       The socket to receive the message from
828  * @msg:        Received message
829  * @vec:        Input s/g array for message data
830  * @num:        Size of input s/g array
831  * @size:       Number of bytes to read
832  * @flags:      Message flags (MSG_DONTWAIT, etc...)
833  *
834  * On return the msg structure contains the scatter/gather array passed in the
835  * vec argument. The array is modified so that it consists of the unfilled
836  * portion of the original array.
837  *
838  * The returned value is the total number of bytes received, or an error.
839  */
840 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
841 		   struct kvec *vec, size_t num, size_t size, int flags)
842 {
843 	mm_segment_t oldfs = get_fs();
844 	int result;
845 
846 	set_fs(KERNEL_DS);
847 	/*
848 	 * the following is safe, since for compiler definitions of kvec and
849 	 * iovec are identical, yielding the same in-core layout and alignment
850 	 */
851 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
852 	result = sock_recvmsg(sock, msg, size, flags);
853 	set_fs(oldfs);
854 	return result;
855 }
856 EXPORT_SYMBOL(kernel_recvmsg);
857 
858 static ssize_t sock_sendpage(struct file *file, struct page *page,
859 			     int offset, size_t size, loff_t *ppos, int more)
860 {
861 	struct socket *sock;
862 	int flags;
863 
864 	sock = file->private_data;
865 
866 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
867 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
868 	flags |= more;
869 
870 	return kernel_sendpage(sock, page, offset, size, flags);
871 }
872 
873 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
874 				struct pipe_inode_info *pipe, size_t len,
875 				unsigned int flags)
876 {
877 	struct socket *sock = file->private_data;
878 
879 	if (unlikely(!sock->ops->splice_read))
880 		return -EINVAL;
881 
882 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
883 }
884 
885 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
886 					 struct sock_iocb *siocb)
887 {
888 	if (!is_sync_kiocb(iocb))
889 		BUG();
890 
891 	siocb->kiocb = iocb;
892 	iocb->private = siocb;
893 	return siocb;
894 }
895 
896 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
897 		struct file *file, const struct iovec *iov,
898 		unsigned long nr_segs)
899 {
900 	struct socket *sock = file->private_data;
901 	size_t size = 0;
902 	int i;
903 
904 	for (i = 0; i < nr_segs; i++)
905 		size += iov[i].iov_len;
906 
907 	msg->msg_name = NULL;
908 	msg->msg_namelen = 0;
909 	msg->msg_control = NULL;
910 	msg->msg_controllen = 0;
911 	msg->msg_iov = (struct iovec *)iov;
912 	msg->msg_iovlen = nr_segs;
913 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
914 
915 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
916 }
917 
918 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
919 				unsigned long nr_segs, loff_t pos)
920 {
921 	struct sock_iocb siocb, *x;
922 
923 	if (pos != 0)
924 		return -ESPIPE;
925 
926 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
927 		return 0;
928 
929 
930 	x = alloc_sock_iocb(iocb, &siocb);
931 	if (!x)
932 		return -ENOMEM;
933 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
934 }
935 
936 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
937 			struct file *file, const struct iovec *iov,
938 			unsigned long nr_segs)
939 {
940 	struct socket *sock = file->private_data;
941 	size_t size = 0;
942 	int i;
943 
944 	for (i = 0; i < nr_segs; i++)
945 		size += iov[i].iov_len;
946 
947 	msg->msg_name = NULL;
948 	msg->msg_namelen = 0;
949 	msg->msg_control = NULL;
950 	msg->msg_controllen = 0;
951 	msg->msg_iov = (struct iovec *)iov;
952 	msg->msg_iovlen = nr_segs;
953 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
954 	if (sock->type == SOCK_SEQPACKET)
955 		msg->msg_flags |= MSG_EOR;
956 
957 	return __sock_sendmsg(iocb, sock, msg, size);
958 }
959 
960 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
961 			  unsigned long nr_segs, loff_t pos)
962 {
963 	struct sock_iocb siocb, *x;
964 
965 	if (pos != 0)
966 		return -ESPIPE;
967 
968 	x = alloc_sock_iocb(iocb, &siocb);
969 	if (!x)
970 		return -ENOMEM;
971 
972 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
973 }
974 
975 /*
976  * Atomic setting of ioctl hooks to avoid race
977  * with module unload.
978  */
979 
980 static DEFINE_MUTEX(br_ioctl_mutex);
981 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
982 
983 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
984 {
985 	mutex_lock(&br_ioctl_mutex);
986 	br_ioctl_hook = hook;
987 	mutex_unlock(&br_ioctl_mutex);
988 }
989 EXPORT_SYMBOL(brioctl_set);
990 
991 static DEFINE_MUTEX(vlan_ioctl_mutex);
992 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
993 
994 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
995 {
996 	mutex_lock(&vlan_ioctl_mutex);
997 	vlan_ioctl_hook = hook;
998 	mutex_unlock(&vlan_ioctl_mutex);
999 }
1000 EXPORT_SYMBOL(vlan_ioctl_set);
1001 
1002 static DEFINE_MUTEX(dlci_ioctl_mutex);
1003 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1004 
1005 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1006 {
1007 	mutex_lock(&dlci_ioctl_mutex);
1008 	dlci_ioctl_hook = hook;
1009 	mutex_unlock(&dlci_ioctl_mutex);
1010 }
1011 EXPORT_SYMBOL(dlci_ioctl_set);
1012 
1013 static long sock_do_ioctl(struct net *net, struct socket *sock,
1014 				 unsigned int cmd, unsigned long arg)
1015 {
1016 	int err;
1017 	void __user *argp = (void __user *)arg;
1018 
1019 	err = sock->ops->ioctl(sock, cmd, arg);
1020 
1021 	/*
1022 	 * If this ioctl is unknown try to hand it down
1023 	 * to the NIC driver.
1024 	 */
1025 	if (err == -ENOIOCTLCMD)
1026 		err = dev_ioctl(net, cmd, argp);
1027 
1028 	return err;
1029 }
1030 
1031 /*
1032  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1033  *	what to do with it - that's up to the protocol still.
1034  */
1035 
1036 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1037 {
1038 	struct socket *sock;
1039 	struct sock *sk;
1040 	void __user *argp = (void __user *)arg;
1041 	int pid, err;
1042 	struct net *net;
1043 
1044 	sock = file->private_data;
1045 	sk = sock->sk;
1046 	net = sock_net(sk);
1047 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1048 		err = dev_ioctl(net, cmd, argp);
1049 	} else
1050 #ifdef CONFIG_WEXT_CORE
1051 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1052 		err = dev_ioctl(net, cmd, argp);
1053 	} else
1054 #endif
1055 		switch (cmd) {
1056 		case FIOSETOWN:
1057 		case SIOCSPGRP:
1058 			err = -EFAULT;
1059 			if (get_user(pid, (int __user *)argp))
1060 				break;
1061 			err = f_setown(sock->file, pid, 1);
1062 			break;
1063 		case FIOGETOWN:
1064 		case SIOCGPGRP:
1065 			err = put_user(f_getown(sock->file),
1066 				       (int __user *)argp);
1067 			break;
1068 		case SIOCGIFBR:
1069 		case SIOCSIFBR:
1070 		case SIOCBRADDBR:
1071 		case SIOCBRDELBR:
1072 			err = -ENOPKG;
1073 			if (!br_ioctl_hook)
1074 				request_module("bridge");
1075 
1076 			mutex_lock(&br_ioctl_mutex);
1077 			if (br_ioctl_hook)
1078 				err = br_ioctl_hook(net, cmd, argp);
1079 			mutex_unlock(&br_ioctl_mutex);
1080 			break;
1081 		case SIOCGIFVLAN:
1082 		case SIOCSIFVLAN:
1083 			err = -ENOPKG;
1084 			if (!vlan_ioctl_hook)
1085 				request_module("8021q");
1086 
1087 			mutex_lock(&vlan_ioctl_mutex);
1088 			if (vlan_ioctl_hook)
1089 				err = vlan_ioctl_hook(net, argp);
1090 			mutex_unlock(&vlan_ioctl_mutex);
1091 			break;
1092 		case SIOCADDDLCI:
1093 		case SIOCDELDLCI:
1094 			err = -ENOPKG;
1095 			if (!dlci_ioctl_hook)
1096 				request_module("dlci");
1097 
1098 			mutex_lock(&dlci_ioctl_mutex);
1099 			if (dlci_ioctl_hook)
1100 				err = dlci_ioctl_hook(cmd, argp);
1101 			mutex_unlock(&dlci_ioctl_mutex);
1102 			break;
1103 		default:
1104 			err = sock_do_ioctl(net, sock, cmd, arg);
1105 			break;
1106 		}
1107 	return err;
1108 }
1109 
1110 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1111 {
1112 	int err;
1113 	struct socket *sock = NULL;
1114 
1115 	err = security_socket_create(family, type, protocol, 1);
1116 	if (err)
1117 		goto out;
1118 
1119 	sock = sock_alloc();
1120 	if (!sock) {
1121 		err = -ENOMEM;
1122 		goto out;
1123 	}
1124 
1125 	sock->type = type;
1126 	err = security_socket_post_create(sock, family, type, protocol, 1);
1127 	if (err)
1128 		goto out_release;
1129 
1130 out:
1131 	*res = sock;
1132 	return err;
1133 out_release:
1134 	sock_release(sock);
1135 	sock = NULL;
1136 	goto out;
1137 }
1138 EXPORT_SYMBOL(sock_create_lite);
1139 
1140 /* No kernel lock held - perfect */
1141 static unsigned int sock_poll(struct file *file, poll_table *wait)
1142 {
1143 	unsigned int busy_flag = 0;
1144 	struct socket *sock;
1145 
1146 	/*
1147 	 *      We can't return errors to poll, so it's either yes or no.
1148 	 */
1149 	sock = file->private_data;
1150 
1151 	if (sk_can_busy_loop(sock->sk)) {
1152 		/* this socket can poll_ll so tell the system call */
1153 		busy_flag = POLL_BUSY_LOOP;
1154 
1155 		/* once, only if requested by syscall */
1156 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1157 			sk_busy_loop(sock->sk, 1);
1158 	}
1159 
1160 	return busy_flag | sock->ops->poll(file, sock, wait);
1161 }
1162 
1163 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1164 {
1165 	struct socket *sock = file->private_data;
1166 
1167 	return sock->ops->mmap(file, sock, vma);
1168 }
1169 
1170 static int sock_close(struct inode *inode, struct file *filp)
1171 {
1172 	sock_release(SOCKET_I(inode));
1173 	return 0;
1174 }
1175 
1176 /*
1177  *	Update the socket async list
1178  *
1179  *	Fasync_list locking strategy.
1180  *
1181  *	1. fasync_list is modified only under process context socket lock
1182  *	   i.e. under semaphore.
1183  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1184  *	   or under socket lock
1185  */
1186 
1187 static int sock_fasync(int fd, struct file *filp, int on)
1188 {
1189 	struct socket *sock = filp->private_data;
1190 	struct sock *sk = sock->sk;
1191 	struct socket_wq *wq;
1192 
1193 	if (sk == NULL)
1194 		return -EINVAL;
1195 
1196 	lock_sock(sk);
1197 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1198 	fasync_helper(fd, filp, on, &wq->fasync_list);
1199 
1200 	if (!wq->fasync_list)
1201 		sock_reset_flag(sk, SOCK_FASYNC);
1202 	else
1203 		sock_set_flag(sk, SOCK_FASYNC);
1204 
1205 	release_sock(sk);
1206 	return 0;
1207 }
1208 
1209 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1210 
1211 int sock_wake_async(struct socket *sock, int how, int band)
1212 {
1213 	struct socket_wq *wq;
1214 
1215 	if (!sock)
1216 		return -1;
1217 	rcu_read_lock();
1218 	wq = rcu_dereference(sock->wq);
1219 	if (!wq || !wq->fasync_list) {
1220 		rcu_read_unlock();
1221 		return -1;
1222 	}
1223 	switch (how) {
1224 	case SOCK_WAKE_WAITD:
1225 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1226 			break;
1227 		goto call_kill;
1228 	case SOCK_WAKE_SPACE:
1229 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1230 			break;
1231 		/* fall through */
1232 	case SOCK_WAKE_IO:
1233 call_kill:
1234 		kill_fasync(&wq->fasync_list, SIGIO, band);
1235 		break;
1236 	case SOCK_WAKE_URG:
1237 		kill_fasync(&wq->fasync_list, SIGURG, band);
1238 	}
1239 	rcu_read_unlock();
1240 	return 0;
1241 }
1242 EXPORT_SYMBOL(sock_wake_async);
1243 
1244 int __sock_create(struct net *net, int family, int type, int protocol,
1245 			 struct socket **res, int kern)
1246 {
1247 	int err;
1248 	struct socket *sock;
1249 	const struct net_proto_family *pf;
1250 
1251 	/*
1252 	 *      Check protocol is in range
1253 	 */
1254 	if (family < 0 || family >= NPROTO)
1255 		return -EAFNOSUPPORT;
1256 	if (type < 0 || type >= SOCK_MAX)
1257 		return -EINVAL;
1258 
1259 	/* Compatibility.
1260 
1261 	   This uglymoron is moved from INET layer to here to avoid
1262 	   deadlock in module load.
1263 	 */
1264 	if (family == PF_INET && type == SOCK_PACKET) {
1265 		static int warned;
1266 		if (!warned) {
1267 			warned = 1;
1268 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1269 			       current->comm);
1270 		}
1271 		family = PF_PACKET;
1272 	}
1273 
1274 	err = security_socket_create(family, type, protocol, kern);
1275 	if (err)
1276 		return err;
1277 
1278 	/*
1279 	 *	Allocate the socket and allow the family to set things up. if
1280 	 *	the protocol is 0, the family is instructed to select an appropriate
1281 	 *	default.
1282 	 */
1283 	sock = sock_alloc();
1284 	if (!sock) {
1285 		net_warn_ratelimited("socket: no more sockets\n");
1286 		return -ENFILE;	/* Not exactly a match, but its the
1287 				   closest posix thing */
1288 	}
1289 
1290 	sock->type = type;
1291 
1292 #ifdef CONFIG_MODULES
1293 	/* Attempt to load a protocol module if the find failed.
1294 	 *
1295 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1296 	 * requested real, full-featured networking support upon configuration.
1297 	 * Otherwise module support will break!
1298 	 */
1299 	if (rcu_access_pointer(net_families[family]) == NULL)
1300 		request_module("net-pf-%d", family);
1301 #endif
1302 
1303 	rcu_read_lock();
1304 	pf = rcu_dereference(net_families[family]);
1305 	err = -EAFNOSUPPORT;
1306 	if (!pf)
1307 		goto out_release;
1308 
1309 	/*
1310 	 * We will call the ->create function, that possibly is in a loadable
1311 	 * module, so we have to bump that loadable module refcnt first.
1312 	 */
1313 	if (!try_module_get(pf->owner))
1314 		goto out_release;
1315 
1316 	/* Now protected by module ref count */
1317 	rcu_read_unlock();
1318 
1319 	err = pf->create(net, sock, protocol, kern);
1320 	if (err < 0)
1321 		goto out_module_put;
1322 
1323 	/*
1324 	 * Now to bump the refcnt of the [loadable] module that owns this
1325 	 * socket at sock_release time we decrement its refcnt.
1326 	 */
1327 	if (!try_module_get(sock->ops->owner))
1328 		goto out_module_busy;
1329 
1330 	/*
1331 	 * Now that we're done with the ->create function, the [loadable]
1332 	 * module can have its refcnt decremented
1333 	 */
1334 	module_put(pf->owner);
1335 	err = security_socket_post_create(sock, family, type, protocol, kern);
1336 	if (err)
1337 		goto out_sock_release;
1338 	*res = sock;
1339 
1340 	return 0;
1341 
1342 out_module_busy:
1343 	err = -EAFNOSUPPORT;
1344 out_module_put:
1345 	sock->ops = NULL;
1346 	module_put(pf->owner);
1347 out_sock_release:
1348 	sock_release(sock);
1349 	return err;
1350 
1351 out_release:
1352 	rcu_read_unlock();
1353 	goto out_sock_release;
1354 }
1355 EXPORT_SYMBOL(__sock_create);
1356 
1357 int sock_create(int family, int type, int protocol, struct socket **res)
1358 {
1359 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1360 }
1361 EXPORT_SYMBOL(sock_create);
1362 
1363 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1364 {
1365 	return __sock_create(&init_net, family, type, protocol, res, 1);
1366 }
1367 EXPORT_SYMBOL(sock_create_kern);
1368 
1369 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1370 {
1371 	int retval;
1372 	struct socket *sock;
1373 	int flags;
1374 
1375 	/* Check the SOCK_* constants for consistency.  */
1376 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1377 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1378 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1379 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1380 
1381 	flags = type & ~SOCK_TYPE_MASK;
1382 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1383 		return -EINVAL;
1384 	type &= SOCK_TYPE_MASK;
1385 
1386 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1387 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1388 
1389 	retval = sock_create(family, type, protocol, &sock);
1390 	if (retval < 0)
1391 		goto out;
1392 
1393 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1394 	if (retval < 0)
1395 		goto out_release;
1396 
1397 out:
1398 	/* It may be already another descriptor 8) Not kernel problem. */
1399 	return retval;
1400 
1401 out_release:
1402 	sock_release(sock);
1403 	return retval;
1404 }
1405 
1406 /*
1407  *	Create a pair of connected sockets.
1408  */
1409 
1410 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1411 		int __user *, usockvec)
1412 {
1413 	struct socket *sock1, *sock2;
1414 	int fd1, fd2, err;
1415 	struct file *newfile1, *newfile2;
1416 	int flags;
1417 
1418 	flags = type & ~SOCK_TYPE_MASK;
1419 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1420 		return -EINVAL;
1421 	type &= SOCK_TYPE_MASK;
1422 
1423 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1424 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1425 
1426 	/*
1427 	 * Obtain the first socket and check if the underlying protocol
1428 	 * supports the socketpair call.
1429 	 */
1430 
1431 	err = sock_create(family, type, protocol, &sock1);
1432 	if (err < 0)
1433 		goto out;
1434 
1435 	err = sock_create(family, type, protocol, &sock2);
1436 	if (err < 0)
1437 		goto out_release_1;
1438 
1439 	err = sock1->ops->socketpair(sock1, sock2);
1440 	if (err < 0)
1441 		goto out_release_both;
1442 
1443 	fd1 = get_unused_fd_flags(flags);
1444 	if (unlikely(fd1 < 0)) {
1445 		err = fd1;
1446 		goto out_release_both;
1447 	}
1448 
1449 	fd2 = get_unused_fd_flags(flags);
1450 	if (unlikely(fd2 < 0)) {
1451 		err = fd2;
1452 		goto out_put_unused_1;
1453 	}
1454 
1455 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1456 	if (unlikely(IS_ERR(newfile1))) {
1457 		err = PTR_ERR(newfile1);
1458 		goto out_put_unused_both;
1459 	}
1460 
1461 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1462 	if (IS_ERR(newfile2)) {
1463 		err = PTR_ERR(newfile2);
1464 		goto out_fput_1;
1465 	}
1466 
1467 	err = put_user(fd1, &usockvec[0]);
1468 	if (err)
1469 		goto out_fput_both;
1470 
1471 	err = put_user(fd2, &usockvec[1]);
1472 	if (err)
1473 		goto out_fput_both;
1474 
1475 	audit_fd_pair(fd1, fd2);
1476 
1477 	fd_install(fd1, newfile1);
1478 	fd_install(fd2, newfile2);
1479 	/* fd1 and fd2 may be already another descriptors.
1480 	 * Not kernel problem.
1481 	 */
1482 
1483 	return 0;
1484 
1485 out_fput_both:
1486 	fput(newfile2);
1487 	fput(newfile1);
1488 	put_unused_fd(fd2);
1489 	put_unused_fd(fd1);
1490 	goto out;
1491 
1492 out_fput_1:
1493 	fput(newfile1);
1494 	put_unused_fd(fd2);
1495 	put_unused_fd(fd1);
1496 	sock_release(sock2);
1497 	goto out;
1498 
1499 out_put_unused_both:
1500 	put_unused_fd(fd2);
1501 out_put_unused_1:
1502 	put_unused_fd(fd1);
1503 out_release_both:
1504 	sock_release(sock2);
1505 out_release_1:
1506 	sock_release(sock1);
1507 out:
1508 	return err;
1509 }
1510 
1511 /*
1512  *	Bind a name to a socket. Nothing much to do here since it's
1513  *	the protocol's responsibility to handle the local address.
1514  *
1515  *	We move the socket address to kernel space before we call
1516  *	the protocol layer (having also checked the address is ok).
1517  */
1518 
1519 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1520 {
1521 	struct socket *sock;
1522 	struct sockaddr_storage address;
1523 	int err, fput_needed;
1524 
1525 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1526 	if (sock) {
1527 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1528 		if (err >= 0) {
1529 			err = security_socket_bind(sock,
1530 						   (struct sockaddr *)&address,
1531 						   addrlen);
1532 			if (!err)
1533 				err = sock->ops->bind(sock,
1534 						      (struct sockaddr *)
1535 						      &address, addrlen);
1536 		}
1537 		fput_light(sock->file, fput_needed);
1538 	}
1539 	return err;
1540 }
1541 
1542 /*
1543  *	Perform a listen. Basically, we allow the protocol to do anything
1544  *	necessary for a listen, and if that works, we mark the socket as
1545  *	ready for listening.
1546  */
1547 
1548 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1549 {
1550 	struct socket *sock;
1551 	int err, fput_needed;
1552 	int somaxconn;
1553 
1554 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 	if (sock) {
1556 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1557 		if ((unsigned int)backlog > somaxconn)
1558 			backlog = somaxconn;
1559 
1560 		err = security_socket_listen(sock, backlog);
1561 		if (!err)
1562 			err = sock->ops->listen(sock, backlog);
1563 
1564 		fput_light(sock->file, fput_needed);
1565 	}
1566 	return err;
1567 }
1568 
1569 /*
1570  *	For accept, we attempt to create a new socket, set up the link
1571  *	with the client, wake up the client, then return the new
1572  *	connected fd. We collect the address of the connector in kernel
1573  *	space and move it to user at the very end. This is unclean because
1574  *	we open the socket then return an error.
1575  *
1576  *	1003.1g adds the ability to recvmsg() to query connection pending
1577  *	status to recvmsg. We need to add that support in a way thats
1578  *	clean when we restucture accept also.
1579  */
1580 
1581 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1582 		int __user *, upeer_addrlen, int, flags)
1583 {
1584 	struct socket *sock, *newsock;
1585 	struct file *newfile;
1586 	int err, len, newfd, fput_needed;
1587 	struct sockaddr_storage address;
1588 
1589 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1590 		return -EINVAL;
1591 
1592 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1593 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1594 
1595 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596 	if (!sock)
1597 		goto out;
1598 
1599 	err = -ENFILE;
1600 	newsock = sock_alloc();
1601 	if (!newsock)
1602 		goto out_put;
1603 
1604 	newsock->type = sock->type;
1605 	newsock->ops = sock->ops;
1606 
1607 	/*
1608 	 * We don't need try_module_get here, as the listening socket (sock)
1609 	 * has the protocol module (sock->ops->owner) held.
1610 	 */
1611 	__module_get(newsock->ops->owner);
1612 
1613 	newfd = get_unused_fd_flags(flags);
1614 	if (unlikely(newfd < 0)) {
1615 		err = newfd;
1616 		sock_release(newsock);
1617 		goto out_put;
1618 	}
1619 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1620 	if (unlikely(IS_ERR(newfile))) {
1621 		err = PTR_ERR(newfile);
1622 		put_unused_fd(newfd);
1623 		sock_release(newsock);
1624 		goto out_put;
1625 	}
1626 
1627 	err = security_socket_accept(sock, newsock);
1628 	if (err)
1629 		goto out_fd;
1630 
1631 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1632 	if (err < 0)
1633 		goto out_fd;
1634 
1635 	if (upeer_sockaddr) {
1636 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1637 					  &len, 2) < 0) {
1638 			err = -ECONNABORTED;
1639 			goto out_fd;
1640 		}
1641 		err = move_addr_to_user(&address,
1642 					len, upeer_sockaddr, upeer_addrlen);
1643 		if (err < 0)
1644 			goto out_fd;
1645 	}
1646 
1647 	/* File flags are not inherited via accept() unlike another OSes. */
1648 
1649 	fd_install(newfd, newfile);
1650 	err = newfd;
1651 
1652 out_put:
1653 	fput_light(sock->file, fput_needed);
1654 out:
1655 	return err;
1656 out_fd:
1657 	fput(newfile);
1658 	put_unused_fd(newfd);
1659 	goto out_put;
1660 }
1661 
1662 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1663 		int __user *, upeer_addrlen)
1664 {
1665 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1666 }
1667 
1668 /*
1669  *	Attempt to connect to a socket with the server address.  The address
1670  *	is in user space so we verify it is OK and move it to kernel space.
1671  *
1672  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1673  *	break bindings
1674  *
1675  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1676  *	other SEQPACKET protocols that take time to connect() as it doesn't
1677  *	include the -EINPROGRESS status for such sockets.
1678  */
1679 
1680 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1681 		int, addrlen)
1682 {
1683 	struct socket *sock;
1684 	struct sockaddr_storage address;
1685 	int err, fput_needed;
1686 
1687 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1688 	if (!sock)
1689 		goto out;
1690 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1691 	if (err < 0)
1692 		goto out_put;
1693 
1694 	err =
1695 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1696 	if (err)
1697 		goto out_put;
1698 
1699 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1700 				 sock->file->f_flags);
1701 out_put:
1702 	fput_light(sock->file, fput_needed);
1703 out:
1704 	return err;
1705 }
1706 
1707 /*
1708  *	Get the local address ('name') of a socket object. Move the obtained
1709  *	name to user space.
1710  */
1711 
1712 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1713 		int __user *, usockaddr_len)
1714 {
1715 	struct socket *sock;
1716 	struct sockaddr_storage address;
1717 	int len, err, fput_needed;
1718 
1719 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 	if (!sock)
1721 		goto out;
1722 
1723 	err = security_socket_getsockname(sock);
1724 	if (err)
1725 		goto out_put;
1726 
1727 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1728 	if (err)
1729 		goto out_put;
1730 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1731 
1732 out_put:
1733 	fput_light(sock->file, fput_needed);
1734 out:
1735 	return err;
1736 }
1737 
1738 /*
1739  *	Get the remote address ('name') of a socket object. Move the obtained
1740  *	name to user space.
1741  */
1742 
1743 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1744 		int __user *, usockaddr_len)
1745 {
1746 	struct socket *sock;
1747 	struct sockaddr_storage address;
1748 	int len, err, fput_needed;
1749 
1750 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1751 	if (sock != NULL) {
1752 		err = security_socket_getpeername(sock);
1753 		if (err) {
1754 			fput_light(sock->file, fput_needed);
1755 			return err;
1756 		}
1757 
1758 		err =
1759 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1760 				       1);
1761 		if (!err)
1762 			err = move_addr_to_user(&address, len, usockaddr,
1763 						usockaddr_len);
1764 		fput_light(sock->file, fput_needed);
1765 	}
1766 	return err;
1767 }
1768 
1769 /*
1770  *	Send a datagram to a given address. We move the address into kernel
1771  *	space and check the user space data area is readable before invoking
1772  *	the protocol.
1773  */
1774 
1775 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1776 		unsigned int, flags, struct sockaddr __user *, addr,
1777 		int, addr_len)
1778 {
1779 	struct socket *sock;
1780 	struct sockaddr_storage address;
1781 	int err;
1782 	struct msghdr msg;
1783 	struct iovec iov;
1784 	int fput_needed;
1785 
1786 	if (len > INT_MAX)
1787 		len = INT_MAX;
1788 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 	if (!sock)
1790 		goto out;
1791 
1792 	iov.iov_base = buff;
1793 	iov.iov_len = len;
1794 	msg.msg_name = NULL;
1795 	msg.msg_iov = &iov;
1796 	msg.msg_iovlen = 1;
1797 	msg.msg_control = NULL;
1798 	msg.msg_controllen = 0;
1799 	msg.msg_namelen = 0;
1800 	if (addr) {
1801 		err = move_addr_to_kernel(addr, addr_len, &address);
1802 		if (err < 0)
1803 			goto out_put;
1804 		msg.msg_name = (struct sockaddr *)&address;
1805 		msg.msg_namelen = addr_len;
1806 	}
1807 	if (sock->file->f_flags & O_NONBLOCK)
1808 		flags |= MSG_DONTWAIT;
1809 	msg.msg_flags = flags;
1810 	err = sock_sendmsg(sock, &msg, len);
1811 
1812 out_put:
1813 	fput_light(sock->file, fput_needed);
1814 out:
1815 	return err;
1816 }
1817 
1818 /*
1819  *	Send a datagram down a socket.
1820  */
1821 
1822 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1823 		unsigned int, flags)
1824 {
1825 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1826 }
1827 
1828 /*
1829  *	Receive a frame from the socket and optionally record the address of the
1830  *	sender. We verify the buffers are writable and if needed move the
1831  *	sender address from kernel to user space.
1832  */
1833 
1834 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1835 		unsigned int, flags, struct sockaddr __user *, addr,
1836 		int __user *, addr_len)
1837 {
1838 	struct socket *sock;
1839 	struct iovec iov;
1840 	struct msghdr msg;
1841 	struct sockaddr_storage address;
1842 	int err, err2;
1843 	int fput_needed;
1844 
1845 	if (size > INT_MAX)
1846 		size = INT_MAX;
1847 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1848 	if (!sock)
1849 		goto out;
1850 
1851 	msg.msg_control = NULL;
1852 	msg.msg_controllen = 0;
1853 	msg.msg_iovlen = 1;
1854 	msg.msg_iov = &iov;
1855 	iov.iov_len = size;
1856 	iov.iov_base = ubuf;
1857 	/* Save some cycles and don't copy the address if not needed */
1858 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1859 	/* We assume all kernel code knows the size of sockaddr_storage */
1860 	msg.msg_namelen = 0;
1861 	if (sock->file->f_flags & O_NONBLOCK)
1862 		flags |= MSG_DONTWAIT;
1863 	err = sock_recvmsg(sock, &msg, size, flags);
1864 
1865 	if (err >= 0 && addr != NULL) {
1866 		err2 = move_addr_to_user(&address,
1867 					 msg.msg_namelen, addr, addr_len);
1868 		if (err2 < 0)
1869 			err = err2;
1870 	}
1871 
1872 	fput_light(sock->file, fput_needed);
1873 out:
1874 	return err;
1875 }
1876 
1877 /*
1878  *	Receive a datagram from a socket.
1879  */
1880 
1881 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1882 			 unsigned int flags)
1883 {
1884 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1885 }
1886 
1887 /*
1888  *	Set a socket option. Because we don't know the option lengths we have
1889  *	to pass the user mode parameter for the protocols to sort out.
1890  */
1891 
1892 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1893 		char __user *, optval, int, optlen)
1894 {
1895 	int err, fput_needed;
1896 	struct socket *sock;
1897 
1898 	if (optlen < 0)
1899 		return -EINVAL;
1900 
1901 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1902 	if (sock != NULL) {
1903 		err = security_socket_setsockopt(sock, level, optname);
1904 		if (err)
1905 			goto out_put;
1906 
1907 		if (level == SOL_SOCKET)
1908 			err =
1909 			    sock_setsockopt(sock, level, optname, optval,
1910 					    optlen);
1911 		else
1912 			err =
1913 			    sock->ops->setsockopt(sock, level, optname, optval,
1914 						  optlen);
1915 out_put:
1916 		fput_light(sock->file, fput_needed);
1917 	}
1918 	return err;
1919 }
1920 
1921 /*
1922  *	Get a socket option. Because we don't know the option lengths we have
1923  *	to pass a user mode parameter for the protocols to sort out.
1924  */
1925 
1926 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1927 		char __user *, optval, int __user *, optlen)
1928 {
1929 	int err, fput_needed;
1930 	struct socket *sock;
1931 
1932 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1933 	if (sock != NULL) {
1934 		err = security_socket_getsockopt(sock, level, optname);
1935 		if (err)
1936 			goto out_put;
1937 
1938 		if (level == SOL_SOCKET)
1939 			err =
1940 			    sock_getsockopt(sock, level, optname, optval,
1941 					    optlen);
1942 		else
1943 			err =
1944 			    sock->ops->getsockopt(sock, level, optname, optval,
1945 						  optlen);
1946 out_put:
1947 		fput_light(sock->file, fput_needed);
1948 	}
1949 	return err;
1950 }
1951 
1952 /*
1953  *	Shutdown a socket.
1954  */
1955 
1956 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1957 {
1958 	int err, fput_needed;
1959 	struct socket *sock;
1960 
1961 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 	if (sock != NULL) {
1963 		err = security_socket_shutdown(sock, how);
1964 		if (!err)
1965 			err = sock->ops->shutdown(sock, how);
1966 		fput_light(sock->file, fput_needed);
1967 	}
1968 	return err;
1969 }
1970 
1971 /* A couple of helpful macros for getting the address of the 32/64 bit
1972  * fields which are the same type (int / unsigned) on our platforms.
1973  */
1974 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1975 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1976 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1977 
1978 struct used_address {
1979 	struct sockaddr_storage name;
1980 	unsigned int name_len;
1981 };
1982 
1983 static int copy_msghdr_from_user(struct msghdr *kmsg,
1984 				 struct msghdr __user *umsg)
1985 {
1986 	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1987 		return -EFAULT;
1988 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1989 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1990 	return 0;
1991 }
1992 
1993 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1994 			 struct msghdr *msg_sys, unsigned int flags,
1995 			 struct used_address *used_address)
1996 {
1997 	struct compat_msghdr __user *msg_compat =
1998 	    (struct compat_msghdr __user *)msg;
1999 	struct sockaddr_storage address;
2000 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2001 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2002 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2003 	/* 20 is size of ipv6_pktinfo */
2004 	unsigned char *ctl_buf = ctl;
2005 	int err, ctl_len, total_len;
2006 
2007 	err = -EFAULT;
2008 	if (MSG_CMSG_COMPAT & flags) {
2009 		if (get_compat_msghdr(msg_sys, msg_compat))
2010 			return -EFAULT;
2011 	} else {
2012 		err = copy_msghdr_from_user(msg_sys, msg);
2013 		if (err)
2014 			return err;
2015 	}
2016 
2017 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2018 		err = -EMSGSIZE;
2019 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2020 			goto out;
2021 		err = -ENOMEM;
2022 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2023 			      GFP_KERNEL);
2024 		if (!iov)
2025 			goto out;
2026 	}
2027 
2028 	/* This will also move the address data into kernel space */
2029 	if (MSG_CMSG_COMPAT & flags) {
2030 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2031 	} else
2032 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2033 	if (err < 0)
2034 		goto out_freeiov;
2035 	total_len = err;
2036 
2037 	err = -ENOBUFS;
2038 
2039 	if (msg_sys->msg_controllen > INT_MAX)
2040 		goto out_freeiov;
2041 	ctl_len = msg_sys->msg_controllen;
2042 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2043 		err =
2044 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2045 						     sizeof(ctl));
2046 		if (err)
2047 			goto out_freeiov;
2048 		ctl_buf = msg_sys->msg_control;
2049 		ctl_len = msg_sys->msg_controllen;
2050 	} else if (ctl_len) {
2051 		if (ctl_len > sizeof(ctl)) {
2052 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2053 			if (ctl_buf == NULL)
2054 				goto out_freeiov;
2055 		}
2056 		err = -EFAULT;
2057 		/*
2058 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2059 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2060 		 * checking falls down on this.
2061 		 */
2062 		if (copy_from_user(ctl_buf,
2063 				   (void __user __force *)msg_sys->msg_control,
2064 				   ctl_len))
2065 			goto out_freectl;
2066 		msg_sys->msg_control = ctl_buf;
2067 	}
2068 	msg_sys->msg_flags = flags;
2069 
2070 	if (sock->file->f_flags & O_NONBLOCK)
2071 		msg_sys->msg_flags |= MSG_DONTWAIT;
2072 	/*
2073 	 * If this is sendmmsg() and current destination address is same as
2074 	 * previously succeeded address, omit asking LSM's decision.
2075 	 * used_address->name_len is initialized to UINT_MAX so that the first
2076 	 * destination address never matches.
2077 	 */
2078 	if (used_address && msg_sys->msg_name &&
2079 	    used_address->name_len == msg_sys->msg_namelen &&
2080 	    !memcmp(&used_address->name, msg_sys->msg_name,
2081 		    used_address->name_len)) {
2082 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2083 		goto out_freectl;
2084 	}
2085 	err = sock_sendmsg(sock, msg_sys, total_len);
2086 	/*
2087 	 * If this is sendmmsg() and sending to current destination address was
2088 	 * successful, remember it.
2089 	 */
2090 	if (used_address && err >= 0) {
2091 		used_address->name_len = msg_sys->msg_namelen;
2092 		if (msg_sys->msg_name)
2093 			memcpy(&used_address->name, msg_sys->msg_name,
2094 			       used_address->name_len);
2095 	}
2096 
2097 out_freectl:
2098 	if (ctl_buf != ctl)
2099 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2100 out_freeiov:
2101 	if (iov != iovstack)
2102 		kfree(iov);
2103 out:
2104 	return err;
2105 }
2106 
2107 /*
2108  *	BSD sendmsg interface
2109  */
2110 
2111 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2112 {
2113 	int fput_needed, err;
2114 	struct msghdr msg_sys;
2115 	struct socket *sock;
2116 
2117 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2118 	if (!sock)
2119 		goto out;
2120 
2121 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2122 
2123 	fput_light(sock->file, fput_needed);
2124 out:
2125 	return err;
2126 }
2127 
2128 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2129 {
2130 	if (flags & MSG_CMSG_COMPAT)
2131 		return -EINVAL;
2132 	return __sys_sendmsg(fd, msg, flags);
2133 }
2134 
2135 /*
2136  *	Linux sendmmsg interface
2137  */
2138 
2139 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2140 		   unsigned int flags)
2141 {
2142 	int fput_needed, err, datagrams;
2143 	struct socket *sock;
2144 	struct mmsghdr __user *entry;
2145 	struct compat_mmsghdr __user *compat_entry;
2146 	struct msghdr msg_sys;
2147 	struct used_address used_address;
2148 
2149 	if (vlen > UIO_MAXIOV)
2150 		vlen = UIO_MAXIOV;
2151 
2152 	datagrams = 0;
2153 
2154 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2155 	if (!sock)
2156 		return err;
2157 
2158 	used_address.name_len = UINT_MAX;
2159 	entry = mmsg;
2160 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2161 	err = 0;
2162 
2163 	while (datagrams < vlen) {
2164 		if (MSG_CMSG_COMPAT & flags) {
2165 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2166 					     &msg_sys, flags, &used_address);
2167 			if (err < 0)
2168 				break;
2169 			err = __put_user(err, &compat_entry->msg_len);
2170 			++compat_entry;
2171 		} else {
2172 			err = ___sys_sendmsg(sock,
2173 					     (struct msghdr __user *)entry,
2174 					     &msg_sys, flags, &used_address);
2175 			if (err < 0)
2176 				break;
2177 			err = put_user(err, &entry->msg_len);
2178 			++entry;
2179 		}
2180 
2181 		if (err)
2182 			break;
2183 		++datagrams;
2184 	}
2185 
2186 	fput_light(sock->file, fput_needed);
2187 
2188 	/* We only return an error if no datagrams were able to be sent */
2189 	if (datagrams != 0)
2190 		return datagrams;
2191 
2192 	return err;
2193 }
2194 
2195 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2196 		unsigned int, vlen, unsigned int, flags)
2197 {
2198 	if (flags & MSG_CMSG_COMPAT)
2199 		return -EINVAL;
2200 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2201 }
2202 
2203 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2204 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2205 {
2206 	struct compat_msghdr __user *msg_compat =
2207 	    (struct compat_msghdr __user *)msg;
2208 	struct iovec iovstack[UIO_FASTIOV];
2209 	struct iovec *iov = iovstack;
2210 	unsigned long cmsg_ptr;
2211 	int err, total_len, len;
2212 
2213 	/* kernel mode address */
2214 	struct sockaddr_storage addr;
2215 
2216 	/* user mode address pointers */
2217 	struct sockaddr __user *uaddr;
2218 	int __user *uaddr_len;
2219 
2220 	if (MSG_CMSG_COMPAT & flags) {
2221 		if (get_compat_msghdr(msg_sys, msg_compat))
2222 			return -EFAULT;
2223 	} else {
2224 		err = copy_msghdr_from_user(msg_sys, msg);
2225 		if (err)
2226 			return err;
2227 	}
2228 
2229 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2230 		err = -EMSGSIZE;
2231 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2232 			goto out;
2233 		err = -ENOMEM;
2234 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2235 			      GFP_KERNEL);
2236 		if (!iov)
2237 			goto out;
2238 	}
2239 
2240 	/* Save the user-mode address (verify_iovec will change the
2241 	 * kernel msghdr to use the kernel address space)
2242 	 */
2243 	uaddr = (__force void __user *)msg_sys->msg_name;
2244 	uaddr_len = COMPAT_NAMELEN(msg);
2245 	if (MSG_CMSG_COMPAT & flags)
2246 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2247 	else
2248 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2249 	if (err < 0)
2250 		goto out_freeiov;
2251 	total_len = err;
2252 
2253 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2254 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2255 
2256 	/* We assume all kernel code knows the size of sockaddr_storage */
2257 	msg_sys->msg_namelen = 0;
2258 
2259 	if (sock->file->f_flags & O_NONBLOCK)
2260 		flags |= MSG_DONTWAIT;
2261 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2262 							  total_len, flags);
2263 	if (err < 0)
2264 		goto out_freeiov;
2265 	len = err;
2266 
2267 	if (uaddr != NULL) {
2268 		err = move_addr_to_user(&addr,
2269 					msg_sys->msg_namelen, uaddr,
2270 					uaddr_len);
2271 		if (err < 0)
2272 			goto out_freeiov;
2273 	}
2274 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2275 			 COMPAT_FLAGS(msg));
2276 	if (err)
2277 		goto out_freeiov;
2278 	if (MSG_CMSG_COMPAT & flags)
2279 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2280 				 &msg_compat->msg_controllen);
2281 	else
2282 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2283 				 &msg->msg_controllen);
2284 	if (err)
2285 		goto out_freeiov;
2286 	err = len;
2287 
2288 out_freeiov:
2289 	if (iov != iovstack)
2290 		kfree(iov);
2291 out:
2292 	return err;
2293 }
2294 
2295 /*
2296  *	BSD recvmsg interface
2297  */
2298 
2299 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2300 {
2301 	int fput_needed, err;
2302 	struct msghdr msg_sys;
2303 	struct socket *sock;
2304 
2305 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2306 	if (!sock)
2307 		goto out;
2308 
2309 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2310 
2311 	fput_light(sock->file, fput_needed);
2312 out:
2313 	return err;
2314 }
2315 
2316 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2317 		unsigned int, flags)
2318 {
2319 	if (flags & MSG_CMSG_COMPAT)
2320 		return -EINVAL;
2321 	return __sys_recvmsg(fd, msg, flags);
2322 }
2323 
2324 /*
2325  *     Linux recvmmsg interface
2326  */
2327 
2328 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2329 		   unsigned int flags, struct timespec *timeout)
2330 {
2331 	int fput_needed, err, datagrams;
2332 	struct socket *sock;
2333 	struct mmsghdr __user *entry;
2334 	struct compat_mmsghdr __user *compat_entry;
2335 	struct msghdr msg_sys;
2336 	struct timespec end_time;
2337 
2338 	if (timeout &&
2339 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2340 				    timeout->tv_nsec))
2341 		return -EINVAL;
2342 
2343 	datagrams = 0;
2344 
2345 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2346 	if (!sock)
2347 		return err;
2348 
2349 	err = sock_error(sock->sk);
2350 	if (err)
2351 		goto out_put;
2352 
2353 	entry = mmsg;
2354 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2355 
2356 	while (datagrams < vlen) {
2357 		/*
2358 		 * No need to ask LSM for more than the first datagram.
2359 		 */
2360 		if (MSG_CMSG_COMPAT & flags) {
2361 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2362 					     &msg_sys, flags & ~MSG_WAITFORONE,
2363 					     datagrams);
2364 			if (err < 0)
2365 				break;
2366 			err = __put_user(err, &compat_entry->msg_len);
2367 			++compat_entry;
2368 		} else {
2369 			err = ___sys_recvmsg(sock,
2370 					     (struct msghdr __user *)entry,
2371 					     &msg_sys, flags & ~MSG_WAITFORONE,
2372 					     datagrams);
2373 			if (err < 0)
2374 				break;
2375 			err = put_user(err, &entry->msg_len);
2376 			++entry;
2377 		}
2378 
2379 		if (err)
2380 			break;
2381 		++datagrams;
2382 
2383 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2384 		if (flags & MSG_WAITFORONE)
2385 			flags |= MSG_DONTWAIT;
2386 
2387 		if (timeout) {
2388 			ktime_get_ts(timeout);
2389 			*timeout = timespec_sub(end_time, *timeout);
2390 			if (timeout->tv_sec < 0) {
2391 				timeout->tv_sec = timeout->tv_nsec = 0;
2392 				break;
2393 			}
2394 
2395 			/* Timeout, return less than vlen datagrams */
2396 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2397 				break;
2398 		}
2399 
2400 		/* Out of band data, return right away */
2401 		if (msg_sys.msg_flags & MSG_OOB)
2402 			break;
2403 	}
2404 
2405 out_put:
2406 	fput_light(sock->file, fput_needed);
2407 
2408 	if (err == 0)
2409 		return datagrams;
2410 
2411 	if (datagrams != 0) {
2412 		/*
2413 		 * We may return less entries than requested (vlen) if the
2414 		 * sock is non block and there aren't enough datagrams...
2415 		 */
2416 		if (err != -EAGAIN) {
2417 			/*
2418 			 * ... or  if recvmsg returns an error after we
2419 			 * received some datagrams, where we record the
2420 			 * error to return on the next call or if the
2421 			 * app asks about it using getsockopt(SO_ERROR).
2422 			 */
2423 			sock->sk->sk_err = -err;
2424 		}
2425 
2426 		return datagrams;
2427 	}
2428 
2429 	return err;
2430 }
2431 
2432 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2433 		unsigned int, vlen, unsigned int, flags,
2434 		struct timespec __user *, timeout)
2435 {
2436 	int datagrams;
2437 	struct timespec timeout_sys;
2438 
2439 	if (flags & MSG_CMSG_COMPAT)
2440 		return -EINVAL;
2441 
2442 	if (!timeout)
2443 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2444 
2445 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2446 		return -EFAULT;
2447 
2448 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2449 
2450 	if (datagrams > 0 &&
2451 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2452 		datagrams = -EFAULT;
2453 
2454 	return datagrams;
2455 }
2456 
2457 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2458 /* Argument list sizes for sys_socketcall */
2459 #define AL(x) ((x) * sizeof(unsigned long))
2460 static const unsigned char nargs[21] = {
2461 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2462 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2463 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2464 	AL(4), AL(5), AL(4)
2465 };
2466 
2467 #undef AL
2468 
2469 /*
2470  *	System call vectors.
2471  *
2472  *	Argument checking cleaned up. Saved 20% in size.
2473  *  This function doesn't need to set the kernel lock because
2474  *  it is set by the callees.
2475  */
2476 
2477 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2478 {
2479 	unsigned long a[AUDITSC_ARGS];
2480 	unsigned long a0, a1;
2481 	int err;
2482 	unsigned int len;
2483 
2484 	if (call < 1 || call > SYS_SENDMMSG)
2485 		return -EINVAL;
2486 
2487 	len = nargs[call];
2488 	if (len > sizeof(a))
2489 		return -EINVAL;
2490 
2491 	/* copy_from_user should be SMP safe. */
2492 	if (copy_from_user(a, args, len))
2493 		return -EFAULT;
2494 
2495 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2496 	if (err)
2497 		return err;
2498 
2499 	a0 = a[0];
2500 	a1 = a[1];
2501 
2502 	switch (call) {
2503 	case SYS_SOCKET:
2504 		err = sys_socket(a0, a1, a[2]);
2505 		break;
2506 	case SYS_BIND:
2507 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2508 		break;
2509 	case SYS_CONNECT:
2510 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2511 		break;
2512 	case SYS_LISTEN:
2513 		err = sys_listen(a0, a1);
2514 		break;
2515 	case SYS_ACCEPT:
2516 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2517 				  (int __user *)a[2], 0);
2518 		break;
2519 	case SYS_GETSOCKNAME:
2520 		err =
2521 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2522 				    (int __user *)a[2]);
2523 		break;
2524 	case SYS_GETPEERNAME:
2525 		err =
2526 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2527 				    (int __user *)a[2]);
2528 		break;
2529 	case SYS_SOCKETPAIR:
2530 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2531 		break;
2532 	case SYS_SEND:
2533 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2534 		break;
2535 	case SYS_SENDTO:
2536 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2537 				 (struct sockaddr __user *)a[4], a[5]);
2538 		break;
2539 	case SYS_RECV:
2540 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2541 		break;
2542 	case SYS_RECVFROM:
2543 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2544 				   (struct sockaddr __user *)a[4],
2545 				   (int __user *)a[5]);
2546 		break;
2547 	case SYS_SHUTDOWN:
2548 		err = sys_shutdown(a0, a1);
2549 		break;
2550 	case SYS_SETSOCKOPT:
2551 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2552 		break;
2553 	case SYS_GETSOCKOPT:
2554 		err =
2555 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2556 				   (int __user *)a[4]);
2557 		break;
2558 	case SYS_SENDMSG:
2559 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2560 		break;
2561 	case SYS_SENDMMSG:
2562 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2563 		break;
2564 	case SYS_RECVMSG:
2565 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2566 		break;
2567 	case SYS_RECVMMSG:
2568 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2569 				   (struct timespec __user *)a[4]);
2570 		break;
2571 	case SYS_ACCEPT4:
2572 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2573 				  (int __user *)a[2], a[3]);
2574 		break;
2575 	default:
2576 		err = -EINVAL;
2577 		break;
2578 	}
2579 	return err;
2580 }
2581 
2582 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2583 
2584 /**
2585  *	sock_register - add a socket protocol handler
2586  *	@ops: description of protocol
2587  *
2588  *	This function is called by a protocol handler that wants to
2589  *	advertise its address family, and have it linked into the
2590  *	socket interface. The value ops->family coresponds to the
2591  *	socket system call protocol family.
2592  */
2593 int sock_register(const struct net_proto_family *ops)
2594 {
2595 	int err;
2596 
2597 	if (ops->family >= NPROTO) {
2598 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2599 		       NPROTO);
2600 		return -ENOBUFS;
2601 	}
2602 
2603 	spin_lock(&net_family_lock);
2604 	if (rcu_dereference_protected(net_families[ops->family],
2605 				      lockdep_is_held(&net_family_lock)))
2606 		err = -EEXIST;
2607 	else {
2608 		rcu_assign_pointer(net_families[ops->family], ops);
2609 		err = 0;
2610 	}
2611 	spin_unlock(&net_family_lock);
2612 
2613 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2614 	return err;
2615 }
2616 EXPORT_SYMBOL(sock_register);
2617 
2618 /**
2619  *	sock_unregister - remove a protocol handler
2620  *	@family: protocol family to remove
2621  *
2622  *	This function is called by a protocol handler that wants to
2623  *	remove its address family, and have it unlinked from the
2624  *	new socket creation.
2625  *
2626  *	If protocol handler is a module, then it can use module reference
2627  *	counts to protect against new references. If protocol handler is not
2628  *	a module then it needs to provide its own protection in
2629  *	the ops->create routine.
2630  */
2631 void sock_unregister(int family)
2632 {
2633 	BUG_ON(family < 0 || family >= NPROTO);
2634 
2635 	spin_lock(&net_family_lock);
2636 	RCU_INIT_POINTER(net_families[family], NULL);
2637 	spin_unlock(&net_family_lock);
2638 
2639 	synchronize_rcu();
2640 
2641 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2642 }
2643 EXPORT_SYMBOL(sock_unregister);
2644 
2645 static int __init sock_init(void)
2646 {
2647 	int err;
2648 	/*
2649 	 *      Initialize the network sysctl infrastructure.
2650 	 */
2651 	err = net_sysctl_init();
2652 	if (err)
2653 		goto out;
2654 
2655 	/*
2656 	 *      Initialize skbuff SLAB cache
2657 	 */
2658 	skb_init();
2659 
2660 	/*
2661 	 *      Initialize the protocols module.
2662 	 */
2663 
2664 	init_inodecache();
2665 
2666 	err = register_filesystem(&sock_fs_type);
2667 	if (err)
2668 		goto out_fs;
2669 	sock_mnt = kern_mount(&sock_fs_type);
2670 	if (IS_ERR(sock_mnt)) {
2671 		err = PTR_ERR(sock_mnt);
2672 		goto out_mount;
2673 	}
2674 
2675 	/* The real protocol initialization is performed in later initcalls.
2676 	 */
2677 
2678 #ifdef CONFIG_NETFILTER
2679 	err = netfilter_init();
2680 	if (err)
2681 		goto out;
2682 #endif
2683 
2684 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2685 	skb_timestamping_init();
2686 #endif
2687 
2688 out:
2689 	return err;
2690 
2691 out_mount:
2692 	unregister_filesystem(&sock_fs_type);
2693 out_fs:
2694 	goto out;
2695 }
2696 
2697 core_initcall(sock_init);	/* early initcall */
2698 
2699 #ifdef CONFIG_PROC_FS
2700 void socket_seq_show(struct seq_file *seq)
2701 {
2702 	int cpu;
2703 	int counter = 0;
2704 
2705 	for_each_possible_cpu(cpu)
2706 	    counter += per_cpu(sockets_in_use, cpu);
2707 
2708 	/* It can be negative, by the way. 8) */
2709 	if (counter < 0)
2710 		counter = 0;
2711 
2712 	seq_printf(seq, "sockets: used %d\n", counter);
2713 }
2714 #endif				/* CONFIG_PROC_FS */
2715 
2716 #ifdef CONFIG_COMPAT
2717 static int do_siocgstamp(struct net *net, struct socket *sock,
2718 			 unsigned int cmd, void __user *up)
2719 {
2720 	mm_segment_t old_fs = get_fs();
2721 	struct timeval ktv;
2722 	int err;
2723 
2724 	set_fs(KERNEL_DS);
2725 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2726 	set_fs(old_fs);
2727 	if (!err)
2728 		err = compat_put_timeval(&ktv, up);
2729 
2730 	return err;
2731 }
2732 
2733 static int do_siocgstampns(struct net *net, struct socket *sock,
2734 			   unsigned int cmd, void __user *up)
2735 {
2736 	mm_segment_t old_fs = get_fs();
2737 	struct timespec kts;
2738 	int err;
2739 
2740 	set_fs(KERNEL_DS);
2741 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2742 	set_fs(old_fs);
2743 	if (!err)
2744 		err = compat_put_timespec(&kts, up);
2745 
2746 	return err;
2747 }
2748 
2749 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2750 {
2751 	struct ifreq __user *uifr;
2752 	int err;
2753 
2754 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2755 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2756 		return -EFAULT;
2757 
2758 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2759 	if (err)
2760 		return err;
2761 
2762 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2763 		return -EFAULT;
2764 
2765 	return 0;
2766 }
2767 
2768 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2769 {
2770 	struct compat_ifconf ifc32;
2771 	struct ifconf ifc;
2772 	struct ifconf __user *uifc;
2773 	struct compat_ifreq __user *ifr32;
2774 	struct ifreq __user *ifr;
2775 	unsigned int i, j;
2776 	int err;
2777 
2778 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2779 		return -EFAULT;
2780 
2781 	memset(&ifc, 0, sizeof(ifc));
2782 	if (ifc32.ifcbuf == 0) {
2783 		ifc32.ifc_len = 0;
2784 		ifc.ifc_len = 0;
2785 		ifc.ifc_req = NULL;
2786 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2787 	} else {
2788 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2789 			sizeof(struct ifreq);
2790 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2791 		ifc.ifc_len = len;
2792 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2793 		ifr32 = compat_ptr(ifc32.ifcbuf);
2794 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2795 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2796 				return -EFAULT;
2797 			ifr++;
2798 			ifr32++;
2799 		}
2800 	}
2801 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2802 		return -EFAULT;
2803 
2804 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2805 	if (err)
2806 		return err;
2807 
2808 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2809 		return -EFAULT;
2810 
2811 	ifr = ifc.ifc_req;
2812 	ifr32 = compat_ptr(ifc32.ifcbuf);
2813 	for (i = 0, j = 0;
2814 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2815 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2816 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2817 			return -EFAULT;
2818 		ifr32++;
2819 		ifr++;
2820 	}
2821 
2822 	if (ifc32.ifcbuf == 0) {
2823 		/* Translate from 64-bit structure multiple to
2824 		 * a 32-bit one.
2825 		 */
2826 		i = ifc.ifc_len;
2827 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2828 		ifc32.ifc_len = i;
2829 	} else {
2830 		ifc32.ifc_len = i;
2831 	}
2832 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2833 		return -EFAULT;
2834 
2835 	return 0;
2836 }
2837 
2838 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2839 {
2840 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2841 	bool convert_in = false, convert_out = false;
2842 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2843 	struct ethtool_rxnfc __user *rxnfc;
2844 	struct ifreq __user *ifr;
2845 	u32 rule_cnt = 0, actual_rule_cnt;
2846 	u32 ethcmd;
2847 	u32 data;
2848 	int ret;
2849 
2850 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2851 		return -EFAULT;
2852 
2853 	compat_rxnfc = compat_ptr(data);
2854 
2855 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2856 		return -EFAULT;
2857 
2858 	/* Most ethtool structures are defined without padding.
2859 	 * Unfortunately struct ethtool_rxnfc is an exception.
2860 	 */
2861 	switch (ethcmd) {
2862 	default:
2863 		break;
2864 	case ETHTOOL_GRXCLSRLALL:
2865 		/* Buffer size is variable */
2866 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2867 			return -EFAULT;
2868 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2869 			return -ENOMEM;
2870 		buf_size += rule_cnt * sizeof(u32);
2871 		/* fall through */
2872 	case ETHTOOL_GRXRINGS:
2873 	case ETHTOOL_GRXCLSRLCNT:
2874 	case ETHTOOL_GRXCLSRULE:
2875 	case ETHTOOL_SRXCLSRLINS:
2876 		convert_out = true;
2877 		/* fall through */
2878 	case ETHTOOL_SRXCLSRLDEL:
2879 		buf_size += sizeof(struct ethtool_rxnfc);
2880 		convert_in = true;
2881 		break;
2882 	}
2883 
2884 	ifr = compat_alloc_user_space(buf_size);
2885 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2886 
2887 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2888 		return -EFAULT;
2889 
2890 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2891 		     &ifr->ifr_ifru.ifru_data))
2892 		return -EFAULT;
2893 
2894 	if (convert_in) {
2895 		/* We expect there to be holes between fs.m_ext and
2896 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2897 		 */
2898 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2899 			     sizeof(compat_rxnfc->fs.m_ext) !=
2900 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2901 			     sizeof(rxnfc->fs.m_ext));
2902 		BUILD_BUG_ON(
2903 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2904 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2905 			offsetof(struct ethtool_rxnfc, fs.location) -
2906 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2907 
2908 		if (copy_in_user(rxnfc, compat_rxnfc,
2909 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2910 				 (void __user *)rxnfc) ||
2911 		    copy_in_user(&rxnfc->fs.ring_cookie,
2912 				 &compat_rxnfc->fs.ring_cookie,
2913 				 (void __user *)(&rxnfc->fs.location + 1) -
2914 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2915 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2916 				 sizeof(rxnfc->rule_cnt)))
2917 			return -EFAULT;
2918 	}
2919 
2920 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2921 	if (ret)
2922 		return ret;
2923 
2924 	if (convert_out) {
2925 		if (copy_in_user(compat_rxnfc, rxnfc,
2926 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2927 				 (const void __user *)rxnfc) ||
2928 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2929 				 &rxnfc->fs.ring_cookie,
2930 				 (const void __user *)(&rxnfc->fs.location + 1) -
2931 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2932 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2933 				 sizeof(rxnfc->rule_cnt)))
2934 			return -EFAULT;
2935 
2936 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2937 			/* As an optimisation, we only copy the actual
2938 			 * number of rules that the underlying
2939 			 * function returned.  Since Mallory might
2940 			 * change the rule count in user memory, we
2941 			 * check that it is less than the rule count
2942 			 * originally given (as the user buffer size),
2943 			 * which has been range-checked.
2944 			 */
2945 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2946 				return -EFAULT;
2947 			if (actual_rule_cnt < rule_cnt)
2948 				rule_cnt = actual_rule_cnt;
2949 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2950 					 &rxnfc->rule_locs[0],
2951 					 rule_cnt * sizeof(u32)))
2952 				return -EFAULT;
2953 		}
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2960 {
2961 	void __user *uptr;
2962 	compat_uptr_t uptr32;
2963 	struct ifreq __user *uifr;
2964 
2965 	uifr = compat_alloc_user_space(sizeof(*uifr));
2966 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2967 		return -EFAULT;
2968 
2969 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2970 		return -EFAULT;
2971 
2972 	uptr = compat_ptr(uptr32);
2973 
2974 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2975 		return -EFAULT;
2976 
2977 	return dev_ioctl(net, SIOCWANDEV, uifr);
2978 }
2979 
2980 static int bond_ioctl(struct net *net, unsigned int cmd,
2981 			 struct compat_ifreq __user *ifr32)
2982 {
2983 	struct ifreq kifr;
2984 	mm_segment_t old_fs;
2985 	int err;
2986 
2987 	switch (cmd) {
2988 	case SIOCBONDENSLAVE:
2989 	case SIOCBONDRELEASE:
2990 	case SIOCBONDSETHWADDR:
2991 	case SIOCBONDCHANGEACTIVE:
2992 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2993 			return -EFAULT;
2994 
2995 		old_fs = get_fs();
2996 		set_fs(KERNEL_DS);
2997 		err = dev_ioctl(net, cmd,
2998 				(struct ifreq __user __force *) &kifr);
2999 		set_fs(old_fs);
3000 
3001 		return err;
3002 	default:
3003 		return -ENOIOCTLCMD;
3004 	}
3005 }
3006 
3007 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3008 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3009 				 struct compat_ifreq __user *u_ifreq32)
3010 {
3011 	struct ifreq __user *u_ifreq64;
3012 	char tmp_buf[IFNAMSIZ];
3013 	void __user *data64;
3014 	u32 data32;
3015 
3016 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3017 			   IFNAMSIZ))
3018 		return -EFAULT;
3019 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3020 		return -EFAULT;
3021 	data64 = compat_ptr(data32);
3022 
3023 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3024 
3025 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3026 			 IFNAMSIZ))
3027 		return -EFAULT;
3028 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3029 		return -EFAULT;
3030 
3031 	return dev_ioctl(net, cmd, u_ifreq64);
3032 }
3033 
3034 static int dev_ifsioc(struct net *net, struct socket *sock,
3035 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3036 {
3037 	struct ifreq __user *uifr;
3038 	int err;
3039 
3040 	uifr = compat_alloc_user_space(sizeof(*uifr));
3041 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3042 		return -EFAULT;
3043 
3044 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3045 
3046 	if (!err) {
3047 		switch (cmd) {
3048 		case SIOCGIFFLAGS:
3049 		case SIOCGIFMETRIC:
3050 		case SIOCGIFMTU:
3051 		case SIOCGIFMEM:
3052 		case SIOCGIFHWADDR:
3053 		case SIOCGIFINDEX:
3054 		case SIOCGIFADDR:
3055 		case SIOCGIFBRDADDR:
3056 		case SIOCGIFDSTADDR:
3057 		case SIOCGIFNETMASK:
3058 		case SIOCGIFPFLAGS:
3059 		case SIOCGIFTXQLEN:
3060 		case SIOCGMIIPHY:
3061 		case SIOCGMIIREG:
3062 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3063 				err = -EFAULT;
3064 			break;
3065 		}
3066 	}
3067 	return err;
3068 }
3069 
3070 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3071 			struct compat_ifreq __user *uifr32)
3072 {
3073 	struct ifreq ifr;
3074 	struct compat_ifmap __user *uifmap32;
3075 	mm_segment_t old_fs;
3076 	int err;
3077 
3078 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3079 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3080 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3081 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3082 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3083 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3084 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3085 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3086 	if (err)
3087 		return -EFAULT;
3088 
3089 	old_fs = get_fs();
3090 	set_fs(KERNEL_DS);
3091 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3092 	set_fs(old_fs);
3093 
3094 	if (cmd == SIOCGIFMAP && !err) {
3095 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3096 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3097 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3098 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3099 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3100 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3101 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3102 		if (err)
3103 			err = -EFAULT;
3104 	}
3105 	return err;
3106 }
3107 
3108 struct rtentry32 {
3109 	u32		rt_pad1;
3110 	struct sockaddr rt_dst;         /* target address               */
3111 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3112 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3113 	unsigned short	rt_flags;
3114 	short		rt_pad2;
3115 	u32		rt_pad3;
3116 	unsigned char	rt_tos;
3117 	unsigned char	rt_class;
3118 	short		rt_pad4;
3119 	short		rt_metric;      /* +1 for binary compatibility! */
3120 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3121 	u32		rt_mtu;         /* per route MTU/Window         */
3122 	u32		rt_window;      /* Window clamping              */
3123 	unsigned short  rt_irtt;        /* Initial RTT                  */
3124 };
3125 
3126 struct in6_rtmsg32 {
3127 	struct in6_addr		rtmsg_dst;
3128 	struct in6_addr		rtmsg_src;
3129 	struct in6_addr		rtmsg_gateway;
3130 	u32			rtmsg_type;
3131 	u16			rtmsg_dst_len;
3132 	u16			rtmsg_src_len;
3133 	u32			rtmsg_metric;
3134 	u32			rtmsg_info;
3135 	u32			rtmsg_flags;
3136 	s32			rtmsg_ifindex;
3137 };
3138 
3139 static int routing_ioctl(struct net *net, struct socket *sock,
3140 			 unsigned int cmd, void __user *argp)
3141 {
3142 	int ret;
3143 	void *r = NULL;
3144 	struct in6_rtmsg r6;
3145 	struct rtentry r4;
3146 	char devname[16];
3147 	u32 rtdev;
3148 	mm_segment_t old_fs = get_fs();
3149 
3150 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3151 		struct in6_rtmsg32 __user *ur6 = argp;
3152 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3153 			3 * sizeof(struct in6_addr));
3154 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3155 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3156 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3157 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3158 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3159 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3160 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3161 
3162 		r = (void *) &r6;
3163 	} else { /* ipv4 */
3164 		struct rtentry32 __user *ur4 = argp;
3165 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3166 					3 * sizeof(struct sockaddr));
3167 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3168 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3169 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3170 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3171 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3172 		ret |= get_user(rtdev, &(ur4->rt_dev));
3173 		if (rtdev) {
3174 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3175 			r4.rt_dev = (char __user __force *)devname;
3176 			devname[15] = 0;
3177 		} else
3178 			r4.rt_dev = NULL;
3179 
3180 		r = (void *) &r4;
3181 	}
3182 
3183 	if (ret) {
3184 		ret = -EFAULT;
3185 		goto out;
3186 	}
3187 
3188 	set_fs(KERNEL_DS);
3189 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3190 	set_fs(old_fs);
3191 
3192 out:
3193 	return ret;
3194 }
3195 
3196 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3197  * for some operations; this forces use of the newer bridge-utils that
3198  * use compatible ioctls
3199  */
3200 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3201 {
3202 	compat_ulong_t tmp;
3203 
3204 	if (get_user(tmp, argp))
3205 		return -EFAULT;
3206 	if (tmp == BRCTL_GET_VERSION)
3207 		return BRCTL_VERSION + 1;
3208 	return -EINVAL;
3209 }
3210 
3211 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3212 			 unsigned int cmd, unsigned long arg)
3213 {
3214 	void __user *argp = compat_ptr(arg);
3215 	struct sock *sk = sock->sk;
3216 	struct net *net = sock_net(sk);
3217 
3218 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3219 		return compat_ifr_data_ioctl(net, cmd, argp);
3220 
3221 	switch (cmd) {
3222 	case SIOCSIFBR:
3223 	case SIOCGIFBR:
3224 		return old_bridge_ioctl(argp);
3225 	case SIOCGIFNAME:
3226 		return dev_ifname32(net, argp);
3227 	case SIOCGIFCONF:
3228 		return dev_ifconf(net, argp);
3229 	case SIOCETHTOOL:
3230 		return ethtool_ioctl(net, argp);
3231 	case SIOCWANDEV:
3232 		return compat_siocwandev(net, argp);
3233 	case SIOCGIFMAP:
3234 	case SIOCSIFMAP:
3235 		return compat_sioc_ifmap(net, cmd, argp);
3236 	case SIOCBONDENSLAVE:
3237 	case SIOCBONDRELEASE:
3238 	case SIOCBONDSETHWADDR:
3239 	case SIOCBONDCHANGEACTIVE:
3240 		return bond_ioctl(net, cmd, argp);
3241 	case SIOCADDRT:
3242 	case SIOCDELRT:
3243 		return routing_ioctl(net, sock, cmd, argp);
3244 	case SIOCGSTAMP:
3245 		return do_siocgstamp(net, sock, cmd, argp);
3246 	case SIOCGSTAMPNS:
3247 		return do_siocgstampns(net, sock, cmd, argp);
3248 	case SIOCBONDSLAVEINFOQUERY:
3249 	case SIOCBONDINFOQUERY:
3250 	case SIOCSHWTSTAMP:
3251 	case SIOCGHWTSTAMP:
3252 		return compat_ifr_data_ioctl(net, cmd, argp);
3253 
3254 	case FIOSETOWN:
3255 	case SIOCSPGRP:
3256 	case FIOGETOWN:
3257 	case SIOCGPGRP:
3258 	case SIOCBRADDBR:
3259 	case SIOCBRDELBR:
3260 	case SIOCGIFVLAN:
3261 	case SIOCSIFVLAN:
3262 	case SIOCADDDLCI:
3263 	case SIOCDELDLCI:
3264 		return sock_ioctl(file, cmd, arg);
3265 
3266 	case SIOCGIFFLAGS:
3267 	case SIOCSIFFLAGS:
3268 	case SIOCGIFMETRIC:
3269 	case SIOCSIFMETRIC:
3270 	case SIOCGIFMTU:
3271 	case SIOCSIFMTU:
3272 	case SIOCGIFMEM:
3273 	case SIOCSIFMEM:
3274 	case SIOCGIFHWADDR:
3275 	case SIOCSIFHWADDR:
3276 	case SIOCADDMULTI:
3277 	case SIOCDELMULTI:
3278 	case SIOCGIFINDEX:
3279 	case SIOCGIFADDR:
3280 	case SIOCSIFADDR:
3281 	case SIOCSIFHWBROADCAST:
3282 	case SIOCDIFADDR:
3283 	case SIOCGIFBRDADDR:
3284 	case SIOCSIFBRDADDR:
3285 	case SIOCGIFDSTADDR:
3286 	case SIOCSIFDSTADDR:
3287 	case SIOCGIFNETMASK:
3288 	case SIOCSIFNETMASK:
3289 	case SIOCSIFPFLAGS:
3290 	case SIOCGIFPFLAGS:
3291 	case SIOCGIFTXQLEN:
3292 	case SIOCSIFTXQLEN:
3293 	case SIOCBRADDIF:
3294 	case SIOCBRDELIF:
3295 	case SIOCSIFNAME:
3296 	case SIOCGMIIPHY:
3297 	case SIOCGMIIREG:
3298 	case SIOCSMIIREG:
3299 		return dev_ifsioc(net, sock, cmd, argp);
3300 
3301 	case SIOCSARP:
3302 	case SIOCGARP:
3303 	case SIOCDARP:
3304 	case SIOCATMARK:
3305 		return sock_do_ioctl(net, sock, cmd, arg);
3306 	}
3307 
3308 	return -ENOIOCTLCMD;
3309 }
3310 
3311 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3312 			      unsigned long arg)
3313 {
3314 	struct socket *sock = file->private_data;
3315 	int ret = -ENOIOCTLCMD;
3316 	struct sock *sk;
3317 	struct net *net;
3318 
3319 	sk = sock->sk;
3320 	net = sock_net(sk);
3321 
3322 	if (sock->ops->compat_ioctl)
3323 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3324 
3325 	if (ret == -ENOIOCTLCMD &&
3326 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3327 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3328 
3329 	if (ret == -ENOIOCTLCMD)
3330 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3331 
3332 	return ret;
3333 }
3334 #endif
3335 
3336 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3337 {
3338 	return sock->ops->bind(sock, addr, addrlen);
3339 }
3340 EXPORT_SYMBOL(kernel_bind);
3341 
3342 int kernel_listen(struct socket *sock, int backlog)
3343 {
3344 	return sock->ops->listen(sock, backlog);
3345 }
3346 EXPORT_SYMBOL(kernel_listen);
3347 
3348 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3349 {
3350 	struct sock *sk = sock->sk;
3351 	int err;
3352 
3353 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3354 			       newsock);
3355 	if (err < 0)
3356 		goto done;
3357 
3358 	err = sock->ops->accept(sock, *newsock, flags);
3359 	if (err < 0) {
3360 		sock_release(*newsock);
3361 		*newsock = NULL;
3362 		goto done;
3363 	}
3364 
3365 	(*newsock)->ops = sock->ops;
3366 	__module_get((*newsock)->ops->owner);
3367 
3368 done:
3369 	return err;
3370 }
3371 EXPORT_SYMBOL(kernel_accept);
3372 
3373 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3374 		   int flags)
3375 {
3376 	return sock->ops->connect(sock, addr, addrlen, flags);
3377 }
3378 EXPORT_SYMBOL(kernel_connect);
3379 
3380 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3381 			 int *addrlen)
3382 {
3383 	return sock->ops->getname(sock, addr, addrlen, 0);
3384 }
3385 EXPORT_SYMBOL(kernel_getsockname);
3386 
3387 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3388 			 int *addrlen)
3389 {
3390 	return sock->ops->getname(sock, addr, addrlen, 1);
3391 }
3392 EXPORT_SYMBOL(kernel_getpeername);
3393 
3394 int kernel_getsockopt(struct socket *sock, int level, int optname,
3395 			char *optval, int *optlen)
3396 {
3397 	mm_segment_t oldfs = get_fs();
3398 	char __user *uoptval;
3399 	int __user *uoptlen;
3400 	int err;
3401 
3402 	uoptval = (char __user __force *) optval;
3403 	uoptlen = (int __user __force *) optlen;
3404 
3405 	set_fs(KERNEL_DS);
3406 	if (level == SOL_SOCKET)
3407 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3408 	else
3409 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3410 					    uoptlen);
3411 	set_fs(oldfs);
3412 	return err;
3413 }
3414 EXPORT_SYMBOL(kernel_getsockopt);
3415 
3416 int kernel_setsockopt(struct socket *sock, int level, int optname,
3417 			char *optval, unsigned int optlen)
3418 {
3419 	mm_segment_t oldfs = get_fs();
3420 	char __user *uoptval;
3421 	int err;
3422 
3423 	uoptval = (char __user __force *) optval;
3424 
3425 	set_fs(KERNEL_DS);
3426 	if (level == SOL_SOCKET)
3427 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3428 	else
3429 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3430 					    optlen);
3431 	set_fs(oldfs);
3432 	return err;
3433 }
3434 EXPORT_SYMBOL(kernel_setsockopt);
3435 
3436 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3437 		    size_t size, int flags)
3438 {
3439 	if (sock->ops->sendpage)
3440 		return sock->ops->sendpage(sock, page, offset, size, flags);
3441 
3442 	return sock_no_sendpage(sock, page, offset, size, flags);
3443 }
3444 EXPORT_SYMBOL(kernel_sendpage);
3445 
3446 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3447 {
3448 	mm_segment_t oldfs = get_fs();
3449 	int err;
3450 
3451 	set_fs(KERNEL_DS);
3452 	err = sock->ops->ioctl(sock, cmd, arg);
3453 	set_fs(oldfs);
3454 
3455 	return err;
3456 }
3457 EXPORT_SYMBOL(kernel_sock_ioctl);
3458 
3459 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3460 {
3461 	return sock->ops->shutdown(sock, how);
3462 }
3463 EXPORT_SYMBOL(kernel_sock_shutdown);
3464